CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 737 results for author: <span class="mathjax">Liu, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Liu%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+H&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+H&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+H&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+H&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01018">arXiv:2412.01018</a> <span> [<a href="https://arxiv.org/pdf/2412.01018">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Vertical Emission of Blue Light from a Symmetry Breaking Plasmonic Nanocavity-Emitter System Supporting Bound States in the Continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yongqi Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiayi Liu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jiang Hu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi Wang</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+X">Xiumei Yin</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yangzhe Guo</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+N">Nan Gao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Z">Zhiguang Sun</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+H">Haonan Wei</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haoran Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wenxin Wang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+B">Bin Dong</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+Y">Yurui Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01018v1-abstract-short" style="display: inline;"> The concept of photonic bound states in the continuum (BICs), introduced in structured metallic surface cavities, provides a crucial mechanism for designing plasmonic open-resonant cavities with high quality (high-Q) factors, making significant advances in plasmonic nanophotonics. However, the two major bottlenecks for plasmonic nanocavities: enhancing emission and big beam divergence for quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01018v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01018v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01018v1-abstract-full" style="display: none;"> The concept of photonic bound states in the continuum (BICs), introduced in structured metallic surface cavities, provides a crucial mechanism for designing plasmonic open-resonant cavities with high quality (high-Q) factors, making significant advances in plasmonic nanophotonics. However, the two major bottlenecks for plasmonic nanocavities: enhancing emission and big beam divergence for quantum emitters, due to the strong intrinsic Ohmic losses of metals. Here, we propose and realize a 蟽h symmetry-breaking plasmonic honeycomb nanocavities (PHC) that support quasi-BIC resonance modes with high-Q factors. Our anodic oxidation-engineered strategy breaks out-of-plane symmetry while preserving in-plane symmetry, enabling the PHC to exhibit collective plasmonic lattice resonances (PLR) couplings and achieve Q-factors exceeding 106. Experimentally, we couple perovskite quantum dots (PQDs) to the PHC, demonstrating effective tuning of their emission properties and beam quality in the blue spectral region, achieving a 32-fold emission enhancement by suppress Ohmic loss and the life time of quantum emitters, simultaneously realize vertical emission in the 2.556 - 2.638 eV region, with a far-field hexagonal beam shape and a full width at half maximum of 12.6 degree under optimal coupling conditions. Furthermore, we demonstrate topological band inversion characterized by Zak phase transitions by continuously tuning the system parameters, confirming that the PHC supports topologically non-trivial q-BIC due to PLR coupling. The PHC presents itself as a promising next-generation, high-brightness nanoscale light source matrix, which can be directly scaled up to cover a wide wavelength range from UV to IR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01018v1-abstract-full').style.display = 'none'; document.getElementById('2412.01018v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 78-05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17480">arXiv:2411.17480</a> <span> [<a href="https://arxiv.org/pdf/2411.17480">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultra-low-loss slow-light thin-film lithium-niobate optical modulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+C">Chenlei Li</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jianghao He</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&query=Tong%2C+Y">Yeyu Tong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Weixi Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Siyuan Wang</a>, <a href="/search/physics?searchtype=author&query=Song%2C+L">Lijia Song</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongxuan Liu</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+H">Hengzhen Cao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Liu Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yaocheng Shi</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+D">Daoxin Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17480v1-abstract-short" style="display: inline;"> Electro-optic modulators for next-generation optical interconnects require low loss-efficiency products, compact footprints, high modulation efficiency, broad bandwidths, and low losses. Here we propose and demonstrate a low-loss high-efficiency thin-film lithium-niobate Mach Zehnder modulator enabled by a novel ultralow-loss slow-light structure based on apodized gratings in cascade. The present… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17480v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17480v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17480v1-abstract-full" style="display: none;"> Electro-optic modulators for next-generation optical interconnects require low loss-efficiency products, compact footprints, high modulation efficiency, broad bandwidths, and low losses. Here we propose and demonstrate a low-loss high-efficiency thin-film lithium-niobate Mach Zehnder modulator enabled by a novel ultralow-loss slow-light structure based on apodized gratings in cascade. The present loss-engineered slow-light structure achieves excess losses as low as 0.6 dB/mm experimentally, which is tens of times lower than conventional slow-light structures, and a high modulation bandwidth up to 320GHz in theory is achieved with optimally-designed capacitively-loaded traveling-wave electrodes. Experimentally, the fabricated slow-light modulator with a 2.8-mm-long modulation region has an ultra-low loss-efficiency product of 7.4 VdB and a flat electro-optic response up to 67 GHz, enabling 100-Gbps on-off keying with high ERs of 4.5 dB at a low driving voltage of 2Vpp, while 200-Gbps PAM4 and 150-Gbps PAM8 signals are also generated to show great promise for advanced modulation formats. In particular, it has also achieved the highest figure-of-merit(FOM) of 182 for high-speed optical modulation , including the bit rate, the extinction ratio normalized with respective to Vpp, the modulation efficiency. The outstanding performance of the present apodized-grating-based slow-light modulator shows great potential and paves the way for developing high-speed optical interconnects for both data-centers and high-performance computing systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17480v1-abstract-full').style.display = 'none'; document.getElementById('2411.17480v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16830">arXiv:2411.16830</a> <span> [<a href="https://arxiv.org/pdf/2411.16830">pdf</a>, <a href="https://arxiv.org/format/2411.16830">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cavity-Quantum Electrodynamics with Moir茅 Flatband Photonic Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yu-Tong Wang</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+Q">Qi-Hang Ye</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+J">Jun-Yong Yan</a>, <a href="/search/physics?searchtype=author&query=Qiao%2C+Y">Yufei Qiao</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Chen Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xiao-Tian Cheng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chen-Hui Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zi-Jian Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+C">Cheng-Nian Huang</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+Y">Yun Meng</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+K">Kai Zou</a>, <a href="/search/physics?searchtype=author&query=Zhan%2C+W">Wen-Kang Zhan</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+C">Chao Zhao</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+X">Xiaolong Hu</a>, <a href="/search/physics?searchtype=author&query=Tee%2C+C+A+T+H">Clarence Augustine T H Tee</a>, <a href="/search/physics?searchtype=author&query=Sha%2C+W+E+I">Wei E. I. Sha</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zhixiang Huang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Huiyun Liu</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+C">Chao-Yuan Jin</a>, <a href="/search/physics?searchtype=author&query=Ying%2C+L">Lei Ying</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Feng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16830v1-abstract-short" style="display: inline;"> Quantum emitters are a key component in photonic quantum