CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 230 results for author: <span class="mathjax">Zhang, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Zhang%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhang, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhang%2C+K&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhang, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zhang%2C+K&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zhang%2C+K&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+K&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+K&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+K&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+K&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17306">arXiv:2502.17306</a> <span> [<a href="https://arxiv.org/pdf/2502.17306">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Metal-organic chemical vapor deposition of MgSiN$_{2}$ thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Vangipuram%2C+V+G+T">Vijay Gopal Thirupakuzi Vangipuram</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+C">Chenxi Hu</a>, <a href="/search/physics?searchtype=author&query=Majumder%2C+A+M">Abdul Mukit Majumder</a>, <a href="/search/physics?searchtype=author&query=Chae%2C+C">Christopher Chae</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kaitian Zhang</a>, <a href="/search/physics?searchtype=author&query=Hwang%2C+J">Jinwoo Hwang</a>, <a href="/search/physics?searchtype=author&query=Kash%2C+K">Kathleen Kash</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+H">Hongping Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17306v1-abstract-short" style="display: inline;"> Orthorhombic-structured II-IV nitrides provide a promising opportunity to expand the material platform while maintaining compatibility with the wurtzite crystal structure of the traditional III-nitride material system. Among them, MgSiN$_{2}$ stands out due to its close compatibility with GaN and AlN and its theoretically predicted ultrawide direct band gap of 6.28 eV. In this work, the growth of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17306v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17306v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17306v1-abstract-full" style="display: none;"> Orthorhombic-structured II-IV nitrides provide a promising opportunity to expand the material platform while maintaining compatibility with the wurtzite crystal structure of the traditional III-nitride material system. Among them, MgSiN$_{2}$ stands out due to its close compatibility with GaN and AlN and its theoretically predicted ultrawide direct band gap of 6.28 eV. In this work, the growth of MgSiN$_{2}$ thin films on GaN-on-sapphire and c-plane sapphire substrates was investigated using metal-organic chemical vapor deposition (MOCVD). MOCVD growth conditions were correlated with film quality and crystallinity for samples grown on GaN-on-sapphire substrates. The effects of Mg:Si precursor molar flow rate ratios and growth pressure at two different temperatures, 745$^{\circ}$C and 850$^{\circ}$C, were studied comprehensively. High-resolution scanning transmission electron microscopy (STEM) imaging confirmed the formation of high-quality, single-crystal MgSiN$_{2}$ films. Optical band gap extraction from transmittance measurements yielded direct band gap values ranging from 6.13 eV to 6.27 eV for samples grown under various conditions, confirming the realization of an ultrawide-band gap, III-nitride-compatible, II-IV-nitride material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17306v1-abstract-full').style.display = 'none'; document.getElementById('2502.17306v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13018">arXiv:2502.13018</a> <span> [<a href="https://arxiv.org/pdf/2502.13018">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.4c16450">10.1021/acsnano.4c16450 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Artificially creating emergent interfacial antiferromagnetism and its manipulation in a magnetic van-der-Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiangqi Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Cong Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yupeng Wang</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+C">Chunhui Ye</a>, <a href="/search/physics?searchtype=author&query=Rahman%2C+A">Azizur Rahman</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Min Zhang</a>, <a href="/search/physics?searchtype=author&query=Son%2C+S">Suhan Son</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+J">Jun Tan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zengming Zhang</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+W">Wei Ji</a>, <a href="/search/physics?searchtype=author&query=Park%2C+J">Je-Geun Park</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai-Xuan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13018v1-abstract-short" style="display: inline;"> Van der Waals (vdW) magnets, with their two-dimensional (2D) atomic structures, provide a unique platform for exploring magnetism at the nanoscale. Although there have been numerous reports on their diverse quantum properties, the emergent interfacial magnetism--artificially created at the interface between two layered magnets--remains largely unexplored. This work presents observations of such em… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13018v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13018v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13018v1-abstract-full" style="display: none;"> Van der Waals (vdW) magnets, with their two-dimensional (2D) atomic structures, provide a unique platform for exploring magnetism at the nanoscale. Although there have been numerous reports on their diverse quantum properties, the emergent interfacial magnetism--artificially created at the interface between two layered magnets--remains largely unexplored. This work presents observations of such emergent interfacial magnetism at the ferromagnet/antiferromagnet interface in a vdW heterostructure. We report the discovery of an intermediate Hall resistance plateau in the anomalous Hall loop, indicative of emergent interfacial antiferromagnetism fostered by the heterointerface. This plateau can be stabilized and further manipulated under varying pressures but collapses under high pressures over 10 GPa. Our theoretical calculations reveal that charge transfer at the interface is pivotal in establishing the interlayer antiferromagnetic spin-exchange interaction. This work illuminates the previously unexplored emergent interfacial magnetism at a vdW interface comprised of a ferromagnetic metal and an antiferromagnetic insulator, and highlights its gradual evolution under increasing pressure. These findings enrich the portfolio of emergent interfacial magnetism and support further investigations on vdW magnetic interfaces and the development of next-generation spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13018v1-abstract-full').style.display = 'none'; document.getElementById('2502.13018v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ACS Nano; 42 pages, 5 main figures, 8 supporting figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09439">arXiv:2502.09439</a> <span> [<a href="https://arxiv.org/pdf/2502.09439">pdf</a>, <a href="https://arxiv.org/format/2502.09439">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> The Third Generation of Nanogenerators: The Irreplaceable Potential Source Enabled by the Flexoelectric Nanogenerator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+S+R">Shang Ru Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q+K">Qi Kang Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X+X">Xiao Xiong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09439v1-abstract-short" style="display: inline;"> The electroneutrality assumption has long been adopted by scholars; however, this assumption may lead to an oversight of certain physical effects. Using derivations from a discontinuous medium, we have obtained an expression for the potential and energy of a many-body unipolar charge system, which corresponds well to its counterpart in a continuous medium. The compressed form of this expression su… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09439v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09439v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09439v1-abstract-full" style="display: none;"> The electroneutrality assumption has long been adopted by scholars; however, this assumption may lead to an oversight of certain physical effects. Using derivations from a discontinuous medium, we have obtained an expression for the potential and energy of a many-body unipolar charge system, which corresponds well to its counterpart in a continuous medium. The compressed form of this expression suggests that compressing a macroscale charged body to the nanoscale can yield an enormous electric potential and energy, thereby establishing a concrete research framework for third-generation nanogenerators. This effect may serve as a crucial reference for understanding anomalous spatial electromagnetic distributions and divergent energy fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09439v1-abstract-full').style.display = 'none'; document.getElementById('2502.09439v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">No additional comments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04235">arXiv:2501.04235</a> <span> [<a href="https://arxiv.org/pdf/2501.04235">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Novel magnetic-field-free switching behavior in vdW-magnet/oxide heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Keum%2C+J">Jihoon Keum</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai-Xuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Cheon%2C+S">Suik Cheon</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H">Hyuncheol Kim</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+J">Jingyuan Cui</a>, <a href="/search/physics?searchtype=author&query=Park%2C+G">Giung Park</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+Y">Yunyeong Chang</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+M">Miyoung Kim</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+H">Hyun-Woo Lee</a>, <a href="/search/physics?searchtype=author&query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04235v1-abstract-short" style="display: inline;"> Magnetization switching by charge current without a magnetic field is essential for device applications and information technology. It generally requires a current-induced out-of-plane spin polarization beyond the capability of conventional ferromagnet/heavy-metal systems, where the current-induced spin polarization aligns in-plane orthogonal to the in-plane charge current and out-of-plane spin cu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04235v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04235v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04235v1-abstract-full" style="display: none;"> Magnetization switching by charge current without a magnetic field is essential for device applications and information technology. It generally requires a current-induced out-of-plane spin polarization beyond the capability of conventional ferromagnet/heavy-metal systems, where the current-induced spin polarization aligns in-plane orthogonal to the in-plane charge current and out-of-plane spin current. Here, we demonstrate a new approach for magnetic-field-free switching by fabricating a van-der-Waals magnet and oxide Fe3GeTe2/SrTiO3 heterostructure. This new magnetic-field-free switching is possible because the current-driven accumulated spins at the Rashba interface precess around an emergent interface magnetism, eventually producing an ultimate out-of-plane spin polarization. This interpretation is further confirmed by the switching polarity change controlled by the in-plane initialization magnetic fields with clear hysteresis. We successfully combined van-der-Waals magnet and oxide for the first time, especially taking advantage of spin-orbit torque on the SrTiO3 oxide. This allows us to establish a new way of magnetic field-free switching. Our work demonstrates an unusual perpendicular switching application of large spin Hall angle materials and precession of accumulated spins, and in doing so, opens up a new field and opportunities for van-der-Waals magnets and oxide spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04235v1-abstract-full').style.display = 'none'; document.getElementById('2501.04235v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Advanced Materials (2025); 47 pages, 4 main figures, 16 supporting figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02070">arXiv:2501.02070</a> <span> [<a href="https://arxiv.org/pdf/2501.02070">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-025-00725-y">10.1038/s41535-025-00725-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetoelectric effect in van der Waals magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai-Xuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Park%2C+G">Giung Park</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+Y">Youjin Lee</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+B+H">Beom Hyun Kim</a>, <a href="/search/physics?searchtype=author&query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02070v2-abstract-short" style="display: inline;"> The magnetoelectric (ME) effect is a fundamental concept in modern condensed matter physics and represents the electrical control of magnetic polarisations or vice versa. Two-dimensional (2D) van-der-Waals (vdW) magnets have emerged as a new class of materials and exhibit novel ME effects with diverse manifestations. This review emphasizes some important recent discoveries unique to vdW magnets: m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02070v2-abstract-full').style.display = 'inline'; document.getElementById('2501.02070v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02070v2-abstract-full" style="display: none;"> The magnetoelectric (ME) effect is a fundamental concept in modern condensed matter physics and represents the electrical control of magnetic polarisations or vice versa. Two-dimensional (2D) van-der-Waals (vdW) magnets have emerged as a new class of materials and exhibit novel ME effects with diverse manifestations. This review emphasizes some important recent discoveries unique to vdW magnets: multiferroicity on two dimensions, spin-charge correlation, atomic ME effect and current-induced intrinsic spin-orbit torque, and electrical gating control and magnetic control of their electronic properties. We also highlight the promising route of utilizing quantum magnetic hetero- or homo-structures to engineer the ME effect and corresponding spintronic and optoelectronic device applications. Due to the intrinsic two-dimensionality, vdW magnets with those ME effects are expected to form a new, exciting research direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02070v2-abstract-full').style.display = 'none'; document.getElementById('2501.02070v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by npj Quantum Materials; 27 pages, 6 main figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 10, 6 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19390">arXiv:2412.19390</a> <span> [<a href="https://arxiv.org/pdf/2412.19390">pdf</a>, <a href="https://arxiv.org/format/2412.19390">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> On the proper treatment of magnetic fluctuations in full-$f$ field-aligned turbulence codes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kaiyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Zholobenko%2C+W">Wladimir Zholobenko</a>, <a href="/search/physics?searchtype=author&query=Stegmeir%2C+A">Andreas Stegmeir</a>, <a href="/search/physics?searchtype=author&query=Eder%2C+K">Konrad Eder</a>, <a href="/search/physics?searchtype=author&query=Jenko%2C+F">Frank Jenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19390v1-abstract-short" style="display: inline;"> Plasma turbulence in the edge of magnetic confinement devices is customarily treated as full-$f$ due to large fluctuations. For computational efficiency, field-aligned coordinates are employed, separating the magnetic field into equilibrium $B_0$ and delta-f perturbations which are handled by the magnetic flutter operators. Evolving the full-$f$ pressure with delta-$f$ magnetic perturbations can c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19390v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19390v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19390v1-abstract-full" style="display: none;"> Plasma turbulence in the edge of magnetic confinement devices is customarily treated as full-$f$ due to large fluctuations. For computational efficiency, field-aligned coordinates are employed, separating the magnetic field into equilibrium $B_0$ and delta-f perturbations which are handled by the magnetic flutter operators. Evolving the full-$f$ pressure with delta-$f$ magnetic perturbations can cause inconsistency since the latter contain background components such as the Shafranov shift, which are actually parts of the equilibrium magnetic field. Such background components ($B_s$) contained in the magnetic perturbations undermine the field-aligned numerics when treated as flutter: errors arise if $B_s/B_0\ll l_\perp/h_\parallel$ is not satisfied, with the perpendicular turbulence scale $l_\perp$ and the parallel grid distance $h_\parallel$. We find that the commonly used removal of $B_s$ by subtracting the toroidal average of magnetic perturbations intervenes in the Alfv茅n dynamics, causing spurious $E\times B$ transport. Instead, we propose an improved method to dynamically filter out the evolving background from the turbulent magnetic fluctuations in the time domain. The filter is verified in both low and high confinement tokamak conditions, confirming its capability to preserve the turbulence fidelity, provided sufficient filter width. