CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 80 results for author: <span class="mathjax">Xiao, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Xiao%2C+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Xiao, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Xiao%2C+B&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Xiao, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xiao%2C+B&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xiao%2C+B&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xiao%2C+B&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14003">arXiv:2501.14003</a> <span> [<a href="https://arxiv.org/pdf/2501.14003">pdf</a>, <a href="https://arxiv.org/format/2501.14003">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> PaMMA-Net: Plasmas magnetic measurement evolution based on data-driven incremental accumulative prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ling%2C+Y">Yunfei Ling</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zijie Liu</a>, <a href="/search/physics?searchtype=author&query=Du%2C+J">Jun Du</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yao Huang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuehang Wang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bingjia Xiao</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+X">Xin Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14003v1-abstract-short" style="display: inline;"> An accurate evolution model is crucial for effective control and in-depth study of fusion plasmas. Evolution methods based on physical models often encounter challenges such as insufficient robustness or excessive computational costs. Given the proven strong fitting capabilities of deep learning methods across various fields, including plasma research, this paper introduces a deep learning-based m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14003v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14003v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14003v1-abstract-full" style="display: none;"> An accurate evolution model is crucial for effective control and in-depth study of fusion plasmas. Evolution methods based on physical models often encounter challenges such as insufficient robustness or excessive computational costs. Given the proven strong fitting capabilities of deep learning methods across various fields, including plasma research, this paper introduces a deep learning-based magnetic measurement evolution method named PaMMA-Net (Plasma Magnetic Measurements Incremental Accumulative Prediction Network). This network is capable of evolving magnetic measurements in tokamak discharge experiments over extended periods or, in conjunction with equilibrium reconstruction algorithms, evolving macroscopic parameters such as plasma shape. Leveraging a incremental prediction approach and data augmentation techniques tailored for magnetic measurements, PaMMA-Net achieves superior evolution results compared to existing studies. The tests conducted on real experimental data from EAST validate the high generalization capability of the proposed method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14003v1-abstract-full').style.display = 'none'; document.getElementById('2501.14003v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16057">arXiv:2411.16057</a> <span> [<a href="https://arxiv.org/pdf/2411.16057">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Experimental demonstration of a space-time modulated airborne acoustic circulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+T">Tinggui Chen</a>, <a href="/search/physics?searchtype=author&query=Mallejac%2C+M">Matthieu Mallejac</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+C">Chuanxing Bi</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+B">Baizhan Xia</a>, <a href="/search/physics?searchtype=author&query=Fleury%2C+R">Romain Fleury</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16057v1-abstract-short" style="display: inline;"> Achieving strongly nonreciprocal scattering in compact linear acoustic devices is a challenging task. One possible solution is the use of time-modulated resonators, however, their implementation in the realm of audible airborne acoustics is typically hindered by the difficulty to obtain large modulation depth and speeds while managing noise issues. Here, we propose a practical and cost-efficient r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16057v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16057v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16057v1-abstract-full" style="display: none;"> Achieving strongly nonreciprocal scattering in compact linear acoustic devices is a challenging task. One possible solution is the use of time-modulated resonators, however, their implementation in the realm of audible airborne acoustics is typically hindered by the difficulty to obtain large modulation depth and speeds while managing noise issues. Here, we propose a practical and cost-efficient route to realize simple modulated resonators and observe experimentally the strong nonreciprocal behavior of an acoustic circulator. We propose to modulate the neck cross-section areas of three coupled Helmholtz resonators using rotating circular plates actuated by an electrical motor, and control their phase difference via meshed gears, thereby implementing a modulation scheme with broken time-reversal symmetry that effectively imparts angular momentum to the system. We experimentally demonstrate tunable nonreciprocal behavior with a high nonreciprocal isolation of 34 dB and reflection as low as -9 dB, with insertion losses of 5 dB and parasitic signals below -20 dB. All the experimental results agree well with theoretical and numerical predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16057v1-abstract-full').style.display = 'none'; document.getElementById('2411.16057v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02259">arXiv:2408.02259</a> <span> [<a href="https://arxiv.org/pdf/2408.02259">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0230385">10.1063/5.0230385 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Above-room-temperature intrinsic ferromagnetism in ultrathin van der Waals crystal Fe$_{3+x}$GaTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+G">Gaojie Zhang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+J">Jie Yu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+H">Hao Wu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L">Li Yang</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+W">Wen Jin</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bichen Xiao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Wenfeng Zhang</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+H">Haixin Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02259v1-abstract-short" style="display: inline;"> Two-dimensional (2D) van der Waals (vdW) magnets are crucial for ultra-compact spintronics. However, so far, no vdW crystal has exhibited tunable above-room-temperature intrinsic ferromagnetism in the 2D ultrathin regime. Here, we report the tunable above-room-temperature intrinsic ferromagnetism in ultrathin vdW crystal Fe$_{3+x}$GaTe$_2$ ($x$ = 0 and 0.3). By increasing the Fe content, the Curie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02259v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02259v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02259v1-abstract-full" style="display: none;"> Two-dimensional (2D) van der Waals (vdW) magnets are crucial for ultra-compact spintronics. However, so far, no vdW crystal has exhibited tunable above-room-temperature intrinsic ferromagnetism in the 2D ultrathin regime. Here, we report the tunable above-room-temperature intrinsic ferromagnetism in ultrathin vdW crystal Fe$_{3+x}$GaTe$_2$ ($x$ = 0 and 0.3). By increasing the Fe content, the Curie temperature (TC) and room-temperature saturation magnetization of bulk Fe$_{3+x}$GaTe$_2$ crystals are enhanced from 354 to 376 K and 43.9 to 50.4 emu/g, respectively. Remarkably, the robust anomalous Hall effect in 3-nm Fe$_{3.3}$GaTe$_2$ indicate a record-high TC of 340 K and a large room-temperature perpendicular magnetic anisotropy energy of 6.6 * 10^5 J/m$^3$, superior to other ultrathin vdW ferromagnets. First-principles calculations reveal the asymmetric density of states and an additional large spin exchange interaction in ultrathin Fe$_{3+x}$GaTe$_2$ responsible for robust intrinsic ferromagnetism and higher Tc. This work opens a window for above-room-temperature ultrathin 2D magnets in vdW-integrated spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02259v1-abstract-full').style.display = 'none'; document.getElementById('2408.02259v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18442">arXiv:2406.18442</a> <span> [<a href="https://arxiv.org/pdf/2406.18442">pdf</a>, <a href="https://arxiv.org/format/2406.18442">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Correlation of the L-mode density limit with edge collisionality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Maris%2C+A">Andrew Maris</a>, <a href="/search/physics?searchtype=author&query=Rea%2C+C">Cristina Rea</a>, <a href="/search/physics?searchtype=author&query=Pau%2C+A">Alessandro Pau</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+W">Wenhui Hu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bingjia Xiao</a>, <a href="/search/physics?searchtype=author&query=Granetz%2C+R">Robert Granetz</a>, <a href="/search/physics?searchtype=author&query=Marmar%2C+E">Earl Marmar</a>, <a href="/search/physics?searchtype=author&query=team%2C+t+E+T+E">the EUROfusion Tokamak Exploitation team</a>, <a href="/search/physics?searchtype=author&query=team%2C+t+A+C">the Alcator C-Mod team</a>, <a href="/search/physics?searchtype=author&query=team%2C+t+A+U">the ASDEX Upgrade team</a>, <a href="/search/physics?searchtype=author&query=team%2C+t+D">the DIII-D team</a>, <a href="/search/physics?searchtype=author&query=team%2C+t+E">the EAST team</a>, <a href="/search/physics?searchtype=author&query=team%2C+t+T">the TCV team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18442v1-abstract-short" style="display: inline;"> The "density limit" is one of the fundamental bounds on tokamak operating space, and is commonly estimated via the empirical Greenwald scaling. This limit has garnered renewed interest in recent years as it has become clear that ITER and many tokamak pilot plant concepts must operate near or above the widely-used Greenwald limit to achieve their objectives. Evidence has also grown that the Greenwa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18442v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18442v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18442v1-abstract-full" style="display: none;"> The "density limit" is one of the fundamental bounds on tokamak operating space, and is commonly estimated via the empirical Greenwald scaling. This limit has garnered renewed interest in recent years as it has become clear that ITER and many tokamak pilot plant concepts must operate near or above the widely-used Greenwald limit to achieve their objectives. Evidence has also grown that the Greenwald scaling - in its remarkable simplicity - may not capture the full complexity of the disruptive density limit. In this study, we assemble a multi-machine database to quantify the effectiveness of the Greenwald limit as a predictor of the L-mode density limit and identify alternative stability metrics. We find that a two-parameter dimensionless boundary in the plasma edge, $谓_{*\rm, edge}^{\rm limit} = 3.0 尾_{T,{\rm edge}}^{-0.4}$, achieves significantly higher accuracy (true negative rate of 97.7% at a true positive rate of 95%) than the Greenwald limit (true negative rate 86.1% at a true positive rate of 95%) across a multi-machine dataset including metal- and carbon-wall tokamaks (AUG, C-Mod, DIII-D, and TCV). The collisionality boundary presented here can be applied for density limit avoidance in current devices and in ITER, where it can be measured and responded to in real time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18442v1-abstract-full').style.display = 'none'; document.getElementById('2406.18442v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09612">arXiv:2406.09612</a> <span> [<a href="https://arxiv.org/pdf/2406.09612">pdf</a>, <a href="https://arxiv.org/format/2406.09612">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Automated Molecular Concept Generation and Labeling with Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zimin Zhang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Q">Qianli Wu</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+B">Botao Xia</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+F">Fang Sun</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Z">Ziniu Hu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Yizhou Sun</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shichang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09612v2-abstract-short" style="display: inline;"> Artificial intelligence (AI) is transforming scientific research, with explainable AI methods like concept-based models (CMs) showing promise for new discoveries. However, in molecular science, CMs are less common than black-box models like Graph Neural Networks (GNNs), due to their need for predefined concepts and manual labeling. This paper introduces the Automated Molecular Concept (AutoMolCo)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09612v2-abstract-full').style.display = 'inline'; document.getElementById('2406.09612v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09612v2-abstract-full" style="display: none;"> Artificial intelligence (AI) is transforming scientific research, with explainable AI methods like concept-based models (CMs) showing promise for new discoveries. However, in molecular science, CMs are less common than black-box models like Graph Neural Networks (GNNs), due to their need for predefined concepts and manual labeling. This paper introduces the Automated Molecular Concept (AutoMolCo) framework, which leverages Large Language Models (LLMs) to automatically generate and label predictive molecular concepts. Through iterative concept refinement, AutoMolCo enables simple linear models to outperform GNNs and LLM in-context learning on several benchmarks. The framework operates without human knowledge input, overcoming limitations of existing CMs while maintaining explainability and allowing easy intervention. Experiments on MoleculeNet and High-Throughput Experimentation (HTE) datasets demonstrate that AutoMolCo-induced explainable CMs are beneficial for molecular science research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09612v2-abstract-full').style.display = 'none'; document.getElementById('2406.09612v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12229">arXiv:2405.12229</a> <span> [<a href="https://arxiv.org/pdf/2405.12229">pdf</a>, <a href="https://arxiv.org/format/2405.12229">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Brian Xiao</a>, <a href="/search/physics?searchtype=author&query=He%2C+W">Wenhao He</a>, <a href="/search/physics?searchtype=author&query=Subasic%2C+P">Pero Subasic</a>, <a href="/search/physics?searchtype=author&query=Harutyunyan%2C+A+R">Avetik R. Harutyunyan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yao Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fang Liu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+H">Haowei Xu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Ju Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12229v2-abstract-short" style="display: inline;"> Machine learning (ML) plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules. However, most existing ML models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work, we developed a unified ML method f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12229v2-abstract-full').style.display = 'inline'; document.getElementById('2405.12229v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12229v2-abstract-full" style="display: none;"> Machine learning (ML) plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules. However, most existing ML models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work, we developed a unified ML method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with the widely-used hybrid and double hybrid functionals in computational costs and prediction accuracy of various quantum chemical properties. As case studies, we apply the model to aromatic compounds and semiconducting polymers on both ground state and excited state properties, demonstrating its accuracy and generalization capability to complex systems that are hard to calculate using CCSD(T)-level methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12229v2-abstract-full').style.display = 'none'; document.getElementById('2405.12229v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08241">arXiv:2404.08241</a> <span> [<a href="https://arxiv.org/pdf/2404.08241">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Adaptive Anomaly Detection Disruption Prediction Starting from First Discharge on Tokamak </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ai%2C+X">Xinkun Ai</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+W">Wei Zheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Y">Yonghua Ding</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Dalong Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhongyong Chen</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+B">Bihao Guo</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+C">Chengshuo Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+N">Nengchao Wang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhoujun Yang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhipeng Chen</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+Y">Yuan Pan</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+B">Biao Shen</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Binjia Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08241v2-abstract-short" style="display: inline;"> Plasma disruption presents a significant challenge in tokamak fusion, where it can cause severe damage and economic losses. Current disruption predictors mainly rely on data-driven methods, requiring extensive discharge data for training. However, future tokamaks require disruption prediction from the first shot, posing challenges of data scarcity during the early operation period. In this period… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08241v2-abstract-full').style.display = 'inline'; document.getElementById('2404.08241v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08241v2-abstract-full" style="display: none;"> Plasma disruption presents a significant challenge in tokamak fusion, where it can cause severe damage and economic losses. Current disruption predictors mainly rely on data-driven methods, requiring extensive discharge data for training. However, future tokamaks require disruption prediction from the first shot, posing