CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 2,296 results for author: <span class="mathjax">Wang, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Wang%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wang, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wang%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wang, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Wang%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Wang%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15269">arXiv:2502.15269</a> <span> [<a href="https://arxiv.org/pdf/2502.15269">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Triplet J-driven DNP, a proposal to increase the sensitivity of solution-state NMR without microwave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Concilio%2C+M+G">Maria Grazia Concilio</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yiwen Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Linjun Wang</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+X">Xueqian Kong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15269v1-abstract-short" style="display: inline;"> Dynamic nuclear polarization (DNP) is an important method to enhance the limited sensitivity of nuclear magnetic resonance (NMR). Using the existing mechanisms such as Overhauser DNP (ODNP) is still difficult to achieve significant enhancement of NMR signals in solutions at a high magnetic field. The recently proposed J-driven DNP (JDNP) condition (when the exchange interaction of two electron spi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15269v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15269v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15269v1-abstract-full" style="display: none;"> Dynamic nuclear polarization (DNP) is an important method to enhance the limited sensitivity of nuclear magnetic resonance (NMR). Using the existing mechanisms such as Overhauser DNP (ODNP) is still difficult to achieve significant enhancement of NMR signals in solutions at a high magnetic field. The recently proposed J-driven DNP (JDNP) condition (when the exchange interaction of two electron spins matches their Lamour frequency) may enable signal enhancement in solution as it requires only dipolar interaction between the biradical polarization agent and the analyte. However, likewise ODNP, the current JDNP strategy still requires the saturation of the electron polarization with high microwave power which has poor penetration and is associated with heating effects in most liquids. The replacement of high-power microwave irradiation is possible if the temporal electron polarization imbalance is created by a different wavelength such as the visible light. Here, we propose a triplet JDNP mechanism which first exploits the light-induced singlet fission process (i.e., a singlet exciton is converted into two triplet excitons). As the JDNP condition is fulfilled, a triplet-to-triplet cross-relaxation process will occur with different rates and consequently lead to the creation of hyperpolarization on the coupled nuclear spin states. This communication discusses the theory behind the triplet JDNP proposal, as well as the polarizing agents and conditions that will enable the new approach to enhance the sensitivity of NMR without the need of microwave irradiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15269v1-abstract-full').style.display = 'none'; document.getElementById('2502.15269v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14283">arXiv:2502.14283</a> <span> [<a href="https://arxiv.org/pdf/2502.14283">pdf</a>, <a href="https://arxiv.org/format/2502.14283">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451158">10.1051/0004-6361/202451158 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding observational characteristics of solar flare current sheets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ren%2C+Z">Zining Ren</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yulei Wang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xin Cheng</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+M">Mingde Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14283v1-abstract-short" style="display: inline;"> The elongated bright structures above solar flare loops are suggested to be current sheets, where magnetic reconnection takes place. Observations have revealed various characteristics of the current sheet; however, their physical origin remains to be ascertained. In this study we aim to reveal the relations of observational characteristics of current sheets with the fundamental processes of magnet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14283v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14283v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14283v1-abstract-full" style="display: none;"> The elongated bright structures above solar flare loops are suggested to be current sheets, where magnetic reconnection takes place. Observations have revealed various characteristics of the current sheet; however, their physical origin remains to be ascertained. In this study we aim to reveal the relations of observational characteristics of current sheets with the fundamental processes of magnetic reconnection. Using high-resolution 3D magnetohydrodynamic simulations of turbulent magnetic reconnection within a solar flare current sheet, we synthesized the remote-sensing observations of the current sheet and determined their physical properties. Turbulent magnetic reconnection can significantly broaden the apparent width of the current sheet, which is much larger than the realistic physical width because of the superposition effect. The differential emission measures of the current sheet have two peaks; the high-temperature component is spatially related to confirmed small-scale reconnection sites, showing that the current sheet is directly heated by reconnection. Moreover, we demonstrate that strong turbulence can cause the nonthermal broadening of spectral lines at both the current sheet and flare loop-top regions. A strong correlation between them in time is also observed. Our 3D turbulent magnetic reconnection flare model can be used to interpret primary observational characteristics of the elongated bright current sheets of solar flares. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14283v1-abstract-full').style.display = 'none'; document.getElementById('2502.14283v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 12 figures. Accepted for publication in Astronomy & Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13018">arXiv:2502.13018</a> <span> [<a href="https://arxiv.org/pdf/2502.13018">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.4c16450">10.1021/acsnano.4c16450 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Artificially creating emergent interfacial antiferromagnetism and its manipulation in a magnetic van-der-Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiangqi Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Cong Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yupeng Wang</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+C">Chunhui Ye</a>, <a href="/search/physics?searchtype=author&query=Rahman%2C+A">Azizur Rahman</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Min Zhang</a>, <a href="/search/physics?searchtype=author&query=Son%2C+S">Suhan Son</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+J">Jun Tan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zengming Zhang</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+W">Wei Ji</a>, <a href="/search/physics?searchtype=author&query=Park%2C+J">Je-Geun Park</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai-Xuan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13018v1-abstract-short" style="display: inline;"> Van der Waals (vdW) magnets, with their two-dimensional (2D) atomic structures, provide a unique platform for exploring magnetism at the nanoscale. Although there have been numerous reports on their diverse quantum properties, the emergent interfacial magnetism--artificially created at the interface between two layered magnets--remains largely unexplored. This work presents observations of such em… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13018v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13018v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13018v1-abstract-full" style="display: none;"> Van der Waals (vdW) magnets, with their two-dimensional (2D) atomic structures, provide a unique platform for exploring magnetism at the nanoscale. Although there have been numerous reports on their diverse quantum properties, the emergent interfacial magnetism--artificially created at the interface between two layered magnets--remains largely unexplored. This work presents observations of such emergent interfacial magnetism at the ferromagnet/antiferromagnet interface in a vdW heterostructure. We report the discovery of an intermediate Hall resistance plateau in the anomalous Hall loop, indicative of emergent interfacial antiferromagnetism fostered by the heterointerface. This plateau can be stabilized and further manipulated under varying pressures but collapses under high pressures over 10 GPa. Our theoretical calculations reveal that charge transfer at the interface is pivotal in establishing the interlayer antiferromagnetic spin-exchange interaction. This work illuminates the previously unexplored emergent interfacial magnetism at a vdW interface comprised of a ferromagnetic metal and an antiferromagnetic insulator, and highlights its gradual evolution under increasing pressure. These findings enrich the portfolio of emergent interfacial magnetism and support further investigations on vdW magnetic interfaces and the development of next-generation spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13018v1-abstract-full').style.display = 'none'; document.getElementById('2502.13018v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ACS Nano; 42 pages, 5 main figures, 8 supporting figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11282">arXiv:2502.11282</a> <span> [<a href="https://arxiv.org/pdf/2502.11282">pdf</a>, <a href="https://arxiv.org/ps/2502.11282">ps</a>, <a href="https://arxiv.org/format/2502.11282">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Directional Transport in Rydberg Atom Arrays via Kinetic Constraints and Temporal Modulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yupeng Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Junjie Wang</a>, <a href="/search/physics?searchtype=author&query=Panja%2C+A">Aishik Panja</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xinghan Wang</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Q">Qi-Yu Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11282v1-abstract-short" style="display: inline;"> We propose an experimentally feasible scheme to achieve directional transport of Rydberg excitations and entangled states in atomic arrays with unequal spacings. By leveraging distance-dependent Rydberg-Rydberg interactions and temporally modulated laser detunings, our method directs excitation flow without requiring local addressing. Numerical simulations demonstrate robust and coherent transport… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11282v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11282v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11282v1-abstract-full" style="display: none;"> We propose an experimentally feasible scheme to achieve directional transport of Rydberg excitations and entangled states in atomic arrays with unequal spacings. By leveraging distance-dependent Rydberg-Rydberg interactions and temporally modulated laser detunings, our method directs excitation flow without requiring local addressing. Numerical simulations demonstrate robust and coherent transport under experimentally realistic conditions. Additionally, we show that this scheme enables controlled transport of Bell pairs and preserves entanglement during propagation. The approach provides a versatile platform for programmable directional transport, with potential applications in quantum simulation, entanglement distribution, and the design of scalable quantum processors and networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11282v1-abstract-full').style.display = 'none'; document.getElementById('2502.11282v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11056">arXiv:2502.11056</a> <span> [<a href="https://arxiv.org/pdf/2502.11056">pdf</a>, <a href="https://arxiv.org/format/2502.11056">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Accelerated engineering of topological interface states in one-dimensional phononic crystals via deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xue-Qian Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yi-Da Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiao-Shuang Li</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+T">Tian-Xue Ma</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yue-Sheng Wang</a>, <a href="/search/physics?searchtype=author&query=Zhuang%2C+Z">Zhuo Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11056v1-abstract-short" style="display: inline;"> Topological interface states (TISs) in phononic crystals (PnCs) are robust acoustic modes against external perturbations, which are of great significance in scientific and engineering communities. However, designing a pair of PnCs with specified band gaps (BGs) and TIS frequency remains a challenging problem. In this work, deep learning (DL) approaches are used for the engineering of one-dimension… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11056v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11056v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11056v1-abstract-full" style="display: none;"> Topological interface states (TISs) in phononic crystals (PnCs) are robust acoustic modes against external perturbations, which are of great significance in scientific and engineering communities. However, designing a pair of PnCs with specified band gaps (BGs) and TIS frequency remains a challenging problem. In this work, deep learning (DL) approaches are used for the engineering of one-dimensional (1D) PnCs with high design freedoms. The considered 1D PnCs are composed of periodic solid scatterers embedded in the air background, whose unit cell is divided into a matrix with 32 * 32 pixels. First, the variational autoencoder is applied to reduce the dimensionality of unit cell images, allowing accurate reconstruction of PnC images with different numbers of scatterers. Subsequently, the multilayer perceptron and the tandem neural network are used to realize the property prediction and customized design of 1D PnCs, respectively. The correlation coefficients for the property prediction and inverse design are more than 97%. The unit cell images of 1D PnCs with specific BG properties could be successfully and instantaneously designed. Importantly, the implementation of a "one-to-many" design of PnC pairs with specific TIS frequencies is realized. Furthermore, the reliability and robustness of the constructed networks are confirmed by randomly specifying the design targets as well as the experimental verification. This study demonstrates the broad application prospects of DL approaches in the field of PnC design and provides new ideas and methods for the intelligent design of artificially functional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11056v1-abstract-full').style.display = 'none'; document.getElementById('2502.11056v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10998">arXiv:2502.10998</a> <span> [<a href="https://arxiv.org/pdf/2502.10998">pdf</a>, <a href="https://arxiv.org/format/2502.10998">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Self-injection locking dynamics with Raman actions in AlN microresonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ding%2C+Y">Yulei Ding</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yifei Wang</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+S">Shunyu Yao</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yanan Guo</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+J">Jianchang Yan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Junxi Wang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+C">Changxi Yang</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+C">Chengying Bao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10998v1-abstract-short" style="display: inline;"> Self-injection locking (SIL) of semiconductor lasers to on-chip microcavities enables significant laser noise purification and diverse nonlinear optical actions. Realizing nonlinear SIL in new material platforms is essential for advancing photonic integrated circuits. Here, we demonstrate nonlinear SIL in AlN microcavities that generates stimulated Raman lasers (SRLs) and microcombs. We achieve SR… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10998v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10998v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10998v1-abstract-full" style="display: none;"> Self-injection locking (SIL) of semiconductor lasers to on-chip microcavities enables significant laser noise purification and diverse nonlinear optical actions. Realizing nonlinear SIL in new material platforms is essential for advancing photonic integrated circuits. Here, we demonstrate nonlinear SIL in AlN microcavities that generates stimulated Raman lasers (SRLs) and microcombs. We achieve SRL emission with an output power exceeding 10 mW and a fundamental linewidth below 70 Hz in the 1750 nm band. The Kerr effect further mediates stimulated emissions at the 2nd-Stokes and anti-Stokes frequencies. Multi-time-scale thermal relaxations during turnkey SIL enable GHz-level frequency sweeps of the SRL and pump. Raman actions also render a Stokes platicon microcomb state with co-emission in the pump and Stokes bands. Hybrid-integrated crystalline microresonators can be a versatile platform to investigate nonlinear photon-phonon interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10998v1-abstract-full').style.display = 'none'; document.getElementById('2502.10998v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10963">arXiv:2502.10963</a> <span> [<a href="https://arxiv.org/pdf/2502.10963">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/physics?searchtype=author&query=Shou%2C+Y">Yichang Shou</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiawei Liu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Q">Qiang Yang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Shizhen Chen</a>, <a href="/search/physics?searchtype=author&query=Shu%2C+W">Weixing Shu</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+S">Shuangchun Wen</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+H">Hailu Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10963v1-abstract-short" style="display: inline;"> Quantum entanglement, a fundamental concept in quantum mechanics, lies