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19390v1-abstract-full').style.display = 'none'; document.getElementById('2412.19390v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12339">arXiv:2412.12339</a> <span> [<a href="https://arxiv.org/pdf/2412.12339">pdf</a>, <a href="https://arxiv.org/format/2412.12339">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Laser-Induced Quenching of the Th-229 Nuclear Clock Isomer in Calcium Fluoride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schaden%2C+F">F. Schaden</a>, <a href="/search/physics?searchtype=author&query=Riebner%2C+T">T. Riebner</a>, <a href="/search/physics?searchtype=author&query=Morawetz%2C+I">I. Morawetz</a>, <a href="/search/physics?searchtype=author&query=De+Col%2C+L+T">L. Toscani De Col</a>, <a href="/search/physics?searchtype=author&query=Kazakov%2C+G+A">G. A. Kazakov</a>, <a href="/search/physics?searchtype=author&query=Beeks%2C+K">K. Beeks</a>, <a href="/search/physics?searchtype=author&query=Sikorsky%2C+T">T. Sikorsky</a>, <a href="/search/physics?searchtype=author&query=Schumm%2C+T">T. Schumm</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">K. Zhang</a>, <a href="/search/physics?searchtype=author&query=Lal%2C+V">V. Lal</a>, <a href="/search/physics?searchtype=author&query=Zitzer%2C+G">G. Zitzer</a>, <a href="/search/physics?searchtype=author&query=Tiedau%2C+J">J. Tiedau</a>, <a href="/search/physics?searchtype=author&query=Okhapkin%2C+M+V">M. V. Okhapkin</a>, <a href="/search/physics?searchtype=author&query=Peik%2C+E">E. Peik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12339v1-abstract-short" style="display: inline;"> The 10-minute radiative lifetime of the first excited $^{229}$Th$^{4+}$ nuclear state in ionic crystals provides narrow spectroscopic linewidths, enabling the realization of a solid-state nuclear clock. Due to the 4+ noble gas configuration, electronic readout or state initialization schemes known from atomic clocks are inaccessible. This elongates the interrogation cycle, which will deteriorate t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12339v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12339v1-abstract-full" style="display: none;"> The 10-minute radiative lifetime of the first excited $^{229}$Th$^{4+}$ nuclear state in ionic crystals provides narrow spectroscopic linewidths, enabling the realization of a solid-state nuclear clock. Due to the 4+ noble gas configuration, electronic readout or state initialization schemes known from atomic clocks are inaccessible. This elongates the interrogation cycle, which will deteriorate the clock performance. To address this limitation we demonstrate laser-induced quenching (LIQ) as a method of depumping the $^{229}$Th isomer population in CaF$_2$. We provide experimental evidence for LIQ at different wavelengths (148 - 420 nm) and temperatures (100 - 350 K), achieving a threefold reduction in the isomer lifetime with 20 mW of laser power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12339v1-abstract-full').style.display = 'none'; document.getElementById('2412.12339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Pages, 8 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12240">arXiv:2412.12240</a> <span> [<a href="https://arxiv.org/pdf/2412.12240">pdf</a>, <a href="https://arxiv.org/format/2412.12240">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Effects of Thom disk on alleviating ground effects of a wall-mounted rotating cylinder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+B">Bao-Yuan Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+D">Dai Zhou</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+S">Shiliang Hu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hanfeng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12240v1-abstract-short" style="display: inline;"> This study investigates the effects of Thom disks on alleviating ground effects by wall-mounted rotating cylinders, also known as Flettner rotors, which utilize wind energy for ship propulsion. Through three-dimensional direct numerical simulations, our findings reveal that introducing a secondary Thom disk near the ground significantly reduces the three-dimensional flow pattern induced by the gro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12240v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12240v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12240v1-abstract-full" style="display: none;"> This study investigates the effects of Thom disks on alleviating ground effects by wall-mounted rotating cylinders, also known as Flettner rotors, which utilize wind energy for ship propulsion. Through three-dimensional direct numerical simulations, our findings reveal that introducing a secondary Thom disk near the ground significantly reduces the three-dimensional flow pattern induced by the ground, leading to a more uniform pressure distribution along the rotor's surface. We also explore how the vertical placement of a secondary Thom disk influences wake dynamics and aerodynamic forces. Optimal placement of the secondary disk is found at the ground, which maximizes the lift-to-drag ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12240v1-abstract-full').style.display = 'none'; document.getElementById('2412.12240v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01178">arXiv:2412.01178</a> <span> [<a href="https://arxiv.org/pdf/2412.01178">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Magnetic twisting in an artificial ferrimagnet: Anisotropic magnetoresistance on Py/Gd/Py/Gd/Py/SiNx multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/physics?searchtype=author&query=Niu%2C+Y+X">Y. X. Niu</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+Y">Yang Meng</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+H">Hong-Wu Zhao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">J. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01178v1-abstract-short" style="display: inline;"> The intensive study of non-collinear magnets promotes an urgent demand for the quantitative characterization of the non-collinear magnetic structures, which host numerous exotic phenomena. Here we systematically study the non-collinear magnetic structure of an artificial ferrimagnetic multilayer. The AMR measurements reveal two distinct twisted states whose magnetic structures can be quantitativel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01178v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01178v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01178v1-abstract-full" style="display: none;"> The intensive study of non-collinear magnets promotes an urgent demand for the quantitative characterization of the non-collinear magnetic structures, which host numerous exotic phenomena. Here we systematically study the non-collinear magnetic structure of an artificial ferrimagnetic multilayer. The AMR measurements reveal two distinct twisted states whose magnetic structures can be quantitatively characterized with the assistance of micromagnetic simulations. Our results manifest AMR as an ideal probe of the non-collinear magnetic structure in artificial ferrimagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01178v1-abstract-full').style.display = 'none'; document.getElementById('2412.01178v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17070">arXiv:2411.17070</a> <span> [<a href="https://arxiv.org/pdf/2411.17070">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Mono-drive single-sideband modulation via optical delay lines on thin-film lithium niobate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yikun Chen</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+H">Hanke Feng</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhenzheng Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+X">Xiangzhi Xie</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+Y">Yuansong Zeng</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+Y">Yujie Ren</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Cheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17070v1-abstract-short" style="display: inline;"> Optical single-sideband (SSB) modulation features high spectral efficiency, substantial dispersion tolerance, and straightforward detection, making it a versatile technology for applications in optical communications, microwave photonics, optical sensing, satellite communication, etc. However, conventional SSB generators typically require two radio-frequency (RF) signals with a 90掳 phase differenc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17070v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17070v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17070v1-abstract-full" style="display: none;"> Optical single-sideband (SSB) modulation features high spectral efficiency, substantial dispersion tolerance, and straightforward detection, making it a versatile technology for applications in optical communications, microwave photonics, optical sensing, satellite communication, etc. However, conventional SSB generators typically require two radio-frequency (RF) signals with a 90掳 phase difference to drive a pair of parallel phase or amplitude modulators, resulting in high system complexity and low power efficiency. In this paper, we propose and realize a simplified SSB generation scheme necessitating only a single RF drive, by achieving effective RF phase shift using on-chip optical delay lines. This approach not only reduces system complexity and saves energy consumption by 3 dB, but also enables easy scalability to higher frequencies. We demonstrate both full-carrier SSB (FC-SSB) and carrier-suppressed SSB (CS-SSB) modulation on thin-film lithium niobate platform. For FC-SSB, we show a maximum sideband suppression of 22.1 dB at 50 GHz and apply it to address the frequency-selective power fading problem in optical communication systems. For CS-SSB, we show a maximum sideband suppression of 22.5 dB and a sideband-to-carrier suppression of 16.9 dB at 50 GHz, which can act as an optical frequency shifter by sweeping the modulation frequencies. Moreover, the shifted optical frequency can be transferred back to the electrical domain by beating with a reference signal generated via a phase modulator on the same chip, achieving broadband RF frequency shifting from a maximum of 50 GHz down to 1 GHz. Our simple, power-efficient, and low-cost SSB modulation scheme could provide an effective solution for future high-frequency direct detection-based communication systems, frequency-modulated continuous wave radar/LiDAR, optical vector network analyzers, and microwave photonics systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17070v1-abstract-full').style.display = 'none'; document.getElementById('2411.17070v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10674">arXiv:2411.10674</a> <span> [<a href="https://arxiv.org/pdf/2411.10674">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Towards 250-m gigabits-per-second underwater wireless optical communication using a low-complexity ANN equalizer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+X">Xiaohe Dong</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kuokuo Zhang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+C">Caiming Sun</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+A">Aidong Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Lijun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10674v1-abstract-short" style="display: inline;"> The breakthroughs of communication distance and data rate have been eagerly anticipated by scientists in the area of underwater wireless optical communication (UWOC), which is seriously limited by the obvious aquatic attenuation in underwater channel. High-power laser source and ultra-sensitive photodetector are straightforward to extend the UWOC distance. However, nonlinear impairments caused by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10674v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10674v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10674v1-abstract-full" style="display: none;"> The breakthroughs of communication distance and data rate have been eagerly anticipated by scientists in the area of underwater wireless optical communication (UWOC), which is seriously limited by the obvious aquatic attenuation in underwater channel. High-power laser source and ultra-sensitive photodetector are straightforward to extend the UWOC distance. However, nonlinear impairments caused by bandwidth-limited high-power transmitter and sensitive receiver severely degrade the data rate of long-distance UWOC. In this paper, we develop a UWOC system using a high-power transmitter by beam combining of 8-channel cascaded laser diodes (LD) and a sensitive receiver by a silicon photomultiplier (SiPM). The combined linear equalizer and low-complexity Artificial Neural Network (ANN) equalizer are used to achieve 1-Gbps data transmission over a 250-m UWOC system. To the best of our knowledge, this is the first Gbps-level UWOC experimental demonstration in >250-meter underwater transmission that has ever been reported. To lower the complexity of the ANN equalizer, a linear equalizer is applied first in order to prune the input size of the ANN equalizer. The optimal input size of the ANN equalizer is identified as 9. And the ANN architecture consists of two hidden layers, with 10 neurons in the first layer and a single neuron in the second layer. The performance of the proposed ANN-based system is compared with that of systems employing Volterra and linear equalizers. The bit error rate (BER) at data rate of 1 Gbps over a 250-m UWOC is reduced to with the combined linear and ANN equalizer, which is below the hard-decision forward error correction (HD-FEC) limit. In contrast, the linear and Volterra equalizer-based systems achieve data rates of 500 Mbps and 750 Mbps, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10674v1-abstract-full').style.display = 'none'; document.getElementById('2411.10674v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05686">arXiv:2411.05686</a> <span> [<a href="https://arxiv.org/pdf/2411.05686">pdf</a>, <a href="https://arxiv.org/format/2411.05686">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Comprehensive Study on the Slat Noise of 30P30N High-Lift Airfoil Basd on High-Order Wall-Resolved Large-Eddy Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Keli Zhang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+S">Shizhi Lin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+P">Peiqing Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S">Shihao Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kai Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05686v1-abstract-short" style="display: inline;"> This study presents wall-resolved large-eddy simulations (WRLES) of a high-lift airfoil, based on high-order flux reconstruction (FR) commercial software Dimaxer, which runs on consumer level GPUs. A series of independence tests are conducted, including various Ffowcs Williams-Hawkings sampling surfaces, different mesh densities, simulations at 4th and 5th order accuracies, and varying spanwise le… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05686v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05686v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05686v1-abstract-full" style="display: none;"> This study presents wall-resolved large-eddy simulations (WRLES) of a high-lift airfoil, based on high-order flux reconstruction (FR) commercial software Dimaxer, which runs on consumer level GPUs. A series of independence tests are conducted, including various Ffowcs Williams-Hawkings sampling surfaces, different mesh densities, simulations at 4th and 5th order accuracies, and varying spanwise lengths, to establish best practice for predicting slat noise through high-order WRLES. The results show excellent agreement with experimental data while requiring significantly fewer computational resources than traditional second-order methods. An investigation on the effects of Reynolds number (Re) is performed by scaling the airfoil size, with Reynolds numbers ranging from 8.55e5 to a real aircraft level of 1.71e7. By applying simple scaling through Strouhal number (St), spanwise correction, and distance from the receiver, the far-field noise spectra for different Reynolds numbers can be coincided. Additionally, simulations are performed at four angles of attack: 3掳, 5.5掳, 9.5掳, and 14掳. The results indicate that higher angles of attack lead to a less intense feedback loop, resulting in lower tonal noise frequencies and reduced noise amplitude. The maximum noise reduction observed is over 14dB when comparing 14掳 to 3掳. Furthermore, an improved formula is proposed to enhance the prediction of slat noise tonal frequencies and to better elucidate the mechanism behind tonal noise generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05686v1-abstract-full').style.display = 'none'; document.getElementById('2411.05686v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03129">arXiv:2411.03129</a> <span> [<a href="https://arxiv.org/pdf/2411.03129">pdf</a>, <a href="https://arxiv.org/format/2411.03129">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> MA^2: A Self-Supervised and Motion Augmenting Autoencoder for Gait-Based Automatic Disease Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yiqun Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+Y">Yin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03129v1-abstract-short" style="display: inline;"> Ground reaction force (GRF) is the force exerted by the ground on a body in contact with it. GRF-based automatic disease detection (ADD) has become an emerging medical diagnosis method, which aims to learn and identify disease patterns corresponding to different gait pressures based on deep learning methods. Although existing ADD methods can save doctors time in making diagnoses, training deep mod… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03129v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03129v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03129v1-abstract-full" style="display: none;"> Ground reaction force (GRF) is the force exerted by the ground on a body in contact with it. GRF-based automatic disease detection (ADD) has become an emerging medical diagnosis method, which aims to learn and identify disease patterns corresponding to different gait pressures based on deep learning methods. Although existing ADD methods can save doctors time in making diagnoses, training deep models still struggles with the cost caused by the labeling engineering for a large number of gait diagnostic data for subjects. On the other hand, the accuracy of the deep model under the unified benchmark GRF dataset and the generalization ability on scalable gait datasets need to be further improved. To address these issues, we propose MA2, a GRF-based self-supervised and motion augmenting auto-encoder, which models the ADD task as an encoder-decoder paradigm. In the encoder, we introduce an embedding block including the 3-layer 1D convolution for extracting the token and a mask generator to randomly mask out the sequence of tokens to maximize the model's potential to capture high-level, discriminative, intrinsic representations. whereafter, the decoder utilizes this information to reconstruct the pixel sequence of the origin input and calculate the reconstruction loss to optimize the network. Moreover, the backbone of an auto-encoder is multi-head self-attention that can consider the global information of the token from the input, not just the local neighborhood. This allows the model to capture generalized contextual information. Extensive experiments demonstrate MA2 has SOTA performance of 90.91% accuracy on 1% limited pathological GRF samples with labels, and good generalization ability of 78.57% accuracy on scalable Parkinson disease dataset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03129v1-abstract-full').style.display = 'none'; document.getElementById('2411.03129v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 11 figures, article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16807">arXiv:2410.16807</a> <span> [<a href="https://arxiv.org/pdf/2410.16807">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Barometric Altimeter Assisted SINS/DR Combined Land Vehicle Gravity Anomaly Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kefan Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhili Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+J">Junyang Zhao</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+S">Shenhua Lv</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16807v1-abstract-short" style="display: inline;"> Traditional land vehicle gravity measurement heavily rely on high-precision satellite navigation positioning information. However, the operational range of satellite navigation is limited, and it cannot maintain the required level of accuracy in special environments. To address this issue, we propose a novel land vehicle