technologies. Enhancing their single-photon emission by engineering the photonic environment using cavities can significantly improve the overall efficiency in quantum information processing. However, this enhancement is often constrained by the need for precise nanoscale control over the emitter's position within micro- or nano-cavities. In… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16830v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16830v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16830v1-abstract-full" style="display: none;"> Quantum emitters are a key component in photonic quantum technologies. Enhancing their single-photon emission by engineering the photonic environment using cavities can significantly improve the overall efficiency in quantum information processing. However, this enhancement is often constrained by the need for precise nanoscale control over the emitter's position within micro- or nano-cavities. Inspired by the fascinating physics of moir茅 patterns, we present an approach to strongly modify the spontaneous emission rate of a quantum emitter using a finely designed multilayer moir茅 photonic crystal with a robust isolated-flatband dispersion. Theoretical analysis reveals that, due to its nearly infinite photonic density of states, the moir茅 cavity can simultaneously achieve a high Purcell factor and exhibit large tolerance over the emitter's position. We experimentally demonstrate the coupling between this moir茅 cavity and a quantum dot through the cavity-determined polarization of the dot's emission. The radiative lifetime of the quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects. Our findings pave the way for moir茅 flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16830v1-abstract-full').style.display = 'none'; document.getElementById('2411.16830v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15221">arXiv:2411.15221</a> <span> [<a href="https://arxiv.org/pdf/2411.15221">pdf</a>, <a href="https://arxiv.org/format/2411.15221">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zimmermann%2C+Y">Yoel Zimmermann</a>, <a href="/search/physics?searchtype=author&query=Bazgir%2C+A">Adib Bazgir</a>, <a href="/search/physics?searchtype=author&query=Afzal%2C+Z">Zartashia Afzal</a>, <a href="/search/physics?searchtype=author&query=Agbere%2C+F">Fariha Agbere</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+Q">Qianxiang Ai</a>, <a href="/search/physics?searchtype=author&query=Alampara%2C+N">Nawaf Alampara</a>, <a href="/search/physics?searchtype=author&query=Al-Feghali%2C+A">Alexander Al-Feghali</a>, <a href="/search/physics?searchtype=author&query=Ansari%2C+M">Mehrad Ansari</a>, <a href="/search/physics?searchtype=author&query=Antypov%2C+D">Dmytro Antypov</a>, <a href="/search/physics?searchtype=author&query=Aswad%2C+A">Amro Aswad</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+J">Jiaru Bai</a>, <a href="/search/physics?searchtype=author&query=Baibakova%2C+V">Viktoriia Baibakova</a>, <a href="/search/physics?searchtype=author&query=Biswajeet%2C+D+D">Devi Dutta Biswajeet</a>, <a href="/search/physics?searchtype=author&query=Bitzek%2C+E">Erik Bitzek</a>, <a href="/search/physics?searchtype=author&query=Bocarsly%2C+J+D">Joshua D. Bocarsly</a>, <a href="/search/physics?searchtype=author&query=Borisova%2C+A">Anna Borisova</a>, <a href="/search/physics?searchtype=author&query=Bran%2C+A+M">Andres M Bran</a>, <a href="/search/physics?searchtype=author&query=Brinson%2C+L+C">L. Catherine Brinson</a>, <a href="/search/physics?searchtype=author&query=Calderon%2C+M+M">Marcel Moran Calderon</a>, <a href="/search/physics?searchtype=author&query=Canalicchio%2C+A">Alessandro Canalicchio</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+V">Victor Chen</a>, <a href="/search/physics?searchtype=author&query=Chiang%2C+Y">Yuan Chiang</a>, <a href="/search/physics?searchtype=author&query=Circi%2C+D">Defne Circi</a>, <a href="/search/physics?searchtype=author&query=Charmes%2C+B">Benjamin Charmes</a>, <a href="/search/physics?searchtype=author&query=Chaudhary%2C+V">Vikrant Chaudhary</a> , et al. (116 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15221v1-abstract-short" style="display: inline;"> Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15221v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15221v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15221v1-abstract-full" style="display: none;"> Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15221v1-abstract-full').style.display = 'none'; document.getElementById('2411.15221v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">98 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15037">arXiv:2411.15037</a> <span> [<a href="https://arxiv.org/pdf/2411.15037">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultra-High-Efficiency Dual-Band Thin-Film Lithium Niobate Modulator Incorporating Low-k Underfill with 220 GHz Extrapolated Bandwidth for 390 Gbit/s PAM8 Transmission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hao Liu</a>, <a href="/search/physics?searchtype=author&query=He%2C+Y">Yutong He</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+B">Bing Xiong</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+C">Changzheng Sun</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+Z">Zhibiao Hao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Lai Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jian Wang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Y">Yanjun Han</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hongtao Li</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+L">Lin Gan</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Y">Yi Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15037v1-abstract-short" style="display: inline;"> High-performance electro-optic modulators play a critical role in modern telecommunication networks and intra-datacenter interconnects. Low driving voltage, large electro-optic bandwidth, compact device size, and multi-band operation ability are essential for various application scenarios, especially energy-efficient high-speed data transmission. However, it is challenging to meet all these requir… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15037v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15037v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15037v1-abstract-full" style="display: none;"> High-performance electro-optic modulators play a critical role in modern telecommunication networks and intra-datacenter interconnects. Low driving voltage, large electro-optic bandwidth, compact device size, and multi-band operation ability are essential for various application scenarios, especially energy-efficient high-speed data transmission. However, it is challenging to meet all these requirements simultaneously. Here, we demonstrate a high-performance dual-band thin-film lithium niobate electro-optic modulator with low-k underfill to achieve overall performance improvement. The low-k material helps reduce the RF loss of the modulator and achieve perfect velocity matching with narrow electrode gap to overcome the voltage-bandwidth limitation, extending electro-optic bandwidth and enhancing modulation efficiency simultaneously. The fabricated 7-mm-long modulator exhibits a low half-wave voltage of 1.9 V at C-band and 1.54 V at O-band, featuring a low half-wave voltage-length product of 1.33 V*cm and 1.08 V*cm, respectively. Meanwhile, the novel design yields an ultra-wide extrapolated 3 dB bandwidth of 220 GHz (218 GHz) in the C-band (O-band). High-speed data transmission in both C- and O-bands using the same device has been demonstrated for the first time by PAM8 with data rates up to 390 Gbit/s, corresponding to a record-low energy consumption of 0.69 fJ/bit for next-generation cost-effective ultra-high-speed optical communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15037v1-abstract-full').style.display = 'none'; document.getElementById('2411.15037v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14712">arXiv:2411.14712</a> <span> [<a href="https://arxiv.org/pdf/2411.14712">pdf</a>, <a href="https://arxiv.org/format/2411.14712">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Diffusiophoretic transport of colloids in porous media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Alipour%2C+M">Mobin Alipour</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haoyu Liu</a>, <a href="/search/physics?searchtype=author&query=Pahlavan%2C+A+A">Amir A. Pahlavan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14712v1-abstract-short" style="display: inline;"> Understanding how colloids move in crowded environments is key for gaining control over their transport in applications such as drug delivery, filtration, contaminant/microplastic remediation and agriculture. The classical models of colloid transport in porous media rely on geometric characteristics of the medium, and hydrodynamic/non-hydrodynamic equilibrium interactions to predict their behavior… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14712v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14712v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14712v1-abstract-full" style="display: none;"> Understanding how colloids move in crowded environments is key for gaining control over their transport in applications such as drug delivery, filtration, contaminant/microplastic remediation and agriculture. The classical models of colloid