CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 89 results for author: <span class="mathjax">Le, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Le%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Le, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Le%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Le, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Le%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Le%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Le%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11395">arXiv:2411.11395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11395">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tuneable large nonlinear charge transport driven by the quantum metric at room temperatures in TbMn6Sn6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weiyao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+K">Kaijian Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yufei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+M">Min Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Y">Yuefeng Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+K+D">Khoa Dang Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gayles%2C+J">Jacob Gayles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+F">Fang Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yong Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karel%2C+J">Julie Karel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11395v1-abstract-short" style="display: inline;"> Nonlinear electrodynamics in materials manifests as an electronic response that depends on second- or higher-order powers of the applied electromagnetic field. This response is highly dependent on the underlying crystal symmetries in the material and is typically smaller than the linear responses. Nonlinear responses are therefore usually employed to expose the symmetry breaking, geometric propert&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11395v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11395v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11395v1-abstract-full" style="display: none;"> Nonlinear electrodynamics in materials manifests as an electronic response that depends on second- or higher-order powers of the applied electromagnetic field. This response is highly dependent on the underlying crystal symmetries in the material and is typically smaller than the linear responses. Nonlinear responses are therefore usually employed to expose the symmetry breaking, geometric properties of the electronic band structure in materials. Naturally, a material system with a strong nonlinear response is also the key component in nonlinear devices. Here we report the strong room-temperature second-harmonic transport response in a quantum magnet,TbMn6Sn6, which is governed by the quantum metric and can be tuned with applied magnetic fields and temperature. We show that around room temperature, which is close to the spontaneous spin-reorientation transition, the magnetic configurations, and therefore the related symmetry breaking phases, are easily controlled. Our results pave the way from quantum materials to high performance tuneable nonlinear device applications at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11395v1-abstract-full').style.display = 'none'; document.getElementById('2411.11395v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09035">arXiv:2411.09035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09035">pdf</a>, <a href="https://arxiv.org/format/2411.09035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coherently Coupled Carrier and Phonon Dynamics in Elemental Tellurium Probed by Few-Femtosecond Core-Level Transient Absorption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Adelman%2C+J+R">Jonah R. Adelman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laurell%2C+H">Hugo Laurell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drescher%2C+L">Lorenz Drescher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+H+K+D">Han K. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+P">Peidong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leone%2C+S+R">Stephen R. Leone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09035v1-abstract-short" style="display: inline;"> The narrow bandgap semiconductor elemental tellurium (Te) has a unique electronic structure due to strong spin-orbit splitting and a lack of inversion symmetry of its helical lattice. Using broadband extreme ultraviolet core-level transient absorption, we measure simultaneously the coherently coupled photo-induced carrier and lattice dynamics at the Te N$_{4,5}$ edge initiated by a few-cycle NIR p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09035v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09035v1-abstract-full" style="display: none;"> The narrow bandgap semiconductor elemental tellurium (Te) has a unique electronic structure due to strong spin-orbit splitting and a lack of inversion symmetry of its helical lattice. Using broadband extreme ultraviolet core-level transient absorption, we measure simultaneously the coherently coupled photo-induced carrier and lattice dynamics at the Te N$_{4,5}$ edge initiated by a few-cycle NIR pulse. Ultrafast excitation of carriers leads to a coherently excited A$_{\rm{1g}}$ phonon oscillation and the generation of a hot carrier population distribution that oscillates in temperature, and the phonon excursion and hot carrier temperature are $蟺$ out of phase with respect to each other. The depths of modulation suggest a significant coupling between the electronic and lattice degrees of freedom in Te. A long-lived shift of the absorption edge suggests a metastable excited state of Te in a new equilibrium potential energy surface that lives on the order of the carrier recombination timescale. The observed phonon-induced oscillations of the hot carriers are supportive of a semiconductor-to-metal light-induced phase transition, whereby Te becomes more metallic with increasing phonon-induced displacement. Additionally, near the Fermi level we observe an energy-dependent phase of the displacive excitation of the A$_{\rm{1g}}$ phonon mode. The discovery of coherent coupling between the lattice and hot carriers in Te provides the basis to investigate coherent interactions between spin and orbital degrees of freedom. The results spectrally and temporally resolve the correlation between photo-excited hot carriers and coherent lattice excitations, providing insight on the optical manipulation of the tellurium electronic structure at high carrier densities exceeding $10^{21}\,\mathrm{cm}^{-3}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09035v1-abstract-full').style.display = 'none'; document.getElementById('2411.09035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.17417">arXiv:2408.17417</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.17417">pdf</a>, <a href="https://arxiv.org/ps/2408.17417">ps</a>, <a href="https://arxiv.org/format/2408.17417">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic and crystal electric field studies in the rare-earth-based square lattice antiferromagnet NdKNaNbO$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guchhait%2C+S">S. Guchhait</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Painganoor%2C+A">A. Painganoor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+S+S">S. S. Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sichelschmidt%2C+J">J. Sichelschmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+N+B">N. B. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nath%2C+R">R. Nath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.17417v1-abstract-short" style="display: inline;"> The interplay of magnetic correlations, crystal electric field interactions, and spin-orbit coupling in low-dimensional frustrated magnets fosters novel ground states with unusual excitations. Here, we report the magnetic properties and crystal electric field (CEF) scheme of a rare-earth-based square-lattice antiferromagnet NdKNaNbO$_5$ investigated via magnetization, specific heat, electron spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17417v1-abstract-full').style.display = 'inline'; document.getElementById('2408.17417v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.17417v1-abstract-full" style="display: none;"> The interplay of magnetic correlations, crystal electric field interactions, and spin-orbit coupling in low-dimensional frustrated magnets fosters novel ground states with unusual excitations. Here, we report the magnetic properties and crystal electric field (CEF) scheme of a rare-earth-based square-lattice antiferromagnet NdKNaNbO$_5$ investigated via magnetization, specific heat, electron spin resonance (ESR), and inelastic neutron scattering (INS) experiments. The low-temperature Curie-Weiss temperature $胃_{\rm CW} \simeq -0.6$ K implies net antiferromagnetic interactions between the Nd$^{3+}$ ions. Two broad maxima are observed in the low temperature specific heat data in magnetic fields, indicating multilevel Schottky anomalies due to the effect of CEF. No magnetic long-range-order is detected down to 0.4 K. The CEF excitations of Kramers&#39; ion Nd$^{3+}$ ($J=9/2$) probed via INS experiments evince dispersionless excitations characterizing the transitions among the CEF energy levels. The fit of the INS spectra enabled the mapping of the CEF Hamiltonian and the energy eigenvalues of the Kramers&#39; doublets. The simulation using the obtained CEF parameters reproduces the broad maxima in specific heat in zero-field as well as in different applied fields. The significant contribution from $J_z = \pm 1/2$ state to the wave function of the ground state doublet indicates the role of strong quantum fluctuations at low temperatures. The magnetic ground state is found to be a Kramers&#39; doublet with effective spin $J_{\rm eff} = 1/2$ at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17417v1-abstract-full').style.display = 'none'; document.getElementById('2408.17417v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13368">arXiv:2408.13368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13368">pdf</a>, <a href="https://arxiv.org/format/2408.13368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Phonon-assisted Casimir interactions between piezoelectric materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Dai-Nam Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez-Lopez%2C+P">Pablo Rodriguez-Lopez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+L+M">Lilia M. Woods</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13368v1-abstract-short" style="display: inline;"> The strong coupling between electromagnetic field and lattice oscillation in piezoelectric materials gives rise to phonon polariton excitations. Such quasiparticles open up new directions in modulating the ubiquitous Casimir force. Here by utilizing the generalized Born-Huang hydrodynamics model, three types of phonons in piezoelectrics are studied: longitudinal optical phonon, transverse optical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13368v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13368v1-abstract-full" style="display: none;"> The strong coupling between electromagnetic field and lattice oscillation in piezoelectric materials gives rise to phonon polariton excitations. Such quasiparticles open up new directions in modulating the ubiquitous Casimir force. Here by utilizing the generalized Born-Huang hydrodynamics model, three types of phonons in piezoelectrics are studied: longitudinal optical phonon, transverse optical phonon and phonon polariton. The phonon-electromagnetic coupling results in a complex set of Fresnel reflection matrices which prevents the utilization of the standard Lifshitz approach for calculating Casimir forces in the imaginary frequency domain. Our calculations are based on an approach within real frequency and finite temperatures, through which various regimes of the Casimir interaction are examined. Our study shows that piezoelectrics emerge as a set of materials where this ubiquitous force can be controlled via phonon properties for the first time. The Casimir interaction appears as a suitable means to distinguish between different types of surface phonon polaritons associated with different structural piezoelectric polytypes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13368v1-abstract-full').style.display = 'none'; document.getElementById('2408.13368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, supplementary information with 10 pages, 4 figures; submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17894">arXiv:2407.17894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17894">pdf</a>, <a href="https://arxiv.org/format/2407.17894">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic properties of a staggered $S=1$ chain with an alternating single-ion anisotropy direction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vaidya%2C+S">S. Vaidya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Curley%2C+S+P+M">S. P. M. Curley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stewart%2C+J+R">J. Ross Stewart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shiroka%2C+T">T. Shiroka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blundell%2C+S+J">S. J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wheeler%2C+K+A">K. A. Wheeler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manson%2C+Z+E">Z. E. Manson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manson%2C+J+L">J. L. Manson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singleton%2C+J">J. Singleton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goddard%2C+P+A">P. A. Goddard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17894v1-abstract-short" style="display: inline;"> Materials composed of spin-1 antiferromagnetic (AFM) chains are known to adopt complex ground states which are sensitive to the single-ion-anisotropy (SIA) energy ($D$), and intrachain ($J_{0}$) and interchain ($J&#39;_{i}$) exchange energy scales. While theoretical and experimental studies have extended this model to include various other energy scales, the effect of the lack of a common SIA axis is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17894v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17894v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17894v1-abstract-full" style="display: none;"> Materials composed of spin-1 antiferromagnetic (AFM) chains are known to adopt complex ground states which are sensitive to the single-ion-anisotropy (SIA) energy ($D$), and intrachain ($J_{0}$) and interchain ($J&#39;_{i}$) exchange energy scales. While theoretical and experimental studies have extended this model to include various other energy scales, the effect of the lack of a common SIA axis is not well explored. Here we investigate the magnetic properties of Ni(pyrimidine)(H$_{2}$O)$_{2}$(NO$_{3}$)$_{2}$, a chain compound where the tilting of Ni octahedra leads to a 2-fold alternation of the easy-axis directions along the chain. Muon-spin relaxation measurements indicate a transition to long-range order at $T_{\text{N}}=2.3$\,K and the magnetic structure is initially determined to be antiferromagnetic and collinear using elastic neutron diffraction experiments. Inelastic neutron scattering measurements were used to find $J_{0} = 5.107(7)$\,K, $D = 2.79(1)$\,K, $J&#39;_{2}=0.18(3)$\,K and a rhombic anisotropy energy $E=0.19(9)$\,K. Mean-field modelling reveals that the ground state structure hosts spin canting of $蠁\approx6.5^{\circ}$, which is not detectable above the noise floor of the elastic neutron diffraction data. Monte-Carlo simulation of the powder-averaged magnetization, $M(H)$, is then used to confirm these Hamiltonian parameters, while single-crystal $M(H)$ simulations provide insight into features observed in the data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17894v1-abstract-full').style.display = 'none'; document.getElementById('2407.17894v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09179">arXiv:2407.09179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09179">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetic properties and field-induced phenomena in the Jeff = 1/2 distorted kagome antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yadav%2C+A">A. Yadav</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elghandour%2C+A">A. Elghandour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arh%2C+T">T. Arh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adroja%2C+D+T">D. T. Adroja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stenning%2C+G+B+G">G. B. G. Stenning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aouane%2C+M">M. Aouane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luther%2C+S">S. Luther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hotz%2C+F">F. Hotz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zorko%2C+A">A. Zorko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klingeler%2C+R">R. Klingeler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khuntia%2C+P">P. Khuntia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09179v1-abstract-short" style="display: inline;"> The intertwining between competing degrees of freedom, anisotropy, and frustration-induced quantum fluctuations offers an ideal ground to realize exotic quantum phenomena in the rare-earth-based kagome lattice. The magnetic susceptibility reveals the presence of two energy scales in agreement with the INS results. The higher energy state is dominated by CEF excitations, where the lowest Kramers gr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09179v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09179v1-abstract-full" style="display: none;"> The intertwining between competing degrees of freedom, anisotropy, and frustration-induced quantum fluctuations offers an ideal ground to realize exotic quantum phenomena in the rare-earth-based kagome lattice. The magnetic susceptibility reveals the presence of two energy scales in agreement with the INS results. The higher energy state is dominated by CEF excitations, where the lowest Kramers ground-state doublet is well separated from the excited state suggesting that the compound realizes a low-energy state at low temperatures. The second energy scale is witnessed via thermodynamic results that reveal an anomaly at 0.3 K typical of a phase transition, which is attributed to the presence of complex magnetic ordering phenomena. The broad maximum in the specific heat well above 0.3 K indicates the presence of short-range spin correlations that is corroborated by muon spin relaxation rate results. The isothermal magnetization reveals a field-induced 1/3 magnetization plateau at low temperatures. muSR relaxation rate experiments, on the other hand, neither show the signature of a phase transition nor spin-freezing down to 34 mK. The ZF muSR relaxation is governed by the Orbach process and reveals the presence of a fluctuating state owing to the depopulation of crystal field levels reflected as a constant value of relaxation rate in the temperature range 0.4-10 K. NMR results indicate the presence of fluctuating Nd3+ moments down to 1.8 K consistent with muSR experiments. Our comprehensive results reveal that a field-induced quantum critical phenomenon is at play in this frustrated kagome magnet and enable us to construct a phase diagram exemplifying the proximity effect of competing magnetic states. This sets the stage to investigate the broad RE3BWO9 family of rare-earth kagome magnets promising to host exotic quantum states driven by spin-orbit coupling and geometrical frustration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09179v1-abstract-full').style.display = 'none'; document.getElementById('2407.09179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01477">arXiv:2407.01477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01477">pdf</a>, <a href="https://arxiv.org/format/2407.01477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Analytical exciton energies in monolayer transition-metal dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dinh%2C+H+T">Hanh T. Dinh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phan%2C+N">Ngoc-Hung Phan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ly%2C+D">Duy-Nhat Ly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Dai-Nam Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoang%2C+N+D">Ngoc-Tram D. Hoang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+N">Nhat-Quang Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doan%2C+P">Phuoc-Thien Doan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+V">Van-Hoang Le</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01477v3-abstract-short" style="display: inline;"> We derive an analytical expression for $s$-state exciton energies in monolayer transition-metal dichalcogenides (TMDCs): $E_{\text{ns}}=-{\text{Ry}}^*\times P_n/{(n-1/2+0.479\, r^*_0/魏)^2}$, $n=1,2,...