CINXE.COM
Search results for: opuntia ficus indica
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: opuntia ficus indica</title> <meta name="description" content="Search results for: opuntia ficus indica"> <meta name="keywords" content="opuntia ficus indica"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="opuntia ficus indica" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="opuntia ficus indica"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 161</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: opuntia ficus indica</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Correlation between Total Polyphenol Content and Antimicrobial Activity of Opuntia ficus indica Extracts against Periodontopathogenic Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Chikhi-Chorfi">N. Chikhi-Chorfi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Arbia"> L. Arbia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zenia"> S. Zenia</a>, <a href="https://publications.waset.org/abstracts/search?q=H.Lounici"> H.Lounici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Opuntia ficus-indica belongs to the Cactaceae family. The cactus is mainly cultivated for its fruit (prickly pear) that, eaten after pealing, is sweet and juicy, and rich in nutritional compounds, such as ascorbic acid and polyphenols. Different parts of O. ficus-indica are used in the traditional medicine of several countries: the cladodes are utilized to reduce serum cholesterol level and blood pressure, for treatment of ulcers, rheumatic pain, wounds, fatigue, capillary fragility, and liver conditions. This original study, investigate the effect of polyphenols of O. ficus indica (cactus) cladodes against periodontal bacteria collected from patients with periodontitis. The quantitative analysis of total polyphenols (TPP) was determined with Follin-Ciocalteu method. Different concentrations of extracts of O. ficus indica were tested by the disk method on two bacterial strains: Porphyromonas gingivalis and Prevotella intermedia responsible for periodontal disease. The results showed a good correlation between the concentration of total polyphenols and the antibacterial activity of the extracts of Opuntia ficus indica against P. gingivalis and P. intermedia with R² = 0.94 and R² = 0.90 respectively. This observation suggests that these extracts could be used in the treatment and prevention of periodontitis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=periodontal%20disease" title="periodontal disease">periodontal disease</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20gingivalis" title=" P. gingivalis"> P. gingivalis</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20intermedia" title=" P. intermedia"> P. intermedia</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=Opuntia%20ficus%20indica" title=" Opuntia ficus indica"> Opuntia ficus indica</a> </p> <a href="https://publications.waset.org/abstracts/102269/correlation-between-total-polyphenol-content-and-antimicrobial-activity-of-opuntia-ficus-indica-extracts-against-periodontopathogenic-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Nutritional and Functional Composition of Prickly Pear Cactus (Opuntia ficus-indica Mill.) Grown in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Cheriet">Kamel Cheriet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Algeria, Opuntia ficus Indica production is important. This seasonal fruit is a characteristic of arid and semi-arid regions. Taking into account its high content in antioxidants, it has an excellent nutritional value. The aim of this research is the prickly pear morphological and physicochemical characterization study which is widely present in the Arris (Batna, Algeria) area. The results of this experimental study are comparative to those of the same species from other world regions. The whole fruit weight is estimated to reach 63.38 g with a juice ratio of 71.42%, a pH of 5.54, moisture of 89.3% and a brix of 10.4°. The quantitative amount of the phenolic compounds of the fruit revealed contents of 20.65-45.70 mg / 100 g of MF for total polyphenols and 0.519 -0.591 mg / 100 g of MF for the flavonoids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20composition" title="functional composition">functional composition</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritionals%20properties" title=" nutritionals properties"> nutritionals properties</a>, <a href="https://publications.waset.org/abstracts/search?q=opuntia%20ficus%20indica" title=" opuntia ficus indica"> opuntia ficus indica</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a> </p> <a href="https://publications.waset.org/abstracts/70407/nutritional-and-functional-composition-of-prickly-pear-cactus-opuntia-ficus-indica-mill-grown-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Effects of Opuntia ficus-indica var. Saboten on Glucose Uptake and Insulin Sensitivity in Pancreatic β Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang-Hyun%20Leem">Kang-Hyun Leem</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gyou%20Kim"> Myung-Gyou Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Kyung%20Kim"> Hye Kyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prickly pear cactus (Opuntia ficus-indica) has a global distribution and have been used for medicinal benefits such as artherosclerosis, diabetes, gastritis, and hyperglycemia. However, very little information is currently available for their mechanism. The prikly pear variety Opuntia ficus-indica var. Saboten (OFS) is widely cultivated in Cheju Island, southwestern region of Korea, and used as a functional food. Present study investigated the effects of OFS on pancreatic β-cell function using pancreatic islet β cells (HIT cell). Alpha-glucosidase inhibition, glucose uptake, insulin secretion, insulin sensitivity, and pancreatic β cell proliferation were determined. The inhibitory effect of ethanol extract of OFS stem on α-glucosidase enzyme was measured in a cell free system. Glucose uptake was determined using fluorescent glucose analogue, 2-NBDG. Insulin secretion was measured by ELISA assay. Cell proliferation was measured by MTT assay. Ethanol extracts of OFS dose-dependently inhibited α-glucosidase activity as well as glucose uptake. Insulinotrophic effect of OFS extract was observed at high glucose media in pancreatic β-islet cells. Furthermore, pancreatic β cell regeneration was also observed.These results suggest that OFS mediates the antidiabetic activity mainly via α-glucosidase inhibition, glucose uptake, and improved insulin sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prickly%20pear%20cactus" title="prickly pear cactus">prickly pear cactus</a>, <a href="https://publications.waset.org/abstracts/search?q=Opuntia%20ficus-indica%20var.%20Saboten" title=" Opuntia ficus-indica var. Saboten"> Opuntia ficus-indica var. Saboten</a>, <a href="https://publications.waset.org/abstracts/search?q=pancreatic%20islet%20HIT%20cells" title=" pancreatic islet HIT cells"> pancreatic islet HIT cells</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-glucosidase" title=" α-glucosidase"> α-glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20uptake" title=" glucose uptake"> glucose uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=insulinotrophic" title=" insulinotrophic"> insulinotrophic</a> </p> <a href="https://publications.waset.org/abstracts/32210/effects-of-opuntia-ficus-indica-var-saboten-on-glucose-uptake-and-insulin-sensitivity-in-pancreatic-v-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Nutritional and Antioxidant Properties of Prickly Pear (Opuntia ficus indica Mill.) Grown in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Temagoult">Asma Temagoult</a>, <a href="https://publications.waset.org/abstracts/search?q=Bariza%20Zitouni"> Bariza Zitouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassin%20Noui"> Yassin Noui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cactus fruit contains different nutritional and functional components, which are used because of their benefits to human health, such as flavonoids, phenolic compounds, carotenoids and vitamins C. It has hypoglycemic and hypolipidemic action, and antioxidant properties related to anticarcinogenic, antiulcerogenic and immunomodulatory effects. The antioxidant and nutritional properties have been characterized in cactus prickly pear (Opuntia ficus-indica Mill.), cultivar yellow, grown in Arris area; Eastern of Algeria. The antioxidant properties of this cactus cultivar were higher than the others cactus cultivar in the world. The amount of fruit phenolic compounds revealed contents between 20.65 and 45.70 mg / 100 g of FW for total polyphenols and 0.519 - 0.591 mg / 100 g of FW for the flavonoids. The antioxidant activity was evaluated by DPPH radical scavenging and FRAP (ferric reducing antioxidant power) methods. The average recorded to the potassium content is about 1070 mg / 100 g of the fresh weight; sodium is 60.7 mg / 100 g of the fresh weight and 80 mg / 100g for the calcium. According to the high value of this cactus, it was considered as a good nutrient and important pharmaceutical resource. It could be used as a natural additive or substituted food supplement in many foodstuffs production, to benefit from these benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20properties" title="antioxidant properties">antioxidant properties</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=FRAP" title=" FRAP"> FRAP</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20properties" title=" nutritional properties"> nutritional properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Opuntia%20ficus%20indica" title=" Opuntia ficus indica"> Opuntia ficus indica</a> </p> <a href="https://publications.waset.org/abstracts/70380/nutritional-and-antioxidant-properties-of-prickly-pear-opuntia-ficus-indica-mill-grown-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Opuntia