at the heart of many current and future quantum technologies. A pivotal task is generation and control of diverse quantum entangled states in a more compact and flexible manner. Here, we introduce an approach to achieve diverse path entanglement by exploiting the interaction between noncommutative metasurfaces and entangled pho… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10963v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10963v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10963v1-abstract-full" style="display: none;"> Quantum entanglement, a fundamental concept in quantum mechanics, lies at the heart of many current and future quantum technologies. A pivotal task is generation and control of diverse quantum entangled states in a more compact and flexible manner. Here, we introduce an approach to achieve diverse path entanglement by exploiting the interaction between noncommutative metasurfaces and entangled photons. Different from other path entanglement, our quantum path entanglement is evolvement path entanglement of photons on Poincar茅 sphere. Due to quantum entanglement between idler photons and structured signal photons, evolvement path of idler photons on the fundamental Poincar茅 sphere can be nonlocally mirrored by structured signal photons on any high-order Poincar茅 sphere, resulting in quantum path entanglement. Benefiting from noncommutative metasurfaces, diverse quantum path entanglement can be switched across different higher-order Poincar茅 spheres using distinct combination sequences of metasurfaces. Our method allows for the tuning of diverse quantum path entanglement across a broad spectrum of quantum states, offering a significant advancement in the manipulation of quantum entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10963v1-abstract-full').style.display = 'none'; document.getElementById('2502.10963v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10941">arXiv:2502.10941</a> <span> [<a href="https://arxiv.org/pdf/2502.10941">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Compact Turnkey Soliton Microcombs at Microwave Rates via Wafer-Scale Fabrication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuanlei Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Ze Wang</a>, <a href="/search/physics?searchtype=author&query=Lao%2C+C">Chenghao Lao</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+T">Tianyu Xu</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Y">Yinke Cheng</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zhenyu Xie</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Junqi Wang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+H">Haoyang Luo</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xin Zhou</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+B">Bo Ni</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+K">Kaixuan Zhu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yanwu Liu</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+X">Xing Jin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Min Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jian-Fei Liu</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+X">Xuening Cao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Ting Wang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+B">Bei-Bei Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+F">Fangxing Zhang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+Y">Yun-Feng Xiao</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Q">Qi-Fan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10941v1-abstract-short" style="display: inline;"> Soliton microcombs generated in nonlinear microresonators facilitate the photonic integration of timing, frequency synthesis, and astronomical calibration functionalities. For these applications, low-repetition-rate soliton microcombs are essential as they establish a coherent link between optical and microwave signals. However, the required pump power typically scales with the inverse of the repe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10941v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10941v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10941v1-abstract-full" style="display: none;"> Soliton microcombs generated in nonlinear microresonators facilitate the photonic integration of timing, frequency synthesis, and astronomical calibration functionalities. For these applications, low-repetition-rate soliton microcombs are essential as they establish a coherent link between optical and microwave signals. However, the required pump power typically scales with the inverse of the repetition rate, and the device footprint scales with the inverse of square of the repetition rate, rendering low-repetition-rate soliton microcombs challenging to integrate within photonic circuits. This study designs and fabricates silicon nitride microresonators on 4-inch wafers with highly compact form factors. The resonator geometries are engineered from ring to finger and spiral shapes to enhance integration density while attaining quality factors over 10^7. Driven directly by an integrated laser, soliton microcombs with repetition rates below 10 GHz are demonstrated via turnkey initiation. The phase noise performance of the synthesized microwave signals reaches -130 dBc/Hz at 100 kHz offset frequency for 10 GHz carrier frequencies. This work enables the high-density integration of soliton microcombs for chip-based microwave photonics and spectroscopy applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10941v1-abstract-full').style.display = 'none'; document.getElementById('2502.10941v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10823">arXiv:2502.10823</a> <span> [<a href="https://arxiv.org/pdf/2502.10823">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Performance Characteristics of the Battery-Operated Si PIN Diode Detector with Integrated Preamplifier and Data Acquisition Module for Fusion Particle Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+A+X">Allan X. Chen</a>, <a href="/search/physics?searchtype=author&query=Sigal%2C+B+F">Benjamin F. Sigal</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qiong Wang</a>, <a href="/search/physics?searchtype=author&query=Martinis%2C+J">John Martinis</a>, <a href="/search/physics?searchtype=author&query=Mitchell%2C+N">Naomi Mitchell</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuxing Wang</a>, <a href="/search/physics?searchtype=author&query=Wong%2C+A+Y">Alfred Y. Wong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhifei Li</a>, <a href="/search/physics?searchtype=author&query=Gunn%2C+A">Alexander Gunn</a>, <a href="/search/physics?searchtype=author&query=Salazar%2C+M">Matthew Salazar</a>, <a href="/search/physics?searchtype=author&query=Abdalla%2C+N">Nawar Abdalla</a>, <a href="/search/physics?searchtype=author&query=Wrixon%2C+B">Benjamin Wrixon</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Chia-Yi Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+N">Nai-Wei Liu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+K">KaiJian Xiao</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+C">Chih-Jui Xie</a>, <a href="/search/physics?searchtype=author&query=Jheng%2C+M">Ming-Cheng Jheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10823v2-abstract-short" style="display: inline;"> We present the performance and application of a commercial off-the shelf Si PIN diode (Hamamatsu S14605) as a charged particle detector in a compact ion beam system (IBS) capable of generating D-D and p-B fusion charged particles. This detector is inexpensive, widely available, and operates in photoconductive mode under a reverse bias voltage of 12 V, supplied by an A23 battery. A charge-sensitive… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10823v2-abstract-full').style.display = 'inline'; document.getElementById('2502.10823v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10823v2-abstract-full" style="display: none;"> We present the performance and application of a commercial off-the shelf Si PIN diode (Hamamatsu S14605) as a charged particle detector in a compact ion beam system (IBS) capable of generating D-D and p-B fusion charged particles. This detector is inexpensive, widely available, and operates in photoconductive mode under a reverse bias voltage of 12 V, supplied by an A23 battery. A charge-sensitive preamplifier (CSP) is powered by two 3 V lithium batteries (A123), providing +/-3 V rail voltages. Both the detector and preamplifier circuits are integrated onto the same 4-layer PCB and housed on the vacuum side of the IBS, facing the fusion target. The system employs a CF-2.75 flanged DB-9 connector feedthrough to supply the signal, bias voltage, and rail voltages. To mitigate the high sensitivity of the detector to optical light, a thin aluminum foil assembly is used to block optical emissions from the ion beam and target. Charged particles generate step responses on the preamplifier output, with pulse rise times on the order of 0.2 to 0.3 us. These signals are recorded using a custom-built data acquisition unit, which features an optical fiber data link to ensure electrical isolation of the detector electronics. Subsequent digital signal processing is employed to optimally shape the pulses using a CR-RC^4 filter to produce Gaussian-shaped signals, enabling accurate extraction of energy information. Performance results show that the signal-to-noise ratios (S/N) for D-D fusion charged particles - protons, tritons, and helions - are approximately 30, 10, and 5, respectively, with a shaping time constant of 4 us. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10823v2-abstract-full').style.display = 'none'; document.getElementById('2502.10823v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10316">arXiv:2502.10316</a> <span> [<a href="https://arxiv.org/pdf/2502.10316">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A Physiologically-based simulation model of color appearance for red-green color vision deficiency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sun%2C+L">Lijia Sun</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+S">Shining Ma</a>, <a href="/search/physics?searchtype=author&query=Tao%2C+Y">Yong Tao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+L">Liang Jia</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yue Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yongtian Wang</a>, <a href="/search/physics?searchtype=author&query=Song%2C+a+W">and Weitao Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10316v1-abstract-short" style="display: inline;"> Various simulation methods of color appearance for dichromats or anomalous trichromats have been proposed over the years. To further improve the performance of the simulation model and extend the application range to both dichromats or anomalous trichromats, we have proposed a simulation model of cone fundamentals specifically designed for individuals with red-green type color vision deficiency (C… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10316v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10316v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10316v1-abstract-full" style="display: none;"> Various simulation methods of color appearance for dichromats or anomalous trichromats have been proposed over the years. To further improve the performance of the simulation model and extend the application range to both dichromats or anomalous trichromats, we have proposed a simulation model of cone fundamentals specifically designed for individuals with red-green type color vision deficiency (CVD) based on the CIE 2006 physiological observer model. By utilizing the simulated cone fundamentals, it becomes possible to predict the color appearance of real scenes and digital images for CVD. The fundamental premise of the new model is rooted in the hypothesis that CVD arises from a shift in the peak wavelength of the photopigment absorption spectrum of the L or M cone. Instead of simply maintaining the waveform without alteration as observed in prior studies, we altered waveforms of the absorption spectra of anomalous L/M cone photopigments when adjusting their peak wavelengths. Regarding different shapes in the absorption spectrum between the L and M cone, the absorption spectrum of the anomalous L/M cone was obtained by combining the peak wavenumber shift and linear interpolation of spectral quantal absorption curves between L- and M-photopigments in the wavenumber domain. The performance of the proposed model was substantiated through experimental validation by the pseudoisochromatic plates and Farnsworth Munsell 100 Hue test (FM-100). The findings revealed a high level of consistency between the model prediction and the actual perception reported by individuals with CVD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10316v1-abstract-full').style.display = 'none'; document.getElementById('2502.10316v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09930">arXiv:2502.09930</a> <span> [<a href="https://arxiv.org/pdf/2502.09930">pdf</a>, <a href="https://arxiv.org/format/2502.09930">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Long-Lived Photon Blockade with Weak Optical Nonlinearity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">You Wang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+X">Xu Zheng</a>, <a href="/search/physics?searchtype=author&query=Liew%2C+T+C+H">Timothy C. H. Liew</a>, <a href="/search/physics?searchtype=author&query=Chong%2C+Y+D">Y. D. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09930v1-abstract-short" style="display: inline;"> In conventional photon blockade, the occupation of a cavity mode by more than one photon is suppressed via strong optical nonlinearity. An alternative, called unconventional photon blockade, can occur under weak nonlinearity by relying on quantum interference between fine-tuned cavities. A serious limitation is the very short antibunching time window, orders of magnitude less than the cavity lifet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09930v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09930v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09930v1-abstract-full" style="display: none;"> In conventional photon blockade, the occupation of a cavity mode by more than one photon is suppressed via strong optical nonlinearity. An alternative, called unconventional photon blockade, can occur under weak nonlinearity by relying on quantum interference between fine-tuned cavities. A serious limitation is the very short antibunching time window, orders of magnitude less than the cavity lifetime. We present a method to achieve photon blockade over a large time window of several cavity lifetimes, even exceeding that of conventional photon blockade, while still requiring only weak nonlinearity. This ``long-lived photon blockade'' (LLPB) occurs when the single-photon Green's function exhibits a zero at a large cavity loss rate, which is satisfied by an exemplary configuration of four coupled cavities under weak driving. Our analytical results agree well with wavefunction Monte Carlo simulations. The LLPB phenomenon may aid the development of single-photon sources utilizing materials with weak optical nonlinearities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09930v1-abstract-full').style.display = 'none'; document.getElementById('2502.09930v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09474">arXiv:2502.09474</a> <span> [<a href="https://arxiv.org/pdf/2502.09474">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202108261">10.1002/adma.202108261 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural phase transitions between layered Indium Selenide for inte-grated photonic memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+T">Tiantian Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yong Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+D">Dun Mao</a>, <a href="/search/physics?searchtype=author&query=Benmore%2C+C+J">Chris J. Benmore</a>, <a href="/search/physics?searchtype=author&query=Evangelista%2C+I">Igor Evangelista</a>, <a href="/search/physics?searchtype=author&query=Xing%2C+H">Huadan Xing</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q">Qiu Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+F">Feifan Wang</a>, <a href="/search/physics?searchtype=author&query=Sivaraman%2C+G">Ganesh Sivaraman</a>, <a href="/search/physics?searchtype=author&query=Janotti%2C+A">Anderson Janotti</a>, <a href="/search/physics?searchtype=author&query=Law%2C+S">Stephanie Law</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+T">Tingyi Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09474v1-abstract-short" style="display: inline;"> The primary mechanism of optical memristive devices relies on the phase transitions between amorphous-crystalline states. The slow or energy hungry amorphous-crystalline transitions in optical phase-change materials are detrimental to the devices scalability and performance. Leveraging the integrated photonic platform, we demonstrate a single nanosecond pulse triggered nonvolatile and reversible s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09474v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09474v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09474v1-abstract-full" style="display: none;"> The primary mechanism of optical memristive devices relies on the phase transitions between amorphous-crystalline states. The slow or energy hungry amorphous-crystalline transitions in optical phase-change materials are detrimental to the devices scalability and performance. Leveraging the integrated photonic platform, we demonstrate a single nanosecond pulse triggered nonvolatile and reversible switching between two layered structures of indium selenide (In2Se3). High resolution pair distribution function reveals the detailed atomistic transition pathways between the layered structures. With inter-layer shear glide and isosymmetric phase transition, the switching between alpha and beta structural states contain low re-configurational entropy, allowing reversible switching between layered structures. Broadband refractive index contrast, optical transparency, and volumetric effect in the crystalline-crystalline phase transition are experimentally characterized in molecular beam epitaxy-grown thin films and compared to ab initials calculations. The nonlinear resonator transmission spectra measure an incremental linear loss rate of 3.3 GHz introduced by 1.5 micrometer long In2Se3 covered lay-er, resulting from the combinations of material absorption and scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09474v1-abstract-full').style.display = 'none'; document.getElementById('2502.09474v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08243">arXiv:2502.08243</a> <span> [<a href="https://arxiv.org/pdf/2502.08243">pdf</a>, <a href="https://arxiv.org/format/2502.08243">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Research on trigger technology of