CINXE.COM
Search results for: late Miocene
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: late Miocene</title> <meta name="description" content="Search results for: late Miocene"> <meta name="keywords" content="late Miocene"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="late Miocene" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="late Miocene"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 874</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: late Miocene</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> Some Remains of Fossil Artiodactyla: Evolutionary Status, Taxonomy and Biogeographical Distribution in Late Miocene of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khizar%20Samiullah%20Samiullah">Khizar Samiullah Samiullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Riffat%20Yasin"> Riffat Yasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Khurrum%20Feroz"> Khurrum Feroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Draz"> Omer Draz</a>, <a href="https://publications.waset.org/abstracts/search?q=Memmona%20Nazish"> Memmona Nazish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New fossil remains of artiodactyl have been recovered from three Late Miocene localities, Lava, Dhok Bun Ameer Khatoon and Hasnoot. These localities belong to lower and middle Siwalik Hills of Pakistan, the Chinji and Dhok Pathan Formation respectively and are remarkably rich in fossils of artiodactyl. The fauna mainly comprises various families of order Artiodactyla; Cervidae, Equidea, Proboscidea, Giraffidea, Rhinocerotidae, Tragulidea, Suidae and Primates. In Chinji Formation Lava and Dhok Bun Ameer Khatoon are located in district Chakwal while in Upper Dhok Pathan Formation the best fossils exposure site is Hasnoot which is located in District Jhelum, Punjab, Pakistan. Specimens described and discussed here include right and left maxilla, isolated upper premolars and molars which have been collected during extensive fieldwork. After morphological and comparative analysis the collection is attributed to Giraffokeryx, Giraffa, Listriodon, Dorcatherium, Selenoportax and Pachyportax. In this study evolutionary status, taxonomy and biogeographical distribution as well as the relationship of different Artiodactyls have been discussed comprehensively. The Palaeoenvironmental studies reveal the persistence of mosaics of diverse habitats ranging from tropical evergreen forest to subtropical ones, closed seasonal woodlands to wooded savannas during the deposition of these outcrops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artiodactyla" title="Artiodactyla">Artiodactyla</a>, <a href="https://publications.waset.org/abstracts/search?q=fossil%20dentition" title=" fossil dentition"> fossil dentition</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20Miocene" title=" late Miocene"> late Miocene</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20and%20middle%20Siwaliks" title=" lower and middle Siwaliks"> lower and middle Siwaliks</a> </p> <a href="https://publications.waset.org/abstracts/57354/some-remains-of-fossil-artiodactyla-evolutionary-status-taxonomy-and-biogeographical-distribution-in-late-miocene-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> Organic Geochemical Characteristics of Cenozoic Mudstones, NE Bengal Basin, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Zakir%20Hossain">H. M. Zakir Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cenozoic mudstone samples, obtained from drilled cored and outcrop in northeastern Bengal Basin of Bangladesh were organic geochemically analyzed to identify vertical variations of organic facies, thermal maturity, hydrocarbon potential and depositional environments. Total organic carbon (TOC) content ranges from 0.11 to 1.56 wt% with an average of 0.43 wt%, indicating a good source rock potential. Total sulphur content is variable with values ranging from ~0.001 to 1.75 wt% with an average of 0.065 wt%. Rock-Eval S1 and S2 yields range from 0.03 to 0.14 mg HC/g rock and 0.01 to 0.66 mg HC/g rock, respectively. The hydrogen index values range from 2.71 to 56.09 mg HC/g TOC. These results revealed that the samples are dominated by type III kerogene. Tmax values of 426 to 453 °C and vitrinite reflectance of 0.51 to 0.66% indicate the organic matter is immature to mature. Saturated hydrocarbon ratios such as pristane, phytane, steranes, and hopanes, indicate mostly terrigenous organic matter with small influence of marine organic matter. Organic matter in the succession was accumulated in three different environmental conditions based on the integration of biomarker proxies. First phase (late Eocene to early Miocene): Deposition occurred entirely in seawater-dominated oxic conditions, with high inputs of land plants organic matter including angiosperms. Second phase (middle to late Miocene): Deposition occurred in freshwater-dominated anoxic conditions, with phytoplanktonic organic matter and a small influence of land plants. Third phase (late Miocene to Pleistocene): Deposition occurred in oxygen-poor freshwater conditions, with abundant input of planktonic organic matter and high influx of angiosperms. The lower part (middle Eocene to early Miocene) of the succession with moderate TOC contents and primarily terrestrial organic matter could have generated some condensates and oils in and around the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title="Bangladesh">Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential" title=" hydrocarbon potential"> hydrocarbon potential</a>, <a href="https://publications.waset.org/abstracts/search?q=mudstone" title=" mudstone"> mudstone</a> </p> <a href="https://publications.waset.org/abstracts/14260/organic-geochemical-characteristics-of-cenozoic-mudstones-ne-bengal-basin-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> Lacustrine Sediments of the Poljanska Locality in the Miocene Climatic Optimum North Croatian Basin, Croatia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marijan%20Kova%C4%8DI%C4%87">Marijan KovačIć</a>, <a href="https://publications.waset.org/abstracts/search?q=Davor%20Paveli%C4%87"> Davor Pavelić</a>, <a href="https://publications.waset.org/abstracts/search?q=Darko%20Tiblja%C5%A1"> Darko Tibljaš</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Gali%C4%87"> Ivo Galić</a>, <a href="https://publications.waset.org/abstracts/search?q=Frane%20Markovi%C4%87"> Frane Marković</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivica%20Pavi%C4%8DI%C4%87"> Ivica PavičIć</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The North Croatian Basin (NCB) occupies the southwestern part of the Pannonian Basin System and belongs to the Central Paratethys realm. In a quarry near the village of Poljanska, on the southern slopes of Mt. Papuk in eastern Croatia, a 40-meter-thick section is exposed, consisting of well-bedded, mixed, carbonate-siliciclastic deposits with occurrences of pyroclastics. Sedimentological investigation indicates that a salina lake developed in the central NCB during the late early Miocene. Field studies and mineralogical and petrological analyses indicate that alternations of laminated crypto- characterize the lower part of the section to microcrystalline dolomite and analcimolite (sedimentary rocks composed essentially of authigenic analcime) associated with tuffites and marls. The pyroclastic material is a product of volcanic activity at the end of the early Miocene, while the formation of analcime, the zeolite group mineral, is a result of an alteration of pyroclastic material in an alkaline lacustrine environment. These sediments were deposited in a shallow, hydrologically closed lake that was controlled by an arid climate during the first phase of its development. The middle part of the section consists of dolomites interbedded with analcimolites and sandstones. The sandstone beds are a result of the increased supply of clastic material derived from the locally uplifted metamorphic and granitoid basement. The emplacement of sandstones and dolomites reflects a distinct alternation of hydrologically open and closed lacustrine environments controlled by the frequent alternation of humid and arid climates, representing the second phase of lake development. The siliciclastics of the third phase of lake development were deposited during the Middle Miocene in a hydrologically mostly open lake. All lacustrine deposition coincides with the Miocene Climatic Optimum, which was characterized by a hot and warm climate. The sedimentological data confirm the mostly wet conditions previously identified by paleobotanical studies in the region. The exception is the relatively long interval of arid climate in the late early Miocene that controlled the first phase of lake evolution, i.e., the salina-type lake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=early%20Miocene" title="early Miocene">early Miocene</a>, <a href="https://publications.waset.org/abstracts/search?q=Pannonian%20basin%20System" title=" Pannonian basin System"> Pannonian basin System</a>, <a href="https://publications.waset.org/abstracts/search?q=pyroclastics" title=" pyroclastics"> pyroclastics</a>, <a href="https://publications.waset.org/abstracts/search?q=salina-type%20lake" title=" salina-type lake"> salina-type lake</a> </p> <a href="https://publications.waset.org/abstracts/139118/lacustrine-sediments-of-the-poljanska-locality-in-the-miocene-climatic-optimum-north-croatian-basin-croatia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> Description of Anthracotheriidae Remains from the Middle and Upper Siwaliks of Punjab, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20M.%20Khan">Abdul M. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Iqbal"> Ayesha Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, new dental remains of Merycopotamus (Anthracotheriidae) are described. The specimens were collected during field work by the authors from the well dated fossiliferous locality 'Hasnot' belonging to the Dhok Pathan Formation, and from 'Tatrot' village belonging to Tatrot Formation of the Potwar Plateau, Pakistan. The stratigraphic age of the Neogene deposits around Hasnot is 7 - 5 Ma; whereas the age of the Tatrot Formation is from 3.4 - 2.6 Ma. The newly discovered material when compared with the previous records of the genus Merycopotamus from the Siwaliks led us to identify all the three reported species of this genus from the Siwaliks of Pakistan. As the sample comprises only the dental remains so the identification of the specimens is solely based upon the morpho-metric analysis. The occlusal pattern of the upper molar in Merycopotamus dissimilis is different from Merycopotamus medioximus and Merycopotamus nanus in having a mesostyle fully divided, forming two prominent cusps, while mesostyle in M. medioximus is partly divided and small lateral crests are present on the mesostyle. A continuous loop like mesostyle is present in Merycopotamus nanus. The entoconid fold is present in Merycopotamus dissimilis on the lower molars whereas it is absent in Merycopotamus medioximus and Merycopotamus nanus. The hypoconulid in M. dissimilis is relatively simple but a loop like hypoconulid is present in M. medioximus and M. nanus. The results of the present findings are in line with the previous records of the genus Merycopotamus, with M. nanus, M. medioximus and M. dissimilis in the Late Miocene – Early Pliocene Dhok Pathan Formation, and M. dissimilis in the Late Pliocene Tatrot sediments of Pakistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhok%20Pathan" title="Dhok Pathan">Dhok Pathan</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20miocene" title=" late miocene"> late miocene</a>, <a href="https://publications.waset.org/abstracts/search?q=merycopotamus" title=" merycopotamus"> merycopotamus</a>, <a href="https://publications.waset.org/abstracts/search?q=pliocene" title=" pliocene"> pliocene</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatrot" title=" Tatrot"> Tatrot</a> </p> <a href="https://publications.waset.org/abstracts/57575/description-of-anthracotheriidae-remains-from-the-middle-and-upper-siwaliks-of-punjab-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> The Development of the Geological Structure of the Bengkulu Fore Arc Basin, Western Edge of Sundaland, Sumatra, and Its Relationship to Hydrocarbon Trapping Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lauti%20Dwita%20Santy">Lauti Dwita Santy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermes%20Panggabean"> Hermes Panggabean</a>, <a href="https://publications.waset.org/abstracts/search?q=Syahrir%20Andi%20Mangga"> Syahrir Andi Mangga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bengkulu Basin is part of the Sunda Arc system, which is a classic convergent type margin that occur around the southern rim of the Eurasian continental (Sundaland) plate. The basin is located between deep sea trench (Mentawai Outer Arc high) and the volvanic/ magmatic Arc of the Barisan Mountains Range. To the northwest it is bounded by Padang High, to the northest by Barisan Mountains (Sumatra Fault Zone) to the southwest by Mentawai Fault Zone and to the southeast by Semangko High/ Sunda Strait. The stratigraphic succession and tectonic development can be broadly divided into four stage/ periods, i.e Late Jurassic- Early Cretaceous, Late Eocene-Early Oligocene, Late Oligocene-Early Miocene, Middle Miocene-Late Miocene and Pliocene-Plistocene, which are mainly controlled by the development of subduction activities. The Pre Tertiary Basement consist of sedimentary and shallow water limestone, calcareous mudstone, cherts and tholeiitic volcanic rocks, with Late Jurassic to Early Cretaceous in age. The sedimentation in this basin is depend on the relief of the Pre Tertiary Basement (Woyla Terrane) and occured into two stages, i.e. transgressive stage during the Latest Oligocene-Early Middle Miocene Seblat Formation, and the regressive stage during the Latest Middle Miocene-Pleistocene (Lemau, Simpangaur and Bintunan Formations). The Pre-Tertiary Faults were more intensive than the overlying cover, The Tertiary Rocks. There are two main fault trends can be distinguished, Northwest–Southwest Faults and Northeast-Southwest Faults. The NW-SE fault (Ketaun) are commonly laterally persistent, are interpreted to the part of Sumatran Fault Systems. They commonly form the boundaries to the Pre Tertiary basement highs and therefore are one of the faults elements controlling the geometry and development of the Tertiary sedimentary basins.The Northeast-Southwest faults was formed a conjugate set to the Northwest–Southeast Faults. In the earliest Tertiary and reactivated during the Plio-Pleistocene in a compressive mode with subsequent dextral displacement. The Block Faulting accross these two sets of faults related to approximate North–South compression in Paleogene time and produced a series of elongate basins separated by basement highs in the backarc and forearc region. The Bengkulu basin is interpreted having evolved from pull apart feature in the area southwest of the main Sumatra Fault System related to NW-SE trending in dextral shear.Based on Pyrolysis Yield (PY) vs Total Organic Carbon (TOC) diagram show that Seblat and Lemau Formation belongs to oil and Gas Prone with the quality of the source rocks includes into excellent and good (Lemau Formation), Fair and Poor (Seblat Formation). The fine-grained carbonaceous sediment of the Seblat dan Lemau Formations as source rocks, the coarse grained and carbonate sediments of the Seblat and Lemau Formations as reservoir rocks, claystone bed in Seblat and Lemau Formation as caprock. The source rocks maturation are late immature to early mature, with kerogen type II and III (Seblat Formation), and late immature to post mature with kerogen type I and III (Lemau Formation). The burial history show to 2500 m in depthh with paleo temperature reached 80oC. Trapping mechanism occur during Oligo–Miocene and Middle Miocene, mainly in block faulting system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fore%20arc" title="fore arc">fore arc</a>, <a href="https://publications.waset.org/abstracts/search?q=bengkulu" title=" bengkulu"> bengkulu</a>, <a href="https://publications.waset.org/abstracts/search?q=sumatra" title=" sumatra"> sumatra</a>, <a href="https://publications.waset.org/abstracts/search?q=sundaland" title=" sundaland"> sundaland</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title=" hydrocarbon"> hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=trapping%20mechanism" title=" trapping mechanism"> trapping mechanism</a> </p> <a href="https://publications.waset.org/abstracts/25463/the-development-of-the-geological-structure-of-the-bengkulu-fore-arc-basin-western-edge-of-sundaland-sumatra-and-its-relationship-to-hydrocarbon-trapping-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Unveiling Karst Features in Miocene Carbonate Reservoirs of Central Luconia-Malaysia: Case Study of F23 Field's Karstification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abd%20Al-Salam%20Al-Masgari">Abd Al-Salam Al-Masgari</a>, <a href="https://publications.waset.org/abstracts/search?q=Haylay%20Tsegab"> Haylay Tsegab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismailalwali%20Babikir"> Ismailalwali Babikir</a>, <a href="https://publications.waset.org/abstracts/search?q=Monera%20A.%20Shoieb"> Monera A. Shoieb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a study of Malaysia's Central Luconia region, which is an essential deposit of Miocene carbonate reservoirs. This study aims to identify and map areas of selected carbonate platforms, develop high-resolution statistical karst models, and generate comprehensive karst geobody models for selected carbonate fields. This study uses seismic characterization and advanced geophysical surveys to identify karst signatures in Miocene carbonate reservoirs. The results highlight the use of variance, RMS, RGB colour blending, and 3D visualization Prop seismic sequence stratigraphy seismic attributes to visualize the karstified areas across the F23 field of Central Luconia. The offshore karst model serves as a powerful visualization tool to reveal the karstization of carbonate sediments of interest. The results of this study contribute to a better understanding of the karst distribution of Miocene carbonate reservoirs in Central Luconia, which are essential for hydrocarbon exploration and production. This is because these features significantly impact the reservoir geometry, flow path and characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=karst" title="karst">karst</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20Luconia" title=" central Luconia"> central Luconia</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20attributes" title=" seismic attributes"> seismic attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=Miocene%20carbonate%20build-ups" title=" Miocene carbonate build-ups"> Miocene carbonate build-ups</a> </p> <a href="https://publications.waset.org/abstracts/166084/unveiling-karst-features-in-miocene-carbonate-reservoirs-of-central-luconia-malaysia-case-study-of-f23-fields-karstification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> Exceptionally Glauconite-Rich Strata from the Miocene Bejaoua Facies of Northern Tunisia: Origin, Composition, and Depositional Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelbasset%20Tounekti">Abdelbasset Tounekti</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Boukhalfa"> Kamel Boukhalfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tathagata%20Roy%20Choudhury"> Tathagata Roy Choudhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Soussi"> Mohamed Soussi</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Banerjee"> Santanu Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exceptionally glauconite-rich Miocene strata are superbly exposed throughout the front of the nappes zone of northern Tunisia. Each of the glauconitic fine-grained intervals coincide with the peak rise of third order sea-level cycles during the Burdigalian-Langhiantime. These deposits show coarsening- and thickening-upward glauconitic shale and sandstone, recording a shallowing upward progression across offshore-shoreface settings. Petrographic investigation reveals that the glauconite was originated from the alteration of fecal pellets, and lithoclast including feldspar, volcanic particle, and quartz and infillings with intraparticle pores. Mineralogical analysis of both randomly oriented and air-dried, ethylene-glycolate, and heated glauconite pellets show the low intensity of (002) reflection peaks, indicating high iron substitution for aluminum in octahedral sites. Geochemical characterization of the Miocene glauconite reveals a high K2O and variable Fe2O3 (total) content. A combination of layer lattice and divertissement theories explains the origin of glauconite. The formation of glauconite was facilitated by the abundant supply of Fe through contemporaneous volcanism in Algeria and surrounding areas, which accompanied the African-European plate convergence. Therefore, the occurrence of glauconite in the Miocene succession of Tunisia is influenced by the combination of eustacy and volcanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glauconite" title="glauconite">glauconite</a>, <a href="https://publications.waset.org/abstracts/search?q=autogenic" title=" autogenic"> autogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanism" title=" volcanism"> volcanism</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=chamosite" title=" chamosite"> chamosite</a>, <a href="https://publications.waset.org/abstracts/search?q=northern%20Tunisia" title=" northern Tunisia"> northern Tunisia</a>, <a href="https://publications.waset.org/abstracts/search?q=miocene" title=" miocene"> miocene</a> </p> <a href="https://publications.waset.org/abstracts/142848/exceptionally-glauconite-rich-strata-from-the-miocene-bejaoua-facies-of-northern-tunisia-origin-composition-and-depositional-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> Paleobathymetry and Biostratigraphy of Sambipitu Formation and Its Relation with the Presence of Ichnofossil in Geoheritage Site Ngalang River Yogyakarta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harman%20Dwi%20R.">Harman Dwi R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Alwin%20Mugiyantoro"> Alwin Mugiyantoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Heppy%20Chintya%20P."