$, where $r^*_0$ and $魏$ are the dimensionless screening length and dielectric constant of the surrounding medium; $\text{Ry}^*$ is an effective Rydberg energy scaled by the dielectric constant and e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01477v3-abstract-full').style.display = 'inline'; document.getElementById('2407.01477v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01477v3-abstract-full" style="display: none;"> We derive an analytical expression for $s$-state exciton energies in monolayer transition-metal dichalcogenides (TMDCs): $E_{\text{ns}}=-{\text{Ry}}^*\times P_n/{(n-1/2+0.479\, r^*_0/魏)^2}$, $n=1,2,...$, where $r^*_0$ and $魏$ are the dimensionless screening length and dielectric constant of the surrounding medium; $\text{Ry}^*$ is an effective Rydberg energy scaled by the dielectric constant and exciton reduced mass; $P_n(r^*_0/魏)$ is a function of variables $n$ and $r^*_0/魏$. Its values are around 1.0 so we consider it a term that corrects the Rydberg energy. Despite the simple form, the suggested formula gives exciton energies with high precision compared to the exact numerical solutions that accurately describe recent experimental data for a large class of TMDC materials, including WSe$_2$, WS$_2$, MoSe$_2$, MoS$_2$, and MoTe$_2$. To achieve these results, we have developed a so-called regulated perturbation theory by combining the conventional perturbation method with several elements of the Feranchuk-Komarov operator method, including the Levi-Civita transformation, the algebraic calculation technique via the annihilation and creation operators, and the introduction of a free parameter to optimize the convergence rate of the perturbation series. This universal form of exciton energies could be helpful in various physical analyses, including retrieval of the material parameters such as reduced exciton mass and screening length from the available measured exciton energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01477v3-abstract-full').style.display = 'none'; document.getElementById('2407.01477v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure, 3 tables, 1 supplementary</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14821">arXiv:2406.14821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.14821">pdf</a>, <a href="https://arxiv.org/format/2406.14821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Fano-enhanced low-loss on-chip superconducting microwave circulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N+P">N. Pradeep Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D+T">Dat Thanh Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pakkiam%2C+P">Prasanna Pakkiam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stace%2C+T+M">Thomas M. Stace</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Arkady Fedorov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14821v1-abstract-short" style="display: inline;"> Ferrite-free circulators that are passive and readily integratable on a chip are highly sought-after in quantum technologies based on superconducting circuits. In our previous work, we implemented such a circulator using a three-Josephson-junction loop that exhibited unambiguous nonreciprocity and signal circulation, but required junction energies to be within $1\%$ of design values. This toleranc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14821v1-abstract-full').style.display = 'inline'; document.getElementById('2406.14821v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14821v1-abstract-full" style="display: none;"> Ferrite-free circulators that are passive and readily integratable on a chip are highly sought-after in quantum technologies based on superconducting circuits. In our previous work, we implemented such a circulator using a three-Josephson-junction loop that exhibited unambiguous nonreciprocity and signal circulation, but required junction energies to be within $1\%$ of design values. This tolerance is tighter than standard junction fabrication methods provide, so we propose and demonstrate a design improvement that relaxes the required junction fabrication precision, allowing for higher device performance and fabrication yield. Specifically, we introduce large direct capacitive couplings between the waveguides to create strong Fano scattering interference. We measure enhanced `circulation fidelity&#39; above $97\%$, with optimised on-resonance insertion loss of $0.2$~dB, isolation of $18$~dB, and power reflectance of $-15$~dB, in good agreement with model calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14821v1-abstract-full').style.display = 'none'; document.getElementById('2406.14821v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11658">arXiv:2406.11658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.11658">pdf</a>, <a href="https://arxiv.org/format/2406.11658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dissecting van der Waals interactions with Density Functional Theory -- Wannier-basis approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dang%2C+D+T">Diem Thi-Xuan Dang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Dai-Nam Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+L+M">Lilia M. Woods</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11658v1-abstract-short" style="display: inline;"> A new scheme for the computation of dispersive interactions from first principles is presented. This cost-effective approach relies on a Wannier function representation compatible with density function theory descriptions. This is an electronic-based many-body method that captures the full electronic and optical response properties of the materials. It provides the foundation to discern van der Wa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11658v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11658v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11658v1-abstract-full" style="display: none;"> A new scheme for the computation of dispersive interactions from first principles is presented. This cost-effective approach relies on a Wannier function representation compatible with density function theory descriptions. This is an electronic-based many-body method that captures the full electronic and optical response properties of the materials. It provides the foundation to discern van der Waals and induction energies as well as the role of anisotropy and different stacking patterns when computing dispersive interactions in systems. Calculated results for binding energies in layered materials, such as graphite, hBN, and MoS$_2$ give encouraging comparisons with available experimental data. Strategies for broadened computational descriptions of dispersive interactions are also discussed. Our investigation aims at stimulating new experimental studies to measure van der Waals energies in a wider range of materials, especially in layered systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11658v1-abstract-full').style.display = 'none'; document.getElementById('2406.11658v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 1 abstract figure, 4 figures, source codes: 10.6084/m9.figshare.26023024.v2 or https://github.com/Diem-TX-Dang/vdW-MBDWan-code/tree/main, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19406">arXiv:2403.19406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.19406">pdf</a>, <a href="https://arxiv.org/format/2403.19406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53900-3">10.1038/s41467-024-53900-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kitaev Interactions Through an Extended Superexchange Pathway in the jeff = 1/2 Ru3+ Honeycomb Magnet, RuP3SiO11 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Abdeldaim%2C+A+H">Aly H. Abdeldaim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gretarsson%2C+H">Hlynur Gretarsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+S+J">Sarah J. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stenning%2C+G+B+G">Gavin B. G. Stenning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">Robin S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsirlin%2C+A+A">Alexander A. Tsirlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nilsen%2C+G+J">G酶ran J. Nilsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+L">Lucy Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19406v2-abstract-short" style="display: inline;"> Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite bein&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19406v2-abstract-full').style.display = 'inline'; document.getElementById('2403.19406v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19406v2-abstract-full" style="display: none;"> Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru3+ octahedra within the honeycomb layers of the inorganic framework solid, RuP3SiO11. We confirm the requisite jeff = 1/2 state of Ru3+ in RuP3SiO11 and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19406v2-abstract-full').style.display = 'none'; document.getElementById('2403.19406v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 Pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16806">arXiv:2401.16806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16806">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Vanadium-Doped Molybdenum Disulfide Monolayers with Tunable Electronic and Magnetic Properties: Do Vanadium-Vacancy Pairs Matter? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+D">Da Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pham%2C+Y+T+H">Yen Thi Hai Pham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dang%2C+D+T">Diem Thi-Xuan Dang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez%2C+D">David Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oberoi%2C+A">Aaryan Oberoi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fest%2C+A">Andres Fest</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sredenschek%2C+A">Alexander Sredenschek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Mingzu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terrones%2C+H">Humberto Terrones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">Saptarshi Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Dai-Nam Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+L+M">Lilia M. Woods</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phan%2C+M">Manh-Huong Phan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terrones%2C+M">Mauricio Terrones</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16806v1-abstract-short" style="display: inline;"> Monolayers of molybdenum disulfide (MoS2) are the most studied two-dimensional (2D) transition-metal dichalcogenides (TMDs), due to its exceptional optical, electronic, and opto-electronic properties. Recent studies have shown the possibility of incorporating a small amount of magnetic transition metals (e.g., Fe, Co, Mn, V) into MoS2 to form a 2D dilute magnetic semiconductor (2D-DMS). However, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16806v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16806v1-abstract-full" style="display: none;"> Monolayers of molybdenum disulfide (MoS2) are the most studied two-dimensional (2D) transition-metal dichalcogenides (TMDs), due to its exceptional optical, electronic, and opto-electronic properties. Recent studies have shown the possibility of incorporating a small amount of magnetic transition metals (e.g., Fe, Co, Mn, V) into MoS2 to form a 2D dilute magnetic semiconductor (2D-DMS). However, the origin of the observed ferromagnetism has remained elusive, due to the presence of randomly generated sulfur vacancies during synthesis that can pair with magnetic dopants to form complex dopant-vacancy configurations altering the magnetic order induced by the dopants. By combining high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging with first-principles density functional theory (DFT) calculations and magnetometry data, we demonstrate the critical effects of sulfur vacancies and their pairings with vanadium atoms on the magnetic ordering in V-doped MoS2 (V-MoS2) monolayers. Additionally, we fabricated a series of field effect transistors on these V-MoS2 monolayers and observed the emergence of p-type behavior as the vanadium concentration increased. Our study sheds light on the origin of ferromagnetism in V-MoS2 monolayers and provides a foundation for future research on defect engineering to tune the electronic and magnetic properties of atomically thin TMD-based DMSs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16806v1-abstract-full').style.display = 'none'; document.getElementById('2401.16806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05001">arXiv:2311.05001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.05001">pdf</a>, <a href="https://arxiv.org/format/2311.05001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.035422">10.1103/PhysRevB.109.035422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant anisotropy and Casimir phenomena: the case of carbon nanotube metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez-Lopez%2C+P">Pablo Rodriguez-Lopez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Dai-Nam Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bondarev%2C+I+V">Igor V. Bondarev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antezza%2C+M">Mauro Antezza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+L+M">Lilia M. Woods</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05001v1-abstract-short" style="display: inline;"> The Casimir interaction and torque are related phenomena originating from the exchange of electromagnetic excitations between objects. While the Casimir force exists between any types of objects, the materials or geometrical anisotropy drives the emergence of the Casimir torque. Here both phenomena are studied theoretically between dielectric films with immersed parallel single wall carbon nanotub&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05001v1-abstract-full').style.display = 'inline'; document.getElementById('2311.05001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05001v1-abstract-full" style="display: none;"> The Casimir interaction and torque are related phenomena originating from the exchange of electromagnetic excitations between objects. While the Casimir force exists between any types of objects, the materials or geometrical anisotropy drives the emergence of the Casimir torque. Here both phenomena are studied theoretically between dielectric films with immersed parallel single wall carbon nanotubes in the dilute limit with their chirality and collective electronic and optical response properties taken into account. It is found that the Casimir interaction is dominated by thermal fluctuations at sub-micron separations, while the torque is primarily determined by quantum mechanical effects. This peculiar quantum vs. thermal separation is attributed to the strong influence of reduced dimensionality and inherent anisotropy of the materials. Our study suggests that nanostructured anisotropic materials can serve as novel platforms to uncover new functionalities in ubiquitous Casimir phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05001v1-abstract-full').style.display = 'none'; document.getElementById('2311.05001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, submitted to Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 035422 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15821">arXiv:2310.15821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15821">pdf</a>, <a href="https://arxiv.org/ps/2310.15821">ps</a>, <a href="https://arxiv.org/format/2310.15821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.144426">10.1103/PhysRevB.108.144426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of crystal field ground state in the classical spin-liquid behavior of a quasi-one dimensional spin-chain system Sr3NiPtO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Anand%2C+V+K">V. K. Anand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adroja%2C+D+T">D. T. Adroja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rayaprol%2C+S">S. Rayaprol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hillier%2C+A+D">A. D. Hillier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sannigrahi%2C+J">J. Sannigrahi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotter%2C+M">M. Rotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sampathkumaran%2C+E+V">E. V. Sampathkumaran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15821v1-abstract-short" style="display: inline;"> The spin-chain