transport in porous media rely on geometric characteristics of the medium, and hydrodynamic/non-hydrodynamic equilibrium interactions to predict their behavior. However, chemical gradients are ubiquitous in these environments and can lead to the non-equilibrium diffusiophoretic migration of colloids. Here, combining microfluidic experiments, numerical simulations, and theoretical modeling we demonstrate that diffusiophoresis leads to significant macroscopic changes in the dispersion of colloids in porous media. We displace a suspension of colloids dispersed in a background salt solution with a higher/lower salinity solution and monitor the removal of the colloids from the medium. While mixing weakens the solute gradients, leading to the diffusiophoretic velocities that are orders of magnitude weaker than the background fluid flow, we show that the cross-streamline migration of colloids changes their macroscopic transit time and dispersion through the medium by an order of magnitude compared to the control case with no salinity gradients. Our observations demonstrate that solute gradients modulate the influence of geometric disorder on the transport, pointing to the need for revisiting the classical models of colloid transport in porous media to obtain predictive models for technological, medical, and environmental applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14712v1-abstract-full').style.display = 'none'; document.getElementById('2411.14712v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12402">arXiv:2411.12402</a> <span> [<a href="https://arxiv.org/pdf/2411.12402">pdf</a>, <a href="https://arxiv.org/ps/2411.12402">ps</a>, <a href="https://arxiv.org/format/2411.12402">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A total-shear-stress-conserved wall model for large-eddy simulation of high-Reynolds number wall turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H">Huan-Cong Liu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+C">Chun-Xiao Xu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+W">Wei-Xi Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12402v1-abstract-short" style="display: inline;"> Wall-modeled large-eddy simulation (WMLES) is widely recognized as a useful method for simulation of turbulent flows at high Reynolds numbers. Nevertheless, a continual issue in different wall models is the shift of the mean velocity profile from the wall-model/RANS (Reynolds-averaged Navier-Stokes) region to the LES region. This phenomenon, referred to as logarithmic layer mismatch (LLM), occurs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12402v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12402v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12402v1-abstract-full" style="display: none;"> Wall-modeled large-eddy simulation (WMLES) is widely recognized as a useful method for simulation of turbulent flows at high Reynolds numbers. Nevertheless, a continual issue in different wall models is the shift of the mean velocity profile from the wall-model/RANS (Reynolds-averaged Navier-Stokes) region to the LES region. This phenomenon, referred to as logarithmic layer mismatch (LLM), occurs in both wall shear stress models and hybrid RANS/LES models. Many efforts have been made to explain and resolve this mismatch, including decreasing the high correlation between the wall shear stress and the velocity at the matching layer, modifying the subgrid-scale (SGS) eddy viscosity, and adding a stochastic forcing. It is widely believed that the inclusion of the resolved Reynolds shear stress (or the convection term) is essential to elliminate the LLM, as it prevents the overseimation of the modeled Reynolds shear stress and promotes the generation of the small-scale flow structures in the near-wall region. In this work, by comparing three different SGS eddy viscosity models, we demonstrate that ensuring the total shear stress conservation (TSSC) conservation is key to resolving the LLM. Under the TSSC framework, the effect of the convection term on LLM can be quantitatively assessed. Furthermore, a modified SGS eddy viscosity modfication model that adheres to the TSSC constraint is tested at different Reynolds numbers ($Re_蟿=1000, 2000, 4200$). Our results demonstrate the robust performance of the present model in predicting skin friction and low-order turbulence statistics, even under a relatively low grid resolution ($螖x^+, 螖z^+ \lesssim 500$, $2\leq 螖_x/螖_{y,mat} \leq 4$, where $螖_{y,mat}$ is the wall-normal grid spacing in the wall-model region). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12402v1-abstract-full').style.display = 'none'; document.getElementById('2411.12402v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11064">arXiv:2411.11064</a> <span> [<a href="https://arxiv.org/pdf/2411.11064">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical Tweezers with AC Dielectric Levitation: A Powerful Approach to Microparticle Manipulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haobing Liu</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+R">Rongxin Fu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zongliang Guo</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+M">Menglei Zhao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+G">Gong Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+F">Fenggang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hang Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shuailong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11064v2-abstract-short" style="display: inline;"> Optical tweezers, with their high precision, dynamic control, and non-invasiveness, are increasingly important in scientific research and applications at the micro and nano scales. However, manipulation by optical tweezers is challenged by adsorption forces, including van der Waals forces, capillary forces, and electrostatic forces, which are present between micro- and nano-objects. Due to the inh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11064v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11064v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11064v2-abstract-full" style="display: none;"> Optical tweezers, with their high precision, dynamic control, and non-invasiveness, are increasingly important in scientific research and applications at the micro and nano scales. However, manipulation by optical tweezers is challenged by adsorption forces, including van der Waals forces, capillary forces, and electrostatic forces, which are present between micro- and nano-objects. Due to the inherent limitations of optical forces imposed by laser power, these adsorption forces are difficult to overcome. Inspired by maglev trains, we propose a multiphysics coupling method that combines dielectrophoretic and optical gradient forces to achieve broad applicability and low-damage micro-nanoscale particle manipulation. We developed a device that introduces electric fields to detach objects from hard substrates using alternating current (AC) dielectric levitation before manipulation with optical tweezers. We utilized micron-sized polystyrene (PS) microspheres as objects and elucidated the levitation mechanism through finite element simulation. For larger particles, such as a 100 渭m PS microparticle and a 200 渭m micro-gear, AC dielectric levitation enabled manipulation by optical tweezers. Also, the better viability of three kinds of cells displayed the low bio-damage of the proposed method. Given its broad applicability and biocompatibility, AC dielectric levitation technology significantly expands the capabilities of optical tweezers, allowing for the manipulation of larger particles and cells. This advancement addresses the limitations of optical tweezers in handling large-scale particles and enhances their versatility in various applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11064v2-abstract-full').style.display = 'none'; document.getElementById('2411.11064v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages,20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08938">arXiv:2411.08938</a> <span> [<a href="https://arxiv.org/pdf/2411.08938">pdf</a>, <a href="https://arxiv.org/format/2411.08938">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Mathematical theory on multi-layer high contrast acoustic subwavelength resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Deng%2C+Y">Youjun Deng</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+L">Lingzheng Kong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hongjie Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongyu Liu</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+L">Liyan Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08938v1-abstract-short" style="display: inline;"> Subwavelength resonance is a vital acoustic phenomenon in contrasting media. The narrow bandgap width of single-layer resonator has prompted the exploration of multi-layer metamaterials as an effective alternative, which consist of alternating nests of high-contrast materials, called ``resonators'', and a background media. In this paper, we develop a general mathematical framework for studying aco… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08938v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08938v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08938v1-abstract-full" style="display: none;"> Subwavelength resonance is a vital acoustic phenomenon