ficus-indica var. Saboten Stimulates Adipogenesis, Lipolysis, and Glucose Uptake in 3T3-L1 Adipocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hye%20Kyung%20Kim">Hye Kyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gyou%20Kim"> Myung-Gyou Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang-Hyun%20Leem"> Kang-Hyun Leem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prickly pear cactus (Opuntia ficus-indica) has a global distribution and has been used for medicinal benefits such as artherosclerosis, diabetes, gastritis, and hyperglycemia. The prickly pear variety Opuntia ficus-indica var. Saboten (OFS) is widely cultivated in Cheju Island, the southwestern region of Korea, and used as a functional food. The present study investigated the effects of OFS on adipogenesis, lipolysis, glucose uptake, and glucose transporter (GLUT4) expression using preadipocyte 3T3-L1 cells. Adipogenesis was determined by preadipocyte differentiation and triglyceride accumulation assessed by Oil Red O staining. Lipolysis was determined as the rate of glycerol release. Insulin-stimulated glucose uptake and GLUT4 expression were measured using fluorescent glucose analogue, 2-NBDG, and ELISA, respectively. Quantitative real-time RT-PCR was performed to investigate the effects of OFS on the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), a regulator of adipocyte differentiation. Ethanol extracts of OFS dose-dependently enhanced adipocyte differentiation and cellular triglyceride levels indicating the enhancement of the differentiation of preadipocytes into adipocytes. Insulin-stimulated glucose uptake and GLUT4 expression were also dose-dependently increased by OFS treatment. Furthermore, OFS treatment also increased the mRNA levels of PPARγ. These effects of OFS on adipocytes suggest that OFS is potentially beneficial for type 2 diabetes by due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3T3-L1%20preadipocyte%20cell" title="3T3-L1 preadipocyte cell">3T3-L1 preadipocyte cell</a>, <a href="https://publications.waset.org/abstracts/search?q=adipogenesis" title=" adipogenesis"> adipogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=GLUT4" title=" GLUT4"> GLUT4</a>, <a href="https://publications.waset.org/abstracts/search?q=lipolysis" title=" lipolysis"> lipolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Opuntia%20ficus-indica%20var.%20Saboten" title=" Opuntia ficus-indica var. Saboten"> Opuntia ficus-indica var. Saboten</a>, <a href="https://publications.waset.org/abstracts/search?q=PPAR%CE%B3" title=" PPARγ"> PPARγ</a>, <a href="https://publications.waset.org/abstracts/search?q=prickly%20pear%20cactus" title=" prickly pear cactus"> prickly pear cactus</a> </p> <a href="https://publications.waset.org/abstracts/32209/opuntia-ficus-indica-var-saboten-stimulates-adipogenesis-lipolysis-and-glucose-uptake-in-3t3-l1-adipocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Evolution of Bioactive Components of Prickly Pear Juice (Opuntia ficus indica) and Cocktails with Orange Juice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Hadj%20Sadok">T. Hadj Sadok</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hattab%20Bey"> R. Hattab Bey</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Rebiha"> K. Rebiha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The valuation of juice from prickly pear of Opuntia ficus indica inermis as cocktails appears an attractive alternative because of their nutritional intake and functional compound has anti-radical activity (polyphenols, vitamin C, carotenoids, Betalaines, fiber and minerals). The juice from the fruit pulp is characterized by a high pH 5.85 which makes it difficult for its conservation and preservation requires a thermal treatment at high temperatures (over 100 °C) harmful for bioactive constituents compared to juice orange more acidic and processed at temperatures < 100 °C. The valuation as fig cocktails-orange is particularly interesting thanks to the contribution of polyph2nols, fiber, vitamin C, reducing sugar (sweetener) and betalaine, minerals while allowing lower temperature processing to decrease pH. The heat treatment of these juices: orange alone or in cocktails showed that the antioxidant power decreases by 12% in presence of 30% of juice treated by the heat and of 28 and 32% in the presence of 10 and 20% juice which shows the effect prickly pear juice of Opuntia. During storage for 4 weeks the loss of vitamin C is 40 and 38% in the presence of 10 and 20% juice and 33% in the presence of 30% pear juice parallel, a treatment of stabilization by heat affects relatively the polyphenols rate which decreases from 10.5% to 30% in the cocktail, and 6.11-6.71pour cocktails at 10% and 20%. Vitamin C decreases to 12 to 24 % after a heat treatment at 85°C for 30 minutes respectively for the orange juice and pear juice; this reduction is higher when the juice is in the form of cocktails composed of 10 to 30 % pear juice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prickly%20pear%20juice" title="prickly pear juice">prickly pear juice</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20cocktail" title=" orange cocktail"> orange cocktail</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenol" title=" polyphenol"> polyphenol</a>, <a href="https://publications.waset.org/abstracts/search?q=Opuntia%20ficus%20indica" title=" Opuntia ficus indica"> Opuntia ficus indica</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin" title=" vitamin"> vitamin</a> </p> <a href="https://publications.waset.org/abstracts/24034/evolution-of-bioactive-components-of-prickly-pear-juice-opuntia-ficus-indica-and-cocktails-with-orange-juice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Optimization of Digestive Conditions of Opuntia ficus-indica var. Saboten using Food-Grade Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byung%20Wook%20Yang">Byung Wook Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sae%20Kyul%20Kim"> Sae Kyul Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Il%20Ahn"> Seung Il Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Hee%20Choi"> Jae Hee Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Heejung%20Jung"> Heejung Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yejin%20Choi"> Yejin Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Yong%20Kim"> Byung Yong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Tae%20Hahm"> Young Tae Hahm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Opuntia ficus-indica is a member of the Cactaceae family that is widely grown in all the semiarid countries throughout the world. Opuntia ficus-indica var. Saboten (OFS), commonly known as prickly pear cactus, is commercially cultivated as a dietary foodstuffs and medicinal stuffs in Jeju Island, Korea. Owing to high viscosity of OFS’ pad, its application to the commercial field has been limited. When the low viscosity of OFS’s pad is obtained, it is useful for the manufacture of healthy food in the related field. This study was performed to obtain the optimal digestion conditions of food-grade enzymes (Pectinex, Viscozyme and Celluclast) with the powder of OFS stem. And also, the contents of water-soluble dietary fiber (WSDF) of the dried powder prepared by the extraction of OFS stem were monitored and optimized using the response surface methodology (RSM), which included 20 experimental points with 3 replicates for two independent variables (fermentation temperature and time). A central composite design was used to monitor the effect of fermentation temperature (30-90 °C, X1) and fermentation time (1-10h, X2) on dependent variables, such as viscosity (Y1), water-soluble dietary fiber (Y2) and dietary fiber yield (Y3). Estimated maximum values at predicted optimum conditions were in agreement with experimental values. Optimum temperature and duration were 50°C and 12 hours, respectively. Viscosity value reached 3.4 poise. Yield of water-soluble dietary fiber is determined in progress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Opuntia%20ficus-indica%20var.%20saboten" title="Opuntia ficus-indica var. saboten">Opuntia ficus-indica var. saboten</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20fermentation" title=" enzymatic fermentation"> enzymatic fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=water-soluble%20dietary%20fiber" title=" water-soluble dietary fiber"> water-soluble dietary fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/47080/optimization-of-digestive-conditions-of-opuntia-ficus-indica-var-saboten-using-food-grade-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Statistical Optimization and Production of Rhamnolipid by P. aeruginosa PAO1 Using Prickly Pear Peel as a Carbon Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20M.%20Abo%20Elsoud">Mostafa M. Abo Elsoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20I.%20Elkhouly"> Heba I. Elkhouly</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagwa%20M.