challenges of data scarcity during the early operation period. In this period disruption prediction aims to support safe exploration of operation range and accumulate necessary data to develop advanced prediction models. Thus, predictors must adapt to evolving plasma environments during this exploration phase. To address these issues, this study proposes a cross-tokamak adaptive deployment method using the Enhanced Convolutional Autoencoder Anomaly Detection (E-CAAD) predictor, enabling disruption prediction from the first shot of new devices. Experimental results indicate the ability of E-CAAD model trained on existing devices to effectively differentiate between disruption precursors and non-disruption samples on new devices, proving the feasibility of model cross-device transfer. Building upon this, adaptive learning from scratch and threshold adaptive adjustment strategies are proposed to achieve model cross-device transfer. The adaptive learning from scratch strategy enables the predictor to use scarce data during the early operation of the new device while rapidly adapting to changes in operation environment. The threshold adaptive adjustment strategy addresses the challenge of selecting warning thresholds on new devices where validation set is lacking, ensuring that the warning thresholds adapt to changes in the operation environment. Finally, experiments transferring the model from J-TEXT to EAST exhibit comparable performance to EAST models trained with ample data, achieving a TPR of 85.88% and a FPR of 6.15%, with a 20ms reserved MGI system reaction time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08241v2-abstract-full').style.display = 'none'; document.getElementById('2404.08241v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10368">arXiv:2311.10368</a> <span> [<a href="https://arxiv.org/pdf/2311.10368">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ad5934">10.1088/1361-6587/ad5934 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cross-Tokamak Deployment Study of Plasma Disruption Predictors Based on Convolutional Autoencoder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ai%2C+X">Xinkun Ai</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+W">Wei Zheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Y">Yonghua Ding</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Dalong Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhongyong Chen</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+C">Chengshuo Shen</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+B">Bihao Guo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+N">Nengchao Wang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhoujun Yang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhipeng Chen</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+Y">Yuan Pan</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+B">Biao Shen</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Binjia Xiao</a>, <a href="/search/physics?searchtype=author&query=team%2C+J">J-TEXT team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10368v3-abstract-short" style="display: inline;"> In the initial stages of operation for future tokamak, facing limited data availability, deploying data-driven disruption predictors requires optimal performance with minimal use of new device data. This paper studies the issue of data utilization in data-driven disruption predictor during cross tokamak deployment. Current predictors primarily employ supervised learning methods and require a large… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10368v3-abstract-full').style.display = 'inline'; document.getElementById('2311.10368v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10368v3-abstract-full" style="display: none;"> In the initial stages of operation for future tokamak, facing limited data availability, deploying data-driven disruption predictors requires optimal performance with minimal use of new device data. This paper studies the issue of data utilization in data-driven disruption predictor during cross tokamak deployment. Current predictors primarily employ supervised learning methods and require a large number of disruption and non-disruption shots for training. However, the scarcity and high cost of obtaining disruption shots for future tokamaks result in imbalanced training datasets, reducing the performance of supervised learning predictors. To solve this problem, we propose the Enhanced Convolutional Autoencoder Anomaly Detection (E-CAAD) predictor. E-CAAD can be only trained by normal samples from non-disruption shots and can also be trained by disruption precursor samples when disruption shots occur. This model not only overcomes the sample imbalance in supervised learning predictors, but also overcomes the inefficient dataset utilization faced by traditional anomaly detection predictors that cannot use disruption precursor samples for training, making it more suitable for the unpredictable datasets of future tokamaks. Compared to traditional anomaly detection predictor, the E-CAAD predictor performs better in disruption prediction and is deployed faster on new devices. Additionally, we explore strategies to accelerate deployment of E-CAAD predictor on the new device by using data from existing devices. Two deployment strategies are presented: mixing data from existing devices and fine-tuning the predictor trained on existing devices. Our comparisons indicate that the data from existing device can accelerate the deployment of predictor on new device. Notably, the fine-tuning strategy yields the fastest deployment on new device among the designed strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10368v3-abstract-full').style.display = 'none'; document.getElementById('2311.10368v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07125">arXiv:2310.07125</a> <span> [<a href="https://arxiv.org/pdf/2310.07125">pdf</a>, <a href="https://arxiv.org/format/2310.07125">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nanoradian-Scale Precision in Light Rotation Measurement via Indefinite Quantum Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xia%2C+B">Binke Xia</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jingzheng Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hongjing Li</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Z">Zhongyuan Luo</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+G">Guihua Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07125v3-abstract-short" style="display: inline;"> The manipulation and metrology of light beams are pivotal for optical science and applications. In particular, achieving ultra-high precision in the measurement of light beam rotations has been a long-standing challenge. Instead of utilizing quantum probes like entangled photons, we address this challenge by incorporating a quantum strategy called "indefinite time direction" into the parameterizin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07125v3-abstract-full').style.display = 'inline'; document.getElementById('2310.07125v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07125v3-abstract-full" style="display: none;"> The manipulation and metrology of light beams are pivotal for optical science and applications. In particular, achieving ultra-high precision in the measurement of light beam rotations has been a long-standing challenge. Instead of utilizing quantum probes like entangled photons, we address this challenge by incorporating a quantum strategy called "indefinite time direction" into the parameterizing process of quantum parameter estimation. Leveraging this quantum property of the parameterizing dynamics allows us to maximize the utilization of OAM resources for measuring ultra-small angular rotations of beam profile. Notably, a nanoradian-scale precision of light rotation measurement is finally achieved in the experiment, which is the highest precision by far to our best knowledge. Furthermore, this scheme holds promise in various optical applications due to the diverse range of manipulable resources offered by photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07125v3-abstract-full').style.display = 'none'; document.getElementById('2310.07125v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07115">arXiv:2310.07115</a> <span> [<a href="https://arxiv.org/pdf/2310.07115">pdf</a>, <a href="https://arxiv.org/format/2310.07115">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-36661-3">10.1038/s41467-023-36661-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Toward Incompatible Quantum Limits on Multiparameter Estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xia%2C+B">Binke Xia</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jingzheng Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hongjing Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Han Wang</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+G">Guihua Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07115v1-abstract-short" style="display: inline;"> Achieving the ultimate precisions for multiple parameters simultaneously is an outstanding challenge in quantum physics, because the optimal measurements for incompatible parameters cannot be performed jointly due to the Heisenberg uncertainty principle. In this work, a criterion proposed for multiparameter estimation provides a possible way to beat this curse. According to this criterion, it is p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07115v1-abstract-full').style.display = 'inline'; document.getElementById('2310.07115v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07115v1-abstract-full" style="display: none;"> Achieving the ultimate precisions for multiple parameters simultaneously is an outstanding challenge in quantum physics, because the optimal measurements for incompatible parameters cannot be performed jointly due to the Heisenberg uncertainty principle. In this work, a criterion proposed for multiparameter estimation provides a possible way to beat this curse. According to this criterion, it is possible to mitigate the influence of incompatibility meanwhile improve the ultimate precisions by increasing the variances of the parameter generators simultaneously. For demonstration, a scheme involving high-order Hermite-Gaussian states as probes is proposed for estimating the spatial displacement and angular tilt of light at the same time, and precisions up to 1.45 nm and 4.08 nrad are achieved in experiment simultaneously. Consequently, our findings provide a deeper insight into the role of Heisenberg uncertainty principle in multiparameter estimation, and contribute in several ways to the applications of quantum metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07115v1-abstract-full').style.display = 'none'; document.getElementById('2310.07115v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, vol. 14, no. 1, pp. 1021, February 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.06605">arXiv:2310.06605</a> <span> [<a href="https://arxiv.org/pdf/2310.06605">pdf</a>, <a href="https://arxiv.org/format/2310.06605">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.13.034023">10.1103/PhysRevApplied.13.034023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Precision Multi-parameter Weak Measurement with Hermite-Gaussian Pointer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xia%2C+B">Binke Xia</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jingzheng Huang</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C">Chen Fang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hongjing Li</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+G">Guihua Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.06605v1-abstract-short" style="display: inline;"> The weak value amplification technique has been proved useful for precision metrology in both theory and experiment. To explore the ultimate performance of weak value amplification for multi-parameter estimation, we investigate a general weak measurement formalism with assistance of high-order Hermite-Gaussian pointer and quantum Fisher information matrix. Theoretical analysis shows that the ultim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06605v1-abstract-full').style.display = 'inline'; document.getElementById('2310.06605v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.06605v1-abstract-full" style="display: none;"> The weak value amplification technique has been proved useful for precision metrology in both theory and experiment. To explore the ultimate performance of weak value amplification for multi-parameter estimation, we investigate a general weak measurement formalism with assistance of high-order Hermite-Gaussian pointer and quantum Fisher information matrix. Theoretical analysis shows that the ultimate precision of our scheme is improved by a factor of square root of 2n+1, where n is the order of Hermite-Gaussian mode. Moreover, the parameters' estimation precision can approach the precision limit with maximum likelihood estimation method and homodyne method. We have also given a proof-of-principle experimental setup to validate the H-G pointer theory and explore its potential applications in precision metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06605v1-abstract-full').style.display = 'none'; document.getElementById('2310.06605v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Applied, vol. 13, no. 3, pp. 034023, March 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04754">arXiv:2310.04754</a> <span> [<a href="https://arxiv.org/pdf/2310.04754">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> ScaleLat: A chemical structure matching algorithm for mapping atomic structure of multi-phase system and high entropy alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+N">Nan Li</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Junming Guo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Sateng Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haoliang Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q">Qianwu Li</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+F">Fangjie Shi</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yefei Li</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bing Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04754v1-abstract-short" style="display: inline;"> ScaleLat (Scale Lattice) is a computer program written in C for performing the atomic structure analysis of multi-phase system or high entropy alloys (HEAs). The program implements an atomic cluster extraction algorithm to obtain all independent and symmetry-reduced characteristic chemical structures for the complex atomic configurations which are usually obtained from molecular dynamics or kineti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04754v1-abstract-full').style.display = 'inline'; document.getElementById('2310.04754v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04754v1-abstract-full" style="display: none;"> ScaleLat (Scale Lattice) is a computer program written in C for performing the atomic structure analysis of multi-phase system or high entropy alloys (HEAs). The program implements an atomic cluster extraction algorithm to obtain all independent and symmetry-reduced characteristic chemical structures for the complex atomic configurations which are usually obtained from molecular dynamics or kinetic Monte-Carlo simulations for supercell containing more than 104 atoms. ScaleLat employes an efficient and unique chemical structure matching algorithm to map all extracted atomic clusters from a large supercell (>10^4 atoms) to a representative small one (~ 10^3 or less), providing the possibility to directly use the highly accurate quantum mechanical methods to study the electronic, magnetic, and mechanical properties of multi-component alloys with complex microstructures. We demonstrate the capability of ScaleLat code by conducting both the atomic structure analysis and chemical structure matching procedure for Fe-12.8 at.% Cr binary alloy and equiatomic CrFeCoNiCu high entropy alloy, and by successfully obtaining the representatively supercells containing 10^2~10^3 atoms of the two alloys. Overall, ScaleLat program provides a universal platform to efficiently project all essential chemical structures of large complex atomic structures to a relatively easy-handling small supercell for quantum mechanical calculations of various user interested properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04754v1-abstract-full').style.display = 'none'; document.getElementById('2310.04754v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04751">arXiv:2310.04751</a> <span> [<a href="https://arxiv.org/pdf/2310.04751">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> FEcMD: A multi-physics and multi-scale computational program for electron emission characteristics dynamically coupled with atomic structure in metal nano-emitters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+N">Nan Li</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+X">Xinyu Gao</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+X">Xianghui Feng</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+K">Kai Wu</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Y">Yonghong Cheng</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bing Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04751v1-abstract-short" style="display: inline;"> Field emission coupled with molecular dynamics simulation (FEcMD) software package is a computational tool for studying the electron emission characteristics and the atomic structure evolution of micro- and nano-protrusions made of pure metals or multi-component alloys by means of multi-physics and multi-scale methodology. The implementations of molecular dynamics, the electrodynamics, and the hea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04751v1-abstract-full').style.display = 'inline'; document.getElementById('2310.04751v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04751v1-abstract-full" style="display: none;"> Field emission coupled with molecular dynamics simulation (FEcMD) software package is a computational tool for studying the electron emission characteristics and the atomic structure evolution of micro- and nano-protrusions made of pure metals or multi-component alloys by means of multi-physics and multi-scale methodology. The implementations of molecular dynamics, the electrodynamics, and the heat conduction in FEcMD program are addressed. For molecular dynamics simulation, the Lennard-Jones potentials, embedded atomic method (EAM), and moment tensor potentials (MTP) are fully supported for both alloys and pure metals. In the electrodynamics, the FEcMD program incorporates the space charge fields (space charge potential and exchange-correlation effects) in the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation to evaluate the field emission current density more reliably for nano-gaps between two metal electrodes. Additionally, the advanced two-temperature heat conduction model is implemented in FEcMD program, and which provides more reliable