CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 585 results for author: <span class="mathjax">Ma, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Ma%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ma, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ma%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ma, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Ma%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Ma%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18005">arXiv:2502.18005</a> <span> [<a href="https://arxiv.org/pdf/2502.18005">pdf</a>, <a href="https://arxiv.org/format/2502.18005">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> WIMP Dark Matter Search using a 3.1 tonne $\times$ year Exposure of the XENONnT Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Armbruster%2C+S+R">S. R. Armbruster</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a> , et al. (153 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18005v1-abstract-short" style="display: inline;"> We report on a search for weakly interacting massive particle (WIMP) dark matter (DM) via elastic DM-xenon-nucleus interactions in the XENONnT experiment. We combine datasets from the first and second science campaigns resulting in a total exposure of $3.1\;\text{tonne}\times\text{year}$. In a blind analysis of nuclear recoil events with energies above $3.8\,\mathrm{keV_{NR}}$, we find no signific… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18005v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18005v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18005v1-abstract-full" style="display: none;"> We report on a search for weakly interacting massive particle (WIMP) dark matter (DM) via elastic DM-xenon-nucleus interactions in the XENONnT experiment. We combine datasets from the first and second science campaigns resulting in a total exposure of $3.1\;\text{tonne}\times\text{year}$. In a blind analysis of nuclear recoil events with energies above $3.8\,\mathrm{keV_{NR}}$, we find no significant excess above background. We set new upper limits on the spin-independent WIMP-nucleon scattering cross-section for WIMP masses above $10\,\mathrm{GeV}/c^2$ with a minimum of $1.7\,\times\,10^{-47}\,\mathrm{cm^2}$ at $90\,\%$ confidence level for a WIMP mass of $30\,\mathrm{GeV}/c^2$. We achieve a best median sensitivity of $1.4\,\times\,10^{-47}\,\mathrm{cm^2}$ for a $41\,\mathrm{GeV}/c^2$ WIMP. Compared to the result from the first XENONnT science dataset, we improve our sensitivity by a factor of up to 1.8. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18005v1-abstract-full').style.display = 'none'; document.getElementById('2502.18005v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Limits are included in the submission file</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16558">arXiv:2502.16558</a> <span> [<a href="https://arxiv.org/pdf/2502.16558">pdf</a>, <a href="https://arxiv.org/format/2502.16558">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovery of High-Temperature Superconducting Ternary Hydrides via Deep Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiaoyang Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chengqian Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hanyu Liu</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+J">Jian Lv</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Han Wang</a>, <a href="/search/physics?searchtype=author&query=E%2C+W">Weinan E</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yanming Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16558v1-abstract-short" style="display: inline;"> The discovery of novel high-temperature superconductor materials holds transformative potential for a wide array of technological applications. However, the combinatorially vast chemical and configurational search space poses a significant bottleneck for both experimental and theoretical investigations. In this study, we employ the design of high-temperature ternary superhydride superconductors as… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16558v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16558v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16558v1-abstract-full" style="display: none;"> The discovery of novel high-temperature superconductor materials holds transformative potential for a wide array of technological applications. However, the combinatorially vast chemical and configurational search space poses a significant bottleneck for both experimental and theoretical investigations. In this study, we employ the design of high-temperature ternary superhydride superconductors as a representative case to demonstrate how this challenge can be well addressed through a deep-learning-driven theoretical framework. This framework integrates high-throughput crystal structure exploration, physics-informed screening, and accurate prediction of superconducting critical temperatures. Our approach enabled the exploration of approximately 36 million ternary hydride structures across a chemical space of 29 elements, leading to the identification of 144 potential high-Tc superconductors with predicted Tc > 200 K and superior thermodynamic stability at 200 GPa. Among these, 129 compounds spanning 27 novel structural prototypes are reported for the first time, representing a significant expansion of the known structural landscape for hydride superconductors. This work not only greatly expands the known repertoire of high-Tc hydride superconductors but also establishes a scalable and efficient methodology for navigating the complex landscape of multinary hydrides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16558v1-abstract-full').style.display = 'none'; document.getElementById('2502.16558v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14233">arXiv:2502.14233</a> <span> [<a href="https://arxiv.org/pdf/2502.14233">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Cylindrical cavity expansion analysis under partially drained conditions for normalisation of excess water pressure in CPTU </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+H">He Yang</a>, <a href="/search/physics?searchtype=author&query=Zhuang%2C+P">Pei-Zhi Zhuang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hai-Sui Yu</a>, <a href="/search/physics?searchtype=author&query=Mo%2C+P">Pin-Qiang Mo</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yue Ma</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiaohui Chen</a>, <a href="/search/physics?searchtype=author&query=Schnaid%2C+F">Fernando Schnaid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14233v1-abstract-short" style="display: inline;"> Cone tip resistance and excess water pressure (EWP) measured by piezocone penetration tests (CPTU) may be significantly affected by the partially drained effect in soils with intermediate permeability. To capture this effect, the paper proposes a straightforward, hydro-mechanical coupling solution for cylindrical cavity expansion under partially drained conditions. The mechanical behaviour of soil… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14233v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14233v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14233v1-abstract-full" style="display: none;"> Cone tip resistance and excess water pressure (EWP) measured by piezocone penetration tests (CPTU) may be significantly affected by the partially drained effect in soils with intermediate permeability. To capture this effect, the paper proposes a straightforward, hydro-mechanical coupling solution for cylindrical cavity expansion under partially drained conditions. The mechanical behaviour of soils is modelled using the elastoplastic Tresca model and water flow within porous soils is assumed to obey Darcys law. Two partial differential equations (PDEs) are established in the elastic and plastic zones, respectively, transforming the cavity expansion analysis into a typical Stefan problem with dynamic boundary conditions (i.e. a moving boundary at the elastoplastic interface). An approximate solution for the PDEs is derived by leveraging the variable transformation method. Based on the new solution, a novel normalised penetration rate is defined considering the rigidity index of soils, with which a unique backbone curve for CPTU is found. Finally, the backbone curve is compared with a database comprising 109 in-situ experimental tests, 101 centrifuge modelling tests, and numerical simulation results. The proposed solution may provide a useful theoretical tool for interpreting the consolidation coefficient of fine-grained soils from the penetration stage of multi-rate CPTU, which can enhance the interpretation reliability for CPTU dissipation tests. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14233v1-abstract-full').style.display = 'none'; document.getElementById('2502.14233v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08243">arXiv:2502.08243</a> <span> [<a href="https://arxiv.org/pdf/2502.08243">pdf</a>, <a href="https://arxiv.org/format/2502.08243">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Research on trigger technology of MRPC TOF-PET system and imaging results of $^{22}$Na radioactive source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jianing Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yuelei Ma</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Ziyang Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhenyan Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi Wang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+B">Baohong Guo</a>, <a href="/search/physics?searchtype=author&query=Han%2C+D">Dong Han</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuanjing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08243v1-abstract-short" style="display: inline;"> This study focuses on developing a self-triggered data acquisition system and a noise reduction algorithm for the Multi-gap Resistive Plate Chamber (MRPC) Time-of-Flight Positron Emission Tomography (TOF-PET) system. The system integrates a fast front-end amplifier, a waveform digitization module based on the DRS4 chip, and an efficient noise reduction algorithm to address challenges such as high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08243v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08243v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08243v1-abstract-full" style="display: none;"> This study focuses on developing a self-triggered data acquisition system and a noise reduction algorithm for the Multi-gap Resistive Plate Chamber (MRPC) Time-of-Flight Positron Emission Tomography (TOF-PET) system. The system integrates a fast front-end amplifier, a waveform digitization module based on the DRS4 chip, and an efficient noise reduction algorithm to address challenges such as high noise trigger rates and precise gamma-ray detection. The proposed self-triggered system, through threshold discrimination, coincidence logic, and continuous oscillation check, reduces the noise trigger rate to 0.004 Hz. Experimental results show that the system accurately localizes and images the $^{22}$Na radioactive source, and has a good time resolution of 162 ps FWHM for 0.511 MeV gamma rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08243v1-abstract-full').style.display = 'none'; document.getElementById('2502.08243v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07317">arXiv:2502.07317</a> <span> [<a href="https://arxiv.org/pdf/2502.07317">pdf</a>, <a href="https://arxiv.org/format/2502.07317">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Position reconstruction and surface background model for the PandaX-4T detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qian%2C+Z">Zhicheng Qian</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+L">Linhui Gu</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&query=Bo%2C+Z">Zihao Bo</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xun Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yunhua Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Z">Zhaokan Cheng</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+D">Deqing Fang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Z">Zhixing Gao</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/physics?searchtype=author&query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xunan Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zichao Guo</a>, <a href="/search/physics?searchtype=author&query=Han%2C+C">Chencheng Han</a>, <a href="/search/physics?searchtype=author&query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&query=He%2C+C">Changda He</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jinrong He</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+D">Di Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H">Houqi Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Junting Huang</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+R">Ruquan Hou</a> , et al. (78 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07317v1-abstract-short" style="display: inline;"> We report the position reconstruction methods and surface background model for the PandaX-4T dark matter direct search experiment. This work develops two position reconstruction algorithms: template matching (TM) method and photon acceptance function (PAF) method. Both methods determine the horizontal position of events based on the light pattern of secondary scintillation collected by the light s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07317v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07317v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07317v1-abstract-full" style="display: none;"> We report the position reconstruction methods and surface background model for the PandaX-4T dark matter direct search experiment. This work develops two position reconstruction algorithms: template matching (TM) method and photon acceptance function (PAF) method. Both methods determine the horizontal position of events based on the light pattern of secondary scintillation collected by the light sensors. After a comprehensive evaluation of resolution, uniformity, and robustness, the PAF method was selected for position reconstruction, while the TM method was employed for verification. The PAF method achieves a bulk event resolution of 1.0 mm and a surface event resolution of 4.4 mm for a typical $S2$ signal with a bottom charge of 1500 PE (about 14 keV). The uniformity is around 20\%. Robustness studies reveal average deviations of 5.1 mm and 8.8 mm for the commissioning run (Run0) and the first science run (Run1), respectively, due to the deactivation of certain PMTs. A data-driven surface background model is developed based on the PAF method. The surface background is estimated to be $0.09 \pm 0.06$ events for Run0 (0.54 tonne$\cdot$year) and $0.17 \pm 0.11$ events for Run1 (1.00 tonne$\cdot$year). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07317v1-abstract-full').style.display = 'none'; document.getElementById('2502.07317v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 15 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04209">arXiv:2502.04209</a> <span> [<a href="https://arxiv.org/pdf/2502.04209">pdf</a>, <a href="https://arxiv.org/format/2502.04209">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Radon Removal in XENONnT down to the Solar Neutrino Level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a> , et al. (147 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04209v1-abstract-short" style="display: inline;"> The XENONnT experiment has achieved an unprecedented reduction of the $^\text{222}$Rn activity concentration within its liquid xenon dual-phase time projection chamber to a level of (0.90$\,\pm\,$0.01$\,$stat.$\,\pm\,$0.07 sys.)$\,渭$Bq/kg, equivalent to about 1200 $^\text{222}$Rn atoms per cubic meter of liquid xenon. This represents a 15-fold improvement over the $^\text{222}$Rn levels encountere… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04209v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04209v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04209v1-abstract-full" style="display: none;"> The XENONnT experiment has achieved an unprecedented reduction of the $^\text{222}$Rn activity concentration within its liquid xenon dual-phase time projection chamber to a level of (0.90$\,\pm\,$0.01$\,$stat.$\,\pm\,$0.07 sys.)