> Heppy Chintya P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The location of this research is a part of Geoheritage that located in Nglipar, Gunung Kidul Regency, Yogyakarta Special Region. Whereas in this location, the carbonate sandstone of Sambipitu Formation (early-middle Miocene) is well exposed along Ngalang River, also there are ichnofossil presence which causes this formation to be interesting. The determination of paleobathymetry is particularly important in determining paleoenvironment and paleogeographic. Paleobathymetry can be determined by identifying the presence of Foraminifera bentonik fossil and parasequence emerge. The methods that used in this study are spatial method of field observation with systematic sampling, descriptive method of paleontology, biostratigraphy analysis, geometrical analysis of Ichnofossil, and study literature. The result obtained that paleobathymetry of this location is bathyal zone with maximum regression known by Bulliminoides williamsonianus showing depth 17 fathoms at the age of N3-N5 (Oligocenne-Early Miocene) and the maximum transgression is known by Cibicides pseudoungarianus showing depth 862 fathoms at the age of N8-N9 (Early-Middle Miocene). Where the obtained paleobathymetry supported of the presence and formed the pattern of ichnofossil that found in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paleobathymetry" title="paleobathymetry">paleobathymetry</a>, <a href="https://publications.waset.org/abstracts/search?q=biostratigraphy" title=" biostratigraphy"> biostratigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=ichnofossil" title=" ichnofossil"> ichnofossil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngalang%20river" title=" Ngalang river"> Ngalang river</a> </p> <a href="https://publications.waset.org/abstracts/82945/paleobathymetry-and-biostratigraphy-of-sambipitu-formation-and-its-relation-with-the-presence-of-ichnofossil-in-geoheritage-site-ngalang-river-yogyakarta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">866</span> Geotechnical Characteristics of Miocenemarl in the Region of Medea North-South Highway, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Yongli">Y. Yongli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Aissa"> M. H. Aissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper aims for a geotechnical analysis based on experimental physical and mechanical characteristics of Miocene marl situated at Medea region in Algeria. More than 150 soil samples were taken in the investigation part of the North-South Highway which extends over than 53 km from Chiffa in the North to Berrouaghia in the South of Algeria. The analysis of data in terms of Atterberg limits, plasticity index, and clay content reflects an acceptable correlation justified by a high coefficient of regression which was compared with the previous works in the region. Finally, approximated equations that serve as a guideline for geotechnical design locally have been suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties" title=" geotechnical properties"> geotechnical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=miocene%20marl" title=" miocene marl"> miocene marl</a>, <a href="https://publications.waset.org/abstracts/search?q=north-south%20highway" title=" north-south highway"> north-south highway</a> </p> <a href="https://publications.waset.org/abstracts/48442/geotechnical-characteristics-of-miocenemarl-in-the-region-of-medea-north-south-highway-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">865</span> Detailed Depositional Resolutions in Upper Miocene Sands of HT-3X Well, Nam Con Son Basin, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vo%20Thi%20Hai%20Quan">Vo Thi Hai Quan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nam Con Son sedimentary basin is one of the very important oil and gas basins in offshore Vietnam. Hai Thach field of block 05-2 contains mostly gas accumulations in fine-grained, sand/mud-rich turbidite system, which was deposited in a turbidite channel and fan environment. Major Upper Miocene reservoir of HT-3X lies above a well-developed unconformity. The main objectives of this study are to reconstruct depositional environment and to assess the reservoir quality using data from 14 meters of core samples and digital wireline data of the well HT-3X. The wireline log and core data showed that the vertical sequences of representative facies of the well mainly range from Tb to Te divisions of Bouma sequences with predominance of Tb and Tc compared to Td and Te divisions. Sediments in this well were deposited in a submarine fan association with very fine to fine-grained, homogeneous sandstones that have high porosity and permeability, high- density turbidity currents with longer transport route from the sediment source to the basin, indicating good quality of reservoir. Sediments are comprised mainly of the following sedimentary structures: massive, laminated sandstones, convoluted bedding, laminated ripples, cross-laminated ripples, deformed sandstones, contorted bedding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hai%20Thach%20field" title="Hai Thach field">Hai Thach field</a>, <a href="https://publications.waset.org/abstracts/search?q=Miocene%20sand" title=" Miocene sand"> Miocene sand</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidite" title=" turbidite"> turbidite</a>, <a href="https://publications.waset.org/abstracts/search?q=wireline%20data" title=" wireline data"> wireline data</a> </p> <a href="https://publications.waset.org/abstracts/69815/detailed-depositional-resolutions-in-upper-miocene-sands-of-ht-3x-well-nam-con-son-basin-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">864</span> Clay Mineralogy of Mukdadiya Formation in Shewasoor Area: Northeastern Kirkuk City, Iraq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20R.%20Ali">Abbas R. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20A.%20Bayiz"> Diana A. Bayiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 14 mudstone samples were collected within the sedimentary succession of Mukdadiya Formation (Late Miocene – Early Pliocene) from Shewasoor area at Northeastern Iraq. The samples were subjected to laboratory studies including mineralogical analysis (using X-ray Diffraction technique) in order to identify the clay mineralogy of Mukdadiya Formation of both clay and non-clay minerals. The results of non-clay minerals are: quartz, feldspar and carbonate (calcite and dolomite) minerals. The clay minerals are: montmorillonite, kaolinite, palygorskite, chlorite, and illite by the major basal reflections of each mineral. The origins of these minerals are deduced also. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukdadiya%20Formation" title="Mukdadiya Formation">Mukdadiya Formation</a>, <a href="https://publications.waset.org/abstracts/search?q=mudstone" title=" mudstone"> mudstone</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=Shewasoor" title=" Shewasoor"> Shewasoor</a> </p> <a href="https://publications.waset.org/abstracts/45853/clay-mineralogy-of-mukdadiya-formation-in-shewasoor-area-northeastern-kirkuk-city-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">863</span> Late Payment Issues Faced by Subcontractors in the Malaysian Construction Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Emma%20Mustaffa">Nur Emma Mustaffa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hii%20Ping%20Ping"> Hii Ping Ping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Late payment is a common issue in the construction industry and the subcontractors are not spared from it. This study has been carried out with the objectives to identify the implications of late payment issues toward the subcontractors and the strategies adopted by them to overcome the late payment issues. In terms of the strategies which can be adopted in overcoming the late payment, the subcontractors may suspend or slow down the construction process, making periodic follow up with the client, demand the rights to interest on late payment or the issuance of a promissory note by the client. The focus of the study is primarily on Grade 4 to Grade 7 contractors in Johor Bahru, Malaysia who carried out subcontracting works and registered under Construction Industry Development Board (CIDB). Employing survey as the main research method for data collection, the analysis would therefore mainly be adopting Likert Scale Analysis, Ranking Analysis and Frequency Distribution Analysis. This research showed the main implication of late payment issues towards subcontractors is created financial hardship to them. Besides, the most effective strategy adopted by the subcontractors to overcome the late payment issues is follow-up with client using formal procedure. From the findings, most of the subcontractors had low level of experiences and frequency in the adoption of Construction Industry Payment and