in contrasting media. The narrow bandgap width of single-layer resonator has prompted the exploration of multi-layer metamaterials as an effective alternative, which consist of alternating nests of high-contrast materials, called ``resonators'', and a background media. In this paper, we develop a general mathematical framework for studying acoustics within multi-layer high-contrast structures. Firstly, by using layer potential techniques, we establish the representation formula in terms of a matrix type operator with a block tridiagonal form for multi-layer structures within general geometry. Then we prove the existence of subwavelength resonances via Gohberg-Sigal theory, which generalizes the celebrated Minnaert resonances in single-layer structures. Intriguingly, we find that the primary contribution to mode splitting lies in the fact that as the number of nested resonators increases, the degree of the corresponding characteristic polynomial also increases, while the type of resonance (consists solely of monopolar resonances) remains unchanged. Furthermore, we derive original formulas for the subwavelength resonance frequencies of concentric dual-resonator. Numerical results associated with different nested resonators are presented to corroborate the theoretical findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08938v1-abstract-full').style.display = 'none'; document.getElementById('2411.08938v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07992">arXiv:2411.07992</a> <span> [<a href="https://arxiv.org/pdf/2411.07992">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Numerical Simulations of Geomechanical Deformation, Fluid Flow and Reactive Transport in Shale Rough-Walled Microfractures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Heydari%2C+M">Morteza Heydari</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+F">Feng Liang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hui-Hai Liu</a>, <a href="/search/physics?searchtype=author&query=Ghanbarian%2C+B">Behzad Ghanbarian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07992v1-abstract-short" style="display: inline;"> Improving hydrocarbon production with hydraulic fracturing from unconventional reservoirs requires investigating transport phenomena at the single fracture level. In this study, we simulated geomechanical deformation, fluid flow, and reactive transport to understand the effect of hydraulic fracturing treatment on permeability evolution in shale rough-walled fractures. Using concepts of fractional… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07992v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07992v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07992v1-abstract-full" style="display: none;"> Improving hydrocarbon production with hydraulic fracturing from unconventional reservoirs requires investigating transport phenomena at the single fracture level. In this study, we simulated geomechanical deformation, fluid flow, and reactive transport to understand the effect of hydraulic fracturing treatment on permeability evolution in shale rough-walled fractures. Using concepts of fractional Brownian motion and surface roughness characterizations with laser profilometer, we first generated three rough-walled microfractures consistent with three laboratory experiments (i.e., E4, E5 and E6). After that, the generated microfractures were subjected to a confining pressure in accord with experimental conditions, and geomechanical deformation was simulated. We used the OpenFOAM software package to simulate the fluid flow and permeability. By comparing the simulated permeability values with the experimentally measured ones we found relative errors equal to 28, 15 and 200% respectively for the experiments E4, E5 and E6. After calibration, however, the relative error dropped below 4%. We next simulated the reactive transport using the GeoChemFOAM solver and investigated permeability evolution in the deformed microfractures. We found that after 10 hrs of reactive transport simulations, permeability increased by 47%, on average, in all cases studied here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07992v1-abstract-full').style.display = 'none'; document.getElementById('2411.07992v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02893">arXiv:2411.02893</a> <span> [<a href="https://arxiv.org/pdf/2411.02893">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Generalization vs. Hallucination </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xuyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H">Haofan Huang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Dawei Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhuang%2C+S">Songlin Zhuang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+S">Shensheng Han</a>, <a href="/search/physics?searchtype=author&query=Lai%2C+P">Puxiang Lai</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Honglin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02893v1-abstract-short" style="display: inline;"> With fast developments in computational power and algorithms, deep learning has made breakthroughs and been applied in many fields. However, generalization remains to be a critical challenge, and the limited generalization capability severely constrains its practical applications. Hallucination issue is another unresolved conundrum haunting deep learning and large models. By leveraging a physical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02893v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02893v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02893v1-abstract-full" style="display: none;"> With fast developments in computational power and algorithms, deep learning has made breakthroughs and been applied in many fields. However, generalization remains to be a critical challenge, and the limited generalization capability severely constrains its practical applications. Hallucination issue is another unresolved conundrum haunting deep learning and large models. By leveraging a physical model of imaging through scattering media, we studied the lack of generalization to system response functions in deep learning, identified its cause, and proposed a universal solution. The research also elucidates the creation process of a hallucination in image prediction and reveals its cause, and the common relationship between generalization and hallucination is discovered and clarified. Generally speaking, it enhances the interpretability of deep learning from a physics-based perspective, and builds a universal physical framework for deep learning in various fields. It may pave a way for direct interaction between deep learning and the real world, facilitating the transition of deep learning from a demo model to a practical tool in diverse applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02893v1-abstract-full').style.display = 'none'; document.getElementById('2411.02893v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02756">arXiv:2411.02756</a> <span> [<a href="https://arxiv.org/pdf/2411.02756">pdf</a>, <a href="https://arxiv.org/format/2411.02756">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Asymptotic limits of the attached eddy model derived from an adiabatic atmosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qin%2C+Y">Yue Qin</a>, <a href="/search/physics?searchtype=author&query=Katul%2C+G+G">Gabriel G. Katul</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Heping Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Dan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02756v1-abstract-short" style="display: inline;"> The attached-eddy model (AEM) predicts mean velocity and streamwise velocity variance profiles that follow a logarithmic shape in the overlap region of high Reynolds number wall-bounded turbulent flows. Moreover, the AEM coefficients are presumed to attain asymptotically constant values at very high Reynolds numbers. Here, the logarithmic behaviour of the AEM predictions in the near-neutral atmosp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02756v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02756v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02756v1-abstract-full" style="display: none;"> The attached-eddy model (AEM) predicts mean velocity and streamwise velocity variance profiles that follow a logarithmic shape in the overlap region of high Reynolds number wall-bounded turbulent flows. Moreover, the AEM coefficients are presumed to attain asymptotically constant values at very high Reynolds numbers. Here, the logarithmic behaviour of the AEM predictions in the near-neutral atmospheric surface layer is examined using sonic anemometer measurements from a 62-m meteorological tower located in the Eastern Snake River Plain, Idaho, US. Utilizing an extensive 210-day dataset, the inertial sublayer (ISL) is first identified by analyzing the measured momentum flux and mean velocity profile. The logarithmic behaviour of the streamwise velocity variance and the associated `-1' scaling of the streamwise velocity energy spectra are then investigated. The findings indicate that the Townsend-Perry coefficient ($A_1$) is influenced by mild non-stationarity that manifests itself as a Reynolds number dependence. After excluding non-stationary runs and requiring a Reynolds number higher than $4 \times 10^7$, the inferred $A_1$ converges to values ranging between 1 and 1.25, consistent with laboratory