CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;22 of 22 results for author: <span class="mathjax">Garcia-Martin, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Garcia-Martin%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Garcia-Martin, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Garcia-Martin%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Garcia-Martin, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01077">arXiv:2409.01077</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01077">pdf</a>, <a href="https://arxiv.org/format/2409.01077">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Coupled acoustoplasmonic resonators: the role of geometrical symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=de+Larrinzar%2C+B+C+L">Beatriz Castillo L贸pez de Larrinzar</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa%2C+J+M">Jorge M. Garc铆a</a>, <a href="/search/physics?searchtype=author&amp;query=Xiang%2C+C">C. Xiang</a>, <a href="/search/physics?searchtype=author&amp;query=Lanzillotti-Kimura%2C+N+D">N. D. Lanzillotti-Kimura</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">Antonio Garc铆a-Mart铆n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01077v1-abstract-short" style="display: inline;"> Acoustoplasmonic resonators, such as nanobars and crosses, are efficient acousto-optical transducers. The excitation of mechanical modes in these structures strongly depends on the spatial profile of the eigenmodes of the resonator. Using a system of two identical gold elongated bars placed on a silicon dioxide substrate, we examine how breaking mirror symmetries affects the optical and acoustic p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01077v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01077v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01077v1-abstract-full" style="display: none;"> Acoustoplasmonic resonators, such as nanobars and crosses, are efficient acousto-optical transducers. The excitation of mechanical modes in these structures strongly depends on the spatial profile of the eigenmodes of the resonator. Using a system of two identical gold elongated bars placed on a silicon dioxide substrate, we examine how breaking mirror symmetries affects the optical and acoustic properties to provide insights in the design of acoustoplasmonic metasurfaces for nonsymmetric acousto-optical transducers. Our findings show that, the absence of mirror symmetries affects differently the optical and nanomechanical response. Broken mirror symmetries not only couple nanomechanical modes existing in single bars, but introduces new torsional resonant modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01077v1-abstract-full').style.display = 'none'; document.getElementById('2409.01077v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14331">arXiv:2406.14331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.14331">pdf</a>, <a href="https://arxiv.org/format/2406.14331">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Photonic and phononic modes in acoustoplasmonic toroidal nanopropellers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=de+Larrinzar%2C+B+C+L">Beatriz Castillo L贸pez de Larrinzar</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa%2C+J+M">Jorge M. Garc铆a</a>, <a href="/search/physics?searchtype=author&amp;query=Lanzillotti-Kimura%2C+N+D">Norberto Daniel Lanzillotti-Kimura</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">Antonio Garc铆a-Mart铆n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14331v1-abstract-short" style="display: inline;"> Non-conventional resonances, both acoustic and photonic, are found in metallic particles with a toroidal nanopropeller geometry that is generated by sweeping a three-lobed 2D-shape along a spiral with twisting angle, $伪$. For both optical and acoustic cases, spectral location of resonances experiences a red-shift as a function of $伪$. We demonstrate that the optical case can be understood as a nat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14331v1-abstract-full').style.display = 'inline'; document.getElementById('2406.14331v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14331v1-abstract-full" style="display: none;"> Non-conventional resonances, both acoustic and photonic, are found in metallic particles with a toroidal nanopropeller geometry that is generated by sweeping a three-lobed 2D-shape along a spiral with twisting angle, $伪$. For both optical and acoustic cases, spectral location of resonances experiences a red-shift as a function of $伪$. We demonstrate that the optical case can be understood as a natural evolution of resonances as the spiral length of the toroidal nanopropeller increases with $伪$, implying a huge helicity dependent absorption cross section. In the case of acoustic response, two red-shifting breathing modes are identified. Additionally, even small $伪$ allows the appearance of new low-frequency resonances, whose spectral dispersion depends on a competition between length of the generative spiral and the pitch of the toroidal nanopropeller. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14331v1-abstract-full').style.display = 'none'; document.getElementById('2406.14331v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12972">arXiv:2212.12972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12972">pdf</a>, <a href="https://arxiv.org/format/2212.12972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical mirages from spinless beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Olmos-Trigo%2C+J">Jorge Olmos-Trigo</a>, <a href="/search/physics?searchtype=author&amp;query=Abujetas%2C+D+R">Diego R. Abujetas</a>, <a href="/search/physics?searchtype=author&amp;query=Sanz-Fern%C3%A1ndez%2C+C">Cristina Sanz-Fern谩ndez</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Etxarri%2C+A">Aitzol Garc铆a-Etxarri</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">Antonio Garc铆a-Mart铆n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12972v1-abstract-short" style="display: inline;"> Spin-orbit interactions of light are ubiquitous in multiple branches of nanophotonics, including optical wave localization. In that framework, it is widely accepted that circularly polarized beams lead to spin-dependent apparent shifts of dipolar targets commonly referred to as optical mirages. In contrast, these optical mirages vanish when the illumination comes from a spinless beam such as a lin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12972v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12972v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12972v1-abstract-full" style="display: none;"> Spin-orbit interactions of light are ubiquitous in multiple branches of nanophotonics, including optical wave localization. In that framework, it is widely accepted that circularly polarized beams lead to spin-dependent apparent shifts of dipolar targets commonly referred to as optical