%20Sidkey"> Nagwa M. Sidkey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of rhamnolipids by Pseudomonas aeruginosa has attracted a growing interest during the last few decades due to its high productivity compared with other microorganisms. In the current work, rhamnolipids production by P. aeruginosa PAO1 was statistically modeled using Taguchi orthogonal array, numerically optimized and validated. Prickly Pear Peel (Opuntia ficus-indica) has been used as a carbon source for production of rhamnolipid. Finally, the optimum conditions for rhamnolipid production were applied in 5L working volume bioreactors at different aerations, agitation and controlled pH for maximum rhamnolipid production. In addition, kinetic studies of rhamnolipids production have been reported. At the end of the batch bioreactor optimization process, rhamnolipids production by P. aeruginosa PAO1 has reached the worldwide levels and can be applied for its industrial production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhamnolipids" title="rhamnolipids">rhamnolipids</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas%20aeruginosa" title=" pseudomonas aeruginosa"> pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20optimization" title=" statistical optimization"> statistical optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=tagushi" title=" tagushi"> tagushi</a>, <a href="https://publications.waset.org/abstracts/search?q=opuntia%20ficus-indica" title=" opuntia ficus-indica"> opuntia ficus-indica</a> </p> <a href="https://publications.waset.org/abstracts/88618/statistical-optimization-and-production-of-rhamnolipid-by-p-aeruginosa-pao1-using-prickly-pear-peel-as-a-carbon-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Biobased Sustainable Films from the Algerian Opuntia Ficus-Indica Cladodes Powder: Effect of Plasticizer Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Chougui">Nadia Chougui</a>, <a href="https://publications.waset.org/abstracts/search?q=Nawal%20Makhloufi"> Nawal Makhloufi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farouk%20Rezgui"> Farouk Rezgui</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Benramdane"> Elias Benramdane</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20S.%20R.%20Freire"> Carmen S. R. Freire</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Vilela"> Carla Vilela</a>, <a href="https://publications.waset.org/abstracts/search?q=Armando%20J.%20D.%20Silvestre"> Armando J. D. Silvestre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Native to Mexico, Opuntia ficus-indica was introduced in southern Spain, and thereafter, it was spread throughout the Mediterranean Basin by the Spanish conquerors in the 16th and 17th centuries. O. ficus-indica is a tropical and subtropical plant able to grow in arid and semi-arid regions, such as the Mediterranean and Central America regions. The culture of Opuntia covers about 200,000 ha in North Africa. This tree is used against soil erosion and desertification for fruit production and is encouraged to promote the livestock sector. It has recently received ever-increasing attention from researchers worldwide for the multivalent pharmaceutical and cosmetical potential of its different compartments (fruits, seeds, cladodes). The present study investigated the elaboration by casting method and characterization of new biodegradable films composed of cladodes powder (CP) of the plant raw material mentioned above, and a marine seaweed derivative, namely agar (A). The effect of glycerol concentration on the properties of the films was evaluated at four different contents (30, 40, 50 and 60 wt.%). The films present UV-blocking properties, thermal stability as well as moderate mechanical performance and water vapor transmission rate (WVTR). The results point to an increase in thickness, elongation at break, moisture content, water solubility, and WVTR with increasing glycerol content. On the contrary, Young’s modulus, tensile strength and contact angle decreased as glycerol concentration increased. The best combination is obtained for the film with 30% glycerol, based on an intermediate compromise between physical, mechanical, thermal and barrier properties. All these outcomes express the potentiality of the powder obtained from grinding the OFI cladodes as raw material to produce low-cost films for the development of sustainable packaging materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Opuntia%20ficus-indica%20cladodes%20powder" title="Opuntia ficus-indica cladodes powder">Opuntia ficus-indica cladodes powder</a>, <a href="https://publications.waset.org/abstracts/search?q=agar" title=" agar"> agar</a>, <a href="https://publications.waset.org/abstracts/search?q=biobased%20films" title=" biobased films"> biobased films</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20plasticizer" title=" effect of plasticizer"> effect of plasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20packaging" title=" sustainable packaging"> sustainable packaging</a> </p> <a href="https://publications.waset.org/abstracts/164508/biobased-sustainable-films-from-the-algerian-opuntia-ficus-indica-cladodes-powder-effect-of-plasticizer-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Identification of Bioactive Substances of Opuntia ficus-indica By-Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Chougui">N. Chougui</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Larbat"> R. Larbat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first economic importance of Opuntia ficus-indica relies on the production of edible fruits. This food transformation generates a large amount of by-products (seeds and peels) in addition to cladodes produced by the plant. Several studies showed the richness of these products with bioactive substances like phenolics that have potential applications. Indeed, phenolics have been associated with protection against oxidation and several biological activities responsible of different pathologies. Consequently, there has been a growing interest in identifying natural antioxidants from plants. This study falls within the framework of the industrial exploitation of by-products of the plant. The study aims to investigate the metabolic profile of three by-products (cladodes, peel seeds) regarding total phenolic content by liquid chromatography coupled to mass spectrometry approach (LC-MSn). The byproducts were first washed, crushed and stored at negative temperature. The total phenolic compounds were then extracted by aqueous-ethanolic solvent in order to be quantified and characterized by LC-MS. According to the results obtained, the peel extract was the richest in phenolic compounds (1512.58 mg GAE/100 g DM) followed by the cladode extract (629.23 GAE/100 g DM) and finally by the seed extract (88.82 GAE/100 g DM) which is mainly used for its oil. The LC-MS analysis revealed diversity in phenolics in the three extracts and allowed the identification of hydroxybenzoic acids, hydroxycinnamic acids and flavonoids. The highest complexity was observed in the seed phenolic composition; more than twenty compounds were detected that belong to acids esters among which three feruloyl sucrose isomers. Sixteen compounds belonging to hydroxybenzoic acids, hydroxycinnamic acids and flavonoids were identified in the peel extract, whereas, only nine compounds were found in the cladode extract. It is interesting to highlight that the phenolic composition of the cladode extract was closer to that of the peel exact. However, from a quantitative viewpoint, the peel extract presented the highest amounts. Piscidic and eucomic acids were the two most concentrated molecules, corresponding to 271.3 and 121.6 mg GAE/ 100g DM respectively. The identified compounds were known to have high antioxidant and antiradical potential with the ability to inhibit lipid peroxidation and to exhibit a wide range of biological and therapeutic properties. The findings highlight the importance of using the Opuntia ficus-indica by-products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MSn%20analysis" title=" LC-MSn analysis"> LC-MSn analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Opuntia%20ficus-indica" title=" Opuntia ficus-indica"> Opuntia ficus-indica</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics"> phenolics</a> </p> <a href="https://publications.waset.org/abstracts/45238/identification-of-bioactive-substances-of-opuntia-ficus-indica-by-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Cladode features in Opuntia ficus-indica resistant cultivars to Dactylopius coccus Costa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yemane%20Kahsay%20Berhe">Yemane Kahsay Berhe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The multipurpose cactus pear plant with great potential as a source of food and livestock feed faced a threat from Dactylopius spp in different countries. Specifically, D. coccus is an important pest damaging significant areas in Tigray-Ethiopia. Using pest-resistant cultivars is an important element of an integrated pest management strategy, and studying the mechanisms of resistance is vital. It can be chemical or physical, such as oxalate crystals and other cladode characteristics. Cladode features of six cultivars (three O. ficus-indica, two O. cochenillifera, and one O. robusta) were examined for resistance to D. coccus in a completely randomized design (CRD) with three replications. ‘Rojo Pelón’ (O. ficus-indica), ‘Robusta’ (O. robusta), and ‘Bioplástico’ (O. cochinillifera) are resistant cultivars; and ‘Atlixco’ and ‘Chicomostoc’ (O. ficus-indica) and ‘Nopalea’ (O. cochinillifera) are susceptible. Cultivars showed a significant difference in cladode weight in g, cladode length, cladode width, and cladode thickness in cm, where cladode thickness was higher in ‘Rojo Pelón’ followed by ‘Robusta’. Calcium oxalates number per mm was higher in ‘Bioplástico’ (20.7+2.08) followed by ‘Robusta’ (18.9+2.31) and ‘Rojo Pelón’ (15.9+0.34); and similarly, epidermis thickness found higher in ‘Bioplástico’ (0.21+0.032) and ‘Robusta’ (0.19+0.014), but similar with ‘Rojo Pelón’ (0.18+0.026). However, cuticle thickness didn’t show a difference among cultivars. Cladode thickness, calcium oxalates number, and epidermis thickness had positive correlations with resistance. These results demonstrate that calcium oxalates number and epidermis thickness might positively affect D. coccus resistance in O. ficus-indica. This feeding-barring role and the insect-plant interaction need to be studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cactus%20pear" title="cactus pear">cactus pear</a>, <a href="https://publications.waset.org/abstracts/search?q=resiatnce" title=" resiatnce"> resiatnce</a>, <a