MRPC TOF-PET system and imaging results of $^{22}$Na radioactive source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jianing Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yuelei Ma</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Ziyang Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhenyan Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi Wang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+B">Baohong Guo</a>, <a href="/search/physics?searchtype=author&query=Han%2C+D">Dong Han</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuanjing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08243v1-abstract-short" style="display: inline;"> This study focuses on developing a self-triggered data acquisition system and a noise reduction algorithm for the Multi-gap Resistive Plate Chamber (MRPC) Time-of-Flight Positron Emission Tomography (TOF-PET) system. The system integrates a fast front-end amplifier, a waveform digitization module based on the DRS4 chip, and an efficient noise reduction algorithm to address challenges such as high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08243v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08243v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08243v1-abstract-full" style="display: none;"> This study focuses on developing a self-triggered data acquisition system and a noise reduction algorithm for the Multi-gap Resistive Plate Chamber (MRPC) Time-of-Flight Positron Emission Tomography (TOF-PET) system. The system integrates a fast front-end amplifier, a waveform digitization module based on the DRS4 chip, and an efficient noise reduction algorithm to address challenges such as high noise trigger rates and precise gamma-ray detection. The proposed self-triggered system, through threshold discrimination, coincidence logic, and continuous oscillation check, reduces the noise trigger rate to 0.004 Hz. Experimental results show that the system accurately localizes and images the $^{22}$Na radioactive source, and has a good time resolution of 162 ps FWHM for 0.511 MeV gamma rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08243v1-abstract-full').style.display = 'none'; document.getElementById('2502.08243v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07910">arXiv:2502.07910</a> <span> [<a href="https://arxiv.org/pdf/2502.07910">pdf</a>, <a href="https://arxiv.org/format/2502.07910">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Separation control applied to the turbulent flow around a NACA4412 wing section </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuning Wang</a>, <a href="/search/physics?searchtype=author&query=Mallor%2C+F">Fermin Mallor</a>, <a href="/search/physics?searchtype=author&query=Guardiola%2C+C">Carlos Guardiola</a>, <a href="/search/physics?searchtype=author&query=Mariani%2C+R">Raffaello Mariani</a>, <a href="/search/physics?searchtype=author&query=Vinuesa%2C+R">Ricardo Vinuesa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07910v2-abstract-short" style="display: inline;"> We carried out high-resolution large-eddy simulations (LESs) to investigate the effects of several separation-control approaches on a NACA4412 wing section with spanwise width of $L_z = 0.6$ at an angle of attack of $AoA=11^{\circ}$ at a Reynolds number of $Re_c = 200,000$ based on chord length $c$ and free-stream velocity $U_{\infty}$. Two control strategies were considered: (1) steady uniform bl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07910v2-abstract-full').style.display = 'inline'; document.getElementById('2502.07910v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07910v2-abstract-full" style="display: none;"> We carried out high-resolution large-eddy simulations (LESs) to investigate the effects of several separation-control approaches on a NACA4412 wing section with spanwise width of $L_z = 0.6$ at an angle of attack of $AoA=11^{\circ}$ at a Reynolds number of $Re_c = 200,000$ based on chord length $c$ and free-stream velocity $U_{\infty}$. Two control strategies were considered: (1) steady uniform blowing and/or suction on the suction and/or pressure sides, and (2) periodic control on the suction side. A wide range of control configurations were evaluated in terms of aerodynamic efficiency (i.e., lift-to-drag ratio) and separation delay. Uniform blowing and/or suction effectively delayed flow separation, leading to a lift increase of up to $11\%$, but yielded only marginal improvements in aerodynamic efficiency. In contrast, periodic control neither enhanced separation delay nor improved efficiency. A detailed analysis of the interaction between uniform blowing and/or suction and turbulent boundary layers (TBLs) over the wing was performed, including assessments of (1) integral boundary-layer quantities, (2) turbulence statistics, and (3) power-spectral densities. Significant modifications in Reynolds stresses and spectral characteristics were observed. To the authors' best knowledge, this is the first numerical study utilizing high-resolution LESs to provide comprehensive assessments on separation control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07910v2-abstract-full').style.display = 'none'; document.getElementById('2502.07910v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07195">arXiv:2502.07195</a> <span> [<a href="https://arxiv.org/pdf/2502.07195">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First experimental proof of PET imaging based on multi-anode MCP-PMTs with Cherenkov radiator-integrated window </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pan%2C+W">Weiyan Pan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Lingyue Chen</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+G">Guorui Huang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jun Hu</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+W">Wei Hou</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+X">Xianchao Huang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+X">Xiaorou Han</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X">Xiaoshan Jiang</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+Z">Zhen Jin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Daowu Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jingwen Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S">Shulin Liu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Z">Zehong Liang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+L">Lishuang Ma</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+Z">Zhe Ning</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+S">Sen Qian</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+L">Ling Ren</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jianning Sun</a>, <a href="/search/physics?searchtype=author&query=Si%2C+S">Shuguang Si</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Yunhua Sun</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+L">Long Wei</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+Q">Qing Wei</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Q">Qi Wu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tianyi Wang</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07195v1-abstract-short" style="display: inline;"> Improving the coincidence time resolution (CTR) of time-of-flight positron emission tomography (TOF-PET) systems to achieve a higher signal-to-noise ratio (SNR) gain or even direct positron emission imaging (dPEI) is of paramount importance for many advanced new clinical applications of PET imaging. This places higher demands on the timing performance of all aspects of PET systems. One effective a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07195v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07195v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07195v1-abstract-full" style="display: none;"> Improving the coincidence time resolution (CTR) of time-of-flight positron emission tomography (TOF-PET) systems to achieve a higher signal-to-noise ratio (SNR) gain or even direct positron emission imaging (dPEI) is of paramount importance for many advanced new clinical applications of PET imaging. This places higher demands on the timing performance of all aspects of PET systems. One effective approach is to use microchannel plate photomultiplier tubes (MCP-PMTs) for prompt Cherenkov photon detection. In this study, we developed a dual-module Cherenkov PET imaging experimental platform, utilising our proprietary 8 * 8-anode Cherenkov radiator-integrated window MCP-PMTs in combination with custom-designed multi-channel electronics, and designed a specific calibration and correction method for the platform. Using this platform, a CTR of 103 ps FWHM was achieved. We overcame the limitations of single-anode detectors in previous experiments, significantly enhanced imaging efficiency and achieved module-level Cherenkov PET imaging for the first time. Imaging experiments involving radioactive sources and phantoms of various shapes and types were conducted, which preliminarily validated the feasibility and advancement of this imaging method. In addition, the effects of normalisation correction and the interaction probability between the gamma rays and the MCP on the images and experimental results were analysed and verified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07195v1-abstract-full').style.display = 'none'; document.getElementById('2502.07195v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures, manuscript has been submitted to Physics in Medicine & Biology and is under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06481">arXiv:2502.06481</a> <span> [<a href="https://arxiv.org/pdf/2502.06481">pdf</a>, <a href="https://arxiv.org/format/2502.06481">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> FCC-ee positron source from conventional to crystal-based </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Alharthi%2C+F">Fahad Alharthi</a>, <a href="/search/physics?searchtype=author&query=Chaikovska%2C+I">Iryna Chaikovska</a>, <a href="/search/physics?searchtype=author&query=Chehab%2C+R">Robert Chehab</a>, <a href="/search/physics?searchtype=author&query=Mytrochenko%2C+V">Viktor Mytrochenko</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuting Wang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yongke Zhao</a>, <a href="/search/physics?searchtype=author&query=Bandiera%2C+L">Laura Bandiera</a>, <a href="/search/physics?searchtype=author&query=Canale%2C+N">Nicola Canale</a>, <a href="/search/physics?searchtype=author&query=Guidi%2C+V">Vincenzo Guidi</a>, <a href="/search/physics?searchtype=author&query=Malagutti%2C+L">Lorenzo Malagutti</a>, <a href="/search/physics?searchtype=author&query=Mazzolari%2C+A">Andrea Mazzolari</a>, <a href="/search/physics?searchtype=author&query=Negrello%2C+R">Riccardo Negrello</a>, <a href="/search/physics?searchtype=author&query=Patern%C3%B2%2C+G">Ginafranco Patern貌</a>, <a href="/search/physics?searchtype=author&query=Romagnoni%2C+M">Marco Romagnoni</a>, <a href="/search/physics?searchtype=author&query=Sytov%2C+A">Alexei Sytov</a>, <a href="/search/physics?searchtype=author&query=Boccanfuso%2C+D">Daniele Boccanfuso</a>, <a href="/search/physics?searchtype=author&query=Iorio%2C+A+O+M">Alberto Orso Maria Iorio</a>, <a href="/search/physics?searchtype=author&query=Bertelli%2C+S">Susanna Bertelli</a>, <a href="/search/physics?searchtype=author&query=Soldani%2C+M">Mattia Soldani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06481v1-abstract-short" style="display: inline;"> The high-luminosity requirement in future lepton colliders imposes a need for a high-intensity positron source. In the conventional scheme, positron beams are obtained by the conversion of bremsstrahlung photons into electron-positron pairs through the interaction between a high-energy electron beam and a high-Z amorphous target. One method to enhance the number of produced positrons is by boostin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06481v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06481v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06481v1-abstract-full" style="display: none;"> The high-luminosity requirement in future lepton colliders imposes a need for a high-intensity positron source. In the conventional scheme, positron beams are obtained by the conversion of bremsstrahlung photons into electron-positron pairs through the interaction between a high-energy electron beam and a high-Z amorphous target. One method to enhance the number of produced positrons is by boosting the incident electron beam power. However, the maximum heat load and thermo-mechanical stresses bearable by the target severely limit the beam power of the incident electrons. To overcome these limitations, an innovative approach using lattice coherent effects in oriented crystals appears promising. This approach uses a single thick crystal that serves as a radiator and a converter. In this paper, we investigate the application of this scheme as an alternative to the conventional positron source at the Future Circular Collider (FCC-ee). Simulations were carried out from the positron production stage to the entrance of the damping ring to estimate the accepted positron yield. The results demonstrate the advantages of the crystal-based positron source: it requires thinner targets than the conventional scheme, resulting in a 14% reduction in the deposited power while achieving a 10% increase in accepted positron yield. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06481v1-abstract-full').style.display = 'none'; document.getElementById('2502.06481v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06246">arXiv:2502.06246</a> <span> [<a href="https://arxiv.org/pdf/2502.06246">pdf</a>, <a href="https://arxiv.org/format/2502.06246">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of Coherent Quantum Tunneling of a Massive Atomic Cluster with 435 u </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Han Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yong-Kui Wang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Yi Zheng</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+H">Hai-Tao Bai</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+B">Bing Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06246v1-abstract-short" style="display: inline;"> Tunneling is a genuine quantum phenomenon typically observed in low-mass particles such as electrons. However, it fades rapidly as mass increases due to the exponential decay of the matter-wave penetration depth. Cooling atoms to nanokelvin temperatures enhances their matter wave characteristics. Here, we report the observation of coherent quantum tunneling of a bonded cluster composed of 5 ultrac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06246v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06246v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06246v1-abstract-full" style="display: none;"> Tunneling is a genuine quantum phenomenon typically observed in low-mass particles such as electrons. However, it fades rapidly as mass increases due to the exponential decay of the matter-wave penetration depth. Cooling atoms to nanokelvin temperatures enhances their matter wave characteristics. Here, we report the observation of coherent quantum tunneling of a bonded cluster composed of 5 ultracold rubidium-87 atoms, collectively forming a massive object of 435 u. Using a double-well superlattice, integer occupancy states are prepared, with atoms bonded via strong on-site interactions. We demonstrate that the exponential base of tunneling strength can be tuned to approach unity, drastically reducing its decay for heavier masses and enabling a scalable strategy. Moreover, tunneling is harnessed to create spatially separated Schr枚dinger-cat states (~320 nm apart), achieving quantum enhancement in measurements. This work markedly raises the mass threshold for quantum tunneling and paves the way for quantum metrology with massive particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06246v1-abstract-full').style.display = 'none'; document.getElementById('2502.06246v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06222">arXiv:2502.06222</a> <span> [<a href="https://arxiv.org/pdf/2502.06222">pdf</a>, <a href="https://arxiv.org/format/2502.06222">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Laser intensity noise suppression for space-borne gravitational wave mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+F">Fan Li</a>, <a href="/search/physics?searchtype=author&query=Shang%2C+X">Xin Shang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenglei Ma</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jiawei Wang</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+L">Long Tian</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+S">Shaoping Shi</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+W">Wangbao Yin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuhang Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yajun Wang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Yaohui Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06222v1-abstract-short" style="display: inline;"> Laser intensity noise is a main limitation of measurement and sensing mission represented by gravitational wave detection. We develop a noise decomposition model and design the core elements of the feedback loop independently based on the analysis results. We construct a fiber amplifier system with ultra-low intensity noise in the 0.1 mHz-1 Hz frequency band by the employment of an optoelectronic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06222v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06222v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06222v1-abstract-full" style="display: none;"> Laser intensity noise is a main limitation of measurement and sensing mission represented by gravitational wave detection. We develop a noise decomposition model and design the core elements of the feedback loop independently based on the analysis results. We construct a fiber amplifier system with ultra-low intensity noise in the 0.1 mHz-1 Hz frequency band by the employment of an optoelectronic feedback loop that is specially designed. The study provides experimental basis and technologies for precise measurement and sensing system at ultra-low frequency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06222v1-abstract-full').style.display = 'none'; document.getElementById('2502.06222v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04745">arXiv:2502.04745</a> <span> [<a href="https://arxiv.org/pdf/2502.04745">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Overview of EXL-50 Research Progress and Future Plan </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuejiang Shi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yumin Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+B">Bing Liu</a>, <a href="/search/physics?searchtype=author&query=Song%2C+X">Xianming Song</a>, <a