mirages. In contrast, these optical mirages vanish when the illumination comes from a spinless beam such as a linearly polarized wave. Here we show that optical localization errors emerge for particles sustaining electric and magnetic dipolar response under the illumination of spinless beams. As an example, we calculate the optical mirage for the scattering by a high refractive index nanosphere under the illumination of a linearly polarized plane wave carrying null spin, orbital, and total angular momentum. Our results point to an overlooked interference between the electric and magnetic dipoles rather than the spin-orbit interactions of light as the origin for the tilted position of the nanosphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12972v1-abstract-full').style.display = 'none'; document.getElementById('2212.12972v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.05272">arXiv:2212.05272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.05272">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Towards chiral acoustoplasmonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=de+Larrinzar%2C+B+C+L">B. Castillo L贸pez de Larrinzar</a>, <a href="/search/physics?searchtype=author&amp;query=Xiang%2C+C">C. Xiang</a>, <a href="/search/physics?searchtype=author&amp;query=de+Oliveira%2C+E+C">E. Cardozo de Oliveira</a>, <a href="/search/physics?searchtype=author&amp;query=Lanzillotti-Kimura%2C+N+D">N. D. Lanzillotti-Kimura</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">A. Garc铆a-Mart铆n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.05272v2-abstract-short" style="display: inline;"> The possibility of creating and manipulating nanostructured materials encouraged the exploration of new strategies to control electromagnetic properties. Among the most intriguing nanostructures are those that respond differently to helical polarization, i.e., exhibit chirality. Here, we present a simple structure based on crossed elongated bars where light-handedness defines the dominating cross-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05272v2-abstract-full').style.display = 'inline'; document.getElementById('2212.05272v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.05272v2-abstract-full" style="display: none;"> The possibility of creating and manipulating nanostructured materials encouraged the exploration of new strategies to control electromagnetic properties. Among the most intriguing nanostructures are those that respond differently to helical polarization, i.e., exhibit chirality. Here, we present a simple structure based on crossed elongated bars where light-handedness defines the dominating cross-section absorption or scattering, with a 200% difference from its counterpart (scattering or absorption). The proposed chiral system opens the way to enhanced coherent phonon excitation and detection. We theoretically propose a simple coherent phonon generation (time-resolved Brillouin scattering) experiment using circularly polarized light. In the reported structures, the generation of acoustic phonons is optimized by maximizing the absorption, while the detection is enhanced at the same wavelength -- and different helicity -- by engineering the scattering properties. The presented results constitute one of the first steps towards harvesting chirality effects in the design and optimization of efficient and versatile acoustoplasmonic transducers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05272v2-abstract-full').style.display = 'none'; document.getElementById('2212.05272v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures + 2 pages for Supplementary Info. with two figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.00363">arXiv:2002.00363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.00363">pdf</a>, <a href="https://arxiv.org/format/2002.00363">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.plrev.2021.03.004">10.1016/j.plrev.2021.03.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Manrubia%2C+S">Susanna Manrubia</a>, <a href="/search/physics?searchtype=author&amp;query=Cuesta%2C+J+A">Jos茅 A. Cuesta</a>, <a href="/search/physics?searchtype=author&amp;query=Aguirre%2C+J">Jacobo Aguirre</a>, <a href="/search/physics?searchtype=author&amp;query=Ahnert%2C+S+E">Sebastian E. Ahnert</a>, <a href="/search/physics?searchtype=author&amp;query=Altenberg%2C+L">Lee Altenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Cano%2C+A+V">Alejandro V. Cano</a>, <a href="/search/physics?searchtype=author&amp;query=Catal%C3%A1n%2C+P">Pablo Catal谩n</a>, <a href="/search/physics?searchtype=author&amp;query=Diaz-Uriarte%2C+R">Ramon Diaz-Uriarte</a>, <a href="/search/physics?searchtype=author&amp;query=Elena%2C+S+F">Santiago F. Elena</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+J+A">Juan Antonio Garc铆a-Mart铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Hogeweg%2C+P">Paulien Hogeweg</a>, <a href="/search/physics?searchtype=author&amp;query=Khatri%2C+B+S">Bhavin S. Khatri</a>, <a href="/search/physics?searchtype=author&amp;query=Krug%2C+J">Joachim Krug</a>, <a href="/search/physics?searchtype=author&amp;query=Louis%2C+A+A">Ard A. Louis</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+N+S">Nora S. Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Payne%2C+J+L">Joshua L. Payne</a>, <a href="/search/physics?searchtype=author&amp;query=Tarnowski%2C+M+J">Matthew J. Tarnowski</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%C3%9F%2C+M">Marcel Wei脽</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.00363v3-abstract-short" style="display: inline;"> Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00363v3-abstract-full').style.display = 'inline'; document.getElementById('2002.00363v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.00363v3-abstract-full" style="display: none;"> Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves into a critical and constructive attitude in our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00363v3-abstract-full').style.display = 'none'; document.getElementById('2002.00363v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">111 pages, 11 figures uses elsarticle latex class</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Life Reviews 38, 55-106 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.11941">arXiv:1905.11941</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.11941">pdf</a>, <a href="https://arxiv.org/format/1905.11941">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/d0nr00198h">10.1039/d0nr00198h <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broadband enhancement of the magneto-optical activity of hybrid Au loaded Bi:YIG </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pappas%2C+S+D">Spiridon D. Pappas</a>, <a href="/search/physics?searchtype=author&amp;query=Lang%2C+P">Philipp Lang</a>, <a href="/search/physics?searchtype=author&amp;query=Eul%2C+T">Tobias Eul</a>, <a href="/search/physics?searchtype=author&amp;query=Hartelt%2C+M">Michael Hartelt</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">Antonio Garc铆a-Mart铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/physics?