descriptions for the temperature evolutions of electron and phonon subsystems under the radiofrequency (RF) or pulse electric fields. Comprehensive benchmark tests are performed for each module in FEcMD software to validate the numerical results, and also to access the accuracy and efficiency of the implemented algorithms. Finally, some typical applications of FEcMD program are also demonstrated for understanding the evolution of temperature and electric field coupled with the dynamic changing of atomic structures for metal micro- and nano-protrusions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04751v1-abstract-full').style.display = 'none'; document.getElementById('2310.04751v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.12554">arXiv:2309.12554</a> <span> [<a href="https://arxiv.org/pdf/2309.12554">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Assessing r2SCAN meta-GGA functional for structural parameters, cohesive energy, mechanical modulus and thermophysical properties of 3d, 4d and 5d transition metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haoliang Liu</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">Xue Bai</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+J">Jingliang Ning</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+Y">Yuxuan Hou</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Z">Zifeng Song</a>, <a href="/search/physics?searchtype=author&query=Ramasamy%2C+A">Akilan Ramasamy</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+R">Ruiqi Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yefei Li</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jianwei Sun</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bing Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.12554v1-abstract-short" style="display: inline;"> The recent development of the accurate and efficient semilocal density functionals on the third rung of Jacob's ladder of density functional theory such as the revised regularized strongly constrained and appropriately normed (r2SCAN) density functional could enable the rapid and highly reliable prediction of the elasticity and temperature dependence of thermophysical parameters of refractory elem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12554v1-abstract-full').style.display = 'inline'; document.getElementById('2309.12554v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.12554v1-abstract-full" style="display: none;"> The recent development of the accurate and efficient semilocal density functionals on the third rung of Jacob's ladder of density functional theory such as the revised regularized strongly constrained and appropriately normed (r2SCAN) density functional could enable the rapid and highly reliable prediction of the elasticity and temperature dependence of thermophysical parameters of refractory elements and their intermetallic compounds using quasi-harmonic approximation (QHA). Here, we present a comparative evaluation of the equilibrium cell volumes, cohesive energy, mechanical moduli, and thermophysical properties (Debye temperature and thermal expansion coefficient) for 22 transition metals using semilocal density functionals, including local density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) and PBEsol generalized gradient approximations (GGA), and the r2SCAN meta-GGA. PBEsol and r2SCAN deliver the same level of accuracies for structural, mechanical and thermophysical properties. Otherwise, PBE and r2SCAN perform better than LDA and PBEsol for calculating cohesive energies of transition metals. Among the tested density functionals, r2SCAN provides an overall well-balanced performance for reliably computing the cell volumes, cohesive energies, mechanical properties, and thermophysical properties of various 3d, 4d, and 5d transition metals using QHA. Therefore, we recommend that r2SCAN could be employed as a workhorse method to evaluate the thermophysical properties of transition metal compounds and alloys in the high throughput workflows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12554v1-abstract-full').style.display = 'none'; document.getElementById('2309.12554v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05361">arXiv:2309.05361</a> <span> [<a href="https://arxiv.org/pdf/2309.05361">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Cross-tokamak Disruption Prediction based on Physics-Guided Feature Extraction and domain adaptation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shen%2C+C">Chengshuo Shen</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+W">Wei Zheng</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+B">Bihao Guo</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Y">Yonghua Ding</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Dalong Chen</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X">Xinkun Ai</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+F">Fengming Xue</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+Y">Yu Zhong</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+N">Nengchao Wang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+B">Biao Shen</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Binjia Xiao</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhongyong Chen</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+Y">Yuan Pan</a>, <a href="/search/physics?searchtype=author&query=team%2C+J">J-TEXT team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05361v2-abstract-short" style="display: inline;"> The high acquisition cost and the significant demand for disruptive discharges for data-driven disruption prediction models in future tokamaks pose an inherent contradiction in disruption prediction research. In this paper, we demonstrated a novel approach to predict disruption in a future tokamak using only a few discharges. The first step is to use the existing understanding of physics to extrac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05361v2-abstract-full').style.display = 'inline'; document.getElementById('2309.05361v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05361v2-abstract-full" style="display: none;"> The high acquisition cost and the significant demand for disruptive discharges for data-driven disruption prediction models in future tokamaks pose an inherent contradiction in disruption prediction research. In this paper, we demonstrated a novel approach to predict disruption in a future tokamak using only a few discharges. The first step is to use the existing understanding of physics to extract physics-guided features from the diagnostic signals of each tokamak, called physics-guided feature extraction (PGFE). The second step is to align a few data from the future tokamak (target domain) and a large amount of data from existing tokamak (source domain) based on a domain adaptation algorithm called CORrelation ALignment (CORAL). It is the first attempt at applying domain adaptation in the task of disruption prediction. PGFE has been successfully applied in J-TEXT to predict disruption with excellent performance. PGFE can also reduce the data volume requirements due to extracting the less device-specific features, thereby establishing a solid foundation for cross-tokamak disruption prediction. We have further improved CORAL (supervised CORAL, S-CORAL) to enhance its appropriateness in feature alignment for the disruption prediction task. To simulate the existing and future tokamak case, we selected J-TEXT as the existing tokamak and EAST as the future tokamak, which has a large gap in the ranges of plasma parameters. The utilization of the S-CORAL improves the disruption prediction performance on future tokamak. Through interpretable analysis, we discovered that the learned knowledge of the disruption prediction model through this approach exhibits more similarities to the model trained on large data volumes of future tokamak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05361v2-abstract-full').style.display = 'none'; document.getElementById('2309.05361v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02011">arXiv:2306.02011</a> <span> [<a href="https://arxiv.org/pdf/2306.02011">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> The contribution of T2 relaxation time to diffusion MRI quantification and its clinical implications: a hypothesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y+X+J">Yi Xiang J Wang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+K">Kai-Xuan Zhao</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+F">Fu-Zhao Ma</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Ben-Heng Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02011v1-abstract-short" style="display: inline;"> Considering liver as the reference, that both fast diffusion (PF) and slow diffusion (Dslow) of the spleen are much underestimated is likely due to the MRI properties of the spleen such as the much longer T2 relaxation time. It is possible that longer T2 relaxation time partially mitigates the signal decay effect of various gradients on diffusion weighted image. This phenomenon will not be limited… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02011v1-abstract-full').style.display = 'inline'; document.getElementById('2306.02011v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02011v1-abstract-full" style="display: none;"> Considering liver as the reference, that both fast diffusion (PF) and slow diffusion (Dslow) of the spleen are much underestimated is likely due to the MRI properties of the spleen such as the much longer T2 relaxation time. It is possible that longer T2 relaxation time partially mitigates the signal decay effect of various gradients on diffusion weighted image. This phenomenon will not be limited to the spleen. Most liver tumors have a longer T2 relaxation time than their native normal tissue and this is considered to be associated with oedema. On the other hand, most tumors are measured with lower MRI diffusion (despite being oedematous). The reason why malignant tumors have lower diffusion value [apparent diffusion coefficient (ADC) and Dslow] are poorly understood but has been proposed to be related to a combination of higher cellularity, tissue disorganization, and increased extracellular space tortuosity. These explanations may be true, but it is also possible to that many tumors have MRI properties similar to the spleen such as longer T2 (relative to the liver) and these MRI properties may also contribute to the lower MRI measured ADC and Dslow . In other words, if we could hypothetically plant a piece of spleen tissue in the liver, MRI would recognize this planted spleen tissue as being similar to a tumor and measure it to have lower diffusion than the liver. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02011v1-abstract-full').style.display = 'none'; document.getElementById('2306.02011v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14965">arXiv:2303.14965</a> <span> [<a href="https://arxiv.org/pdf/2303.14965">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.net.2023.12.004">10.1016/j.net.2023.12.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disruption Precursor Onset Time Study Based on Semi-supervised Anomaly Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ai%2C+X">Xinkun Ai</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+W">Wei Zheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Dalong Chen</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+C">Chengshuo Shen</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+B">Bihao Guo</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bingjia Xiao</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+Y">Yu Zhong</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+N">Nengchao Wang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhoujun Yang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhipeng Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhongyong Chen</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Y">Yonghua Ding</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+Y">Yuan Pan</a>, <a href="/search/physics?searchtype=author&query=team%2C+J">J-TEXT team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14965v1-abstract-short" style="display: inline;"> The full understanding of plasma disruption in tokamaks is currently lacking, and data-driven methods are extensively used for disruption prediction. However, most existing data-driven disruption predictors employ supervised learning techniques, which require labeled training data. The manual labeling of disruption precursors is a tedious and challenging task, as some precursors are difficult to a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14965v1-abstract-full').style.display = 'inline'; document.getElementById('2303.14965v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14965v1-abstract-full" style="display: none;"> The full understanding of plasma disruption in tokamaks is currently lacking, and data-driven methods are extensively used for disruption prediction. However, most existing data-driven disruption predictors employ supervised learning techniques, which require labeled training data. The manual labeling of disruption precursors is a tedious and challenging task, as some precursors are difficult to accurately identify, limiting the potential of machine learning models. To address this issue, commonly used labeling methods assume that the precursor onset occurs at a fixed time before the disruption, which may not be consistent for different types of disruptions or even the same type of disruption, due to the different speeds at which plasma instabilities escalate. This leads to mislabeled samples and suboptimal performance of the supervised learning predictor. In this paper, we present a disruption prediction method based on anomaly detection that overcomes the drawbacks of unbalanced positive and negative data samples and inaccurately labeled disruption precursor samples. We demonstrate the effectiveness and reliability of anomaly detection predictors based on different algorithms on J-TEXT and EAST to evaluate the reliability of the precursor onset time inferred by the anomaly detection predictor. The precursor onset times inferred by these predictors reveal that the labeling methods have room for improvement as the onset times of different shots are not necessarily the same. Finally, we optimize precursor labeling using the onset times inferred by the anomaly detection predictor and test the optimized labels on supervised learning disruption predictors. The results on J-TEXT and EAST show that the models trained on the optimized labels outperform those trained on fixed onset time labels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14965v1-abstract-full').style.display = 'none'; document.getElementById('2303.14965v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> S1738-5733(23)00556-9 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Engineering and Technology 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06314">arXiv:2212.06314</a> <span> [<a href="https://arxiv.org/pdf/2212.06314">pdf</a>, <a href="https://arxiv.org/format/2212.06314">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/PRJ.473699">10.1364/PRJ.473699 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrasensitive Measurement of Angular Rotations via Hermite-Gaussian Pointer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xia%2C+B">Binke Xia</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jingzheng Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hongjing Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+M">Miaomiao Liu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+T">Tailong Xiao</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C">Chen Fang</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+G">Guihua Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06314v1-abstract-short" style="display: inline;"> Exploring high sensitivity on the measurement of angular rotations is an outstanding challenge in optics and metrology. In this work, we employ the mn-order Hermite-Gaussian beam in the weak measurement scheme with an angular rotation interaction, where the rotation information is taken by another HG mode state completely after the post-selection. By taking a projective measurement on the final li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06314v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06314v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06314v1-abstract-full" style="display: none;"> Exploring high sensitivity on the measurement of angular rotations is an outstanding challenge in optics and metrology. In this work, we employ the mn-order Hermite-Gaussian beam in the weak measurement scheme with an angular rotation interaction, where the rotation information is taken by another HG mode state completely after the post-selection. By taking a projective measurement on the final light beam, the precision of angular rotation is improved by a factor of 2mn+m+n. For verification, we perform an optical experiment where the minimum detectable angular rotation improves $\sqrt{15}$-fold with HG55 mode over that of HG11 mode, and achieves a sub-microradian scale of the measurement precision. Our theoretical framework and experimental results not only provide a more practical and convenient scheme for ultrasensitive measurement of angular rotations, but also contribute to a wide range of applications in quantum metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06314v1-abstract-full').style.display = 'none'; document.getElementById('2212.06314v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures, 3 tables. Published in Photonics Research</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Photonics Research Vol.10, 2816-2827 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10324">arXiv:2210.10324</a> <span> [<a href="https://arxiv.org/pdf/2210.10324">pdf</a>, <a href="https://arxiv.org/ps/2210.10324">ps</a>, <a href="https://arxiv.org/format/2210.10324">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac96e7">10.3847/2041-8213/ac96e7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detecting the oscillation and propagation of the nascent dynamic solar wind structure at 2.6 solar radii using VLBI radio telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+M">Maoli Ma</a>, <a href="/search/physics?searchtype=author&query=Calves%2C+G+M">Guifre Molera Calves</a>, <a href="/search/physics?searchtype=author&query=Cimo%2C+G">Giuseppe Cimo</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+M">Ming Xiong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+P">Peijia Li</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+J">Jing Kong</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+P">Peijin Zhang</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jiansen He</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Lijia Liu</a>, <a href="/search/physics?searchtype=author&query=Kummamuru%2C+P">Pradyumna Kummamuru</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+C">Chuanpeng Hou</a>, <a