experiments. Moreover, the independence of the normalized vertical velocity variance from the wall-normal distance in the ISL is further checked and the constant coefficient value agrees with reported laboratory experiments at very high Reynolds numbers as well as many surface layer experiments. Furthermore, nine benchmark cases selected through a restrictive quality control reveal a closer relationship between the `-1' scaling in the streamwise velocity energy spectrum and the logarithmic behaviour of streamwise velocity variance at higher Reynolds numbers, though no direct equivalence between them is observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02756v1-abstract-full').style.display = 'none'; document.getElementById('2411.02756v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23829">arXiv:2410.23829</a> <span> [<a href="https://arxiv.org/pdf/2410.23829">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> First Proof of Principle Experiment for Muon Production with Ultrashort High Intensity Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+F">Feng Zhang</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+L">Li Deng</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+Y">Yanjie Ge</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+J">Jiaxing Wen</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+B">Bo Cui</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+K">Ke Feng</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+C">Chen Wu</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+Z">Ziwen Pan</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongjie Liu</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Zhigang Deng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zongxin Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Liangwen Chen</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+D">Duo Yan</a>, <a href="/search/physics?searchtype=author&query=Shan%2C+L">Lianqiang Shan</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+Z">Zongqiang Yuan</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+C">Chao Tian</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+J">Jiayi Qian</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+J">Jiacheng Zhu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yi Xu</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+Y">Yuhong Yu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xueheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L">Lei Yang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+W">Weimin Zhou</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+Y">Yuqiu Gu</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23829v1-abstract-short" style="display: inline;"> Muons, which play a crucial role in both fundamental and applied physics, have traditionally been generated through proton accelerators or from cosmic rays. With the advent of ultra-short high-intensity lasers capable of accelerating electrons to GeV levels, it has become possible to generate muons in laser laboratories. In this work, we show the first proof of principle experiment for novel muon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23829v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23829v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23829v1-abstract-full" style="display: none;"> Muons, which play a crucial role in both fundamental and applied physics, have traditionally been generated through proton accelerators or from cosmic rays. With the advent of ultra-short high-intensity lasers capable of accelerating electrons to GeV levels, it has become possible to generate muons in laser laboratories. In this work, we show the first proof of principle experiment for novel muon production with an ultra-short, high-intensity laser device through GeV electron beam bombardment on a lead converter target. The muon physical signal is confirmed by measuring its lifetime which is the first clear demonstration of laser-produced muons. Geant4 simulations were employed to investigate the photo-production, electro-production, and Bethe-Heitler processes response for muon generation and their subsequent detection. The results show that the dominant contributions of muons are attributed to the photo-production/electro-production and a significant yield of muons up to 0.01 $渭$/$e^-$ out of the converter target could be achieved. This laser muon source features compact, ultra-short pulse and high flux. Moreover, its implementation in a small laser laboratory is relatively straightforward, significantly reducing the barriers to entry for research in areas such as muonic X-ray elemental analysis, muon spin spectroscopy and so on. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23829v1-abstract-full').style.display = 'none'; document.getElementById('2410.23829v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20173">arXiv:2410.20173</a> <span> [<a href="https://arxiv.org/pdf/2410.20173">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Engineered Dual BIC Resonances in Hybrid Metasurfaces for Controlled Photoluminescence Amplification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abdelraouf%2C+O+A+M">Omar A. M. Abdelraouf</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+M">Mengfei Wu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20173v1-abstract-short" style="display: inline;"> The development of miniaturized light sources with tunable functionality is crucial for advancing integrated photonic devices, enabling applications in quantum computing, communications, and sensing. Achieving tunable light emission after device fabrication remains a significant challenge, particularly when efficient amplification is required. Hybrid metasurfaces, which integrate several nanostruc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20173v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20173v1-abstract-full" style="display: none;"> The development of miniaturized light sources with tunable functionality is crucial for advancing integrated photonic devices, enabling applications in quantum computing, communications, and sensing. Achieving tunable light emission after device fabrication remains a significant challenge, particularly when efficient amplification is required. Hybrid metasurfaces, which integrate several nanostructured materials to form optical resonators, have emerged as promising candidates to overcome these limitations by providing a high degree of flexibility in emission control and enhanced amplification. In this work, we demonstrate tunable amplified photoluminescence (PL) in nanocrystalline silicon (nc-Si) quantum dots (QDs) embedded in a hybrid metasurface consisting of amorphous silicon (a-Si) and a low-loss phase change material (PCM) antimony trisulfide (Sb2S3). The nc-Si QDs maintain a high PL efficiency and stability at elevated temperatures, offering reliable and tunable phase transitions in the PCM. The hybrid metasurface supports dual quasi-bound states in the continuum (BICs) to achieve Q-factors up to 225. The dual BIC cavity enables tunable amplified PL by a factor of 15 with a wavelength shift of up to 105 nm via dimensional modulation. Meanwhile, all-optical tunable PL emission across a 24 nm wavelength range has been achieved when PCMs are tuned from the amorphous to crystalline phase. Furthermore, we propose a high Q-factor metalens to focus the tunable amplified PL, extending the diffraction-limited focusing tunability into the near infrared (NIR). This work paves the way for highly efficient quantum light sources using reconfigurable nanophotonic devices in next-generation photonic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20173v1-abstract-full').style.display = 'none'; document.getElementById('2410.20173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19634">arXiv:2410.19634</a> <span> [<a href="https://arxiv.org/pdf/2410.19634">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Binding memory of liquid molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qin%2C+S">Shiyi Qin</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhi Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Huimin Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiaoli Wang</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+S">Shangguo Hou</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+K">Kai Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19634v1-abstract-short" style="display: inline;"> Understanding the binding dynamics of liquid molecules is of fundamental importance in physical and life sciences. However, nanoscale fast dynamics pose great challenges for experimental characterization. Conventionally, the binding dynamics have been assumed to be memoryless. Here, we integrate large scale computer simulation, scaling theory, and real-time single particle tracking microscopy with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19634v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19634v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19634v1-abstract-full" style="display: none;"> Understanding the binding dynamics of liquid molecules is of fundamental importance in physical and life sciences. However, nanoscale fast dynamics pose great challenges for experimental characterization. Conventionally, the binding dynamics have been assumed to be memoryless. Here, we integrate large scale computer simulation, scaling theory, and real-time single particle