href="/search/physics?searchtype=author&query=Song%2C+S">Shaodong Song</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X">Xinchen Jiang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+D">Dong Guo</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+D">Di Luo</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+X">Xiang Gu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+T">Tiantian Sun</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+X">Xianli Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhi Li</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+L">Lili Dong</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xueyun Wang</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+G">Gang Yin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mingyuan Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wenjun Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+H">Hanyue Zhao</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+H">Huasheng Xie</a>, <a href="/search/physics?searchtype=author&query=Yong"> Yong</a>, <a href="/search/physics?searchtype=author&query=Liu"> Liu</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+D">Dongkai Qi</a>, <a href="/search/physics?searchtype=author&query=Xing%2C+B">Bo Xing</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+J">Jiangbo Ding</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+C">Chao Wu</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04745v1-abstract-short" style="display: inline;"> XuanLong-50 (EXL-50) is the first medium-size spherical torus (ST) in China, with the toroidal field at major radius at 50 cm around 0.5T. CS-free and non-inductive current drive via electron cyclotron resonance heating (ECRH) was the main physics research issue for EXL-50. Discharges with plasma currents of 50 kA - 180 kA were routinely obtained in EXL-50, with the current flattop sustained for u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04745v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04745v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04745v1-abstract-full" style="display: none;"> XuanLong-50 (EXL-50) is the first medium-size spherical torus (ST) in China, with the toroidal field at major radius at 50 cm around 0.5T. CS-free and non-inductive current drive via electron cyclotron resonance heating (ECRH) was the main physics research issue for EXL-50. Discharges with plasma currents of 50 kA - 180 kA were routinely obtained in EXL-50, with the current flattop sustained for up to or beyond 2 s. The current drive effectiveness on EXL-50 was as high as 1 A/W for low-density discharges using 28GHz ECRH alone for heating power less than 200 kW. The plasma current reached Ip>80 kA for high-density (5*10e18m-2) discharges with 150 kW 28GHz ECRH. Higher performance discharge (Ip of about 120 kA and core density of about 1*10e19m-3) was achieved with 150 kW 50GHz ECRH. The plasma current in EXL-50 was mainly carried by the energetic electrons.Multi-fluid equilibrium model has been successfully applied to reconstruct the magnetic flux surface and the measured plasma parameters of the EXL-50 equilibrium. The physics mechanisms for the solenoid-free ECRH current drive and the energetic electrons has also been investigated. Preliminary experimental results show that 100 kW of lower hybrid current drive (LHCD) waves can drive 20 kA of plasma current. Several boron injection systems were installed and tested in EXL-50, including B2H6 gas puffing, boron powder injection, boron pellet injection. The research plan of EXL-50U, which is the upgrade machine of EXL-50, is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04745v1-abstract-full').style.display = 'none'; document.getElementById('2502.04745v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04661">arXiv:2502.04661</a> <span> [<a href="https://arxiv.org/pdf/2502.04661">pdf</a>, <a href="https://arxiv.org/format/2502.04661">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Many-Body Coarse-Grained Molecular Dynamics with the Atomic Cluster Expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yangshuai Wang</a>, <a href="/search/physics?searchtype=author&query=Csanyi%2C+G">Gabor Csanyi</a>, <a href="/search/physics?searchtype=author&query=Ortner%2C+C">Christoph Ortner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04661v1-abstract-short" style="display: inline;"> Molecular dynamics (MD) simulations provide detailed insight into atomic-scale mechanisms but are inherently restricted to small spatio-temporal scales. Coarse-grained molecular dynamics (CGMD) techniques allow simulations of much larger systems over extended timescales. In theory, these techniques can be quantitatively accurate, but common practice is to only target qualitatively correct behaviou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04661v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04661v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04661v1-abstract-full" style="display: none;"> Molecular dynamics (MD) simulations provide detailed insight into atomic-scale mechanisms but are inherently restricted to small spatio-temporal scales. Coarse-grained molecular dynamics (CGMD) techniques allow simulations of much larger systems over extended timescales. In theory, these techniques can be quantitatively accurate, but common practice is to only target qualitatively correct behaviour of coarse-grained models. Recent advances in applying machine learning methodology in this setting are now being applied to create also quantitatively accurate CGMD models. We demonstrate how the Atomic Cluster Expansion parameterization (Drautz, 2019) can be used in this task to construct highly efficient, interpretable and accurate CGMD models. We focus in particular on exploring the role of many-body effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04661v1-abstract-full').style.display = 'none'; document.getElementById('2502.04661v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:1611.09123 by other authors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03797">arXiv:2502.03797</a> <span> [<a href="https://arxiv.org/pdf/2502.03797">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwae338">10.1093/nsr/nwae338 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superior probabilistic computing using operationally stable probabilistic-bit constructed by manganite nanowire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yadi Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+B">Bin Chen</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+W">Wenping Gao</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+B">Biying Ye</a>, <a href="/search/physics?searchtype=author&query=Niu%2C+C">Chang Niu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wenbin Wang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+Y">Yinyan Zhu</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+W">Weichao Yu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+H">Hangwen Guo</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+J">Jian Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03797v1-abstract-short" style="display: inline;"> Probabilistic computing has emerged as a viable approach to treat optimization problems. To achieve superior computing performance, the key aspect during computation is massive sampling and tuning on the probability states of each probabilistic bit (p-bit), demanding its high stability under extensive operations. Here, we demonstrate a p-bit constructed by manganite nanowire that shows exceptional… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03797v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03797v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03797v1-abstract-full" style="display: none;"> Probabilistic computing has emerged as a viable approach to treat optimization problems. To achieve superior computing performance, the key aspect during computation is massive sampling and tuning on the probability states of each probabilistic bit (p-bit), demanding its high stability under extensive operations. Here, we demonstrate a p-bit constructed by manganite nanowire that shows exceptionally high stability. The p-bit contains an electronic domain that fluctuates between metallic (low resistance) and insulating (high resistance) states near its transition temperature. The probability for the two states can be directly controlled by nano-ampere electrical current. Under extensive operations, the standard error of its probability values is less than 1.3%. Simulations show that our operationally stable p-bit plays the key role to achieve correct inference in Bayesian network by strongly suppressing the relative error, displaying the potential for superior computing performance. Our p-bit also serves as high quality random number generator without extra data-processing, beneficial for cryptographic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03797v1-abstract-full').style.display = 'none'; document.getElementById('2502.03797v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review,2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03739">arXiv:2502.03739</a> <span> [<a href="https://arxiv.org/pdf/2502.03739">pdf</a>, <a href="https://arxiv.org/format/2502.03739">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Stacking effects on magnetic, vibrational, and optical properties of CrSBr bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+H">Huicong Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yali Yang</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+Z">Zhonghao Xia</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yateng Wang</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+J">Jiacheng Wei</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jiangang He</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+R">Rongming Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03739v1-abstract-short" style="display: inline;"> The van der Waals layered semiconductor CrSBr, which exhibits A-type antiferromagnetism and a relatively high N茅el temperature, has been successfully exfoliated into atomically thin sheets. In this study, we investigate the structural, lattice dynamical, electronic, magnetic, and optical properties of four distinct stacking structures of CrSBr bilayers using first-principles calculations and Monte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03739v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03739v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03739v1-abstract-full" style="display: none;"> The van der Waals layered semiconductor CrSBr, which exhibits A-type antiferromagnetism and a relatively high N茅el temperature, has been successfully exfoliated into atomically thin sheets. In this study, we investigate the structural, lattice dynamical, electronic, magnetic, and optical properties of four distinct stacking structures of CrSBr bilayers using first-principles calculations and Monte Carlo simulations. Our findings show that though the most energetically favorable bilayer structure retains the stacking pattern of the bulk counterpart, three other high-symmetry stacking structures can be achieved by sliding one of the layers along three distinct directions, with energy costs comparable to that observed in MoS$_2$ bilayer. All these four bilayers exhibit semiconductor behavior with A-type antiferromagnetic ordering, similar to the bulk material, and demonstrate closely aligned N茅el temperatures. Moreover, these bilayers exhibit relatively low lattice thermal conductivities, pronounced anisotropy, and a strong dependence on stacking patterns. This behavior is attributed to significant phonon-phonon scattering arising from avoided crossings between acoustic and optical phonons, as well as the presence of flat optical phonon bands in the low-frequency region. While the electronic structures and optical properties of these bilayers show weak dependence on the stacking pattern for antiferromagnetic ordering, they undergo significant changes for ferromagnetic ordering, influencing the band gap, valence and conduction band splitting, and effective mass. Furthermore, we found that antiferromagnetic ordering can transition to ferromagnetic under intense visible light illumination. Thus, the integration of layer stacking and visible light illumination offers an effective means to control the heat transfer, magnetic, and optical properties of CrSBr bilayers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03739v1-abstract-full').style.display = 'none'; document.getElementById('2502.03739v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03731">arXiv:2502.03731</a> <span> [<a href="https://arxiv.org/pdf/2502.03731">pdf</a>, <a href="https://arxiv.org/format/2502.03731">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> A Physiological-Model-Based Neural Network Framework for Blood Pressure Estimation from Photoplethysmography Signals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yaowen Zhang</a>, <a href="/search/physics?searchtype=author&query=Fresiello%2C+L">Libera Fresiello</a>, <a href="/search/physics?searchtype=author&query=Veltink%2C+P+H">Peter H. Veltink</a>, <a href="/search/physics?searchtype=author&query=Donker%2C+D+W">Dirk W. Donker</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Ying Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03731v1-abstract-short" style="display: inline;"> Continuous blood pressure (BP) estimation via photoplethysmography (PPG) remains a significant challenge, particularly in providing comprehensive cardiovascular insights for hypertensive complications. This study presents a novel physiological model-based neural network (PMB-NN) framework for BP estimation from PPG signals, incorporating the identification of total peripheral resistance (TPR) and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03731v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03731v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03731v1-abstract-full" style="display: none;"> Continuous blood pressure (BP) estimation via photoplethysmography (PPG) remains a significant challenge, particularly in providing comprehensive cardiovascular insights for hypertensive complications. This study presents a novel physiological model-based neural network (PMB-NN) framework for BP estimation from PPG signals, incorporating the identification of total peripheral resistance (TPR) and arterial compliance (AC) to enhance physiological interpretability. Preliminary experimental results, obtained from a single healthy participant under varying activity intensities, demonstrated promising accuracy, with a median root mean square error of 6.69 mmHg for systolic BP and 3.26 mmHg for diastolic BP. The median (min, max) difference between estimated and measured TPR was 0.043 (0.024, 0.061) mmHg*s/cm^3. As expected, estimated TPR decreased with increasing activity intensity, while AC increased within a physiologically plausible range (0.5-2.5 cm^3/mmHg). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03731v1-abstract-full').style.display = 'none'; document.getElementById('2502.03731v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01593">arXiv:2502.01593</a> <span> [<a href="https://arxiv.org/pdf/2502.01593">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Proton Delivery with Pin Ridge Filters (pRFs): A Novel Approach for Motion Management in Proton Therapy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zafar%2C+A+J">Ahmal Jawad Zafar</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+X">Xiaofeng Yang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yinan Wang</a>, <a href="/search/physics?searchtype=author&query=Diamond%2C+Z">Zachary Diamond</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jun Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01593v1-abstract-short" style="display: inline;"> Active breath-hold techniques effectively mitigate respiratory motion but pose challenges for patients who are ineligible for the procedure. Conventional treatment planning relies on multiple energy layers, extending delivery time due to slow layer switching. We propose to use pin ridge filters (pRFs), initially developed for FLASH radiotherapy, to construct a single energy beam plan and minimize… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01593v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01593v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01593v1-abstract-full" style="display: none;"> Active breath-hold techniques effectively mitigate respiratory motion but pose challenges for patients who are ineligible for the procedure. Conventional treatment planning relies on multiple energy layers, extending delivery time due to slow layer switching. We propose to use pin ridge filters (pRFs), initially developed for FLASH radiotherapy, to construct a single energy beam plan and minimize dose delivery time. The conventional ITV--based free--breathing treatment plan served as the reference. A GTV--based IMPT--DS plan with a downstream energy modulation strategy was developed based on a new beam model that was commissioned using the maximum energy of the IMPT plan. Consequently, a nested iterative pencil beam direction (PBD) spot reduction process removed low--weighted spots along each PBD, generating pRFs with coarser resolution. Finally, the IMPT--DS plan was then converted into an IMPT--pRF plan, using a monoenergetic beam with optimized spot positions and weights. This approach was validated on lung and liver SBRT cases (10 Gy RBE x 5). For the lung case, the mean lung--GTV dose decreased from 10.3 Gy to 6.9 Gy, with delivery time reduced from 188.79 to 36.16 seconds. The largest time reduction was at 150掳, from 47.4 to 3.99 seconds. For the liver case, the mean liver--GTV dose decreased from 5.7 Gy to 3.8 Gy, with delivery time reduced from 111.13 to 30.54 seconds. The largest time reduction was at 180掳, from 38.57 to 3.94 seconds. This method significantly reduces dose delivery time and organ at risk dose. Further analysis is needed to validate its clinical feasibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01593v1-abstract-full').style.display = 'none'; document.getElementById('2502.01593v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figure, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01414">arXiv:2502.01414</a> <span> [<a href="https://arxiv.org/pdf/2502.01414">pdf</a>, <a href="https://arxiv.org/format/2502.01414">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Clarifying Self Seed in 391-nm N$_2^{+}$ Air Lasing by Vectorially Structured Light Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gao%2C+J">Jingsong Gao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yang Wang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+C">Chengyin Wu</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+H">Hongbing Jiang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yunquan Liu</a>, <a