href="/search/physics?searchtype=author&query=Edwards%2C+J">Jasper Edwards</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qinghui Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhong Chen</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+Z">Zhanghu Chu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+D">De Wu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+X">Xu Zhao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhichao Wang</a>, <a href="/search/physics?searchtype=author&query=Zhi%2C+S+H+Q">Songtao Han Quanquan Zhi</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yingkai Liu</a>, <a href="/search/physics?searchtype=author&query=Quick%2C+J">Jonathan Quick</a>, <a href="/search/physics?searchtype=author&query=Gonzalez%2C+J">Javier Gonzalez</a>, <a href="/search/physics?searchtype=author&query=Miro%2C+C+G">Cristina Garcia Miro</a>, <a href="/search/physics?searchtype=author&query=Kharinov%2C+M">Mikhail Kharinov</a>, <a href="/search/physics?searchtype=author&query=Mikhailov%2C+A">Andrey Mikhailov</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10324v1-abstract-short" style="display: inline;"> Probing the solar corona is crucial to study the coronal heating and solar wind acceleration. However, the transient and inhomogeneous solar wind flows carry large-amplitude inherent Alfven waves and turbulence, which make detection more difficult. We report the oscillation and propagation of the solar wind at 2.6 solar radii (Rs) by observation of China Tianwen and ESA Mars Express with radio tel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10324v1-abstract-full').style.display = 'inline'; document.getElementById('2210.10324v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10324v1-abstract-full" style="display: none;"> Probing the solar corona is crucial to study the coronal heating and solar wind acceleration. However, the transient and inhomogeneous solar wind flows carry large-amplitude inherent Alfven waves and turbulence, which make detection more difficult. We report the oscillation and propagation of the solar wind at 2.6 solar radii (Rs) by observation of China Tianwen and ESA Mars Express with radio telescopes. The observations were carried out on Oct.9 2021, when one coronal mass ejection (CME) passed across the ray paths of the telescope beams. We obtain the frequency fluctuations (FF) of the spacecraft signals from each individual telescope. Firstly, we visually identify the drift of the frequency spikes at a high spatial resolution of thousands of kilometers along the projected baselines. They are used as traces to estimate the solar wind velocity. Then we perform the cross-correlation analysis on the time series of FF from different telescopes. The velocity variations of solar wind structure along radial and tangential directions during the CME passage are obtained. The oscillation of tangential velocity confirms the detection of streamer wave. Moreover, at the tail of the CME, we detect the propagation of an accelerating fast field-aligned density structure indicating the presence of magnetohydrodynamic waves. This study confirm that the ground station-pairs are able to form particular spatial projection baselines with high resolution and sensitivity to study the detailed propagation of the nascent dynamic solar wind structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10324v1-abstract-full').style.display = 'none'; document.getElementById('2210.10324v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.09594">arXiv:2208.09594</a> <span> [<a href="https://arxiv.org/pdf/2208.09594">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Transferable Cross-Tokamak Disruption Prediction with Deep Hybrid Neural Network Feature Extractor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zheng%2C+W">Wei Zheng</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+F">Fengming Xue</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhongyong Chen</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+C">Chengshuo Shen</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X">Xinkun Ai</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+N">Nengchao Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Dalong Chen</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+B">Bihao Guo</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Y">Yonghua Ding</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhipeng Chen</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhoujun Yang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+B">Biao Shen</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bingjia Xiao</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+Y">Yuan Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.09594v1-abstract-short" style="display: inline;"> Predicting disruptions across different tokamaks is a great obstacle to overcome. Future tokamaks can hardly tolerate disruptions at high performance discharge. Few disruption discharges at high performance can hardly compose an abundant training set, which makes it difficult for current data-driven methods to obtain an acceptable result. A machine learning method capable of transferring a disrupt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09594v1-abstract-full').style.display = 'inline'; document.getElementById('2208.09594v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.09594v1-abstract-full" style="display: none;"> Predicting disruptions across different tokamaks is a great obstacle to overcome. Future tokamaks can hardly tolerate disruptions at high performance discharge. Few disruption discharges at high performance can hardly compose an abundant training set, which makes it difficult for current data-driven methods to obtain an acceptable result. A machine learning method capable of transferring a disruption prediction model trained on one tokamak to another is required to solve the problem. The key is a disruption prediction model containing a feature extractor that is able to extract common disruption precursor traces in tokamak diagnostic data, and a transferable disruption classifier. Based on the concerns above, the paper first presents a deep fusion feature extractor designed specifically for extracting disruption precursor features from common diagnostics on tokamaks according to currently known precursors of disruption, providing a promising foundation for transferable models. The fusion feature extractor is proved by comparing with manual feature extraction on J-TEXT. Based on the feature extractor trained on J-TEXT, the disruption prediction model was transferred to EAST data with mere 20 discharges from EAST experiment. The performance is comparable with a model trained with 1896 discharges from EAST. From the comparison among other model training scenarios, transfer learning showed its potential in predicting disruptions across different tokamaks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09594v1-abstract-full').style.display = 'none'; document.getElementById('2208.09594v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04089">arXiv:2205.04089</a> <span> [<a href="https://arxiv.org/pdf/2205.04089">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of fractal topological states in acoustic metamaterials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zheng%2C+S">Shengjie Zheng</a>, <a href="/search/physics?searchtype=author&query=Man%2C+X">Xianfeng Man</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+Z">Ze-Lin Kong</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Z">Zhi-Kang Lin</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+G">Guiju Duan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+N">Ning Chen</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+D">Dejie Yu</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+J">Jian-Hua Jiang</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+B">Baizhan Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04089v1-abstract-short" style="display: inline;"> Topological phases of matter have been extensively investigated in solid state materials and classical wave systems with integer dimensions. However, topological states in non-integer dimensions remain largely unexplored. Fractals, being nearly the same at different scales, are one of the intriguing complex geometries with non-integer dimensions. Here, we demonstrate acoustic Sierpi艅ski fractal to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04089v1-abstract-full').style.display = 'inline'; document.getElementById('2205.04089v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04089v1-abstract-full" style="display: none;"> Topological phases of matter have been extensively investigated in solid state materials and classical wave systems with integer dimensions. However, topological states in non-integer dimensions remain largely unexplored. Fractals, being nearly the same at different scales, are one of the intriguing complex geometries with non-integer dimensions. Here, we demonstrate acoustic Sierpi艅ski fractal topological insulators with unconventional higher-order topological phenomena via consistent theory and experiments. We discover abundant topological edge and corner states emerging in our acoustic systems due to the rich edge and corner boundaries inside the fractals. Interestingly, the numbers of the edge and corner states scale the same as the bulk states with the system size and the exponents coincide with the Hausdorff fractal dimension of the Sierpi艅ski carpet. Furthermore, the emergent corner states exhibit unconventional spectrum and wave patterns. Our study opens a pathway toward topological states in fractal geometries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04089v1-abstract-full').style.display = 'none'; document.getElementById('2205.04089v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 Pages, 4 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05604">arXiv:2201.05604</a> <span> [<a href="https://arxiv.org/pdf/2201.05604">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.166644">10.1016/j.nima.2022.166644 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correction of crosstalk effect in the low energy RHIC electron cooler booster cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Binping Xiao</a>, <a href="/search/physics?searchtype=author&query=Mernick%2C+K">K. Mernick</a>, <a href="/search/physics?searchtype=author&query=Severino%2C+F">F. Severino</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+K">K. Smith</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+W">Wencan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05604v1-abstract-short" style="display: inline;"> The Low Energy Relativistic Heavy Ion Collider (RHIC) electron Cooler (LEReC) is designed to deliver a 1.6 MeV to 2.6 MeV electron beam, with rms dp/p less than 5e-4. The superconducting radiofrequency (SRF) Booster Cavity is the major accelerating component in LEReC. It is a 0.4 cell cavity operating at 2 K, providing a maximum energy gain of 2.2 MeV. It is modified from an experimental Energy Re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05604v1-abstract-full').style.display = 'inline'; document.getElementById('2201.05604v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05604v1-abstract-full" style="display: none;"> The Low Energy Relativistic Heavy Ion Collider (RHIC) electron Cooler (LEReC) is designed to deliver a 1.6 MeV to 2.6 MeV electron beam, with rms dp/p less than 5e-4. The superconducting radiofrequency (SRF) Booster Cavity is the major accelerating component in LEReC. It is a 0.4 cell cavity operating at 2 K, providing a maximum energy gain of 2.2 MeV. It is modified from an experimental Energy Recovery Linac (ERL) photocathode gun, and thus has fundamental power couplers (FPCs), pickup (PU) couplers (field probes) and HOM coupler close to each other on the same side of the cavity. Direct capacitive coupling between the FPC and PU, called the crosstalk effect, combined with microphonic detuning, can induce closed loop voltage fluctuations that exceed the total energy spread requirement of LEReC. The crosstalk effect in this cavity is modelled, simulated, and measured, and A correction method is proposed and demonstrated to suppress the voltage fluctuation so that energy spread requirement can be met. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05604v1-abstract-full').style.display = 'none'; document.getElementById('2201.05604v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08956">arXiv:2109.08956</a> <span> [<a href="https://arxiv.org/pdf/2109.08956">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/ac28ae">10.1088/1741-4326/ac28ae <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scenario adaptive disruption prediction study for next generation burning-plasma tokamaks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhu%2C+J">J. Zhu</a>, <a href="/search/physics?searchtype=author&query=Rea%2C+C">C. Rea</a>, <a href="/search/physics?searchtype=author&query=Granetz%2C+R+S">R. S. Granetz</a>, <a href="/search/physics?searchtype=author&query=Marmar%2C+E+S">E. S. Marmar</a>, <a href="/search/physics?searchtype=author&query=Montes%2C+K+J">K. J. Montes</a>, <a href="/search/physics?searchtype=author&query=Sweeney%2C+R">R. Sweeney</a>, <a href="/search/physics?searchtype=author&query=Tinguely%2C+R+A">R. A. Tinguely</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D+L">D. L. Chen</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+B">B. Shen</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B+J">B. J. Xiao</a>, <a href="/search/physics?searchtype=author&query=Humphreys%2C+D">D. Humphreys</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+J">J. Barr</a>, <a href="/search/physics?searchtype=author&query=Meneghini%2C+O">O. Meneghini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08956v1-abstract-short" style="display: inline;"> Next generation high performance (HP) tokamaks risk damage from unmitigated disruptions at high current and power. Achieving reliable disruption prediction for a device's HP operation based on its low performance (LP) data is key to success. In this letter, through explorative data analysis and dedicated numerical experiments on multiple existing tokamaks, we demonstrate how the operational regime… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08956v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08956v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08956v1-abstract-full" style="display: none;"> Next generation high performance (HP) tokamaks risk damage from unmitigated disruptions at high current and power. Achieving reliable disruption prediction for a device's HP operation based on its low performance (LP) data is key to success. In this letter, through explorative data analysis and dedicated numerical experiments on multiple existing tokamaks, we demonstrate how the operational regimes of tokamaks can affect the power of a trained disruption predictor. First, our results suggest data-driven disruption predictors trained on abundant LP discharges work poorly on the HP regime of the same tokamak, which is a consequence of the distinct distributions of the tightly correlated signals related to disruptions in these two regimes. Second, we find that matching operational parameters among tokamaks strongly improves cross-machine accuracy which implies our model learns from the underlying scalings of dimensionless physics parameters like q_{95}, 尾_{p} and confirms the importance of these parameters in disruption physics and cross machine domain matching from the data-driven perspective. Finally, our results show how in the absence of HP data from the target devices, the best predictivity of the HP regime for the target machine can be achieved by combining LP data from the target with HP data from other machines. These results provide a possible disruption predictor development strategy for next generation tokamaks, such as ITER and SPARC, and highlight the importance of developing on existing machines baseline scenario discharges of future tokamaks to collect more relevant disruptive data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08956v1-abstract-full').style.display = 'none'; document.getElementById('2109.08956v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.08212">arXiv:2106.08212</a> <span> [<a href="https://arxiv.org/pdf/2106.08212">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Bayesian Optimization of High-Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pedersen%2C+J+K">Jack K. Pedersen</a>, <a href="/search/physics?searchtype=author&query=Clausen%2C+C+M">Christian M. Clausen</a>, <a href="/search/physics?searchtype=author&query=Krysiak%2C+O+A">Olga A. Krysiak</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bin Xiao</a>, <a href="/search/physics?searchtype=author&query=Batchelor%2C+T+A+A">Thomas A. A. Batchelor</a>, <a href="/search/physics?searchtype=author&query=L%C3%B6ffler%2C+T">Tobias L枚ffler</a>, <a href="/search/physics?searchtype=author&query=Mints%2C+V+A">Vladislav A. Mints</a>, <a href="/search/physics?searchtype=author&query=Banko%2C+L">Lars Banko</a>, <a href="/search/physics?searchtype=author&query=Arenz%2C+M">Matthias Arenz</a>, <a href="/search/physics?searchtype=author&query=Savan%2C+A">Alan Savan</a>, <a href="/search/physics?searchtype=author&query=Schuhmann%2C+W">Wolfgang Schuhmann</a>, <a href="/search/physics?searchtype=author&query=Ludwig%2C+A">Alfred Ludwig</a>, <a href="/search/physics?searchtype=author&query=Rossmeisl%2C+J">Jan Rossmeisl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.08212v1-abstract-short" style="display: inline;"> Active, selective and stable catalysts are imperative for sustainable energy conversion, and engineering materials with such properties are highly desired. High-entropy alloys (HEAs) offer a vast compositional space for tuning such properties. Too vast, however, to traverse without the proper tools. Here, we report the use of Bayesian optimization on a model based on density functional theory (DFT… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08212v1-abstract-full').style.display = 'inline'; document.getElementById('2106.08212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.08212v1-abstract-full" style="display: none;"> Active, selective and stable catalysts are imperative for sustainable energy conversion, and engineering materials with such properties are highly desired. High-entropy alloys (HEAs) offer a vast compositional space for tuning such properties. Too vast, however, to traverse without the proper tools. Here, we report the use of Bayesian optimization on a model based on density functional theory (DFT) to predict the most active compositions for the electrochemical oxygen reduction reaction (ORR) with the least possible number of sampled compositions for the two HEAs Ag-Ir-Pd-Pt-Ru and Ir-Pd-Pt-Rh-Ru. The discovered optima are then scrutinized with DFT and subjected to experimental validation where optimal catalytic activities are verified for Ag-Pd, Ir-Pt, and Pd-Ru binary systems. This study offers insight into the number of experiments