compound Sr3NiPtO6 is known to have a nonmagnetic ground state. We have investigated the nature of ground state of Sr3NiPtO6 using magnetic susceptibility $蠂(T)$, heat capacity $C_{\rm p}(T)$, muon spin relaxation ($渭$SR) and inelastic neutron scattering (INS) measurements. The $蠂(T)$ and $C_{\rm p}(T)$ do not exhibit any pronounced anomaly that can be associated with a phase transi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15821v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15821v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15821v1-abstract-full" style="display: none;"> The spin-chain compound Sr3NiPtO6 is known to have a nonmagnetic ground state. We have investigated the nature of ground state of Sr3NiPtO6 using magnetic susceptibility $蠂(T)$, heat capacity $C_{\rm p}(T)$, muon spin relaxation ($渭$SR) and inelastic neutron scattering (INS) measurements. The $蠂(T)$ and $C_{\rm p}(T)$ do not exhibit any pronounced anomaly that can be associated with a phase transition to a magnetically ordered state. Our $渭$SR data confirm the absence of long-range magnetic ordering down to 0.04 K. Furthermore, the muon spin relaxation rate increases below 20 K and exhibits temperature independent behavior at low temperature, very similar to that observed in a quantum spin-liquid system. The INS data show a large excitation near 8~meV, and the analysis of the INS data reveals a singlet CEF ground state with a first excited CEF doublet state at $螖_{\rm CEF}$ = 7.7 meV. The estimated CEF parameters reveal a strong planar anisotropy in the calculated $蠂(T)$, consistent with the reported behavior of the $蠂(T)$ of single crystal Sr3NiPtO6. We propose that the nonmagnetic singlet ground state and a large $螖_{\rm CEF}$ (much larger than the exchange interaction $\mathcal{J}_{\rm ex}$) are responsible for the absence of long-range magnetic ordering and can mimic a classical spin-liquid behavior in this quasi-1D spin chain system Sr3NiPtO6. The classical spin-liquid ground state observed in Sr3NiPtO6 is due to the single-ion property, which is different from the quantum spin-liquid ground state observed in geometrically frustrated systems, where two-ion exchanges play an important role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15821v1-abstract-full').style.display = 'none'; document.getElementById('2310.15821v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108 (2023) 144426 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13607">arXiv:2307.13607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13607">pdf</a>, <a href="https://arxiv.org/format/2307.13607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.013289">10.1103/PhysRevResearch.6.013289 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear effects in many-body van der Waals interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Dai-Nam Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez-Lopez%2C+P">Pablo Rodriguez-Lopez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+L+M">Lilia M. Woods</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13607v1-abstract-short" style="display: inline;"> Van der Waals interactions are ubiquitous and they play an important role for the stability of materials. Current understanding of this type of coupling is based on linear response theory, while optical nonlinearities are rarely considered in this context. Many materials, however, exhibit strong optical nonlinear response, which prompts further evaluation of dispersive forces beyond linear respons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13607v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13607v1-abstract-full" style="display: none;"> Van der Waals interactions are ubiquitous and they play an important role for the stability of materials. Current understanding of this type of coupling is based on linear response theory, while optical nonlinearities are rarely considered in this context. Many materials, however, exhibit strong optical nonlinear response, which prompts further evaluation of dispersive forces beyond linear response. Here we present a $\textit{Discrete Coupled Nonlinear Dipole}$ approach that takes into account linear and nonlinear properties of all dipolar nanoparticles in a given system. This method is based on a Hamiltonian for nonlinear dipoles, which we apply in different systems uncovering a complex interplay of distance, anisotropy, polarizibilities, and hyperpolarizabilities in the vdW energy. This investigation broadens our basic understanding of dispersive interactions, especially in the context of nonlinear materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13607v1-abstract-full').style.display = 'none'; document.getElementById('2307.13607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures; submitted; a part of this work has been presented at APS March Meeting 2023 (N17.00010)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81V45; 81V55; 81V70; 81T55 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00821">arXiv:2306.00821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.00821">pdf</a>, <a href="https://arxiv.org/format/2306.00821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Inelastic neutron scattering investigation of the crystal field excitations of NdCo$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Passos%2C+F+d+A">F. de Almeida Passos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nilsen%2C+G+J">G. J. Nilsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patrick%2C+C+E">C. E. Patrick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+S">Santosh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thamizhavel%2C+A">A. Thamizhavel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cornejo%2C+D+R">D. R. Cornejo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jim%C3%A9nez%2C+J+L">J. Larrea Jim茅nez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00821v1-abstract-short" style="display: inline;"> We present an inelastic neutron scattering study of the crystal electric field levels in the intermetallic ferrimagnets RECo$_{5}$ (RE = Nd and Y). In NdCo$_{5}$, measurements at $5~$K reveal two levels at approximately 28.9 and 52.9 meV. Crystal field calculations including the exchange field $B_{\textrm{exc}}$ from the Co sites account for both of these, as well as the spectrum at temperatures a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00821v1-abstract-full').style.display = 'inline'; document.getElementById('2306.00821v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00821v1-abstract-full" style="display: none;"> We present an inelastic neutron scattering study of the crystal electric field levels in the intermetallic ferrimagnets RECo$_{5}$ (RE = Nd and Y). In NdCo$_{5}$, measurements at $5~$K reveal two levels at approximately 28.9 and 52.9 meV. Crystal field calculations including the exchange field $B_{\textrm{exc}}$ from the Co sites account for both of these, as well as the spectrum at temperatures above the spin-reorientation transition at $\sim 280$~K. In particular, it is found that both a large hexagonal crystal field parameter $A_{6}^6\langle r^6 \rangle$ and $B_{\textrm{exc}}$ are required to reproduce the data, with the latter having a much larger value than that deduced from previous computational and experimental studies. Our study sheds light on the delicate interplay of terms in the rare-earth Hamiltonian of RECo$_5$ systems, and is therefore expected to stimulate further experimental and computational work on the broader family of rare-earth permanent magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00821v1-abstract-full').style.display = 'none'; document.getElementById('2306.00821v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00295">arXiv:2305.00295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00295">pdf</a>, <a href="https://arxiv.org/format/2305.00295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Weyl metallic state induced by helical magnetic order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+J">Jian-Rui Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Ram%C3%ADrez%2C+I">Iri谩n S谩nchez-Ram铆rez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xupeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jinzhao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zivkovic%2C+I">Ivica Zivkovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodr%C3%ADguez-Velamaz%C3%A1n%2C+J+A">J. Alberto Rodr铆guez-Velamaz谩n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabelo%2C+O">Oscar Fabelo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stunault%2C+A">Anne Stunault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bombardi%2C+A">Alessandro Bombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balz%2C+C">Christian Balz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">Manh Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">Helen C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. Hugo Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">Henrik M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Juan%2C+F">Fernando de Juan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">Andrew T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00295v1-abstract-short" style="display: inline;"> In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi level, are of particular interest owing to their exotic charge and spin transport properties. Up to now, the majority of magnetic Weyl semimetal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00295v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00295v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00295v1-abstract-full" style="display: none;"> In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi level, are of particular interest owing to their exotic charge and spin transport properties. Up to now, the majority of magnetic Weyl semimetals have been realized in ferro- or ferrimagnetically ordered compounds, but a disadvantage of these materials for practical use is their stray magnetic field which limits the minimum size of devices. Here we show that Weyl nodes can be induced by a helical spin configuration, in which the magnetization is fully compensated. Using a combination of neutron diffraction and resonant elastic x-ray scattering, we find that EuCuAs develops a planar helical structure below $T_\textrm{N}$ = 14.5 K which induces Weyl nodes along the $螕$--A high symmetry line in the Brillouin zone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00295v1-abstract-full').style.display = 'none'; document.getElementById('2305.00295v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10899">arXiv:2303.10899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.10899">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02188-z">10.1038/s41567-023-02188-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant phonon softening and avoided crossing in aliovalence-doped heavy-band thermoelectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+S">Shen Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+S">Shengnan Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Q">Qingyong Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chaoliang Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Ziheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">Manh Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheptyakov%2C+D">Denis Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+P">Ping Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Torii%2C+S">Shuki Torii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamiyama%2C+T">Takashi Kamiyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jiong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+C">Chenguang Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+T">Tiejun Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10899v1-abstract-short" style="display: inline;"> Aliovalent doping has been adopted to optimize the electrical properties of semiconductors, while its impact on the phonon structure and propagation is seldom paid proper attention to. This work reveals that aliovalent doping can be much more effective in reducing the lattice thermal conductivity of thermoelectric semiconductors than the commonly employed isoelectronic alloying strategy. As demons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10899v1-abstract-full').style.display = 'inline'; document.getElementById('2303.10899v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10899v1-abstract-full" style="display: none;"> Aliovalent doping has been adopted to optimize the electrical properties of semiconductors, while its impact on the phonon structure and propagation is seldom paid proper attention to. This work reveals that aliovalent doping can be much more effective in reducing the lattice thermal conductivity of thermoelectric semiconductors than the commonly employed isoelectronic alloying strategy. As demonstrated in the heavy-band NbFeSb system, a large reduction of 65% in the lattice thermal conductivity is achieved through only 10% aliovalent Hf-doping, compared to the 4 times higher isoelectronic Ta-alloying. It is elucidated that aliovalent doping introduces free charge carriers and enhances the screening, leading to the giant softening and deceleration of optical phonons. Moreover, the heavy dopant can induce the avoided-crossing of acoustic and optical phonon branches, further decelerating the acoustic phonons. These results highlight the significant role of aliovalent dopants in regulating the phonon structure and suppressing the phonon propagation of semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10899v1-abstract-full').style.display = 'none'; document.getElementById('2303.10899v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10241">arXiv:2303.10241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.10241">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-37669-5">10.1038/s41467-023-37669-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diffusive Excitonic Bands from Frustrated Triangular Sublattice in a Singlet-Ground-State System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+B">Bin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiao-Chuan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flynn%2C+M">Michael Flynn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+C">Chunruo Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lebing Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chien-Lung Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liebman%2C+J">Jesse Liebman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Podlesnyak%2C+A">Andrey Podlesnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abernathy%2C+D+L">Douglas L. Abernathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adroja%2C+D+T">Devashibhai T. Adroja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">Manh Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Qingzhen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nevidomskyy%2C+A+H">Andriy H. Nevidomskyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morosan%2C+E">Emilia Morosan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balents%2C+L">Leon Balents</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10241v1-abstract-short" style="display: inline;"> Magnetic order in most materials occurs when magnetic ions with finite moments in a crystalline lattice arrange in a particular pattern below the ordering temperature determined by exchange interactions between the ions. However, when the crystal electric field (CEF) effect results in a spin-singlet ground state on individual magnetic sites, the collective ground state of the system can either rem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10241v1-abstract-full').style.display = 'inline'; document.getElementById('2303.10241v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10241v1-abstract-full" style="display: none;"> Magnetic order in most materials occurs when magnetic ions with finite moments in a crystalline lattice arrange in a particular pattern below the ordering temperature determined by exchange interactions between the ions. However, when the crystal electric field (CEF) effect results in a spin-singlet ground state on individual magnetic sites, the collective ground state of the system can either remain non-magnetic, or more intriguingly, the exchange interactions between neighboring ions, provided they are sufficiently strong, can admix the excited CEF levels, resulting in a magnetically ordered ground state. The collective magnetic excitations in such a state are so-called spin excitons that describe the CEF transitions propagating through the lattice. In most cases, spin excitons originating from CEF levels of a localized single ion are dispersion-less in momentum (reciprocal) space and well-defined in both the magnetically ordered and paramagnetic states. Here we use thermodynamic and neutron scattering experiments to study stoichiometric Ni2Mo3O8 without site disorder, where Ni2+ ions form a bipartite honeycomb lattice comprised of two triangular lattices, with ions subject to the tetrahedral and octahedral crystalline environment, respectively. We find that in both types of ions, the CEF excitations have nonmagnetic singlet ground states, yet the material has long-range magnetic order. Furthermore, CEF spin excitons from the triangular-lattice arrangement of tetrahedral sites form, in both the antiferromagnetic and paramagnetic states, a dispersive diffusive pattern around the Brillouin zone boundary in reciprocal space. The present work thus demonstrates that spin excitons in an ideal triangular lattice magnet can have dispersive excitations, irrespective of the existence of static magnetic order, and this phenomenon is most likely due to spin entanglement and geometric frustrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10241v1-abstract-full').style.display = 'none'; document.getElementById('2303.10241v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08089">arXiv:2303.08089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08089">pdf</a>, <a href="https://arxiv.org/ps/2303.08089">ps</a>, <a href="https://arxiv.org/format/2303.08089">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.205304">10.1103/PhysRevB.107.205304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Retrieval of material properties of monolayer transition-metal dichalcogenides from magnetoexciton energy spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ly%2C+D">Duy-Nhat Ly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Dai-Nam Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+D+P">Duy-Anh P. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoang%2C+N+D">Ngoc-Tram D. Hoang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phan%2C+N">Ngoc-Hung Phan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+H+L">Hoang-Minh L. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+V">Van-Hoang Le</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08089v2-abstract-short" style="display: inline;"> Reduced exciton mass, polarizability, and dielectric constant of the surrounding medium are essential properties for semiconducting materials, and they have been extracted recently from the magnetoexciton energies. However, the acceptable accuracy of the suggested method requires very high magnetic intensity. Therefore, in the present paper, we propose an alternative method of extracting these mat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08089v2-abstract-full').style.display = 'inline'; document.getElementById('2303.08089v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08089v2-abstract-full" style="display: none;"> Reduced exciton mass, polarizability, and dielectric constant of the surrounding medium are essential properties for semiconducting materials, and they have been extracted recently from the magnetoexciton energies. However, the acceptable accuracy of the suggested method requires very high magnetic intensity. Therefore, in the present paper, we propose an alternative method of extracting these material properties from recently available experimental magnetoexciton s-state energies in monolayer transition-metal dichalcogenides (TMDCs). The method is based on the high sensitivity of exciton energies to the material parameters in the Rytova-Keldysh model. It allows us to vary the considered material parameters to get the best fit of the theoretical calculation to the experimental exciton energies for the $1s$, $2s$, and $3s$ states. This procedure gives values of the exciton reduced mass and $2D$ polarizability. Then, the experimental magnetoexciton spectra compared to the theoretical calculation also determine the average dielectric constant. Concrete applications are presented only for monolayers WSe$_2$ and WS$_2$ from the recently available experimental data; however, the presented approach is universal and can be applied to other monolayer TMDCs. The mentioned fitting procedure requires a fast and effective method of solving the Schr枚dinger equation of an exciton in monolayer TMDCs with a magnetic field. Therefore, we also develop such a method in this paper for highly accurate magnetoexciton energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08089v2-abstract-full').style.display = 'none'; document.getElementById('2303.08089v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, 4 tables; submitted to Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09627">arXiv:2302.09627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.09627">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thickness dependence of superconductivity in FeSe films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jia Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Duy Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turkowski%2C+V">Volodymyr Turkowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Din%2C+N+U">Naseem Ud Din</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+T">Tao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Q">Qiang Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahman%2C+T+S">Talat S. Rahman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09627v1-abstract-short" style="display: inline;"> The films of FeSe on substrates have attracted attention because of their unusually high-temperature (Tc) superconducting properties whose origins continue to be debated. To disentangle the competing effects of the substrate and interlayer and intralayer processes, we present here results of density functional theory (DFT)-based analysis of the electronic structure of unsupported FeSe films consis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09627v1-abstract-full').style.display = 'inline'; document.getElementById('2302.09627v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09627v1-abstract-full" style="display: none;"> The films of FeSe on substrates have attracted attention because of their unusually high-temperature (Tc) superconducting properties whose origins continue to be debated. To disentangle the competing effects of the substrate and interlayer and intralayer processes, we present here results of density functional theory (DFT)-based analysis of the electronic structure of unsupported FeSe films consisting of 1 to 5 layers (1L-5L). Furthermore, by solving the Bardeen-Schrieffer-Cooper (BCS) equation with spin-wave exchange attraction derived from the Hubbard model, we find the superconducting critical temperature Tc for 1L-5L and bulk FeSe systems in reasonable agreement with experimental data. Our results point to the importance of correlation effects in superconducting properties of single- and multi-layer FeSe films, independently of the role of substrate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09627v1-abstract-full').style.display = 'none'; document.getElementById('2302.09627v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.08375">arXiv:2302.08375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.08375">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.155431">10.1103/PhysRevB.107.155431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark exciton energy splitting in monolayer WSe2: insights from time-dependent density-functional theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jia Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turkowski%2C+V">Volodymyr Turkowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Duy Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahman%2C+T+S">Talat S. Rahman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.08375v1-abstract-short" style="display: inline;"> We present here a formalism based on time-dependent density-functional theory (TDDFT) to describe characteristics of both intra- and inter-valley excitons in semiconductors, the latter of which had remained a challenge. Through the usage of an appropriate exchange-correlation kernel (nanoquanta), we trace the energy difference between the intra- and inter-valley dark excitons in monolayer (1L) WSe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08375v1-abstract-full').style.display = 'inline'; document.getElementById('2302.08375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.08375v1-abstract-full" style="display: none;"> We present here a formalism based on time-dependent density-functional theory (TDDFT) to describe characteristics of both intra- and inter-valley excitons in semiconductors, the latter of which had remained a challenge. Through the usage of an appropriate exchange-correlation kernel (nanoquanta), we trace the energy difference between the intra- and inter-valley dark excitons in monolayer (1L) WSe2 to the domination of the exchange part in the exchange-correlation energies of these states. Furthermore, our calculated transition contribution maps establish the momentum resolved weights of the electron-hole excitations in both bright and dark excitons thereby providing a comprehensive understanding of excitonic properties of 1L WSe2. We find that the states consist of hybridized excitations around the corresponding valleys which leads to brightening of the dark excitons, i.e., significantly decreasing their lifetime which is reflected in the PL spectrum. Using many-body perturbation theory, we calculate the phonon contribution to the energy bandgap and the linewidths of the excited electrons, holes and (bright) exciton to find that as the temperature increases the bandgap significantly decreases, while the linewidths increase. Our work paves for describing the ultrafast charge dynamics of transition metal dichalcogenide within an ab initio framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08375v1-abstract-full').style.display = 'none'; document.getElementById('2302.08375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08507">arXiv:2301.08507</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.08507">pdf</a>, <a href="https://arxiv.org/ps/2301.08507">ps</a>, <a href="https://arxiv.org/format/2301.08507">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.075114">10.1103/PhysRevB.107.075114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inelastic neutron scattering study of crystalline electric field excitations in the caged compounds NdT2Zn20 (T = Co, Rh, and Ir) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+R">Rikako Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">Manh Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adroja%2C+D+T">Devashibhai T. Adroja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimura%2C+Y">Yasuyuki Shimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takabatake%2C+T">Toshiro Takabatake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onimaru%2C+T">Takahiro Onimaru</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08507v1-abstract-short" style="display: inline;"> We have measured crystalline electric field (CEF) excitations of Nd3+ ions in the two-channel Kondo lattice candidates NdT2Zn20 (T = Co, Rh, and Ir) by means of inelastic neutron scattering (INS). In the INS measurements at 5 K, dispersionless excitations were observed at 3.8 and 7.2 meV for T = Co, 3.1 and 5.8 meV for T = Rh, and 3.0 and 5.3 meV for T = Ir. Analyses of the temperature dependence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08507v1-abstract-full').style.display = 'inline'; document.getElementById('2301.08507v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08507v1-abstract-full" style="display: none;"> We have measured crystalline electric field (CEF) excitations of Nd3+ ions in the two-channel Kondo lattice candidates NdT2Zn20 (T = Co, Rh, and Ir) by means of inelastic neutron scattering (INS). In the INS measurements at 5 K, dispersionless excitations were observed at 3.8 and 7.2 meV for T = Co, 3.1 and 5.8 meV for T = Rh, and 3.0 and 5.3 meV for T = Ir. Analyses of the temperature dependence of the INS spectra confirm that the CEF ground states are the Gamma 6 doublet, that is a requisite for manifestation of the magnetic two-channel Kondo effect. For T = Co, a shoulder was observed at 7.7 meV close to the CEF excitation peak centered at 7.2 meV. The shoulder is attributed to a bound state of the CEF and low-lying optical phonon excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08507v1-abstract-full').style.display = 'none'; document.getElementById('2301.08507v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.05064">arXiv:2301.05064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.05064">pdf</a>, <a href="https://arxiv.org/format/2301.05064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7566/JPSJ.87.073710">10.7566/JPSJ.87.073710 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inelastic Neutron Scattering Study of the Spin Dynamics in the Breathing Pyrochlore System LiGa0.95In0.05Cr4O8 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+Y">Yu Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wawrzy%C5%84czak%2C+R">Rafa艂 Wawrzy艅czak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">Manh Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guidi%2C+T">Tatiana Guidi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+Y">Yoshihiko Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yajima%2C+T">Takeshi Yajima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hiroi%2C+Z">Zenji Hiroi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takigawa%2C+M">Masashi Takigawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nilsen%2C+G+J">G酶ran J. Nilsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.05064v1-abstract-short" style="display: inline;"> The A-site ordered chromate spinels LiGa1-xInxCr4O8 host a network of size-alternating spin-3/2 Cr3+ tetrahedra known as a &#39;breathing&#39; pyrochlore lattice. For the x=0.05 composition, the complex magneto-structural ordering observed in the parent x=0 material is replaced by a single transition at Tf=11 K, ascribed to the collinear nematic order caused by strong spin-lattice coupling. We present her&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05064v1-abstract-full').style.display = 'inline'; document.getElementById('2301.05064v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.05064v1-abstract-full" style="display: none;"> The A-site ordered chromate spinels LiGa1-xInxCr4O8 host a network of size-alternating spin-3/2 Cr3+ tetrahedra known as a &#39;breathing&#39; pyrochlore lattice. For the x=0.05 composition, the complex magneto-structural ordering observed in the parent x=0 material is replaced by a single transition at Tf=11 K, ascribed to the collinear nematic order caused by strong spin-lattice coupling. We present here an inelastic neutron scattering study of the spin dynamics in this composition. Above Tf , the dynamical scattering function S(Q,E) is ungapped and quasi-elastic, similar to undoped LiGaCr4O8. Below Tf , the spectral weight splits between a broad inelastic feature at 5.8 meV and toward the elastic line. The former feature can be ascribed to spin precessions within antiferromagnetic loops, lifted to finite energy by the effective biquadratic spin-lattice term in the spin Hamiltonian. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05064v1-abstract-full').style.display = 'none'; document.getElementById('2301.05064v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Soc. Jpn. 87, 073710 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09003">arXiv:2210.09003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.09003">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Soft Anharmonic Coupled Vibrations of Li and SiO4 Enable Li-ion Diffusion in Amorphous Li2Si2O5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+S">Sajan Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+M+K">Mayanak K. Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goel%2C+P">Prabhatasree Goel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mittal%2C+R">Ranjan Mittal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukhopadhyay%2C+S">Sanghamitra Mukhopadhyay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">Manh Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shukla%2C+R">Rakesh Shukla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Achary%2C+S+N">Srungarpu N. Achary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tyagi%2C+A+K">Avesh K. Tyagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaplot%2C+S+L">Samrath L. Chaplot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09003v1-abstract-short" style="display: inline;"> We present the investigations on atomic dynamics and Li+ diffusion in crystalline and amorphous Li2Si2O5 using quasielastic (QENS) and inelastic neutron scattering (INS) studies supplemented by ab-initio molecular dynamics simulations (AIMD). The QENS measurements in the amorphous phase of Li2Si2O5 show a narrow temperature window (700 &lt; T &lt; 775 K), exhibiting significant quasielastic broadening c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09003v1-abstract-full').style.display = 'inline'; document.getElementById('2210.09003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09003v1-abstract-full" style="display: none;"> We present the investigations on atomic dynamics and Li+ diffusion in crystalline and amorphous Li2Si2O5 using quasielastic (QENS) and inelastic neutron scattering (INS) studies supplemented by ab-initio molecular dynamics simulations (AIMD). The QENS measurements in the amorphous phase of Li2Si2O5 show a narrow temperature window (700 &lt; T &lt; 775 K), exhibiting significant quasielastic broadening corresponding to the fast Li+ diffusion and relaxation of SiO4 units to the crystalline phase. Our INS measurements clearly show the presence of large phonon density of states (PDOS) at low energy (low-E) in the superionic amorphous phase, which disappear in the non-superionic crystalline phase, corroborating the role of low-E modes in Li+ diffusion. The frustrated energy landscape and host flexibility (due to random orientation and vibrational motion of SiO4 polyhedral units) play an essential role in diffusing the Li+. We used AIMD simulations to identify that these low-E modes involve a large amplitude of Li vibrations coupled with SiO4 vibrations in the amorphous phase. At elevated temperatures, these vibrational dynamics accelerate the Li+ diffusion via a paddle-wheel like coupling mechanism. Above 775 K, these SiO4 vibrational dynamics drive the system into the crystalline phase by locking SiO4 and Li+ into deeper minima of the free energy landscape and disappear in the crystalline phase. Both experiments and simulations provide valuable information about the atomic level stochastic and vibrational dynamics in Li2Si2O5 and their role in Li+ diffusion and vitrification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09003v1-abstract-full').style.display = 'none'; document.getElementById('2210.09003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 7 Figures, Supplementary Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07787">arXiv:2210.07787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07787">pdf</a>, <a href="https://arxiv.org/format/2210.07787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.125129">10.1103/PhysRevB.107.125129 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Competing Laughlin state and Wigner crystal in bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+N+D">Ngoc Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jolicoeur%2C+T">Thierry Jolicoeur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07787v2-abstract-short" style="display: inline;"> We study the fractional quantum Hall effect in the central Landau level of bilayer graphene. By tuning the external applied magnetic field and the electric bias between the two layers one can access a regime where there is a degeneracy between Landau levels with orbital characters corresponding to N=0 and N=1 Galilean Landau levels. While the Laughlin state is generically the ground state for fill&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07787v2-abstract-full').style.display = 'inline'; document.getElementById('2210.07787v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07787v2-abstract-full" style="display: none;"> We study the fractional quantum Hall effect in the central Landau level of bilayer graphene. By tuning the external applied magnetic field and the electric bias between the two layers one can access a regime where there is a degeneracy between Landau levels with orbital characters corresponding to N=0 and N=1 Galilean Landau levels. While the Laughlin state is generically the ground state for filling $谓=1/3$ we find that it