href="/search/physics?searchtype=author&query=Han%2C+M">Meng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01414v1-abstract-short" style="display: inline;"> A single intense near-infrared femtosecond laser beam can generate ultraviolet N$_2^{+}$ lasing at 391 nm in the air, offering a promising tool for remote sensing. One of the key debates regarding its mechanism is whether it is seeded by a self-generated spectral component, such as the second harmonic, which is inevitably produced by the charge gradient in the laser plasma filament. In this study,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01414v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01414v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01414v1-abstract-full" style="display: none;"> A single intense near-infrared femtosecond laser beam can generate ultraviolet N$_2^{+}$ lasing at 391 nm in the air, offering a promising tool for remote sensing. One of the key debates regarding its mechanism is whether it is seeded by a self-generated spectral component, such as the second harmonic, which is inevitably produced by the charge gradient in the laser plasma filament. In this study, we generated both radially and azimuthally polarized N$_2^{+}$ lasing at 391 nm, in contrast to that the second harmonic in argon is found near zero at the azimuthal polarization case. By characterizing the spatial phase distribution of the radially polarized 391-nm lasing, we concluded that the phase of the 391-nm lasing aligns with the driving field, thereby ruling out the hypothesis of self-seeding by the second harmonic. Our work also provides a promising method to remotely generate vectorially structured ultraviolet light fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01414v1-abstract-full').style.display = 'none'; document.getElementById('2502.01414v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.18433">arXiv:2501.18433</a> <span> [<a href="https://arxiv.org/pdf/2501.18433">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> A Comparative Dosimetric Study of Proton and Photon Therapy in Stereotactic Arrhythmia Radioablation for Ventricular Tachycardia </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shah%2C+K+D">Keyur D. Shah</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+C">Chih-Wei Chang</a>, <a href="/search/physics?searchtype=author&query=Patel%2C+P">Pretesh Patel</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+S">Sibo Tian</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+Y">Yuan Shao</a>, <a href="/search/physics?searchtype=author&query=Higgins%2C+K+A">Kristin A Higgins</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yinan Wang</a>, <a href="/search/physics?searchtype=author&query=Roper%2C+J">Justin Roper</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jun Zhou</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+Z">Zhen Tian</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+X">Xiaofeng Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.18433v2-abstract-short" style="display: inline;"> Purpose: VT is a life-threatening arrhythmia commonly treated with catheter ablation; however, some cases remain refractory to conventional treatment. STAR has emerged as a non-invasive option for such patients. While photon-based STAR has shown efficacy, proton therapy offers potential advantages due to its superior dose conformity and sparing of critical OARs, including the heart itself. This st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18433v2-abstract-full').style.display = 'inline'; document.getElementById('2501.18433v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.18433v2-abstract-full" style="display: none;"> Purpose: VT is a life-threatening arrhythmia commonly treated with catheter ablation; however, some cases remain refractory to conventional treatment. STAR has emerged as a non-invasive option for such patients. While photon-based STAR has shown efficacy, proton therapy offers potential advantages due to its superior dose conformity and sparing of critical OARs, including the heart itself. This study aims to investigate and compare the dosimetry between proton and photon therapy for VT, focusing on target coverage and OAR sparing. Methods: We performed a retrospective study on a cohort of 34 VT patients who received photon STAR. Proton STAR plans were generated using robust optimization in RayStation to deliver the same prescription dose of 25 Gy in a single fraction while minimizing dose to OARs. Dosimetric metrics, including D99, D95, Dmean, and D0.03cc, were extracted for critical OARs and VAS. Shapiro-Wilk tests were used to assess normality, followed by paired t-tests or Wilcoxon signed-rank tests for statistical comparisons between modalities, with Bonferroni correction applied for multiple comparisons. Results: Proton and photon plans achieved comparable target coverage, with VAS D95 of 24.1 +/- 1.2 Gy vs. 24.7 +/- 1.0 Gy (p=0.294). Proton therapy significantly reduced OAR doses, including heart Dmean (3.6 +/- 1.5 Gy vs. 5.5 +/- 2.0 Gy, p<0.001), lungs Dmean (1.6 +/- 1.5 Gy vs. 2.1 +/- 1.4 Gy, p<0.001), and esophagus Dmean (0.3 +/- 0.6 Gy vs. 1.6 +/- 1.3 Gy, p<0.001), while maintaining optimal target coverage. Conclusion: Proton therapy for STAR demonstrates significant dosimetric advantages in sparing the heart and other critical OARs compared to photon therapy for VT, while maintaining equivalent target coverage. These findings highlight the potential of proton therapy to reduce treatment-related toxicity and improve outcomes for VT patients. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18433v2-abstract-full').style.display = 'none'; document.getElementById('2501.18433v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17352">arXiv:2501.17352</a> <span> [<a href="https://arxiv.org/pdf/2501.17352">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Fabrication of ultra-smooth, high-aspect ratio, sub-10 nanometer nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Scott%2C+J+A">John A. Scott</a>, <a href="/search/physics?searchtype=author&query=Zotev%2C+P+G">Panaiot G. Zotev</a>, <a href="/search/physics?searchtype=author&query=Sortino%2C+L">Luca Sortino</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yadong Wang</a>, <a href="/search/physics?searchtype=author&query=Akande%2C+A">Amos Akande</a>, <a href="/search/physics?searchtype=author&query=Wood%2C+M+L">Michelle L. Wood</a>, <a href="/search/physics?searchtype=author&query=Tartakovskii%2C+A+I">Alexander I. Tartakovskii</a>, <a href="/search/physics?searchtype=author&query=Toth%2C+M">Milos Toth</a>, <a href="/search/physics?searchtype=author&query=Palomba%2C+S">Stefano Palomba</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17352v2-abstract-short" style="display: inline;"> Deterministic and versatile approaches to sample preparation on nanoscopic scales are important in many fields including photonics, electronics, biology and material science. However, challenges exist in meeting many nanostructuring demands--particularly in emerging optical materials and component architectures. Here, we report a nanofabrication workflow that overcomes long-standing challenges in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17352v2-abstract-full').style.display = 'inline'; document.getElementById('2501.17352v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17352v2-abstract-full" style="display: none;"> Deterministic and versatile approaches to sample preparation on nanoscopic scales are important in many fields including photonics, electronics, biology and material science. However, challenges exist in meeting many nanostructuring demands--particularly in emerging optical materials and component architectures. Here, we report a nanofabrication workflow that overcomes long-standing challenges in deterministic and top-down sample preparation procedures. The salient feature is a carbon mask with a low sputter yield that can be readily shaped using high resolution electron beam processing techniques. When combined with focused ion beam processing, the masking technique yields structures with ultra-smooth, near-vertical side walls. We target different material platforms to showcase the broad utility of the technique. As a first test case, we prepared nanometric gaps in evaporated Au. Gap widths of 7 plus/minus 2 nm, aspect ratios of 17, and line edge roughness values of 3sigma = 2.04 nm are achieved. Furthermore, the gap widths represent an order of magnitude improvement on system resolution limits. As a second test case, we designed and fabricated dielectric resonators in the ternary compounds MnPSe3 and NiPS3; a class of van der Waals material resistant to chemical etch approaches. Nanoantenna arrays with incrementally increasing diameter were fabricated in crystalline, exfoliated flakes. The optical response was measured by dark field spectroscopy and is in agreement with simulations. The workflow reported here leverages established techniques in material processing without the need for custom or specialized hardware. It is broadly applicable to functional materials and devices, and extends high speed focused ion beam milling to true sub-10 nm length scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17352v2-abstract-full').style.display = 'none'; document.getElementById('2501.17352v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17061">arXiv:2501.17061</a> <span> [<a href="https://arxiv.org/pdf/2501.17061">pdf</a>, <a href="https://arxiv.org/format/2501.17061">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Two measurement bases are asymptotically informationally complete for any pure state tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Feng%2C+T">Tianfeng Feng</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+T">Tianqi Xiao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yu Wang</a>, <a href="/search/physics?searchtype=author&query=Pang%2C+S">Shengshi Pang</a>, <a href="/search/physics?searchtype=author&query=Hanif%2C+F">Farhan Hanif</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xiaoqi Zhou</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Q">Qi Zhao</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+M+S">M. S. Kim</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jinzhao Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17061v1-abstract-short" style="display: inline;"> One of the fundamental questions in quantum information theory is to find how many measurement bases are required to obtain the full information of a quantum state. While a minimum of four measurement bases is typically required to determine an arbitrary pure state, we prove that for any states generated by finite-depth Clifford + T circuits, just two measurement bases are sufficient. More general… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17061v1-abstract-full').style.display = 'inline'; document.getElementById('2501.17061v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17061v1-abstract-full" style="display: none;"> One of the fundamental questions in quantum information theory is to find how many measurement bases are required to obtain the full information of a quantum state. While a minimum of four measurement bases is typically required to determine an arbitrary pure state, we prove that for any states generated by finite-depth Clifford + T circuits, just two measurement bases are sufficient. More generally, we prove that two measurement bases are informationally complete for determining algebraic pure states whose state-vector elements represented in the computational basis are algebraic numbers. Since any pure state can be asymptotically approximated by a sequence of algebraic states with arbitrarily high precision, our scheme is referred to as asymptotically informationally complete for pure state tomography. Furthermore, existing works mostly construct the measurements using entangled bases. So far, the best result requires $O(n)$ local measurement bases for $n$-qubit pure-state tomography. Here, we show that two measurement bases that involve polynomial elementary gates are sufficient for uniquely determining sparse algebraic states. Moreover, we prove that two local measurement bases, involving single-qubit local operations only, are informationally complete for certain algebraic states, such as GHZ-like and W-like states. Besides, our two-measurement-bases scheme remains valid for mixed states with certain types of noises. We numerically test the uniqueness of the reconstructed states under two (local) measurement bases with and without measurement and depolarising types of noise. Our scheme provides a theoretical guarantee for pure state tomography in the fault-tolerant quantum computing regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17061v1-abstract-full').style.display = 'none'; document.getElementById('2501.17061v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 8 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15532">arXiv:2501.15532</a> <span> [<a href="https://arxiv.org/pdf/2501.15532">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.024102">10.1103/PhysRevB.111.024102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure induced Structure Change and Anomalies in Thermodynamic Quantities and Transport Properties in Liquid Lithium Hydride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yan%2C+X+Z">X. Z. Yan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+M">Y. M. Chen</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+H+Y">Hua Y. Geng</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y+F">Y. F. Wang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Y. Sun</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L+L">L. L. Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y+L">Y. L. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15532v1-abstract-short" style="display: inline;"> Understand the nature of liquid structure and its evolution under different conditions is a major challenge in condensed physics and materials science. Here, we report a pressure-induced structure change spanning a wide pressure range in liquid-state lithium hydride (LiH) by first-principles molecular dynamic simulations. This behavior can be described as a continuous crossover from low pressure l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15532v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15532v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15532v1-abstract-full" style="display: none;"> Understand the nature of liquid structure and its evolution under different conditions is a major challenge in condensed physics and materials science. Here, we report a pressure-induced structure change spanning a wide pressure range in liquid-state lithium hydride (LiH) by first-principles molecular dynamic simulations. This behavior can be described as a continuous crossover from low pressure liquid with Li$^+$-H$^-$ duality symmetry to high pressure one with broken of duality symmetry. The thermodynamic quantities such as heat capacity and ionic transport properties such as diffusivity are also saliently impacted. It is important to stress that such behavior is firstly predicted for this category of materials, which is ubiquitous in universe as well as in industry applications. Lastly, a comprehensive high-pressure high-temperature phase diagram of LiH is constructed, which embodies rich physics in this previously-thought-simple ionic compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15532v1-abstract-full').style.display = 'none'; document.getElementById('2501.15532v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures, with Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 111, 024102 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15160">arXiv:2501.15160</a> <span> [<a href="https://arxiv.org/pdf/2501.15160">pdf</a>, <a href="https://arxiv.org/format/2501.15160">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> NAS-PINNv2: Improved neural architecture search framework for physics-informed neural networks in low-temperature plasma simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yifan Wang</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+L">Linlin Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15160v1-abstract-short" style="display: inline;"> Limited by the operation and measurement conditions, numerical simulation is often the only feasible approach for studying plasma behavior and mechanisms. Although artificial intelligence methods, especially physics-informed neural network (PINN), have been widely applied in plasma simulation, the design of the neural network structures still largely relies on the experience of researchers. Meanwh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15160v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15160v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15160v1-abstract-full" style="display: none;"> Limited by the operation and measurement conditions, numerical simulation is often the only feasible approach for studying plasma behavior and mechanisms. Although artificial intelligence methods, especially physics-informed neural network (PINN), have been widely applied in plasma simulation, the design of the neural network structures still largely relies on the experience of researchers. Meanwhile, existing neural architecture search methods tailored for PINN have encountered failures when dealing with complex plasma governing equations characterized by variable coefficients and strong nonlinearity. Therefore, we propose an improved neural architecture search-guided method, namely NAS-PINNv2, to address the limitations of existing methods. By analyzing the causes of failure, the sigmoid function is applied to calculate the architecture-related weights, and a new loss term is introduced. The performance of NAS-PINNv2 is verified in several numerical experiments including the Elenbaas-Heller equation without and with radial velocity, the drift-diffusion-Poisson equation and the Boltzmann equation. The results again emphasize that larger neural networks do not necessarily perform better, and the discovered neural architecture with multiple neuron numbers in a single hidden layer imply a more flexible and sophisticated design rule for fully connected networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15160v1-abstract-full').style.display = 'none'; document.getElementById('2501.15160v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15107">arXiv:2501.15107</a> <span> [<a href="https://arxiv.org/pdf/2501.15107">pdf</a>, <a href="https://arxiv.org/format/2501.15107">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Topological photonic crystal fibre </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhu%2C+B">Bofeng Zhu</a>, <a href="/search/physics?searchtype=author&query=Hean%2C+K">Kevin Hean</a>, <a href="/search/physics?searchtype=author&query=Wong%2C+S">Stephan Wong</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuxi Wang</a>, <a href="/search/physics?searchtype=author&query=Banerjee%2C+R">Rimi