needed for exploring the vast compositional space of multimetallic alloys which has been determined to be on the order of 50 for ORR on these HEAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08212v1-abstract-full').style.display = 'none'; document.getElementById('2106.08212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.04146">arXiv:2104.04146</a> <span> [<a href="https://arxiv.org/pdf/2104.04146">pdf</a>, <a href="https://arxiv.org/format/2104.04146">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> An Open-source Model for Simulation and Corrective Measure Assessment of the 2021 Texas Power Outage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wu%2C+D">Dongqi Wu</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+X">Xiangtian Zheng</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yixing Xu</a>, <a href="/search/physics?searchtype=author&query=Olsen%2C+D">Daniel Olsen</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+B">Bainan Xia</a>, <a href="/search/physics?searchtype=author&query=Singh%2C+C">Chanan Singh</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+L">Le Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.04146v3-abstract-short" style="display: inline;"> Unprecedented winter storms that hit across Texas in February 2021 have caused at least 69 deaths and 4.5 million customer interruptions due to the wide-ranging generation capacity outage and record-breaking electricity demand. While much remains to be investigated on what, how, and why such wide-spread power outages occurred across Texas, it is imperative for the broader macro energy community to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.04146v3-abstract-full').style.display = 'inline'; document.getElementById('2104.04146v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.04146v3-abstract-full" style="display: none;"> Unprecedented winter storms that hit across Texas in February 2021 have caused at least 69 deaths and 4.5 million customer interruptions due to the wide-ranging generation capacity outage and record-breaking electricity demand. While much remains to be investigated on what, how, and why such wide-spread power outages occurred across Texas, it is imperative for the broader macro energy community to develop insights for policy making based on a coherent electric grid model and data set. In this paper, we collaboratively release an open-source extendable model that is synthetic but nevertheless provides a realistic representation of the actual energy grid, accompanied by open-source cross-domain data sets. This simplified synthetic model is calibrated to the best of our knowledge based on published data resources. Building upon this open-source synthetic grid model, researchers could quantitatively assess the impact of various policies on mitigating the impact of such extreme events. As an example, in this paper we critically assess several corrective measures that could have mitigated the blackout under such extreme weather conditions. We uncover the regional disparity of load shedding. The analysis also quantifies the sensitivity of several corrective measures with respect to mitigating the severity of the power outage, as measured in Energy-not-Served (ENS). This approach and methodology are generalizable for other regions experiencing significant energy portfolio transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.04146v3-abstract-full').style.display = 'none'; document.getElementById('2104.04146v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper have been accepted for publish by Advances in Applied Energy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12265">arXiv:2103.12265</a> <span> [<a href="https://arxiv.org/pdf/2103.12265">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Landau Levels and van der Waals Interfaces of Acoustics in Moir茅 Phononic Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zheng%2C+S">Shengjie Zheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+G">Guiju Duan</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Z">Zihan Jiang</a>, <a href="/search/physics?searchtype=author&query=Man%2C+X">Xianfeng Man</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+D">Dejie Yu</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+B">Baizhan Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12265v1-abstract-short" style="display: inline;"> Moir茅 lattices which consist of parallel but staggered periodic lattices have been extensively explored due to their salient physical properties, such as van Hove singularities[1, 2], commensurable incommensurable transitions[3], non-Abelian gauge potentials[4], fractional quantum Hall effects[5-7], van der Waals interfaces[8, 9] and unconventional superconductivity[10, 11]. However, there are lim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12265v1-abstract-full').style.display = 'inline'; document.getElementById('2103.12265v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12265v1-abstract-full" style="display: none;"> Moir茅 lattices which consist of parallel but staggered periodic lattices have been extensively explored due to their salient physical properties, such as van Hove singularities[1, 2], commensurable incommensurable transitions[3], non-Abelian gauge potentials[4], fractional quantum Hall effects[5-7], van der Waals interfaces[8, 9] and unconventional superconductivity[10, 11]. However, there are limited demonstrations of such concepts for classical wave systems. Here, we realized gauge fields in one-dimensional Moir茅 phononic lattices consisting of two superimposed periodic patterns which mismatched with each other along one direction. Benefiting from gauge fields, we generated Landau level flat bands near the Dirac cone and experimentally measured their spatial localization in pressure-field distributions. Then, by mismatching lattices along both directions, we constructed two-dimensional Moir茅 phononic lattices with van der Waals interfaces. We found that acoustic waves efficiently transported along van der Waals interfaces behaving as metallic networks. As mismatched lattices are well-controllable, our study offers a novel path to manipulate sound waves which are inaccessible in traditional periodic acoustic systems, and can be easily extended to mechanics, optics, electromagnetics and electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12265v1-abstract-full').style.display = 'none'; document.getElementById('2103.12265v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05419">arXiv:2103.05419</a> <span> [<a href="https://arxiv.org/pdf/2103.05419">pdf</a>, <a href="https://arxiv.org/format/2103.05419">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2022.122447">10.1016/j.nuclphysa.2022.122447 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Khalek%2C+R+A">R. Abdul Khalek</a>, <a href="/search/physics?searchtype=author&query=Accardi%2C+A">A. Accardi</a>, <a href="/search/physics?searchtype=author&query=Adam%2C+J">J. Adam</a>, <a href="/search/physics?searchtype=author&query=Adamiak%2C+D">D. Adamiak</a>, <a href="/search/physics?searchtype=author&query=Akers%2C+W">W. Akers</a>, <a href="/search/physics?searchtype=author&query=Albaladejo%2C+M">M. Albaladejo</a>, <a href="/search/physics?searchtype=author&query=Al-bataineh%2C+A">A. Al-bataineh</a>, <a href="/search/physics?searchtype=author&query=Alexeev%2C+M+G">M. G. Alexeev</a>, <a href="/search/physics?searchtype=author&query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&query=Antonioli%2C+P">P. Antonioli</a>, <a href="/search/physics?searchtype=author&query=Armesto%2C+N">N. Armesto</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+W+R">W. R. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arratia%2C+M">M. Arratia</a>, <a href="/search/physics?searchtype=author&query=Arrington%2C+J">J. Arrington</a>, <a href="/search/physics?searchtype=author&query=Asaturyan%2C+A">A. Asaturyan</a>, <a href="/search/physics?searchtype=author&query=Asai%2C+M">M. Asai</a>, <a href="/search/physics?searchtype=author&query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/physics?searchtype=author&query=Aune%2C+S">S. Aune</a>, <a href="/search/physics?searchtype=author&query=Avagyan%2C+H">H. Avagyan</a>, <a href="/search/physics?searchtype=author&query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&query=Azmoun%2C+B">B. Azmoun</a>, <a href="/search/physics?searchtype=author&query=Bacchetta%2C+A">A. Bacchetta</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&query=Barbosa%2C+F">F. Barbosa</a>, <a href="/search/physics?searchtype=author&query=Barion%2C+L">L. Barion</a> , et al. (390 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05419v3-abstract-short" style="display: inline;"> This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05419v3-abstract-full').style.display = 'inline'; document.getElementById('2103.05419v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05419v3-abstract-full" style="display: none;"> This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon and nuclei where their structure is dominated by gluons. Moreover, polarized beams in the EIC will give unprecedented access to the spatial and spin structure of the proton, neutron, and light ions. The studies leading to this document were commissioned and organized by the EIC User Group with the objective of advancing the state and detail of the physics program and developing detector concepts that meet the emerging requirements in preparation for the realization of the EIC. The effort aims to provide the basis for further development of concepts for experimental equipment best suited for the science needs, including the importance of two complementary detectors and interaction regions. This report consists of three volumes. Volume I is an executive summary of our findings and developed concepts. In Volume II we describe studies of a wide range of physics measurements and the emerging requirements on detector acceptance and performance. Volume III discusses general-purpose detector concepts and the underlying technologies to meet the physics requirements. These considerations will form the basis for a world-class experimental program that aims to increase our understanding of the fundamental structure of all visible matter <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05419v3-abstract-full').style.display = 'none'; document.getElementById('2103.05419v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">902 pages, 415 authors, 151 institutions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-220990-2021-FORE, JLAB-PHY-21-3198, LA-UR-21-20953 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Phys. A 1026 (2022) 122447 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02151">arXiv:2103.02151</a> <span> [<a href="https://arxiv.org/pdf/2103.02151">pdf</a>, <a href="https://arxiv.org/format/2103.02151">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Property investigation for different wedge-shaped CsI(Tl)s </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+G">G. Li</a>, <a href="/search/physics?searchtype=author&query=Lou%2C+J+L">J. L. Lou</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+Y+L">Y. L. Ye</a>, <a href="/search/physics?searchtype=author&query=Hua%2C+H">H. Hua</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+J+X">J. X. Han</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">W. Liu</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+S+W">S. W. Bai</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Z+W">Z. W. Tan</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+K">K. Ma</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J+H">J. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+S">L. S. Yang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S+J">S. J. Wang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Z+Y">Z. Y. Hu</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H+Z">H. Z. Yu</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+H+Y">H. Y. Zhu</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+B+L">B. L. Xia</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+X+F">X. F. Yang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q+T">Q. T. Li</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+J+Y">J. Y. Xu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J+S">J. S. Wang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y+Y">Y. Y. Yang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J+B">J. B. Ma</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02151v1-abstract-short" style="display: inline;"> Two types of wedge-shaped CsI(Tl)s were designed to be placed behind the annular double-sided silicon detectors (ADSSDs) to identify the light charged particles with the $螖E-E$ method. The properties of CsI(Tl)s with different shapes and sizes, such as energy resolution, light output non-uniformity and particle identification capability, were compared by using a $伪$-source and a radioactive beam o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02151v1-abstract-full').style.display = 'inline'; document.getElementById('2103.02151v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02151v1-abstract-full" style="display: none;"> Two types of wedge-shaped CsI(Tl)s were designed to be placed behind the annular double-sided silicon detectors (ADSSDs) to identify the light charged particles with the $螖E-E$ method. The properties of CsI(Tl)s with different shapes and sizes, such as energy resolution, light output non-uniformity and particle identification capability, were compared by using a $伪$-source and a radioactive beam of $^{15}$C. The big-size CsI(Tl) was finally adopted to form the $螖E-E$ telescope due to better properties. The property differences of these two types of CsI(Tl)s can be interpreted based on the Geant4 simulation results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02151v1-abstract-full').style.display = 'none'; document.getElementById('2103.02151v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07552">arXiv:2102.07552</a> <span> [<a href="https://arxiv.org/pdf/2102.07552">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological defect states in elastic phononic plates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xia%2C+B">Baizhan Xia</a>, <a href="/search/physics?searchtype=author&query=Tong%2C+L">Liang Tong</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+S">Shengjie Zheng</a>, <a href="/search/physics?searchtype=author&query=Man%2C+X">Xianfeng Man</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07552v1-abstract-short" style="display: inline;"> Topological defects (including disclinations and dislocations) which commonly exist in various materials have shown an amazing ability to produce excellent mechanical and physical properties of matters. In this paper, disclinations and dislocations are firstly introduced into the valley-polarized elastic phononic plate. Deformation of the lattice yields the interface expressing as the topologicall… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07552v1-abstract-full').style.display = 'inline'; document.getElementById('2102.07552v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07552v1-abstract-full" style="display: none;"> Topological defects (including disclinations and dislocations) which commonly exist in various materials have shown an amazing ability to produce excellent mechanical and physical properties of matters. In this paper, disclinations and dislocations are firstly introduced into the valley-polarized elastic phononic plate. Deformation of the lattice yields the interface expressing as the topologically protected wave guiding, due to the valley-polarized phase transition of phononic crystals (PnCs) across the interface. Then, disclinations are introduced into the Wannier-type elastic phononic plate. The deformation of the lattice yielded by disclinations produces a pentagonal core with the local five-fold symmetry. The topological bound states are well localized around the boundaries of the pentagonal cores with and without the hollow regions. The topological interface state and the topological bound state immunize against the finite sizes and the moderate disturbances of plates, essentially differing from the trivial defect states. The discovery of topological defect states unveils a new horizon in topological mechanics and physics, and it provides a novel platform to implement large-scale elastic devices with robust topological waveguides and resonators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07552v1-abstract-full').style.display = 'none'; document.getElementById('2102.07552v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.11678">arXiv:2101.11678</a> <span> [<a href="https://arxiv.org/pdf/2101.11678">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Anomalous skin effect study of superconducting film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Binping Xiao</a>, <a href="/search/physics?searchtype=author&query=Blaskiewicz%2C+M">M. Blaskiewicz</a>, <a href="/search/physics?searchtype=author&query=Xin%2C+T">T. Xin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.11678v2-abstract-short" style="display: inline;"> The field distribution inside the superconducting radiofrequency (SRF) film with different mean free path is studied using niobium (Nb) as an example. The surface resistance of clean Nb film with different substrate and different film thickness is calculated. We also show the study of a special structured multilayer superconducting film called Superconductor-Insulator-Superconductor (SIS) structur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11678v2-abstract-full').style.display = 'inline'; document.getElementById('2101.11678v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.11678v2-abstract-full" style="display: none;"> The field distribution inside the superconducting radiofrequency (SRF) film with different mean free path is studied using niobium (Nb) as an example. The surface resistance of clean Nb film with different substrate and different film thickness is calculated. We also show the study of a special structured multilayer superconducting film called Superconductor-Insulator-Superconductor (SIS) structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11678v2-abstract-full').style.display = 'none'; document.getElementById('2101.11678v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.07110">arXiv:2101.07110</a> <span> [<a href="https://arxiv.org/pdf/2101.07110">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Double Quarter Wave Crab Cavity Wire Stretching Measurement at BNL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wu%2C+Q">Qiong Wu</a>, <a href="/search/physics?searchtype=author&query=Xin%2C+T">Tianmu Xin</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Binping Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.07110v1-abstract-short" style="display: inline;"> The wire stretching measurement was completed on the prototype Double Quarter Wave (DQW) crab cavity for operation practice and calibration of the measurement system. Four locations were defined to be on the electrical center plane of the crab cavity, and survey of the wire indicated all are on the same plane. The successful measurement validated the wire stretching system built at Brookhaven Nati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07110v1-abstract-full').style.display = 'inline'; document.getElementById('2101.07110v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.07110v1-abstract-full" style="display: none;"> The wire stretching measurement was completed on the prototype Double Quarter Wave (DQW) crab cavity for operation practice and calibration of the measurement system. Four locations were defined to be on the electrical center plane of the crab cavity, and survey of the wire indicated all are on the same plane. The successful measurement validated the wire stretching system built at Brookhaven National Lab. The offset of the four wire locations to the fitted plane provided the error of the measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07110v1-abstract-full').style.display = 'none'; document.getElementById('2101.07110v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14622">arXiv:2012.14622</a> <span> [<a href="https://arxiv.org/pdf/2012.14622">pdf</a>, <a href="https://arxiv.org/format/2012.14622">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09414-z">10.1140/epjc/s10052-021-09414-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Construction and On-site Performance of the LHAASO WFCTA Camera </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Axikegu"> Axikegu</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+L+X">L. X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y+X">Y. X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/physics?searchtype=author&query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+Y+J">Y. J. Bi</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+H">H. Cai</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+J+T">J. T. Cai</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Z">Z. Cao</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Z">Z. Cao</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J">J. Chang</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+X+C">X. C. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+B+M">B. M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">J. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">L. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">L. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">L. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M+J">M. J. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M+L">M. L. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Q+H">Q. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S+H">S. H. Chen</a> , et al. (234 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14622v2-abstract-short" style="display: inline;"> The focal plane camera is the core component of the Wide Field-of-view Cherenkov/fluorescence Telescope Array (WFCTA) of the Large High-Altitude Air Shower Observatory (LHAASO). Because of the capability of working under moonlight without aging, silicon photomultipliers (SiPM) have been proven to be not only an alternative but also an improvement to conventional photomultiplier tubes (PMT) in this… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14622v2-abstract-full').style.display = 'inline'; document.getElementById('2012.14622v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14622v2-abstract-full" style="display: none;"> The focal plane camera is the core component of the Wide Field-of-view Cherenkov/fluorescence Telescope Array (WFCTA) of the Large High-Altitude Air Shower Observatory (LHAASO). Because of the capability of working under moonlight without aging, silicon photomultipliers (SiPM) have been proven to be not only an alternative but also an improvement to conventional photomultiplier tubes (PMT) in this application. Eighteen SiPM-based cameras with square light funnels have been built for WFCTA. The telescopes have collected more than 100 million cosmic ray events and preliminary results indicate that these cameras are capable of working under moonlight. The characteristics of the light funnels and SiPMs pose challenges (e.g. dynamic range, dark count rate, assembly techniques). In this paper, we present the design features, manufacturing techniques and performances of these cameras. Finally, the test facilities, the test methods and results of SiPMs in the cameras are reported here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14622v2-abstract-full').style.display = 'none'; document.getElementById('2012.14622v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 21 figures, article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 657 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.02028">arXiv:2011.02028</a> <span> [<a href="https://arxiv.org/pdf/2011.02028">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> The upgrade of EAST Safety and Interlock system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z+C">Z. C. Zhang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B+J">B. J. Xiao</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+Z+S">Z. S. Ji</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Y. Wang</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+F">F. Xia</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Z+H">Z. H. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.02028v1-abstract-short" style="display: inline;"> The Experimental Advanced Superconducting Tokamak (EAST), a nation-level large-scale scientific project of China, plays a key role for the research of peaceful utilizations of fusion energy. The safety and interlock system (SIS) is in charge of the supervision and control of all the EAST components involved in the protection of human and tokamak from potential accidents. With the development of ph… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02028v1-abstract-full').style.display = 'inline'; document.getElementById('2011.02028v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.02028v1-abstract-full" style="display: none;"> The Experimental Advanced Superconducting Tokamak (EAST), a nation-level large-scale scientific project of China, plays a key role for the research of peaceful utilizations of fusion energy. The safety and interlock system (SIS) is in charge of the supervision and control of all the EAST components involved in the protection of human and tokamak from potential accidents. With the development of physical experiment, the SIS had come close to reaching its limits for expandability. Therefore, a prototype for upgrading EAST SIS has been designed, and a fast architecture based on COTS FPGA is absorbed into the new SIS. This paper presents EAST machine and human protection mechanism and the architecture of the upgrading safety and interlock system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02028v1-abstract-full').style.display = 'none'; document.getElementById('2011.02028v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.00238">arXiv:2011.00238</a> <span> [<a href="https://arxiv.org/pdf/2011.00238">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Robust control design for multi-input multi-output plasma shape control on EAST tokamak using H_infinity synthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+L">Lei Liu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bingjia Xiao</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yong Guo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuehang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.00238v1-abstract-short" style="display: inline;"> Accurate plasma shape control is the basis of tokamak plasma experiments and physical research. Modeling of the linearized control response of plasma shape and position has been widely used for shape controller design in the last several years. But it usually contains much of the uncertainty, such as structured uncertainties and unmodeled dynamics. EAST tokamak plasma shape controller design is al… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00238v1-abstract-full').style.display = 'inline'; document.getElementById('2011.00238v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.00238v1-abstract-full" style="display: none;"> Accurate plasma shape control is the basis of tokamak plasma experiments and physical research. Modeling of the linearized control response of plasma shape and position has been widely used for shape controller design in the last several years. But it usually contains much of the uncertainty, such as structured uncertainties and unmodeled dynamics. EAST tokamak plasma shape controller design is also based on a linear rigid plasma response model which integrated within a Matlab-based toolset known as TokSys. Meanwhile the PID control approach is currently used for EAST plasma shape control. This leads to strong coupling between different parameters describing the plasma shape. To handle these problems, a H_infinity robust control scheme for EAST multi-input multi-output (MIMO) shape control has been proposed. First, the plasma response is modeled as the linearized rigid RZIp model. Then, the controller design technique is introduced with two main stages: 1) loop shaping is used to shape the nominal plant singular values to give desired open-loop properties at frequencies of high and low loop gain; 2) a normalized coprime factorization and H_infinity technique is used to decouple the most relevant control channels and minimize the tracking errors. Finally, the simulation results show that the H_infinity robust controller combines good robust stability margins, speed of response, dynamic tracking characteristics, and closed-loop decoupling for EAST plasma shape control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00238v1-abstract-full').style.display = 'none'; document.getElementById('2011.00238v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages,8 figures,2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.12891">arXiv:2008.12891</a> <span> [<a href="https://arxiv.org/pdf/2008.12891">pdf</a>, <a href="https://arxiv.org/format/2008.12891">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/fld.5162">10.1002/fld.5162 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Matter flow method for alleviating checkerboard oscillations in triangular mesh SGH Lagrangian simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+L">Li Zhao</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bo Xiao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+G">Ganghua Wang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+H">Haibo Zhao</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+J">Jinsong Bai</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+C">Chunsheng Feng</a>, <a href="/search/physics?searchtype=author&query=Shu%2C+S">Shi Shu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.12891v1-abstract-short" style="display: inline;"> When the SGH Lagrangian based on triangle mesh is used to simulate compressible hydrodynamics, because of the stiffness of triangular mesh, the problem of physical quantity cell-to-cell spatial oscillation (also called "checkerboard oscillation") is easy to occur. A matter flow method is proposed to alleviate the oscillation of physical quantities caused by triangular stiffness. The basic idea of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12891v1-abstract-full').style.display = 'inline'; document.getElementById('2008.12891v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.12891v1-abstract-full" style="display: none;"> When the SGH Lagrangian based on triangle mesh is used to simulate compressible hydrodynamics, because of the stiffness of triangular mesh, the problem of physical quantity cell-to-cell spatial oscillation (also called "checkerboard oscillation") is easy to occur. A matter flow method is proposed to alleviate the oscillation of physical quantities caused by triangular stiffness. The basic idea of this method is to attribute the stiffness of triangle to the fact that the edges of triangle mesh can not do bending motion, and to compensate the effect of triangle edge bending motion by means of matter flow. Three effects are considered in our matter flow method: (1) transport of the mass, momentum and energy carried by the moving matter; (2) the work done on the element, since the flow of matter changes the specific volume of the grid element; (3) the effect of matter flow on the strain rate in the element. Numerical experiments show that the proposed matter flow method can effectively alleviate the spatial oscillation of physical quantities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12891v1-abstract-full').style.display = 'none'; document.getElementById('2008.12891v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 23 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal for Numerical Methods in Fluids, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.11462">arXiv:2004.11462</a> <span> [<a href="https://arxiv.org/pdf/2004.11462">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Study of the anomalous skin effect of normal conducting film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Binping Xiao</a>, <a href="/search/physics?searchtype=author&query=Blaskiewicz%2C+M">M. Blaskiewicz</a>, <a href="/search/physics?searchtype=author&query=Xin%2C+T">T. Xin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.11462v1-abstract-short" style="display: inline;"> For the radiofrequency (RF) applications of normal conducting film with large mean free path at high frequency and low temperature, the anomalous skin effect differs considerably from the normal skin effect with field decaying exponentially in the film. Starting from the relationship between the current and the electric field (E field) in the film, the amplitude of E field along the film depth is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11462v1-abstract-full').style.display = 'inline'; document.getElementById('2004.11462v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.11462v1-abstract-full" style="display: none;"> For the radiofrequency (RF) applications of normal conducting film with large mean free path at high frequency and low temperature, the anomalous skin effect differs considerably from the normal skin effect with field decaying exponentially in the film. Starting from the relationship between the current and the electric field (E field) in the film, the amplitude of E field along the film depth is calculated, and is found to be non-monotonic. The surface impedance is found to have a minimum value at certain film thickness. We apply this calculation into a Cu coated S.S. beam pipe used in an accelerator to reduce the ohmic power loss to determine the minimum thickness that should be applied. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11462v1-abstract-full').style.display = 'none'; document.getElementById('2004.11462v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.00805">arXiv:2004.00805</a> <span> [<a href="https://arxiv.org/pdf/2004.00805">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.064032">10.1103/PhysRevApplied.15.064032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental realization of topological on-chip acoustic tweezers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dai%2C+H">Hongqing Dai</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Linbo Liu</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+B">Baizhan Xia</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+D">Dejie Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.00805v1-abstract-short" style="display: inline;"> Acoustic tweezers are gaining increasing attention due to their excellent biological compatibility. Recently, the concept of topology has been expanded from condensed matter physics into acoustics, giving rise to a robust wave manipulation against defects and sharp turns. So far, topological acoustics have not been experimentally realized in on-chip level which can be worked as tweezers for microp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00805v1-abstract-full').style.display = 'inline'; document.getElementById('2004.00805v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.00805v1-abstract-full" style="display: none;"> Acoustic tweezers are gaining increasing attention due to their excellent biological compatibility. Recently, the concept of topology has been expanded from condensed matter physics into acoustics, giving rise to a robust wave manipulation against defects and sharp turns. So far, topological acoustics have not been experimentally realized in on-chip level which can be worked as tweezers for microparticle manipulations. Here, we achieved a topological on-chip acoustic tweezer based on the topologically protected phononic mode. This tweezer consisted of one-dimensional arrays of Helmholtz resonant air cavities. Strong microfluidic oscillations induced by acoustic waves were experimentally observed at water-air surfaces of Helmholtz resonant air cavities at the topological interface. Acoustic radiation force induced by these microfluidic oscillations captured microparticles whose sizes were up to 20 um and made them do orbital rotations. Our topological on-chip acoustic tweezer realized non-contact label-free microparticle manipulations in microfluidics and exhibited enormous application potential in the biomedical field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00805v1-abstract-full').style.display = 'none'; document.getElementById('2004.00805v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 064032 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.05920">arXiv:2003.05920</a> <span> [<a href="https://arxiv.org/pdf/2003.05920">pdf</a>, <a href="https://arxiv.org/format/2003.05920">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.244801">10.1103/PhysRevLett.124.244801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High brightness CW electron beams from Superconducting RF photoemission gun </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Petrushina%2C+I">I. Petrushina</a>, <a href="/search/physics?searchtype=author&query=Litvinenko%2C+V+N">V. N. Litvinenko</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+Y">Y. Jing</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J">J. Ma</a>, <a href="/search/physics?searchtype=author&query=Pinayev%2C+I">I. Pinayev</a>, <a href="/search/physics?searchtype=author&query=Shih%2C+K">K. Shih</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+G">G. Wang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y+H">Y. H. Wu</a>, <a href="/search/physics?searchtype=author&query=Brutus%2C+J+C">J. C. Brutus</a>, <a href="/search/physics?searchtype=author&query=Altinbas%2C+Z">Z. Altinbas</a>, <a href="/search/physics?searchtype=author&query=Di+Lieto%2C+A">A. Di Lieto</a>, <a href="/search/physics?searchtype=author&query=Inacker%2C+P">P. Inacker</a>, <a href="/search/physics?searchtype=author&query=Jamilkowski%2C+J">J. Jamilkowski</a>, <a href="/search/physics?searchtype=author&query=Mahler%2C+G">G. Mahler</a>, <a