Adjudication Act (CIPAA) 2012 to solve the payment disputes in the construction industry. In a nutshell, it is hoped that these findings will become guidance to the subcontractors to overcome the late payment issues in their future projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=subcontractors" title="subcontractors">subcontractors</a>, <a href="https://publications.waset.org/abstracts/search?q=implications" title=" implications"> implications</a>, <a href="https://publications.waset.org/abstracts/search?q=strategies" title=" strategies"> strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=CIPAA%202012" title=" CIPAA 2012"> CIPAA 2012</a>, <a href="https://publications.waset.org/abstracts/search?q=payment" title=" payment"> payment</a> </p> <a href="https://publications.waset.org/abstracts/98255/late-payment-issues-faced-by-subcontractors-in-the-malaysian-construction-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">862</span> Epic Consciousness: New possibilities for Epic Expression in Post-War American Literature During the Age of Late Capitalism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safwa%20Yargui">Safwa Yargui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research examines the quest for a post-war American epic poem in the age of late capitalism. It explores the possibility of an epic poem in the context of post-war late capitalist America, despite the prevailing scholarly skepticism regarding the existence of epic poetry after Milton’s Paradise Lost. The aim of this paper is to demonstrate the possibility of a post-war American epic through the argument of epic consciousness. Epic consciousness provides a significant nuance to the reading of the post-war American epic by focusing on the epic’s responsiveness to late capitalism via various language forms; cultural manifestations; and conscious distortions of late capitalist media-related language; in addition to the epic’ conscious inclusion of the process of writing a post-war epic that requires a direct engagement with American-based materials. By focusing on interdisciplinary theoretical approaches, this paper includes both socio-cultural literary theories as well as literary and epic approaches developed by scholars in their critical texts that respectively contextualize the late capitalist situation and the question of post-war American epic poetry. The major findings of this research provides a new theoretical approach to the question of post-war American epic poetry. In examining the role of consciousness, this paper aims to suggest a re-thinking of the post-war American epic that is capable of self-commitment for the purpose of achieving a new sense of epic poetry in post-war late capitalist America. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=american%20epic" title="american epic">american epic</a>, <a href="https://publications.waset.org/abstracts/search?q=epic%20consciousness" title=" epic consciousness"> epic consciousness</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20capitalism" title=" late capitalism"> late capitalism</a>, <a href="https://publications.waset.org/abstracts/search?q=post-wat%20poetry" title=" post-wat poetry"> post-wat poetry</a> </p> <a href="https://publications.waset.org/abstracts/167383/epic-consciousness-new-possibilities-for-epic-expression-in-post-war-american-literature-during-the-age-of-late-capitalism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">861</span> Insights into Kinematics and Basin Development through Palinspastic Reconstructions in Pull-Apart Basin Sunda Strait: Implication for the Opportunity of Hydrocarbon Exploration in Fore-Arc Basin, Western Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfathony%20Krisnabudhi">Alfathony Krisnabudhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Syahli%20Reza%20Ananda"> Syahli Reza Ananda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Edo%20Marshal"> M. Edo Marshal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Maaruf%20Mukti"> M. Maaruf Mukti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the kinematics and basin development of pull-apart basin Sunda Strait based on palinspastic reconstructions of new acquired seismic reflection data to unravel hydrocarbon exploration opportunity in frontier area, fore-arc basin western Indonesia. We use more than 780 km seismic reflection data that cover whole basin. Structural patterns in Sunda Strait are dominated by northwest-southeast trending planar and listric-normal faults which appear to be graben and half-graben system. The main depocentre of this basin is East Semangko graben and West Semangko graben that are formed by overstepping of Sumatra Fault Zone and Ujungkulon Fault Zone. In father east, another depocentre is recognized as the Krakatau graben. The kinematic evolution started in Middle Miocene, characterized by the initiation of basement faulting with 0% to 7.00% extension. Deposition stratigraphic unit 1 and unit 2 started at 7.00% to 10.00% extension in Late Miocene and recognized as pre-transtensional deposit. The Plio-Pleistocene unit 3 and 4 were deposited as syn-transtensional deposit with 10.00% to 17.00% extension contemporaneously with the initiation of uplift NW-SE trending ridges due to the evolution of cross-basin fault in central basin and the development of en-echelon basin margin in a transtensional system. The control of sedimentation rate and basin subsidence cause the Neogene sediment to be very thick. We suggest that both controls allow thermal and pressure to generate hydrocarbon habitats in the pre-transtensional deposits. It is reinforced by stable kinematic evolution and interpretation of the deposition environment of pre-transtensional deposits that are deposited in the marine environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematics" title="kinematics">kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=palinspastic" title=" palinspastic"> palinspastic</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunda%20Strait" title=" Sunda Strait"> Sunda Strait</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20exploration" title=" hydrocarbon exploration"> hydrocarbon exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=fore-arc%20basin" title=" fore-arc basin"> fore-arc basin</a> </p> <a href="https://publications.waset.org/abstracts/93385/insights-into-kinematics-and-basin-development-through-palinspastic-reconstructions-in-pull-apart-basin-sunda-strait-implication-for-the-opportunity-of-hydrocarbon-exploration-in-fore-arc-basin-western-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">860</span> Maturity Status of Male Boys in Punjab - India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parminder%20K.%20Laroiya">Parminder K. Laroiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhdeep%20S.%20Kang"> Sukhdeep S. Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Present cross-sectional study was conducted on 610 boys (ranging in age bracket of 11 to 17 years) to assess their developmental age to check percentage of early, normal and late maturity among them, and to check whether there is any significant difference in their calendar age and developmental age. Developmental age of these subjects has been accessed by TW2 method (using hand wrist X-rays) and their chronological age was checked from their date of birth certificate. Developmental status of subjects i.e. early, normal or late mature was considered with +2 years or -2 years from their calendar age. Results of this study shows that 50% boys were normal in their maturity status in all age brackets and rest of subjects were either early maturers 24.92% or late maturers 25.08%. When pattern of maturity was studied in each age group it has been found that till the age of 15 years, percentage of normal maturity was less than 50 % whereas in 16 and 17 years age groups, this percentage of normal maturity increased to 60% - 65 % ( this may be because at this age mostly boys attain adolescence) Further investigation of each age group showed that till the age of 14 years percentage of late maturity among these boys were approximately 35% to 40% whereas early maturity lies between 15% to 20%. It has been found from the present study that at the age of 15 years, there is a twist among percentage of late and early maturity among boys-early maturers are 38.61% and late maturers are 16.84%. At the age of 16 and 17 years percentage of late maturity has been decreased to 3% to 6%, whereas percentage of early maturity increased to 35.64 % and 30.69 % respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maturity%20status" title="maturity status">maturity status</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental%20age" title=" developmental age"> developmental age</a>, <a href="https://publications.waset.org/abstracts/search?q=chronological%20age" title=" chronological age"> chronological age</a>, <a href="https://publications.waset.org/abstracts/search?q=X-rays" title=" X-rays"> X-rays</a> </p> <a href="https://publications.waset.org/abstracts/171610/maturity-status-of-male-boys-in-punjab-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">859</span> Early versus Late Percutaneous Tracheostomy in Critically Ill Adult Mechanically Ventilated Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Abd%20Elaziz%20Mohamed">Kamel Abd Elaziz Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Yehia%20Mousa"> Ahmed Yehia Mousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Samir%20ElSawy"> Ahmed Samir ElSawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Mohamed%20Saleem"> Adel Mohamed Saleem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Critically ill patients frequently require tracheostomy to simplify long term air way management. While tracheostomy indications have remained unchanged, the timing of elective tracheostomy for the ventilated patient has been questioned. Aim of the work: This study was performed to compare the differences between early and late percutaneous dilatational tracheostomy (PDT) regarding, mechanical ventilation duration (MVD), length of ICU stay, length of hospital stay, incidence of ventilator associated pneumonia and hospital outcome. Patients and methods: Forty patients who met the inclusion criteria were randomly divided into early PDT who had the tracheostomy within the first 10 days of mechanical ventilation (MV) and the late PDT who had the tracheostomy after 10 days of MV. On admission, demographic data and