Banerjee</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+H">Haoran Xue</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qiang Wang</a>, <a href="/search/physics?searchtype=author&query=Cerjan%2C+A">Alexander Cerjan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q+J">Qi Jie Wang</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+W">Wonkeun Chang</a>, <a href="/search/physics?searchtype=author&query=Chong%2C+Y+D">Yi Dong Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15107v1-abstract-short" style="display: inline;"> Photonic crystal fibres (PCFs) are optical fibres that guide light using a modulated dielectric medium. They provide an exceptionally versatile platform for various applications, thanks to the flexibility with which light-guiding can be customised by modifying the fibre geometry. Here, we realise a PCF with guided modes produced by photonic bandstructure topology rather than conventional mode-trap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15107v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15107v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15107v1-abstract-full" style="display: none;"> Photonic crystal fibres (PCFs) are optical fibres that guide light using a modulated dielectric medium. They provide an exceptionally versatile platform for various applications, thanks to the flexibility with which light-guiding can be customised by modifying the fibre geometry. Here, we realise a PCF with guided modes produced by photonic bandstructure topology rather than conventional mode-trapping mechanisms. The design, which is compatible with the stack-and-draw fabrication process, consists of a cross-sectional photonic topological crystalline insulator with a disclination. A bulk-defect correspondence produces degenerate topological modes, lying below the cladding light line. We use various theoretical methods to confirm their topological origins, including a spectral localiser that makes minimal assumptions about the bandstructure. Our experiments on the fabricated topological fibre show it transmitting visible to near-infrared light with low losses of 10--20 dB/km, which do not increase much when the fibre is bent. A comparable solid-core PCF of conventional design exhibits substantially higher bending losses. Optical fibres based on topological modes thus hold promise for improved performance and novel functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15107v1-abstract-full').style.display = 'none'; document.getElementById('2501.15107v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15069">arXiv:2501.15069</a> <span> [<a href="https://arxiv.org/pdf/2501.15069">pdf</a>, <a href="https://arxiv.org/ps/2501.15069">ps</a>, <a href="https://arxiv.org/format/2501.15069">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Magnetic Field induced control and Multiple Magnomechanically Induced Transparency in Single Cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Din%2C+G">Ghaisud Din</a>, <a href="/search/physics?searchtype=author&query=Abbas%2C+M">Muqaddar Abbas</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yunlong Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+F">Feiran Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+P">Pei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15069v1-abstract-short" style="display: inline;"> We investigate magnomechanically induced transparency (MMIT) in a microwave 3D copper cavity with two YIG spheres under varying interaction parameters. Numerical simulations show that the steady-state magnon number increases with stronger coupling between cavity photons and magnons, and is sensitive to both bias and drive magnetic fields. Pronounced peaks in the magnon population near resonant fie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15069v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15069v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15069v1-abstract-full" style="display: none;"> We investigate magnomechanically induced transparency (MMIT) in a microwave 3D copper cavity with two YIG spheres under varying interaction parameters. Numerical simulations show that the steady-state magnon number increases with stronger coupling between cavity photons and magnons, and is sensitive to both bias and drive magnetic fields. Pronounced peaks in the magnon population near resonant fields highlight the importance of the bias field in energy transfer. The transparency windows are tunable, with up to quadruple windows depending on the coupling and magnon-phonon interactions, as seen in the transmission spectrum. Dispersion analysis reveals normal and anomalous regions, enabling slow and fast light propagation modulated by coupling strength. Phase and group delay variations, influenced by the drive field, further validate the tunability of transparency windows. This study demonstrates the potential of MMIT for precise control with out any additional non-linearity over light-matter interactions, with applications in quantum information processing and optical communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15069v1-abstract-full').style.display = 'none'; document.getElementById('2501.15069v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">pages=9, figures=12</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14980">arXiv:2501.14980</a> <span> [<a href="https://arxiv.org/pdf/2501.14980">pdf</a>, <a href="https://arxiv.org/format/2501.14980">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> A Deep State Space Model for Rainfall-Runoff Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yihan Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Lujun Zhang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+A">Annan Yu</a>, <a href="/search/physics?searchtype=author&query=Erichson%2C+N+B">N. Benjamin Erichson</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+T">Tiantian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14980v1-abstract-short" style="display: inline;"> The classical way of studying the rainfall-runoff processes in the water cycle relies on conceptual or physically-based hydrologic models. Deep learning (DL) has recently emerged as an alternative and blossomed in hydrology community for rainfall-runoff simulations. However, the decades-old Long Short-Term Memory (LSTM) network remains the benchmark for this task, outperforming newer architectures… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14980v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14980v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14980v1-abstract-full" style="display: none;"> The classical way of studying the rainfall-runoff processes in the water cycle relies on conceptual or physically-based hydrologic models. Deep learning (DL) has recently emerged as an alternative and blossomed in hydrology community for rainfall-runoff simulations. However, the decades-old Long Short-Term Memory (LSTM) network remains the benchmark for this task, outperforming newer architectures like Transformers. In this work, we propose a State Space Model (SSM), specifically the Frequency Tuned Diagonal State Space Sequence (S4D-FT) model, for rainfall-runoff simulations. The proposed S4D-FT is benchmarked against the established LSTM and a physically-based Sacramento Soil Moisture Accounting model across 531 watersheds in the contiguous United States (CONUS). Results show that S4D-FT is able to outperform the LSTM model across diverse regions. Our pioneering introduction of the S4D-FT for rainfall-runoff simulations challenges the dominance of LSTM in the hydrology community and expands the arsenal of DL tools available for hydrological modeling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14980v1-abstract-full').style.display = 'none'; document.getElementById('2501.14980v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14468">arXiv:2501.14468</a> <span> [<a href="https://arxiv.org/pdf/2501.14468">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrically-tunable graphene nanomechanical resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi-Bo Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhuo-Zhi Zhang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+C">Chen-Xu Wu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yu-Shi Zhang</a>, <a href="/search/physics?searchtype=author&query=Lei%2C+G">Guo-Sheng Lei</a>, <a href="/search/physics?searchtype=author&query=Song%2C+X">Xiang-Xiang Song</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14468v1-abstract-short" style="display: inline;"> The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies, large quality factors, strong nonlinearities, and the capability to effectively interface with various physical systems. Equipped with gate electrodes, it has been demonstrated that these exceptional device properties can be electrically manipulated, leading to a vari… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14468v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14468v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14468v1-abstract-full" style="display: none;"> The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies, large quality factors, strong nonlinearities, and the capability to effectively interface with various physical systems. Equipped with gate electrodes, it has been demonstrated that these exceptional device properties can be electrically manipulated, leading to a variety of nanomechanical/acoustic applications. Here, we review the recent progress of graphene nanomechanical resonators with a focus on their electrical tunability. First, we provide an overview of different graphene nanomechanical resonators, including their device structures, fabrication methods, and measurement setups. Then, the key mechanical properties of these devices, for example, resonant frequencies, nonlinearities, dissipations, and mode coupling mechanisms, are discussed, with their behaviors upon electrical gating being highlighted. After that, various potential classical/quantum applications based on these graphene nanomechanical resonators are reviewed. Finally, we briefly discuss challenges and opportunities in this field to offer future prospects of the ongoing studies on graphene nanomechanical resonators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14468v1-abstract-full').style.display = 'none'; document.getElementById('2501.14468v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14167">arXiv:2501.14167</a> <span> [<a href="https://arxiv.org/pdf/2501.14167">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale Integration of Single-Crystalline MoS$_2$ for Flexible Electronics Enabled by Oxide Dry-transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+X">Xiang Xu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yitong Chen</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+J">Jichuang Shen</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Q">Qi Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+T">Tong Jiang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Han Chen</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+H">Huaze Zhu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yaqing Ma</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wenhao Li</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+C">Chen Ji</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Dingwei Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Siyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+B">Bowen Zhu</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+W">Wei Kong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14167v1-abstract-short" style="display: inline;"> Atomically thin, single-crystalline transition metal dichalcogenides (TMDCs) grown via chemical vapor deposition (CVD) on sapphire substrates exhibit exceptional mechanical and electrical properties, positioning them as excellent channel materials for flexible electronics. However, conventional wet-transfer processes for integrating these materials onto flexible substrates often introduce surface… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14167v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14167v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14167v1-abstract-full" style="display: none;"> Atomically thin, single-crystalline transition metal dichalcogenides (TMDCs) grown via chemical vapor deposition (CVD) on sapphire substrates exhibit exceptional mechanical and electrical properties, positioning them as excellent channel materials for flexible electronics. However, conventional wet-transfer processes for integrating these materials onto flexible substrates often introduce surface contamination, significantly degrading device performance. Here, we present a wafer-scale dry-transfer technique using a high-dielectric oxide as the transfer medium, enabling the integration of 4-inch single-crystalline MoS$_2$ onto flexible substrates. This method eliminates contact with polymers or solvents, thus preserving the intrinsic electronic properties of MoS$_2$. As a result, the fabricated flexible field-effect transistor (FET) arrays exhibit remarkable performance, with a mobility of 117 cm$^2$/Vs, a subthreshold swing of 68.8 mV dec$^{-1}$, and an ultra-high current on/off ratio of $10^{12}$-values comparable to those achieved on rigid substrates. Leveraging the outstanding electrical characteristics, we demonstrated MoS$_2$-based flexible inverters operating in the subthreshold regime, achieving both a high gain of 218 and ultra-low power consumption of 1.4 pW/$渭$m. Additionally, we integrated a flexible tactile sensing system driven by active-matrix MoS$_2$ FET arrays onto a robotic gripper, enabling real-time object identification. These findings demonstrate the simultaneous achievement of high electrical performance and flexibility, highlighting the immense potential of single-crystalline TMDC-based flexible electronics for real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14167v1-abstract-full').style.display = 'none'; document.getElementById('2501.14167v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14003">arXiv:2501.14003</a> <span> [<a href="https://arxiv.org/pdf/2501.14003">pdf</a>, <a href="https://arxiv.org/format/2501.14003">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> PaMMA-Net: Plasmas magnetic measurement evolution based on data-driven incremental accumulative prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ling%2C+Y">Yunfei Ling</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zijie Liu</a>, <a href="/search/physics?searchtype=author&query=Du%2C+J">Jun Du</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yao Huang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuehang Wang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bingjia Xiao</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+X">Xin Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14003v1-abstract-short" style="display: inline;"> An accurate evolution model is crucial for effective control and in-depth study of fusion plasmas. Evolution methods based on physical models often encounter challenges such as insufficient robustness or excessive computational costs. Given the proven strong fitting capabilities of deep learning methods across various fields, including plasma research, this paper introduces a deep learning-based m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14003v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14003v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14003v1-abstract-full" style="display: none;"> An accurate evolution model is crucial for effective control and in-depth study of fusion plasmas. Evolution methods based on physical models often encounter challenges such as insufficient robustness or excessive computational costs. Given the proven strong fitting capabilities of deep learning methods across various fields, including plasma research, this paper introduces a deep learning-based magnetic measurement evolution method named PaMMA-Net (Plasma Magnetic Measurements Incremental Accumulative Prediction Network). This network is capable of evolving magnetic measurements in tokamak discharge experiments over extended periods or, in conjunction with equilibrium reconstruction algorithms, evolving macroscopic parameters such as plasma shape. Leveraging a incremental prediction approach and data augmentation techniques tailored for magnetic measurements, PaMMA-Net achieves superior evolution results compared to existing studies. The tests conducted on real experimental data from EAST validate the high generalization capability of the proposed method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14003v1-abstract-full').style.display = 'none'; document.getElementById('2501.14003v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12740">arXiv:2501.12740</a> <span> [<a href="https://arxiv.org/pdf/2501.12740">pdf</a>, <a href="https://arxiv.org/format/2501.12740">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> An Implicit Adaptive Fourier Neural Operator for Long-term Predictions of Three-dimensional Turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jiang%2C+Y">Yuchi Jiang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhijie Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yunpeng Wang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Huiyu Yang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jianchun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12740v1-abstract-short" style="display: inline;"> Long-term prediction of three-dimensional (3D) turbulent flows is one of the most challenging problems for machine learning approaches. Although some existing machine learning approaches such as implicit U-net enhanced Fourier neural operator (IUFNO) have been proven to be capable of achieving stable long-term predictions for turbulent flows, their computational costs are usually high. In this pap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12740v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12740v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12740v1-abstract-full" style="display: none;"> Long-term prediction of three-dimensional (3D) turbulent flows is one of the most challenging problems for machine learning approaches. Although some existing machine learning approaches such as implicit U-net enhanced Fourier neural operator (IUFNO) have been proven to be capable of achieving stable long-term predictions for turbulent flows, their computational costs are usually high. In this paper, we extend the adaptive Fourier neural operator (AFNO) from two-dimensional space to 3D space. Furthermore, we employ the implicit iteration to the AFNO and propose the implicit adaptive Fourier neural operator (IAFNO). IAFNO is systematically tested in three types of 3D turbulence, including forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer and turbulent channel flow. The numerical results demonstrate that IAFNO is more accurate and stable than IUFNO and the traditional large-eddy