href="/search/physics?searchtype=author&query=Mapes%2C+M">M. Mapes</a>, <a href="/search/physics?searchtype=author&query=Miller%2C+T">T. Miller</a>, <a href="/search/physics?searchtype=author&query=Narayan%2C+G">G. Narayan</a>, <a href="/search/physics?searchtype=author&query=Paniccia%2C+M">M. Paniccia</a>, <a href="/search/physics?searchtype=author&query=Roser%2C+T">T. Roser</a>, <a href="/search/physics?searchtype=author&query=Severino%2C+F">F. Severino</a>, <a href="/search/physics?searchtype=author&query=Skaritka%2C+J">J. Skaritka</a>, <a href="/search/physics?searchtype=author&query=Smart%2C+L">L. Smart</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+K">K. Smith</a>, <a href="/search/physics?searchtype=author&query=Soria%2C+V">V. Soria</a>, <a href="/search/physics?searchtype=author&query=Than%2C+Y">Y. Than</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.05920v2-abstract-short" style="display: inline;"> CW photoinjectors operating at high accelerating gradients promise to revolutionize many areas of science and applications. They can establish the basis for a new generation of monochromatic X-ray free electron lasers, high brightness hadron beams, or a new generation of microchip production. In this letter we report on the record-performing superconducting RF electron gun with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.05920v2-abstract-full').style.display = 'inline'; document.getElementById('2003.05920v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.05920v2-abstract-full" style="display: none;"> CW photoinjectors operating at high accelerating gradients promise to revolutionize many areas of science and applications. They can establish the basis for a new generation of monochromatic X-ray free electron lasers, high brightness hadron beams, or a new generation of microchip production. In this letter we report on the record-performing superconducting RF electron gun with $\textrm{CsK}_{2}\textrm{Sb}$ photocathode. The gun is generating high charge electron bunches (up to 10 nC/bunch) and low transverse emittances, while operating for months with a single photocathode. This achievement opens a new era in generating high-power beams with a very high average brightness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.05920v2-abstract-full').style.display = 'none'; document.getElementById('2003.05920v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 244801 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.06155">arXiv:2002.06155</a> <span> [<a href="https://arxiv.org/pdf/2002.06155">pdf</a>, <a href="https://arxiv.org/format/2002.06155">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> U.S. Test System with High Spatial and Temporal Resolution for Renewable Integration Studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yixing Xu</a>, <a href="/search/physics?searchtype=author&query=Myhrvold%2C+N">Nathan Myhrvold</a>, <a href="/search/physics?searchtype=author&query=Sivam%2C+D">Dhileep Sivam</a>, <a href="/search/physics?searchtype=author&query=Mueller%2C+K">Kaspar Mueller</a>, <a href="/search/physics?searchtype=author&query=Olsen%2C+D+J">Daniel J. Olsen</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+B">Bainan Xia</a>, <a href="/search/physics?searchtype=author&query=Livengood%2C+D">Daniel Livengood</a>, <a href="/search/physics?searchtype=author&query=Hunt%2C+V">Victoria Hunt</a>, <a href="/search/physics?searchtype=author&query=d%27Orfeuil%2C+B+R">Benjamin Rouill茅 d'Orfeuil</a>, <a href="/search/physics?searchtype=author&query=Muldrew%2C+D">Daniel Muldrew</a>, <a href="/search/physics?searchtype=author&query=Ondreicka%2C+M">Merrielle Ondreicka</a>, <a href="/search/physics?searchtype=author&query=Bettilyon%2C+M">Megan Bettilyon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.06155v1-abstract-short" style="display: inline;"> Planning for power systems with high penetrations of variable renewable energy requires higher spatial and temporal granularity. However, most publicly available test systems are of insufficient fidelity for developing methods and tools for high-resolution planning. This paper presents methods to construct open-access test systems of high spatial resolution to more accurately represent infrastruct… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06155v1-abstract-full').style.display = 'inline'; document.getElementById('2002.06155v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.06155v1-abstract-full" style="display: none;"> Planning for power systems with high penetrations of variable renewable energy requires higher spatial and temporal granularity. However, most publicly available test systems are of insufficient fidelity for developing methods and tools for high-resolution planning. This paper presents methods to construct open-access test systems of high spatial resolution to more accurately represent infrastructure and high temporal resolution to represent dynamics of demand and variable resources. To demonstrate, a high-resolution test system representing the United States is created using only publicly available data. This test system is validated by running it in a production cost model, with results compared against historical generation to ensure that they are representative. The resulting open source test system can support power system transition planning and aid in development of tools to answer questions around how best to reach decarbonization goals, using the most effective combinations of transmission expansion, renewable generation, and energy storage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06155v1-abstract-full').style.display = 'none'; document.getElementById('2002.06155v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for presentation at the 2020 IEEE Power and Energy Society General Meeting in Montreal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.12788">arXiv:1912.12788</a> <span> [<a href="https://arxiv.org/pdf/1912.12788">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JIOT.2021.3082535">10.1109/JIOT.2021.3082535 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design of Small Multi-band Full-screen Smartwatch Antenna for IoT applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bing Xiao</a>, <a href="/search/physics?searchtype=author&query=Wong%2C+H">Hang Wong</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+D">Di Wu</a>, <a href="/search/physics?searchtype=author&query=Yeung%2C+K+L">Kwan L. Yeung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.12788v2-abstract-short" style="display: inline;"> Smartwatch is a potential candidate for the Internet of Things (IoT) hub. However, the performance of smartwatch antennas is severely restricted by the smartwatch structure, especially when the antennas are designed by traditional methods. For adapting smartwatches to the role of IoT hub, a novel method of designing multi-band smartwatch antenna is presented in this paper, aiming at increasing the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12788v2-abstract-full').style.display = 'inline'; document.getElementById('1912.12788v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.12788v2-abstract-full" style="display: none;"> Smartwatch is a potential candidate for the Internet of Things (IoT) hub. However, the performance of smartwatch antennas is severely restricted by the smartwatch structure, especially when the antennas are designed by traditional methods. For adapting smartwatches to the role of IoT hub, a novel method of designing multi-band smartwatch antenna is presented in this paper, aiming at increasing the number of frequency bands, omni-directivity, and structural suitability. Firstly, the fundamental structure (including the full screen and the system PCB) of the smartwatch is analyzed as a whole by characteristic mode analysis (CMA). Thus, abundant resources of characteristic modes are introduced. The fundamental structure is then modified as the radiator of a multi-band antenna. Then, a non-radiating capacitive coupling element (CCE) excites the desired four 0.5-wavelength modes from this structure. This method could fully utilize the intrinsic modes of the smartwatch structure itself, thus exhibits multiple advantages: significantly small size, smaller ground, omni-directional radiation, and fitting to the full-screen smartwatch structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12788v2-abstract-full').style.display = 'none'; document.getElementById('1912.12788v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.08736">arXiv:1912.08736</a> <span> [<a href="https://arxiv.org/pdf/1912.08736">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.104113">10.1103/PhysRevB.102.104113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional higher-order topological acoustic system with multidimensional topological states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xia%2C+B">Baizhan Xia</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+S">Shengjie Zheng</a>, <a href="/search/physics?searchtype=author&query=Tong%2C+L">Liang Tong</a>, <a href="/search/physics?searchtype=author&query=Jiao%2C+J">Junrui Jiao</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+G">Guiju Duan</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+D">Dejie Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.08736v1-abstract-short" style="display: inline;"> Topologically protected gapless edge/surface states are phases of quantum matter which behave as massless Dirac fermions, immunizing against disorders and continuous perturbations. Recently, a new class of topological insulators (TIs) with gapped edge states and in-gap corner states have been theoretically predicted in electric systems 1,2, and experimentally realized in two-dimensional (2D) mecha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08736v1-abstract-full').style.display = 'inline'; document.getElementById('1912.08736v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.08736v1-abstract-full" style="display: none;"> Topologically protected gapless edge/surface states are phases of quantum matter which behave as massless Dirac fermions, immunizing against disorders and continuous perturbations. Recently, a new class of topological insulators (TIs) with gapped edge states and in-gap corner states have been theoretically predicted in electric systems 1,2, and experimentally realized in two-dimensional (2D) mechanical and electromagnetic systems 3,4, electrical circuits 5, optical and sonic crystals 6-11, and elastic phononic plates 12. Here, we elaborately design a strong three-dimensional (3D) topological acoustic system, by arranging acoustic meta-atoms in a simple cubic lattice. Under the direct field measurements, besides of the 2D surface propagations on all of the six surfaces, the 1D hinge propagations behaving as robust acoustic fibers along the twelve hinges and the 0D corner modes working as robust localized resonances at the eight corners are experimentally confirmed. As these multidimensional topological states are activated in different frequencies and independent spaces, our works pave feasible ways for applications in the topological acoustic cavities, communications and signal-processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08736v1-abstract-full').style.display = 'none'; document.getElementById('1912.08736v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages,6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 104113 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.03827">arXiv:1909.03827</a> <span> [<a href="https://arxiv.org/pdf/1909.03827">pdf</a>, <a href="https://arxiv.org/format/1909.03827">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.101.022201">10.1103/PhysRevE.101.022201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wave scattering properties of multiple weakly-coupled complex systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+S">Shukai Ma</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bo Xiao</a>, <a href="/search/physics?searchtype=author&query=Drikas%2C+Z">Zachary Drikas</a>, <a href="/search/physics?searchtype=author&query=Addissie%2C+B">Bisrat Addissie</a>, <a href="/search/physics?searchtype=author&query=Hong%2C+R">Ronald Hong</a>, <a href="/search/physics?searchtype=author&query=Antonsen%2C+T+M">Thomas M. Antonsen</a>, <a href="/search/physics?searchtype=author&query=Ott%2C+E">Edward Ott</a>, <a href="/search/physics?searchtype=author&query=Anlage%2C+S+M">Steven M. Anlage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.03827v1-abstract-short" style="display: inline;"> The statistics of scattering of waves inside single ray-chaotic enclosures have been successfully described by the Random Coupling Model (RCM). We expand the RCM to systems consisting of multiple complex ray-chaotic enclosures with variable coupling scenarios. The statistical properties of the model-generated quantities are tested against measured data of electrically large multi-cavity systems of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.03827v1-abstract-full').style.display = 'inline'; document.getElementById('1909.03827v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.03827v1-abstract-full" style="display: none;"> The statistics of scattering of waves inside single ray-chaotic enclosures have been successfully described by the Random Coupling Model (RCM). We expand the RCM to systems consisting of multiple complex ray-chaotic enclosures with variable coupling scenarios. The statistical properties of the model-generated quantities are tested against measured data of electrically large multi-cavity systems of various designs. The statistics of model-generated trans-impedance and induced voltages on a load impedance agree well with the experimental results. The RCM coupled chaotic enclosure model is general and can be applied to other physical systems including coupled quantum dots, disordered nanowires, and short-wavelength electromagnetic propagation through rooms in buildings, aircraft and ships. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.03827v1-abstract-full').style.display = 'none'; document.getElementById('1909.03827v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 101, 022201 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.03476">arXiv:1908.03476</a> <span> [<a href="https://arxiv.org/pdf/1908.03476">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Pseudospin-valley-coupled phononic topological insulator with edge and corner states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fan%2C+H">Haiyan Fan</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+B">Baizhan Xia</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+S">Shengjie Zheng</a>, <a href="/search/physics?searchtype=author&query=Tong%2C+L">Liang Tong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.03476v1-abstract-short" style="display: inline;"> Topologically protected gapless edge states are phases of quantum matter which behave as massless Dirac fermions, immunizing against disorders and continuous perturbations. Recently, a new class of topological insulators (TIs) with topological corner states have been theoretically predicted in electric systems, and experimentally realized in two-dimensional (2D) mechanical and electromagnetic syst… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03476v1-abstract-full').style.display = 'inline'; document.getElementById('1908.03476v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.03476v1-abstract-full" style="display: none;"> Topologically protected gapless edge states are phases of quantum matter which behave as massless Dirac fermions, immunizing against disorders and continuous perturbations. Recently, a new class of topological insulators (TIs) with topological corner states have been theoretically predicted in electric systems, and experimentally realized in two-dimensional (2D) mechanical and electromagnetic systems, electrical circuits, optical and sonic crystals, and elastic phononic plates. Here, we demonstrate a pseudospin-valley-coupled phononic TI, which simultaneously exhibits gapped edge states and topological corner states. Pseudospin-orbit coupling edge states and valley-polarized edge state are respectively induced by the lattice deformation and the symmetry breaking. When both of them coexist, these topological edge states will be greatly gapped and the topological corner state emerges. Under direct field measurements, the robust edge propagation behaving as an elastic waveguide and the topological corner mode working as a robust localized resonance are experimentally confirmed. The pseudospin-valley coupling in our phononic TIs can be well-controlled which provides a reconfigurable platform for the multiple edge and corner states, and exhibits well applications in the topological elastic energy recovery and the highly sensitive sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03476v1-abstract-full').style.display = 'none'; document.getElementById('1908.03476v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00537">arXiv:1903.00537</a> <span> [<a href="https://arxiv.org/pdf/1903.00537">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.22.050101">10.1103/PhysRevAccelBeams.22.050101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher order mode damper for low energy RHIC electron cooler SRF booster cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Binping Xiao</a>, <a href="/search/physics?searchtype=author&query=Fedotov%2C+A">A. Fedotov</a>, <a href="/search/physics?searchtype=author&query=Hahn%2C+H">H. Hahn</a>, <a href="/search/physics?searchtype=author&query=Holmes%2C+D">D. Holmes</a>, <a href="/search/physics?searchtype=author&query=McIntyre%2C+G">G. McIntyre</a>, <a href="/search/physics?searchtype=author&query=Pai%2C+C">C. Pai</a>, <a href="/search/physics?searchtype=author&query=Seberg%2C+S">S. Seberg</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+K">K. Smith</a>, <a href="/search/physics?searchtype=author&query=Than%2C+R">R. Than</a>, <a href="/search/physics?searchtype=author&query=Thieberger%2C+P">P. Thieberger</a>, <a href="/search/physics?searchtype=author&query=Tuozzolo%2C+J">J. Tuozzolo</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Q">Q. Wu</a>, <a href="/search/physics?searchtype=author&query=Xin%2C+T">T. Xin</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+W">Wencan Xu</a>, <a href="/search/physics?searchtype=author&query=Zaltsman%2C+A">A. Zaltsman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00537v1-abstract-short" style="display: inline;"> To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under commissioning at BNL. The Linac of LEReC is designed to deliver a 1.6 MeV to 2.6 MeV electron beam, with rms dp/p less than 5e-4. A 704 MHz superconducting radio frequency (SRF) booster cavity in this Linac provides up to 2.2 MeV accelerating voltage. With suc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00537v1-abstract-full').style.display = 'inline'; document.getElementById('1903.00537v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00537v1-abstract-full" style="display: none;"> To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under