Acute Physiology and Chronic ill Health II and GCS were collected. The duration of mechanical ventilation, ICU length of stay (LOS) and hospital LOS were all calculated. Results: Total of 40 patients were randomized to either early PDT (n= 20) or late PDT (n= 20). There were no significant differences between both groups regarding demographic data or the scores: APACHE II (22.75± 7 vs 24.35 ± 8) and GCS (6.10 ±2 vs 7.10 ± 2.71). An early PDT showed fewer complications vs late procedure, however it was insignificant. There were significant differences between the two groups regarding mean (MVD) which was shorter in early PDT than the late PDT group (32.2± 10.5) vs (20.6 ± 13 days; p= 0.004). Mean ICU stay was shorter in early PDT than late PDT (21 .0± 513.4) vs (40.15 ±12.7 days; p 6 0.001). Mean hospital stay was shorter in early PDT than late PDT (34.60± 18.37) vs (55.60± 25.73 days; p=0.005). Patients with early PDT suffered less sepsis and VAP than late PDT, there was no difference regarding the mortality rate between the two groups. Conclusion: Early PDT is recommended for patients who require prolonged tracheal intubation in the ICU as outcomes like the duration of mechanical ventilation length of ICU stay and hospital stay were significantly shorter in early tracheostomy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intensive%20care%20unit" title="intensive care unit">intensive care unit</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20PDT" title=" early PDT"> early PDT</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20PDT" title=" late PDT"> late PDT</a>, <a href="https://publications.waset.org/abstracts/search?q=intubation" title=" intubation"> intubation</a> </p> <a href="https://publications.waset.org/abstracts/19548/early-versus-late-percutaneous-tracheostomy-in-critically-ill-adult-mechanically-ventilated-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">858</span> Exploration of Hydrocarbon Unconventional Accumulations in the Argillaceous Formation of the Autochthonous Miocene Succession in the Carpathian Foredeep</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20G%C3%B3recki">Wojciech Górecki</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Sowi%C5%BCd%C5%BCa%C5%82"> Anna Sowiżdżał</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Machowski"> Grzegorz Machowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Ma%C4%87kowski"> Tomasz Maćkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartosz%20Papiernik"> Bartosz Papiernik</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Stefaniuk"> Michał Stefaniuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article shows results of the project which aims at evaluating possibilities of effective development and exploitation of natural gas from argillaceous series of the Autochthonous Miocene in the Carpathian Foredeep. To achieve the objective, the research team develop a world-trend based but unique methodology of processing and interpretation, adjusted to data, local variations and petroleum characteristics of the area. In order to determine the zones in which maximum volumes of hydrocarbons might have been generated and preserved as shale gas reservoirs, as well as to identify the most preferable well sites where largest gas accumulations are anticipated a number of task were accomplished. Evaluation of petrophysical properties and hydrocarbon saturation of the Miocene complex is based on laboratory measurements as well as interpretation of well-logs and archival data. The studies apply mercury porosimetry (MICP), micro CT and nuclear magnetic resonance imaging (using the Rock Core Analyzer). For prospective location (e.g. central part of Carpathian Foredeep – Brzesko-Wojnicz area) reprocessing and reinterpretation of detailed seismic survey data with the use of integrated geophysical investigations has been made. Construction of quantitative, structural and parametric models for selected areas of the Carpathian Foredeep is performed on the basis of integrated, detailed 3D computer models. Modeling are carried on with the Schlumberger’s Petrel software. Finally, prospective zones are spatially contoured in a form of regional 3D grid, which will be framework for generation modelling and comprehensive parametric mapping, allowing for spatial identification of the most prospective zones of unconventional gas accumulation in the Carpathian Foredeep. Preliminary results of research works indicate a potentially prospective area for occurrence of unconventional gas accumulations in the Polish part of Carpathian Foredeep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autochthonous%20Miocene" title="autochthonous Miocene">autochthonous Miocene</a>, <a href="https://publications.waset.org/abstracts/search?q=Carpathian%20foredeep" title=" Carpathian foredeep"> Carpathian foredeep</a>, <a href="https://publications.waset.org/abstracts/search?q=Poland" title=" Poland"> Poland</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20gas" title=" shale gas"> shale gas</a> </p> <a href="https://publications.waset.org/abstracts/62319/exploration-of-hydrocarbon-unconventional-accumulations-in-the-argillaceous-formation-of-the-autochthonous-miocene-succession-in-the-carpathian-foredeep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">857</span> Streamlines: Paths of Fluid Flow through Sandstone Samples Based on Computed Microtomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%81.%20Kaczmarek">Ł. Kaczmarek</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Wejrzanowski"> T. Wejrzanowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Maksimczuk"> M. Maksimczuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study presents the use of the numerical calculations based on high-resolution computed microtomography in analysis of fluid flow through Miocene sandstones. Therefore, the permeability studies of rocks were performed. Miocene samples were taken from well S-3, located in the eastern part of the Carpathian Foredeep. For aforementioned analysis, two series of X-ray irradiation were performed. The first set of samples was selected to obtain the spatial distribution of grains and pores. At this stage of the study length of voxel side amounted 27 microns. The next set of X-ray irradation enabled recognition of microstructural components as well as petrophysical features. The length of voxel side in this stage was up to 2 µm. Based on this study, the samples were broken down into two distinct groups. The first one represents conventional reservoir deposits, in opposite to second one - unconventional type. Appropriate identification of petrophysical parameters such as porosity and permeability of the formation is a key element for optimization of the reservoir development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grains" title="grains">grains</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=pores" title=" pores"> pores</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20distribution" title=" pressure distribution"> pressure distribution</a> </p> <a href="https://publications.waset.org/abstracts/65715/streamlines-paths-of-fluid-flow-through-sandstone-samples-based-on-computed-microtomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">856</span> The Voyage of Adolfo Caminha to the USA: The Discourse about Americanism in Brazil in the Late Nineteenth Century</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maxwel%20F.%20Silva">Maxwel F. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Geraldo%20Pedrosa"> José Geraldo Pedrosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a study about the voyage of Adolfo Caminha to the USA in the late nineteenth century described in “No país dos ianques”. The hypothesis is that the USA constitutes a civilizing reference that moves away from Europe. The Americanism expression it means that the Yankees have invented a new repertoire through which built a new idea of civilization. The base is European, but your architecture is new. This paper is not concerned with the meanings and uses of the Americanism expression among the Yankees, but with the ways in which the America were understood by otherness, especially in the late nineteenth and early twentieth century. In this way, this study discusses the concept of Americanism in the thought of Adolfo Caminha and it is relation with the Brazil in the late nineteenth century, especially in questions about democracy, liberty and progress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adolfo%20Caminha" title="Adolfo Caminha">Adolfo Caminha</a>, <a href="https://publications.waset.org/abstracts/search?q=Americanism" title=" Americanism"> Americanism</a>, <a href="https://publications.waset.org/abstracts/search?q=discourse" title=" discourse"> discourse</a>, <a href="https://publications.waset.org/abstracts/search?q=voyage" title=" voyage"> voyage</a> </p> <a href="https://publications.waset.org/abstracts/18369/the-voyage-of-adolfo-caminha-to-the-usa-the-discourse-about-americanism-in-brazil-in-the-late-nineteenth-century" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">855</span> Petrology of the Post-Collisional Dolerites, Basalts from the Javakheti Highland, South Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bezhan%20Tutberidze">Bezhan Tutberidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Neogene-Quaternary volcanic rocks of the Javakheti Highland are products of post-collisional continental magmatism and are related to divergent and convergent margins of Eurasian-Afroarabian lithospheric plates. The studied area constitutes an integral part of the volcanic province of Central South Georgia. Three cycles of volcanic activity are identified here: 1. Late Miocene-Early Pliocene, 2. Late Pliocene-Early /Middle/ Pleistocene and 3. Late Pleistocene. An intense basic dolerite magmatic activity occurred within the time span of the Late Pliocene and lasted until at least Late /Middle/ Pleistocene. The age of the volcanogenic and volcanogenic-sedimentary formation was dated by geomorphological, paleomagnetic, paleontological and geochronological methods /1.7-1.9 Ma/. The volcanic area of the Javakheti Highland contains multiple dolerite Plateaus: Akhalkalaki, Gomarethi, Dmanisi, and Tsalka. Petrographic observations of these doleritic rocks reveal fairly constant mineralogical composition: olivine / Fo₈₇.₆₋₈₂.₇ /, plagioclase / Ab₂₂.₈ An₇₅.₉ Or₁.₃; Ab₄₅.₀₋₃₂.₃ An₅₂.₉₋₆₂.₃ Or₂.₁₋₅.