simulation using dynamic Smagorinsky model (DSM). Meanwhile, the AFNO model exhibits instability in numerical simulations. Moreover, the training efficiency of IAFNO is 4 times higher than that of IUFNO, and the number of parameters and GPU memory occupation of IAFNO are only 1/80 and 1/3 of IUFNO, respectively in HIT. In other tests, the improvements are slightly lower but still considerable. These improvements mainly come from patching and self-attention in 3D space. Besides, the well-trained IAFNO is significantly faster than the DSM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12740v1-abstract-full').style.display = 'none'; document.getElementById('2501.12740v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12671">arXiv:2501.12671</a> <span> [<a href="https://arxiv.org/pdf/2501.12671">pdf</a>, <a href="https://arxiv.org/format/2501.12671">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Manipulating nonadiabatic dynamics by plasmonic nanocavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yu Wang</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+R">Ruihao Bi</a>, <a href="/search/physics?searchtype=author&query=Dou%2C+W">Wenjie Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12671v1-abstract-short" style="display: inline;"> In recent years, plasmonic nanocavities have emerged as powerful tools for controlling and enhancing light-matter interactions at the nanoscale. This study explores the role of plasmonic nanocavities in manipulating nonadiabatic dynamics, particularly in systems where fast electronic transitions are crucial. By coupling molecular states to the plasmonic resonances of metallic nanocavities, we demo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12671v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12671v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12671v1-abstract-full" style="display: none;"> In recent years, plasmonic nanocavities have emerged as powerful tools for controlling and enhancing light-matter interactions at the nanoscale. This study explores the role of plasmonic nanocavities in manipulating nonadiabatic dynamics, particularly in systems where fast electronic transitions are crucial. By coupling molecular states to the plasmonic resonances of metallic nanocavities, we demonstrate that the local electromagnetic fields generated by plasmons can significantly influence the rates and pathways of nonadiabatic transitions, including electron transfer and excitation relaxation processes. Using the Floquet quantum master equation (FQME) and Floquet surface hopping (FSH) methods that we previously developed, we find that plasmonic nanocavities can enhance nonadiabatic effects by tuning the plasmonic coupling strength, the molecule-metal interaction strength, and the material properties. These approaches offer a new perspective for predicting molecular dynamics in ultrafast processes. Our findings pave the way for designing novel plasmonic devices capable of controlling electron and energy transfer in chemical reactions, optoelectronic applications, and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12671v1-abstract-full').style.display = 'none'; document.getElementById('2501.12671v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11191">arXiv:2501.11191</a> <span> [<a href="https://arxiv.org/pdf/2501.11191">pdf</a>, <a href="https://arxiv.org/format/2501.11191">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Advances in modeling complex materials: The rise of neuroevolution potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ying%2C+P">Penghua Ying</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+C">Cheng Qian</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+R">Rui Zhao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yanzhou Wang</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+F">Feng Ding</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Shunda Chen</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+Z">Zheyong Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11191v1-abstract-short" style="display: inline;"> Interatomic potentials are essential for driving molecular dynamics (MD) simulations, directly impacting the reliability of predictions regarding the physical and chemical properties of materials. In recent years, machine-learned potentials (MLPs), trained against first-principles calculations, have become a new paradigm in materials modeling as they provide a desirable balance between accuracy an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11191v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11191v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11191v1-abstract-full" style="display: none;"> Interatomic potentials are essential for driving molecular dynamics (MD) simulations, directly impacting the reliability of predictions regarding the physical and chemical properties of materials. In recent years, machine-learned potentials (MLPs), trained against first-principles calculations, have become a new paradigm in materials modeling as they provide a desirable balance between accuracy and computational cost. The neuroevolution potential (NEP) approach, implemented in the open-source GPUMD software, has emerged as a promising machine-learned potential, exhibiting impressive accuracy and exceptional computational efficiency. This review provides a comprehensive discussion on the methodological and practical aspects of the NEP approach, along with a detailed comparison with other representative state-of-the-art MLP approaches in terms of training accuracy, property prediction, and computational efficiency. We also demonstrate the application of the NEP approach to perform accurate and efficient MD simulations, addressing complex challenges that traditional force fields typically can not tackle. Key examples include structural properties of liquid and amorphous materials, chemical order in complex alloy systems, phase transitions, surface reconstruction, material growth, primary radiation damage, fracture in two-dimensional materials, nanoscale tribology, and mechanical behavior of compositionally complex alloys under various mechanical loadings. This review concludes with a summary and perspectives on future extensions to further advance this rapidly evolving field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11191v1-abstract-full').style.display = 'none'; document.getElementById('2501.11191v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 28 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09701">arXiv:2501.09701</a> <span> [<a href="https://arxiv.org/pdf/2501.09701">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D4MH00795F">10.1039/D4MH00795F <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mixed anion control of enhanced negative thermal expansion in the oxysulfide of PbTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pan%2C+Z">Zhao Pan</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Z">Zhengli Liang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiao Wang</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+Y">Yue-Wen Fang</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+X">Xubin Ye</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhehong Liu</a>, <a href="/search/physics?searchtype=author&query=Nishikubo%2C+T">Takumi Nishikubo</a>, <a href="/search/physics?searchtype=author&query=Sakai%2C+Y">Yuki Sakai</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xi Shen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qiumin Liu</a>, <a href="/search/physics?searchtype=author&query=Kawaguchi%2C+S">Shogo Kawaguchi</a>, <a href="/search/physics?searchtype=author&query=Zhan%2C+F">Fei Zhan</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+L">Longlong Fan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yong-Yang Wang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+C">Chen-Yan Ma</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X">Xingxing Jiang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Z">Zheshuai Lin</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+R">Richeng Yu</a>, <a href="/search/physics?searchtype=author&query=Xing%2C+X">Xianran Xing</a>, <a href="/search/physics?searchtype=author&query=Azuma%2C+M">Masaki Azuma</a>, <a href="/search/physics?searchtype=author&query=Long%2C+Y">Youwen Long</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09701v1-abstract-short" style="display: inline;"> The rare physical property of negative thermal expansion (NTE) is intriguing because materials with large NTE over a wide temperature range can serve as high-performance thermal expansion compensators. However, applications of NTE are hindered by the fact that most of the available NTE materials show small magnitudes of NTE, and/or NTE occurs only in a narrow temperature range. Herein, for the fir… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09701v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09701v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09701v1-abstract-full" style="display: none;"> The rare physical property of negative thermal expansion (NTE) is intriguing because materials with large NTE over a wide temperature range can serve as high-performance thermal expansion compensators. However, applications of NTE are hindered by the fact that most of the available NTE materials show small magnitudes of NTE, and/or NTE occurs only in a narrow temperature range. Herein, for the first time, we investigated the effect of anion substitution instead of general Pb/Ti-site substitutions on the thermal expansion properties of a typical ferroelectric NTE material, PbTiO3. Intriguingly, the substitution of S for O in PbTiO3 further increases the tetragonality of PbTiO3. Consequently, an unusually enhanced NTE with an average volumetric coefficient of thermal expansion $\bar伪_V$ = -2.50 $\times$ 10$^{-5}$/K was achieved over a wide temperature range (300 -- 790 K), which is contrasted to that of pristine PbTiO3 ($\bar伪_V$ = -1.99 $\times$ 10$^{-5}$/K RT -- 763 K). The intensified NTE is attributed to the enhanced hybridization between Pb/Ti and O/S atoms by the substitution of S, as evidenced by our theoretical investigations. We therefore demonstrate a new technique for introducing mixed anions to achieve large NTE over a wide temperature range in PbTiO3-based ferroelectrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09701v1-abstract-full').style.display = 'none'; document.getElementById('2501.09701v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Horizons, 11, 5394-5401, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09322">arXiv:2501.09322</a> <span> [<a href="https://arxiv.org/pdf/2501.09322">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Laser optothermal nanobomb for efficient flattening of nanobubbles in van der Waals materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jia-Tai Huang</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+B">Benfeng Bai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hong-Ren Chen</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+P">Peng-Yi Feng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jian-Yu Zhang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Y">Yu-Xiao Han</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiao-Jie Wang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+H">Hong-Wei Zhou</a>, <a href="/search/physics?searchtype=author&query=Chai%2C+Y">Yuan Chai</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi Wang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+G">Guan-Yao Huang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+H">Hong-Bo Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09322v1-abstract-short" style="display: inline;"> Nanobubbles are typical nanodefects commonly existing in two-dimensional (2D) van der Waals materials such as transition metal dioxides, especially after their transfer from growth substrate to target substrates. These nanobubbles, though tiny, may significantly alter the local electric, optoelectronic, thermal, or mechanical properties of 2D materials and therefore are rather detrimental to the c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09322v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09322v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09322v1-abstract-full" style="display: none;"> Nanobubbles are typical nanodefects commonly existing in two-dimensional (2D) van der Waals materials such as transition metal dioxides, especially after their transfer from growth substrate to target substrates. These nanobubbles, though tiny, may significantly alter the local electric, optoelectronic, thermal, or mechanical properties of 2D materials and therefore are rather detrimental to the constructed devices. However, there is no post-processing method so far that can effectively eliminate nanobubbles in 2D materials after their fabrication and transfer, which has been a major obstacle in the development of 2D material based devices. Here, we propose a principle, called laser optothermal nanobomb (LOTB), that can effectively flatten nanobubbles in 2D materials through a dynamic process of optothermally induced phase transition and stress-pulling effect in nanobubbles. Operation of LOTB on monolayer molybdenum disulfide (1L-MoS2) films shows that the surface roughness can be reduced by more than 70% on a time scale of ~50 ms, without damage to the intrinsic property of 1L-MoS2 as validated by micro-nano photoluminescence and Raman spectroscopy. Moreover, a dual-beam cascaded LOTB and a multi-shot LOTB strategies are proposed to increase the flattened area and processing effect, showing the potential of LOTB for fast nanodefect repairing in the mass production of van der Waals materials and devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09322v1-abstract-full').style.display = 'none'; document.getElementById('2501.09322v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures, research article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08634">arXiv:2501.08634</a> <span> [<a href="https://arxiv.org/pdf/2501.08634">pdf</a>, <a href="https://arxiv.org/format/2501.08634">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Transport theory in moderately anisotropic plasmas: I, Collisionless aspects of axisymmetric velocity space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yanpeng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08634v3-abstract-short" style="display: inline;"> A novel transport theory, based on the finitely distinguishable independent features (FDIF) hypothesis, is presented for scenarios when velocity space exhibits axisymmetry. In this theory, the transport equations are derived from the 1D-2V Vlasov equation, employing the Spherical harmonics expansions (SHE) together with the King function expansion (KFE) in velocity space. The characteristic parame… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08634v3-abstract-full').style.display = 'inline'; document.getElementById('2501.08634v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08634v3-abstract-full" style="display: none;"> A novel transport theory, based on the finitely distinguishable independent features (FDIF) hypothesis, is presented for scenarios when velocity space exhibits axisymmetry. In this theory, the transport equations are derived from the 1D-2V Vlasov equation, employing the Spherical harmonics expansions (SHE) together with the King function expansion (KFE) in velocity space. The characteristic parameter equations (CPEs) are provided based on the general King mixture model (GKMM), serving as the constraint equations of the transport equations. It is a nature process to present the closure relations of transport equations based on SHE and KFE, successfully providing a kinetic moment-closed model (KMCM). This model is typically a nonlinear system, effective for moderately anisotropic non-equilibrium plasmas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08634v3-abstract-full').style.display = 'none'; document.getElementById('2501.08634v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08154">arXiv:2501.08154</a> <span> [<a href="https://arxiv.org/pdf/2501.08154">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Fabry-Perot resonance modes in a MoS$_2$-based vertical stacking cavity for strong light-matter coupling and topological phase singularity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhonglin Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yingying Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xianglin Li</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+B">Bo Zhong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wenjun Liu</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Z">Zexiang Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08154v1-abstract-short" style="display: inline;"> Rich dielectric properties in atomic transition metal dichalcogenides (TMDs) enhance light-matter interactions and contribute to a variety of optical phenomena. The direct transfer of TMDs onto photonic crystals facilitates optical field confinement and modifies photon dispersion through the generation of polaritons. However, light-matter interaction is severely limited by this stacking method. Th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08154v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08154v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08154v1-abstract-full" style="display: none;"> Rich dielectric properties in atomic transition metal dichalcogenides (TMDs) enhance light-matter interactions and contribute to a variety of optical phenomena. The direct transfer of TMDs onto photonic crystals facilitates optical field confinement and modifies photon dispersion through the generation of polaritons. However, light-matter interaction is severely limited by this stacking method. This limitation can be significantly improved by constructing a vertical stacking cavity with alternating layers of dielectric material and monolayer MoS$_2$. This multilayer structure is proven to be a compact, versatile, and customizable platform for controlling Fabry-Perot cavity resonance mode. Angle-resolved reflectance further aids in studying resonance mode dispersion. Moreover, the strong light-matter interaction results in multiple perfect absorptions, with the monolayer MoS$_2$ significantly contributing to the absorption in this system, as schematically revealed by the electric field distribution. The multiple perfect absorptions produce an unusual amounts of phase singularities with topological pairs, whose generation, evolution, and annihilation can be controlled by adjusting cavity parameters. Our findings provide a flexible and consistent framework for optimizing light-matter interactions and supporting further studies on wavefront shaping, optical vortices, and topological variants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08154v1-abstract-full').style.display = 