tracking microscopy with high spatiotemporal precision to unveil a universal memory effect in the binding dynamics of liquid molecules. This binding memory can be quantified by a binding time autocorrelation function, whose power-law decay depends not only on the binding affinity, but also on the topological and materials properties of the surrounding environment. Context-dependent biomolecular binding memory is likely exploited by biological systems to regulate biochemical reactions and biophysical processes. Deciphering this binding memory offers a novel strategy to probe complex biological systems and advanced soft materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19634v1-abstract-full').style.display = 'none'; document.getElementById('2410.19634v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15779">arXiv:2410.15779</a> <span> [<a href="https://arxiv.org/pdf/2410.15779">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Piezoelectric Manipulation and Engineering for Layertronics in Two-Dimensional Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+J">Jianke Tian</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jia Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hengbo Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Ze Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Linyang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+G">Guodong Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+J">Junjie Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15779v1-abstract-short" style="display: inline;"> The electronic transport characteristics of two-dimensional (2D) systems have widespread application prospects in the fabrication of multifunctional nanodevices. However, the current research for basic transport phenomena, such as anomalous valley Hall effect (AVHE) and piezoelectric response, is limited to discrete discussion. Here, we theoretically propose a valley-piezoelectricity coupling stra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15779v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15779v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15779v1-abstract-full" style="display: none;"> The electronic transport characteristics of two-dimensional (2D) systems have widespread application prospects in the fabrication of multifunctional nanodevices. However, the current research for basic transport phenomena, such as anomalous valley Hall effect (AVHE) and piezoelectric response, is limited to discrete discussion. Here, we theoretically propose a valley-piezoelectricity coupling strategy beyond the existing paradigm to realize AVHE and layer Hall effect (LHE) in ferrovalley (FV) systems, and its essential principle can be extended to general valleytronic materials. Through first-principles calculations, we demonstrate that the large polarized electric field of 2.8*106 (1.67*107) V/m can be induced by 0.1% uniaxial strain in FV 2H-LaHF (1T-LaHF) monolayers. In addition, the microscopic mechanism of interlayer antiferromagnetic (AFM) state of 2H-LaHF bilayer is uncovered by the spin Hamiltonian and super-superexchange (SSE) interaction. Our findings pave the way for new explorations of valley Hall-related effect involving piezoelectricity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15779v1-abstract-full').style.display = 'none'; document.getElementById('2410.15779v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15769">arXiv:2410.15769</a> <span> [<a href="https://arxiv.org/pdf/2410.15769">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin-layer coupling in altermagnets multilayer: a design principle for spintronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+J">Jianke Tian</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jia Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hengbo Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Ze Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Linyang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+G">Guodong Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+J">Junjie Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15769v1-abstract-short" style="display: inline;"> The discovery of collinear symmetric-compensated altermagnets (AM) with intrinsic spin splitting provides a route towards energy-efficient and ultrafast device applications. Here, using first-principles calculations and symmetry analysis, we propose a series of AM Cr2SX (X=O, S, Se) monolayer and explore the spin splitting in Cr2SX multilayer. A general design principle for realizing the spin-laye… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15769v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15769v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15769v1-abstract-full" style="display: none;"> The discovery of collinear symmetric-compensated altermagnets (AM) with intrinsic spin splitting provides a route towards energy-efficient and ultrafast device applications. Here, using first-principles calculations and symmetry analysis, we propose a series of AM Cr2SX (X=O, S, Se) monolayer and explore the spin splitting in Cr2SX multilayer. A general design principle for realizing the spin-layer coupling in odd/even-layer is mapped out based on the comprehensive analysis of spin group symmetry. The spin splitting behavior related with the MzUt, Mz and ML symmetries in AM multilayer can be significantly modulated by magnetic orders, crystal symmetry and external perpendicular gate field (Ez). Due to the spin-compensated bands of sublayers linked by overall Mz and interlayers ML symmetries, the Cr2S2 odd-layer exhibits the unique coexistence of spin splitting and spin degeneracy at high symmetric paths and X/Y valley, respectively. Furthermore, owing to the higher priority of overall ML symmetry compared to interlayers ML symmetry in AM even-layer, the spin-layer coupling of AM multilayer shows strong odd/even-layer dependence. Our work not only offer a new direction for manipulating spin splitting, but also greatly enrich the research on AM monolayer and multilayer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15769v1-abstract-full').style.display = 'none'; document.getElementById('2410.15769v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15455">arXiv:2410.15455</a> <span> [<a href="https://arxiv.org/pdf/2410.15455">pdf</a>, <a href="https://arxiv.org/format/2410.15455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of quantum information collapse-and-revival in a strongly-interacting Rydberg atom array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiang%2C+D">De-Sheng Xiang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yao-Wen Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hao-Xiang Liu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+P">Peng Zhou</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+D">Dong Yuan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shun-Yao Zhang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+B">Biao Xu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Lu Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yitong Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Lin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15455v1-abstract-short" style="display: inline;"> Interactions of isolated quantum many-body systems typically scramble local information into the entire system and make it unrecoverable. Ergodicity-breaking systems possess the potential to exhibit fundamentally different information scrambling dynamics beyond this paradigm. For many-body localized systems with strong ergodicity breaking, local transport vanishes and information scrambles logarit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15455v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15455v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15455v1-abstract-full" style="display: none;"> Interactions of isolated quantum many-body systems typically scramble local information into the entire system and make it unrecoverable. Ergodicity-breaking systems possess the potential to exhibit fundamentally different information scrambling dynamics beyond this paradigm. For many-body localized systems with strong ergodicity breaking, local transport vanishes and information scrambles logarithmically slowly. Whereas in Rydberg atom arrays, local qubit flips induce dynamical retardation on surrounding qubits through the Rydberg blockade effect, giving rise to quantum many-body scars that weakly break ergodicity, and resulting in the predicted unconventional quantum information spreading behaviours. Here, we present the first measurements of out-of-time-ordered correlators and Holevo information in a Rydberg atom array, enabling us to precisely track quantum information scrambling and transport dynamics. By leveraging these tools, we observe a novel spatio-temporal collapse-and-revival behaviour of quantum information, which differs from both typical chaotic and many-body localized systems. Our experiment sheds light on the unique information dynamics in many-body systems with kinetic constraints, and demonstrates an effective digital-analogue approach to coherently reverse time evolution and steer information propagation in near-term quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15455v1-abstract-full').style.display = 'none'; document.getElementById('2410.15455v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures + Supplementary Information 37 