$\,渭$Bq/kg, equivalent to about 1200 $^\text{222}$Rn atoms per cubic meter of liquid xenon. This represents a 15-fold improvement over the $^\text{222}$Rn levels encountered during XENON1T's main science runs and is a factor five lower compared to other currently operational multi-tonne liquid xenon detectors engaged in dark matter searches. This breakthrough enables the pursuit of various rare event searches that lie beyond the confines of the standard model of particle physics, with world-leading sensitivity. The ultra-low $^\text{222}$Rn levels have diminished the radon-induced background rate in the detector to a point where it is for the first time lower than the solar neutrino-induced background, which is poised to become the primary irreducible background in liquid xenon-based detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04209v1-abstract-full').style.display = 'none'; document.getElementById('2502.04209v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14167">arXiv:2501.14167</a> <span> [<a href="https://arxiv.org/pdf/2501.14167">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale Integration of Single-Crystalline MoS$_2$ for Flexible Electronics Enabled by Oxide Dry-transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+X">Xiang Xu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yitong Chen</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+J">Jichuang Shen</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Q">Qi Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+T">Tong Jiang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Han Chen</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+H">Huaze Zhu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yaqing Ma</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wenhao Li</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+C">Chen Ji</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Dingwei Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Siyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+B">Bowen Zhu</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+W">Wei Kong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14167v1-abstract-short" style="display: inline;"> Atomically thin, single-crystalline transition metal dichalcogenides (TMDCs) grown via chemical vapor deposition (CVD) on sapphire substrates exhibit exceptional mechanical and electrical properties, positioning them as excellent channel materials for flexible electronics. However, conventional wet-transfer processes for integrating these materials onto flexible substrates often introduce surface… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14167v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14167v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14167v1-abstract-full" style="display: none;"> Atomically thin, single-crystalline transition metal dichalcogenides (TMDCs) grown via chemical vapor deposition (CVD) on sapphire substrates exhibit exceptional mechanical and electrical properties, positioning them as excellent channel materials for flexible electronics. However, conventional wet-transfer processes for integrating these materials onto flexible substrates often introduce surface contamination, significantly degrading device performance. Here, we present a wafer-scale dry-transfer technique using a high-dielectric oxide as the transfer medium, enabling the integration of 4-inch single-crystalline MoS$_2$ onto flexible substrates. This method eliminates contact with polymers or solvents, thus preserving the intrinsic electronic properties of MoS$_2$. As a result, the fabricated flexible field-effect transistor (FET) arrays exhibit remarkable performance, with a mobility of 117 cm$^2$/Vs, a subthreshold swing of 68.8 mV dec$^{-1}$, and an ultra-high current on/off ratio of $10^{12}$-values comparable to those achieved on rigid substrates. Leveraging the outstanding electrical characteristics, we demonstrated MoS$_2$-based flexible inverters operating in the subthreshold regime, achieving both a high gain of 218 and ultra-low power consumption of 1.4 pW/$渭$m. Additionally, we integrated a flexible tactile sensing system driven by active-matrix MoS$_2$ FET arrays onto a robotic gripper, enabling real-time object identification. These findings demonstrate the simultaneous achievement of high electrical performance and flexibility, highlighting the immense potential of single-crystalline TMDC-based flexible electronics for real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14167v1-abstract-full').style.display = 'none'; document.getElementById('2501.14167v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08340">arXiv:2501.08340</a> <span> [<a href="https://arxiv.org/pdf/2501.08340">pdf</a>, <a href="https://arxiv.org/format/2501.08340">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> CoronaryHemodynamics: An Automated Simulation Framework for Coronary Artery Hemodynamics Using OpenFOAM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mao%2C+Y">Yijin Mao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuwen Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08340v1-abstract-short" style="display: inline;"> CoronaryHemodynamics is a comprehensive simulation package developed on the OpenFOAM platform, designed specifically for coronary artery hemodynamics analysis. The package integrates a complete suite of tools for simulation preparation, including automatic case setup, boundary condition configuration, computational domain meshing, and a CFD solver. It fully supports MPI parallelization, leveraging… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08340v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08340v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08340v1-abstract-full" style="display: none;"> CoronaryHemodynamics is a comprehensive simulation package developed on the OpenFOAM platform, designed specifically for coronary artery hemodynamics analysis. The package integrates a complete suite of tools for simulation preparation, including automatic case setup, boundary condition configuration, computational domain meshing, and a CFD solver. It fully supports MPI parallelization, leveraging the native parallel computing capabilities of OpenFOAM. The package implements Windkessel boundary conditions at the aorta outlet and all coronary vessel outlets, with outlet parameters automatically derived from physiological metrics such as heart rate, systolic blood pressure, and myocardial volume. At the aorta inlet, a parabolic flow profile is applied based on the input flow rate waveform. CoronaryHemodynamics supports both steady-state and transient solvers, enabling the simulation of various flow conditions. Flow rate and pressure data are recorded at all boundaries during the simulation, and outputs such as wall shear stress, pressure fields, and velocity fields are automatically stored for detailed post-processing and analysis. By automating critical aspects of the simulation pipeline and integrating physiological boundary conditions, CoronaryHemodynamics offers an efficient and robust framework to study coronary hemodynamics in both research and clinical applications. The package can be found at https://github.com/alundilong/CoronaryHemodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08340v1-abstract-full').style.display = 'none'; document.getElementById('2501.08340v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04991">arXiv:2501.04991</a> <span> [<a href="https://arxiv.org/pdf/2501.04991">pdf</a>, <a href="https://arxiv.org/format/2501.04991">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> PICOSEC Micromegas Precise-timing Detectors: Development towards Large-Area and Integration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Meng%2C+Y">Y. Meng</a>, <a href="/search/physics?searchtype=author&query=Aleksan%2C+R">R. Aleksan</a>, <a href="/search/physics?searchtype=author&query=Angelis%2C+Y">Y. Angelis</a>, <a href="/search/physics?searchtype=author&query=Bortfeld%2C+J">J. Bortfeld</a>, <a href="/search/physics?searchtype=author&query=Brunbauer%2C+F">F. Brunbauer</a>, <a href="/search/physics?searchtype=author&query=Brunoldi%2C+M">M. Brunoldi</a>, <a href="/search/physics?searchtype=author&query=Chatzianagnostou%2C+E">E. Chatzianagnostou</a>, <a href="/search/physics?searchtype=author&query=Datt%2C+J">J. Datt</a>, <a href="/search/physics?searchtype=author&query=Degmelt%2C+K">K. Degmelt</a>, <a href="/search/physics?searchtype=author&query=Fanourakis%2C+G">G. Fanourakis</a>, <a href="/search/physics?searchtype=author&query=Fiorina%2C+D">D. Fiorina</a>, <a href="/search/physics?searchtype=author&query=Floethner%2C+K+J">K. J. Floethner</a>, <a href="/search/physics?searchtype=author&query=Gallinaro%2C+M">M. Gallinaro</a>, <a href="/search/physics?searchtype=author&query=Garcia%2C+F">F. Garcia</a>, <a href="/search/physics?searchtype=author&query=Giomataris%2C+I">I. Giomataris</a>, <a href="/search/physics?searchtype=author&query=Gnanvo%2C+K">K. Gnanvo</a>, <a href="/search/physics?searchtype=author&query=Iguaz%2C+F+J">F. J. Iguaz</a>, <a href="/search/physics?searchtype=author&query=Janssens%2C+D">D. Janssens</a>, <a href="/search/physics?searchtype=author&query=Kallitsopoulou%2C+A">A. Kallitsopoulou</a>, <a href="/search/physics?searchtype=author&query=Kovacic%2C+M">M. Kovacic</a>, <a href="/search/physics?searchtype=author&query=Kross%2C+B">B. Kross</a>, <a href="/search/physics?searchtype=author&query=Legou%2C+P">P. Legou</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Z. Li</a>, <a href="/search/physics?searchtype=author&query=Lisowska%2C+M">M. Lisowska</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">J. Liu</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04991v1-abstract-short" style="display: inline;"> PICOSEC Micromegas (MM) is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure. The detector conceprt was successfully demonstrated through a single-channel prototype, achieving sub-25 ps time resolution with Minimum Ionizing Particles (MIPs). A series of studies followed, aimed at developing robust, large-area… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04991v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04991v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04991v1-abstract-full" style="display: none;"> PICOSEC Micromegas (MM) is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure. The detector conceprt was successfully demonstrated through a single-channel prototype, achieving sub-25 ps time resolution with Minimum Ionizing Particles (MIPs). A series of studies followed, aimed at developing robust, large-area, and scalable detectors with high time resolution, complemented by specialized fast-response readout electronics. This work presents recent advancements towards large-area resistive PICOSEC MM, including 10 $\times$ 10 $\text{cm}^2$ area prototypes and a 20 $\times$ 20 $\text{cm}^2$ prototype, which features the jointing of four photocathodes. The time resolution of these detector prototypes was tested during the test beam, achieved a timing performance of around 25 ps for individual pads in MIPs. Meanwhile, customized electronics have been developed dedicated to the high-precision time measurement of the large-area PICOSEC MM. The performance of the entire system was evaluated during the test beam, demonstrating its capability for large-area integration. These advancements highlight the potential of PICOSEC MM to meet the stringent requirements of future particle physics experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04991v1-abstract-full').style.display = 'none'; document.getElementById('2501.04991v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00871">arXiv:2501.00871</a> <span> [<a href="https://arxiv.org/pdf/2501.00871">pdf</a>, <a href="https://arxiv.org/format/2501.00871">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Trilepton and tetralepton bound and resonant states: the QED counterpart of multiquark states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yao Ma</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+L">Liang-Zhen Wen</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00871v1-abstract-short" style="display: inline;"> This work presents the first prediction of tetralepton resonant states containing muons, extending beyond the simplest tetralepton system, dipositronium ($\mathrm{Ps}_2$). With the rapid advancements in experimental facilities, the production and study of these intriguing states may be within reach. We perform a comprehensive analysis of S-wave trilepton and tetralepton systems within the framewor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00871v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00871v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00871v1-abstract-full" style="display: none;"> This work presents the first prediction of tetralepton resonant states containing muons, extending beyond the simplest tetralepton system, dipositronium ($\mathrm{Ps}_2$). With the rapid advancements in experimental facilities, the production and study of these intriguing states may be within reach. We perform a comprehensive analysis of S-wave trilepton and tetralepton systems within the framework of a QED Coulomb potential. We employ the Gaussian expansion method to solve the three- or four-body Schr枚dinger equation and utilize the complex scaling method to identify resonant states. We uncover a series of bound and resonant states in the trilepton systems $e^+e^+e^-$, $渭^+渭^+渭^-$, $e^+e^+渭^-$, and $渭^+渭^+e^-$, as well as the tetralepton systems $e^+e^+e^-e^-$, $渭^+渭^+渭^-渭^-$, and $渭^+渭^+e^-e^-$. The energies of these states range from $-30$ eV to $-1$ eV below the total mass of three or four leptons, with their widths varying from less than $0.01$ eV to approximately $0.07$ eV. Additionally, we calculate the spin configurations and root mean square radii of these states, providing insight into their spatial structures. No bound or resonant states are found in the trilepton $e^+渭^+e^-$, $渭^+e^+渭^-$ systems, nor in the tetralepton $渭^+e^+渭^-e^-$ system. A comparison with fully heavy tetraquark systems reveals that the additional color degree of freedom in QCD results in the absence of low-energy bound and resonant states. However, this extra degree of freedom allows for a broader range of $J^{PC}$ quantum numbers to produce resonant states, highlighting the rich complexity of QCD systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00871v1-abstract-full').style.display = 'none'; document.getElementById('2501.00871v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures. Comments are welcomed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19097">arXiv:2412.19097</a> <span> [<a href="https://arxiv.org/pdf/2412.19097">pdf</a>, <a href="https://arxiv.org/format/2412.19097">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Orbital Surface Hopping from Orbital Quantum-Classical Liouville Equation for Nonadiabatic Dynamics of Many-electron Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yong-Tao Ma</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+R">Rui-Hao Bi</a>, <a href="/search/physics?searchtype=author&query=Dou%2C+W">Wenjie Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19097v1-abstract-short" style="display: inline;"> Accurate simulation the many-electronic nonadiabatic dynamics process at metal surfaces remains as a significant task. In this work, we present an orbital surface hopping (OSH) algorithm rigorously derived from the orbital quantum classical Liouville equation (o-QCLE) to deal with nonadiabatic dynamics for many-electron systems. This OSH algorithm closely connects with the popular Independent Elec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19097v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19097v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19097v1-abstract-full" style="display: none;"> Accurate simulation the many-electronic nonadiabatic dynamics process at metal surfaces remains as a significant task. In this work, we present an orbital surface hopping (OSH) algorithm rigorously derived from the orbital quantum classical Liouville equation (o-QCLE) to deal with nonadiabatic dynamics for many-electron systems. This OSH algorithm closely connects with the popular Independent Electron Surface Hopping (IESH) method, which has shown remarkable success in addressing these nonadiabatic phenomena, except that electrons hop between orbitals. We compare OSH with IESH approach and benchmark these two algorithms against the surface hopping method with a full Configuration Interaction (FCI) wavefunction. Our approach shows strong agreement with IESH and FCI-SH results for molecular orbital populations and kinetic energy relaxation and in high efficiency, demonstrating the ability of the new OSH method in capturing key aspects of many-electronic nonadiabatic dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19097v1-abstract-full').style.display = 'none'; document.getElementById('2412.19097v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18145">arXiv:2412.18145</a> <span> [<a href="https://arxiv.org/pdf/2412.18145">pdf</a>, <a href="https://arxiv.org/format/2412.18145">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Supervised centrality via sparse network influence regression: an application to the 2021 Henan floods' social network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yingying Ma</a>, <a href="/search/physics?searchtype=author&query=Lan%2C+W">Wei Lan</a>, <a href="/search/physics?searchtype=author&query=Leng%2C+C">Chenlei Leng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+T">Ting Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hansheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18145v2-abstract-short" style="display: inline;"> The social characteristics of players in a social network are closely associated with their network positions and relational importance. Identifying those influential players in a network is of great importance as it helps to understand how ties are formed, how information is propagated, and, in turn, can guide the dissemination of new information. Motivated by a Sina Weibo social network analysis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18145v2-abstract-full').style.display = 'inline'; document.getElementById('2412.18145v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18145v2-abstract-full" style="display: none;"> The social characteristics of players in a social network are closely associated with their network positions and relational importance. Identifying those influential players in a network is of great importance as it helps to understand how ties are formed, how information is propagated, and, in turn, can guide the dissemination of new information. Motivated by a Sina Weibo social network analysis of the 2021 Henan Floods, where response variables for each Sina Weibo user are available, we propose a new notion of supervised centrality that emphasizes the task-specific nature of a player's centrality. To estimate the supervised centrality and identify important players, we develop a novel sparse network influence regression by introducing individual