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/physics?searchtype=author&amp;query=Papaioannou%2C+E+T">Evangelos Th. Papaioannou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.11941v1-abstract-short" style="display: inline;"> We unravel the underlying near-field mechanism of the enhancement of the magneto-optical activity of bismuth-substituted yttrium iron garnet films (Bi:YIG) loaded with gold nanoparticles. The experimental results show that the embedded gold nanoparticles lead to a broadband enhancement of the magneto-optical activity with respect to the activity of the bare Bi:YIG films. Full vectorial near- and f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11941v1-abstract-full').style.display = 'inline'; document.getElementById('1905.11941v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.11941v1-abstract-full" style="display: none;"> We unravel the underlying near-field mechanism of the enhancement of the magneto-optical activity of bismuth-substituted yttrium iron garnet films (Bi:YIG) loaded with gold nanoparticles. The experimental results show that the embedded gold nanoparticles lead to a broadband enhancement of the magneto-optical activity with respect to the activity of the bare Bi:YIG films. Full vectorial near- and far-field simulations demonstrate that this broadband enhancement is the result of a magneto-optically enabled cross-talking of orthogonal localized plasmon resonances. Our results pave the way to the on-demand design of the magneto-optical properties of hybrid magneto-plasmonic circuitry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11941v1-abstract-full').style.display = 'none'; document.getElementById('1905.11941v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages, 3 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Nanoscale, 2020, 12, 7309 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanoscale, 2020, 12, 7309 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.03885">arXiv:1806.03885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.03885">pdf</a>, <a href="https://arxiv.org/format/1806.03885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/123/28001">10.1209/0295-5075/123/28001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Statistical theory of phenotype abundance distributions: a test through exact enumeration of genotype spaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+J+A">Juan Antonio Garc铆a-Mart铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Catal%C3%A1n%2C+P">Pablo Catal谩n</a>, <a href="/search/physics?searchtype=author&amp;query=Manrubia%2C+S">Susanna Manrubia</a>, <a href="/search/physics?searchtype=author&amp;query=Cuesta%2C+J+A">Jos茅 A. Cuesta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.03885v2-abstract-short" style="display: inline;"> The evolutionary dynamics of molecular populations are strongly dependent on the structure of genotype spaces. The map between genotype and phenotype determines how easily genotype spaces can be navigated and the accessibility of evolutionary innovations. In particular, the size of neutral networks corresponding to specific phenotypes and its statistical counterpart, the distribution of phenotype&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.03885v2-abstract-full').style.display = 'inline'; document.getElementById('1806.03885v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.03885v2-abstract-full" style="display: none;"> The evolutionary dynamics of molecular populations are strongly dependent on the structure of genotype spaces. The map between genotype and phenotype determines how easily genotype spaces can be navigated and the accessibility of evolutionary innovations. In particular, the size of neutral networks corresponding to specific phenotypes and its statistical counterpart, the distribution of phenotype abundance, have been studied through multiple computationally tractable genotype-phenotype maps. In this work, we test a theory that predicts the abundance of a phenotype and the corresponding asymptotic distribution (given the compositional variability of its genotypes) through the exact enumeration of several GP maps. Our theory predicts with high accuracy phenotype abundance, and our results show that, in navigable genotype spaces ---characterised by the presence of large neutral networks---, phenotype abundance converges to a log-normal distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.03885v2-abstract-full').style.display = 'none'; document.getElementById('1806.03885v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, 4 appendixes, uses epl2.cls</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Europhysics Letters 123, 28001 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.06978">arXiv:1709.06978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.06978">pdf</a>, <a href="https://arxiv.org/format/1709.06978">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic thermal magnetoresistance for an active control of radiative heat transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ekeroth%2C+R+M+A">R. M. Abraham Ekeroth</a>, <a href="/search/physics?searchtype=author&amp;query=Ben-Abdallah%2C+P">Philippe Ben-Abdallah</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">Antonio Garc铆a-Mart铆n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.06978v1-abstract-short" style="display: inline;"> We predict a huge anisotropic thermal magnetoresistance (ATMR) in the near-field radiative heat transfer between magneto-optical particles when the direction of an external magnetic field is changed with respect to the heat current direction. We illustrate this effect with the case of two InSb spherical particles where we find that the ATMR amplitude can reach values of up to 800% for a magnetic f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.06978v1-abstract-full').style.display = 'inline'; document.getElementById('1709.06978v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.06978v1-abstract-full" style="display: none;"> We predict a huge anisotropic thermal magnetoresistance (ATMR) in the near-field radiative heat transfer between magneto-optical particles when the direction of an external magnetic field is changed with respect to the heat current direction. We illustrate this effect with the case of two InSb spherical particles where we find that the ATMR amplitude can reach values of up to 800% for a magnetic field of 5 T, which is many orders of magnitude larger than its spintronic analogue in electronic devices. This thermomagnetic effect could find broad applications in the fields of ultrafast thermal management as well as magnetic and thermal remote sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.06978v1-abstract-full').style.display = 'none'; document.getElementById('1709.06978v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.04273">arXiv:1702.04273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.04273">pdf</a>, <a href="https://arxiv.org/format/1702.04273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.235428">10.1103/PhysRevB.95.235428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal discrete dipole approximation for the description of thermal emission and radiative heat transfer of magneto-optical systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ekeroth%2C+R+M+A">R. M. Abraham Ekeroth</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">Antonio Garc铆a-Mart铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.04273v2-abstract-short" style="display: inline;"> We present here a generalization of the thermal discrete dipole approximation (TDDA) that allows us to describe the near-field radiative heat transfer between finite objects of arbitrary shape that exhibit magneto-optical (MO) activity. We also extend the TDDA approach to describe the thermal emission of a finite object with and without MO activity. Our method is also valid for optically anisotrop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04273v2-abstract-full').style.display = 'inline'; document.getElementById('1702.04273v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.04273v2-abstract-full" style="display: none;"> We present here a generalization of the thermal discrete dipole approximation (TDDA) that allows us to describe the near-field radiative heat transfer between finite objects of arbitrary shape that exhibit magneto-optical (MO) activity. We also extend the TDDA approach to describe the thermal emission of a finite object with and without MO activity. Our method is also valid for optically anisotropic materials described by an arbitrary permittivity tensor and we provide simple closed formulas for the basic thermal quantities that considerably simplify the implementation of TDDA method. Moreover, we show that employing our TDDA approach one can rigorously demonstrate Kirchhoff&#39;s radiation law relating the emissivity and absorptivity of an arbitrary MO object. Our work paves the way for the theoretical study of the active control of emission and radiative heat transfer between MO systems of arbitrary size and shape. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04273v2-abstract-full').style.display = 'none'; document.getElementById('1702.04273v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 235428 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00078">arXiv:1611.00078</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.00078">pdf</a>, <a href="https://arxiv.org/format/1611.00078">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5079713">10.1063/1.5079713 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thickness dependent enhancement of the polar magneto-optic Kerr effect in Co magnetoplasmonic nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rowan-Robinson%2C+R+M">Richard M. Rowan-Robinson</a>, <a href="/search/physics?searchtype=author&amp;query=Melander%2C+E">Emil Melander</a>, <a href="/search/physics?searchtype=author&amp;query=Chioar%2C+I">Ioan-Augustin Chioar</a>, <a href="/search/physics?searchtype=author&amp;query=Caballero%2C+B">Blanca Caballero</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">Antonio Garc铆a-Mart铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Papaioannou%2C+E+T">Evangelos Th. Papaioannou</a>, <a href="/search/physics?searchtype=author&amp;query=Kapaklis%2C+V">Vassilios Kapaklis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00078v4-abstract-short" style="display: inline;"> Large surface plasmon polariton assisted enhancement of the magneto-optical activity has been observed in the past, through spectral measurements of the polar Kerr rotation in Co hexagonal antidot arrays. Here, we report a strong thickness dependence, which is unexpected given that the Kerr effect is considered a surface sensitive phenomena. The maximum Kerr rotation was found to be -0.66 degrees&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00078v4-abstract-full').style.display = 'inline'; document.getElementById('1611.00078v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00078v4-abstract-full" style="display: none;"> Large surface plasmon polariton assisted enhancement of the magneto-optical activity has been observed in the past, through spectral measurements of the polar Kerr rotation in Co hexagonal antidot arrays. Here, we report a strong thickness dependence, which is unexpected given that the Kerr effect is considered a surface sensitive phenomena. The maximum Kerr rotation was found to be -0.66 degrees for a 100 nm thick sample. This thickness is far above the typical optical penetration depth of a continuous Co film, demonstrating that in the presence of plasmons the critical lengthscales are dramatically altered, and in this case extended. We therefore establish that the plasmon enhanced Kerr effect does not only depend on the in-plane structuring of the sample, but also on the out-of-plane geometrical parameters, which is an important consideration in magnetoplasmonic device design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00078v4-abstract-full').style.display = 'none'; document.getElementById('1611.00078v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures, 13 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Advances 9, 025317 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.08890">arXiv:1607.08890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.08890">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Percolation in photonic crystals revealed by Fano Resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pariente%2C+J+A">Jose Angel Pariente</a>, <a href="/search/physics?searchtype=author&amp;query=Bayat%2C+F">Farzaneh Bayat</a>, <a href="/search/physics?searchtype=author&amp;query=Pecharom%C3%A1n%2C+C">Carlos Pecharom谩n</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+A">Alvaro Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">Antonio Garc铆a-Mart铆n</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%B3pez%2C+C">Cefe L贸pez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.08890v1-abstract-short" style="display: inline;"> The understanding of how the arrangement of defects in photonic crystals impacts its photonic properties is cru-cial for the design of functional materials based thereon. By preparing photonic crystals with random missing scatterers we create crystals where disorder is embodied as vacancies in an otherwise perfect lattice rather than the usual positional or size disorder. We show that the amount o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.08890v1-abstract-full').style.display = 'inline'; document.getElementById('1607.08890v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.08890v1-abstract-full" style="display: none;"> The understanding of how the arrangement of defects in photonic crystals impacts its photonic properties is cru-cial for the design of functional materials based thereon. By preparing photonic crystals with random missing scatterers we create crystals where disorder is embodied as vacancies in an otherwise perfect lattice rather than the usual positional or size disorder. We show that the amount of defects not only determines the intensity but also the nature of the light scattering. As the amount of defects varies, light scattering undergoes a transition whereby the usual signatures of photonic gaps (Bragg peak) suffer line-shape changes (Bragg dip) that can be readily described with the Fano resonance q parameter. When the amount of vacancies reaches the percolation threshold, q undergoes a sign change signaling the transition from a crystal to a mosaic of microcrystals through a state where scattering is maximum. Beyond that point the system reenters a state of low scattering that ap-pears in the guise of normal Bragg diffraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.08890v1-abstract-full').style.display = 'none'; document.getElementById('1607.08890v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.05879">arXiv:1605.05879</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.05879">pdf</a>, <a href="https://arxiv.org/format/1605.05879">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Magneto-Optical Activity in High Index Dielectric Nanoantennas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=de+Sousa%2C+N">N. de Sousa</a>, <a href="/search/physics?searchtype=author&amp;query=Froufe-P%C3%A9rez%2C+L+S">L. S. Froufe-P茅rez</a>, <a href="/search/physics?searchtype=author&amp;query=S%C3%A1enz%2C+J+J">J. J. S谩enz</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">A. Garc铆a-Mart铆n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.05879v1-abstract-short" style="display: inline;"> The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.05879v1-abstract-full').style.display = 'inline'; document.getElementById('1605.05879v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.05879v1-abstract-full" style="display: none;"> The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.05879v1-abstract-full').style.display = 'none'; document.getElementById('1605.05879v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.06060">arXiv:1506.06060</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.06060">pdf</a>, <a href="https://arxiv.org/format/1506.06060">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.125418">10.1103/PhysRevB.92.125418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic-field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Moncada-Villa%2C+E">Edwin Moncada-Villa</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez-Hurtado%2C+V">Victor Fernandez-Hurtado</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Vidal%2C+F+J">Francisco J. Garcia-Vidal</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Martin%2C+A">Antonio Garcia-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.06060v1-abstract-short" style="display: inline;"> We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic fiel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06060v1-abstract-full').style.display = 'inline'; document.getElementById('1506.06060v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.06060v1-abstract-full" style="display: none;"> We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic field reduces the radiative heat conductance, and dramatic reductions up to 700% can be found with fields of about 6 T at room temperature. We show that this striking behavior is due to the fact that the magnetic field radically changes the nature of the NFRHT. The field not only affects the electromagnetic surface waves (both plasmons and phonon polaritons) that normally dominate the near-field radiation in doped semiconductors, but it also induces hyperbolic modes that progressively dominate the heat transfer as the field increases. In particular, we show that when the field is perpendicular to the plates, the semiconductors become ideal hyperbolic near-field emitters. More importantly, by changing the magnetic field, the system can be continuously tuned from a situation where the surface waves dominate the heat transfer to a situation where hyperbolic modes completely govern the near-field thermal radiation. We show that this high tunability can be achieved with accessible magnetic fields and very common materials like n-doped InSb or Si. Our study paves the way for an active control of NFRHT and it opens the possibility to study unique hyperbolic thermal emitters without the need to resort to complicated metamaterials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06060v1-abstract-full').style.display = 'none'; document.getElementById('1506.06060v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 125418 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.01997">arXiv:1505.01997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.01997">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.23.028108">10.1364/OE.23.028108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scattering of a plasmonic nanoantenna embedded in a silicon waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Castro-Lopez%2C+M">Marta Castro-Lopez</a>, <a href="/search/physics?searchtype=author&amp;query=de+Sousa%2C+N">Nuno de Sousa</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Martin%2C+A">Antonio Garcia-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Gardes%2C+F+Y">Frederic Y. Gardes</a>, <a href="/search/physics?searchtype=author&amp;query=Sapienza%2C+R">Riccardo Sapienza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.01997v1-abstract-short" style="display: inline;"> Plasmonic antennas integrated on silicon devices have large and yet unexplored potential for controlling and routing light signals. Here, we present theoretical calculations of a hybrid silicon-metallic system in which a single gold nanoantenna embedded in a single-mode silicon waveguide acts as a resonance-driven filter. As a consequence of scattering and interference, when the resonance conditio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01997v1-abstract-full').style.display = 'inline'; document.getElementById('1505.01997v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.01997v1-abstract-full" style="display: none;"> Plasmonic antennas integrated on silicon devices have large and yet unexplored potential for controlling and routing light signals. Here, we present theoretical calculations of a hybrid silicon-metallic system in which a single gold nanoantenna embedded in a single-mode silicon waveguide acts as a resonance-driven filter. As a consequence of scattering and interference, when the resonance condition of the antenna is met, the transmission drops by 85% in the