can be destroyed and replaced by a Wigner crystal at the same filling factor by tuning the bias and applied field. This competition does not take place at $谓=2/3$ where the incompressible ground state remains stable. The possibility of electrically inducing the Wigner crystal state opens a new range of studies of this state of matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07787v2-abstract-full').style.display = 'none'; document.getElementById('2210.07787v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages and 11 figures, v2: references corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B107, 125129 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02378">arXiv:2210.02378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.02378">pdf</a>, <a href="https://arxiv.org/format/2210.02378">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1583/ac97f2">10.1088/2053-1583/ac97f2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Twisted bilayered graphenes at magic angles and Casimir interactions: correlation-driven effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez-Lopez%2C+P">Pablo Rodriguez-Lopez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Dai-Nam Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%C3%B3n%2C+M+J">Mar铆a J. Calder贸n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bascones%2C+E">Elena Bascones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+L+M">Lilia M. Woods</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02378v1-abstract-short" style="display: inline;"> Twisted bilayered graphenes at magic angles are systems housing long ranged periodicity of Moir茅 pattern together with short ranged periodicity associated with the individual graphenes. Such materials are a fertile ground for novel states largely driven by electronic correlations. Here we find that the ubiquitous Casimir force can serve as a platform for macroscopic manifestations of the quantum e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02378v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02378v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02378v1-abstract-full" style="display: none;"> Twisted bilayered graphenes at magic angles are systems housing long ranged periodicity of Moir茅 pattern together with short ranged periodicity associated with the individual graphenes. Such materials are a fertile ground for novel states largely driven by electronic correlations. Here we find that the ubiquitous Casimir force can serve as a platform for macroscopic manifestations of the quantum effects stemming from the magic angle bilayered graphenes properties and their phases determined by electronic correlations. By utilizing comprehensive calculations for the electronic and optical response, we find that Casimir torque can probe anisotropy from the Drude conductivities in nematic states, while repulsion in the Casimir force can help identify topologically nontrivial phases in magic angle twisted bilayered graphenes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02378v1-abstract-full').style.display = 'none'; document.getElementById('2210.02378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures (main), 7 pages, 7 figures (supplementary); provisionally accepted for publication in 2D Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13682">arXiv:2209.13682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.13682">pdf</a>, <a href="https://arxiv.org/ps/2209.13682">ps</a>, <a href="https://arxiv.org/format/2209.13682">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.155410">10.1103/PhysRevB.107.155410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal effect on magnetoexciton energy spectra in monolayer transition metal dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ly%2C+D">Duy-Nhat Ly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Dai-Nam Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phan%2C+N">Ngoc-Hung Phan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+V">Van-Hoang Le</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13682v4-abstract-short" style="display: inline;"> It is widely comprehended that temperature may cause phonon-exciton scattering, enhancing the energy level&#39;s linewidth and leading to some spectrum shifts. However, in the present paper, we suggest a different mechanism that allows the thermal motion of the exciton&#39;s center of mass (c.m.) to affect the magnetoexciton energies in monolayer dichalcogenides (TMDCs). By the nontrivial but precise sepa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13682v4-abstract-full').style.display = 'inline'; document.getElementById('2209.13682v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13682v4-abstract-full" style="display: none;"> It is widely comprehended that temperature may cause phonon-exciton scattering, enhancing the energy level&#39;s linewidth and leading to some spectrum shifts. However, in the present paper, we suggest a different mechanism that allows the thermal motion of the exciton&#39;s center of mass (c.m.) to affect the magnetoexciton energies in monolayer dichalcogenides (TMDCs). By the nontrivial but precise separation of the c.m. motion from an exciton in a monolayer TMDC with a magnetic field, we obtain an equation for the relative motion containing a motional Stark term proportional to the c.m. pseudomomentum, related to the temperature of the exciton gas but neglected in the previous studies. Solving the Schr枚dinger equation without omitting the motional Stark potential at room temperature shows approximately a few meV thermal-magnetic shifts in the exciton energies, significant enough for experimental detection. Moreover, this thermal effect causes a change in exciton radius and diamagnetic coefficient and enhances the exciton lifetime as a consequence. Surprisingly, the thermoinduced motional Stark potential breaks the system&#39;s SO(2) symmetry, conducting new peaks in the exciton absorption spectra at room temperature besides those of the $s$ states. This mechanism could be extended for other magnetoquasiparticles such as trions and biexcitons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13682v4-abstract-full').style.display = 'none'; document.getElementById('2209.13682v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 3 tables for main manuscript; 20 pages, 6 figures, 6 tables for supplementary. Published on Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107 (2023), 155410 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13339">arXiv:2208.13339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.13339">pdf</a>, <a href="https://arxiv.org/format/2208.13339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.037001">10.1103/PhysRevLett.130.037001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Passive superconducting circulator on a chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Navarathna%2C+R">Rohit Navarathna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D+T">Dat Thanh Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamann%2C+A+R">Andr茅s Rosario Hamann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+H+D">Hien Duy Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stace%2C+T+M">Thomas M. Stace</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Arkady Fedorov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13339v2-abstract-short" style="display: inline;"> An on-chip microwave circulator that is compatible with superconducting devices is a key element for scale-up of superconducting circuits. Previous approaches to integrating circulators on chip involve either external driving that requires extra microwave lines or a strong magnetic field that would compromise superconductivity. Here we report the first proof-of-principle realisation of a passive o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13339v2-abstract-full').style.display = 'inline'; document.getElementById('2208.13339v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13339v2-abstract-full" style="display: none;"> An on-chip microwave circulator that is compatible with superconducting devices is a key element for scale-up of superconducting circuits. Previous approaches to integrating circulators on chip involve either external driving that requires extra microwave lines or a strong magnetic field that would compromise superconductivity. Here we report the first proof-of-principle realisation of a passive on-chip circulator which is made from a superconducting loop interrupted by three notionally-identical Josephson junctions and is tuned with only DC control fields. Our experimental results shows evidence for nonreciprocal scattering, and excellent agreement with theoretical simulations. We also present a detailed analysis of quasiparticle tunneling in our device using a hidden Markov model. By reducing the junction asymmetry and utilising the known methods of protection from quasiparticles, we anticipate that Josephson-loop circulator will become ubiquitous in superconducting circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13339v2-abstract-full').style.display = 'none'; document.getElementById('2208.13339v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07672">arXiv:2207.07672</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07672">pdf</a>, <a href="https://arxiv.org/format/2207.07672">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/aca699">10.1209/0295-5075/aca699 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probabilistic picture for particle number densities in stretched tips of the branching Brownian motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+A+D">Anh Dung Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mueller%2C+A+H">Alfred H. Mueller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Munier%2C+S">St茅phane Munier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07672v2-abstract-short" style="display: inline;"> In the framework of a stochastic picture for the one-dimensional branching Brownian motion, we compute the probability density of the number of particles near the rightmost one at a time $T$, that we take very large, when this extreme particle is conditioned to arrive at a predefined position $x_T$ chosen far ahead of its expected position $m_T$. We recover the previously-conjectured fact that the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07672v2-abstract-full').style.display = 'inline'; document.getElementById('2207.07672v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07672v2-abstract-full" style="display: none;"> In the framework of a stochastic picture for the one-dimensional branching Brownian motion, we compute the probability density of the number of particles near the rightmost one at a time $T$, that we take very large, when this extreme particle is conditioned to arrive at a predefined position $x_T$ chosen far ahead of its expected position $m_T$. We recover the previously-conjectured fact that the typical number density of particles a distance $螖$ to the left of the lead particle, when both $螖$ and $x_T-螖-m_T$ are large, is smaller than the mean number density by a factor proportional to $e^{-味螖^{2/3}}$, where $味$ is a constant that was so far undetermined. Our picture leads to an expression for the probability density of the particle number, from which a value for $味$ may be inferred. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07672v2-abstract-full').style.display = 'none'; document.getElementById('2207.07672v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 figure. v2: significant improvements to the text, numerous clarifications made. Approach and results unchanged. Version accepted for publications in EPL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPL, 140 (2022) 51003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07448">arXiv:2207.07448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07448">pdf</a>, <a href="https://arxiv.org/ps/2207.07448">ps</a>, <a href="https://arxiv.org/format/2207.07448">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.174422">10.1103/PhysRevB.106.174422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The magnetic dynamics of NiPS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stewart%2C+J+R">J. R. Stewart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ewings%2C+R+A">R. A. Ewings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rule%2C+K+C">K. C. Rule</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+G">G. Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anand%2C+K">K. Anand</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07448v2-abstract-short" style="display: inline;"> Neutron spectroscopy measurements have been performed on single crystals of the antiferromagnetic van der Waals compound NiPS$_3$. Linear spin wave theory using a Heisenberg Hamiltonian with single-ion anisotropies has been applied to determine the magnetic exchange parameters and the nature of the anisotropy. The analysis reveals that NiPS$_3$ is less two-dimensional than its sister compounds, wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07448v2-abstract-full').style.display = 'inline'; document.getElementById('2207.07448v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07448v2-abstract-full" style="display: none;"> Neutron spectroscopy measurements have been performed on single crystals of the antiferromagnetic van der Waals compound NiPS$_3$. Linear spin wave theory using a Heisenberg Hamiltonian with single-ion anisotropies has been applied to determine the magnetic exchange parameters and the nature of the anisotropy. The analysis reveals that NiPS$_3$ is less two-dimensional than its sister compounds, with a relatively large ferromagnetic exchange of $J^{\prime} = -0.3$ meV between the layered \emph{ab} planes. In-plane magnetic exchange interactions up to the third nearest-neighbour were required to fit the data. The nearest-neighbour exchange was ferromagnetic with $J_1 = -2.6$ meV, the second neighbour was antiferromagnetic and small with $J_2 = 0.2$ meV, and the dominant antiferromagnetic third neighbour exchange was $J_3 = 13.5$ meV. The anisotropy was shown to be largely XY-like with a small uniaxial component, leading to the appearance of two low-energy spin wave modes in the spin wave spectrum at the Brillouin zone centre. The analysis could reproduce the spin wave energies, however there are discrepancies with the calculated neutron intensities hinting at more exotic phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07448v2-abstract-full').style.display = 'none'; document.getElementById('2207.07448v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures, 33 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.15289">arXiv:2206.15289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.15289">pdf</a>, <a href="https://arxiv.org/format/2206.15289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Euphonic: inelastic neutron scattering simulations from force constants and visualisation tools for phonon properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fair%2C+R">Rebecca Fair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jackson%2C+A">Adam Jackson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voneshen%2C+D">David Voneshen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jochym%2C+D">Dominik Jochym</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Refson%2C+K">Keith Refson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perring%2C+T">Toby Perring</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.15289v2-abstract-short" style="display: inline;"> Interpretation of vibrational inelastic neutron scattering spectra of complex systems is frequently reliant on accompanying simulations from theoretical models. Ab-initio codes can routinely generate force constants, but additional steps are required for direct comparison to experimental spectra. On modern spectrometers this is a computationally expensive task due to the large data volumes collect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15289v2-abstract-full').style.display = 'inline'; document.getElementById('2206.15289v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.15289v2-abstract-full" style="display: none;"> Interpretation of vibrational inelastic neutron scattering spectra of complex systems is frequently reliant on accompanying simulations from theoretical models. Ab-initio codes can routinely generate force constants, but additional steps are required for direct comparison to experimental spectra. On modern spectrometers this is a computationally expensive task due to the large data volumes collected. In addition, workflows are frequently cumbersome as the simulation software and experimental data analysis software often do not easily interface to each other. Here a new package, Euphonic, is presented. Euphonic is a robust, easy to use and computationally efficient tool designed to be integrated into experimental software and able to interface directly with the force constant matrix output of ab-initio codes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15289v2-abstract-full').style.display = 'none'; document.getElementById('2206.15289v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.14019">arXiv:2205.14019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.14019">pdf</a>, <a href="https://arxiv.org/ps/2205.14019">ps</a>, <a href="https://arxiv.org/format/2205.14019">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2515-7639/ac6d80">10.1088/2515-7639/ac6d80 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dispersive interactions between standard and Dirac materials and the role of dimensionality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Dai-Nam Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez-Lopez%2C+P">Pablo Rodriguez-Lopez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+L+M">Lilia M. Woods</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.14019v2-abstract-short" style="display: inline;"> The van der Waals (vdW) interaction plays a prominent role between neutral objects at separations where short ranged chemical forces are negligible. This type of dispersive coupling is determined by the interplay between geometry and response properties of the materials making up the objects. Here, we investigate the vdW interaction between 1D, 2D, and 3D standard and Dirac materials within the Ra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14019v2-abstract-full').style.display = 'inline'; document.getElementById('2205.14019v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.14019v2-abstract-full" style="display: none;"> The van der Waals (vdW) interaction plays a prominent role between neutral objects at separations where short ranged chemical forces are negligible. This type of dispersive coupling is determined by the interplay between geometry and response properties of the materials making up the objects. Here, we investigate the vdW interaction between 1D, 2D, and 3D standard and Dirac materials within the Random Phase Approximation, which takes into account collective excitations originating from the electronic Coulomb potential. A comprehensive understanding of characteristic functionalities and scaling laws are obtained for systems with parabolic energy dispersion (standard materials) and crossing linear bands (Dirac materials). By comparing the quantum mechanical and thermal limits the onset of thermal fluctuations in the vdW interaction is discussed showing that thermal effects are significantly pronounced at smaller scales in reduced dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14019v2-abstract-full').style.display = 'none'; document.getElementById('2205.14019v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages (main), 6 pages (supplementary information), 5 figures. Published on Journal of Physics: Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Mater. 