heterogeneity for each user. To overcome the computational difficulties in fitting the model for large social networks, we further develop a forward-addition algorithm and show that it can consistently identify a superset of the influential Sina Weibo users. We apply our method to analyze three responses in the Henan Floods data: the number of comments, reposts, and likes, and obtain meaningful results. A further simulation study corroborates the developed method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18145v2-abstract-full').style.display = 'none'; document.getElementById('2412.18145v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17394">arXiv:2412.17394</a> <span> [<a href="https://arxiv.org/pdf/2412.17394">pdf</a>, <a href="https://arxiv.org/format/2412.17394">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> AeroDiT: Diffusion Transformers for Reynolds-Averaged Navier-Stokes Simulations of Airfoil Flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiang%2C+H">Hui Xiang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yuan Ma</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+Z">Zhibo Dai</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chunyang Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Baiyi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17394v1-abstract-short" style="display: inline;"> Real-time and accurate prediction of aerodynamic flow fields around airfoils is crucial for flow control and aerodynamic optimization. However, achieving this remains challenging due to the high computational costs and the non-linear nature of flow physics. Traditional Computational Fluid Dynamics (CFD) methods face limitations in balancing computational efficiency and accuracy, hindering their ap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17394v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17394v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17394v1-abstract-full" style="display: none;"> Real-time and accurate prediction of aerodynamic flow fields around airfoils is crucial for flow control and aerodynamic optimization. However, achieving this remains challenging due to the high computational costs and the non-linear nature of flow physics. Traditional Computational Fluid Dynamics (CFD) methods face limitations in balancing computational efficiency and accuracy, hindering their application in real-time scenarios. To address these challenges, this study presents AeroDiT, a novel surrogate model that integrates scalable diffusion models with transformer architectures to address these challenges. Trained on Reynolds-Averaged Navier-Stokes (RANS) simulation data for high Reynolds-number airfoil flows, AeroDiT accurately captures complex flow patterns while enabling real-time predictions. The model demonstrates impressive performance, with average relative L2 errors of 0.1, 0.025, and 0.050 for pressure p and velocity components ux, uy, confirming its reliability. The transformer-based structure allows for real-time predictions within seconds, outperforming traditional U-net diffusion models. This work underscores the potential of generative machine learning techniques to advance computational fluid dynamics, offering potential solutions to persistent challenges in simulating high-fidelity aerodynamic flows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17394v1-abstract-full').style.display = 'none'; document.getElementById('2412.17394v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13925">arXiv:2412.13925</a> <span> [<a href="https://arxiv.org/pdf/2412.13925">pdf</a>, <a href="https://arxiv.org/format/2412.13925">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Revisiting Endo-reversible Carnot engine: Extending the Yvon engine </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+X">Xiu-Hua Zhao</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yu-Han Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13925v2-abstract-short" style="display: inline;"> A famous paper [Am. J. Phys. 43, 22 (1975)] unveiled the efficiency at maximum power (EMP) of the endo-reversible Carnot heat engine, now commonly referred to as the Curzon-Ahlborn (CA) engine, pioneering finite-time thermodynamics. Historically, despite the significance of the CA engine, similar findings had emerged at an earlier time, such as the Yvon engine proposed by J. Yvon in 1955 sharing t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13925v2-abstract-full').style.display = 'inline'; document.getElementById('2412.13925v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13925v2-abstract-full" style="display: none;"> A famous paper [Am. J. Phys. 43, 22 (1975)] unveiled the efficiency at maximum power (EMP) of the endo-reversible Carnot heat engine, now commonly referred to as the Curzon-Ahlborn (CA) engine, pioneering finite-time thermodynamics. Historically, despite the significance of the CA engine, similar findings had emerged at an earlier time, such as the Yvon engine proposed by J. Yvon in 1955 sharing the exact same EMP. However, the special setup of the Yvon engine has circumscribed its broader influence. This paper extends the Yvon engine model to achieve a level of generality comparable to that of the CA engine. A rigorous comparison reveals that the extended Yvon engine and CA engine represent the steady-state and cyclic forms of the endo-reversible Carnot heat engine, respectively, and are equivalent. Our work provides a pedagogical example for the teaching of thermodynamics and engineering thermodynamics, given that the simple and lucid derivation of the extended Yvon engine helps students initiate their understanding of non-equilibrium thermodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13925v2-abstract-full').style.display = 'none'; document.getElementById('2412.13925v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures. Comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12521">arXiv:2412.12521</a> <span> [<a href="https://arxiv.org/pdf/2412.12521">pdf</a>, <a href="https://arxiv.org/format/2412.12521">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Updates on the Tsinghua Tabletop Kibble Balance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+S">Shisong Li</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yongchao Ma</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+K">Kang Ma</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Weibo Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+N">Nanjia Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xiaohu Liu</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+L">Lisha Peng</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+W">Wei Zhao</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+S">Songling Huang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+X">Xinjie Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12521v1-abstract-short" style="display: inline;"> With the adoption of the revised International System of Units (SI), the Kibble balance has become a pivotal instrument for mass calibrations against the Planck constant, $h$. One of the major focuses in the Kibble balance community is prioritizing experiments that achieve both high accuracy and compactness. The Tsinghua tabletop Kibble balance experiment seeks to develop a compact, high-precision… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12521v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12521v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12521v1-abstract-full" style="display: none;"> With the adoption of the revised International System of Units (SI), the Kibble balance has become a pivotal instrument for mass calibrations against the Planck constant, $h$. One of the major focuses in the Kibble balance community is prioritizing experiments that achieve both high accuracy and compactness. The Tsinghua tabletop Kibble balance experiment seeks to develop a compact, high-precision, user-friendly, cost-effective, and open-hardware apparatus for mass realization, specifically within the kilogram range. This paper reports on the progress of the Tsinghua tabletop Kibble balance project over the past two years. Various aspects of the Tsinghua tabletop system, including electrical, magnetic, mechanical, and optical components, are summarized. Key achievements, such as the construction and characterization of the magnet system, determination of absolute gravitational acceleration, investigation of a capacitor-sensor-based weighing unit, and development of a high-precision current source, are presented to provide a comprehensive understanding of the experiment's status. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12521v1-abstract-full').style.display = 'none'; document.getElementById('2412.12521v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12348">arXiv:2412.12348</a> <span> [<a href="https://arxiv.org/pdf/2412.12348">pdf</a>, <a href="https://arxiv.org/format/2412.12348">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Discovering Boundary Equations for Wave Breaking using Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+T">Tianning Tang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yuntian Chen</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+R">Rui Cao</a>, <a href="/search/physics?searchtype=author&query=Mostert%2C+W">Wouter Mostert</a>, <a href="/search/physics?searchtype=author&query=Taylor%2C+P+H">Paul H. Taylor</a>, <a href="/search/physics?searchtype=author&query=McAllister%2C+M+L">Mark L. McAllister</a>, <a href="/search/physics?searchtype=author&query=Tai%2C+B">Bing Tai</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yuxiang Ma</a>, <a href="/search/physics?searchtype=author&query=Callaghan%2C+A+H">Adrian H. Callaghan</a>, <a href="/search/physics?searchtype=author&query=Adcock%2C+T+A+A">Thomas A. A. Adcock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12348v1-abstract-short" style="display: inline;"> Many supervised machine learning methods have revolutionised the empirical modelling of complex systems. These empirical models, however, are usually "black boxes" and provide only limited physical explanations about the underlying systems. Instead, so-called "knowledge discovery" methods can be used to explore the governing equations that describe observed phenomena. This paper focuses on how we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12348v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12348v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12348v1-abstract-full" style="display: none;"> Many supervised machine learning methods have revolutionised the empirical modelling of complex systems. These empirical models, however, are usually "black boxes" and provide only limited physical explanations about the underlying systems. Instead, so-called "knowledge discovery" methods can be used to explore the governing equations that describe observed phenomena. This paper focuses on how we can use such methods to explore underlying physics and also model a commonly observed yet not fully understood phenomenon - the breaking of ocean waves. In our work, we use symbolic regression to explore the equation that describes wave-breaking evolution from a dataset of in silico waves generated using expensive numerical methods. Our work discovers a new boundary equation that provides a reduced-order description of how the surface elevation (i.e., the water-air interface) evolves forward in time, including the instances when the wave breaks - a problem that has defied traditional approaches. Compared to the existing empirical models, the unique equation-based nature of our model allows further mathematical interpretation, which provides an opportunity to explore the fundamentals of breaking waves. Further expert-AI collaborative research reveals the physical meaning of each term of the discovered equation, which suggests a new characteristic of breaking waves in deep water - a decoupling between the water-air interface and the fluid velocities. This novel reduced-order model also hints at computationally efficient ways to simulate breaking waves for engineering applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12348v1-abstract-full').style.display = 'none'; document.getElementById('2412.12348v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">\keywords{Symbolic Regression, Wave Breaking, Knowledge Discovery, Symbolic Classification}</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11871">arXiv:2412.11871</a> <span> [<a href="https://arxiv.org/pdf/2412.11871">pdf</a>, <a href="https://arxiv.org/format/2412.11871">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Reentrant phase behavior in binary topological flocks with nonreciprocal alignment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+T">Tian Tang</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+Y">Yu Duan</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yu-qiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11871v1-abstract-short" style="display: inline;"> We study a binary metric-free Vicsek model involving two species of self-propelled particles aligning with their Voronoi neighbors, focusing on a weakly nonreciprocal regime, where species $A$ aligns with both $A$ and $B$, but species $B$ does not align with either. Using agent-based simulations, we find that even with a small fraction of $B$ particles, the phase behavior of the system can be chan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11871v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11871v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11871v1-abstract-full" style="display: none;"> We study a binary metric-free Vicsek model involving two species of self-propelled particles aligning with their Voronoi neighbors, focusing on a weakly nonreciprocal regime, where species $A$ aligns with both $A$ and $B$, but species $B$ does not align with either. Using agent-based simulations, we find that even with a small fraction of $B$ particles, the phase behavior of the system can be changed qualitatively, which becomes reentrant as a function of noise strength: traveling bands arise not only near the flocking transition, but also in the low-noise regime, separated in the phase diagram by a homogeneous polar liquid regime. We find that the ordered bands in the low-noise regime travel through an ordered background, in contrast to their metric counterparts. We develop a coarse-grained field theory, which can account for the reentrant phase behavior qualitatively, provided the higher-order angular modes are taken into consideration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11871v1-abstract-full').style.display = 'none'; document.getElementById('2412.11871v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplemental movies are available on request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11693">arXiv:2412.11693</a> <span> [<a href="https://arxiv.org/pdf/2412.11693">pdf</a>, <a href="https://arxiv.org/format/2412.11693">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> CrystalFlow: A Flow-Based Generative Model for Crystalline Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Luo%2C+X">Xiaoshan Luo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qingchang Wang</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+J">Jian Lv</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Lei Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yanchao Wang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yanming Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11693v4-abstract-short" style="display: inline;"> Deep learning-based generative models have emerged as powerful tools for modeling complex data distributions and generating high-fidelity samples, offering a transformative approach to efficiently explore the configuration space of crystalline materials. In this work, we present CrystalFlow, a flow-based generative model specifically developed for the generation of crystalline materials. CrystalFl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11693v4-abstract-full').style.display = 'inline'; document.getElementById('2412.11693v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11693v4-abstract-full" style="display: none;"> Deep learning-based generative models have emerged as powerful tools for modeling complex data distributions and generating high-fidelity samples, offering a transformative approach to efficiently explore the configuration space of crystalline materials. In this work, we present CrystalFlow, a flow-based generative model specifically developed for the generation of crystalline materials. CrystalFlow constructs Continuous Normalizing Flows to model lattice parameters, atomic coordinates, and/or atom types, which are trained using Conditional Flow Matching techniques. Through an appropriate choice of data representation and the integration of a graph-based equivariant neural network, the model effectively captures the fundamental symmetries of crystalline materials, which ensures data-efficient learning and enables high-quality sampling. Our experiments demonstrate that CrystalFlow achieves state-of-the-art performance across standard generation benchmarks, and exhibits versatile conditional generation capabilities including producing structures optimized for specific external pressures or desired material properties. These features highlight the model's potential to address realistic crystal structure prediction challenges, offering a robust and efficient framework for advancing data-driven research in condensed matter physics and material science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11693v4-abstract-full').style.display = 'none'; document.getElementById('2412.11693v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Update references and