resonant frequency band. Firstly, we study analytically the interaction between the propagating mode and the antenna by including radiative corrections to the scattering process and the polarization of the waveguide walls. Secondly, we find the configuration of maximum interaction and numerically simulate a realistic nanoantenna in a silicon waveguide. The numerical calculations show a large suppression of transmission and three times more scattering than absorption, consequent with the analytical model. The system we propose can be easily fabricated by standard silicon and plasmonic lithographic methods, making it promising as real component in future optoelectronic circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01997v1-abstract-full').style.display = 'none'; document.getElementById('1505.01997v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.5472">arXiv:1408.5472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.5472">pdf</a>, <a href="https://arxiv.org/format/1408.5472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.085120">10.1103/PhysRevB.90.085120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extraordinary transverse magneto-optical Kerr effect in a superlens </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Moncada-Villa%2C+E">E. Moncada-Villa</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Martin%2C+A">A. Garcia-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">J. C. Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.5472v1-abstract-short" style="display: inline;"> It has been shown that a slab of a negative index material can behave as a superlens enhancing the imaging resolution beyond the wavelength limit. We show here that if such a slab possesses in addition some magneto-optical activity, it could act as an ideal optical filter and exhibit an extraordinary transverse magneto-optical Kerr effect. Moreover, we show that losses, which spoil the imaging res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.5472v1-abstract-full').style.display = 'inline'; document.getElementById('1408.5472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.5472v1-abstract-full" style="display: none;"> It has been shown that a slab of a negative index material can behave as a superlens enhancing the imaging resolution beyond the wavelength limit. We show here that if such a slab possesses in addition some magneto-optical activity, it could act as an ideal optical filter and exhibit an extraordinary transverse magneto-optical Kerr effect. Moreover, we show that losses, which spoil the imaging resolution of these lenses, are a necessary ingredient to observe this effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.5472v1-abstract-full').style.display = 'none'; document.getElementById('1408.5472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 085120 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.6767">arXiv:1404.6767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.6767">pdf</a>, <a href="https://arxiv.org/format/1404.6767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.205419">10.1103/PhysRevB.89.205419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interaction Effects on the Magneto-optical Response of Magnetoplasmonic Dimers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=de+Sousa%2C+N">N. de Sousa</a>, <a href="/search/physics?searchtype=author&amp;query=Froufe-P%C3%A9rez%2C+L+S">L. S. Froufe-P茅rez</a>, <a href="/search/physics?searchtype=author&amp;query=Armelles%2C+G">G. Armelles</a>, <a href="/search/physics?searchtype=author&amp;query=Cebollada%2C+A">A. Cebollada</a>, <a href="/search/physics?searchtype=author&amp;query=Gonz%C3%A1lez%2C+M+U">M. U. Gonz谩lez</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa%2C+F">F. Garc铆a</a>, <a href="/search/physics?searchtype=author&amp;query=Meneses-Rodr%C3%ADguez%2C+D">D. Meneses-Rodr铆guez</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">A. Garc铆a-Mart铆n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.6767v1-abstract-short" style="display: inline;"> The effect that dipole-dipole interactions have on the magneto-optical (MO) properties of magnetoplasmonic dimers is theoretically studied. The specific plasmonic versus magnetoplasmonic nature of the dimer&#39;s metallic components and their specific location within the dimer plays a crucial role on the determination of these properties. We find that it is possible to generate an induced MO activity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6767v1-abstract-full').style.display = 'inline'; document.getElementById('1404.6767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.6767v1-abstract-full" style="display: none;"> The effect that dipole-dipole interactions have on the magneto-optical (MO) properties of magnetoplasmonic dimers is theoretically studied. The specific plasmonic versus magnetoplasmonic nature of the dimer&#39;s metallic components and their specific location within the dimer plays a crucial role on the determination of these properties. We find that it is possible to generate an induced MO activity in a purely plasmonic component, even larger than that of the MO one, therefore dominating the overall MO spectral dependence of the system. Adequate stacking of these components may allow obtaining, for specific spectral regions, larger MO activities in systems with reduced amount of MO metal and therefore with lower optical losses. Theoretical results are contrasted and confirmed with experiments for selected structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6767v1-abstract-full').style.display = 'none'; document.getElementById('1404.6767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.3999">arXiv:1401.3999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.3999">pdf</a>, <a href="https://arxiv.org/ps/1401.3999">ps</a>, <a href="https://arxiv.org/format/1401.3999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.89.063830">10.1103/PhysRevA.89.063830 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of long range spatial correlations on the lifetime statistics of an emitter in a two-dimensional disordered lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=de+Sousa%2C+N">N. de Sousa</a>, <a href="/search/physics?searchtype=author&amp;query=S%C3%A1enz%2C+J+J">J. J. S谩enz</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">A. Garc铆a-Mart铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Froufe-P%C3%A9rez%2C+L+S">L. S. Froufe-P茅rez</a>, <a href="/search/physics?searchtype=author&amp;query=Marqu%C3%A9s%2C+M+I">M. I. Marqu茅s</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.3999v3-abstract-short" style="display: inline;"> The effect of spatial correlations on the Purcell effect in a bidimensional dispersion of resonant nanoparticles is analyzed. We perform extensive calculations on the fluorescence decay rate of a point emitter embedded in a system of nanoparticles statistically distributed