₄/. The pyroxene is an augite and may exhibit a visible zoning: / Wo 39.7-43.1 En 43.5-45.2 Fs 16.8-11.7/. Opaque minerals /magnetite, titanomagnetite/ is abundant as inclusions within olivine and pyroxene crystals. The texture of dolerites exhibits intergranular, holocrystalline to ophitic to sub ophitic granular. Dolerites are most common vesicular rocks. Vesicles range in shape from spherical to elongated and in size from 0.5 mm to than 1.5-2 cm and makeup about 20-50 % of the volume. The dolerites have been subjected to considerable alteration. The secondary minerals in the geothermal field are: zeolite, calcite, chlorite, aragonite, clay-like mineral /dominated by smectites/ and iddingsite –like mineral; rare quartz and pumpellyite are present. These vesicles are filled by secondary minerals. In the chemistry, dolerites are the calc-alkalic transition to sub-alkaline with a predominance of Na₂O over K₂O. Chemical analyses indicate that dolerites of all plateaus of the Javakheti Highland have similar geochemical compositions, signifying that they were formed from the same magmatic source by crystallization of olivine basalis magma which less differentiated / ⁸⁷Sr \ ⁸⁶Sr 0.703920-0704195/. There is one argument, which is less convincing, according to which the dolerites/basalts of the Javakheti Highland are considered to be an activity of a mantle plume. Unfortunately, there does not exist reliable evidence to prove this. The petrochemical peculiarities and eruption nature of the dolerites of the Javakheti Plateau point against their plume origin. Nevertheless, it is not excluded that they influence the formation of dolerite producing primary basaltic magma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calc-alkalic" title="calc-alkalic">calc-alkalic</a>, <a href="https://publications.waset.org/abstracts/search?q=dolerite" title=" dolerite"> dolerite</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgia" title=" Georgia"> Georgia</a>, <a href="https://publications.waset.org/abstracts/search?q=Javakheti%20Highland" title=" Javakheti Highland"> Javakheti Highland</a> </p> <a href="https://publications.waset.org/abstracts/68226/petrology-of-the-post-collisional-dolerites-basalts-from-the-javakheti-highland-south-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">854</span> Influence of Strike-Slip Faulting in the Tectonic Evolution of North-Eastern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Arfaoui">Aymen Arfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Soumaya"> Abdelkader Soumaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kadri"> Ali Kadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Ben%20Ayed"> Noureddine Ben Ayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major contractional events characterized by strike-slip faulting, folding, and thrusting occurred in the Eocene, Late Miocene, and Quaternary along with the NE Tunisian domain between Bou Kornine-Ressas- Msella and Cap Bon Peninsula. During the Plio-Quaternary, the Grombalia and Mornag grabens show a maximum of collapse in parallelism with the NNW-SSE SHmax direction and developed as 3rd order extensive regions within a regional compressional regime. Using available tectonic and geophysical data supplemented by new fault-kinematic observations, we show that Cenozoic deformations are dominated by first order N-S faults reactivation, this sinistral wrench system is responsible for the formation of strike-slip duplexes, thrusts, folds, and grabens. Based on our new structural interpretation, the major faults of N-S Axis, Bou Kornine-Ressas-Messella (MRB), and Hammamet-Korbous (HK) form an N-S first order restraining stepover within a left-lateral strike-slip duplex. The N-S master MRB fault is dominated by contractional imbricate fans, while the parallel HK fault is characterized by a trailing of extensional imbricate fans. The Eocene and Miocene compression phases in the study area caused sinistral strike-slip reactivation of pre-existing N-S faults, reverse reactivation of NE-SW trending faults, and normal-oblique reactivation of NW-SE faults, creating a NE-SW to N-S trending system of east-verging folds and overlaps. Seismic tomography images reveal a key role for the lithospheric subvertical tear or STEP fault (Slab Transfer Edge Propagator) evidenced below this region on the development of the MRB and the HK relay zone. The presence of extensive syntectonic Pliocene sequences above this crustal scale fault may be the result of a recent lithospheric vertical motion of this STEP fault due to the rollback and lateral migration of the Calabrian slab eastward. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title="Tunisia">Tunisia</a>, <a href="https://publications.waset.org/abstracts/search?q=strike-slip%20fault" title=" strike-slip fault"> strike-slip fault</a>, <a href="https://publications.waset.org/abstracts/search?q=contractional%20duplex" title=" contractional duplex"> contractional duplex</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonic%20stress" title=" tectonic stress"> tectonic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=restraining%20stepover" title=" restraining stepover"> restraining stepover</a>, <a href="https://publications.waset.org/abstracts/search?q=STEP%20fault" title=" STEP fault"> STEP fault</a> </p> <a href="https://publications.waset.org/abstracts/130847/influence-of-strike-slip-faulting-in-the-tectonic-evolution-of-north-eastern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">853</span> Geochemical Studies of Mud Volcanoes Fluids According to Petroleum Potential of the Lower Kura Depression (Azerbaijan)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayten%20Bakhtiyar%20Khasayeva">Ayten Bakhtiyar Khasayeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lower Kura depression is a part of the South Caspian Basin (SCB), located between the folded regions of the Greater and Lesser Caucasus. The region is characterized by thick sedimentary cover 22 km (SCB up to 30 km), high sedimentation rate, low geothermal gradient (average value corresponds to 2 °C / 100m). There is Quaternary, Pliocene, Miocene and Oligocene deposits take part in geological structure. Miocene and Oligocene deposits are opened by prospecting and exploratory wells in the areas of Kalamaddin and Garabagli. There are 25 mud volcanoes within the territory of the Lower Kura depression, which are the unique source of information about hydrocarbons contenting great depths. During the wells data research, solid erupted products and mud volcano fluids, and according to the geological and thermal characteristics of the region, it was determined that the main phase of the hydrocarbon generation (MK1-AK2) corresponds to a wide range of depths from 10 to 14 km, which corresponds to the Pliocene-Miocene sediments, and to the "oil and gas windows" according to the intended meaning of R0 ≈ 0,65-0,85%. Fluids of mud volcanoes comprise by the following phases - gas, water. Gas phase consists mainly of methane (99%) of heavy hydrocarbons (С2+ hydrocarbons), CO2, N2, inert components He, Ar. The content of the С2+ hydrocarbons in the gases of mud volcanoes associated with oil deposits is increased. Carbon isotopic composition of methane for the Lower Kura depression varies from -40 ‰ to -60 ‰. Water of mud volcanoes are represented by all four genetic types. However the most typical types of water are HCN type. According to the Mg-Li geothermometer formation of mud waters corresponds to the temperature range from 20 °C to 140 °C (PC2). The solid product emissions of mud volcanoes identified 90 minerals and 30 trace elements. As a result geochemical investigation, thermobaric and geological conditions, zone oil and gas generation - the prospect of the Lower Kura depression is projected to depths greater than 10 km. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geology" title="geology">geology</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=mud%20volcanoes" title=" mud volcanoes"> mud volcanoes</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20potential" title=" petroleum potential"> petroleum potential</a> </p> <a href="https://publications.waset.org/abstracts/36243/geochemical-studies-of-mud-volcanoes-fluids-according-to-petroleum-potential-of-the-lower-kura-depression-azerbaijan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">852</span> Artiodactyl Fossil Remains from Middle Miocene Locality of Lava, District Chakwal, Punjab, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khizar%20Samiullah">Khizar Samiullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Khurram%20Faroz"> Khurram Faroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Riffat%20Yasin"> Riffat Yasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehwish%20Iftekhar"> Mehwish Iftekhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleem%20Akhtar"> Saleem Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fossil site Lava is highly fossiliferous locality in the Chinji Formation, Lower Siwalik Hills of Pakistan. The studied mammalian fossil fauna from this locality consists of Suids, Giraffids and Bovids. The presence of these groups indicates that this Miocene locality has age of approximately 14-11 Ma. Sedimentologically this site is characterized by sandstone and reddish shale which also represents Chinji Formation of the Siwaliks, it consists of shales, siltstones, sandstones and there sediments show large variations in their degree of cementation. Few scientists worked at this locality, as it was first time discovered in 2011. The outcrops of lava locality were selected to explore in detail and comparison with European mammalian assemblages. The main focus was on artiodactyl’s mammalian fauna and four different species have been recovered during field work, in which Giraffokeryx punjabiensis is dominant. Different aspect like biogeographic distribution, evolution and taxonomy of discovered fossils fauna has been discussed in detail in this research work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fossil%20remains" title="fossil remains">fossil remains</a>, <a href="https://publications.waset.org/abstracts/search?q=lava" title=" lava"> lava</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinji%20Formation" title=" Chinji Formation"> Chinji Formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a> </p> <a href="https://publications.waset.org/abstracts/57353/artiodactyl-fossil-remains-from-middle-miocene-locality-of-lava-district-chakwal-punjab-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">851</span> Quantifying