acknowledgments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11411">arXiv:2412.11411</a> <span> [<a href="https://arxiv.org/pdf/2412.11411">pdf</a>, <a href="https://arxiv.org/format/2412.11411">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> A Rb-Cs dual-species magneto-optical trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shao%2C+S">Shi-Yao Shao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q">Qing Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Li-Hua Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+B">Bang Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zheng-Yuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qi-Feng Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yu Ma</a>, <a href="/search/physics?searchtype=author&query=Han%2C+T">Tian-Yu Han</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Han-Chao Chen</a>, <a href="/search/physics?searchtype=author&query=Nan%2C+J">Jia-Dou Nan</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+Y">Yi-Ming Yin</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+D">Dong-Yang Zhu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Ya-Jun Wang</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+D">Dong-Sheng Ding</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+B">Bao-Sen Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11411v1-abstract-short" style="display: inline;"> We describe a three-dimensional (3D) magneto-optical trap (MOT) capable of simultaneously capturing 85Rb and 133Cs atoms. Unlike conventional setups, our system utilizes two separate laser systems that are combined before entering the vacuum chamber, enabling the simultaneous trapping of two different atomic species. Additionally, in our 3D MOT configuration, two (of three) pairs of laser beams ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11411v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11411v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11411v1-abstract-full" style="display: none;"> We describe a three-dimensional (3D) magneto-optical trap (MOT) capable of simultaneously capturing 85Rb and 133Cs atoms. Unlike conventional setups, our system utilizes two separate laser systems that are combined before entering the vacuum chamber, enabling the simultaneous trapping of two different atomic species. Additionally, in our 3D MOT configuration, two (of three) pairs of laser beams are not orthogonal to the chamber surfaces but are aligned at a 45掳 angle. With a total trapping laser power of 8 mW and repump laser power of 4 mW for Rb atoms, and a total trapping laser power of 7.5 mW and repump laser power of 1.5 mW for Cs atoms, we achieve optical depths (OD) of 3.71 for Rb and 3.45 for Cs, demonstrating efficient trapping for both species. Our 3D MOT setup allows full horizontal optical access to the trapped atomic ensembles without spatial interference from the trapping or repump laser beams. Moreover, the red detuning for trapping both atomic species is smaller than in traditional configurations. This system offers a versatile platform for exploring complex phenomena in ultracold atom physics, such as Rydberg molecule formation and interspecies interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11411v1-abstract-full').style.display = 'none'; document.getElementById('2412.11411v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10451">arXiv:2412.10451</a> <span> [<a href="https://arxiv.org/pdf/2412.10451">pdf</a>, <a href="https://arxiv.org/format/2412.10451">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Low-Energy Nuclear Recoil Calibration of XENONnT with a $^{88}$YBe Photoneutron Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Ant%2C+D">D. Ant</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%2C+A+P+C">A. P. Cimental Ch</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a> , et al. (147 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10451v1-abstract-short" style="display: inline;"> Characterizing low-energy (O(1keV)) nuclear recoils near the detector threshold is one of the major challenges for large direct dark matter detectors. To that end, we have successfully used a Yttrium-Beryllium photoneutron source that emits 152 keV neutrons for the calibration of the light and charge yields of the XENONnT experiment for the first time. After data selection, we accumulated 474 even… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10451v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10451v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10451v1-abstract-full" style="display: none;"> Characterizing low-energy (O(1keV)) nuclear recoils near the detector threshold is one of the major challenges for large direct dark matter detectors. To that end, we have successfully used a Yttrium-Beryllium photoneutron source that emits 152 keV neutrons for the calibration of the light and charge yields of the XENONnT experiment for the first time. After data selection, we accumulated 474 events from 183 hours of exposure with this source. The expected background was $55 \pm 12$ accidental coincidence events, estimated using a dedicated 152 hour background calibration run with a Yttrium-PVC gamma-only source and data-driven modeling. From these calibrations, we extracted the light yield and charge yield for liquid xenon at our field strength of 23 V/cm between 0.5 keV$_{\rm NR}$ and 5.0 keV$_{\rm NR}$ (nuclear recoil energy in keV). This calibration is crucial for accurately measuring the solar $^8$B neutrino coherent elastic neutrino-nucleus scattering and searching for light dark matter particles with masses below 12 GeV/c$^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10451v1-abstract-full').style.display = 'none'; document.getElementById('2412.10451v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09825">arXiv:2412.09825</a> <span> [<a href="https://arxiv.org/pdf/2412.09825">pdf</a>, <a href="https://arxiv.org/format/2412.09825">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Fast square-oscillations in semiconductor VCSELs with delayed orthogonal polarization feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/physics?searchtype=author&query=Tu%2C+Z">Zhicong Tu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yixing Ma</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiheng Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhibo Li</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+F">Fan Qin</a>, <a href="/search/physics?searchtype=author&query=Barland%2C+S">Stephan茅 Barland</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+S">Shuiying Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09825v1-abstract-short" style="display: inline;"> We present an experimental study on the generation of self-sustained and fast square oscillations from the TE mode of semiconductor VCSELs with delayed orthogonal polarization feedback. We find that the low frequency switching originates from the rotation of the TE and TM modes facilitated by a long time delay, but the fast oscillations are anchored to the frequency beating between the TE and TM m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09825v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09825v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09825v1-abstract-full" style="display: none;"> We present an experimental study on the generation of self-sustained and fast square oscillations from the TE mode of semiconductor VCSELs with delayed orthogonal polarization feedback. We find that the low frequency switching originates from the rotation of the TE and TM modes facilitated by a long time delay, but the fast oscillations are anchored to the frequency beating between the TE and TM modes and are modified by a half-wavelength ($位/2$) plate. A comprehensive analysis of the evolution of the nonlinear dynamics is conducted and the related mechanism is discussed. Our study not only deepens our comprehension of laser nonlinear dynamics but also offers an all-optical approach for producing specialized signals, which could be instrumental in applications such as optical communications and photonic computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09825v1-abstract-full').style.display = 'none'; document.getElementById('2412.09825v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05264">arXiv:2412.05264</a> <span> [<a href="https://arxiv.org/pdf/2412.05264">pdf</a>, <a href="https://arxiv.org/format/2412.05264">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The neutron veto of the XENONnT experiment: Results with demineralized water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a> , et al. (145 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05264v3-abstract-short" style="display: inline;"> Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05264v3-abstract-full').style.display = 'inline'; document.getElementById('2412.05264v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05264v3-abstract-full" style="display: none;"> Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV) tags neutrons via their capture on gadolinium or hydrogen, which release $纬$-rays that are subsequently detected as Cherenkov light. In this work, we present the key features and the first results of the XENONnT NV when operated with demineralized water in the initial phase of the experiment. Its efficiency for detecting neutrons is $(82\pm 1)\,\%$, the highest neutron detection efficiency achieved in a water Cherenkov detector. This enables a high efficiency of $(53\pm 3)\,\%$ for the tagging of WIMP-like neutron signals, inside a tagging time window of $250\,\mathrm{渭s}$ between TPC and NV, leading to a livetime loss of $1.6\,\%$ during the first science run of XENONnT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05264v3-abstract-full').style.display = 'none'; document.getElementById('2412.05264v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02959">arXiv:2412.02959</a> <span> [<a href="https://arxiv.org/pdf/2412.02959">pdf</a>, <a href="https://arxiv.org/format/2412.02959">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Fast and stable tight-binding framework for nonlocal kinetic energy density functional reconstruction in orbital-free density functional calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yongshuo Chen</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+C">Cheng Ma</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+B">Boning Cui</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+T">Tian Cui</a>, <a href="/search/physics?searchtype=author&query=Mi%2C+W">Wenhui Mi</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Q">Qiang Xu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yanchao Wang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yanming Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02959v1-abstract-short" style="display: inline;"> Nonlocal kinetic energy density functionals (KEDFs) with density-dependent kernels are currently the most accurate functionals available for orbital-free density functional theory (OF-DFT) calculations. However, despite advances in numerical techniques and using only (semi)local density-dependent kernels, nonlocal KEDFs still present substantial computational costs in OF-DFT, limiting their applic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02959v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02959v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02959v1-abstract-full" style="display: none;"> Nonlocal kinetic energy density functionals (KEDFs) with density-dependent kernels are currently the most accurate functionals available for orbital-free density functional theory (OF-DFT) calculations. However, despite advances in numerical techniques and using only (semi)local density-dependent kernels, nonlocal KEDFs still present substantial computational costs in OF-DFT, limiting their application in large-scale material simulations. To address this challenge, we propose an efficient framework for reconstructing nonlocal KEDFs by incorporating the density functional tight-binding approach, in which the energy functionals are simplified through a first-order functional expansion based on the superposition of free-atom electron densities. This strategy allows the computationally expensive nonlocal kinetic energy and potential calculations to be performed only once during the electron density optimization process, significantly reducing computational overhead while maintaining high accuracy. Benchmark tests using advanced nonlocal KEDFs, such as revHC and LDAK-MGPA, on standard structures including Li, Mg, Al, Ga, Si, III-V semiconductors, as well as Mg$_{50}$ and Si$_{50}$ clusters, demonstrate that our method achieves orders-of-magnitude improvements in efficiency, providing a cost-effective balance between accuracy and computational speed. Additionally, the reconstructed functionals exhibit improved numerical stability for both bulk and finite systems, paving the way for developing more sophisticated KEDFs for realistic material simulations using OF-DFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02959v1-abstract-full').style.display = 'none'; document.getElementById('2412.02959v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18899">arXiv:2411.18899</a> <span> [<a href="https://arxiv.org/pdf/2411.18899">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Low-Temperature Synthesis of Weakly Confined Carbyne inside Single-Walled Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Bo-Wen Zhang</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+X">Xi-Yang Qiu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yicheng Ma</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Q">Qingmei Hu</a>, <a href="/search/physics?searchtype=author&query=Fit%C3%B3-Parera%2C+A">Aina Fit贸-Parera</a>, <a href="/search/physics?searchtype=author&query=Kohata%2C+I">Ikuma Kohata</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+Y">Ya Feng</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Yongjia Zheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chiyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Matsuo%2C+Y">Yutaka Matsuo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">YuHuang Wang</a>, <a href="/search/physics?searchtype=author&query=Chiashi%2C+S">Shohei Chiashi</a>, <a href="/search/physics?searchtype=author&query=Otsuka%2C+K">Keigo Otsuka</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+R">Rong Xiang</a>, <a href="/search/physics?searchtype=author&query=Levshov%2C+D+I">Dmitry I. Levshov</a>, <a href="/search/physics?searchtype=author&query=Cambr%C3%A9%2C+S">Sofie Cambr茅</a>, <a href="/search/physics?searchtype=author&query=Wenseleers%2C+W">Wim Wenseleers</a>, <a href="/search/physics?searchtype=author&query=Rotkin%2C+S+V">Slava V. Rotkin</a>, <a href="/search/physics?searchtype=author&query=Maruyama%2C+S">Shigeo Maruyama</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18899v1-abstract-short" style="display: inline;"> Carbyne, a one-dimensional (1D) carbon allotrope with alternating triple and single bonds, has the highest known mechanical strength but is unstable to bending, limiting synthesis to short linear chains. Encapsulation within carbon nanotubes (CNTs) stabilizes carbyne, forming confined carbyne (CC), thus enabling further research concerning attractive 1D physics and materials properties of carbyne.