commissioning at BNL. The Linac of LEReC is designed to deliver a 1.6 MeV to 2.6 MeV electron beam, with rms dp/p less than 5e-4. A 704 MHz superconducting radio frequency (SRF) booster cavity in this Linac provides up to 2.2 MeV accelerating voltage. With such a low energy and very demanding energy spread requirement, control of Higher Order Modes (HOMs) in the cavities becomes critical and needs to be carefully evaluated to ensure minimum impact on the beam. In this paper, we report the multiphysics design of the HOM damper for this cavity to meet the energy spread requirement, as well as experimental results of the cavity with and without the HOM damper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00537v1-abstract-full').style.display = 'none'; document.getElementById('1903.00537v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Accel. Beams 22, 050101 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.04412">arXiv:1811.04412</a> <span> [<a href="https://arxiv.org/pdf/1811.04412">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.204301">10.1103/PhysRevLett.122.204301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elastic higher-order topological insulator with topologically protected corner states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fan%2C+H">Haiyan Fan</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+B">Baizhan Xia</a>, <a href="/search/physics?searchtype=author&query=Tong%2C+L">Liang Tong</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+S">Shengjie Zheng</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+D">Dejie Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.04412v1-abstract-short" style="display: inline;"> Topologically gapless edge states, characterized by topological invariants and Berry's phases of bulk energy bands, provide amazing techniques to robustly control the reflectionless propagation of electrons, photons and phonons. Recently, a new family of topological phases, dictated by the bulk polarization, has been observed, leading to the discovery of the higher-order topological insulators (HO… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04412v1-abstract-full').style.display = 'inline'; document.getElementById('1811.04412v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.04412v1-abstract-full" style="display: none;"> Topologically gapless edge states, characterized by topological invariants and Berry's phases of bulk energy bands, provide amazing techniques to robustly control the reflectionless propagation of electrons, photons and phonons. Recently, a new family of topological phases, dictated by the bulk polarization, has been observed, leading to the discovery of the higher-order topological insulators (HOTIs). So far, the HOTIs are only demonstrated in discrete mechanical and electromagnetic systems and electrical circuits with the quantized quadrupole polarization. Here, we realize the higher-order topological states in a two-dimensional (2D) continuous elastic system whose energy bands can be well described. We experimentally observe the gapped one-dimensional (1D) edge states, the trivially gapped zero-dimensional (0D) corner states and the topologically protected 0D corner states. Compared with the trivial corner modes, the topological ones, immunizing against defects, are robustly localized at the obtuse-angled but not the acute-angled corners. The topological shape-dependent corner states open a new route for the design of the topologically-protected but reconfigurable 0D local eigenmodes and provide an excellent platform for the topological transformation of elastic energy among 2D bulk, 1D edge and 0D corner modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04412v1-abstract-full').style.display = 'none'; document.getElementById('1811.04412v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages,5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 204301 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.03773">arXiv:1807.03773</a> <span> [<a href="https://arxiv.org/pdf/1807.03773">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> EAST Real-Time VOD System Based on MDSplus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xia%2C+J+Y">J. Y. Xia</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B+J">B. J. Xiao</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+F">Fei Yang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Dan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.03773v1-abstract-short" style="display: inline;"> As with EAST (Experimental Advanced Superconducting Tokamak) experimental data analyzed by more and more collaborators, the experimental videos which directly reflect the real status of vacuum attract more and more researchers' attention. The real time VOD (Video On Demand) system based on MDSplus allows users reading the video frames in real time as same as the signal data which is also stored in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03773v1-abstract-full').style.display = 'inline'; document.getElementById('1807.03773v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.03773v1-abstract-full" style="display: none;"> As with EAST (Experimental Advanced Superconducting Tokamak) experimental data analyzed by more and more collaborators, the experimental videos which directly reflect the real status of vacuum attract more and more researchers' attention. The real time VOD (Video On Demand) system based on MDSplus allows users reading the video frames in real time as same as the signal data which is also stored in the MDSplus database. User can display the plasma discharge videos and analyze videos frame by frame through jScope or our VOD web station. The system mainly includes the frames storing and frames displaying. The frames storing application accepts shot information by using socket TCP communication firstly, then reads video frames through disk mapping, finally stores them into MDSplus. The displaying process is implemented through B/S (Browser/Server) framework, it uses PHP and JavaScript to realize VOD function and read frames information from MDSplus. The system offers a unit way to access and backup experimental data and video during the EAST experiment, which is of great benefit to EAST experimenter than the formal VOD system in VOD function and real time performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03773v1-abstract-full').style.display = 'none'; document.getElementById('1807.03773v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21st IEEE Real Time Conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.10663">arXiv:1806.10663</a> <span> [<a href="https://arxiv.org/pdf/1806.10663">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TNS.2019.2903792">10.1109/TNS.2019.2903792 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Design of Data Acquisition System for EAST Technical Diagnostic System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shi Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Huazhong Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yong Wang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bingjia Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.10663v1-abstract-short" style="display: inline;"> EAST (Experimental Advanced Superconducting Tokamak) Technical Diagnostic System (TDS) is used to monitor the outlet temperature of all superconducting coils, in case of temperature anomaly, it will trigger safety interlock system to meet EAST device safety. The data acquisition system of TDS is in charge of continuous data acquisition of the nitrogen and helium temperature signals, TDS security a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.10663v1-abstract-full').style.display = 'inline'; document.getElementById('1806.10663v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.10663v1-abstract-full" style="display: none;"> EAST (Experimental Advanced Superconducting Tokamak) Technical Diagnostic System (TDS) is used to monitor the outlet temperature of all superconducting coils, in case of temperature anomaly, it will trigger safety interlock system to meet EAST device safety. The data acquisition system of TDS is in charge of continuous data acquisition of the nitrogen and helium temperature signals, TDS security alarm and long-term data storage. It supports continuous data acquisition and pulse data acquisition. The data acquisition of the nitrogen temperature signals is based on the PXI technology while obtaining the helium temperature signals from Lake Shore model 224 temperature monitors with VISA standard. After data conversion, all the data will be stored in MySQL and MDSPlus for long-term storage. It should output TDS fault signal and status signal to trigger the safety interlock system to take actions after threshold evaluation of key temperature signals. It publishes part of real-time TDS data to the cryogenic system and provides an information inquiry service to the TDS administrator. The system has been used in 2018 EAST campaign. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.10663v1-abstract-full').style.display = 'none'; document.getElementById('1806.10663v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures, 21st IEEE Real Time Conference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 495 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.08123">arXiv:1805.08123</a> <span> [<a href="https://arxiv.org/pdf/1805.08123">pdf</a>, <a href="https://arxiv.org/format/1805.08123">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.21.082002">10.1103/PhysRevAccelBeams.21.082002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Verd%C3%BA-Andr%C3%A9s%2C+S">S. Verd煤-Andr茅s</a>, <a href="/search/physics?searchtype=author&query=Artoos%2C+K">K. Artoos</a>, <a href="/search/physics?searchtype=author&query=Belomestnykh%2C+S">S. Belomestnykh</a>, <a href="/search/physics?searchtype=author&query=Ben-Zvi%2C+I">I. Ben-Zvi</a>, <a href="/search/physics?searchtype=author&query=Boulware%2C+C">C. Boulware</a>, <a href="/search/physics?searchtype=author&query=Burt%2C+G">G. Burt</a>, <a href="/search/physics?searchtype=author&query=Calaga%2C+R">R. Calaga</a>, <a href="/search/physics?searchtype=author&query=Capatina%2C+O">O. Capatina</a>, <a href="/search/physics?searchtype=author&query=Carra%2C+F">F. Carra</a>, <a href="/search/physics?searchtype=author&query=Castilla%2C+A">A. Castilla</a>, <a href="/search/physics?searchtype=author&query=Clemens%2C+W">W. Clemens</a>, <a href="/search/physics?searchtype=author&query=Grimm%2C+T">T. Grimm</a>, <a href="/search/physics?searchtype=author&query=Kuder%2C+N">N. Kuder</a>, <a href="/search/physics?searchtype=author&query=Leuxe%2C+R">R. Leuxe</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Z. Li</a>, <a href="/search/physics?searchtype=author&query=McEwen%2C+E+A">E. A. McEwen</a>, <a href="/search/physics?searchtype=author&query=Park%2C+H">H. Park</a>, <a href="/search/physics?searchtype=author&query=Powers%2C+T">T. Powers</a>, <a href="/search/physics?searchtype=author&query=Ratti%2C+A">A. Ratti</a>, <a href="/search/physics?searchtype=author&query=Shipman%2C+N">N. Shipman</a>, <a href="/search/physics?searchtype=author&query=Skaritka%2C+J">J. Skaritka</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Q">Q. Wu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B+P">B. P. Xiao</a>, <a href="/search/physics?searchtype=author&query=Yancey%2C+J">J. Yancey</a>, <a href="/search/physics?searchtype=author&query=Zanoni%2C+C">C. Zanoni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.08123v1-abstract-short" style="display: inline;"> Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting RF cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.08123v1-abstract-full').style.display = 'inline'; document.getElementById('1805.08123v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.08123v1-abstract-full" style="display: none;"> Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting RF cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A Proof-of-Principle (PoP) DQW cavity was limited by quench at 4.6 MV. This paper describes a new, highly optimized cavity, designated DQW SPS-series, which satisfies dimensional, cryogenic, manufacturing and impedance requirements for beam tests at SPS and operation in LHC. Two prototypes of this DQW SPS-series were fabricated by US industry and cold tested after following conventional SRF surface treatment. Both units outperformed the PoP cavity, reaching a deflecting voltage of 5.3-5.9 MV. This voltage - the highest reached by a DQW cavity - is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0MVwith sufficient margin. This paper covers fabrication, surface preparation and cryogenic RF test results and implications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.08123v1-abstract-full').style.display = 'none'; document.getElementById('1805.08123v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Accel. Beams 21, 082002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.02007">arXiv:1804.02007</a> <span> [<a href="https://arxiv.org/pdf/1804.02007">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.22.030101">10.1103/PhysRevAccelBeams.22.030101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and test of 704 MHz and 2.1 GHz normal conducting cavities for Low Energy RHIC electron Cooler </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Binping Xiao</a>, <a href="/search/physics?searchtype=author&query=Belomestnykh%2C+S">S. Belomestnykh</a>, <a href="/search/physics?searchtype=author&query=Brennan%2C+J+M">J. M. Brennan</a>, <a href="/search/physics?searchtype=author&query=Brutus%2C+J+C">J. C. Brutus</a>, <a href="/search/physics?searchtype=author&query=McIntyre%2C+G">G. McIntyre</a>, <a href="/search/physics?searchtype=author&query=Mernick%2C+K">K. Mernick</a>, <a href="/search/physics?searchtype=author&query=Pai%2C+C">C. Pai</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+K">K. Smith</a>, <a href="/search/physics?searchtype=author&query=Xin%2C+T">T. Xin</a>, <a href="/search/physics?searchtype=author&query=Zaltsman%2C+A">A. Zaltsman</a>, <a href="/search/physics?searchtype=author&query=Veshcherevich%2C+V">V. Veshcherevich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.02007v1-abstract-short" style="display: inline;"> The Low Energy RHIC electron Cooler (LEReC) is currently under commissioning at BNL to improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon. The linac of LEReC consists of a DC photoemission gun, one 704 MHz superconducting radio frequency (SRF) booster cavity, and three normal conducting cavities. It is designed to deliver a 1.6 MeV to 2.6 MeV electron beam, with peak-to-peak… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02007v1-abstract-full').style.display = 'inline'; document.getElementById('1804.02007v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.02007v1-abstract-full" style="display: none;"> The Low Energy RHIC electron Cooler (LEReC) is currently under commissioning at BNL to improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon. The linac of LEReC consists of a DC photoemission gun, one 704 MHz superconducting radio frequency (SRF) booster cavity, and three normal conducting cavities. It is designed to deliver a 1.6 MeV to 2.6 MeV electron beam, with peak-to-peak momentum spread dp/p of less than 7e4. Two of the three normal conducting cavities will be used in LEReC for energy spread correction. A single-cell 704 MHz cavity for energy de-chirping and a three-cell 2.1 GHz third harmonic cavity for RF curvature correction. In this paper, we present the designs and RF test results of these two cavities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02007v1-abstract-full').style.display = 'none'; document.getElementById('1804.02007v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Accel. Beams 22, 030101 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.10167">arXiv:1802.10167</a> <span> [<a href="https://arxiv.org/pdf/1802.10167">pdf</a>, <a href="https://arxiv.org/format/1802.10167">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.97.062220">10.1103/PhysRevE.97.062220 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uncovering Universal Wave Fluctuations In a Scaled Ray-Chaotic Cavity With Remote Injection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bo Xiao</a>, <a href="/search/physics?searchtype=author&query=Antonsen%2C+T+M">Thomas M. Antonsen</a>, <a href="/search/physics?searchtype=author&query=Ott%2C+E">Edward Ott</a>, <a href="/search/physics?searchtype=author&query=Drikas%2C+Z+B">Zachary B. Drikas</a>, <a href="/search/physics?searchtype=author&query=Gil%2C+J+G">Jesus Gil Gil</a>, <a href="/search/physics?searchtype=author&query=Anlage%2C+S+M">Steven M. Anlage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.10167v1-abstract-short" style="display: inline;"> The Random Coupling Model (RCM), introduced by Zheng, Antonsen and Ott, predicts the statistical properties of waves inside a ray-chaotic enclosure in the semi-classical regime by using Random Matrix Theory, combined with system-specific information. Experiments on single cavities are in general agreement with the predictions of the RCM. It is now desired to test the RCM on more complex structures… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.10167v1-abstract-full').style.display = 'inline'; document.getElementById('1802.10167v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.10167v1-abstract-full" style="display: none;"> The Random Coupling Model (RCM), introduced by Zheng, Antonsen and Ott, predicts the statistical properties of waves inside a ray-chaotic enclosure in the semi-classical regime by using Random Matrix Theory, combined with system-specific information. Experiments on single cavities are in general agreement with the predictions of the RCM. It is now desired to test the RCM on more complex structures, such as a cascade or network of coupled cavities, that represent realistic situations, but which are difficult to test due to the large size of the structures of interest. This paper presents a novel experimental setup that replaces a cubic-meter-scale microwave cavity with a miniaturized cavity, scaled down by a factor of 20 in each dimension, operated at a frequency scaled up by a factor of 20 and having wall conductivity appropriately scaled up by a factor of 20. We demonstrate experimentally that the miniaturized cavity maintains the statistical wave properties of the larger cavity. This scaled setup opens the opportunity to study wave properties in large structures such as the floor of an office building, a ship, or an aircraft, in a controlled laboratory setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.10167v1-abstract-full').style.display = 'none'; document.getElementById('1802.10167v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 97, 062220 (2018) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xiao%2C+B&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xiao%2C+B&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xiao%2C+B&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>