Late Cenozoic Out‐of‐Sequence Thrusting at Chaura, Sutlej Valley, Himachal Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Out-of-sequence thrusts (OOST) are reported at different geographic locations with various local names along Siwalik Himalaya (SH), Lesser Himalaya (LH), Higher Himalaya (HH) from Bhutan, India, Nepal, and Pakistan Himalayan range. Most of OOSTs have been identified within the upper LH, and the lower HH based on geochronological age jump across. These thrusts activated from Late Miocene to recent. The Chaura Thrust (CT) was deciphered from age jump of Apatite Fission Track (AFT) and considered as blind thrust base on variable exhumation rates in Chaura region, Satluj river valley, Himachal Pradesh. CT is located north of Jhakri Thrust (JhT) and is also differently identified as Sarahan thrust (ST). Structural documentation from the rocks near the OOST in Chaura was not so far done. Detail structural study of the Jeori Group of rocks was carried out in this study to understand the manifestation of the Chaura thrust and associated structures in meso- to micro-scale. Box fold, scar fold, kink fold, crenulation cleavages, and boudins are developed in the Chaura region. These structures usually do not indicate shear sense. When studied under an optical microscope, the Chaura samples reveal that the mica fish are usually lenticular with aspect ratio (R) varying from 6–11 and inclination angle (α) from 15–40°. According to ‘R’ and ‘α’, elongated sigmoid shaped mica fish and parallelogram shaped mica fish were also documented. Asymmetric mica fish demonstrate top-to-S/SW ductile shear, which is similar as that of Chaura thrust. Grain boundary migration (GBM) structures in quartzo-feldspathic grains from Jeori Group of rocks indicate deformation temperature ranging from 400 to 650°C. This can indicate that the OOST at Chaura, i.e., the Chaura Thrust, underwent thrusting in the ductile regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title="out-of-sequence thrust">out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=chaura%20thrust" title=" chaura thrust"> chaura thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust" title=" sarahan thrust"> sarahan thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=jakhri%20thrust" title=" jakhri thrust"> jakhri thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20himalaya" title=" higher himalaya"> higher himalaya</a>, <a href="https://publications.waset.org/abstracts/search?q=s%2Fc-%20fabric" title=" s/c- fabric"> s/c- fabric</a> </p> <a href="https://publications.waset.org/abstracts/168522/quantifying-late-cenozoic-outofsequence-thrusting-at-chaura-sutlej-valley-himachal-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">850</span> Lost Maritime Culture in the Netherlands: Linking Material and Immaterial Datasets for a Modern Day Perception of the Late Medieval Maritime Cultural Landscape of the Zuiderzee Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20T.%20van%20Popta">Y. T. van Popta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the never thoroughly examined yet in native relevant late medieval maritime cultural landscape of the former Zuiderzee (A.D. 1170-1932) in the center part of the Netherlands. Especially the northeastern part of the region, nowadays known as the Noordoostpolder, testifies of the dynamic battle of the Dutch against the water. This highly dynamic maritime region developed from a lake district into a sea and eventually into a polder. By linking physical and cognitive datasets from the Noordoostpol-der region in a spatial environment, new information on a late medieval maritime culture is brought to light, giving the opportunity to: (i) create a modern day perception on the late medieval maritime cultural landscape of the region and (ii) to underline the value of interdisciplinary and spatial research in maritime archaeology in general. Since the large scale reclamations of the region (A.D. 1932-1968), many remains have been discovered of a drowned and eroded late medieval maritime culture, represented by lost islands, drowned settlements, cultivated lands, shipwrecks and socio-economic networks. Recent archaeological research has proved the existence of this late medieval maritime culture by the discovery of the remains of the drowned settlement Fenehuysen (Veenhuizen) and its surroundings. The fact that this settlement and its cultivated surroundings remained hidden for so long proves that a large part of the maritime cultural landscape is ‘invisible’ and can only be found by extensive interdisciplinary research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drowned%20settlements" title="drowned settlements">drowned settlements</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20middle%20ages" title=" late middle ages"> late middle ages</a>, <a href="https://publications.waset.org/abstracts/search?q=lost%20islands" title=" lost islands"> lost islands</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20cultural%20landscape" title=" maritime cultural landscape"> maritime cultural landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20Netherlands" title=" the Netherlands"> the Netherlands</a> </p> <a href="https://publications.waset.org/abstracts/78032/lost-maritime-culture-in-the-netherlands-linking-material-and-immaterial-datasets-for-a-modern-day-perception-of-the-late-medieval-maritime-cultural-landscape-of-the-zuiderzee-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">849</span> Late Neolithic Cemeteries Funerary and Their Indications of Societies Changes and Religion Emergences of Sudan: Qalaat Shanan Site Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hamid%20Nassr">Ahmed Hamid Nassr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The significant of the old stone ages in the Sudan, seems from the longest times and the large differentiation in antiquities, so many Neolithic cemeteries have been discovered in the Sudan, which the studies revealed costumes’ funerary from the Form of grave and the contents has been contrasted in some elements and constant in the others. Many interpretations of the late Neolithic cemeteries tradition written from the earlier studies, most of them focus of the development and change in the burial from society’s development and ideas of afterlife beginnings. Another emphasis undertaken is the relationship between societies cultural aspects and the environmental conditions of the period; it has been considered that it hyper-affected the development of farming in one way or another. The site of Qalaat Shanan noted in earlier 1990 and excavated by the Author from 2011-2013, the site located north of Khartoum about 170 km in Shendi town. Site setting lies amongst a group of Neolithic sites in the Shendi area, it reflected a succession of various Neolithic activities from the early to the late horizons. Excavation revealed many late Neolithic graves, the adult and child graves show large funerary content, different in quality and quantity, which indicates of societies development and related to religion and ideas about the afterlife. This presentation discusses the variations of the Late Neolithic cemeteries in Galaat Shanan site from the grave form, content and differentiation of the sex and age and compared with other late Neolithic discoveries in Sudan and the Nile valley. The study shows many changes in the graves related to the societies changes in late Neolithic in Sudan, climate and economic subsistence's are well reasons, but also the idea change is the main reason for the changes. That is clear from the variations of grave shape and content in age and sex and might be society’s status and levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudan" title="Sudan">Sudan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shendi%20town" title=" Shendi town"> Shendi town</a>, <a href="https://publications.waset.org/abstracts/search?q=Qalaat%20Shanan" title=" Qalaat Shanan"> Qalaat Shanan</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20neolithic" title=" late neolithic"> late neolithic</a>, <a href="https://publications.waset.org/abstracts/search?q=cemeteries" title=" cemeteries"> cemeteries</a>, <a href="https://publications.waset.org/abstracts/search?q=funerary" title=" funerary"> funerary</a>, <a href="https://publications.waset.org/abstracts/search?q=tradition" title=" tradition"> tradition</a> </p> <a href="https://publications.waset.org/abstracts/44436/late-neolithic-cemeteries-funerary-and-their-indications-of-societies-changes-and-religion-emergences-of-sudan-qalaat-shanan-site-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">848</span> Architectural and Sedimentological Parameterization for Reservoir Quality of Miocene Onshore Sandstone, Borneo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Numair%20A.%20Siddiqui">Numair A. Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Muhammad"> Usman Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20J.%20Mathew"> Manoj J. Mathew</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramkumar%20M."> Ramkumar M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Sautter"> Benjamin Sautter</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20K.