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18899v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18899v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18899v1-abstract-full" style="display: none;"> Carbyne, a one-dimensional (1D) carbon allotrope with alternating triple and single bonds, has the highest known mechanical strength but is unstable to bending, limiting synthesis to short linear chains. Encapsulation within carbon nanotubes (CNTs) stabilizes carbyne, forming confined carbyne (CC), thus enabling further research concerning attractive 1D physics and materials properties of carbyne. While CC has been synthesized in multi-walled CNTs (MWCNTs) using the arc-discharge method and in double-walled CNTs (DWCNTs) via high-temperature high-vacuum (HTHV) method, synthesis in single-walled CNTs (SWCNTs) has been challenging due to their fragility under such conditions. In this work, we report a low-temperature method to synthesize CC inside SWCNTs (CC@SWCNT). By annealing SWCNTs containing ammonium deoxycholate (ADC) at 400掳C, ADC is converted into CC without damaging the SWCNTs. Raman spectroscopy revealed a strong CC phonon (CC-mode) peak at 1860-1870 cm^-1, much stronger than the SWCNT G-band peak, confirming a high fraction of CC in the resulting material. The Raman mapping result showed the uniformity of the CC-mode signal across the entire film sample, proving the high efficiency of this method in synthesizing CC in every SWCNT of appropriate size. Notably, the CC-mode peaks of CC@SWCNT (above 1860 cm^-1) are higher than those reported in previous CC@CNT samples (mostly less than 1856 cm^-1). This is attributed to larger SWCNT diameters (over 0.95 nm) used in this study, compared to the typical 0.6-0.8 nm range. Larger diameters result in reduced confinement, allowing carbyne to closely resemble free-standing carbyne while remaining stabilized. This low-temperature synthesis of long-chain, nearly free-standing carbyne within large-diameter SWCNTs offers new opportunities for exploring 1D physics and the unique properties of carbyne for potential applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18899v1-abstract-full').style.display = 'none'; document.getElementById('2411.18899v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16059">arXiv:2411.16059</a> <span> [<a href="https://arxiv.org/pdf/2411.16059">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> GHz fundamental mode-locking of a highly integrated Er-doped all-fiber ring laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dai%2C+M">Maolin Dai</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+B">Bowen Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yifan Ma</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+R">Ruoao Yang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhigang Zhang</a>, <a href="/search/physics?searchtype=author&query=Set%2C+S+Y">Sze Yun Set</a>, <a href="/search/physics?searchtype=author&query=Yamashita%2C+S">Shinji Yamashita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16059v2-abstract-short" style="display: inline;"> High repetition rate ultrafast fiber lasers are important tools for both fundamental science and industry applications. However, achieving over GHz repetition rate in passively mode-locked fiber ring lasers is still challenging. Here, we demonstrate the first ring-cavity Er-doped fiber laser that achieves over GHz fundamental repetition rate by using an all-integration cavity design. In the propos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16059v2-abstract-full').style.display = 'inline'; document.getElementById('2411.16059v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16059v2-abstract-full" style="display: none;"> High repetition rate ultrafast fiber lasers are important tools for both fundamental science and industry applications. However, achieving over GHz repetition rate in passively mode-locked fiber ring lasers is still challenging. Here, we demonstrate the first ring-cavity Er-doped fiber laser that achieves over GHz fundamental repetition rate by using an all-integration cavity design. In the proposed laser oscillator, all functions are integrated into one device, making it an ultra-compact laser cavity. The laser is mode-locked by carbon nanotubes (CNTs) film that is directly deposited on the pigtail active fiber connectors. The laser produces ultrafast optical pulses at 1562 nm, with a pulse width of 682 fs and a fundamental repetition rate of 1.028 GHz with improved performance. Stable and low-noise mode-locking is characterized by high signal-to-noise ratio (SNR) radiofrequency signal and low relative intensity noise (RIN). The proposed all-integration laser design may serve as a reference for compact fiber ring lasers using other mode-locking mechanisms or at diverse wavelengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16059v2-abstract-full').style.display = 'none'; document.getElementById('2411.16059v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13331">arXiv:2411.13331</a> <span> [<a href="https://arxiv.org/pdf/2411.13331">pdf</a>, <a href="https://arxiv.org/format/2411.13331">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Versatile photonic frequency synthetic dimensions using a single Mach-Zehnder-interferometer-assisted device on thin-film lithium niobate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhao-An Wang</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+X">Xiao-Dong Zeng</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi-Tao Wang</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+J">Jia-Ming Ren</a>, <a href="/search/physics?searchtype=author&query=Ao%2C+C">Chun Ao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhi-Peng Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wei Liu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+N">Nai-Jie Guo</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+L">Lin-Ke Xie</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun-You Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yu-Hang Ma</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Ya-Qi Wu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shuang Wang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jian-Shun Tang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13331v1-abstract-short" style="display: inline;"> Investigating physical models with photonic synthetic dimensions has been generating great interest in vast fields of science. The rapid developing thin-film lithium niobate (TFLN) platform, for its numerous advantages including high electro-optic coefficient and scalability, is well compatible with the realization of synthetic dimensions in the frequency together with spatial domain. While coupli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13331v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13331v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13331v1-abstract-full" style="display: none;"> Investigating physical models with photonic synthetic dimensions has been generating great interest in vast fields of science. The rapid developing thin-film lithium niobate (TFLN) platform, for its numerous advantages including high electro-optic coefficient and scalability, is well compatible with the realization of synthetic dimensions in the frequency together with spatial domain. While coupling resonators with fixed beam splitters is a common experimental approach, it often lacks tunability and limits coupling between adjacent lattices to sites occupying the same frequency domain positions. Here, on the contrary, we conceive the resonator arrays connected by electro-optic tunable Mach-Zehnder interferometers in our configuration instead of fixed beam splitters. By applying bias voltage and RF modulation on the interferometers, our design extends such coupling to long-range scenario and allows for continuous tuning on each coupling strength and synthetic effective magnetic flux. Therefore, our design enriches controllable coupling types that are essential for building programmable lattice networks and significantly increases versatility. As the example, we experimentally fabricate a two-resonator prototype on the TFLN platform, and on this single chip we realize well-known models including tight-binding lattices, topological Hall ladder and Creutz ladder. We directly observe the band structures in the quasi-momentum space and important phenomena such as spin-momentum locking and the Aharonov-Bohm cage effect. These results demonstrate the potential for convenient simulations of more complex models in our configuration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13331v1-abstract-full').style.display = 'none'; document.getElementById('2411.13331v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07016">arXiv:2411.07016</a> <span> [<a href="https://arxiv.org/pdf/2411.07016">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Gate-Controllable Quadri-Layertronics in 2D Multiferroic Antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+T">Ting Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mingsheng Wang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+X">Xilong Xu</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+Y">Ying Dai</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yandong Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07016v1-abstract-short" style="display: inline;"> Layertronics that manifests layer Hall effect is typically considered to intrinsically possess binary physics. Using symmetry arguments and a low-energy kp model, we show that the layer physics in layertronics can be engineered into quaternary mode, giving rise to the concept of quadri-layertronics. The mechanism correlates to the interplay between out-of-plane ferroelectricity and valley physics… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07016v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07016v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07016v1-abstract-full" style="display: none;"> Layertronics that manifests layer Hall effect is typically considered to intrinsically possess binary physics. Using symmetry arguments and a low-energy kp model, we show that the layer physics in layertronics can be engineered into quaternary mode, giving rise to the concept of quadri-layertronics. The mechanism correlates to the interplay between out-of-plane ferroelectricity and valley physics in antiferromagnetic multiferroic quadrilayer, which enables the layer-locked Berry curvature and Hall effect, i.e., deflecting the carriers with four different layer physics to move in specific directions. More importantly, the quadri-layertronics can be generated and manipulated by controlling the interlayer dipole arrangements via a gate voltage, allowing for the selective induction and detection of layer Hall effect in specific layers. Using first principles calculations, we further demonstrate the gate control of quadri-layertronics in multiferroic antiferromagnet of quadrilayer OsCl2. These explored phenomena and insights greatly enrich the research on layertronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07016v1-abstract-full').style.display = 'none'; document.getElementById('2411.07016v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06663">arXiv:2411.06663</a> <span> [<a href="https://arxiv.org/pdf/2411.06663">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> All-On-chip Reconfigurable Structured Light Generator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+W">Weike Zhao</a>, <a href="/search/physics?searchtype=author&query=Yi%2C+X">Xiaolin Yi</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jieshan Huang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+R">Ruoran Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jianwei Wang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yaocheng Shi</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yungui Ma</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+A">Andrew Forbes</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+D">Daoxin Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06663v1-abstract-short" style="display: inline;"> Structured light carrying angular momentum, such as spin angular momentum (SAM) and orbital angular momentum (OAM), has been at the core of new science and applications, driving the need for compact on-chip sources. While many static on-chip solutions have been demonstrated, as well as on-chip sources of free-space modes, no architecture that is fully reconfigurable in all angular momentum states… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06663v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06663v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06663v1-abstract-full" style="display: none;"> Structured light carrying angular momentum, such as spin angular momentum (SAM) and orbital angular momentum (OAM), has been at the core of new science and applications, driving the need for compact on-chip sources. While many static on-chip solutions have been demonstrated, as well as on-chip sources of free-space modes, no architecture that is fully reconfigurable in all angular momentum states and all on-chip has so far been possible. Here we report the first all-on-chip structured light generator for the creation of both scalar and vectorial angular momentum beams, facilitated through a silicon-on-insulator (SOI) chip with a silica mode multiplexer (silica chip). We selectively stimulate six linearly-polarized (LP) modes of the silica multimode bus waveguide, precisely controlling the modal powers and phases with the SOI chip. This allows us to tailor arbitrary superpositions of the mode set thus synthesizing common cylindrical vector vortex beams as well as OAM beams of controlled spin and topological charge. Our compact structured light generator exhibits high switching speed and operates across the telecom band, paving the way for applications such as optical communication and integrated quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06663v1-abstract-full').style.display = 'none'; document.getElementById('2411.06663v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03853">arXiv:2411.03853</a> <span> [<a href="https://arxiv.org/pdf/2411.03853">pdf</a>, <a href="https://arxiv.org/ps/2411.03853">ps</a>, <a href="https://arxiv.org/format/2411.03853">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Finite-time thermodynamics: A journey beginning with optimizing heat engines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yu-Han Ma</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+X">Xiu-Hua Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03853v1-abstract-short" style="display: inline;"> In this paper, we summarize the historical development of finite-time thermodynamics and review the current state of research over the past two decades in this field, focusing on fundamental constraints of finite-time thermodynamic cycles, optimal control and optimization of thermodynamic processes, the operation of unconventional heat engines, and experimental progress. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03853v1-abstract-full" style="display: none;"> In this paper, we summarize the historical development of finite-time thermodynamics and review the current state of research over the past two decades in this field, focusing on fundamental constraints of finite-time thermodynamic cycles, optimal control and optimization of thermodynamic processes, the operation of unconventional heat engines, and experimental progress. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03853v1-abstract-full').style.display = 'none'; document.getElementById('2411.03853v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 131 references, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03849">arXiv:2411.03849</a> <span> [<a href="https://arxiv.org/pdf/2411.03849">pdf</a>, <a href="https://arxiv.org/format/2411.03849">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Unified Approach to Power-Efficiency Trade-Off of Generic Thermal Machines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yu-Han Ma</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+C">Cong Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03849v1-abstract-short" style="display: inline;"> Due to the diverse functionalities of different thermal machines, their optimization relies on a case-by-case basis, lacking unified results. In this work, we propose a general approach to determine power-efficiency trade-off relation (PETOR) for any thermal machine. For cases where cycle (of duration $蟿$) irreversibility satisfies the typical $1/蟿$-scaling, we provide a unified PETOR which is app… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03849v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03849v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03849v1-abstract-full" style="display: none;"> Due to the diverse functionalities of different thermal machines, their optimization relies on a case-by-case basis, lacking unified results. In this work, we propose a general approach to determine power-efficiency trade-off relation (PETOR) for any thermal machine. For cases where cycle (of duration $蟿$) irreversibility satisfies the typical $1/蟿$-scaling, we provide a unified PETOR which is applicable to heat engines, refrigerators, heat exchangers and heat pumps. It is shown that, some typical PETORs, such as those for low-dissipation Carnot cycles (including heat engine and refrigerator cycles) and the steady-state heat engines operating between finite-sized reservoirs are naturally recovered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03849v1-abstract-full').style.display = 'none'; document.getElementById('2411.03849v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4+2 pages, 2 figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02966">arXiv:2411.02966</a> <span> [<a href="https://arxiv.org/pdf/2411.02966">pdf</a>, <a href="https://arxiv.org/format/2411.02966">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.13970100">10.5281/zenodo.13970100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MuCol Milestone Report No. 5: Preliminary Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Accettura%2C+C">Carlotta Accettura</a>, <a href="/search/physics?searchtype=author&query=Adrian%2C+S">Simon Adrian</a>, <a href="/search/physics?searchtype=author&query=Agarwal%2C+R">Rohit Agarwal</a>, <a href="/search/physics?searchtype=author&query=Ahdida%2C+C">Claudia Ahdida</a>, <a href="/search/physics?searchtype=author&query=Aim%C3%A9%2C+C">Chiara Aim茅</a>, <a href="/search/physics?searchtype=author&query=Aksoy%2C+A">Avni Aksoy</a>, <a href="/search/physics?searchtype=author&query=Alberghi%2C+G+L">Gian Luigi Alberghi</a>, <a href="/search/physics?searchtype=author&query=Alden%2C+S">Siobhan Alden</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+L">Luca Alfonso</a>, <a href="/search/physics?searchtype=author&query=Amapane%2C+N">Nicola Amapane</a>, <a href="/search/physics?searchtype=author&query=Amorim%2C+D">David Amorim</a>, <a href="/search/physics?searchtype=author&query=Andreetto%2C+P">Paolo Andreetto</a>, <a href="/search/physics?searchtype=author&query=Anulli%2C+F">Fabio Anulli</a>, <a href="/search/physics?searchtype=author&query=Appleby%2C+R">Rob Appleby</a>, <a href="/search/physics?searchtype=author&query=Apresyan%2C+A">Artur Apresyan</a>, <a href="/search/physics?searchtype=author&query=Asadi%2C+P">Pouya Asadi</a>, <a href="/search/physics?searchtype=author&query=Mahmoud%2C+M+A">Mohammed Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&query=Auchmann%2C+B">Bernhard Auchmann</a>, <a href="/search/physics?searchtype=author&query=Back%2C+J">John Back</a>, <a href="/search/physics?searchtype=author&query=Badea%2C+A">Anthony Badea</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+K+J">Kyu Jung Bae</a>, <a href="/search/physics?searchtype=author&query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&query=Balconi%2C+L">Lorenzo Balconi</a>, <a href="/search/physics?searchtype=author&query=Balli%2C+F">Fabrice Balli</a>, <a href="/search/physics?searchtype=author&query=Bandiera%2C+L">Laura Bandiera</a> , et al. (369 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02966v1-abstract-short" style="display: inline;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02966v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02966v1-abstract-full" style="display: none;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power consumption of the facility. The data is collected from a collaborative spreadsheet and transferred to overleaf. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'none'; document.getElementById('2411.02966v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.24065">arXiv:2410.24065</a> <span> [<a href="https://arxiv.org/pdf/2410.24065">pdf</a>, <a href="https://arxiv.org/format/2410.24065">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Social contagion with emotional group interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Y">YuQianqian Ma</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+L">Leyang Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.24065v1-abstract-short" style="display: inline;"> Individual decisions and behaviors are shaped not only by direct interactions with others but also by the collective emotional dynamics within groups. In this work, we introduce the signed simplicial contagion model, integrating both pairwise and emotional group interactions to investigate contagion dynamics in signed networks. Through mean field analysis and numerical simulations, we show that em… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24065v1-abstract-full').style.display = 'inline'; document.getElementById('2410.24065v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.24065v1-abstract-full" style="display: none;"> Individual decisions and behaviors are shaped not only by direct interactions with others but also by the collective emotional dynamics within groups. In this work, we introduce the signed simplicial contagion model, integrating both pairwise and emotional group interactions to investigate contagion dynamics in signed networks. Through mean field analysis and numerical simulations, we show that emotional group interactions can induce discontinuous phase transitions, bistable behavior, and hysteresis loops. However, as the proportion of negative edges q increases, the influence of group interactions weakens under a given transmission strength, driving a shift from discontinuous to continuous phase transitions. Our findings reveal that pairwise and group interactions respond differently to changes in q: group interactions display nonlinear sensitivity, while pairwise interactions exhibit a more gradual, linear response. This divergence shifts the dominant mechanisms of contagion, depending on the levels of trust and distrust in the network, providing deeper insights into how emotional relational shape the spread of contagion in social systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24065v1-abstract-full').style.display = 'none'; document.getElementById('2410.24065v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21754">arXiv:2410.21754</a> <span> [<a href="https://arxiv.org/pdf/2410.21754">pdf</a>, <a href="https://arxiv.org/ps/2410.21754">ps</a>, <a href="https://arxiv.org/format/2410.21754">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.21.024001">10.1103/PhysRevApplied.21.024001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Four-terminal graphene-superconductor thermal switch controlled by the superconducting phase difference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+P">Peng-Yi Liu</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+Y">Yue Mao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Q">Qing-Feng Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21754v1-abstract-short" style="display: inline;"> We propose a superconducting phase-controlled thermal switch based on a four-terminal graphene-superconductor system. By the coupling of two superconducting leads on a zigzag graphene nanoribbon, both the normal-transmission coefficient and the crossed-Andreev-reflection coefficient, which dominate the thermal conductivity of electrons in the graphene nanoribbon, can be well controlled simultaneou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21754v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21754v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21754v1-abstract-full" style="display: none;"> We propose a superconducting phase-controlled thermal switch based on a four-terminal graphene-superconductor system. By the coupling of two superconducting leads on a zigzag graphene nanoribbon, both the normal-transmission coefficient and the crossed-Andreev-reflection coefficient, which dominate the thermal conductivity of electrons in the graphene nanoribbon, can be well controlled simultaneously by the phase difference of the superconducting leads. As a result, the thermal conductivity of electrons in the graphene nanoribbon can be tuned and a thermal switching effect appears. Using the nonequilibrium Green's function method, we verify this thermal switching effect numerically. At ambient temperatures less than about one tenth of the superconducting transition temperature, the thermal switching ratio can exceed 2000. The performance of the thermal switch can be regulated by the ambient temperature, and doping or gating can slightly increase the thermal switching ratio. The use of narrower graphene nanoribbons and wider superconducting leads facilitates the obtaining of larger thermal switching ratios. This switching effect of electronic thermal conductance in graphene is expected to be experimentally realized and applied. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21754v1-abstract-full').style.display = 'none'; document.getElementById('2410.21754v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 21, 024001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19016">arXiv:2410.19016</a> <span> [<a href="https://arxiv.org/pdf/2410.19016">pdf</a>, <a href="https://arxiv.org/format/2410.19016">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Neutrinoless Double Beta Decay Sensitivity of the XLZD Rare Event Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XLZD+Collaboration"> XLZD Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a> , et al. (419 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19016v1-abstract-short" style="display: inline;"> The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19016v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19016v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19016v1-abstract-full" style="display: none;"> The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in $^{136}$Xe using a natural-abundance xenon target. XLZD can reach a 3$蟽$ discovery potential half-life of 5.7$\times$10$^{27}$ yr (and a 90% CL exclusion of 1.3$\times$10$^{28}$ yr) with 10 years of data taking, corresponding to a Majorana mass range of 7.3-31.3 meV (4.8-20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19016v1-abstract-full').style.display = 'none'; document.getElementById('2410.19016v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17137">arXiv:2410.17137</a> <span> [<a href="https://arxiv.org/pdf/2410.17137">pdf</a>, <a href="https://arxiv.org/format/2410.17137">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The XLZD Design Book: Towards the Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XLZD+Collaboration"> XLZD Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a> , et al. (419 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17137v1-abstract-short" style="display: inline;"> This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17137v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17137v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17137v1-abstract-full" style="display: none;"> This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generation experiments, LZ and XENONnT. A baseline design and opportunities for further optimization of the individual detector components are discussed. The experiment envisaged here has the capability to explore parameter space for Weakly Interacting Massive Particle (WIMP) dark matter down to the neutrino fog, with a 3$蟽$ evidence potential for the spin-independent WIMP-nucleon cross sections as low as $3\times10^{-49}\rm cm^2$ (at 40 GeV/c$^2$ WIMP mass). The observatory is also projected to have a 3$蟽$ observation potential of neutrinoless double-beta decay of $^{136}$Xe at a half-life of up to $5.7\times 10^{27}$ years. Additionally, it is sensitive to astrophysical neutrinos from the atmosphere, sun, and galactic supernovae. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17137v1-abstract-full').style.display = 'none'; document.getElementById('2410.17137v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12177">arXiv:2410.12177</a> <span> [<a href="https://arxiv.org/pdf/2410.12177">pdf</a>, <a href="https://arxiv.org/format/2410.12177">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Towards Large Scale Atomic Manufacturing: Heterodyne Grating Interferometer with Zero Dead-Zone </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cui%2C+C">Can Cui</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+L">Lvye Gao</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+P">Pengbo Zhao</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+M">Menghan Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Lifu Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yu Ma</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+G">Guangyao Huang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shengtong Wang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+L">Linbin Luo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xinghui Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12177v1-abstract-short" style="display: inline;"> This paper presents a novel heterodyne grating interferometer designed to meet the precise measurement requirements of next-generation lithography systems and large-scale atomic-level manufacturing. Utilizing a dual-frequency light source, the interferometer enables simultaneous measurement of three degrees of freedom. Key advancements include a compact zero Dead-Zone optical path configuration, s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12177v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12177v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12177v1-abstract-full" style="display: none;"> This paper presents a novel heterodyne grating interferometer designed to meet the precise measurement requirements of next-generation lithography systems and large-scale atomic-level manufacturing. Utilizing a dual-frequency light source, the interferometer enables simultaneous measurement of three degrees of freedom. Key advancements include a compact zero Dead-Zone optical path configuration, significantly enhancing measurement reliability by mitigating the impact of light source fluctuations and air refractive index variations. A comprehensive crosstalk error analysis was conducted, resulting in a robust correction algorithm that reduces errors to below 5%. Performance testing of the prototype, size of 90mm*90mm*40mm, demonstrated exceptional resolution (0.25 nm in the XY-axis and 0.3 nm in the Z-axis), superior linearity (6.9e-5, 8.1e-5 and 16.2e-5 for the X, Y, and Z axes, respectively), high repeatability (0.8 nm/1000 nm for the three axes) and stability (20 nm for the XY-axis and 60 nm for the Z-axis over 1000 seconds). Comparative analysis with existing measurement sensors highlights the proposed method's significant advantages in integration, multidimensional capabilities, and is expected to be widely used in fields such as integrated circuits, atomic-level manufacturing and aerospace technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12177v1-abstract-full').style.display = 'none'; document.getElementById('2410.12177v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages,11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08738">arXiv:2410.08738</a> <span> [<a href="https://arxiv.org/pdf/2410.08738">pdf</a>, <a href="https://arxiv.org/format/2410.08738">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Optimization of LYSO crystals and SiPM parameters for the CMS MIP timing detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Addesa%2C+F">F. Addesa</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+T">T. Anderson</a>, <a href="/search/physics?searchtype=author&query=Barria%2C+P">P. Barria</a>, <a href="/search/physics?searchtype=author&query=Basile%2C+C">C. Basile</a>, <a href="/search/physics?searchtype=author&query=Benaglia%2C+A">A. Benaglia</a>, <a href="/search/physics?searchtype=author&query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&query=Bethani%2C+A">A. Bethani</a>, <a href="/search/physics?searchtype=author&query=Bianco%2C+R">R. Bianco</a>, <a href="/search/physics?searchtype=author&query=Bornheim%2C+A">A. Bornheim</a>, <a href="/search/physics?searchtype=author&query=Boldrini%2C+G">G. Boldrini</a>, <a href="/search/physics?searchtype=author&query=Boletti%2C+A">A. Boletti</a>, <a href="/search/physics?searchtype=author&query=Bulla%2C+A">A. Bulla</a>, <a href="/search/physics?searchtype=author&query=Campana%2C+M">M. Campana</a>, <a href="/search/physics?searchtype=author&query=Cardwell%2C+B">B. Cardwell</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Cetorelli%2C+F">F. Cetorelli</a>, <a href="/search/physics?searchtype=author&query=De+Guio%2C+F">F. De Guio</a>, <a href="/search/physics?searchtype=author&query=De+Leo%2C+K">K. De Leo</a>, <a href="/search/physics?searchtype=author&query=De+Riggi%2C+F">F. De Riggi</a>, <a href="/search/physics?searchtype=author&query=Dervan%2C+J">J. Dervan</a>, <a href="/search/physics?searchtype=author&query=Fernandez%2C+E">E. Fernandez</a>, <a href="/search/physics?searchtype=author&query=Gaile%2C+A">A. Gaile</a>, <a href="/search/physics?searchtype=author&query=Gallinaro%2C+M">M. Gallinaro</a>, <a href="/search/physics?searchtype=author&query=Ghezzi%2C+A">A. Ghezzi</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08738v1-abstract-short" style="display: inline;"> For the High-Luminosity (HL-LHC) phase, the upgrade of the Compact Muon Solenoid (CMS) experiment at CERN will include a novel MIP Timing Detector (MTD). The central part of MTD, the barrel timing layer (BTL), is designed to provide a measurement of the time of arrival of charged particles with a precision of 30 ps at the beginning of HL-LHC, progressively degrading to 60 ps while operating in an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08738v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08738v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08738v1-abstract-full" style="display: none;"> For the High-Luminosity (HL-LHC) phase, the upgrade of the Compact Muon Solenoid (CMS) experiment at CERN will include a novel MIP Timing Detector (MTD). The central part of MTD, the barrel timing layer (BTL), is designed to provide a measurement of the time of arrival of charged particles with a precision of 30 ps at the beginning of HL-LHC, progressively degrading to 60 ps while operating in an extremely harsh radiation environment for over a decade. In this paper we present a comparative analysis of the time resolution of BTL module prototypes made of LYSO:Ce crystal bars read out by silicon photo-multipliers (SiPMs). The timing performance measured in beam test campaigns is presented for prototypes with different construction and operation parameters, such as different SiPM cell sizes (15, 20, 25 and 30 $\rm 渭m$), SiPM manufacturers and crystal bar thicknesses. The evolution of time resolution as a function of the irradiation level has been studied using non-irradiated SiPMs as well as SiPMs exposed up to $2\times 10^{14}~n_{eq}/cm^2$ fluence. The key parameters defining the module time resolution such as SiPM characteristics (gain, photon detection efficiency, radiation induced dark count rate) and crystal properties (light output and dimensions) are discussed. These results have informed the final choice of the MTD barrel sensor configuration and offer a unique starting point for the design of future large-area scintillator-based timing detectors in either low or high radiation environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08738v1-abstract-full').style.display = 'none'; document.getElementById('2410.08738v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03328">arXiv:2410.03328</a> <span> [<a href="https://arxiv.org/pdf/2410.03328">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Double-Strand Break Clustering: An Economical and Effective Strategy for DNA Repair </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+J">Junyi Chen</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+W">Wenzong Ma</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yuqi Ma</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+G">Gen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03328v1-abstract-short" style="display: inline;"> In mammalian cells, repair centers for DNA double-strand breaks (DSBs) have been identified. However, previous researches predominantly rely on methods that induce specific DSBs by cutting particular DNA sequences. The clustering and its spatiotemporal properties of non-specifically DSBs, especially those induced by environmental stresses such as irradiation, remains unclear. In this study, we use… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03328v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03328v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03328v1-abstract-full" style="display: none;"> In mammalian cells, repair centers for DNA double-strand breaks (DSBs) have been identified. However, previous researches predominantly rely on methods that induce specific DSBs by cutting particular DNA sequences. The clustering and its spatiotemporal properties of non-specifically DSBs, especially those induced by environmental stresses such as irradiation, remains unclear. In this study, we used Dragonfly microscopy to induce high-precision damage in cells and discovered that DSB clustering during the early stages of DNA damage response (DDR) and repair, but not during the repair plateau phase. Early in DDR, DSB clustered into existing 53BP1 foci. The DSB clustering at different stages has different implications for DNA repair. By controlling the distance between adjacent damage points, we found that the probability of DSB clustering remains constant at distances of 0.8 - 1.4 um, while clustering does not occur beyond 1.4 um. Within the 0.8 um range, the probability of clustering significantly increases due to the phase separation effect of 53BP1. Using a Monte Carlo approach, we developed a dynamic model of 53BP1 foci formation, fission, and fusion. This model accurately predicts experimental outcomes and further demonstrates the temporal and spatial influences on DSB clustering. These results showed that, similarly to specifically induced DSBs, non-specifically induced DSBs can also cluster. The extent of DSB clustering is influenced by both temporal and spatial factors, which provide new insights into the dynamics of DSB clustering and the role of 53BP1 in DNA repair processes. Such findings could enhance our understanding of DNA damage responses and help us improve DNA repair therapies in disease. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03328v1-abstract-full').style.display = 'none'; document.getElementById('2410.03328v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00755">arXiv:2410.00755</a> <span> [<a href="https://arxiv.org/pdf/2410.00755">pdf</a>, <a href="https://arxiv.org/format/2410.00755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Model-independent searches of new physics in DARWIN with a semi-supervised deep learning pipeline </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&query=Barberio%2C+E">E. Barberio</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bell%2C+N+F">N. F. Bell</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boehm%2C+C">C. Boehm</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Braun%2C+R">R. Braun</a> , et al. (209 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00755v1-abstract-short" style="display: inline;"> We present a novel deep learning pipeline to perform a model-independent, likelihood-free search for anomalous (i.e., non-background) events in the proposed next generation multi-ton scale liquid Xenon-based direct detection experiment, DARWIN. We train an anomaly detector comprising a variational autoencoder and a classifier on extensive, high-dimensional simulated detector response data and cons… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00755v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00755v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00755v1-abstract-full" style="display: none;"> We present a novel deep learning pipeline to perform a model-independent, likelihood-free search for anomalous (i.e., non-background) events in the proposed next generation multi-ton scale liquid Xenon-based direct detection experiment, DARWIN. We train an anomaly detector comprising a variational autoencoder and a classifier on extensive, high-dimensional simulated detector response data and construct a one-dimensional anomaly score optimised to reject the background only hypothesis in the presence of an excess of non-background-like events. We benchmark the procedure with a sensitivity study that determines its power to reject the background-only hypothesis in the presence of an injected WIMP dark matter signal, outperforming the classical, likelihood-based background rejection test. We show that our neural networks learn relevant energy features of the events from low-level, high-dimensional detector outputs, without the need to compress this data into lower-dimensional observables, thus reducing computational effort and information loss. For the future, our approach lays the foundation for an efficient end-to-end pipeline that eliminates the need for many of the corrections and cuts that are traditionally part of the analysis chain, with the potential of achieving higher accuracy and significant reduction of analysis time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00755v1-abstract-full').style.display = 'none'; document.getElementById('2410.00755v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 Figures, 3 Tables, 23 Pages (incl. references)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17390">arXiv:2409.17390</a> <span> [<a href="https://arxiv.org/pdf/2409.17390">pdf</a>, <a href="https://arxiv.org/format/2409.17390">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Generalized Skyrmions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+A+A">An Aloysius Wang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zimo Zhao</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yifei Ma</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+Y">Yuxi Cai</a>, <a href="/search/physics?searchtype=author&query=Morris%2C+S">Stephen Morris</a>, <a href="/search/physics?searchtype=author&query=He%2C+H">Honghui He</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+L">Lin Luo</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zhenwei Xie</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+P">Peng Shi</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Y">Yijie Shen</a>, <a href="/search/physics?searchtype=author&query=Zayats%2C+A">Anatoly Zayats</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+X">Xiaocong Yuan</a>, <a href="/search/physics?searchtype=author&query=He%2C+C">Chao He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17390v1-abstract-short" style="display: inline;"> Skyrmions are important topologically non-trivial fields characteristic of models spanning scales from the microscopic to the cosmological. However, the Skyrmion number can only be defined for fields with specific boundary conditions, limiting its use in broader contexts. Here, we address this issue through a generalized notion of the Skyrmion derived from the De Rham cohomology of compactly suppo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17390v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17390v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17390v1-abstract-full" style="display: none;"> Skyrmions are important topologically non-trivial fields characteristic of models spanning scales from the microscopic to the cosmological. However, the Skyrmion number can only be defined for fields with specific boundary conditions, limiting its use in broader contexts. Here, we address this issue through a generalized notion of the Skyrmion derived from the De Rham cohomology of compactly supported forms. This allows for the definition of an entirely new $\coprod_{i=1}^\infty \mathbb{Z}^i$-valued topological number that assigns a tuple of integers $(a_1, \ldots, a_k)\in \mathbb{Z}^k$ to a field instead of a single number, with no restrictions to its boundary. The notion of the generalized Skyrmion presented in this paper is completely abstract and can be applied to vector fields in any discipline, not unlike index theory within dynamical systems. To demonstrate the power of our new formalism, we focus on the propagation of optical polarization fields and show that our newly defined generalized Skyrmion number significantly increases the dimension of data that can be stored within the field while also demonstrating strong robustness. Our work represents a fundamental paradigm shift away from the study of fields with natural topological character to engineered fields that can be artificially embedded with topological structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17390v1-abstract-full').style.display = 'none'; document.getElementById('2409.17390v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08778">arXiv:2409.08778</a> <span> [<a href="https://arxiv.org/pdf/2409.08778">pdf</a>, <a href="https://arxiv.org/format/2409.08778">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a> , et al. (143 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08778v1-abstract-short" style="display: inline;"> The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Due to extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of (15.8 $\pm$ 1.3) events/(to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08778v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08778v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08778v1-abstract-full" style="display: none;"> The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Due to extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of (15.8 $\pm$ 1.3) events/(tonne$\cdot$year$\cdot$keV) in the (1, 30) keV region is reached in the inner part of the TPC. XENONnT is thus sensitive to a wide range of rare phenomena related to Dark Matter and Neutrino interactions, both within and beyond the Standard Model of particle physics, with a focus on the direct detection of Dark Matter in the form of weakly interacting massive particles (WIMPs). From May 2021 to December 2021, XENONnT accumulated data in rare-event search mode with a total exposure of one tonne $\cdot$ year. This paper provides a detailed description of the signal reconstruction methods, event selection procedure, and detector response calibration, as well as an overview of the detector performance in this time frame. This work establishes the foundational framework for the `blind analysis' methodology we are using when reporting XENONnT physics results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08778v1-abstract-full').style.display = 'none'; document.getElementById('2409.08778v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07221">arXiv:2409.07221</a> <span> [<a href="https://arxiv.org/pdf/2409.07221">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Sound Wave Manipulation Based on Valley Acoustic Interferometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+W">Wei Zhao</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jia-He Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+S">Shu-Guang Cheng</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+Y">Yong Mao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaojun Zhang</a>, <a href="/search/physics?searchtype=author&query=Tao%2C+Z">Zhi Tao</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+H">Hua Jiang</a>, <a href="/search/physics?searchtype=author&query=Hang%2C+Z+H">Zhi Hong Hang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07221v1-abstract-short" style="display: inline;"> Topological acoustics provides new opportunities for materials with unprecedented functions. In this work, we report a design of topological valley acoustic interferometers by Y-shaped valley sonic crystals. By tight-bounding calculation and experimental demonstration, we successfully tune the acoustic energy partition rate by configuring the channel. An analytical theory proposed to explain the t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07221v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07221v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07221v1-abstract-full" style="display: none;"> Topological acoustics provides new opportunities for materials with unprecedented functions. In this work, we report a design of topological valley acoustic interferometers by Y-shaped valley sonic crystals. By tight-bounding calculation and experimental demonstration, we successfully tune the acoustic energy partition rate by configuring the channel. An analytical theory proposed to explain the transmission property matches well with experimental observations. An additional 蟺 Berry phase is verified to accumulate circling along the shape-independent topological valley acoustic interferometer, unique in the pseudospin half systems. Based on the spectral oscillation originating from the accumulated dynamic phase and 蟺 Berry phase, a simplified method to measure acoustic valley interface dispersion is explored, which overcomes the shortcomings of the traditional fast Fourier transform method and improves the measuring efficiency by simply analyzing the peaks and dips of the measured transmission spectrum. Moreover, an effective approach to tuning its transmissions, as well as the spectral line shapes proposed and realized by the local geometry design of the interferometer, exhibits strong tunability under an unchanged physical mechanism. Our work opens an avenue to design future acoustic devices with the function of sound wave manipulation based on the physical mechanism of interference and Berry phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07221v1-abstract-full').style.display = 'none'; document.getElementById('2409.07221v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03334">arXiv:2409.03334</a> <span> [<a href="https://arxiv.org/pdf/2409.03334">pdf</a>, <a href="https://arxiv.org/format/2409.03334">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A Compact Magnet System for the Tsinghua Tabletop Kibble Balance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yongchao Ma</a>, <a href="/search/physics?searchtype=author&query=Li%2C+N">Nanjia Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Weibo Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+K">Kang Ma</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+W">Wei Zhao</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+S">Songling Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shisong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03334v1-abstract-short" style="display: inline;"> Although the so-called magnetic geometrical factor, $Bl$, of a Kibble balance does not appear in the Kibble equations, it offers the precision link between electrical and mechanical quantities and furthers a quasi-quantum traceability path for mass metrology. This feature makes the magnet system, supplying the $Bl$ in Kibble equations, play a core role in Kibble balances. Following the open-hardwa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03334v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03334v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03334v1-abstract-full" style="display: none;"> Although the so-called magnetic geometrical factor, $Bl$, of a Kibble balance does not appear in the Kibble equations, it offers the precision link between electrical and mechanical quantities and furthers a quasi-quantum traceability path for mass metrology. This feature makes the magnet system, supplying the $Bl$ in Kibble equations, play a core role in Kibble balances. Following the open-hardware idea, we report here on the design, manufacture, assembly, optimization, and finally performance of a compact magnet system for the Tsinghua tabletop Kibble balance. Notably, the magnet system showcased in this study facilitates a straightforward upper levitation of splitting through a streamlined mechanism guide, substantially enhancing the ease of open and close operations. Experimental tests show the realized magnet systems can yield a high $Bl$ value (e.g., 400 Tm for a bifilar coil and 800 Tm for a single coil with a wire gauge of 0.2 mm) meanwhile a low volume/weight (40 kg) thanks to the uniformity improvement of magnetic profiles. Furthermore, important parameters related to systematic effects, such as the current effect, are checked, aiming for a final mass-realization accuracy at the $10^{-8}$ level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03334v1-abstract-full').style.display = 'none'; document.getElementById('2409.03334v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 figures, submitted to IEEE Trans. I & M</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02123">arXiv:2409.02123</a> <span> [<a href="https://arxiv.org/pdf/2409.02123">pdf</a>, <a href="https://arxiv.org/format/2409.02123">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> PuYun: Medium-Range Global Weather Forecasting Using Large Kernel Attention Convolutional Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhu%2C+S">Shengchen Zhu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yiming Chen</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+P">Peiying Yu</a>, <a href="/search/physics?searchtype=author&query=Qu%2C+X">Xiang Qu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Yuxiao Zhou</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yiming Ma</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zhizhan Zhao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yukai Liu</a>, <a href="/search/physics?searchtype=author&query=Mi%2C+H">Hao Mi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+B">Bin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02123v2-abstract-short" style="display: inline;"> Accurate weather forecasting is essential for understanding and mitigating weather-related impacts. In this paper, we present PuYun, an autoregressive cascade model that leverages large kernel attention convolutional networks. The model's design inherently supports extended weather prediction horizons while broadening the effective receptive field. The integration of large kernel attention mechani… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02123v2-abstract-full').style.display = 'inline'; document.getElementById('2409.02123v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02123v2-abstract-full" style="display: none;"> Accurate weather forecasting is essential for understanding and mitigating weather-related impacts. In this paper, we present PuYun, an autoregressive cascade model that leverages large kernel attention convolutional networks. The model's design inherently supports extended weather prediction horizons while broadening the effective receptive field. The integration of large