href="https://publications.waset.org/abstracts/search?q=druses" title=" druses"> druses</a>, <a href="https://publications.waset.org/abstracts/search?q=epidermis%20thickness" title=" epidermis thickness"> epidermis thickness</a> </p> <a href="https://publications.waset.org/abstracts/174937/cladode-features-in-opuntia-ficus-indica-resistant-cultivars-to-dactylopius-coccus-costa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> New Evaluation of the Richness of Cactus (Opuntia) in Active Biomolecules and their Use in Agri-Food, Cosmetic, and Pharmaceutical</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lazhar%20Zourgui">Lazhar Zourgui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Opuntia species are used as local medicinal interventions for chronic diseases and as food sources, mainly because they possess nutritional properties and biological activities. Opuntia ficus-indica (L.) Mill, commonly known as prickly pear or nopal cactus, is the most economically valuable plant in the Cactaceae family worldwide. It is a tropical or subtropical plant native to tropical and subtropical America, which can grow in arid and semi-arid climates. It belongs to the family of angiosperms dicotyledons Cactaceae of which about 1500 species of cacti are known. The Opuntia plant is distributed throughout the world and has great economic potential. There are differences in the phytochemical composition of Opuntia species between wild and domesticated species and within the same species. It is an interesting source of plant bioactive compounds. Bioactive compounds are compounds with nutritional benefits and are generally classified into phenolic and non-phenolic compounds and pigments. Opuntia species are able to grow in almost all climates, for example, arid, temperate, and tropical climates, and their bioactive compound profiles change depending on the species, cultivar, and climatic conditions. Therefore, there is an opportunity for the discovery of new compounds from different Opuntia cultivars. Health benefits of prickly pear are widely demonstrated: There is ample evidence of the health benefits of consuming prickly pear due to its source of nutrients and vitamins and its antioxidant properties due to its content of bioactive compounds. In addition, prickly pear is used in the treatment of hyperglycemia and high cholesterol levels, and its consumption is linked to a lower incidence of coronary heart disease and certain types of cancer. It may be effective in insulin-independent type 2 diabetes mellitus. Opuntia ficus-Indica seed oil has shown potent antioxidant and prophylactic effects. Industrial applications of these bioactive compounds are increasing. In addition to their application in the pharmaceutical industries, bioactive compounds are used in the food industry for the production of nutraceuticals and new food formulations (juices, drinks, jams, sweeteners). In my lecture, I will review in a comprehensive way the phytochemical, nutritional, and bioactive compound composition of the different aerial and underground parts of Opuntia species. The biological activities and applications of Opuntia compounds are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title="medicinal plants">medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=cactus" title=" cactus"> cactus</a>, <a href="https://publications.waset.org/abstracts/search?q=Opuntia" title=" Opuntia"> Opuntia</a>, <a href="https://publications.waset.org/abstracts/search?q=actives%20biomolecules" title=" actives biomolecules"> actives biomolecules</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20activities" title=" biological activities"> biological activities</a> </p> <a href="https://publications.waset.org/abstracts/161262/new-evaluation-of-the-richness-of-cactus-opuntia-in-active-biomolecules-and-their-use-in-agri-food-cosmetic-and-pharmaceutical" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Effectiveness of Opuntia ficus indica Cladodes Extract for Wound-Healing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giuffrida%20Graziella">Giuffrida Graziella</a>, <a href="https://publications.waset.org/abstracts/search?q=Pennisi%20Stefania"> Pennisi Stefania</a>, <a href="https://publications.waset.org/abstracts/search?q=Coppa%20Federica"> Coppa Federica</a>, <a href="https://publications.waset.org/abstracts/search?q=Iannello%20Giulia"> Iannello Giulia</a>, <a href="https://publications.waset.org/abstracts/search?q=Cartelli%20Simone"> Cartelli Simone</a>, <a href="https://publications.waset.org/abstracts/search?q=Lo%20Faro%20Riccardo"> Lo Faro Riccardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferruggia%20Greta"> Ferruggia Greta</a>, <a href="https://publications.waset.org/abstracts/search?q=Brundo%20Maria%20Violetta"> Brundo Maria Violetta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cladode chemical composition may vary according to soil factors, cultivation season, and plant age. The primary metabolites of cladodes are water, carbohydrates, and proteins. The carbohydrates in cladodes are divided into two types: structural and storage. Polysaccharides from Opuntia ficus‐indica (L.) Mill plants build molecular networks with the capacity to retain water; thus, they act as mucoprotective agents. Mucilage is the main polysaccharide of cladodes; it contains polymers of β‐d‐galacturonic acid bound in positions (1–4) and traces of R‐linked l‐rhamnose (1-2). Mucilage regulates both the cell water content during prolonged drought and the calcium flux in the plant cells. The in vitro analysis of keratinocytes in monolayer, through the scratch-wound-healing assay, provided promising results. After 48 hours of exposure, the wound scratch was almost completely closed in cells treated with cladode extract. After 72 hours, the treated cells reached complete confluence, while in the untreated cells (negative control) the confluence was reached after 96 hours. We also added a positive control group of cells treated with colchicine, which inhibited wound closure for a more comprehensive analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cladodes" title="cladodes">cladodes</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=polysaccharide" title=" polysaccharide"> polysaccharide</a>, <a href="https://publications.waset.org/abstracts/search?q=scratch-wound-healing%20assay" title=" scratch-wound-healing assay"> scratch-wound-healing assay</a> </p> <a href="https://publications.waset.org/abstracts/187380/effectiveness-of-opuntia-ficus-indica-cladodes-extract-for-wound-healing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Preparation and Characterization of Biosorbent from Cactus (Opuntia ficus-indica) cladodes and its Application for Dye Removal from Aqueous Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Choudhary">Manisha Choudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudarsan%20Neogi"> Sudarsan Neogi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malachite green (MG), an organic basic dye, has been widely used for the dyeing purpose, as well as a fungicide and antiseptic in aquaculture industry to control fish parasites and disease. However, MG has now turned out to be an extremely controversial compound due to its adverse impact on living beings. Due to high toxicity, proper treatment of wastewater containing MG is utmost important. Among different available technologies, adsorption process is one of the most efficient and cost-effective treatment method due to its simplicity of design, ease of operation and regeneration of used materials. Nonetheless, commercial activated carbon is expensive leading the researchers to focus on utilizing natural resources. In the present work, a species of cactus, Opuntia ficus-indica (OFI), was used to develop a highly efficient, low-cost powdered activated carbon by chemical activation using NaOH. The biosorbent was characterized by Fourier-transform infrared spectroscopy, field emission scanning electron microscope, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller (BET) and X-ray diffraction analysis. Batch adsorption studies were performed to remove MG from an aqueous solution as a function of contact time, initial solution pH, initial dye concentration, biosorbent dosages, the presence of salt and temperature. By increasing the initial dye concentration from 100 to 500 mg/l, adsorption capacity increased from 165.45 to 831.58 mg/g. The adsorption kinetics followed the pseudo-second-order model and the chemisorption mechanisms were revealed. The electrostatic attractions and chemical interactions were observed between amino and hydroxyl groups of the biosorbent and amine groups of the dye. The adsorption was solely controlled by film diffusion. Different isotherm models were used to fit the adsorption data. The excellent recovery of adsorption efficiency after the regeneration of biosorbent indicated the high potential of this adsorbent to remove MG from aqueous solution and an excellent cost-effective biosorbent for wide application in wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorbent" title=" biosorbent"> biosorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=cactus" title=" cactus"> cactus</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite%20green" title=" malachite green"> malachite green</a> </p> <a href="https://publications.waset.org/abstracts/98491/preparation-and-characterization-of-biosorbent-from-cactus-opuntia-ficus-indica-cladodes-and-its-application-for-dye-removal-from-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Chemical Composition and Insecticidal Properties of Moroccan Plant Extracts against Dactylopius Opuntiae (Cockerell) Under Laboratory and Greenhouse Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imane%20Naboulsi">Imane Naboulsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Sobeh"> Mansour Sobeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Lamzira"> Rachid Lamzira</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20El%20Fakhouri"> Karim El Fakhouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Widad%20Ben%20Bakrim"> Widad Ben Bakrim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaimae%20Ramdani"> Chaimae Ramdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Boulamtat"> Rachid Boulamtat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20El%20Bouhssini"> Mustapha El Bouhssini</a>, <a href="https://publications.waset.org/abstracts/search?q=Jane%20ward"> Jane ward</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelaziz%20Yasri"> Abdelaziz Yasri</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Aboulmouhajir"> Aziz Aboulmouhajir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wild cochineal Dactylopius opuntiae (Cockerell) (Hemiptera: Dactylopiidae) is the major insect pest of the prickly pear Opuntia ficus-indica (L.) in Morocco, which has causedenormous socio-economic and environmental losses to this crop in recent years. This study aimed to investigate the insecticidal potential of six aqueous (100% water), and methanolic (20/80 (v/v) MeOH/H2O) extracts obtained from aromatic and medicinal plants growing in arid and semi-arid regions of Morocco to control nymphs and adult females of D. opuntiae, under laboratory and greenhouse conditions. Under laboratory conditions, the aqueous extracts of Atriplex halimus at 5% caused significant mortality in nymphs with 71% four days after application and 88%on adult females of D. opuntiae8 days post-treatment. Under greenhouse conditions, the aqueous extract of A. halimus combined with black soap at 10 g/L showed the highest mortality rate of nymphs with 100%, 4 days after application. The adult females' mortality increased significantly to reach 83.75%,14 days after the second application of A. halimus aqueous extract at 5%. Phytochemical analysis of the water extract of A. halimus revealed a high content of saponins (24.09 ± 0.71 mg SSE/g DW) compared to other plant extracts, which was confirmed by LC-MS characterization that showed the presence of 36 triterpenoid saponin compounds (derived from oleic-12-en-28-oic acid), in addition to phytoecdysones, simple carboxylic acids, and flavonoids. These findings showed that using the aqueous extract of A. halimus as a biological pesticide could be incorporated into the management package to control the wild cochineal as a safe alternative to chemical insecticides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dactylopius%20opuntiae" title="dactylopius opuntiae">dactylopius opuntiae</a>, <a href="https://publications.waset.org/abstracts/search?q=opuntia%20ficus-indica%20L." title=" opuntia ficus-indica L."> opuntia ficus-indica L.</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=atriplex%20halimus" title=" atriplex halimus"> atriplex halimus</a>, <a href="https://publications.waset.org/abstracts/search?q=saponins" title=" saponins"> saponins</a> </p> <a href="https://publications.waset.org/abstracts/150439/chemical-composition-and-insecticidal-properties-of-moroccan-plant-extracts-against-dactylopius-opuntiae-cockerell-under-laboratory-and-greenhouse-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Dust Holding Capacity of Some Selected Road Side Tree Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitin%20Rahul">Jitin Rahul</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Jain"> Manish Kumar Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dust pollution refers to the various locations, activities, or factors which are responsible for the releasing of pollutants into the atmosphere. The sources of dust can be classified into two major categories anthropogenic sources (man-made sources) and natural sources. Dust kicked up by heavy vehicles (Bus, Truck, Loaders, Tankers, car etc.) travelling on highways may make up approximately 33-40% of air pollution. Plants naturally cleanse the atmosphere by absorbing gases and particulate matter plants (Leaves). Plants are very good pollution indicator and also very good for dust capturing (Dust controlling). Many types tree species like Azadirachta indica A. juss, Butea monosperma (Lam.) Kuntz., Ficus bengalensis (Linn)., Pterocarpus marspium (Roxb.), Terminalia arjuna (Roxb, exDC.), Dalbergia sissoo roxb., and Ficus religiosa (Linn.) generally occur in roadside. These selected tree spiciness can control the dust pollution or dust capturing. It is well known that plants absorb particulate pollutants and help in dust controlling. Some tree species like (Ficus bengalensis, Ficus religiosa and Azadirachta indica) are very effective and natural means for controlling air pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust" title="dust">dust</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=road" title=" road"> road</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20species" title=" tree species"> tree species</a> </p> <a href="https://publications.waset.org/abstracts/45792/dust-holding-capacity-of-some-selected-road-side-tree-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Valorisation of a Bioflocculant and Hydroxyapatites as Coagulation-Flocculation Adjuvants in Wastewater Treatment of the Steppe in the Wilaya of Saida</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Choumane">Fatima Zohra Choumane</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Benguella"> Belkacem Benguella</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouhana%20Maachou"> Bouhana Maachou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Saadi"> Nacera Saadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution caused by wastewater is a serious problem in Algeria. This pollution has certainly harmful effects on the environment. In order to reduce the bad effects of these pollutants, many wastewater treatment processes, mainly physicochemical, are implemented. This study consists in using two flocculants; the first one is a biodegradable natural bioflocculant, i.e. Cactaceaeou ficus-indica cactus juice, and the second is the synthetic hydroxyapatite, in a physico-chemical process through coagulation-flocculation, using two coagulants, i.e. ferric chloride and aluminum sulfate, to treat wastewater collected at the entrance of the treatment plant, in the town of Saida. The influence of various experimental parameters, such as the amounts of coagulants and flocculants used, pH, turbidity, COD and BOD5, was investigated. The coagulation - flocculation jar tests of wastewater reveal that ferric chloride, containing a mass of 0.3 g – hydroxyapatite, treated for 1 hour through calcination, is the most effective adjuvant in clarifying the wastewater, with turbidity equal to 98.16 %. In the presence of the two bioflocculants, Cactaceae juice and aluminum sulphate, with a dose of 0.2 g, flocculation is good, with turbidity equal to 95.61 %. Examination of the key reaction parameters, following the flocculation tests of wastewater, shows that the degree of pollution decreases. This is confirmed by the COD and turbidity values obtained. Examination of these results suggests the use of these flocculants in wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=cactus%20ficus-indica" title=" cactus ficus-indica"> cactus ficus-indica</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation%20-%20flocculation" title=" coagulation - flocculation"> coagulation - flocculation</a> </p> <a href="https://publications.waset.org/abstracts/43194/valorisation-of-a-bioflocculant-and-hydroxyapatites-as-coagulation-flocculation-adjuvants-in-wastewater-treatment-of-the-steppe-in-the-wilaya-of-saida" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Antioxidant and Acute Toxicity of Stem Extracts of the Ficus Iteophylla</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mukhtar">Muhammad Mukhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to evaluate the antioxidant activity and acute toxicity of the extracts of Ficus iteophylla by reactions with 1, 1-diphenyl-2-picryhydrazyl radical (DPPH) and method developed by Lork 1983, respectively. Stem bark of Ficus iteophylla was collected, air dried, pulverized to fine powdered and sequentially extracted using acetone, methanol and water in order of increasing polarity. The result shows strong radical scavenging activity against DPPH for all the extracts when compared with ascorbic acid. The LD50 of 316 mg/kg was calculated for all the three extras, and the values were found to be within the practically toxic range, and therefore, care should be taken when using the plants in traditional medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title=" acute toxicity"> acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ficus%20iteophylla" title=" Ficus iteophylla"> Ficus iteophylla</a> </p> <a href="https://publications.waset.org/abstracts/125341/antioxidant-and-acute-toxicity-of-stem-extracts-of-the-ficus-iteophylla" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Anti-Melanogenesis and Anti-Inflammatory Effects of Opuntia humifusa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yonghwa%20Lee">Yonghwa Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon%20Suk%20Kim"> Yoon Suk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongsub%20Yi"> Yongsub Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was to confirm the effects of anti-melanogenesis and anti-inflammatory effects from Opuntia humifusa fruit and stem extracts. A potent anti-oxidant activity was shown from the leaf extract at IC50 value of 38.33±1.07 μg/mL and fruit extract at IC50 value of 40.23±2.21 μg/mL by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Also, phenolic contents were confirmed total phenolic assay by high performance liquid chromatography (HPLC). Fraction of taxifolin from leaf extract was identified using HPLC and gas chromatography/mass