%20El-Ghali"> Muhammad A. K. El-Ghali</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Menier"> David Menier</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiqi%20Zhang"> Shiqi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sedimentological parameterization of shallow-marine siliciclastic reservoirs in terms of reservoir quality and heterogeneity from outcrop study can help improve the subsurface reservoir prediction. An architectural analysis has documented variations in sandstone geometry and rock properties within shallow-marine sandstone exposed in the Miocene Sandakan Formation of Sabah, Borneo. This study demonstrates reservoir sandstone quality assessment for subsurface rock evaluation, from well-exposed successions of the Sandakan Formation, Borneo, with which applicable analogues can be identified. The analyses were based on traditional conventional field investigation of outcrops, grain-size and petrographic studies of hand specimens of different sandstone facies and gamma-ray and permeability measurements. On the bases of these evaluations, the studied sandstone was grouped into three qualitative reservoir rock classes; high (Ø=18.10 – 43.60%; k=1265.20 – 5986.25 mD), moderate (Ø=17.60 – 37%; k=21.36 – 568 mD) and low quality (Ø=3.4 – 15.7%; k=3.21 – 201.30 mD) for visualization and prediction of subsurface reservoir quality. These results provided analogy for shallow marine sandstone reservoir complexity that can be utilized in the evaluation of reservoir quality of regional and subsurface analogues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture%20and%20sedimentology" title="architecture and sedimentology">architecture and sedimentology</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20rock%20evaluation" title=" subsurface rock evaluation"> subsurface rock evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20quality" title=" reservoir quality"> reservoir quality</a>, <a href="https://publications.waset.org/abstracts/search?q=borneo" title=" borneo "> borneo </a> </p> <a href="https://publications.waset.org/abstracts/117322/architectural-and-sedimentological-parameterization-for-reservoir-quality-of-miocene-onshore-sandstone-borneo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">847</span> Morphology, Chromosome Numbers and Molecular Evidences of Three New Species of Begonia Section Baryandra (Begoniaceae) from Panay Island, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosario%20Rivera%20Rubite">Rosario Rivera Rubite</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-I%20Peng"> Ching-I Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Che-Wei%20Lin"> Che-Wei Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Hughes"> Mark Hughes</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiko%20Kono"> Yoshiko Kono</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Fang%20Chung"> Kuo-Fang Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flora of Panay Island is under-collected compared with the other islands of the Philippines. In a joint expedition to the island, botanists from Taiwan and the Philippines found three unknown Begonia and compared them with potentially allied species. The three species are clearly assignable to Begonia section Baryandra which is largely endemic to the Philippines. Studies of literature, herbarium specimens, and living plants support the recognition of the three new species: Begonia culasiensis, Begonia merrilliana, and Begonia sykakiengii. Somatic chromosomes at metaphase were determined to be 2n=30 for B. culasiensis and 2n=28 for both B. merrilliana and B. sykakiengii, which are congruent with those of most species in sect. Baryandra. Molecular phylogenetic evidence is consistent with B. culasiensis being a relict from the late Miocene, and with B. merrilliana and B. sykakiengii being younger species of Pleistocene origin. The continuing discovery of endemic Philippine species means the remaining fragments of both primary and secondary native vegetation in the archipelago are of increasing value in terms of natural capital. A secure future for the species could be realized through ex-situ conservation collections and raising awareness with community groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation" title="conservation">conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=endemic" title=" endemic "> endemic </a>, <a href="https://publications.waset.org/abstracts/search?q=herbarium" title=" herbarium "> herbarium </a>, <a href="https://publications.waset.org/abstracts/search?q=limestone" title=" limestone"> limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetics" title=" phylogenetics"> phylogenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy" title=" taxonomy"> taxonomy</a> </p> <a href="https://publications.waset.org/abstracts/75592/morphology-chromosome-numbers-and-molecular-evidences-of-three-new-species-of-begonia-section-baryandra-begoniaceae-from-panay-island-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">846</span> Neotectonic Features of the Fethiye-Burdur Fault Zone between Kozluca and Burdur, SW Anatolia, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berkant%20Co%C5%9Fkuner">Berkant Coşkuner</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmi%20Aksoy"> Rahmi Aksoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to present some preliminary stratigraphic and structural evidence for the Fethiye-Burdur fault zone between Kozluca and Burdur. The Fethiye-Burdur fault zone, the easternmost extension of the west Anatolian extensional province, extends from the Gulf of Fethiye northeastward through Burdur, a distance of about 300 km. The research area is located in the Burdur segment of the fault zone. Here, the fault zone includes several parallel to subparallel fault branching and en-echelon faults that lie within a linear belt, as much as 20 km in width. The direction of movement in the fault zone has been oblique-slip in the left lateral sense. The basement of the study area consists of the Triassic-Eocene Lycian Nappes, the Eocene-Oligocene molasse sediments and the lower Miocene marine rocks. The Burdur basin contains two basin infills. The ancient and deformed basin fill is composed of lacustrine sediments of the upper Miocene-lower Pliocene age. The younger and undeformed basin fill comprises Plio-Quaternary alluvial fan and recent basin-floor deposits and unconformably overlies the ancient basin infill. The Burdur basin is bounded by the NE-SW trending, left lateral oblique-slip normal faults, the Karakent fault on the northwest and the Burdur fault on the southeast. These faults played a key role in the development of the Burdur basin as a pull-apart basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burdur%20basin" title="Burdur basin">Burdur basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethiye-Burdur%20fault%20zone" title=" Fethiye-Burdur fault zone"> Fethiye-Burdur fault zone</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20lateral%20oblique-slip%20fault" title=" left lateral oblique-slip fault"> left lateral oblique-slip fault</a>, <a href="https://publications.waset.org/abstracts/search?q=Western%20Anatolia" title=" Western Anatolia"> Western Anatolia</a> </p> <a href="https://publications.waset.org/abstracts/44673/neotectonic-features-of-the-fethiye-burdur-fault-zone-between-kozluca-and-burdur-sw-anatolia-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Differential Impacts of Whole-Growth-Duration Warming on the Grain Yield and Quality between Early and Late Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan%20Huang">Shan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanjun%20Huang"> Guanjun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongjun%20Zeng"> Yongjun Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiyuan%20Wang"> Haiyuan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impacts of whole-growth warming on grain yield and quality in double rice cropping systems still remain largely unknown. In this study, a two-year field whole-growth warming experiment was conducted with two inbred indica rice cultivars (Zhongjiazao 17 and Xiangzaoxian 45) for early season and two hybrid indica rice cultivars (Wanxiangyouhuazhan and Tianyouhuazhan) for late season. The results showed that whole-growth warming did not affect early rice yield but significantly decreased late rice yield, which was caused by the decreased grain weight that may be related to the increased plant respiration and reduced translocation of dry matter accumulated during the pre-heading phase under warming. Whole-growth warming improved the milling quality of late rice but decreased that of early rice; however, the chalky rice rate and chalkiness degree were increased by 20.7% and 33.9% for early rice and 37.6 % and 51.6% for late rice under warming, respectively. We found that the crude protein content of milled rice was significantly increased by warming in both early and late rice, which would result in deterioration of eating quality. Besides, compared with the control treatment, the setback of late rice was significantly reduced by 17.8 % under warming, while that of early rice was not significantly affected by warming. These results suggest that the negative impacts of whole-growth warming on grain quality may be more severe in early rice than in late rice. Therefore, adaptation in both rice breeding and agronomic practices is needed to alleviate climate warming on the production of a double rice cropping system. Climate-smart agricultural practices ought to be implemented to mitigate the detrimental effects of warming on rice grain quality. For instance, fine-tuning the application rate and timing of inorganic nitrogen fertilizers, along with the introduction of organic amendments and the cultivation of heat-tolerant rice varieties, can help reduce the negative impact of rising temperatures on rice quality. Furthermore, to comprehensively understand the influence of climate warming on rice grain quality, future research should encompass a wider range of rice cultivars and experimental sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20warming" title="climate warming">climate warming</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20rice%20cropping" title=" double rice cropping"> double rice cropping</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20matter" title=" dry matter"> dry matter</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20quality" title=" grain quality"> grain quality</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20yield" title=" grain yield"> grain yield</a> </p> <a href="https://publications.waset.org/abstracts/187372/differential-impacts-of-whole-growth-duration-warming-on-the-grain-yield-and-quality-between-early-and-late-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=late%20Miocene&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=late%20Miocene&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=late%20Miocene&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=late%20Miocene&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=late%20Miocene&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=late%20Miocene&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=late%20Miocene&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=late%20Miocene&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=late%20Miocene&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=late%20Miocene&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=late%20Miocene&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=late%20Miocene&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>