according to a simple 2D lattice-gas model near the critical point. For short-range correlations (high temperature thermalizat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3999v3-abstract-full').style.display = 'inline'; document.getElementById('1401.3999v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.3999v3-abstract-full" style="display: none;"> The effect of spatial correlations on the Purcell effect in a bidimensional dispersion of resonant nanoparticles is analyzed. We perform extensive calculations on the fluorescence decay rate of a point emitter embedded in a system of nanoparticles statistically distributed according to a simple 2D lattice-gas model near the critical point. For short-range correlations (high temperature thermalization) the Purcell factors present a long-tailed statistic which evolves towards a bimodal distribution when approaching the critical point where the spatial correlation length diverges. Our results suggest long-range correlations as a possible origin of the large fluctuations of experimental decay rates in disordered metal films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3999v3-abstract-full').style.display = 'none'; document.getElementById('1401.3999v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.3697">arXiv:1207.3697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.3697">pdf</a>, <a href="https://arxiv.org/ps/1207.3697">ps</a>, <a href="https://arxiv.org/format/1207.3697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4742931">10.1063/1.4742931 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Melander%2C+E">Emil Melander</a>, <a href="/search/physics?searchtype=author&amp;query=%C3%96stman%2C+E">Erik 脰stman</a>, <a href="/search/physics?searchtype=author&amp;query=Keller%2C+J">Janine Keller</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+J">Jan Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Papaioannou%2C+E+T">Evangelos Th. Papaioannou</a>, <a href="/search/physics?searchtype=author&amp;query=Kapaklis%2C+V">Vassilios Kapaklis</a>, <a href="/search/physics?searchtype=author&amp;query=Arnalds%2C+U+B">Unnar B. Arnalds</a>, <a href="/search/physics?searchtype=author&amp;query=Caballero%2C+B">B. Caballero</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">A. Garc铆a-Mart铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">J. C. Cuevas</a>, <a href="/search/physics?searchtype=author&amp;query=Hj%C3%B6rvarsson%2C+B">Bj枚rgvin Hj枚rvarsson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.3697v1-abstract-short" style="display: inline;"> Extraordinary optical transmission is observed due to the excitation of surface plasmon polaritons (SPPs) in 2-Dimensional hexagonal anti-dot patterns of pure Ni thin films, grown on sapphire substrates. A strong enhancement of the polar Kerr rotation is recorded at the surface plasmon related transmission maximum. Angular resolved reflectivity measurements under an applied field, reveal an enhanc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.3697v1-abstract-full').style.display = 'inline'; document.getElementById('1207.3697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.3697v1-abstract-full" style="display: none;"> Extraordinary optical transmission is observed due to the excitation of surface plasmon polaritons (SPPs) in 2-Dimensional hexagonal anti-dot patterns of pure Ni thin films, grown on sapphire substrates. A strong enhancement of the polar Kerr rotation is recorded at the surface plasmon related transmission maximum. Angular resolved reflectivity measurements under an applied field, reveal an enhancement and a shift of the normalized reflectivity difference upon reversal of the magnetic saturation (transverse magneto-optical Kerr effect-TMOKE). The change of the TMOKE signal clearly shows the magnetic field modulation of the dispersion relation of SPPs launched in a 2D patterned ferromagnetic Ni film. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.3697v1-abstract-full').style.display = 'none'; document.getElementById('1207.3697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters, 101, 063107 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.1465">arXiv:1202.1465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.1465">pdf</a>, <a href="https://arxiv.org/ps/1202.1465">ps</a>, <a href="https://arxiv.org/format/1202.1465">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.245103">10.1103/PhysRevB.85.245103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Caballero%2C+B">B. Caballero</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Martin%2C+A">A. Garcia-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">J. C. Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.1465v1-abstract-short" style="display: inline;"> We present here a generalization of the scattering-matrix approach for the description of the propagation of electromagnetic waves in nanostructured magneto-optical systems. Our formalism allows us to describe all the key magneto-optical effects in any configuration in periodically patterned multilayer structures. The method can also be applied to describe periodic multilayer systems comprising ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1465v1-abstract-full').style.display = 'inline'; document.getElementById('1202.1465v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.1465v1-abstract-full" style="display: none;"> We present here a generalization of the scattering-matrix approach for the description of the propagation of electromagnetic waves in nanostructured magneto-optical systems. Our formalism allows us to describe all the key magneto-optical effects in any configuration in periodically patterned multilayer structures. The method can also be applied to describe periodic multilayer systems comprising materials with any type of optical anisotropy. We illustrate the method with the analysis of a recent experiment in which the transverse magneto-optical Kerr effect was measured in a Fe film with a periodic array of subwavelength circular holes. We show, in agreement with the experiments, that the excitation of surface plasmon polaritons in this system leads to a resonant enhancement of the transverse magneto-optical Kerr effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1465v1-abstract-full').style.display = 'none'; document.getElementById('1202.1465v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, submitted to Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 85, 245103 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0103017">arXiv:physics/0103017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0103017">pdf</a>, <a href="https://arxiv.org/ps/physics/0103017">ps</a>, <a href="https://arxiv.org/format/physics/0103017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.86.4275">10.1103/PhysRevLett.86.4275 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant radiation pressure on neutral particles in a waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gomez-Medina%2C+R">R. Gomez-Medina</a>, <a href="/search/physics?searchtype=author&amp;query=Jose%2C+P+S">P. San Jose</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Martin%2C+A">A. Garcia-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Lester%2C+M">M. Lester</a>, <a href="/search/physics?searchtype=author&amp;query=Nieto-Vesperinas%2C+M">M. Nieto-Vesperinas</a>, <a href="/search/physics?searchtype=author&amp;query=Saenz%2C+J+J">J. J. Saenz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0103017v1-abstract-short" style="display: inline;"> A theoretical analysis of electromagnetic forces on neutral particles in an hollow waveguide is presented. We show that the effective scattering cross section of a very small (Rayleigh) particle can be strongly modified inside a waveguide. The coupling of the scattered dipolar field with the waveguide modes induce a resonant enhanced backscattering state of the scatterer-guide system close to th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0103017v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0103017v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0103017v1-abstract-full" style="display: none;"> A theoretical analysis of electromagnetic forces on neutral particles in an hollow waveguide is presented. We show that the effective scattering cross section of a very small (Rayleigh) particle can be strongly modified inside a waveguide. The coupling of the scattered dipolar field with the waveguide modes induce a resonant enhanced backscattering state of the scatterer-guide system close to the onset of new modes. The particle effective cross section can then be as large as the wavelength even far from any transition resonance. As we will show, a small particle can be strongly accelerated along the guide axis while being highly confined in a narrow zone of the cross section of the guide. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0103017v1-abstract-full').style.display = 'none'; document.getElementById('physics/0103017v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">RevTeX,4 pages,3 PS figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9805249">arXiv:cond-mat/9805249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9805249">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9805249">ps</a>, <a href="https://arxiv.org/format/cond-mat/9805249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.80.4165">10.1103/PhysRevLett.80.4165 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intensity Distribution of Modes in Surface Corrugated Waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Garcia-Martin%2C+A">A. Garcia-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Torres%2C+J+A">J. A. Torres</a>, <a href="/search/physics?searchtype=author&amp;query=Saenz%2C+J+J">J. J. Saenz</a>, <a href="/search/physics?searchtype=author&amp;query=Nieto-Vesperinas%2C+M">M. Nieto-Vesperinas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9805249v1-abstract-short" style="display: inline;"> Exact calculations of transmission and reflection coefficients in surface randomly corrugated optical waveguides are presented. As the length of the corrugated part of the waveguide increases, there is a strong preference to forward coupling through the lowest mode. An oscillating behavior of the enhanced backscattering as a function of the wavelength is predicted. Although the transport is stro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9805249v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9805249v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9805249v1-abstract-full" style="display: none;"> Exact calculations of transmission and reflection coefficients in surface randomly corrugated optical waveguides are presented. As the length of the corrugated part of the waveguide increases, there is a strong preference to forward coupling through the lowest mode. An oscillating behavior of the enhanced backscattering as a function of the wavelength is predicted. Although the transport is strongly non isotropic, the analysis of the probability distributions of the transmitted waves confirms in this configuration distributions predicted by Random Matrix Theory for volume disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9805249v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9805249v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 80, 4165 (1998) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9801323">arXiv:cond-mat/9801323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9801323">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9801323">ps</a>, <a href="https://arxiv.org/format/cond-mat/9801323">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.119978">10.1063/1.119978 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transition from Diffusive to Localized Regimes in Surface Corrugated Optical Waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Garcia-Martin%2C+A">A. Garcia-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Torres%2C+J+A">J. A. Torres</a>, <a href="/search/physics?searchtype=author&amp;query=Saenz%2C+J+J">J. J. Saenz</a>, <a href="/search/physics?searchtype=author&amp;query=Nieto-Vesperinas%2C+M">M. Nieto-Vesperinas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9801323v1-abstract-short" style="display: inline;"> Exact calculations of the transmittance of surface corrugated optical waveguides are presented. The elastic scattering of diffuse light or other electromagnetic waves from a rough surface induces a diffusive transport along the waveguide axis. As the length of the corrugated part of the waveguide increases, a transition from the diffusive to the localized regime is observed. This involves an ana&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9801323v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9801323v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9801323v1-abstract-full" style="display: none;"> Exact calculations of the transmittance of surface corrugated optical waveguides are presented. The elastic scattering of diffuse light or other electromagnetic waves from a rough surface induces a diffusive transport along the waveguide axis. As the length of the corrugated part of the waveguide increases, a transition from the diffusive to the localized regime is observed. This involves an analogy with electron conduction in nanowires, and hence, a concept analogous to that of ``resistance&#39;&#39; can be introduced. We show an oscillatory behavior of both the elastic mean free path and the localization length versus the wavelength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9801323v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9801323v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, REVTEX, 3 PS figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 71, 1912 (1997) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10