kernel attention mechanisms within the convolutional layers enhances the model's capacity to capture fine-grained spatial details, thereby improving its predictive accuracy for meteorological phenomena. We introduce PuYun, comprising PuYun-Short for 0-5 day forecasts and PuYun-Medium for 5-10 day predictions. This approach enhances the accuracy of 10-day weather forecasting. Through evaluation, we demonstrate that PuYun-Short alone surpasses the performance of both GraphCast and FuXi-Short in generating accurate 10-day forecasts. Specifically, on the 10th day, PuYun-Short reduces the RMSE for Z500 to 720 $m^2/s^2$, compared to 732 $m^2/s^2$ for GraphCast and 740 $m^2/s^2$ for FuXi-Short. Additionally, the RMSE for T2M is reduced to 2.60 K, compared to 2.63 K for GraphCast and 2.65 K for FuXi-Short. Furthermore, when employing a cascaded approach by integrating PuYun-Short and PuYun-Medium, our method achieves superior results compared to the combined performance of FuXi-Short and FuXi-Medium. On the 10th day, the RMSE for Z500 is further reduced to 638 $m^2/s^2$, compared to 641 $m^2/s^2$ for FuXi. These findings underscore the effectiveness of our model ensemble in advancing medium-range weather prediction. Our training code and model will be open-sourced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02123v2-abstract-full').style.display = 'none'; document.getElementById('2409.02123v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01822">arXiv:2409.01822</a> <span> [<a href="https://arxiv.org/pdf/2409.01822">pdf</a>, <a href="https://arxiv.org/format/2409.01822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Capillary-driven migration of droplets on conical fibers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mao%2C+Y">Yixiao Mao</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+C">Chengxi Zhao</a>, <a href="/search/physics?searchtype=author&query=Mu%2C+K">Kai Mu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+K">Kai Li</a>, <a href="/search/physics?searchtype=author&query=Si%2C+T">Ting Si</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01822v1-abstract-short" style="display: inline;"> A droplet placed on a hydrophilic conical fiber tends to move toward the end of larger radii due to capillary action. Experimental investigations are performed to explore the dynamics of droplets with varying viscosities and volumes on different fibers at the microscale. Droplets are found to accelerate initially and subsequently decelerate during migration. A dynamic model is developed to capture… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01822v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01822v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01822v1-abstract-full" style="display: none;"> A droplet placed on a hydrophilic conical fiber tends to move toward the end of larger radii due to capillary action. Experimental investigations are performed to explore the dynamics of droplets with varying viscosities and volumes on different fibers at the microscale. Droplets are found to accelerate initially and subsequently decelerate during migration. A dynamic model is developed to capture dynamics of the droplet migration, addressing the limitations of previous equilibrium-based scaling laws. Both experimental results and theoretical predictions indicate that droplets on more divergent fibers experience a longer acceleration phase. Additionally, gravitational effects are pronounced on fibers with small cone angles, exerting a substantial influence on droplet migration even below the capillary scale. Moreover, droplets move more slowly on dry fibers compared to those prewetted with the same liquid, primarily attributed to the increased friction. The experiments reveal the formation of a residual liquid film after droplet migration on dry fibers, leading to considerable volume loss in the droplets. To encompass the intricacies of migration on dry fibers, the model is refined to incorporate a higher friction coefficient and variable droplet volumes, providing a more comprehensive depiction of the underlying physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01822v1-abstract-full').style.display = 'none'; document.getElementById('2409.01822v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16992">arXiv:2408.16992</a> <span> [<a href="https://arxiv.org/pdf/2408.16992">pdf</a>, <a href="https://arxiv.org/format/2408.16992">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Exaptation: Academic mentees' career pathway to be independent and impactful </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xing%2C+Y">Yanmeng Xing</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Ye Sun</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+T">Tongxin Pan</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+X">Xianglong Liang</a>, <a href="/search/physics?searchtype=author&query=Livan%2C+G">Giacomo Livan</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yifang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16992v1-abstract-short" style="display: inline;"> In science, mentees often follow their mentors' career paths, but exceptional mentees frequently break from this routine, sometimes even outperforming their mentors. However, the pathways to independence for these excellent mentees and their interactions with mentors remain unclear. We analyzed the careers of over 500,000 mentees in Chemistry, Neuroscience, and Physics over the past 60 years to ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16992v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16992v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16992v1-abstract-full" style="display: none;"> In science, mentees often follow their mentors' career paths, but exceptional mentees frequently break from this routine, sometimes even outperforming their mentors. However, the pathways to independence for these excellent mentees and their interactions with mentors remain unclear. We analyzed the careers of over 500,000 mentees in Chemistry, Neuroscience, and Physics over the past 60 years to examine the strategies mentees employ in selecting research topics relative to their mentors, how these strategies evolve, and their resulting impact. Utilizing co-citation network analysis and a topic-specific impact allocation algorithm, we mapped the topic territory for each mentor-mentee pair and quantified their academic impact accrued within the topic. Our findings reveal mentees tend to engage with their mentors' less-dominated topics and explore new topics at the same time, and through this exaptive process, they begin to progressively establish their own research territories. This trend is particularly pronounced among those who outperform their mentors. Moreover, we identified an inverted U-shaped curve between the extent of topic divergence and the mentees' long-term impact, suggesting a moderate divergence from the mentors' research focus optimizes the mentees' academic impact. Finally, along the path to independence, increased coauthorship with mentors impedes the mentees' impact, whereas extending their collaboration networks with the mentors' former collaborators proves beneficial. These findings fill a crucial gap in understanding how mentees' research topic selection strategies affect academic success and offer valuable guidance for early-career researchers on pursuing independent research paths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16992v1-abstract-full').style.display = 'none'; document.getElementById('2408.16992v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 94-00 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15142">arXiv:2408.15142</a> <span> [<a href="https://arxiv.org/pdf/2408.15142">pdf</a>, <a href="https://arxiv.org/format/2408.15142">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Low-cost demonstration of the Zeeman effect: From qualitative observation to quantitative experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qin%2C+S">Shao-Han Qin</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yu-Han Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15142v1-abstract-short" style="display: inline;"> The Zeeman effect, a fundamental quantum phenomenon, demonstrates the interaction between magnetic fields and atomic systems. While precise spectroscopic measurements of this effect have advanced significantly, there remains a lack of simple, visually accessible demonstrations for educational purposes. Here, we present a low-cost experiment that allows for direct visual observation of the Zeeman e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15142v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15142v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15142v1-abstract-full" style="display: none;"> The Zeeman effect, a fundamental quantum phenomenon, demonstrates the interaction between magnetic fields and atomic systems. While precise spectroscopic measurements of this effect have advanced significantly, there remains a lack of simple, visually accessible demonstrations for educational purposes. Here, we present a low-cost experiment that allows for direct visual observation of the Zeeman effect. Our setup involves a flame containing sodium (from table salt) placed in front of a sodium vapor lamp. When a magnetic field is applied to the flame, the shadow cast by the flame noticeably lightens, providing a clear, naked-eye demonstration of the Zeeman effect. Furthermore, we conduct two quantitative experiments using this setup, examining the effects of varying magnetic field strength and sodium concentration. This innovative approach not only enriches the experimental demonstration for teaching atomic physics at undergraduate and high school levels but also provides an open platform for students to explore the Zeeman effect through hands-on experience. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15142v1-abstract-full').style.display = 'none'; document.getElementById('2408.15142v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures, Comments are welcome. This manuscript is intended for submission to American Journal of Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08897">arXiv:2408.08897</a> <span> [<a href="https://arxiv.org/pdf/2408.08897">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A Workflow for Utilizing OpenFOAM Data Structure in Physics-Informed Deep Learning Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mao%2C+Y">Yijin Mao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuwen Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08897v1-abstract-short" style="display: inline;"> This study presents a novel methodology for integrating physics-informed loss functions into deep learning models using OpenFOAM's comprehensive data structures. Leveraging the robust and flexible capabilities of OpenFOAM's data structure for handling complex geometries and boundary conditions, it is demonstrated how to construct detailed loss functions that accurately embed physics constraints an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08897v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08897v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08897v1-abstract-full" style="display: none;"> This study presents a novel methodology for integrating physics-informed loss functions into deep learning models using OpenFOAM's comprehensive data structures. Leveraging the robust and flexible capabilities of OpenFOAM's data structure for handling complex geometries and boundary conditions, it is demonstrated how to construct detailed loss functions that accurately embed physics constraints and potentially enhance the training and performance of neural networks in handling industrial-level complicated geometry for computational fluid dynamics (CFD) simulations. The present work primarily focuses on the 1D Burger equation to showcase the detailed procedure of constructing initial loss, boundary loss, and residual loss. While the computational geometry employed here is relatively simple, the procedure is sufficiently general to illustrate its applicability to more complex computational domains. The results show the trained operator former (OFormer) neural network can successfully predict the simulation results subject to the OpenFOAM'data structure composed loss. This framework potentially opens new avenues for using deep learning to tackle complex industrial simulation challenges, promising significant advancements in the accuracy and practicality of CFD applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08897v1-abstract-full').style.display = 'none'; document.getElementById('2408.08897v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02877">arXiv:2408.02877</a> <span> [<a href="https://arxiv.org/pdf/2408.02877">pdf</a>, <a href="https://arxiv.org/format/2408.02877">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.191002">10.1103/PhysRevLett.133.191002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Indication of Solar $^8$B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a> , et al. (142 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02877v2-abstract-short" style="display: inline;"> We present the first measurement of nuclear recoils from solar $^8$B neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t$\times$yr resulted in 37 observed events above 0.5 keV,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02877v2-abstract-full').style.display = 'inline'; document.getElementById('2408.02877v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02877v2-abstract-full" style="display: none;"> We present the first measurement of nuclear recoils from solar $^8$B neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t$\times$yr resulted in 37 observed events above 0.5 keV, with ($26.4^{+1.4}_{-1.3}$) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73 $蟽$. The measured $^8$B solar neutrino flux of $(4.7_{-2.3}^{+3.6})\times 10^6 \mathrm{cm}^{-2}\mathrm{s}^{-1}$ is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted CE$谓$NS cross section on Xe of $(1.1^{+0.8}_{-0.5})\times10^{-39} \mathrm{cm}^2$ is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02877v2-abstract-full').style.display = 'none'; document.getElementById('2408.02877v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 191002 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01646">arXiv:2408.01646</a> <span> [<a href="https://arxiv.org/pdf/2408.01646">pdf</a>, <a href="https://arxiv.org/format/2408.01646">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.111.012005">10.1103/PhysRevD.111.012005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Feasibility of Liquid-phase Xenon Proportional Scintillation for Low-energy Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qi%2C+J">Jianyang Qi</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+K">Kaixuan Ni</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+H">Haiwen Xu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yue Ma</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yuechen Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01646v1-abstract-short" style="display: inline;"> Dual phase xenon time projection chambers (TPCs) detect both the scintillation photons and ionization electrons created by energy depositions within the liquid xenon (LXe) volume. The electrons are extracted from the interaction site through a gas gap, where they meet a high electric field where proportional scintillation occurs. This converts the electron signal into a light signal, and yields a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01646v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01646v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01646v1-abstract-full" style="display: none;"> Dual phase xenon time projection chambers (TPCs) detect both the scintillation photons and ionization electrons created by energy depositions within the liquid xenon (LXe) volume. The electrons are extracted from the interaction site through a gas gap, where they meet a high electric field where proportional scintillation occurs. This converts the electron signal into a light signal, and yields a high electron detection efficiency with a gain of tens of photoelectrons (PE) per electron. This technique of detecting both scintillation and ionization gives dual phase xenon TPCs the capability to distinguish between electronic and nuclear recoils, which is a key part of how these detectors are able to reach world-leading limits on Weakly Interacting Massive Particle (WIMP) dark matter. However, not all electrons can be extracted through the liquid-gas interface, and a constant millimeter-scale gas gap needs to be maintained, which may be a technological challenge if dual-phase xenon TPCs are to be scaled up for future dark matter searches. Furthermore, there is a background of single-electron peaks that follow a large ionization signal (S2) of unclear origin which may be due in part to the liquid-gas interface, and limits the sensitivity of these detectors towards low mass dark matter. In this paper, we demonstrate that a purely single-phase liquid xenon TPC which produces proportional scintillation directly in the liquid is still capable of discriminating between electronic and nuclear recoils, but that the background of single-electrons following an S2 is still likely unrelated to the liquid-gas interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01646v1-abstract-full').style.display = 'none'; document.getElementById('2408.01646v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 27 figures, 4 page appendix</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Ma%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Ma%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Ma%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>