5 (2022) 034001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13482">arXiv:2204.13482</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13482">pdf</a>, <a href="https://arxiv.org/format/2204.13482">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.144409">10.1103/PhysRevB.106.144409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy spin excitations of the frustrated ferromagnetic $J_1$-$J_2$ chain material linarite, PbCuSO$_4$(OH)$_2$, in applied magnetic fields $\mathbf{H} \parallel b$ axis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Heinze%2C+L">L. Heinze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janson%2C+O">O. Janson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nishimoto%2C+S">S. Nishimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolter%2C+A+U+B">A. U. B. Wolter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%BCllow%2C+S">S. S眉llow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rule%2C+K+C">K. C. Rule</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13482v2-abstract-short" style="display: inline;"> We report a study of the spin dynamics of the frustrated ferromagnetic $J_1$-$J_2$ chain compound linarite, PbCuSO$_4$(OH)$_2$, in applied magnetic fields up to field polarization. By means of an extreme-environment inelastic neutron scattering experiment, we have measured the low-energy spin excitations of linarite in fields up to 8.8 T for $\mathbf{H} \parallel b$ axis. We have recorded the spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13482v2-abstract-full').style.display = 'inline'; document.getElementById('2204.13482v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13482v2-abstract-full" style="display: none;"> We report a study of the spin dynamics of the frustrated ferromagnetic $J_1$-$J_2$ chain compound linarite, PbCuSO$_4$(OH)$_2$, in applied magnetic fields up to field polarization. By means of an extreme-environment inelastic neutron scattering experiment, we have measured the low-energy spin excitations of linarite in fields up to 8.8 T for $\mathbf{H} \parallel b$ axis. We have recorded the spin excitation spectra along $h$, $k$ and $l$ for the field-induced magnetic phases IV, V and the field polarized state close to saturation. By employing first-principles calculations, we estimate the leading magnetic exchanges out of the $bc$ plane and model the dispersion relations using linear spin-wave theory. In this way, we find evidence for a (very weak) residual magnetic exchange coupling out of the $bc$ plane. Together with the previously established dominant intrachain couplings $J_1$ and $J_2$ and the interchain coupling $J_3$, we derive an effective set of exchange couplings for a microscopic description of linarite. Further, we find that the peculiar character of phase V manifests itself in the measured spin dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13482v2-abstract-full').style.display = 'none'; document.getElementById('2204.13482v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 144409 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10149">arXiv:2203.10149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.10149">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41699-022-00335-3">10.1038/s41699-022-00335-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thickness-dependent spin bistable transitions in single-crystalline molecular 2D material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Koptur-Palenchar%2C+J">John Koptur-Palenchar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gakiya-Teruya%2C+M">Miguel Gakiya-Teruya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Duy Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xuanyuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+H">Hai-Ping Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahman%2C+T+S">Talat S. Rahman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shatruk%2C+M">Michael Shatruk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiao-Xiao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10149v1-abstract-short" style="display: inline;"> The advent of two-dimensional (2D) crystals has led to numerous scientific breakthroughs. Conventional 2D systems have in-plane covalent bonds and a weak out-of-plane van-der-Waals bond. Here we report a new type of 2D material composed of discrete magnetic molecules, where anisotropic van-der-Waals interactions bond the molecules into a 2D packing. Through mechanical exfoliation, we can obtain si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10149v1-abstract-full').style.display = 'inline'; document.getElementById('2203.10149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10149v1-abstract-full" style="display: none;"> The advent of two-dimensional (2D) crystals has led to numerous scientific breakthroughs. Conventional 2D systems have in-plane covalent bonds and a weak out-of-plane van-der-Waals bond. Here we report a new type of 2D material composed of discrete magnetic molecules, where anisotropic van-der-Waals interactions bond the molecules into a 2D packing. Through mechanical exfoliation, we can obtain single-crystalline molecular monolayers, which can be readily integrated into other 2D systems. Optical spectroscopy suggests the few-layered molecules preserve the temperature-induced spin-crossover switching observed in the bulk form but show a drastic increase in thermal hysteresis unique to these thin 2D molecule assemblies. The trapping of spin bistability with decreasing layer number can arise from domain wall dynamics in reduced dimensions. Our results establish molecular solids with strong anisotropy of intermolecular interactions as precursors to a novel class of 2D materials, affording new possibilities to control functionalities through substrate and interlayer interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10149v1-abstract-full').style.display = 'none'; document.getElementById('2203.10149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj 2D Mater Appl 6, 59 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00346">arXiv:2203.00346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.00346">pdf</a>, <a href="https://arxiv.org/format/2203.00346">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Statistical properties of partonic configurations and diffractive dissociation in high-energy electron-nucleus scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+A+D">Anh Dung Le</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00346v1-abstract-short" style="display: inline;"> In this thesis, we study the detailed partonic content of the quantum states of a quark-antiquark color dipole subject to high-energy evolution, which are represented by a set of dipoles generated by a stochastic binary branching process, in the scattering off a large nucleus, and produce predictions for diffractive dissociation in electron-ion collisions, based on the dipole picture of QCD. Our m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00346v1-abstract-full').style.display = 'inline'; document.getElementById('2203.00346v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00346v1-abstract-full" style="display: none;"> In this thesis, we study the detailed partonic content of the quantum states of a quark-antiquark color dipole subject to high-energy evolution, which are represented by a set of dipoles generated by a stochastic binary branching process, in the scattering off a large nucleus, and produce predictions for diffractive dissociation in electron-ion collisions, based on the dipole picture of QCD. Our main results are as follows. First, the scattering events of a color dipole, when parameters are set in such a way that the total cross section is small, are triggered by rare partonic fluctuations, which look different as seen from different reference frames. It turns out that the freedom to select a frame allows to deduce an asymptotic expression for the rapidity distribution of the first branching of the slowest parent dipole of the set of those which scatter. In another aspect, such study implies the importance of the characterization of particle distribution in the frontier region in the states generated by the QCD dipole branching, and more generally, by any one-dimensional branching random walk model. To this aim, we develop a Monte Carlo algorithm to generate the frontier region of a branching random walk. Furthermore, we are able to calculate the diffractive cross section demanding a minimal rapidity gap $Y_0$ and the distribution of rapidity gaps $Y_{gap}$ in the diffractive dissociation of a small dipole off a large nucleus, in a well-defined parametric region. They are the asymptotic solutions to the so-called Kovchegov-Levin equation, which describes the diffractive dissociation at high energy. Finally, we present predictions for the rapidity gap distributionin realistic kinematics of future electron-ion machines, based on the numerical solutions of the original Kovchegov-Levin equation and of its next-to-leading extension taking into account the running of the strong coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00346v1-abstract-full').style.display = 'none'; document.getElementById('2203.00346v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Ph.D. thesis manuscript</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01057">arXiv:2201.01057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.01057">pdf</a>, <a href="https://arxiv.org/format/2201.01057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-021-01169-y">10.1038/s41563-021-01169-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum spin liquid in the Ising triangular-lattice antiferromagnet neodymium heptatantalate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Arh%2C+T">T. Arh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sana%2C+B">B. Sana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pregelj%2C+M">M. Pregelj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khuntia%2C+P">P. Khuntia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jagli%C4%8Di%C4%87%2C+Z">Z. Jagli膷i膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P">P. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ozarowski%2C+A">A. Ozarowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zorko%2C+A">A. Zorko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01057v1-abstract-short" style="display: inline;"> Disordered magnetic states known as spin liquids are of paramount importance in both fundamental and applied science. A classical state of this kind was predicted for the Ising antiferromagnetic triangular model more than half a century ago, while additional non-commuting exchange terms were proposed to induce its quantum version -- a quantum spin liquid. These predictions have not been yet confir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01057v1-abstract-full').style.display = 'inline'; document.getElementById('2201.01057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01057v1-abstract-full" style="display: none;"> Disordered magnetic states known as spin liquids are of paramount importance in both fundamental and applied science. A classical state of this kind was predicted for the Ising antiferromagnetic triangular model more than half a century ago, while additional non-commuting exchange terms were proposed to induce its quantum version -- a quantum spin liquid. These predictions have not been yet confirmed experimentally. Here we report a discovery of such a state in the structurally perfect triangular-lattice antiferromagnet NdTa$_7$O$_{19}$. Its magnetic ground state is characterized by spin-1/2 degrees of freedom with Ising-like interactions and gives rise to low-frequency spin excitations persisting down to the lowest temperatures. Our study demonstrates the key role of strong spin-orbit coupling in stabilizing spin liquids that result from magnetic anisotropy and highlights the large family of rare-earth (RE) heptatantalates RETa$_7$O$_{19}$ as a novel framework for realization of these states, which represent a promising platform for quantum applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01057v1-abstract-full').style.display = 'none'; document.getElementById('2201.01057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the initially submitted version of the manuscript, the considerably extended and revised published version is available online at https://doi.org/10.1038/s41563-021-01169-y</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Mater. 21, 416 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.15453">arXiv:2111.15453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.15453">pdf</a>, <a href="https://arxiv.org/format/2111.15453">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.075203">10.1103/PhysRevB.105.075203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin and valley ordering of fractional quantum Hall states in monolayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+N+D">Ngoc Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jolicoeur%2C+T">Thierry Jolicoeur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.15453v1-abstract-short" style="display: inline;"> We study spin and valley ordering in the quantum Hall fractions in monolayer graphene at Landau level filling factors $谓_G=-2+n/3$ $(n=2,4,5)$. We use exact diagonalizations on the spherical as well as toroidal geometry by taking into account the effect of realistic anisotropies that break the spin/valley symmetry of the pure Coulomb interaction. We also use a variational method based on eigenstat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15453v1-abstract-full').style.display = 'inline'; document.getElementById('2111.15453v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.15453v1-abstract-full" style="display: none;"> We study spin and valley ordering in the quantum Hall fractions in monolayer graphene at Landau level filling factors $谓_G=-2+n/3$ $(n=2,4,5)$. We use exact diagonalizations on the spherical as well as toroidal geometry by taking into account the effect of realistic anisotropies that break the spin/valley symmetry of the pure Coulomb interaction. We also use a variational method based on eigenstates of the fully $SU(4)$ symmetric limit. For all the fractions we study there are two-component states for which the competing phases are generalizations of those occurring at neutrality $谓_G=0$. They are ferromagnetic, antiferromagnetic, charge-density wave and K茅kul茅 phases, depending on the values of Ising or XY anisotropies in valley space. The varying spin-valley content of the states leads to ground state quantum numbers that are different from the $谓_G=0$ case. For filling factor $谓_G=-2+5/3$ there is a parent state in the $SU(4)$ limit which has a flavor content $(1,1/3,1/3,0)$ where the two components that are one-third filled form a two-component singlet. The addition of anisotropies leads to the formation of new states that have no counterpart at $谓_G=0$. While some of them are predicted by the variational approach, we find notably that negative Ising-like valley anisotropy leads to the formation of a state which is a singlet in both spin and valley space and lies beyond the reach of the variational method. Also fully spin polarized two-component states at $谓=-2+4/3$ and $谓=-2+5/3$ display an emergent $SU(2)$ valley symmetry because they do not feel point-contact anisotropies. We discuss implications for current experiments concerning possible spin transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15453v1-abstract-full').style.display = 'none'; document.getElementById('2111.15453v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B105, 075203 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.09905">arXiv:2107.09905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.09905">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Sodium Diffusion and Dynamics in Na2Ti3O7: Neutron Scattering and Ab-initio Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mittal%2C+R">Ranjan Mittal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+S">Sajan Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+M+K">Mayanak K. Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+S+K">Sanjay K. Mishra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukhopadhyay%2C+S">Sanghamitra Mukhopadhyay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">Manh Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shukla%2C+R">Rakesh Shukla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Achary%2C+S+N">Srungarpu N. Achary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tyagi%2C+A+K">Avesh K. Tyagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaplot%2C+S+L">Samrath L. Chaplot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.09905v1-abstract-short" style="display: inline;"> We have performed quasielastic and inelastic neutron scattering (QENS and INS) measurements from 300 K to 1173 K to investigate the Na-diffusion and underlying host dynamics in Na2Ti3O7. The QENS data show that the Na atoms undergo localized jumps up to 1173 K. The ab-initio molecular dynamics (AIMD) simulations supplement the measurements and show 1-d long-ranged diffusion along the a-axis above&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09905v1-abstract-full').style.display = 'inline'; document.getElementById('2107.09905v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.09905v1-abstract-full" style="display: none;"> We have performed quasielastic and inelastic neutron scattering (QENS and INS) measurements from 300 K to 1173 K to investigate the Na-diffusion and underlying host dynamics in Na2Ti3O7. The QENS data show that the Na atoms undergo localized jumps up to 1173 K. The ab-initio molecular dynamics (AIMD) simulations supplement the measurements and show 1-d long-ranged diffusion along the a-axis above 1500 K. The simulations indicate that the occupancy of the interstitial site is critical for long-range diffusion. The nudged-elastic-band (NEB) calculation confirmed that the activation energy barrier is lowest for diffusion along the a-axis. In the experimental phonon spectra the peaks at 10 and 14 meV are dominated by Na dynamics that disappear on warming, suggesting low-energy phonons significantly contribute to large Na vibrational amplitude at elevated temperatures that enhances the Na hopping probability. We have also calculated the mode Gr眉neisen parameters of the phonons and thereby calculated the volume thermal expansion coefficient, which is found to be in excellent agreement with available experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09905v1-abstract-full').style.display = 'none'; document.getElementById('2107.09905v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 Pages, 10 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.10902">arXiv:2106.10902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.10902">pdf</a>, <a href="https://arxiv.org/ps/2106.10902">ps</a>, <a href="https://arxiv.org/format/2106.10902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjb/s10051-021-00176-x">10.1140/epjb/s10051-021-00176-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Phan%2C+A">Anh-Luan Phan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Dai-Nam Le</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.10902v4-abstract-short" style="display: inline;"> In recent years, graphene and other two-dimensional Dirac materials like silicene, germanene, etc. have been studied from different points of view: from mathematical physics, condensed matter physics to high energy physics. In this study, we utilize both supersymmetric quantum mechanics (SUSY-QM) and transfer matrix method (TTM) to examine electronic transport in two-dimensional Dirac materials un&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10902v4-abstract-full').style.display = 'inline'; document.getElementById('2106.10902v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.10902v4-abstract-full" style="display: none;"> In recent years, graphene and other two-dimensional Dirac materials like silicene, germanene, etc. have been studied from different points of view: from mathematical physics, condensed matter physics to high energy physics. In this study, we utilize both supersymmetric quantum mechanics (SUSY-QM) and transfer matrix method (TTM) to examine electronic transport in two-dimensional Dirac materials under the influences of multi-step deformation as well as multi-step Fermi velocity barrier. The effects of multi-step effective mass and multi-step applied fields are also taken into account in our investigation. Results show the possibility of modulating the Klein tunneling of Dirac electron by using strain or electric field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10902v4-abstract-full').style.display = 'none'; document.getElementById('2106.10902v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures, published on European Physical Journal B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. B 94 (2021)165 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.00791">arXiv:2104.00791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.00791">pdf</a>, <a href="https://arxiv.org/format/2104.00791">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.214419">10.1103/PhysRevB.103.214419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of moment fragmentation in the mixed $B$-site pyrochlore Nd$_{2}$GaSbO$_{7}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gomez%2C+S+J">S. J. Gomez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarte%2C+P+M">P. M. Sarte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zelensky%2C+M">M. Zelensky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallas%2C+A+M">A. M. Hallas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzalez%2C+B+A">B. A. Gonzalez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+K+H">K. H. Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pace%2C+E+J">E. J. Pace</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">S. Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">M. B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Y. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+E">E. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stock%2C+C">C. Stock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Attfield%2C+J+P">J. P. Attfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+S+D">S. D. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiebe%2C+C+R">C. R. Wiebe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.00791v1-abstract-short" style="display: inline;"> Nd-based pyrochlore oxides of the form Nd$_{2}B_{2}$O$_{7}$ have garnered a significant amount of interest owing to the moment fragmentation physics observed in Nd$_{2}$Zr$_{2}$O$_{7}$ and speculated in Nd$_{2}$Hf$_{2}$O$_{7}$. Notably this phenomenon is not ubiquitous in this family, as it is absent in Nd$_{2}$Sn$_{2}$O$_{7}$, which features a smaller ionic radius on the $B$-site. Here, we explor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00791v1-abstract-full').style.display = 'inline'; document.getElementById('2104.00791v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.00791v1-abstract-full" style="display: none;"> Nd-based pyrochlore oxides of the form Nd$_{2}B_{2}$O$_{7}$ have garnered a significant amount of interest owing to the moment fragmentation physics observed in Nd$_{2}$Zr$_{2}$O$_{7}$ and speculated in Nd$_{2}$Hf$_{2}$O$_{7}$. Notably this phenomenon is not ubiquitous in this family, as it is absent in Nd$_{2}$Sn$_{2}$O$_{7}$, which features a smaller ionic radius on the $B$-site. Here, we explore the necessary conditions for moment fragmentation in the Nd pyrochlore family through a detailed study of the mixed $B$-site pyrochlore Nd$_{2}$GaSbO$_{7}$. The $B$-site of this system is characterized by significant disorder and an extremely small average ionic radius. Similarly to Nd$_{2}$Sn$_{2}$O$_{7}$, we find no evidence for moment fragmentation through our bulk characterization and neutron scattering experiments, indicating that chemical pressure (and not necessarily the $B$-site disorder) plays a key role in the presence or absence of this phenomenon in this material family. Surprisingly, the presence of significant $B$-site disorder in Nd$_{2}$GaSbO$_{7}$ does not generate a spin glass ground state and instead the same all-in-all-out magnetic order identified in other Nd pyrochlores is found here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00791v1-abstract-full').style.display = 'none'; document.getElementById('2104.00791v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 214419 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.15137">arXiv:2103.15137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.15137">pdf</a>, <a href="https://arxiv.org/format/2103.15137">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.115169">10.1103/PhysRevB.104.115169 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic field-induced softening of spin waves and hard-axis order in Kondo-lattice ferromagnet CeAgSb$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nikitin%2C+S+E">S. E. Nikitin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Podlesnyak%2C+A">A. Podlesnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">J. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voneshen%2C+D">D. Voneshen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">S. L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokolov%2C+D+A">D. A. Sokolov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.15137v2-abstract-short" style="display: inline;"> A significant number of Kondo-lattice ferromagnets order perpendicular to the easy magnetization axis dictated by the crystalline electric field. The nature of this phenomenon has attracted considerable attention, but remains poorly understood. In the present paper we use inelastic neutron scattering supported by magnetization and specific heat measurements to study the spin dynamics in the hard-a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15137v2-abstract-full').style.display = 'inline'; document.getElementById('2103.15137v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.15137v2-abstract-full" style="display: none;"> A significant number of Kondo-lattice ferromagnets order perpendicular to the easy magnetization axis dictated by the crystalline electric field. The nature of this phenomenon has attracted considerable attention, but remains poorly understood. In the present paper we use inelastic neutron scattering supported by magnetization and specific heat measurements to study the spin dynamics in the hard-axis ferromagnet CeAgSb2. In the zero field state we observed two sharp magnon modes, which are associated with Ce ordering and extended up to $\approx 3 meV with a considerable spin gap of 0.6 meV. Application of a magnetic field perpendicular to the moment direction reduces the spectral intensity and suppresses the gap and significantly enhances the low-temperature specific heat at a critical field of Bc ~ 2.8 T via a mean-field-like transition. Above the transition, in the field polarized state, the gap eventually reopens due to the Zeeman effect. We modeled the observed dispersion using linear spin-wave theory (LSWT) taking into account the ground state Gamma 6 doublet and exchange anisotropy. Our model correctly captures the essential features of the spin dynamics including magnetic dispersion, distribution of the spectral intensity as well as the field-induced behavior, although several minor features remain obscure. The observed spectra do not show significant broadening due to the finite lifetime of the quasiparticles. Along with a moderate electronic specific heat coefficient gamma = 46 mJ/mol K2 this indicates that the Kondo coupling is relatively weak and the Ce moments are well localized. Altogether, our results provide profound insight into the spin dynamics of the hard-axis ferromagnet CeAgSb2 and can be used as solid ground for studying magnetic interactions in isostructural compounds including CeAuSb2, which exhibits nematicity and unusual mesoscale magnetic textures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15137v2-abstract-full').style.display = 'none'; document.getElementById('2103.15137v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 115169 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.08039">arXiv:2103.08039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.08039">pdf</a>, <a href="https://arxiv.org/ps/2103.08039">ps</a>, <a href="https://arxiv.org/format/2103.08039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Fermi surfaces of the topological semimetal CaSn$_{3}$ probed through de Haas van Alphen oscillations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Siddiquee%2C+K+A+M+H">K A M Hasan Siddiquee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Munir%2C+R">Riffat Munir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dissanayake%2C+C">Charuni Dissanayake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xinzhe Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yadav%2C+S">Swapnil Yadav</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takano%2C+Y">Yasumasa Takano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">Eun Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Duy Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahman%2C+T+S">Talat S Rahman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakajima%2C+Y">Yasuyuki Nakajima</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.08039v1-abstract-short" style="display: inline;"> In the search of topological superconductors, nailing down the Fermiology of the normal state is as crucial a prerequisite as unraveling the superconducting pairing symmetry. In particular, the number of time-reversal-invariant momenta in the Brillouin zone enclosed by Fermi surfaces is closely linked to the topological class of time-reversal-invariant systems, and can experimentally be investigat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08039v1-abstract-full').style.display = 'inline'; document.getElementById('2103.08039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.08039v1-abstract-full" style="display: none;"> In the search of topological superconductors, nailing down the Fermiology of the normal state is as crucial a prerequisite as unraveling the superconducting pairing symmetry. In particular, the number of time-reversal-invariant momenta in the Brillouin zone enclosed by Fermi surfaces is closely linked to the topological class of time-reversal-invariant systems, and can experimentally be investigated. We report here a detailed study of de Haas van Alphen quantum oscillations in single crystals of the topological semimetal CaSn$_{3}$ with torque magnetometry in high magnetic fields up to 35 T. In conjunction with density functional theory based calculations, the observed quantum oscillations frequencies indicate that the Fermi surfaces of CaSn$_{3}$ enclose an odd number of time-reversal-invariant momenta, satisfying one of the proposed criteria to realize topological superconductivity. Nonzero Berry phases extracted from the magnetic oscillations also support the nontrivial topological nature of CaSn$_{3}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08039v1-abstract-full').style.display = 'none'; document.getElementById('2103.08039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures, accepted for publication in Journal of Physics: Condensed Matter</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.10833">arXiv:2102.10833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.10833">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Study of phonon transport across several Si/Ge interfaces using full-band phonon Monte Carlo simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+N+D">N. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davier%2C+B">B. Davier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Izitounene%2C+N">N. Izitounene</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dollfus%2C+P">P. Dollfus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saint-Martin%2C+J">J. Saint-Martin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.10833v2-abstract-short" style="display: inline;"> A Full Band Monte Carlo simulator has been developed to consider phonon transmission across interfaces that are perpendicular to the heat flux. This solver of the Boltzmann transport equation which does not require any assumption on the shape the phonon distribution can naturally consider all phonon transport regimes from the diffusive to the fully ballistic regime. Hence, this simulator is used t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.10833v2-abstract-full').style.display = 'inline'; document.getElementById('2102.10833v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.10833v2-abstract-full" style="display: none;"> A Full Band Monte Carlo simulator has been developed to consider phonon transmission across interfaces that are perpendicular to the heat flux. This solver of the Boltzmann transport equation which does not require any assumption on the shape the phonon distribution can naturally consider all phonon transport regimes from the diffusive to the fully ballistic regime. Hence, this simulator is used to study single and double Si/Ge heterostructures from the micrometer scale down to the nanometer scale i.e. in all phonon transport regime from ballistic to fully diffusive. A methodology to estimate the thermal conductivities and the thermal interfaces is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.10833v2-abstract-full').style.display = 'none'; document.getElementById('2102.10833v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.06786">arXiv:2101.06786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.06786">pdf</a>, <a href="https://arxiv.org/format/2101.06786">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.104423">10.1103/PhysRevB.103.104423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental determination of the magnetic interactions of frustrated Cairo pentagon lattice materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">Manh Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wheeler%2C+E+M">Elisa M. Wheeler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+J">Jaehong Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+K+R">K. Ramesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Seongsu Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Chang-Hee Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+M+J">Myeong Jun Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+Y">Youn-Jung Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kondo%2C+A">Akihiro Kondo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kindo%2C+K">Koichi Kindo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stuhr%2C+U">U. Stuhr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%A5k%2C+B">B. F氓k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enderle%2C+M">M. Enderle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batuk%2C+D">Dmitry Batuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abakumov%2C+A+M">Artem M. Abakumov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsirlin%2C+A+A">Alexander A. Tsirlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.06786v1-abstract-short" style="display: inline;"> We present inelastic neutron scattering measurements of the Cairo pentagon lattice magnets Bi$_2$Fe$_4$O$_9$ and Bi$_4$Fe$_5$O$_{13}$F, supported by high field magnetisation measurements of Bi$_2$Fe$_4$O$_9$. Using linear spin wave theory and mean field analyses we determine the spin exchange interactions and single-ion anisotropy in these materials. The Cairo lattice is geometrically frustrated a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06786v1-abstract-full').style.display = 'inline'; document.getElementById('2101.06786v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.06786v1-abstract-full" style="display: none;"> We present inelastic neutron scattering measurements of the Cairo pentagon lattice magnets Bi$_2$Fe$_4$O$_9$ and Bi$_4$Fe$_5$O$_{13}$F, supported by high field magnetisation measurements of Bi$_2$Fe$_4$O$_9$. Using linear spin wave theory and mean field analyses we determine the spin exchange interactions and single-ion anisotropy in these materials. The Cairo lattice is geometrically frustrated and consists of two inequivalent magnetic sites, both occupied by Fe$^{3+}$ ions and connected by two competing nearest neighbour interactions. We found that one of these interactions, coupling nearest neighbour spins on the three-fold symmetric sites, is extremely strong and antiferromagnetic. These strongly coupled dimers are then weakly coupled to a framework formed from spins occupying the other inequivalent site. In addition we found that the Fe$^{3+}$ $S=5/2$ spins have a non-negligible single-ion anisotropy, which manifests as a spin anisotropy gap in the neutron spectrum and a spin-flop transition in high field magnetisation measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06786v1-abstract-full').style.display = 'none'; document.getElementById('2101.06786v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 104423 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01056">arXiv:2012.01056</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.01056">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.165409">10.1103/PhysRevB.102.165409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon density of states in lanthanide-based nanocrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hudry%2C+D">D. Hudry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heid%2C+R">R. Heid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Said%2C+A+H">A. H. Said</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popescu%2C+R">R. Popescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerthsen%2C+D">D. Gerthsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Merz%2C+M">M. Merz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%A4mer%2C+K+W">K. W. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Busko%2C+D">D. Busko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Howard%2C+I+A">I. A. Howard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richards%2C+B+S">B. S. Richards</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+F">F. Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01056v1-abstract-short" style="display: inline;"> We report a combined inelastic neutron and X-ray scattering study of the phonon density of states of the nano- and microcrystalline lanthanide-based materials NaY$_{0.8}$Yb$_{0.18}$Er$_{0.02}$F$_4$ and NaGd$_{0.8}$Yb$_{0.18}$Er$_{0.02}$F$_4$. While large (20 nm) nanocrystals display the same vibrational spectra as their microcrystalline counterparts, we find an enhanced phonon density of states at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01056v1-abstract-full').style.display = 'inline'; document.getElementById('2012.01056v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01056v1-abstract-full" style="display: none;"> We report a combined inelastic neutron and X-ray scattering study of the phonon density of states of the nano- and microcrystalline lanthanide-based materials NaY$_{0.8}$Yb$_{0.18}$Er$_{0.02}$F$_4$ and NaGd$_{0.8}$Yb$_{0.18}$Er$_{0.02}$F$_4$. While large (20 nm) nanocrystals display the same vibrational spectra as their microcrystalline counterparts, we find an enhanced phonon density of states at low energies, $E \leq 15\,\rm{meV}$, in ultra-small (5 nm) NaGd$_{0.8}$Yb$_{0.18}$Er$_{0.02}$F$_4$ nanocrystals which we assign to an increased relative spectral weight of surface phonon modes. Based on our observations for ultra-small nanocrystals, we rationalize that an increase of the phonon density of states in large nanocrystals due to surface phonons is too small to be observed in the current measurements. The experimental approach described in this report constitutes the first step toward the rationalization of size effects on the modification of the absolute upconversion quantum yield of upconverting nanocrystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01056v1-abstract-full').style.display = 'none'; document.getElementById('2012.01056v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 102, 165409 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.04584">arXiv:2011.04584</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.04584">pdf</a>, <a href="https://arxiv.org/format/2011.04584">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/abea1c">10.1088/1361-648X/abea1c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interpretable, calibrated neural networks for analysis and understanding of inelastic neutron scattering data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Butler%2C+K+T">Keith T. Butler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">Manh Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiyagalingam%2C+J">Jeyarajan Thiyagalingam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perring%2C+T+G">Toby G. Perring</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.04584v2-abstract-short" style="display: inline;"> Deep neural networks provide flexible frameworks for learning data representations and functions relating data to other properties and are often claimed to achieve &#39;super-human&#39; performance in inferring relationships between input data and desired property. In the context of inelastic neutron scattering experiments, however, as in many other scientific scenarios, a number of issues arise: (i) scar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04584v2-abstract-full').style.display = 'inline'; document.getElementById('2011.04584v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.04584v2-abstract-full" style="display: none;"> Deep neural networks provide flexible frameworks for learning data representations and functions relating data to other properties and are often claimed to achieve &#39;super-human&#39; performance in inferring relationships between input data and desired property. In the context of inelastic neutron scattering experiments, however, as in many other scientific scenarios, a number of issues arise: (i) scarcity of labelled experimental data, (ii) lack of uncertainty quantification on results, and (iii) lack of interpretability of the deep neural networks. In this work we examine approaches to all three issues. We use simulated data to train a deep neural network to distinguish between two possible magnetic exchange models of a half-doped manganite. We apply the recently developed deterministic uncertainty quantification method to provide error estimates for the classification, demonstrating in the process how important realistic representations of instrument resolution in the training data are for reliable estimates on experimental data. Finally we use class activation maps to determine which regions of the spectra are most important for the final classification result reached by the network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04584v2-abstract-full').style.display = 'none'; document.getElementById('2011.04584v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.15546">arXiv:2010.15546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.15546">pdf</a>, <a href="https://arxiv.org/format/2010.15546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.054031">10.1103/PhysRevD.103.054031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear scattering configurations of onia in different frames </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+A+D">Anh Dung Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mueller%2C+A+H">Alfred H. Mueller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Munier%2C+S">St茅phane Munier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.15546v2-abstract-short" style="display: inline;"> In the scattering of a small onium off a large nucleus at high center-of-mass energies, when the parameters are set in such a way that the cross section at fixed impact parameter is small, events are triggered by rare partonic fluctuations of the onium, which are very deformed with respect to typical configurations. Using the color dipole picture of high-energy interactions in quantum chromodynami&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15546v2-abstract-full').style.display = 'inline'; document.getElementById('2010.15546v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.15546v2-abstract-full" style="display: none;"> In the scattering of a small onium off a large nucleus at high center-of-mass energies, when the parameters are set in such a way that the cross section at fixed impact parameter is small, events are triggered by rare partonic fluctuations of the onium, which are very deformed with respect to typical configurations. Using the color dipole picture of high-energy interactions in quantum chromodynamics, in which the quantum states of the onium are represented by sets of dipoles generated by a branching process, we describe the typical scattering configurations as seen from different reference frames, from the restframe of the nucleus to frames in which the rapidity is shared between the projectile onium and the nucleus. We show that taking advantage of the freedom to select a frame in the latter class makes possible to derive complete asymptotic expressions for some boost-invariant quantities, beyond the total cross section, from a procedure which leverages the limited available knowledge on the properties of the solutions to the Balitsky-Kovchegov equation that governs the rapidity-dependence of total cross sections. We obtain in this way an analytic expression for the rapidity-distribution of the first branching of the slowest parent dipole of the set of those which scatter. This distribution provides an estimator of the correlations of the interacting dipoles, and is also known to be related to the rapidity-gap distribution in diffractive dissociation, an observable measurable at a future electron-ion collider. Furthermore, our result may be formulated as a more general conjecture, that we expect to hold true for any one-dimensional branching random walk model, on the branching time of the most recent common ancestor of all the particles that end up to the right of a given position. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15546v2-abstract-full').style.display = 'none'; document.getElementById('2010.15546v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 4 figures. v2: minor corrections, reference added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 054031 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14423">arXiv:2009.14423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14423">pdf</a>, <a href="https://arxiv.org/ps/2009.14423">ps</a>, <a href="https://arxiv.org/format/2009.14423">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2020.167473">10.1016/j.jmmm.2020.167473 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modulation of Landau levels and de Haas-van Alphen oscillation in magnetized graphene by uniaxial tensile strain/ stress </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Dai-Nam Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+V">Van-Hoang Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+P">Pinaki Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14423v1-abstract-short" style="display: inline;"> The strain engineering technique allows us to alter the electronic properties of graphene in various ways. Within the continuum approximation, the influences of strain result in the appearance of a pseudo-gauge field and modulated Fermi velocity. In this study, we investigate theoretically the effect of linear uniaxial tensile strain and/or stress, which makes the Fermi velocity anisotropic, on a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14423v1-abstract-full').style.display = 'inline'; document.getElementById('2009.14423v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14423v1-abstract-full" style="display: none;"> The strain engineering technique allows us to alter the electronic properties of graphene in various ways. Within the continuum approximation, the influences of strain result in the appearance of a pseudo-gauge field and modulated Fermi velocity. In this study, we investigate theoretically the effect of linear uniaxial tensile strain and/or stress, which makes the Fermi velocity anisotropic, on a magnetized graphene sheet in the presence of an applied electrostatic voltage. More specifically, we analyze the consequences of the anisotropic nature of the Fermi velocity on the structure Landau levels and de Haas - van Alphen (dHvA) quantum oscillation in the magnetized graphene sheet. The effect of the direction of the applied strain has also been discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14423v1-abstract-full').style.display = 'none'; document.getElementById('2009.14423v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Magn. Magn. Mater. 522 (2021) 167473 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.07105">arXiv:2009.07105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.07105">pdf</a>, <a href="https://arxiv.org/format/2009.07105">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.094202">10.1103/PhysRevMaterials.4.094202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlated electron metal properties of the honeycomb ruthenate Na$_2$RuO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Etter%2C+M">M. Etter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cappelli%2C+E">E. Cappelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jacobsen%2C+H">H. Jacobsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberger%2C+F">F. Baumberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.07105v1-abstract-short" style="display: inline;"> We report the synthesis and characterisation of polycrystalline Na$_2$RuO$_3$, a layered material in which the Ru$^{4+}$ ($4d^4$ configuration) form a honeycomb lattice. The optimal synthesis condition was found to produce a nearly ordered Na$_2$RuO$_3$ ($C2/c$ phase), as assessed from the refinement of the time-of-flight neutron powder diffraction. Magnetic susceptibility measurements reveal a la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.07105v1-abstract-full').style.display = 'inline'; document.getElementById('2009.07105v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.07105v1-abstract-full" style="display: none;"> We report the synthesis and characterisation of polycrystalline Na$_2$RuO$_3$, a layered material in which the Ru$^{4+}$ ($4d^4$ configuration) form a honeycomb lattice. The optimal synthesis condition was found to produce a nearly ordered Na$_2$RuO$_3$ ($C2/c$ phase), as assessed from the refinement of the time-of-flight neutron powder diffraction. Magnetic susceptibility measurements reveal a large temperature-independent Pauli paramagnetism ($蠂_0 \sim 1.42(2)\times10^{-3}$ emu/mol Oe) with no evidence of magnetic ordering down to 1.5 K, and with an absence of dynamic magnetic correlations, as evidenced by neutron scattering spectroscopy. The intrinsic susceptibility ($蠂_0$) together with the Sommerfeld coeficient of $纬=11.7(2)$ mJ/Ru mol K$^2$ estimated from heat capacity measurements, gives an enhanced Wilson ratio of $R_W\approx8.9(1)$, suggesting that magnetic correlations may be present in this material. While transport measurements on pressed pellets show nonmetallic behaviour, photoemission spectrocopy indicate a small but finite density of states at the Fermi energy, suggesting that the bulk material is metallic. Except for resistivity measurements, which may have been compromised by near surface and interface effects, all other probes indicate that Na$_2$RuO$_3$ is a moderately correlated electron metal. Our results thus stand in contrast to earlier reports that Na$_2$RuO$_3$ is an antiferromagnetic insulator at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.07105v1-abstract-full').style.display = 'none'; document.getElementById('2009.07105v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 094202 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14687">arXiv:2007.14687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.14687">pdf</a>, <a href="https://arxiv.org/ps/2007.14687">ps</a>, <a href="https://arxiv.org/format/2007.14687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.205124">10.1103/PhysRevB.102.205124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of magnetic dopants on magnetic and topological phases in magnetic topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+T+T">Thanh-Mai Thi Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">Duc-Anh Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pham%2C+T">Tuan-Minh Pham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+K+T">Kim-Thanh Thi Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+M">Minh-Tien Tran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14687v1-abstract-short" style="display: inline;"> A topological insulator doped with random magnetic impurities is studied. The system is modelled by the Kane-Mele model with a random spin exchange between conduction electrons and magnetic dopants. The dynamical mean field theory for disordered systems is used to investigate the electron dynamics. The magnetic long-range order and the topological invariant are calculated within the mean field the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14687v1-abstract-full').style.display = 'inline'; document.getElementById('2007.14687v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14687v1-abstract-full" style="display: none;"> A topological insulator doped with random magnetic impurities is studied. The system is modelled by the Kane-Mele model with a random spin exchange between conduction electrons and magnetic dopants. The dynamical mean field theory for disordered systems is used to investigate the electron dynamics. The magnetic long-range order and the topological invariant are calculated within the mean field theory. They reveal a rich phase diagram, where different magnetic long-range orders such as antiferromagnetic or ferromagnetic one can exist in the metallic or insulating phases, depending on electron and magnetic impurity fillings. It is found that insulator only occurs at electron half filling, quarter filling and when electron filling is equal to magnetic impurity filling. However, non-trivial topology is observed only in half-filling antiferromagnetic insulator and quarter-filling ferromagnetic insulator. At electron half filling, the spin Hall conductance is quantized and it is robust against magnetic doping, while at electron quarter filling, magnetic dopants drive the ferromagnetic topological insulator to ferromagnetic metal. The quantum anomalous Hall effect is observed only at electron quarter filling and dense magnetic doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14687v1-abstract-full').style.display = 'none'; document.getElementById('2007.14687v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 205124 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Le%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Le%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Le%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10