gravity anomaly measurement method based on altimeter-assisted strapdown iner… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16807v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16807v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16807v1-abstract-full" style="display: none;"> Traditional land vehicle gravity measurement heavily rely on high-precision satellite navigation positioning information. However, the operational range of satellite navigation is limited, and it cannot maintain the required level of accuracy in special environments. To address this issue, we propose a novel land vehicle gravity anomaly measurement method based on altimeter-assisted strapdown inertial navigation system (SINS)/dead reckoning (DR) integration. Gravimetric measurement trials demonstrate that after low-pass filtering, the new method achieves a fit accuracy of 2.005 mGal, comparable to that of the traditional SINS/global navigation satellite system (GNSS) integration method. Compared with the SINS/DR integration method, the proposed method improves accuracy by approximately 11%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16807v1-abstract-full').style.display = 'none'; document.getElementById('2410.16807v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15455">arXiv:2410.15455</a> <span> [<a href="https://arxiv.org/pdf/2410.15455">pdf</a>, <a href="https://arxiv.org/format/2410.15455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of quantum information collapse-and-revival in a strongly-interacting Rydberg atom array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiang%2C+D">De-Sheng Xiang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yao-Wen Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hao-Xiang Liu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+P">Peng Zhou</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+D">Dong Yuan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shun-Yao Zhang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+B">Biao Xu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Lu Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yitong Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Lin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15455v1-abstract-short" style="display: inline;"> Interactions of isolated quantum many-body systems typically scramble local information into the entire system and make it unrecoverable. Ergodicity-breaking systems possess the potential to exhibit fundamentally different information scrambling dynamics beyond this paradigm. For many-body localized systems with strong ergodicity breaking, local transport vanishes and information scrambles logarit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15455v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15455v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15455v1-abstract-full" style="display: none;"> Interactions of isolated quantum many-body systems typically scramble local information into the entire system and make it unrecoverable. Ergodicity-breaking systems possess the potential to exhibit fundamentally different information scrambling dynamics beyond this paradigm. For many-body localized systems with strong ergodicity breaking, local transport vanishes and information scrambles logarithmically slowly. Whereas in Rydberg atom arrays, local qubit flips induce dynamical retardation on surrounding qubits through the Rydberg blockade effect, giving rise to quantum many-body scars that weakly break ergodicity, and resulting in the predicted unconventional quantum information spreading behaviours. Here, we present the first measurements of out-of-time-ordered correlators and Holevo information in a Rydberg atom array, enabling us to precisely track quantum information scrambling and transport dynamics. By leveraging these tools, we observe a novel spatio-temporal collapse-and-revival behaviour of quantum information, which differs from both typical chaotic and many-body localized systems. Our experiment sheds light on the unique information dynamics in many-body systems with kinetic constraints, and demonstrates an effective digital-analogue approach to coherently reverse time evolution and steer information propagation in near-term quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15455v1-abstract-full').style.display = 'none'; document.getElementById('2410.15455v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures + Supplementary Information 37 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12426">arXiv:2410.12426</a> <span> [<a href="https://arxiv.org/pdf/2410.12426">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Broadband millimeter-wave frequency mixer based on thin-film lithium niobate photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xie%2C+X">Xiangzhi Xie</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+H">Hanke Feng</a>, <a href="/search/physics?searchtype=author&query=Tao%2C+Y">Yuansheng Tao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yikun Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhaoxi Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Cheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12426v1-abstract-short" style="display: inline;"> Frequency mixers are fundamental components in modern wireless communication and radar systems, responsible for up- and down-conversion of target radio-frequency (RF) signals. Recently, photonic-assisted RF mixers have shown unique advantages over traditional electronic counterparts, including broad operational bandwidth, flat frequency response, and immunity to electromagnetic interference. Howev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12426v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12426v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12426v1-abstract-full" style="display: none;"> Frequency mixers are fundamental components in modern wireless communication and radar systems, responsible for up- and down-conversion of target radio-frequency (RF) signals. Recently, photonic-assisted RF mixers have shown unique advantages over traditional electronic counterparts, including broad operational bandwidth, flat frequency response, and immunity to electromagnetic interference. However, current integrated photonic mixers face significant challenges in achieving efficient conversion at high frequencies, especially in millimeter-wave bands, due to the limitations of existing electro-optic (EO) modulators. Additionally, high-frequency local oscillators in the millimeter-wave range are often difficult to obtain and expensive, leading to unsatisfactory cost and restricted operational bandwidth in practice. In this paper, we harness the exceptional EO property and scalability of thin-film lithium niobate (TFLN) photonic platform to implement a high-performance harmonic reconfigurable millimeter-wave mixer. The TFLN photonic circuit integrates a broadband EO modulator that allows for extensive frequency coverage, and an EO frequency comb source that significantly reduces the required carrier frequency of the local oscillator. We experimentally demonstrate fully reconfigurable frequency down-conversion across a broad operational bandwidth ranging from 20 GHz to 67 GHz, with a large intermediate frequency of 20 GHz, as well as up-conversion to frequencies of up to 110 GHz. Our integrated photonic mixing system shows dramatically improved bandwidth performance, along with competitive indicators of frequency conversion efficiency and spurious suppression ratio, positioning it as a promising solution for future millimeter-wave transceivers in next-generation communication and sensing systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12426v1-abstract-full').style.display = 'none'; document.getElementById('2410.12426v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08554">arXiv:2410.08554</a> <span> [<a href="https://arxiv.org/pdf/2410.08554">pdf</a>, <a href="https://arxiv.org/format/2410.08554">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Integrated adaptive coherent LiDAR for 4D bionic vision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+R">Ruixuan Chen</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Yichen Wu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chuxin Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yikun Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wencan Li</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+B">Bitao Shen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhaoxi Chen</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+H">Hanke Feng</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+Z">Zhangfeng Ge</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Yan Zhou</a>, <a href="/search/physics?searchtype=author&query=Tao%2C+Z">Zihan Tao</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+W">Weihan Xu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yimeng Wang</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+P">Pengfei Cai</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+D">Dong Pan</a>, <a href="/search/physics?searchtype=author&query=Shu%2C+H">Haowen Shu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+L">Linjie Zhou</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Cheng Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xingjun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08554v1-abstract-short" style="display: inline;"> Light detection and ranging (LiDAR) is a ubiquitous tool to provide precise spatial awareness in various perception environments. A bionic LiDAR that can mimic human-like vision by adaptively gazing at selected regions of interest within a broad field of view is crucial to achieve high-resolution imaging in an energy-saving and cost-effective manner. However, current LiDARs based on stacking fixed… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08554v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08554v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08554v1-abstract-full" style="display: none;"> Light detection and ranging (LiDAR) is a ubiquitous tool to provide precise spatial awareness in various perception environments. A bionic LiDAR that can mimic human-like vision by adaptively gazing at selected regions of interest within a broad field of view is crucial to achieve high-resolution imaging in an energy-saving and cost-effective manner. However, current LiDARs based on stacking fixed-wavelength laser arrays and inertial scanning have not been able to achieve the desired dynamic focusing patterns and agile scalability simultaneously. Moreover, the ability to synchronously acquire multi-dimensional physical parameters, including distance, direction, Doppler, and color, through seamless fusion between multiple sensors, still remains elusive in LiDAR. Here, we overcome these limitations and demonstrate a bio-inspired frequency-modulated continuous wave (FMCW) LiDAR system with dynamic and scalable gazing capability. Our chip-scale LiDAR system is built using hybrid integrated photonic solutions, where a frequency-chirped external cavity laser provides broad spectral tunability, while on-chip electro-optic combs with elastic channel spacing allow customizable imaging granularity. Using the dynamic zoom-in capability and the coherent FMCW scheme, we achieve a state-of-the-art resolution of 0.012 degrees, providing up to 15 times the resolution of conventional 3D LiDAR sensors, with 115 equivalent scanning lines and 4D parallel imaging. We further demonstrate cooperative sensing between our adaptive coherent LiDAR and a camera to enable high-resolution color-enhanced machine vision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08554v1-abstract-full').style.display = 'none'; document.getElementById('2410.08554v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00842">arXiv:2410.00842</a> <span> [<a href="https://arxiv.org/pdf/2410.00842">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.3c07576">10.1021/acsnano.3c07576 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optically-Controlled Nano-Transducers Based on Cleaved Superlattices for Monitoring Gigahertz Surface Acoustic Vibrations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+C">Changxiu Li</a>, <a href="/search/physics?searchtype=author&query=Chigarev%2C+N">Nikolay Chigarev</a>, <a href="/search/physics?searchtype=author&query=Thr%C3%A9ard%2C+T">Th茅o Thr茅ard</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kedong Zhang</a>, <a href="/search/physics?searchtype=author&query=Delorme%2C+N">Nicolas Delorme</a>, <a href="/search/physics?searchtype=author&query=Tournat%2C+V">Vincent Tournat</a>, <a href="/search/physics?searchtype=author&query=Raetz%2C+S">Samuel Raetz</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+H">Hong Lu</a>, <a href="/search/physics?searchtype=author&query=Gusev%2C+V+E">Vitalyi E. Gusev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00842v1-abstract-short" style="display: inline;"> Surface acoustic waves (SAWs) convey energy at subwavelength depths along surfaces. Using interdigital transducers (IDTs) and opto-acousto-optic transducers (OAOTs), researchers have harnessed coherent SAWs with nanosecond periods and micrometer localization depth for various applications. However, the utilization of cutting-edge OAOTs produced through surface nanopatterning techniques has set the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00842v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00842v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00842v1-abstract-full" style="display: none;"> Surface acoustic waves (SAWs) convey energy at subwavelength depths along surfaces. Using interdigital transducers (IDTs) and opto-acousto-optic transducers (OAOTs), researchers have harnessed coherent SAWs with nanosecond periods and micrometer localization depth for various applications. However, the utilization of cutting-edge OAOTs produced through surface nanopatterning techniques has set the upper limit for coherent SAW frequencies below 100 GHz, constrained by factors such as the quality and pitch of the surface nanopattern, not to mention the electronic bandwidth limitations of the IDTs. In this context, unconventional optically-controlled nano-transducers based on cleaved superlattices (SLs) are here presented as an alternative solution. To demonstrate their viability, we conducted proof-of-concept experiments using ultrafast lasers in a pump-probe configuration on SLs made of alternating AlxGa1-xAs and AlyGa1-yAs layers with approximately 70 nm periodicity and cleaved along their growth direction to produce a periodic nanostructured surface. The acoustic vibrations, generated and detected by laser beams incident on the cleaved surface, span a range from 40 GHz to 70 GHz, corresponding to the generalized surface Rayleigh mode and bulk modes within the dispersion relation. This exploration shows that, in addition to SAWs, cleaved SLs offer the potential to observe surface-skimming longitudinal and transverse acoustic waves at GHz frequencies. This proof-of-concept demonstration below 100 GHz in nanoacoustics using such an unconventional platform offers opportunities for realizing sub-THz to THz coherent surface acoustic vibrations in the future, as SLs can be epitaxially grown with atomic-scale layer width and quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00842v1-abstract-full').style.display = 'none'; document.getElementById('2410.00842v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 8 figures, published at ACS Nano</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 18, 9331 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13623">arXiv:2409.13623</a> <span> [<a href="https://arxiv.org/pdf/2409.13623">pdf</a>, <a href="https://arxiv.org/format/2409.13623">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultra spectral sensitivity and non-local bi-impurity bound states from quasi-long-range non-hermitian skin modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shu%2C+C">Chang Shu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+K">Kai Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13623v1-abstract-short" style="display: inline;"> A fundamental tenet of quantum mechanics is that the energy spectrum of a quantum system shall remain stable against infinitesimally weak and spatially confined perturbations. In this article, we demonstrate that this principle of spectral stability fails in non-Hermitian systems at the thermodynamic limit. Consider, for instance, a non-interacting non-Hermitian system $H_0$ with a couple of point… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13623v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13623v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13623v1-abstract-full" style="display: none;"> A fundamental tenet of quantum mechanics is that the energy spectrum of a quantum system shall remain stable against infinitesimally weak and spatially confined perturbations. In this article, we demonstrate that this principle of spectral stability fails in non-Hermitian systems at the thermodynamic limit. Consider, for instance, a non-interacting non-Hermitian system $H_0$ with a couple of point-like impurities, each of which introduces a local short-range potential $V_i$ with $i=1, \ldots, n$ labeling the impurities. If the impurity potentials are sufficiently weak, introducing a single impurity will not alter the spectrum; that is, $H_0$ and $H_0 + V_1$ have nearly identical energy spectra. However, if a second impurity is introduced, $H_0 + V_1 + V_2$, we find that no matter how weak these local potentials are, as long as the distance between them is sufficiently large, significant alterations in the energy spectrum can arise, directly contradicting the traditional expectation of a stable spectrum. Remarkably, this phenomenon is non-local, and the impact of the perturbations increases exponentially with the distance between the two impurities. In other words, although the Hamiltonian is entirely local, its energy spectrum, which is blind to the presence of a single infinitesimally weak impurity, is capable of detecting the presence of two infinitesimally weak impurities separated by a large distance in space. Using Green's function techniques, we uncover the origin of this spectral sensitivity, which arises from the formation of non-local bi-impurity bound states: non-local stationary states with wavepackets propagating back-and-forth between the two impurities. We provide an analytic theory to identify and characterize such spectral instabilities, showing perfect agreement with numerical solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13623v1-abstract-full').style.display = 'none'; document.getElementById('2409.13623v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03473">arXiv:2409.03473</a> <span> [<a href="https://arxiv.org/pdf/2409.03473">pdf</a>, <a href="https://arxiv.org/ps/2409.03473">ps</a>, <a href="https://arxiv.org/format/2409.03473">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Purification of Gaussian States by Photon Subtraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kun Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Huijun Li</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+J">Jietai Jing</a>, <a href="/search/physics?searchtype=author&query=Treps%2C+N">Nicolas Treps</a>, <a href="/search/physics?searchtype=author&query=Walschaers%2C+M">Mattia Walschaers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03473v1-abstract-short" style="display: inline;"> Photon