spectrometry. The extracts of Opuntia humifusa fruit and stem were confirmed about toxicity effect in B16 F1 by cell viability. Melanin contents were decreased. Opuntia humifusa fruit and stem extracts had a positive effect of melanin synthesis inhibition for skin whitening. In investigating the anti-inflammatory activities of Opuntia humifusa, the results of cell viability indicated that taxifolin did not show cytotoxicity on RAW264.7 cells at 500 μM of concentration. The results show that taxifolin inhibited lipopolysaccharide (LPS)-induced production of Nitrite oxide (NO). In addition, taxifolin indicated the inhibition of lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) -α and interleukin (IL) -6 productions by cytokine assay and cyclooxygenase (COX)-2 expression by western blot analysis, meaning that taxifolin had a significant anti-inflammatory effect. Our results suggested that taxifolin from Opuntia humifusa has anti-melanogenesis and anti-inflammatory activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-melanogenesis" title="anti-melanogenesis">anti-melanogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory" title=" anti-inflammatory"> anti-inflammatory</a>, <a href="https://publications.waset.org/abstracts/search?q=Opuntia%20humifusa" title=" Opuntia humifusa"> Opuntia humifusa</a>, <a href="https://publications.waset.org/abstracts/search?q=taxifolin" title=" taxifolin"> taxifolin</a> </p> <a href="https://publications.waset.org/abstracts/58040/anti-melanogenesis-and-anti-inflammatory-effects-of-opuntia-humifusa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Survey of Some Important Nepalese and Russian Anti-Diabetic Herbs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20Prasad%20Baral">Ram Prasad Baral</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinogradov%20Dmitriy%20Valerievich"> Vinogradov Dmitriy Valerievich</a>, <a href="https://publications.waset.org/abstracts/search?q=Rameshwar%20Adhikari"> Rameshwar Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes has posed a great threat to the human health worldwide, both in developed and developing countries. The disease has basically rooted from the dramatically changed way of living of the present day human civilization as our living has deviated from what the nature has adapted us for. In this context, due to availability of wide range of climatic condition and hence the wide spectrum of biodiversity, Nepal is blessed with a valuable reservoir of medicinal herbs. These assets have been utilized and developed practices in traditional medicines and Ayurvedic way of treatment over several thousand years in the region. It has been established since ancient times that each and every plant has a specific medicinal value. There are many plants’ products which have been utilized in Ayurvedic medicine for the effective treatment of diabetes. The medicaments are less expensive and pose practically no side effects. In this work, we report a general survey of anti-diabetic properties of some medicinal herbs with pronounced effects and their applications. The plants covered in this study originate from far western region of Nepal and include Ficus racemosa, Momordica charantia, Azadirachta indica, Helieteres isora, Saraca asoca, Ichnocarpus frutescens, Tinospora sinensis, Commiphora mukul, Coccinia grandis, and Hippophae salicifolia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ficus%20racemosa" title="Ficus racemosa">Ficus racemosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Momordica%20charantia" title=" Momordica charantia"> Momordica charantia</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadirachta%20indica" title=" Azadirachta indica"> Azadirachta indica</a>, <a href="https://publications.waset.org/abstracts/search?q=Helieteres%20isora" title=" Helieteres isora"> Helieteres isora</a>, <a href="https://publications.waset.org/abstracts/search?q=Saraca%20asoca" title=" Saraca asoca"> Saraca asoca</a>, <a href="https://publications.waset.org/abstracts/search?q=Ichnocarpus%20frutescens" title=" Ichnocarpus frutescens"> Ichnocarpus frutescens</a>, <a href="https://publications.waset.org/abstracts/search?q=Tinospora%20sinensis" title=" Tinospora sinensis"> Tinospora sinensis</a>, <a href="https://publications.waset.org/abstracts/search?q=Commiphora%20mukul" title=" Commiphora mukul"> Commiphora mukul</a>, <a href="https://publications.waset.org/abstracts/search?q=Coccinia%20grandis" title=" Coccinia grandis"> Coccinia grandis</a>, <a href="https://publications.waset.org/abstracts/search?q=Hippophae%20salicifolia" title=" Hippophae salicifolia"> Hippophae salicifolia</a> </p> <a href="https://publications.waset.org/abstracts/26108/survey-of-some-important-nepalese-and-russian-anti-diabetic-herbs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> A Green Method for Selective Spectrophotometric Determination of Hafnium(IV) with Aqueous Extract of Ficus carica Tree Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Boveiri%20Monji">A. Boveiri Monji</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Haji%20Hosseini"> M. Haji Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A clean spectrophotometric method for the determination of hafnium by using a green reagent, acidic extract of <em>Ficus carica</em> tree leaves is developed. In 6-M hydrochloric acid, hafnium reacts with this reagent to form a yellow product. The formed product shows maximum absorbance at 421 nm with a molar absorptivity value of 0.28 × 104 l mol⁻¹ cm⁻¹, and the method was linear in the 2-11 µg ml⁻¹ concentration range. The detection limit value was found to be 0.312 µg ml⁻¹. Except zirconium and iron, the selectivity was good, and most of the ions did not show any significant spectral interference at concentrations up to several hundred times. The proposed method was green, simple, low cost, and selective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrophotometric%20determination" title="spectrophotometric determination">spectrophotometric determination</a>, <a href="https://publications.waset.org/abstracts/search?q=Ficus%20caricatree%20leaves" title=" Ficus caricatree leaves"> Ficus caricatree leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20reagents" title=" synthetic reagents"> synthetic reagents</a>, <a href="https://publications.waset.org/abstracts/search?q=hafnium" title=" hafnium"> hafnium</a> </p> <a href="https://publications.waset.org/abstracts/88855/a-green-method-for-selective-spectrophotometric-determination-of-hafniumiv-with-aqueous-extract-of-ficus-carica-tree-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Identification and Differentiation of Fagonia Arabica and Fagonia Indica by Using DNA Barcode Region Matk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noshaba%20Dilbar">Noshaba Dilbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Tahir"> Aisha Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Jamil"> Amer Jamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade, DNA barcoding proved to be an authentic tool for discovery and identification of plants. In the present study, DNA barcoding of two species, Fagonia arabica and Fagonia indica was done for differentiation by using matK region. matK gene is considered as a universal barcode because of its easy alignment and high discrimination ability. In this study, matK yielded 100% sequencing results. The sequences from both plants were aligned at clustal W and observed that there is no nucleotide variation and polymorphism among both sequences. This was further analysed by BLAST which showed the similar sequences from different plants belonging to same family but didn’t find sequence of both species. Considering this, the resulted sequence was submitted by the name of Fagonia arabica with accession number KM276890. In the end, we analysed the results from BOLD which gave us the final conclusion that both plants are same as their matK sequences are 100% identical. In literature, both Fagonia indica and Fagonia arabica names are used for this plant but there is no clear differentiation has been observed in these plants. Results evaluate that Fagonia indica and Fagonia arabica are the alternative names of same plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcoding" title="DNA barcoding">DNA barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=Fagonia%20arabica" title=" Fagonia arabica"> Fagonia arabica</a>, <a href="https://publications.waset.org/abstracts/search?q=Fagonia%20indica" title=" Fagonia indica"> Fagonia indica</a>, <a href="https://publications.waset.org/abstracts/search?q=matK" title=" matK"> matK</a> </p> <a href="https://publications.waset.org/abstracts/122682/identification-and-differentiation-of-fagonia-arabica-and-fagonia-indica-by-using-dna-barcode-region-matk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Bioavailability Enhancement of Ficus religiosa Extract by Solid Lipid Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Singh">Sanjay Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Karunanithi%20Priyanka"> Karunanithi Priyanka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramoji%20Kosuru"> Ramoji Kosuru</a>, <a href="https://publications.waset.org/abstracts/search?q=Raju%20Prasad%20Sharma"> Raju Prasad Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herbal drugs are well known for their mixed pharmacological activities with the benefit of no harmful side effects. The use of herbal drugs is limited because of their higher dose requirement, frequent drug administration, poor bioavailability of phytochemicals and delayed onset of action. Ficus religiosa, a potent anti-oxidant plant useful in the treatment of diabetes and cancer was selected for the study. Solid lipid nanoparticles (SLN) of Ficus religiosa extract was developed for the enhancement in oral bioavailability of stigmasterol and β-sitosterol-d-glucoside, principal