'none'; document.getElementById('2501.08154v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08123">arXiv:2501.08123</a> <span> [<a href="https://arxiv.org/pdf/2501.08123">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Guiding polaritonic energy and momentum through two-dimensional Bravais lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhonglin Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yingying Wang</a>, <a href="/search/physics?searchtype=author&query=Bie%2C+R">Ruitong Bie</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+D">Dongliang Yang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+T">Tianze Yu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wenjun Liu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+L">Linfeng Sun</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Z">Zexiang Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08123v1-abstract-short" style="display: inline;"> The strong exciton absorption in monolayer transition metal dichalcogenides provides a promising platform for studying polaritons with tunable dispersions, which are crucial for controlling polaritonic energy and momentum, but remain underexplored. In this work, monolayer MoS$_2$ is coupled with a Fabry-P茅rot microcavity to form polaritons. Five types of Bravais lattices with sub-wavelength period… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08123v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08123v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08123v1-abstract-full" style="display: none;"> The strong exciton absorption in monolayer transition metal dichalcogenides provides a promising platform for studying polaritons with tunable dispersions, which are crucial for controlling polaritonic energy and momentum, but remain underexplored. In this work, monolayer MoS$_2$ is coupled with a Fabry-P茅rot microcavity to form polaritons. Five types of Bravais lattices with sub-wavelength periods, based on polymethyl methacrylate (PMMA) nanopillars, are intentionally designed. The energy overlap between the periodic PMMA scattering wave and the polariton establishes a coupling channel that controls the directional flow of polaritonic energy, as demonstrated through angle-resolved reflectance measurements. Back-space image measurements further demonstrate that the dispersion in reciprocal space can be directly and manually tuned, allowing for control over their number and their positions. The coupling between the polariton and PMMA scattering wave is further demonstrated by analyzing the reflectance using the two-port two-mode model. The symmetries of 2D Bravais lattices allow the angle between energy and momentum flow to vary widely, from 90掳, 60掳, 45掳, and 30掳 to arbitrary values. By adjusting the lattice vector lengths, the position of the dispersion branch in a specific direction can be fine-tuned, enabling full-range control over polariton dispersion. This work presents the first theoretical and experimental demonstrations of guiding the direction of polaritonic energy and momentum through Bravais lattice design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08123v1-abstract-full').style.display = 'none'; document.getElementById('2501.08123v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07974">arXiv:2501.07974</a> <span> [<a href="https://arxiv.org/pdf/2501.07974">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrasensitive Higher-Order Exceptional Points via Non-Hermitian Zero-Index Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yan%2C+D">Dongyang Yan</a>, <a href="/search/physics?searchtype=author&query=Shalin%2C+A+S">Alexander S. Shalin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yongxing Wang</a>, <a href="/search/physics?searchtype=author&query=Lai%2C+Y">Yun Lai</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yadong Xu</a>, <a href="/search/physics?searchtype=author&query=Hang%2C+Z+H">Zhi Hong Hang</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+F">Fang Cao</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+L">Lei Gao</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+J">Jie Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07974v1-abstract-short" style="display: inline;"> Higher-order exceptional points (EPs) in optical structures enable ultra-sensitive responses to perturbations. However, previous investigations on higher-order EPs have predominantly focused on coupled systems, leaving their fundamental physics in open scattering systems largely unexplored. Here, we harness wave interference to realize higher-order EPs in non-Hermitian zero-index materials connect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07974v1-abstract-full').style.display = 'inline'; document.getElementById('2501.07974v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07974v1-abstract-full" style="display: none;"> Higher-order exceptional points (EPs) in optical structures enable ultra-sensitive responses to perturbations. However, previous investigations on higher-order EPs have predominantly focused on coupled systems, leaving their fundamental physics in open scattering systems largely unexplored. Here, we harness wave interference to realize higher-order EPs in non-Hermitian zero-index materials connected to multiple open channels. Specifically, we demonstrate that a three-channel model can give rise to three interesting types of third-order EPs: lasing EP, reflecting EP, and absorbing EP. Notably, near the third-order absorbing EP, we observe ultrasensitivity--a drastic change in output power in response to perturbations at the operating frequency--in a purely lossy system. These findings pave the way for achieving higher-order and even arbitrary-order EPs in open scattering systems, offering significant potential for advanced sensing applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07974v1-abstract-full').style.display = 'none'; document.getElementById('2501.07974v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07835">arXiv:2501.07835</a> <span> [<a href="https://arxiv.org/pdf/2501.07835">pdf</a>, <a href="https://arxiv.org/format/2501.07835">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Advanced representation learning for flow field analysis and reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yikai Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jiameng Wang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+R">Ruyi Han</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+S">Shujun Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07835v1-abstract-short" style="display: inline;"> In this paper we present advanced representation learning study on integrating deep learning techniques and sparse approximation, including diffusion models, for advanced flow field analysis and reconstruction. Key applications include super-resolution flow field reconstruction, flow field inpainting, fluid-structure interaction, transient and internal flow analyses, and reduced-order modeling. Th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07835v1-abstract-full').style.display = 'inline'; document.getElementById('2501.07835v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07835v1-abstract-full" style="display: none;"> In this paper we present advanced representation learning study on integrating deep learning techniques and sparse approximation, including diffusion models, for advanced flow field analysis and reconstruction. Key applications include super-resolution flow field reconstruction, flow field inpainting, fluid-structure interaction, transient and internal flow analyses, and reduced-order modeling. The study introduces two novel methods: flow diffusions for super-resolution tasks and a sparsity-boosted low-rank model for flow field inpainting. By leveraging cutting-edge methodologies in computational fluid dynamics (CFD), the proposed approaches improve accuracy, computational efficiency, and adaptability, offering deeper insights into complex flow dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07835v1-abstract-full').style.display = 'none'; document.getElementById('2501.07835v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07657">arXiv:2501.07657</a> <span> [<a href="https://arxiv.org/pdf/2501.07657">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Heterogeneous-free narrow linewidth semiconductor laser with optical injection locking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sun%2C+X">Xiao Sun</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhibo Li</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Yiming Sun</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yupei Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jue Wang</a>, <a href="/search/physics?searchtype=author&query=Marsh%2C+J+H">John H. Marsh</a>, <a href="/search/physics?searchtype=author&query=Sweeney%2C+S+J">Stephen. J. Sweeney</a>, <a href="/search/physics?searchtype=author&query=Kelly%2C+A+E">Anthony E. Kelly</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+L">Lianping Hou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07657v1-abstract-short" style="display: inline;"> Narrow linewidth lasers are indispensable for coherent optical systems, including communications, metrology, and sensing. Although compact semiconductor lasers with narrow linewidths and low noise have been demonstrated, their spectral purity typically relies on hybrid or heterogeneous external cavity feedback. Here, we present a theoretical and experimental demonstration of a heterogeneous free o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07657v1-abstract-full').style.display = 'inline'; document.getElementById('2501.07657v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07657v1-abstract-full" style="display: none;"> Narrow linewidth lasers are indispensable for coherent optical systems, including communications, metrology, and sensing. Although compact semiconductor lasers with narrow linewidths and low noise have been demonstrated, their spectral purity typically relies on hybrid or heterogeneous external cavity feedback. Here, we present a theoretical and experimental demonstration of a heterogeneous free optical injection locking (HF OIL) semiconductor laser. By integrating a topological interface state extended (TISE) laser with a micro ring resonator (MRR) on an AlGaInAs multiple quantum well platform,we achieve monolithic photon injection and phase locking, thereby reducing the optical linewidth. We fabricated and characterized a 1550 nm sidewall HF OIL laser, achieving stable single mode operation over a broad current range (65 to 300 mA) and a side mode suppression ratio (SMSR) over 50 dB. Under injection locking, the devices Voigt fitted linewidth narrowed from over 1.7 MHz (free running) to 4.2 kHz, representing a three order of magnitude improvement over conventional distributed feedback lasers. The intrinsic linewidth of 1.4 kHz is measured by correlated delayed self-heterodyne frequency noise power spectrum density (FN PSD) method. Moreover, the HF OIL laser demonstrated high phase stability and the ability to transition from a random phased to a phase locked state. These results underscore the potential of HF-OIL lasers in advancing coherent optical communications and phase encoders in quantum key distribution (QKD) systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07657v1-abstract-full').style.display = 'none'; document.getElementById('2501.07657v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05958">arXiv:2501.05958</a> <span> [<a href="https://arxiv.org/pdf/2501.05958">pdf</a>, <a href="https://arxiv.org/format/2501.05958">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Complexity of Tensor Product Functions in Representing Antisymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuyang Wang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Y">Yukuan Hu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05958v1-abstract-short" style="display: inline;"> Tensor product function (TPF) approximations have been widely adopted in solving high-dimensional problems, such as partial differential equations and eigenvalue problems, achieving desirable accuracy with computational overhead that scales linearly with problem dimensions. However, recent studies have underscored the extraordinarily high computational cost of TPFs on quantum many-body problems, e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05958v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05958v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05958v1-abstract-full" style="display: none;"> Tensor product function (TPF) approximations have been widely adopted in solving high-dimensional problems, such as partial differential equations and eigenvalue problems, achieving desirable accuracy with computational overhead that scales linearly with problem dimensions. However, recent studies have underscored the extraordinarily high computational cost of TPFs on quantum many-body problems, even for systems with as few as three particles. A key distinction in these problems is the antisymmetry requirement on the unknown functions. In the present work, we rigorously establish that the minimum number of involved terms for a class of TPFs to be exactly antisymmetric increases exponentially fast with the problem dimension. This class encompasses both traditionally discretized TPFs and the recent ones parameterized by neural networks. Our proof exploits the link between the antisymmetric TPFs in this class and the corresponding antisymmetric tensors and focuses on the Canonical Polyadic rank of the latter. As a result, our findings uncover a fundamental incompatibility between antisymmetry and low-rank TPFs in high-dimensional contexts and offer new insights for further developments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05958v1-abstract-full').style.display = 'none'; document.getElementById('2501.05958v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05766">arXiv:2501.05766</a> <span> [<a href="https://arxiv.org/pdf/2501.05766">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Flexible Full-Stokes Polarization Engineering by Disorder-Scrambled Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cheng%2C+Z">Zhi Cheng</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Z">Zhou Zhou</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhuo Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yue Wang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+C">Changyuan Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05766v1-abstract-short" style="display: inline;"> Abstract: The ability to arbitrarily and flexibly control the polarization of light, including both the state of polarization (SoP) and the degree of polarization (DoP), is highly important for quantum optics, polarization imaging, and coherent optical communications. Although metasurfaces have shown promise in polarization control, the few studies focusing on the DoP often lack flexibility in man… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05766v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05766v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05766v1-abstract-full" style="display: none;"> Abstract: The ability to arbitrarily and flexibly control the polarization of light, including both the state of polarization (SoP) and the degree of polarization (DoP), is highly important for quantum optics, polarization imaging, and coherent optical communications. Although metasurfaces have shown promise in polarization control, the few studies focusing on the DoP often lack flexibility in manipulation. Here, we propose a novel approach using a disordered metasurface to flexibly convert natural light into partially polarized light, enabling independent and flexible control over all Stokes parameters. The metasurface is composed of two types of meta-atoms, uniformly distributed with specific quantity ratios, decoupling the design parameters in the process of polarization control, and allowing a one-to-one correspondence between metasurface and polarization spaces. The azimuthal and elevation angles of the SoP on the Poincar茅 sphere are independently controlled by the meta-atom rotation and size, while the DoP is governed by the quantity ratio. A developed algorithm determines the disordered metasurface arrangement, with theoretical calculations showing an average error of less than 3掳 for both the azimuthal and elevation angles and a control accuracy of \pm 0.05 for the DoP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05766v1-abstract-full').style.display = 'none'; document.getElementById('2501.05766v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05402">arXiv:2501.05402</a> <span> [<a href="https://arxiv.org/pdf/2501.05402">pdf</a>, <a href="https://arxiv.org/format/2501.05402">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Edge modes in modulated metamaterials based on the three-gap theorem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yinglai Wang</a>, <a href="/search/physics?searchtype=author&query=Davies%2C+B">Bryn Davies</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%AD-Sabat%C3%A9%2C+M">Marc Mart铆-Sabat茅</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05402v1-abstract-short" style="display: inline;"> We present a new paradigm for generating complex structured materials based on the three-gap theorem that unifies and generalises several key concepts in the study of localised edge states. Our model has both the discretised coupling strengths of the SSH model and a modulation parameter that can be used to characterise the spectral flow of edge modes and produce images reminiscent of the Hofstadte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05402v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05402v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05402v1-abstract-full" style="display: none;"> We present a new paradigm for generating complex structured materials based on the three-gap theorem that unifies and generalises several key concepts in the study of localised edge states. Our model has both the discretised coupling strengths of the SSH model and a modulation parameter that can be used to characterise the spectral flow of edge modes and produce images reminiscent of the Hofstadter butterfly. By defining a localisation factor associated to each eigenmode, we are able to establish conditions for the existence of localised edge states in finite systems. This allows us to compare their eigenfrequencies with the spectra of the corresponding infinitely periodic problem and characterise the rich pattern of localised edge modes appearing and disappearing (in the sense of becoming delocalised) as the parameters of our three-gap algorithm are varied. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05402v1-abstract-full').style.display = 'none'; document.getElementById('2501.05402v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Wang%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Wang%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>