subtraction can enhance entanglement, which for pure states induces a decrease in the purity of reduced states. In contrast, by analyzing the purities of Gaussian states before and after subtracting a single photon, we prove that the purity of a Gaussian state can also be increased by less than 20%. On the one hand, it reveals that photon subtraction can reduce entanglement, and on the othe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03473v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03473v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03473v1-abstract-full" style="display: none;"> Photon subtraction can enhance entanglement, which for pure states induces a decrease in the purity of reduced states. In contrast, by analyzing the purities of Gaussian states before and after subtracting a single photon, we prove that the purity of a Gaussian state can also be increased by less than 20%. On the one hand, it reveals that photon subtraction can reduce entanglement, and on the other hand, it reveals that it can achieve a limited amount of Gaussian state purification. Through the analysis of some examples, we demonstrate the inherent mechanism and applicable scope of photon-subtraction-based purification. In a multimode system, we find that photon subtraction can increase entanglement and purify some of the reduced states simultaneously. We thus present purification through the suppression of Gaussian noise as a new application for photon subtraction in continuous-variable quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03473v1-abstract-full').style.display = 'none'; document.getElementById('2409.03473v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02710">arXiv:2409.02710</a> <span> [<a href="https://arxiv.org/pdf/2409.02710">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrical control of topological 3Q state in an intercalated van der Waals antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kim%2C+J">Junghyun Kim</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kaixuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Park%2C+P">Pyeongjae Park</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+W">Woonghee Cho</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H">Hyuncheol Kim</a>, <a href="/search/physics?searchtype=author&query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02710v1-abstract-short" style="display: inline;"> Van der Waals (vdW) magnets have opened a new avenue of novel opportunities covering various interesting phases. Co1/3TaS2-an intercalated metallic vdW antiferromagnet-is one of the latest important additions to the growing list of materials due to its unique triple-Q (3Q) ground state possessing topological characteristics. Careful bulk characterisations have shown the ground state of CoxTaS2 to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02710v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02710v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02710v1-abstract-full" style="display: none;"> Van der Waals (vdW) magnets have opened a new avenue of novel opportunities covering various interesting phases. Co1/3TaS2-an intercalated metallic vdW antiferromagnet-is one of the latest important additions to the growing list of materials due to its unique triple-Q (3Q) ground state possessing topological characteristics. Careful bulk characterisations have shown the ground state of CoxTaS2 to be a rare 3Q tetrahedral structure for x less than 1/3. The uniqueness of this ground state arises from the dense real-space Berry curvature due to scalar spin chirality, giving rise to a noticeable anomalous Hall effect. In this work, we demonstrate that we can control this topological phase via gating. Using three kinds of CoxTaS2 devices with different Co compositions, we have established that we can cover the whole 3Q topological phase with ionic gating. This work reports a rare demonstration of electrical gating control of layered antiferromagnetic metal. More importantly, our work constitutes one of the first examples of the electrical control of the scalar spin chirality using antiferromagnetic metal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02710v1-abstract-full').style.display = 'none'; document.getElementById('2409.02710v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02182">arXiv:2408.02182</a> <span> [<a href="https://arxiv.org/pdf/2408.02182">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> In-depth Understanding of the Band Alignment and Interface States Scenario in Bi$_2$O$_2$Se/SrTiO$_3$ Ultrathin Heterojunction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+Y">Yusen Feng</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+L">Lei Hao</a>, <a href="/search/physics?searchtype=author&query=Mi%2C+J">Jing Mi</a>, <a href="/search/physics?searchtype=author&query=Du%2C+M">Miao Du</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+M">Minghui Xu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yan Zhao</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+J">Jianping Meng</a>, <a href="/search/physics?searchtype=author&query=Qiao%2C+L">Liang Qiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02182v1-abstract-short" style="display: inline;"> Bismuth oxyselenide (Bi$_2$O$_2$Se), a novel quasi-2D charge-carrying semiconductor, is hailed as one of the best emerging platforms for the next generation semiconductor devices. Recent efforts on developing diverse Bi$_2$O$_2$Se heterojunctions have produced extensive potential applications in electronics and optoelectronics. In-depth understanding of the band alignment and especially interface… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02182v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02182v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02182v1-abstract-full" style="display: none;"> Bismuth oxyselenide (Bi$_2$O$_2$Se), a novel quasi-2D charge-carrying semiconductor, is hailed as one of the best emerging platforms for the next generation semiconductor devices. Recent efforts on developing diverse Bi$_2$O$_2$Se heterojunctions have produced extensive potential applications in electronics and optoelectronics. In-depth understanding of the band alignment and especially interface dynamics is, however, still challenging. In this work, a comprehensive experimental investigation on the band alignment is performed by a high-resolution X-ray photoelectron spectrometer (HRXPS), and the properties of interface states are also fully discussed. The results show that the ultrathin film Bi$_2$O$_2$Se grown on SrTiO$_3$ (TiO$_2$ (001) termination) exhibits Type-I (straddling gap) band alignment with a valence band offset (VBO) of about 1.77\pm0.04 eV and conduction band offset (CBO) of about 0.68\pm0.04 eV. However, further considering the contribution of the interface states, the bands on the interface present a herringbone configuration due to sizable build-in electric fields, which is significantly different from the conventional band alignment. In this sense, our results provide an insightful guidance to the development of high-efficiency electronic and optoelectronic devices, specifically of the devices where the charge transfer is highly sensitive to interface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02182v1-abstract-full').style.display = 'none'; document.getElementById('2408.02182v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00459">arXiv:2408.00459</a> <span> [<a href="https://arxiv.org/pdf/2408.00459">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Microwave resonator-enabled broadband on-chip electro-optic frequency comb generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhaoxi Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+H">Hanke Feng</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+Y">Yuansong Zeng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Cheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00459v1-abstract-short" style="display: inline;"> Optical frequency combs play a crucial role in optical communications, time-frequency metrology, precise ranging, and sensing. Among various generation schemes, resonant electro-optic combs are particularly attractive for its excellent stability, flexibility and broad bandwidths. In this approach, an optical pump undergoes multiple electro-optic modulation processes in a high-Q optical resonator,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00459v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00459v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00459v1-abstract-full" style="display: none;"> Optical frequency combs play a crucial role in optical communications, time-frequency metrology, precise ranging, and sensing. Among various generation schemes, resonant electro-optic combs are particularly attractive for its excellent stability, flexibility and broad bandwidths. In this approach, an optical pump undergoes multiple electro-optic modulation processes in a high-Q optical resonator, resulting in cascaded spectral sidebands. However, most resonant electro-optic combs to date make use of lumped-capacitor electrodes with relatively inefficient utilization of the input electrical power. This design also reflects most electrical power back to the driving circuits and necessitates costly RF isolators in between, presenting substantial challenges in practical applications. To address these issues, we present an RF circuit friendly electro-optic frequency comb generator incorporated with on-chip coplanar microwave resonator electrodes, based on a thin-film lithium niobate platform. Our design achieves more than three times electrical power reduction with minimal reflection at the designed comb repetition rate of ~ 25 GHz. We experimentally demonstrate broadband electro-optic frequency comb generation with a comb span of >85 nm at a moderate electrical driving power of 740 mW (28.7 dBm). Our power-efficient and isolator-free electro-optic comb source could offer compact, low-cost and simple-to-design solution for applications in spectroscopy, high-precise metrology, optical communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00459v1-abstract-full').style.display = 'none'; document.getElementById('2408.00459v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15604">arXiv:2407.15604</a> <span> [<a href="https://arxiv.org/pdf/2407.15604">pdf</a>, <a href="https://arxiv.org/format/2407.15604">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2024.521">10.1017/jfm.2024.521 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-flexibility reconstruction of small-scale motions in wall turbulence using a generalized zero-shot learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wu%2C+H">Haokai Wu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+D">Dai Zhou</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+W">Wen-Li Chen</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Z">Zhaolong Han</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Y">Yong Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15604v1-abstract-short" style="display: inline;"> This study proposes a novel super-resolution (or SR) framework for generating high-resolution turbulent boundary layer (TBL) flow from low-resolution inputs. The framework combines a super-resolution generative adversarial neural network (SRGAN) with down-sampling modules (DMs), integrating the residual of the continuity equation into the loss function. DMs selectively filter out components with e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15604v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15604v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15604v1-abstract-full" style="display: none;"> This study proposes a novel super-resolution (or SR) framework for generating high-resolution turbulent boundary layer (TBL) flow from low-resolution inputs. The framework combines a super-resolution generative adversarial neural network (SRGAN) with down-sampling modules (DMs), integrating the residual of the continuity equation into the loss function. DMs selectively filter out components with excessive energy dissipation in low-resolution fields prior to the super-resolution process. The framework iteratively applies the SRGAN and DM procedure to fully capture the energy cascade of multi-scale flow structures, collectively termed the SRGAN-based energy cascade framework (EC-SRGAN). Despite being trained solely on turbulent channel flow data (via "zero-shot transfer"), EC-SRGAN exhibits remarkable generalization in predicting TBL small-scale velocity fields, accurately reproducing wavenumber spectra compared to DNS results. Furthermore, a super-resolution core is trained at a specific super-resolution ratio. By leveraging this pre-trained super-resolution core, EC-SRGAN efficiently reconstructs TBL fields at multiple super-resolution ratios from various levels of low-resolution inputs, showcasing strong flexibility. By learning turbulent scale invariance, EC-SRGAN demonstrates robustness across different TBL datasets. These results underscore EC-SRGAN potential for generating and predicting wall turbulence with high flexibility, offering promising applications in addressing diverse TBL-related challenges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15604v1-abstract-full').style.display = 'none'; document.getElementById('2407.15604v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Fluid Mech. 990 (2024) R1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14036">arXiv:2407.14036</a> <span> [<a href="https://arxiv.org/pdf/2407.14036">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultra-compact beam steering nanolasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xinghong Chen</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+M">Mingxuan Gu</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiankai Tang</a>, <a href="/search/physics?searchtype=author&query=Sang%2C+Y">Yungang Sang</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+B">Bingrui Xiang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kong Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+G">Guanjie Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xingyuan Wang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xuhan Guo</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+L">Linjie Zhou</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W">Wengang Wu</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+Y">Yifei Mao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14036v1-abstract-short" style="display: inline;"> The miniaturization and integration of beam steering devices have consistently been the focus of the field. Conventional methods alter the eigenmode of the optical cavity by regulating the refractive index. Due to the weak nonlinear effect of the optical system, the device must be sufficiently large to achieve sufficient light modulation. The effective method for miniaturizing beam steering device… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14036v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14036v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14036v1-abstract-full" style="display: none;"> The miniaturization and integration of beam steering devices have consistently been the focus of the field. Conventional methods alter the eigenmode of the optical cavity by regulating the refractive index. Due to the weak nonlinear effect of the optical system, the device must be sufficiently large to achieve sufficient light modulation. The effective method for miniaturizing beam steering devices currently in use is based on metasurfaces. However, this type of device necessitates the input of a laser source, which precludes the simultaneous generation and control of light in a single device. Here we propose a miniaturized beam steering device that employs mode selection between different bound states in the continuum (BIC) states through phase change material. The device is capable of simultaneously achieving both light generation and beam steering (33掳) in a single device with a size of only 25 渭m and with a low threshold of 8.9 kW cm-2. Furthermore,it is possible to achieve a significant degree of dynamic wavelength tunability, with a range extending up to 296 nm. This method achieves high-efficient regulation of light properties by dynamically controlling the system's topological charge, circumventing the problem of weak nonlinearity in traditional methods. Furthermore, the integration of phase change materials with nanolasers enables the direct alteration of lasing properties, which provides a novel idea for dynamic light control. The device process scheme based on phase change materials is straightforward, direct, and highly compatible, which will be advantageous for its intended application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14036v1-abstract-full').style.display = 'none'; document.getElementById('2407.14036v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06682">arXiv:2406.06682</a> <span> [<a href="https://arxiv.org/pdf/2406.06682">pdf</a>, <a href="https://arxiv.org/format/2406.06682">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Algebraic non-Hermitian skin effect and unified non-Bloch band theory in arbitrary dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/physics?searchtype=author&query=Shu%2C+C">Chang Shu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+K">Kai Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06682v1-abstract-short" style="display: inline;"> The non-Hermitian skin effect, characterized by a proliferation of exponentially-localized edge modes, has led to numerous novel physical phenomena that challenge the limits of conventional band theory. In sharp contrast to the traditional exponential localization, this manuscript reports a new kind of non-Hermitian skin effect, which we term the ``algebraic non-Hermitian skin effect." This effect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06682v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06682v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06682v1-abstract-full" style="display: none;"> The non-Hermitian skin effect, characterized by a proliferation of exponentially-localized edge modes, has led to numerous novel physical phenomena that challenge the limits of conventional band theory. In sharp contrast to the traditional exponential localization, this manuscript reports a new kind of non-Hermitian skin effect, which we term the ``algebraic non-Hermitian skin effect." This effect emerges across a diverse spectrum of non-Hermitian systems in both two- and higher space dimensions. For 2D systems with algebraic non-Hermitian skin effect, on geometries such as a torus or cylinder, these systems exhibit behavior reminiscent of the conventional non-Hermitian skin effect, where eigenmodes are either bulk Bloch waves (on a torus) or exponentially localized edge modes (on a cylinder). However, if the same system is placed on a disk or any geometrical shape featuring open boundaries in all directions, the skin modes immediately transform into the algebraic form, with amplitude decaying as a power-law function of the distance from the boundary. To explore these novel effects, we formulate a unified generalized Brillouin zone (GBZ) framework that is universally applicable to all variations of non-Hermitian skin effects across any spatial dimension, developed through the usage of a generalized transfer-matrix approach. We find that in a $d$-dimensional non-Hermitian system, in general, the GBZ manifold's