components present in the extract. Hot homogenization followed by ultrasonication method was used to develop extract loaded SLN. Developed extract loaded SLN were characterized for particle size, PDI, zeta potential, entrapment efficiency, in vitro drug release and kinetics, fourier transform infra-red spectroscopy, differential scanning calorimetry, powder X-ray diffractrometry and stability studies. Entrapment efficiency of optimized extract loaded SLN was found to be 68.46 % (56.13 % of stigmasterol and 12.33 % of β-sitosteryl-d-glucoside, respectively). RP HPLC method development was done for simultaneous estimation of stigmasterol and β-sitosterol-d-glucoside in Ficus religiosa extract in rat plasma. Bioavailability studies were carried out for extract in suspension form and optimized extract loaded SLN. AUC of stigmasterol and β-sitosterol-d-glucoside were increased by 6.7-folds by 9.2-folds, respectively in rats treated with extract loaded SLN compared to extract suspension. Also, Cmax of stigmasterol and β-sitosterol-d-glucoside were increased by 4.3-folds by 3.9-folds, respectively in rats treated with extract loaded SLN compared to extract suspension. Mean residence times (MRT) for stigmasterol were found to be 12.3 ± 0.67 hours from extract and 7.4 ± 2.1 hours from SLN and for β-sitosterol-d-glucoside, 10.49 ± 2.9 hours from extract and 6.4 ± 0.3 hours from SLN. Hence, it was concluded that SLN enhanced the bioavailability and reduced the MRT of stigmasterol and β-sitosterol-d-glucoside in Ficus religiosa extract which in turn may lead to reduction in dose of Ficus religiosa extract, prolonged duration of action and also enhanced therapeutic efficacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ficus%20religiosa" title="Ficus religiosa">Ficus religiosa</a>, <a href="https://publications.waset.org/abstracts/search?q=phytosterolins" title=" phytosterolins"> phytosterolins</a>, <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title=" bioavailability"> bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20lipid%20nanoparticles" title=" solid lipid nanoparticles"> solid lipid nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=stigmasterol%20and%20%CE%B2-sitosteryl-d-glucoside" title=" stigmasterol and β-sitosteryl-d-glucoside"> stigmasterol and β-sitosteryl-d-glucoside</a> </p> <a href="https://publications.waset.org/abstracts/17390/bioavailability-enhancement-of-ficus-religiosa-extract-by-solid-lipid-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Evaluation of Anti-Typhoid Effects of Azadirachta indica L. Fractions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Adetutu">A. Adetutu</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Awodugba"> T. M. Awodugba</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Owoade"> O. A. Owoade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of resistance to currently known conventional anti-typhoid drugs has necessitated search into cheap, more potent and less toxic anti-typhoid drugs of plant origin. Therefore, this study investigated the anti-typhoid activity of fractions of A. indica in Salmonella typhi infected rats. Leaves of A. indica were extracted in methanol and fractionated into n-hexane, chloroform, ethyl-acetate, and aqueous fractions. The anti-salmonella potentials of fractions of A. indica were assessed via in-vitro inhibition of S. typhi using agar well diffusion, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and biofilm assays. The biochemical and haematological parameters were determined by spectrophotometric methods. The histological analysis was performed using Haematoxylin and Eosin staining methods. Data analysis was performed by one-way ANOVA. Results of this study showed that S. typhi was sensitive to aqueous and chloroform fractions of A. indica, and the fractions showed biofilm inhibition at concentrations of 12.50, 1.562, and 0.39 mg/mL. In the in-vivo study, the extract and chloroform fraction had significant (p < 0.05) effects on the number of viable S. typhi recovered from the blood and stopped salmonellosis after 6 days of treatment of rats at 500 mg/kg b.w. Treatments of infected rats with chloroform and aqueous fractions of A. indica normalized the haematological parameters in the animals. Similarly, treatment with fractions of the plants sustained a normal antioxidant status when compared with the normal control group. Chloroform and ethyl-acetate fractions of A. indica reversed the liver and intestinal degeneration induced by S. typhi infection in rats. The present investigation indicated that the aqueous and chloroform fractions of A. indica showed the potential to provide an effective treatment for salmonellosis, including typhoid fever. The results of the study may justify the ethno-medicinal use of the extract in traditional medicine for the treatment of typhoid and salmonella infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadirachta%20indica%20L" title="Azadirachta indica L">Azadirachta indica L</a>, <a href="https://publications.waset.org/abstracts/search?q=salmonella" title=" salmonella"> salmonella</a>, <a href="https://publications.waset.org/abstracts/search?q=typhoid" title=" typhoid"> typhoid</a>, <a href="https://publications.waset.org/abstracts/search?q=leave%20fractions" title=" leave fractions"> leave fractions</a> </p> <a href="https://publications.waset.org/abstracts/120488/evaluation-of-anti-typhoid-effects-of-azadirachta-indica-l-fractions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Antibacterial and Antityrosinase Activity of Isolated Compounds from Stem Bark of Ficus platyphylla Del</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aminu%20Muhammad">Aminu Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Ya%E2%80%99u"> Mustapha Ya’u</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasnah%20Mohd%20Sirat"> Hasnah Mohd Sirat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation of the chemical constituents into the stem bark of Ficus platyphylla (Moraceae) has resulted in the isolation of hordenine, epicatechin, lupeol, lupeol acetate and α-amyrin acetate. Their structures were determined using spectroscopic data as well as comparison with literature data. The antibacterial assay has been tested against Gram positive and Gram negative bacteria, while the tyrosinase inhibition assay was examined using L-Dopa as a substrate of mushroom tyrosinase enzyme. hordenine, epicatechin, lupeol, lupeol acetate and α-amyrin acetate showed minimum inhibition concentration (MIC) values in the range of 225-900 µg/mL against the bacterial strains. Lupeol, lupeol acetate and α-amyrin acetate showed significant antityrosinase activity against mushroom tyrosinase enzyme with percent inhibition of 67.7%, 66.2% and 62.2%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antityrosinase" title=" antityrosinase"> antityrosinase</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20constituents" title=" chemical constituents"> chemical constituents</a>, <a href="https://publications.waset.org/abstracts/search?q=Ficus%20platyphylla" title=" Ficus platyphylla"> Ficus platyphylla</a> </p> <a href="https://publications.waset.org/abstracts/46753/antibacterial-and-antityrosinase-activity-of-isolated-compounds-from-stem-bark-of-ficus-platyphylla-del" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Phytochemical Screening, Anti-Microbial and Mineral Determination of Stachtarpheta indica Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Isah%20Lakan">Ibrahim Isah Lakan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasiru%20Ibrahim"> Nasiru Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These Phytochemical screening, Antimicrobial activities and mineral Determination of aqueous extract of Stachtarpheta indica were assessed. The result reveals the presence of flavonoids, tannins, saponins, alkaloids, glycosides and anthraquinones. The disc diffusion of aqueous extract showed Escherichia coli, 13 and antibiotic, 19 mm; Bacillus subtilis, 10 and anti –biotic, 17 mm; Klebsiller pnemuoniae , 14 and antibiotic, 24mm and Pseudmonas aeruginosa, 24 and antibiotic, 36 mm which are all comparable with the standard antibiotic cyprotomycin. The mineral content determination by flame photometer revealed that 1.25 (Na+), 0.85 (K +), 1.75 (Ca 2+) % which is a clear indication of the safety of the extract for the hypertensive patients and could be used to lower blood pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbials" title="microbials">microbials</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral" title=" mineral"> mineral</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=stachtarpheta%20indica%20extracts" title=" stachtarpheta indica extracts"> stachtarpheta indica extracts</a> </p> <a href="https://publications.waset.org/abstracts/45759/phytochemical-screening-anti-microbial-and-mineral-determination-of-stachtarpheta-indica-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Bionomics of Cryptophlebia Ombrodelta Lower (Lepidoptera: Tortricidae), a Major Pest of Tamarind, Tamarindus Indica in Bastar Tribal Belt of Chhattisgarh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Patel">R. K. Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiment entitled “Bionomics of Cryptophlebia ombrodelta Lower (Lepidoptera: Tortricidae), a Major Pest of Tamarind, Tamarindus indica in Bastar tribal belt of Chhattisgarh” was conducted at S. G. College of Agriculture and Research Station, Jagdalpur (Chhattisgarh) during 2014-15. The moth, Cryptophlebia ombrodelta (Lower) is very destructive pest to tamarind, Tamarindus indica. The mature larva is pinkish in colour whereas, the moth is generally grayish in colour and it lays pale yellowish - white, flat and round eggs near the peduncle joint of pod (fruit) or on the pod surface. The newly hatched larva enters into the fruit by making hole packed with excreta. It completes three to four generation in a year and can cause fourty two per cent loss to tamarind fruits. The morphological details of this pest were studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bionomics" title="bionomics">bionomics</a>, <a href="https://publications.waset.org/abstracts/search?q=Cryptophlebia%20ombrodelta" title=" Cryptophlebia ombrodelta"> Cryptophlebia ombrodelta</a>, <a href="https://publications.waset.org/abstracts/search?q=loss" title=" loss"> loss</a>, <a href="https://publications.waset.org/abstracts/search?q=pest" title=" pest"> pest</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamarind" title=" Tamarind"> Tamarind</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamarindus%20indica" title=" Tamarindus indica"> Tamarindus indica</a> </p> <a href="https://publications.waset.org/abstracts/53595/bionomics-of-cryptophlebia-ombrodelta-lower-lepidoptera-tortricidae-a-major-pest-of-tamarind-tamarindus-indica-in-bastar-tribal-belt-of-chhattisgarh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Plausible Influence of Hydroxycitric Acid and Garcinol in Garcinia indica Fruit Extract in High Fat Diet Induced Type 2 Diabetes Mellitus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Rachel%20Vasanthi">Hannah Rachel Vasanthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paomipem%20Phazang"> Paomipem Phazang</a>, <a href="https://publications.waset.org/abstracts/search?q=Veereshkumar"> Veereshkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sali"> Sali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Parjapath"> Ramesh Parjapath</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangeetha%20Marimuthu%20Kannan"> Sangeetha Marimuthu Kannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Garcinia indica (G. indica) fruit rind extract commonly used in South Indian culinary and Indian System of medicines is reported to exhibit various biological activities. The present study envisages the influence of the phytoconstituents in G. indica extract (Vrikshamla capsules- a herbal supplement) on diabetic condition. The condition of type 2 diabetes was triggered in experimental animals by feeding high fat diet for 8 weeks followed by a sub-diabetogenic dose of 35mg/kg bw of streptozotocin intraperitoneally. Oral supplementation of the extract at two doses (100 and 200 mg/kg body weight) for 14 days reduced hyperglycemia, hypercholesterolemia and dyslipidemia (p< 0.001). Pathophysiological changes of obesity and diabetes associated complications majorly mediated by oxidative stress were analyzed by measuring the markers of oxidative stress such as lipid peroxidation, enzymatic (SOD, Catalase, GPx) and non-enzymatic markers (GSH). Conspicuous changes markers were noticed in diabetic condition which was reverted by the G. indica extract. Screening the extract by AccuTOF-DART (MS) revealed the presence of hydroxycitric acid and garcinol in abundant quantity which probably has influenced the biological activity. This was also corroborated through docking studies of hydroxycitric acid and garcinol both individually and synergistically with the antioxidant proteins. Altogether, hydroxycitric acid and garcinol present in G. indica fruit extract alleviates the pathophysiological conditions such as hyperglycemia, dyslipidemia, insulin resistance and oxidative stress mediated by diabesity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants ">antioxidants </a>, <a href="https://publications.waset.org/abstracts/search?q=diabesity" title=" diabesity"> diabesity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxycitric%20acid" title=" hydroxycitric acid"> hydroxycitric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=garcinol" title=" garcinol"> garcinol</a>, <a href="https://publications.waset.org/abstracts/search?q=Garcinia%20indica" title=" Garcinia indica"> Garcinia indica</a>, <a href="https://publications.waset.org/abstracts/search?q=sreptozotocin" title=" sreptozotocin"> sreptozotocin</a> </p> <a href="https://publications.waset.org/abstracts/86746/plausible-influence-of-hydroxycitric-acid-and-garcinol-in-garcinia-indica-fruit-extract-in-high-fat-diet-induced-type-2-diabetes-mellitus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Evaluation of Antioxidant Activity as a Function of the Genetic Diversity of Canna indica Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Rattanapittayapron">A. Rattanapittayapron</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Vanijajiva"> O. Vanijajiva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Canna indica</em> is a prominent species complex in tropical and subtropical areas. They become indigenous in Southeast Asia where they have been introduced. At present,<em> C. indica</em> complex comprises over hundred hybrids, are cultivated as commercial horticulture. The species complex contains starchy rhizome having economic value in terms of food and herbal medicine. In addition, bright color of the flowers makes it a valuable ornamental plant and potential source for natural colorant. This study aims to assess genetic diversity of four varieties of <em>C. indica</em> complex based on SRAP (sequence-related amplified polymorphism) and iPBS (inter primer binding site) markers. We also examined phytochemical characteristics and antioxidant properties of the flower extracts from four different color varieties. Results showed that despite of the genetic variation, there were no significant differences in phytochemical characteristics and antioxidant properties of flowers. The SRAP and iPBS results agree with the more primitive traits showed by morphological information and phytochemical and antioxidant characteristics from the flowers. Since <em>Canna</em> flowers has long been used as natural colorants together with the antioxidant activities from the ethanol extracts in this study, there are likely to be good source for cosmetics additives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Canna%20indica" title="Canna indica">Canna indica</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=SRAP" title=" SRAP"> SRAP</a>, <a href="https://publications.waset.org/abstracts/search?q=iPBS" title=" iPBS"> iPBS</a> </p> <a href="https://publications.waset.org/abstracts/44454/evaluation-of-antioxidant-activity-as-a-function-of-the-genetic-diversity-of-canna-indica-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Comparative Therapeutic Effect of Acalypha indica Linn. Extract and Gemfibrozil on High Fructose and Cholesterol Diet Induced Pancreas Steatosis in Sprague-Dawley Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Reynaldo%20Sudirman">Adrian Reynaldo Sudirman</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Farida"> Siti Farida</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisyah%20Aminy%20Maulidina"> Aisyah Aminy Maulidina</a>, <a href="https://publications.waset.org/abstracts/search?q=Caren%20Andika%20Surbakti"> Caren Andika Surbakti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sedentary lifestyle and imbalance consumption pattern has made metabolic syndrome as the global time bomb phenomenon in the world. The increasing tendency of people in consuming high amount of fructose and cholesterol food has worsened this issue in the society. Pancreas steatosis become one of the most comorbid when early diagnosis and prompt treatment has not been applied on hyperglycemic and hyperlipidemic condition in metabolic syndrome patient. Gemfibrozil become the drug of choice to prevent this issue, yet the efficacy of this regiment was still questionable. Acalypha indica Linn. is the herb that has protective effect on hyperlipidemic and hyperglycemic condition. This study was aimed to compare therapeutic effect of gemfibrozil (G) and Acalypha indica Linn. (AI) on high fructose and cholesterol diet-induced pancreas steatosis in Sprague-Dawley mice. The post induction mice were divided into four groups: control, gemfibrozil, AI extract, and G+AI combination regiment. Each group received four weeks intervention. The result of statistical analysis using the One-Way ANOVA test and Tukey Post Hoc test showed significant decrease in pancreatic steatosis between the control group and administered Acalypha indica group (p = 0.004, 95% CI: 0.170-0.959) and the group administered with a combination of Gemfibrozil-Acalypha indica (p = 0.023, 95% CI: 0.537-0.813). The protective effect of Acalypha indica Linn. shows that this plant has the potential as therapeutic option in overcoming the condition of pancreas steatosis in metabolic syndrome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acalypha%20Indica%20Linn." title="Acalypha Indica Linn.">Acalypha Indica Linn.</a>, <a href="https://publications.waset.org/abstracts/search?q=Cholesterol" title=" Cholesterol"> Cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=Fructose" title=" Fructose"> Fructose</a>, <a href="https://publications.waset.org/abstracts/search?q=Gemfibrozil" title=" Gemfibrozil"> Gemfibrozil</a>, <a href="https://publications.waset.org/abstracts/search?q=Pancreas%20Steatosis" title=" Pancreas Steatosis"> Pancreas Steatosis</a> </p> <a href="https://publications.waset.org/abstracts/66286/comparative-therapeutic-effect-of-acalypha-indica-linn-extract-and-gemfibrozil-on-high-fructose-and-cholesterol-diet-induced-pancreas-steatosis-in-sprague-dawley-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=opuntia%20ficus%20indica&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=opuntia%20ficus%20indica&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=opuntia%20ficus%20indica&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=opuntia%20ficus%20indica&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=opuntia%20ficus%20indica&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=opuntia%20ficus%20indica&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>