dimensionality must fall into the range from $d$ to $2d-1$, denoted by ${d \leq \dim\text{GBZ} \leq 2d-1}$. In 1D, this inequality is trivial because the upper and lower bounds converge, forcing the GBZ's dimensionality to match with that of the physical space. However, in 2D and above, this inequality indicates that there is no obligation for the GBZ's dimensionality to concur with the physical space's dimensionality, which gives rise to a new class of non-Hermitian skin effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06682v1-abstract-full').style.display = 'none'; document.getElementById('2406.06682v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03123">arXiv:2406.03123</a> <span> [<a href="https://arxiv.org/pdf/2406.03123">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Fully printed flexible perovskite solar modules with improved energy alignment by tin oxide surface modification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+L">Lirong Dong</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+S">Shudi Qiu</a>, <a href="/search/physics?searchtype=author&query=Cerrillo%2C+J+G">Jose Garcia Cerrillo</a>, <a href="/search/physics?searchtype=author&query=Wagner%2C+M">Michael Wagner</a>, <a href="/search/physics?searchtype=author&query=Kasian%2C+O">Olga Kasian</a>, <a href="/search/physics?searchtype=author&query=Feroze%2C+S">Sarmad Feroze</a>, <a href="/search/physics?searchtype=author&query=Jang%2C+D">Dongju Jang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chaohui Li</a>, <a href="/search/physics?searchtype=author&query=Corre%2C+V+M+L">Vincent M. Le Corre</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kaicheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Peisert%2C+H">Heiko Peisert</a>, <a href="/search/physics?searchtype=author&query=Kosasih%2C+F+U">Felix U Kosasih</a>, <a href="/search/physics?searchtype=author&query=Arrive%2C+C">Charline Arrive</a>, <a href="/search/physics?searchtype=author&query=Du%2C+T">Tian Du</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+F">Fu Yang</a>, <a href="/search/physics?searchtype=author&query=Brabec%2C+C+J">Christoph J. Brabec</a>, <a href="/search/physics?searchtype=author&query=Egelhaaf%2C+H">Hans-Joachim Egelhaaf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03123v1-abstract-short" style="display: inline;"> Fully printed flexible perovskite solar cells (f-PSCs) show great potential for the commercialization of perovskite photovoltaics owing to their compatibility with high-throughput roll-to-roll (R2R) production. However, the challenge remains in the deficiency in controlling interfacial recombination losses of the functional layer, causing remarkable loss of power conversion efficiency (PCE) in ind… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03123v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03123v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03123v1-abstract-full" style="display: none;"> Fully printed flexible perovskite solar cells (f-PSCs) show great potential for the commercialization of perovskite photovoltaics owing to their compatibility with high-throughput roll-to-roll (R2R) production. However, the challenge remains in the deficiency in controlling interfacial recombination losses of the functional layer, causing remarkable loss of power conversion efficiency (PCE) in industrial production. Here, a fullerene-substituted alkylphosphonic acid dipole layer is introduced between the R2R-printed tin oxide electron transport layer and the perovskite active layer to reduce the energetic barrier and to suppress surface recombination at the buried interface. The resulting f-PSCs exhibit a PCE of 17.0% with negligible hysteresis, retain 95% of their initial PCE over 3000 bending cycles and achieve a T95 lifetime of 1200 h under 1 sun and 65 degreeC in nitrogen atmosphere. Moreover, the fully printed flexible perovskite solar mini-modules (f-PSMs) with a 20.25 cm2 aperture area achieve a PCE of 11.6%. The encapsulated f-PSMs retain 90% of their initial PCE after 500 h damp-heat testing at 65 degreeC and 85% relative humidity (ISOS-D3). This work marks an important progress toward the realization of efficient and stable flexible perovskite photovoltaics for commercialization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03123v1-abstract-full').style.display = 'none'; document.getElementById('2406.03123v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02593">arXiv:2406.02593</a> <span> [<a href="https://arxiv.org/pdf/2406.02593">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Construction and Observation of Flexibly Controllable High-Dimensional Non-Hermitian Skin Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qicheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Leng%2C+Y">Yufei Leng</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+L">Liwei Xiong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuzeng Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kun Zhang</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+L">Liangjun Qi</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+C">Chunyin Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02593v1-abstract-short" style="display: inline;"> Non-Hermitian skin effect (NHSE) is one of the most fundamental phenomena in non-Hermitian physics. Although it is established that one-dimensional NHSE originates from the nontrivial spectral winding topology, the topological origin behind the higher-dimensional NHSE remains unclear so far. This poses a substantial challenge in constructing and manipulating high-dimensional NHSEs. Here, an intuit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02593v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02593v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02593v1-abstract-full" style="display: none;"> Non-Hermitian skin effect (NHSE) is one of the most fundamental phenomena in non-Hermitian physics. Although it is established that one-dimensional NHSE originates from the nontrivial spectral winding topology, the topological origin behind the higher-dimensional NHSE remains unclear so far. This poses a substantial challenge in constructing and manipulating high-dimensional NHSEs. Here, an intuitive bottom-to-top scheme to construct high-dimensional NHSEs is proposed, through assembling multiple independent one-dimensional NHSEs. Not only the elusive high-dimensional NHSEs can be effectively predicted from the well-defined one-dimensional spectral winding topologies, but also the high-dimensional generalized Brillouin zones can be directly synthesized from the one-dimensional counterparts. As examples, two two-dimensional nonreciprocal acoustic metamaterials are experimentally implemented to demonstrate highly controllable multi-polar NHSEs and hybrid skin-topological effects, where the sound fields can be frequency-selectively localized at any desired corners and boundaries. These results offer a practicable strategy for engineering high-dimensional NHSEs, which could boost advanced applications such as selective filters and directional amplifiers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02593v1-abstract-full').style.display = 'none'; document.getElementById('2406.02593v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Advanced Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials, 2403108 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20870">arXiv:2405.20870</a> <span> [<a href="https://arxiv.org/pdf/2405.20870">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.icheatmasstransfer.2024.107849">10.1016/j.icheatmasstransfer.2024.107849 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simultaneous Measurement of Thermal Conductivity and Heat Capacity Across Diverse Materials Using the Square-Pulsed Source (SPS) Technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+T">Tao Chen</a>, <a href="/search/physics?searchtype=author&query=Song%2C+S">Shangzhi Song</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Y">Yang Shen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kexin Zhang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+P">Puqing Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20870v1-abstract-short" style="display: inline;"> State-of-the-art techniques like dual-frequency Time-Domain Thermoreflectance (TDTR) and Frequency-Domain Thermoreflectance (FDTR) offer superb capability for simultaneous measurements of thermal conductivity and heat capacity with a spatial resolution on the order of 10 渭m. However, their applicability is limited to highly conductive materials with an in-plane thermal conductivity exceeding 10 W/… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20870v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20870v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20870v1-abstract-full" style="display: none;"> State-of-the-art techniques like dual-frequency Time-Domain Thermoreflectance (TDTR) and Frequency-Domain Thermoreflectance (FDTR) offer superb capability for simultaneous measurements of thermal conductivity and heat capacity with a spatial resolution on the order of 10 渭m. However, their applicability is limited to highly conductive materials with an in-plane thermal conductivity exceeding 10 W/(m*K). In this paper, we introduce the Square-Pulsed Source (SPS) technique, offering a novel approach to concurrently measure thermal conductivity and heat capacity with a 10 渭m spatial resolution, while significantly extending the measurable thermal conductivity range to an unprecedented low of 0.1 W/(m*K), offering enhanced versatility. To demonstrate and validate its efficacy, we conducted measurements on various standard materials--PMMA, silica, sapphire, silicon, and diamond--spanning a wide thermal conductivity range from 0.1 to 2000 W/(m*K). The obtained results exhibit remarkable agreement with literature values, with a typical measurement uncertainty of less than 10% across the entire thermal conductivity range. By providing a unique capability to characterize both highly and lowly conductive materials with micron-scale spatial resolution, the SPS method opens new avenues for understanding and engineering thermal properties across diverse applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20870v1-abstract-full').style.display = 'none'; document.getElementById('2405.20870v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10109">arXiv:2405.10109</a> <span> [<a href="https://arxiv.org/pdf/2405.10109">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> In-situ optical vector analysis based on integrated lithium niobate single-sideband modulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Feng%2C+H">Hanke Feng</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+T">Tong Ge</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Y">Yaowen Hu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhenzheng Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhaoxi Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+W">Wenzhao Sun</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Cheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10109v1-abstract-short" style="display: inline;"> Optical vector analysis (OVA) is an enabling technology for comprehensively characterizing both amplitude and phase responses of optical devices or systems. Conventional OVA technologies are mostly based on discrete optoelectronic components, leading to unsatisfactory system sizes, complexity, and stability. They also encounter challenges in revealing the on-chip characteristics of integrated phot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10109v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10109v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10109v1-abstract-full" style="display: none;"> Optical vector analysis (OVA) is an enabling technology for comprehensively characterizing both amplitude and phase responses of optical devices or systems. Conventional OVA technologies are mostly based on discrete optoelectronic components, leading to unsatisfactory system sizes, complexity, and stability. They also encounter challenges in revealing the on-chip characteristics of integrated photonic devices, which are often overwhelmed by the substantial coupling loss and extra spectral response at chip facets. In this work, we demonstrate a miniaturized OVA system for integrated photonics devices based on broadband single sideband (SSB) modulators on a thin-film lithium niobate (LN) platform. The OVA could provide a direct probe of both amplitude and phase responses of photonic devices with kHz-level resolution and tens of terahertz measurement bandwidth. We perform in-situ characterizations of single and coupled microring resonators fabricated on the same chip as the OVA, unfolding their intrinsic loss and coupling states unambiguously. Furthermore, we achieve the direct measurement of collective phase dynamics and density of states of the Bloch modes in a synthetic frequency crystal, by in-situ OVA of a dynamically modulated microring resonator. Our in-situ OVA system provides a compact, high-precision, and broadband solution for characterizing future integrated photonic devices and circuits, with potential applications ranging from optical communications, biosensing, neuromorphic computing, to quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10109v1-abstract-full').style.display = 'none'; document.getElementById('2405.10109v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06579">arXiv:2405.06579</a> <span> [<a href="https://arxiv.org/pdf/2405.06579">pdf</a>, <a href="https://arxiv.org/format/2405.06579">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Terahertz Antenna Impedance Matched to a Graphene Photodetector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Joint%2C+F">Fran莽ois Joint</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kunyi Zhang</a>, <a href="/search/physics?searchtype=author&query=Poojali%2C+J">Jayaprakash Poojali</a>, <a href="/search/physics?searchtype=author&query=Lewis%2C+D">Daniel Lewis</a>, <a href="/search/physics?searchtype=author&query=Pedowitz%2C+M">Michael Pedowitz</a>, <a href="/search/physics?searchtype=author&query=Jordan%2C+B">Brendan Jordan</a>, <a href="/search/physics?searchtype=author&query=Prakash%2C+G">Gyan Prakash</a>, <a href="/search/physics?searchtype=author&query=Ali%2C+A">Ashraf Ali</a>, <a href="/search/physics?searchtype=author&query=Daniels%2C+K">Kevin Daniels</a>, <a href="/search/physics?searchtype=author&query=Myers-Ward%2C+R+L">Rachael L. Myers-Ward</a>, <a href="/search/physics?searchtype=author&query=Murphy%2C+T+E">Thomas E. Murphy</a>, <a href="/search/physics?searchtype=author&query=Drew%2C+H+D">Howard D. Drew</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06579v1-abstract-short" style="display: inline;"> Developing low-power, high-sensitivity photodetectors for the terahertz (THz) band that operate at room temperature is an important challenge in optoelectronics. In this study, we introduce a photo-thermal-electric (PTE) effect detector based on quasi-free standing bilayer graphene (BLG) on a silicon carbide (SiC) substrate, designed for the THz frequency range. Our detector's performance hinges o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06579v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06579v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06579v1-abstract-full" style="display: none;"> Developing low-power, high-sensitivity photodetectors for the terahertz (THz) band that operate at room temperature is an important challenge in optoelectronics. In this study, we introduce a photo-thermal-electric (PTE) effect detector based on quasi-free standing bilayer graphene (BLG) on a silicon carbide (SiC) substrate, designed for the THz frequency range. Our detector's performance hinges on a quasi-optical coupling scheme, which integrates an aspherical silicon lens, to optimize impedance matching between the THz antenna and the graphene p-n junction. At room temperature, we achieved a noise equivalent power (NEP) of less than 300 $pW/\sqrt{Hz}$. Through an impedance matching analysis, we coupled a planar antenna with a graphene p-n junction, inserted in parallel to the nano-gap of the antenna, via two coupling capacitors. By adjusting the capacitors and the antenna arm length, we tailored the antenna's maximum infrared power absorption to specific frequencies. The sensitivity, spectral properties, and scalability of our material make it an ideal candidate for future development of far-infrared detectors operating at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06579v1-abstract-full').style.display = 'none'; document.getElementById('2405.06579v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15423">arXiv:2404.15423</a> <span> [<a href="https://arxiv.org/pdf/2404.15423">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Chemistry in Protoplanetary Disks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Ke Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15423v1-abstract-short" style="display: inline;"> Planets are formed inside disks around young stars. The gas, dust, and ice in these natal disks are the building materials of planets, and therefore their compositions fundamentally shape the final chemical compositions of planets. In this review, we summarize current observations of molecular lines in protoplanetary disks, from near-infrared to millimeter wavelengths. We discuss the basic types o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15423v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15423v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15423v1-abstract-full" style="display: none;"> Planets are formed inside disks around young stars. The gas, dust, and ice in these natal disks are the building materials of planets, and therefore their compositions fundamentally shape the final chemical compositions of planets. In this review, we summarize current observations of molecular lines in protoplanetary disks, from near-infrared to millimeter wavelengths. We discuss the basic types of chemical reactions in disks and the current development of chemical modeling. In particular, we highlight the progress made in understanding snowline locations, abundances of main carriers of carbon, oxygen, and nitrogen, and complex organic molecules in disks. Finally, we discuss efforts to trace planet formation history by combining the understanding of disk chemistry and planet formation processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15423v1-abstract-full').style.display = 'none'; document.getElementById('2404.15423v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Chapter 2 accepted for publication in the Reviews in Mineralogy and Geochemistry (RiMG) Volume 90 on "Exoplanets: Compositions, Mineralogy, and Evolution" edited by Natalie Hinkel, Keith Putirka, and Siyi Xu; 24 pages and 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10173">arXiv:2404.10173</a> <span> [<a href="https://arxiv.org/pdf/2404.10173">pdf</a>, <a href="https://arxiv.org/format/2404.10173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.511600">10.1364/OE.511600 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent control of an optical tweezer phonon laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+K">Kewen Xiao</a>, <a href="/search/physics?searchtype=author&query=Luntz-Martin%2C+D">Danika Luntz-Martin</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+P">Ping Sun</a>, <a href="/search/physics?searchtype=author&query=Sharma%2C+S">S. Sharma</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Vamivakas%2C+A+N">A. N. Vamivakas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10173v2-abstract-short" style="display: inline;"> The creation and manipulation of coherence continues to capture the attention of scientists and engineers. The optical laser is a canonical example of a system that, in principle, exhibits complete coherence. Recent research has focused on the creation of coherent, laser-like states in other physical systems. The phonon laser is one example where it is possible to amplify self-sustained mechanical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10173v2-abstract-full').style.display = 'inline'; document.getElementById('2404.10173v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10173v2-abstract-full" style="display: none;"> The creation and manipulation of coherence continues to capture the attention of scientists and engineers. The optical laser is a canonical example of a system that, in principle, exhibits complete coherence. Recent research has focused on the creation of coherent, laser-like states in other physical systems. The phonon laser is one example where it is possible to amplify self-sustained mechanical oscillations. A single mode phonon laser in a levitated optical tweezer has been demonstrated through appropriate balance of active feedback gain and damping. In this work, coherent control of the dynamics of an optical tweezer phonon laser is used to share coherence between its different modes of oscillation, creating a multimode phonon laser. The coupling of the modes is achieved by periodically rotating the asymmetric optical potential in the transverse focal plane of the trapping beam via trap laser polarization rotation. The presented theory and experiment demonstrate that coherence can be transferred across different modes of an optical tweezer phonon laser, and are a step toward using these systems for precision measurement and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10173v2-abstract-full').style.display = 'none'; document.getElementById('2404.10173v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">\c{opyright} 2024 Optica Publishing Group. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved."</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 32, 14735-14745 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00106">arXiv:2404.00106</a> <span> [<a href="https://arxiv.org/pdf/2404.00106">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Precise Control of Process Parameters for >23% Efficiency Perovskite Solar Cells in Ambient Air Using an Automated Device Acceleration Platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiyun Zhang</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A">Anastasia Barabash</a>, <a href="/search/physics?searchtype=author&query=Du%2C+T">Tian Du</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jianchang Wu</a>, <a href="/search/physics?searchtype=author&query=Corre%2C+V+M+L">Vincent M. Le Corre</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yicheng Zhao</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+S">Shudi Qiu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kaicheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Schmitt%2C+F">Frederik Schmitt</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+Z">Zijian Peng</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+J">Jingjing Tian</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chaohui Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chao Liu</a>, <a href="/search/physics?searchtype=author&query=Heumueller%2C+T">Thomas Heumueller</a>, <a href="/search/physics?searchtype=author&query=L%C3%BCer%2C+L">Larry L眉er</a>, <a href="/search/physics?searchtype=author&query=Hauch%2C+J+A">Jens A. Hauch</a>, <a href="/search/physics?searchtype=author&query=Brabec%2C+C+J">Christoph J. Brabec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00106v1-abstract-short" style="display: inline;"> Achieving high-performance perovskite photovoltaics, especially in ambient air relies heavily on optimizing process parameters. However, traditional manual methods often struggle to effectively control the key variables. This inherent challenge requires a paradigm shift toward automated platforms capable of precise and reproducible experiments. Herein, we use a fully automated device acceleration… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00106v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00106v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00106v1-abstract-full" style="display: none;"> Achieving high-performance perovskite photovoltaics, especially in ambient air relies heavily on optimizing process parameters. However, traditional manual methods often struggle to effectively control the key variables. This inherent challenge requires a paradigm shift toward automated platforms capable of precise and reproducible experiments. Herein, we use a fully automated device acceleration platform (DAP) to optimize the process parameters for preparing full perovskite devices using a two-step method in ambient air. Eight process parameters that have the potential to significantly influence device performance are systematically optimized. Specifically, we delve into the impact of the dispense speed of organic ammonium halide, a parameter that is difficult to control manually, on both perovskite film and device performance. Through the targeted design of experiments, we reveal that the dispense speed significantly affects device performance primarily by adjusting the residual PbI2 content in the films. We find that moderate dispense speeds, e.g., 50 渭l/s, contribute to top-performance devices. Conversely, too fast or too slow speeds result in devices with relatively poorer performance and lower reproducibility. The optimized parameter set enables us to establish a Standard Operation Procedure (SOP) for additive-free perovskite processing under ambient conditions, which yield devices with efficiencies surpassing 23%, satisfactory reproducibility, and state-of-the-art photo-thermal stability. This research underscores the importance of understanding the causality of process parameters in enhancing perovskite photovoltaic performance. Furthermore, our study highlights the pivotal role of automated platforms in discovering innovative workflows and accelerating the development of high-performing perovskite photovoltaic technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00106v1-abstract-full').style.display = 'none'; document.getElementById('2404.00106v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15020">arXiv:2403.15020</a> <span> [<a href="https://arxiv.org/pdf/2403.15020">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/aelm.202400041">10.1002/aelm.202400041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All van der Waals three-terminal SOT-MRAM realized by topological ferromagnet Fe3GeTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cui%2C+J">Jingyuan Cui</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai-Xuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15020v2-abstract-short" style="display: inline;"> Magnetic van der Waals (vdW) materials have attracted massive attention because of their academic interest and application potential for the past few years. Its main advantage is the intrinsic two-dimensionality, enabling much smaller devices of novel concepts. One particular exciting direction lies in the current-driven spin-orbit torque (SOT). Here, we, for the first time, realize an all vdW thr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15020v2-abstract-full').style.display = 'inline'; document.getElementById('2403.15020v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15020v2-abstract-full" style="display: none;"> Magnetic van der Waals (vdW) materials have attracted massive attention because of their academic interest and application potential for the past few years. Its main advantage is the intrinsic two-dimensionality, enabling much smaller devices of novel concepts. One particular exciting direction lies in the current-driven spin-orbit torque (SOT). Here, we, for the first time, realize an all vdW three-terminal SOT memory, employing the unique physics principle of gigantic intrinsic SOT of Fe3GeTe2 (FGT) and the well-known industry-adopted tunnelling magnetoresistance (TMR) effect. We designed the device operation procedure and fabricated the FGT/h-BN/FGT vdW heterostructure as a proof of concept. This device exhibits a classical TMR effect and unambiguously demonstrates the conception by precise performance as expected: the magnetic information of the top-FGT is written by current-driven SOT and read out by TMR separately. The writing and reading current paths are physically decoupled, enhancing the design and optimization flexibility substantially and further strengthening the device's endurance naturally. Our work would prompt more expansive use of vdW magnets for spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15020v2-abstract-full').style.display = 'none'; document.getElementById('2403.15020v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Advanced Electronic Materials; 26 pages, 4 main figures, 3 supporting figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Electronic Materials 10, 2400041 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10113">arXiv:2403.10113</a> <span> [<a href="https://arxiv.org/pdf/2403.10113">pdf</a>, <a href="https://arxiv.org/format/2403.10113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/ad7611">10.1088/1741-4326/ad7611 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tokamak edge-SOL turbulence in H-mode conditions simulated with a global, electromagnetic, transcollisional drift-fluid model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zholobenko%2C+W">Wladimir Zholobenko</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kaiyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Stegmeir%2C+A">Andreas Stegmeir</a>, <a href="/search/physics?searchtype=author&query=Pfennig%2C+J">Jan Pfennig</a>, <a href="/search/physics?searchtype=author&query=Eder%2C+K">Konrad Eder</a>, <a href="/search/physics?searchtype=author&query=Pitzal%2C+C">Christoph Pitzal</a>, <a href="/search/physics?searchtype=author&query=Ulbl%2C+P">Philipp Ulbl</a>, <a href="/search/physics?searchtype=author&query=Griener%2C+M">Michael Griener</a>, <a href="/search/physics?searchtype=author&query=Radovanovic%2C+L">Lidija Radovanovic</a>, <a href="/search/physics?searchtype=author&query=Plank%2C+U">Ulrike Plank</a>, <a href="/search/physics?searchtype=author&query=Team%2C+A+U">ASDEX Upgrade Team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10113v2-abstract-short" style="display: inline;"> The design of commercially feasible magnetic confinement fusion reactors strongly relies on the reduced turbulent transport in the plasma edge during operation in the high confinement mode (H-mode). We present first global turbulence simulations of the ASDEX Upgrade tokamak edge and scrape-off layer (SOL) in ITER baseline H-mode conditions. Reasonable agreement with the experiment is obtained for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10113v2-abstract-full').style.display = 'inline'; document.getElementById('2403.10113v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10113v2-abstract-full" style="display: none;"> The design of commercially feasible magnetic confinement fusion reactors strongly relies on the reduced turbulent transport in the plasma edge during operation in the high confinement mode (H-mode). We present first global turbulence simulations of the ASDEX Upgrade tokamak edge and scrape-off layer (SOL) in ITER baseline H-mode conditions. Reasonable agreement with the experiment is obtained for outboard mid-plane measurements of plasma density, electron and ion temperature, as well as the radial electric field. The radial heat transport is underpredicted by roughly 1/3. These results were obtained with the GRILLIX code implementing a transcollisional, electromagnetic, global drift-fluid plasma model, coupled to diffusive neutrals. The transcollisional extensions include neoclassical corrections for the ion viscosity, as well as either a Landau-fluid or free-streaming limited model for the parallel heat conduction. Electromagnetic fluctuations are found to play a critical role in H-mode conditions. We investigate the structure of the significant $E \times B$ flow shear, finding both neoclassical components as well as zonal flows. But unlike in L-mode, geodesic acoustic modes are not observed. The turbulence mode structure is mostly that of drift-Alfv茅n waves. However, in the upper part of the pedestal, it is very weak and overshadowed by neoclassical transport. At the pedestal foot, on the other hand, we find instead the (electromagnetic) kinetic ballooning mode (KBM), most clearly just inside the separatrix. Our results pave the way towards predictive simulations of fusion reactors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10113v2-abstract-full').style.display = 'none'; document.getElementById('2403.10113v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Nuclear Fusion</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03425">arXiv:2403.03425</a> <span> [<a href="https://arxiv.org/pdf/2403.03425">pdf</a>, <a href="https://arxiv.org/format/2403.03425">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Sculpting Molecules in Text-3D Space: A Flexible Substructure Aware Framework for Text-Oriented Molecular Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kaiwei Zhang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yange Lin</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+G">Guangcheng Wu</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+Y">Yuxiang Ren</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xuecang Zhang</a>, <a href="/search/physics?searchtype=author&query=wang%2C+B">Bo wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaoyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Du%2C+W">Weitao Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03425v2-abstract-short" style="display: inline;"> The integration of deep learning, particularly AI-Generated Content, with high-quality data derived from ab initio calculations has emerged as a promising avenue for transforming the landscape of scientific research. However, the challenge of designing molecular drugs or materials that incorporate multi-modality prior knowledge remains a critical and complex undertaking. Specifically, achieving a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03425v2-abstract-full').style.display = 'inline'; document.getElementById('2403.03425v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03425v2-abstract-full" style="display: none;"> The integration of deep learning, particularly AI-Generated Content, with high-quality data derived from ab initio calculations has emerged as a promising avenue for transforming the landscape of scientific research. However, the challenge of designing molecular drugs or materials that incorporate multi-modality prior knowledge remains a critical and complex undertaking. Specifically, achieving a practical molecular design necessitates not only meeting the diversity requirements but also addressing structural and textural constraints with various symmetries outlined by domain experts. In this article, we present an innovative approach to tackle this inverse design problem by formulating it as a multi-modality guidance optimization task. Our proposed solution involves a textural-structure alignment symmetric diffusion framework for the implementation of molecular optimization tasks, namely 3DToMolo. 3DToMolo aims to harmonize diverse modalities including textual description features and graph structural features, aligning them seamlessly to produce molecular structures adhere to specified symmetric structural and textural constraints by experts in the field. Experimental trials across three guidance optimization settings have shown a superior hit optimization performance compared to state-of-the-art methodologies. Moreover, 3DToMolo demonstrates the capability to discover potential novel molecules, incorporating specified target substructures, without the need for prior knowledge. This work not only holds general significance for the advancement of deep learning methodologies but also paves the way for a transformative shift in molecular design strategies. 3DToMolo creates opportunities for a more nuanced and effective exploration of the vast chemical space, opening new frontiers in the development of molecular entities with tailored properties and functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03425v2-abstract-full').style.display = 'none'; document.getElementById('2403.03425v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03417">arXiv:2403.03417</a> <span> [<a href="https://arxiv.org/pdf/2403.03417">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Stimulated Raman phase shift spectroscopy: a pathway to hyperfine fingerprint spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qi%2C+M">Meng Qi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wenrong Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuan-ji Li</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J">Jin-xia Feng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kuan-shou Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03417v1-abstract-short" style="display: inline;"> The principle and experimental realization of a novel Raman spectroscopic technique entitled stimulated Raman phase shift (SRPS) spectroscopy was demonstrated. This technique depends on the measurement of the stimulated Raman scattering (SRS) induced phase shift of Stokes light field ($螖$ $蠁$) that is related to the real part of the third order nonlinear susceptibility of SRS. In principle, the sp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03417v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03417v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03417v1-abstract-full" style="display: none;"> The principle and experimental realization of a novel Raman spectroscopic technique entitled stimulated Raman phase shift (SRPS) spectroscopy was demonstrated. This technique depends on the measurement of the stimulated Raman scattering (SRS) induced phase shift of Stokes light field ($螖$ $蠁$) that is related to the real part of the third order nonlinear susceptibility of SRS. In principle, the spectral lineshape of 1/|$螖$ $蠁$| is a delta function waveform, which is insensitive to the fluctuation of Stokes light intensity, the decoherence of phonon in materials, as well as the inhomogeneous fluorescence background. In order to measure 1/|$螖$ $蠁$|, a SRPS including a Mach-Zender interferometer and a signal processing device was developed. Using the developed spectrometer, the SRPS and stimulated Raman gain (SRG) spectra of neat dimethyl sulfoxide were detected simultaneously. Seven Raman peaks corresponding to specific molecule vibrational and rotational modes were observed in the SRPS spectra, while only two peaks could be identified in the SRG spectra without a priori knowledge. The linewidth of the Raman peak centered at 2913.283 cm$^{-1}$ indicating the v$_s$(CH$_3$)stretching mode of the methyl groups was less than 0.00036 cm$^{-1}$ in the measured SRPS spectra, which was almost four orders of magnitude narrower than that in the measured SRG spectra. Meanwhile, the detection signal-to-noise ratio of the Raman peak centered at 2913.283 cm$^{-1}$ was 25.3 dB, representing an increase of 14.3 dB compared to the SRG spectra. The reliability of SRPS technique was verified by 10 independent measurements, and the standard deviation of the Raman peak frequency was less than $\pm$0.338 cm$^{-1}$ . The SRPS technique paves the way for characterizing the hyperfine fingerprint of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03417v1-abstract-full').style.display = 'none'; document.getElementById('2403.03417v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01583">arXiv:2403.01583</a> <span> [<a href="https://arxiv.org/pdf/2403.01583">pdf</a>, <a href="https://arxiv.org/format/2403.01583">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.216401">10.1103/PhysRevLett.133.216401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal spectral moment theorem and its applications in non-Hermitian systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cheng%2C+N">Nan Cheng</a>, <a href="/search/physics?searchtype=author&query=Shu%2C+C">Chang Shu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+X">Xiaoming Mao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+K">Kai Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01583v3-abstract-short" style="display: inline;"> The high sensitivity of the spectrum and wavefunctions to boundary conditions, termed the non-Hermitian skin effect, represents a fundamental aspect of non-Hermitian systems. While it endows non-Hermitian systems with unprecedented physical properties, it presents notable obstacles in grasping universal properties that are robust against microscopic details and boundary conditions. In this Letter,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01583v3-abstract-full').style.display = 'inline'; document.getElementById('2403.01583v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01583v3-abstract-full" style="display: none;"> The high sensitivity of the spectrum and wavefunctions to boundary conditions, termed the non-Hermitian skin effect, represents a fundamental aspect of non-Hermitian systems. While it endows non-Hermitian systems with unprecedented physical properties, it presents notable obstacles in grasping universal properties that are robust against microscopic details and boundary conditions. In this Letter, we introduce a pivotal theorem: in the thermodynamic limit, for any non-Hermitian systems with finite-range interactions, all spectral moments are invariant quantities, independent of boundary conditions, posing strong constraints on the spectrum. Utilizing this invariance, we propose a new criterion for bulk dynamical phases based on experimentally observable features and applicable to any dimensions and any boundary conditions. Based on this criterion, we define the bulk dispersive-to-proliferative phase transition, which is distinct from the real-to-complex spectral transition and contrary to traditional expectations. We verify these findings in 1D and 2D lattice models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01583v3-abstract-full').style.display = 'none'; document.getElementById('2403.01583v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Pages, 4 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 216401 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14275">arXiv:2402.14275</a> <span> [<a href="https://arxiv.org/pdf/2402.14275">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ad2e25">10.1088/1361-648X/ad2e25 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unexpected versatile electrical transport behaviors of ferromagnetic nickel films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai-Xuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+H">Hanshu Xu</a>, <a href="/search/physics?searchtype=author&query=Keum%2C+J">Jihoon Keum</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiangqi Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+M">Meizhuang Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zuxin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14275v2-abstract-short" style="display: inline;"> Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14275v2-abstract-full').style.display = 'inline'; document.getElementById('2402.14275v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14275v2-abstract-full" style="display: none;"> Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been comprehensively studied, hindering corresponding spintronic applications exploiting nickel-based compounds. Here, we systematically investigate the highly versatile magnetism and corresponding transport behavior of nickel films. As the thickness reduces within the general thickness regime of a magnet layer for a memory device, the hardness of nickel films' ferromagnetic loop of anomalous Hall effect increases and then decreases, reflecting the magnetic transitions from IMA to PMA and back to IMA. Additionally, the square ferromagnetic loop changes from a hard to a soft one at rising temperatures, indicating a shift from PMA to IMA. Furthermore, we observe a butterfly magnetoresistance resulting from the anisotropic magnetoresistance effect, which evolves in conjunction with the thickness and temperature-dependent magnetic transformations as a complementary support. Our findings unveil the rich magnetic dynamics and most importantly settle down the most useful guiding information for current-driven spintronic applications based on nickel film: The hysteresis loop is squarest for the ~8 nm-thick nickel film, of highest hardness with Rxyr/Rxys~1 and minimum Hs-Hc, up to 125 K; otherwise, extra care should be taken for a different thickness or at a higher temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14275v2-abstract-full').style.display = 'none'; document.getElementById('2402.14275v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Journal of Physics: Condensed Matter; 9 pages, 4 main figures, 1 supporting figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physics: Condensed Matter 36, 235801 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09457">arXiv:2402.09457</a> <span> [<a href="https://arxiv.org/pdf/2402.09457">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Self-Healing Effects in OAM Beams Observed on a 28 GHz Experimental Link </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Klemes%2C+M">Marek Klemes</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+L">Lan Hu</a>, <a href="/search/physics?searchtype=author&query=Bowles%2C+G">Greg Bowles</a>, <a href="/search/physics?searchtype=author&query=Akbari%2C+M">Mohammad Akbari</a>, <a href="/search/physics?searchtype=author&query=Thirakoune%2C+S">Soulideth Thirakoune</a>, <a href="/search/physics?searchtype=author&query=Schwartzman%2C+M">Michael Schwartzman</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kevin Zhang</a>, <a href="/search/physics?searchtype=author&query=Ho%2C+T+H">Tan Huy Ho</a>, <a href="/search/physics?searchtype=author&query=Wessel%2C+D">David Wessel</a>, <a href="/search/physics?searchtype=author&query=Tong%2C+W">Wen Tong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09457v1-abstract-short" style="display: inline;"> In this paper we document for the first time some of the effects of self-healing, a property of orbital-angular-momentum (OAM) or vortex beams, as observed on a millimeter-wave experimental communications link in an outdoors line-of-sight (LOS) scenario. The OAM beams have a helical phase and polarization structure and have conical amplitude shape in the far field. The Poynting vectors of the OAM… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09457v1-abstract-full').style.display = 'inline'; document.getElementById('2402.09457v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09457v1-abstract-full" style="display: none;"> In this paper we document for the first time some of the effects of self-healing, a property of orbital-angular-momentum (OAM) or vortex beams, as observed on a millimeter-wave experimental communications link in an outdoors line-of-sight (LOS) scenario. The OAM beams have a helical phase and polarization structure and have conical amplitude shape in the far field. The Poynting vectors of the OAM beams also possess helical structures, orthogonal to the corresponding helical phase-fronts. Due to such non-planar structure in the direction orthogonal to the beam axis, OAM beams are a subset of structured light beams. Such structured beams are known to possess self-healing properties when partially obstructed along their propagation axis, especially in their near fields, resulting in partial reconstruction of their structures at larger distances along their beam axis. Various theoretical rationales have been proposed to explain, model and experimentally verify the self-healing physical effects in structured optical beams, using various types of obstructions and experimental techniques. Based on these models, we hypothesize that any self-healing observed will be greater as the OAM order increases. Here we observe the self-healing effects for the first time in structured OAM radio beams, in terms of communication signals and channel parameters rather than beam structures. We capture the effects of partial near-field obstructions of OAM beams of different orders on the communications signals and provide a physical rationale to substantiate that the self-healing effect was observed to increase with the order of OAM, agreeing with our hypothesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09457v1-abstract-full').style.display = 'none'; document.getElementById('2402.09457v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures, pending submission to IEEE Access journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00181">arXiv:2402.00181</a> <span> [<a href="https://arxiv.org/pdf/2402.00181">pdf</a>, <a href="https://arxiv.org/format/2402.00181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-024-03142-w">10.1007/s10909-024-03142-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QUEST-DMC: Background Modelling and Resulting Heat Deposit for a Superfluid Helium-3 Bolometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Autti%2C+S">S. Autti</a>, <a href="/search/physics?searchtype=author&query=Casey%2C+A">A. Casey</a>, <a href="/search/physics?searchtype=author&query=Eng%2C+N">N. Eng</a>, <a href="/search/physics?searchtype=author&query=Darvishi%2C+N">N. Darvishi</a>, <a href="/search/physics?searchtype=author&query=Franchini%2C+P">P. Franchini</a>, <a href="/search/physics?searchtype=author&query=Haley%2C+R+P">R. P. Haley</a>, <a href="/search/physics?searchtype=author&query=Heikkinen%2C+P+J">P. J. Heikkinen</a>, <a href="/search/physics?searchtype=author&query=Kemp%2C+A">A. Kemp</a>, <a href="/search/physics?searchtype=author&query=Leason%2C+E">E. Leason</a>, <a href="/search/physics?searchtype=author&query=Levitin%2C+L+V">L. V. Levitin</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=March-Russel%2C+J">J. March-Russel</a>, <a href="/search/physics?searchtype=author&query=Noble%2C+M+T">M. T. Noble</a>, <a href="/search/physics?searchtype=author&query=Prance%2C+J+R">J. R. Prance</a>, <a href="/search/physics?searchtype=author&query=Rojas%2C+X">X. Rojas</a>, <a href="/search/physics?searchtype=author&query=Salmon%2C+T">T. Salmon</a>, <a href="/search/physics?searchtype=author&query=Saunders%2C+J">J. Saunders</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+R">R. Smith</a>, <a href="/search/physics?searchtype=author&query=Thompson%2C+M+D">M. D. Thompson</a>, <a href="/search/physics?searchtype=author&query=Tsepelin%2C+V">V. Tsepelin</a>, <a href="/search/physics?searchtype=author&query=West%2C+S+M">S. M. West</a>, <a href="/search/physics?searchtype=author&query=Whitehead%2C+L">L. Whitehead</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">K. Zhang</a>, <a href="/search/physics?searchtype=author&query=Zmeev%2C+D+E">D. E. Zmeev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00181v2-abstract-short" style="display: inline;"> We report the results of radioactivity assays and heat leak calculations for a range of common cryogenic materials, considered for use in the QUEST-DMC superfluid 3He dark matter detector. The bolometer, instrumented with nanomechanical resonators, will be sensitive to energy deposits from dark matter interactions. Events from radioactive decays and cosmic rays constitute a significant background… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00181v2-abstract-full').style.display = 'inline'; document.getElementById('2402.00181v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00181v2-abstract-full" style="display: none;"> We report the results of radioactivity assays and heat leak calculations for a range of common cryogenic materials, considered for use in the QUEST-DMC superfluid 3He dark matter detector. The bolometer, instrumented with nanomechanical resonators, will be sensitive to energy deposits from dark matter interactions. Events from radioactive decays and cosmic rays constitute a significant background and must be precisely modelled, using a combination of material screening and Monte Carlo simulations. However, the results presented here are of wider interest for experiments and quantum devices sensitive to minute heat leaks and spurious events, thus we present heat leak per unit mass or surface area for every material studied. This can inform material choices for other experiments, especially if underground operation is considered where the radiogenic backgrounds will dominate even at shallow depths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00181v2-abstract-full').style.display = 'none'; document.getElementById('2402.00181v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics, Special Issue: Quantum Fluids and Solids (QFS2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.18050">arXiv:2401.18050</a> <span> [<a href="https://arxiv.org/pdf/2401.18050">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Hypermultiplexed Integrated-Photonics-based Tensor Optical Processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ou%2C+S">Shaoyuan Ou</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+K">Kaiwen Xue</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+L">Lian Zhou</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+C">Chun-ho Lee</a>, <a href="/search/physics?searchtype=author&query=Sludds%2C+A">Alexander Sludds</a>, <a href="/search/physics?searchtype=author&query=Hamerly%2C+R">Ryan Hamerly</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+H">Hanke Feng</a>, <a href="/search/physics?searchtype=author&query=Kopparapu%2C+R">Reshma Kopparapu</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+E">Eric Zhong</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Cheng Wang</a>, <a href="/search/physics?searchtype=author&query=Englund%2C+D">Dirk Englund</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+M">Mengjie Yu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zaijun Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.18050v4-abstract-short" style="display: inline;"> The escalating data volume and complexity resulting from the rapid expansion of artificial intelligence (AI), internet of things (IoT) and 5G/6G mobile networks is creating an urgent need for energy-efficient, scalable computing hardware. Here we demonstrate a hypermultiplexed integratedphotonics-based tensor optical processor (HITOP) that can perform trillions of operations per second (TOPS) at t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.18050v4-abstract-full').style.display = 'inline'; document.getElementById('2401.18050v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.18050v4-abstract-full" style="display: none;"> The escalating data volume and complexity resulting from the rapid expansion of artificial intelligence (AI), internet of things (IoT) and 5G/6G mobile networks is creating an urgent need for energy-efficient, scalable computing hardware. Here we demonstrate a hypermultiplexed integratedphotonics-based tensor optical processor (HITOP) that can perform trillions of operations per second (TOPS) at the energy efficiency of 40 TOPS/W. Space-time-wavelength three-dimensional (3D) optical parallelism enables O($N^{2}$) operations per clock-cycle using O($N$) modulator devices. The system is built with wafer-fabricated III/V micron-scale lasers and high-speed thin-film Lithium-Niobate electro-optics for encoding at 10s femtojoule/symbol. Lasing threshold incorporates analog inline rectifier (ReLu) nonlinearity for low-latency activation. The system scalability is verified with machine learning models of 405,000 parameters. A combination of high clockrates, energy-efficient processing and programmability unlocks the potential of light for large-scale AI accelerators in applications ranging from training of large AI models to real-time decision making in edge deployment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.18050v4-abstract-full').style.display = 'none'; document.getElementById('2401.18050v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14145">arXiv:2401.14145</a> <span> [<a href="https://arxiv.org/pdf/2401.14145">pdf</a>, <a href="https://arxiv.org/format/2401.14145">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Mathematical Tri-State Model for Bee Shimmering Propagation Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Patel%2C+N">Navin Patel</a>, <a href="/search/physics?searchtype=author&query=Huijberts%2C+H">Henri Huijberts</a>, <a href="/search/physics?searchtype=author&query=Althoefer%2C+K">Kaspar Althoefer</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Ketao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14145v1-abstract-short" style="display: inline;"> Bees undergo a self-organised process known as shimmering, where they form emergent patterns when they interact with each other on the nest surface as a defence mechanism in response to predator attacks. Many experimental studies have empirically investigated how the transfer of information to neighbouring bees propagates in various shimmering processes by measuring shimmering wave strength. Howev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14145v1-abstract-full').style.display = 'inline'; document.getElementById('2401.14145v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14145v1-abstract-full" style="display: none;"> Bees undergo a self-organised process known as shimmering, where they form emergent patterns when they interact with each other on the nest surface as a defence mechanism in response to predator attacks. Many experimental studies have empirically investigated how the transfer of information to neighbouring bees propagates in various shimmering processes by measuring shimmering wave strength. However, there is no analytical modelling of the collective defence mechanism in nature. Here we introduce the first analytical tri-state Inactive-Active-Relapse (IAR) model to formulate the intrinsic process of bee shimmering. The major shimmering behaviour is shown to emerge under theoretical conditions which is demonstrated numerically and visually by simulating 1,000,000 bee agents, while the number of agents is scalable. Furthermore, we elaborate on these mathematical results to construct a wave strength function to demonstrate the accuracy of shimmering dynamics. The constructed wave strength function can be adapted to peak between 50-150ms which supports the experimental studies. Our results provide a foundation for further theoretical understanding of bee shimmering wave dynamics and could serve as inspiration for modelling other self-organised phenomena across scientific applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14145v1-abstract-full').style.display = 'none'; document.getElementById('2401.14145v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11334">arXiv:2401.11334</a> <span> [<a href="https://arxiv.org/pdf/2401.11334">pdf</a>, <a href="https://arxiv.org/format/2401.11334">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad335a">10.3847/2041-8213/ad335a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analytic Model and Magnetohydrodynamic Simulations of Three-dimensional Magnetic Switchbacks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+C">Chen Shi</a>, <a href="/search/physics?searchtype=author&query=Velli%2C+M">Marco Velli</a>, <a href="/search/physics?searchtype=author&query=Toth%2C+G">Gabor Toth</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kun Zhang</a>, <a href="/search/physics?searchtype=author&query=Tenerani%2C+A">Anna Tenerani</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zesen Huang</a>, <a href="/search/physics?searchtype=author&query=Sioulas%2C+N">Nikos Sioulas</a>, <a href="/search/physics?searchtype=author&query=van+der+Holst%2C+B">Bart van der Holst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11334v3-abstract-short" style="display: inline;"> Parker Solar Probe observations reveal that the near-Sun space is almost filled with magnetic switchbacks (``switchbacks'' hereinafter), which may be a major contributor to the heating and acceleration of solar wind. Here, for the first time, we develop an analytic model of an axisymmetric switchback with uniform magnetic field strength. In this model, three parameters control the geometry of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11334v3-abstract-full').style.display = 'inline'; document.getElementById('2401.11334v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11334v3-abstract-full" style="display: none;"> Parker Solar Probe observations reveal that the near-Sun space is almost filled with magnetic switchbacks (``switchbacks'' hereinafter), which may be a major contributor to the heating and acceleration of solar wind. Here, for the first time, we develop an analytic model of an axisymmetric switchback with uniform magnetic field strength. In this model, three parameters control the geometry of the switchback: height (length along the background magnetic field), width (thickness along radial direction perpendicular to the background field), and the radial distance from the center of switchback to the central axis, which is a proxy of the size of the switchback along the third dimension. We carry out three-dimensional magnetohydrodynamic simulations to investigate the dynamic evolution of the switchback. Comparing simulations conducted with compressible and incompressible codes, we verify that compressibility, i.e. parametric decay instability, is necessary for destabilizing the switchback. Our simulations also reveal that the geometry of the switchback significantly affects how fast the switchback destabilizes. The most stable switchbacks are 2D-like (planar) structures with large aspect ratios (length to width), consistent with the observations. We show that when plasma beta ($尾$) is smaller than one, the switchback is more stable as $尾$ increases. However, when $尾$ is greater than one, the switchback becomes very unstable as the pattern of the growing compressive fluctuations changes. Our results may explain some of the observational features of switchbacks, including the large aspect ratios and nearly constant occurrence rates in the inner heliosphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11334v3-abstract-full').style.display = 'none'; document.getElementById('2401.11334v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL 964 L28 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01595">arXiv:2401.01595</a> <span> [<a href="https://arxiv.org/pdf/2401.01595">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202308840">10.1002/adma.202308840 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral engineering of optical microresonators in anisotropic lithium niobate crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yikun Chen</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+W">Wenzhao Sun</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhaoxi Chen</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+H">Hanke Feng</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Cheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01595v1-abstract-short" style="display: inline;"> On-chip optical microresonators are essential building blocks in integrated optics. The ability to arbitrarily engineer their resonant frequencies is crucial for exploring novel physics in synthetic frequency dimensions and practical applications like nonlinear optical parametric processes and dispersion-engineered frequency comb generation. Photonic crystal ring (PhCR) resonators are a versatile… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01595v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01595v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01595v1-abstract-full" style="display: none;"> On-chip optical microresonators are essential building blocks in integrated optics. The ability to arbitrarily engineer their resonant frequencies is crucial for exploring novel physics in synthetic frequency dimensions and practical applications like nonlinear optical parametric processes and dispersion-engineered frequency comb generation. Photonic crystal ring (PhCR) resonators are a versatile tool for such arbitrary frequency engineering, by controllably creating mode splitting at selected resonances. To date, these PhCRs have mostly been demonstrated in isotropic photonic materials, while such engineering could be significantly more complicated in anisotropic platforms that often offer more fruitful optical properties. Here, we realize the spectral engineering of chip-scale optical microresonators in the anisotropic lithium niobate (LN) crystal by a gradient design that precisely compensates for variations in both refractive index and perturbation strength. We experimentally demonstrate controllable frequency splitting at single and multiple selected resonances in LN PhCR resonators with different sizes, while maintaining high Q-factors up to 1 million. Moreover, we experimentally construct a sharp boundary in the synthetic frequency dimension based on an actively modulated x-cut LN gradient-PhCR, opening up new paths toward the arbitrary control of electro-optic comb spectral shapes and exploration of novel physics in the frequency degree of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01595v1-abstract-full').style.display = 'none'; document.getElementById('2401.01595v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 35Q61 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> B.7.1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16263">arXiv:2312.16263</a> <span> [<a href="https://arxiv.org/pdf/2312.16263">pdf</a>, <a href="https://arxiv.org/format/2312.16263">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> An MPI-OpenMP mixing parallel open source FW-H code for aeroacoustics calculation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Keli Zhang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+C">Changping Yu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+P">Peiqing Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xinliang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16263v1-abstract-short" style="display: inline;"> In this paper, a permeable surface nondimensional FW-H (Ffowcs Williams-Hawkings) acoustics analogy post-processing code with convective effect and AoA (angle of attack) corrections, OpenCFD-FWH, has been eveloped. OpenCFD-FWH is now used as post processing code of our finite volume CFD solver OpenCFD-EC (Open Computational Fluid Dynamic code for Engineering Computation). However, OpenCFD-FWH can… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16263v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16263v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16263v1-abstract-full" style="display: none;"> In this paper, a permeable surface nondimensional FW-H (Ffowcs Williams-Hawkings) acoustics analogy post-processing code with convective effect and AoA (angle of attack) corrections, OpenCFD-FWH, has been eveloped. OpenCFD-FWH is now used as post processing code of our finite volume CFD solver OpenCFD-EC (Open Computational Fluid Dynamic code for Engineering Computation). However, OpenCFD-FWH can also be used by other CFD solvers with the specified data interface. The convective effect is taken into account by using Garrick Triangle to switch the wind tunnel casesoordinate system to a moving model with fluid at rest coordinate system, which simplifies the FW-H integration formulation and improves the computationalfficiency of the code. The AoA effect is also taken into account by coordinate transformation. In order to validate the code, three cases have been implemented. The first two cases are a monopole and aipole in a mean flow with AoA, and the results of the code and the analytical solution are practically identical. The third case is theell-known 30P30N configuration with a Reynolds number of 1.71$\times10^6$ and an AoA of $5.5^\circ$. OpenCFD-EC with IDDES (Improved Delayedetached-eddy simulation) is utilized to obtain the flow field, and the result shows relative good agreement when compared to JAXA experiments oreover, the code is implemented in a hybrid parallel way with MPI and OpenMP to speed up computing processes (up to 538.5 times faster in the0P30N validation case) and avoid an out-of-memory situation. The code is now freely available on \url{https://github.com/Z-K-LpenCFD-FWH}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16263v1-abstract-full').style.display = 'none'; document.getElementById('2312.16263v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14384">arXiv:2312.14384</a> <span> [<a href="https://arxiv.org/pdf/2312.14384">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202312824">10.1002/adma.202312824 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broken inversion symmetry in van der Waals topological ferromagnetic metal iron germanium telluride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kai-Xuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Ju%2C+H">Hwiin Ju</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H">Hyuncheol Kim</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+J">Jingyuan Cui</a>, <a href="/search/physics?searchtype=author&query=Keum%2C+J">Jihoon Keum</a>, <a href="/search/physics?searchtype=author&query=Park%2C+J">Je-Geun Park</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+J+S">Jong Seok Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14384v2-abstract-short" style="display: inline;"> Inversion symmetry breaking is critical for many quantum effects and fundamental for spin-orbit torque, which is crucial for next-generation spintronics. Recently, a novel type of gigantic intrinsic spin-orbit torque has been established in the topological van-der-Waals (vdW) magnet iron germanium telluride. However, it remains a puzzle because no clear evidence exists for interlayer inversion sym… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14384v2-abstract-full').style.display = 'inline'; document.getElementById('2312.14384v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14384v2-abstract-full" style="display: none;"> Inversion symmetry breaking is critical for many quantum effects and fundamental for spin-orbit torque, which is crucial for next-generation spintronics. Recently, a novel type of gigantic intrinsic spin-orbit torque has been established in the topological van-der-Waals (vdW) magnet iron germanium telluride. However, it remains a puzzle because no clear evidence exists for interlayer inversion symmetry breaking. Here, we report the definitive evidence of broken inversion symmetry in iron germanium telluride directly measured by the second harmonic generation (SHG) technique. Our data show that the crystal symmetry reduces from centrosymmetric P63/mmc to noncentrosymmetric polar P3m1 space group, giving the three-fold SHG pattern with dominant out-of-plane polarization. Additionally, the SHG response evolves from an isotropic pattern to a sharp three-fold symmetry upon increasing Fe deficiency, mainly due to the transition from random defects to ordered Fe vacancies. Such SHG response is robust against temperature, ensuring unaltered crystalline symmetries above and below the ferromagnetic transition temperature. These findings add crucial new information to our understanding of this interesting vdW metal, iron germanium telluride: band topology, intrinsic spin-orbit torque and topological vdW polar metal states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14384v2-abstract-full').style.display = 'none'; document.getElementById('2312.14384v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Advanced Materials; 32 pages, 4 main figures, 5 supporting figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials 36, 2312824 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09568">arXiv:2312.09568</a> <span> [<a href="https://arxiv.org/pdf/2312.09568">pdf</a>, <a href="https://arxiv.org/format/2312.09568">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Advancing large-scale thin-film PPLN nonlinear photonics with segmented tunable micro-heaters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiaoting Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Haochuan Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhenzheng Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhaoxi Chen</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+F">Fei Ma</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+W">Wenzhao Sun</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Cheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09568v2-abstract-short" style="display: inline;"> Thin-film periodically poled lithium niobate (TF-PPLN) devices have recently gained prominence for efficient wavelength conversion processes in both classical and quantum applications. However, the patterning and poling of TF-PPLN devices today are mostly performed at chip scales, presenting a significant bottleneck for future large-scale nonlinear photonic systems that require the integration of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09568v2-abstract-full').style.display = 'inline'; document.getElementById('2312.09568v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09568v2-abstract-full" style="display: none;"> Thin-film periodically poled lithium niobate (TF-PPLN) devices have recently gained prominence for efficient wavelength conversion processes in both classical and quantum applications. However, the patterning and poling of TF-PPLN devices today are mostly performed at chip scales, presenting a significant bottleneck for future large-scale nonlinear photonic systems that require the integration of multiple nonlinear components with consistent performance and low cost. Here, we take a pivotal step towards this goal by developing a wafer-scale TF-PPLN nonlinear photonic platform, leveraging ultraviolet stepper lithography and an automated poling process. To address the inhomogeneous broadening of the quasi-phase matching (QPM) spectrum induced by film thickness variations across the wafer, we propose and demonstrate segmented thermal optic tuning modules that can precisely adjust and align the QPM peak wavelengths in each section. \hl{Using the segmented micro-heaters, we show the successful realignment of inhomogeneously broadened multi-peak QPM spectra with up to 57$\%$ enhancement of conversion efficiency. We achieve a high normalized conversion efficiency of 3802$\%$W$^{-1}$cm$^{-2}$ in a 6 mm long PPLN waveguide, recovering 84$\%$ of the theoretically predicted efficiency in this device.} The advanced fabrication techniques and segmented tuning architectures presented herein pave the way for wafer-scale integration of complex functional nonlinear photonic circuits with applications in quantum information processing, precision sensing and metrology, and low-noise-figure optical signal amplification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09568v2-abstract-full').style.display = 'none'; document.getElementById('2312.09568v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05106">arXiv:2312.05106</a> <span> [<a href="https://arxiv.org/pdf/2312.05106">pdf</a>, <a href="https://arxiv.org/format/2312.05106">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.033116">10.1103/PhysRevA.109.033116 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sympathetic cooling of trapped Th3+ alpha-recoil ions for laser spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zitzer%2C+G">G. Zitzer</a>, <a href="/search/physics?searchtype=author&query=Tiedau%2C+J">J. Tiedau</a>, <a href="/search/physics?searchtype=author&query=Okhapkin%2C+M+V">M. V. Okhapkin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">K. Zhang</a>, <a href="/search/physics?searchtype=author&query=Mokry%2C+C">C. Mokry</a>, <a href="/search/physics?searchtype=author&query=Runke%2C+J">J. Runke</a>, <a href="/search/physics?searchtype=author&query=D%C3%BCllmann%2C+C+E">Ch. E. D眉llmann</a>, <a href="/search/physics?searchtype=author&query=Peik%2C+E">E. Peik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05106v1-abstract-short" style="display: inline;"> Sympathetic cooling of Th$^{3+}$ ions is demonstrated in an experiment where $^{229}$Th and $^{230}$Th are extracted from uranium recoil ion sources and are confined in a linear Paul trap together with laser-cooled $^{88}$Sr$^+$ ions. Because of their similar charge-to-mass ratios the ions are closely coupled and arrange themselves in two-species Coulomb crystals, containing up to a few tens of Th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05106v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05106v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05106v1-abstract-full" style="display: none;"> Sympathetic cooling of Th$^{3+}$ ions is demonstrated in an experiment where $^{229}$Th and $^{230}$Th are extracted from uranium recoil ion sources and are confined in a linear Paul trap together with laser-cooled $^{88}$Sr$^+$ ions. Because of their similar charge-to-mass ratios the ions are closely coupled and arrange themselves in two-species Coulomb crystals, containing up to a few tens of Th$^{3+}$ ions. To show the suitability of the sympathetically cooled Th$^{3+}$ ions for high-resolution laser spectroscopy, the absolute frequencies and isotope shifts of 5F$_{5/2}$\,$\rightarrow$\,6D$_{5/2}$ and 5F$_{7/2}$\,$\rightarrow$\,6D$_{5/2}$ transitions of $^{230}$Th$^{3+}$ have been measured. The system is developed for hyperfine spectroscopy of electronic transitions of nuclear ground and isomeric states in $^{229}$Th$^{3+}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05106v1-abstract-full').style.display = 'none'; document.getElementById('2312.05106v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 109, 033116 (2024) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zhang%2C+K&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zhang%2C+K&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+K&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+K&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+K&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+K&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>