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13202">arXiv:2410.13202</a> <span> [<a href="https://arxiv.org/pdf/2410.13202">pdf</a>, <a href="https://arxiv.org/format/2410.13202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Anatomy of Thermally Interplayed Spin-Orbit Torque Driven Antiferromagnetic Switching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+W">Wenlong Cai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zanhong Chen</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuzhang Shi</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+D">Daoqian Zhu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+G">Guang Yang</a>, <a href="/search/physics?searchtype=author&query=Du%2C+A">Ao Du</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+S">Shiyang Lu</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+K">Kaihua Cao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongxi Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+K">Kewen Shi</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+W">Weisheng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13202v1-abstract-short" style="display: inline;"> Current-induced antiferromagnetic (AFM) switching remains critical in spintronics, yet the interplay between thermal effects and spin torques still lacks clear clarification. Here we experimentally investigate the thermally interplayed spin-orbit torque induced AFM switching in magnetic tunnel junctions via pulse-width dependent reversal and time-resolved measurements. By introducing the Langevin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13202v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13202v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13202v1-abstract-full" style="display: none;"> Current-induced antiferromagnetic (AFM) switching remains critical in spintronics, yet the interplay between thermal effects and spin torques still lacks clear clarification. Here we experimentally investigate the thermally interplayed spin-orbit torque induced AFM switching in magnetic tunnel junctions via pulse-width dependent reversal and time-resolved measurements. By introducing the Langevin random field into the AFM precession equation, we establish a novel AFM switching model that anatomically explains the experimental observations. Our findings elucidate the currentinduced AFM switching mechanism and offer significant promise for advancements in spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13202v1-abstract-full').style.display = 'none'; document.getElementById('2410.13202v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11207">arXiv:2410.11207</a> <span> [<a href="https://arxiv.org/pdf/2410.11207">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Cross-Dataset Generalization in Deep Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xuyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H">Haofan Huang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Dawei Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhuang%2C+S">Songlin Zhuang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+S">Shensheng Han</a>, <a href="/search/physics?searchtype=author&query=Lai%2C+P">Puxiang Lai</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Honglin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11207v1-abstract-short" style="display: inline;"> Deep learning has been extensively used in various fields, such as phase imaging, 3D imaging reconstruction, phase unwrapping, and laser speckle reduction, particularly for complex problems that lack analytic models. Its data-driven nature allows for implicit construction of mathematical relationships within the network through training with abundant data. However, a critical challenge in practica… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11207v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11207v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11207v1-abstract-full" style="display: none;"> Deep learning has been extensively used in various fields, such as phase imaging, 3D imaging reconstruction, phase unwrapping, and laser speckle reduction, particularly for complex problems that lack analytic models. Its data-driven nature allows for implicit construction of mathematical relationships within the network through training with abundant data. However, a critical challenge in practical applications is the generalization issue, where a network trained on one dataset struggles to recognize an unknown target from a different dataset. In this study, we investigate imaging through scattering media and discover that the mathematical relationship learned by the network is an approximation dependent on the training dataset, rather than the true mapping relationship of the model. We demonstrate that enhancing the diversity of the training dataset can improve this approximation, thereby achieving generalization across different datasets, as the mapping relationship of a linear physical model is independent of inputs. This study elucidates the nature of generalization across different datasets and provides insights into the design of training datasets to ultimately address the generalization issue in various deep learning-based applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11207v1-abstract-full').style.display = 'none'; document.getElementById('2410.11207v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02669">arXiv:2410.02669</a> <span> [<a href="https://arxiv.org/pdf/2410.02669">pdf</a>, <a href="https://arxiv.org/ps/2410.02669">ps</a>, <a href="https://arxiv.org/format/2410.02669">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Evaluation of tungsten influx rate using line emissions from W$^{5+}$ ions in EAST Tokamak </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+F">Fengling Zhang</a>, <a href="/search/physics?searchtype=author&query=Mitnik%2C+D">Dar铆o Mitnik</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Ling Zhang</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+R">Runjia Bao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Wenming Zhang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Y">Yunxin Cheng</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+A">Ailan Hu</a>, <a href="/search/physics?searchtype=author&query=Morita%2C+S">Shigeru Morita</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+X">Xiaobin Ding</a>, <a href="/search/physics?searchtype=author&query=Jie%2C+Y">Yinxian Jie</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haiqing Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02669v2-abstract-short" style="display: inline;"> The S/XB ratios (ionization per emitted photon) allow one to relate spectroscopic emissivity measurements to the impurity influx from a localized source. In this work, we determine the tungsten influx by examining two dominant EUV (Extreme Ultraviolet) line emissions at 382.13 脜and 394.07 脜, corresponding to the $4f 14 5f \rightarrow 4f 14 5d$ radiative transitions of the W$^{5+}$ ion. The ground… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02669v2-abstract-full').style.display = 'inline'; document.getElementById('2410.02669v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02669v2-abstract-full" style="display: none;"> The S/XB ratios (ionization per emitted photon) allow one to relate spectroscopic emissivity measurements to the impurity influx from a localized source. In this work, we determine the tungsten influx by examining two dominant EUV (Extreme Ultraviolet) line emissions at 382.13 脜and 394.07 脜, corresponding to the $4f 14 5f \rightarrow 4f 14 5d$ radiative transitions of the W$^{5+}$ ion. The ground configuration of W$^{5+}$ consists of the ground level and a metastable level, with the latter having a higher population than the ground state. Therefore, a simple approach assuming that the transitions are independent, i.e., only populated by a unique level source, requires correction. To address this, we have developed a fully collisional-radiative modeling in which 430 levels contribute to the ionization. We have utilized three advanced computational codes -- HULLAC (Hebrew University - Lawrence Livermore Atomic Code), AS (AutoStructure), and FAC (Flexible Atomic Code) -- for the atomic structure calculations. These codes provide the necessary information such as wavelengths, collisional and radiative transition rate coefficients. The FAC code was also used to calculate the direct electron-impact ionization under the distorted-wave approximation. We also included contributions to total ionization from excitation-autoionization processes up to $n = 15$ manifolds from the distorted-wave calculations. Subsequently, we used these results to ascertain the tungsten impurity influx in a dedicated discharge of the EAST tokamak, which operates with full tungsten divertors. In our findings, we observed that for the density range relevant to the edge region of a tokamak reactor, the S/XB ratios are almost independent of electron density but exhibit significant variation with electron temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02669v2-abstract-full').style.display = 'none'; document.getElementById('2410.02669v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span> [<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The hypothetical track-length fitting algorithm for energy measurement in liquid argon TPCs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v2-abstract-short" style="display: inline;"> This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v2-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v2-abstract-full" style="display: none;"> This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v2-abstract-full').style.display = 'none'; document.getElementById('2409.18288v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11648">arXiv:2409.11648</a> <span> [<a href="https://arxiv.org/pdf/2409.11648">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> On the electrochemical CO2 reduction by Bi-based catalysts: single crystals or mixture phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+M">Mengting Zhou</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongxia Liu</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+J">Juntao Yan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Q">Qingjun Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Rong Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Lei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11648v1-abstract-short" style="display: inline;"> Metallic bismuth is both non-toxic and cost-effective. Bi-based catalysts have demonstrated the ability to efficiently produce HCOOH through CO2RR while effectively inhibiting the HER. Although many experiments have been reported concerning its performance towards CO2 reduction, the impact its valence states and crystal faces on CO2RR selectivity (e.g. HCOOH versus CO) it still under debate. Here,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11648v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11648v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11648v1-abstract-full" style="display: none;"> Metallic bismuth is both non-toxic and cost-effective. Bi-based catalysts have demonstrated the ability to efficiently produce HCOOH through CO2RR while effectively inhibiting the HER. Although many experiments have been reported concerning its performance towards CO2 reduction, the impact its valence states and crystal faces on CO2RR selectivity (e.g. HCOOH versus CO) it still under debate. Here, we performed a comprehensive study via density functional theory, by including three typical valence states of Bi, such as 0 (Bi), +3 (Bi2O3) and +5 (Bi2O5), as well as their often-studied crystal facets. The results show that metallic Bi demonstrates a poor selectivity for HCOOH, but boasts a higher conversion rate for CO2. While Bi2O3 exhibits a good selectivity for HCOOH production, yet it displays a lower conversion rate for CO2. For Bi2O5, all studied surfaces show high energy barriers in both cases of HCOOH and CO production, and lower energy barriers for HER reactions, indicating that Bi at +5 valence state is not the good choice for 2e transfer reactions. Subsequently, we further examined the effects of oxygen contents on the selectivity of HCOOH and the conversion rate for CO2. Interestingly, we found that partial oxidization of Bi benefits both the selectivity and the conversion rate. With these observations, we suggest that a mixture of Bi (0) and Bi2O3 (+3) phases would be a better choice than single crystals for future experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11648v1-abstract-full').style.display = 'none'; document.getElementById('2409.11648v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10130">arXiv:2409.10130</a> <span> [<a href="https://arxiv.org/pdf/2409.10130">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.094308">10.1103/PhysRevB.110.094308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum walks of correlated photons in non-Hermitian photonic lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gao%2C+M">Mingyuan Gao</a>, <a href="/search/physics?searchtype=author&query=Sheng%2C+C">Chong Sheng</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yule Zhao</a>, <a href="/search/physics?searchtype=author&query=He%2C+R">Runqiu He</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+L">Liangliang Lu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+K">Kun Ding</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+S">Shining Zhu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hui Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10130v1-abstract-short" style="display: inline;"> Entanglement entropy characterizes the correlation of multi-particles and unveils the crucial features of open quantum systems. However, the experimental realization of exploring entanglement in non-Hermitian systems remains a challenge. In parallel, quantum walks have offered the possibility of studying the underlying mechanisms of non-Hermitian physics, which includes exceptional points, the non… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10130v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10130v1-abstract-full" style="display: none;"> Entanglement entropy characterizes the correlation of multi-particles and unveils the crucial features of open quantum systems. However, the experimental realization of exploring entanglement in non-Hermitian systems remains a challenge. In parallel, quantum walks have offered the possibility of studying the underlying mechanisms of non-Hermitian physics, which includes exceptional points, the non-Hermitian skin effect, and non-Bloch phase transitions. Unfortunately, these studies have only involved and prevailingly focused on the behavior of a single particle. Here, we propose and experimentally realize quantum walks of two indistinguishable photons in engineered non-Hermitian photonic lattices. We have successfully observed the unidirectional behavior of quantum walks in the bulk far from the edges induced by the skin effect. Moreover, we experimentally reveal the suppression of entanglement that is caused by the skin effect in non-Hermitian systems. Our study may facilitate a deep understanding of entanglement in open quantum many-body systems that are far from thermal equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10130v1-abstract-full').style.display = 'none'; document.getElementById('2409.10130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 5 figures,</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 094308 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09151">arXiv:2409.09151</a> <span> [<a href="https://arxiv.org/pdf/2409.09151">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Endoscopic Fourier-transform infrared spectroscopy through a fiber microprobe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kim%2C+J">Jaehyeon Kim</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+Y">Yue Tian</a>, <a href="/search/physics?searchtype=author&query=Qiao%2C+G">Guanhua Qiao</a>, <a href="/search/physics?searchtype=author&query=Villarta%2C+J+A">Julinna Abulencia Villarta</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+F">Fujia Zhao</a>, <a href="/search/physics?searchtype=author&query=He%2C+A">Andrew He</a>, <a href="/search/physics?searchtype=author&query=Ho%2C+R">Ruo-Jing Ho</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haoran Liu</a>, <a href="/search/physics?searchtype=author&query=Bhargava%2C+R">Rohit Bhargava</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yingjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09151v2-abstract-short" style="display: inline;"> Fourier-transform infrared spectroscopy (FTIR) is a powerful analytical method for not only the chemical identification of solid, liquid, and gas species, but also the quantification of their concentration. However, the chemical quantification capability of FTIR is significantly hindered when the analyte is surrounded by a strong IR absorbing medium, such as liquid solutions. To overcome this limi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09151v2-abstract-full').style.display = 'inline'; document.getElementById('2409.09151v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09151v2-abstract-full" style="display: none;"> Fourier-transform infrared spectroscopy (FTIR) is a powerful analytical method for not only the chemical identification of solid, liquid, and gas species, but also the quantification of their concentration. However, the chemical quantification capability of FTIR is significantly hindered when the analyte is surrounded by a strong IR absorbing medium, such as liquid solutions. To overcome this limit, here we develop an IR fiber microprobe that can be inserted into liquid medium, and obtain full FTIR spectra at points of interest. To benchmark this endoscopic FTIR method, we insert the microprobe into bulk water covering a ZnSe substrate and measure the IR transmittance of water as a function of the probe-substrate distance. The obtained vibrational modes, overall transmittance vs z profiles, quantitative absorption coefficients, and micro z-section IR transmittance spectra are all consistent with the standard IR absorption properties of water. The results pave the way for endoscopic chemical profiling inside bulk liquid solutions, promising for applications in many biological, chemical, and electrochemical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09151v2-abstract-full').style.display = 'none'; document.getElementById('2409.09151v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08910">arXiv:2409.08910</a> <span> [<a href="https://arxiv.org/pdf/2409.08910">pdf</a>, <a href="https://arxiv.org/format/2409.08910">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Classification of electronic structures and state preparation for quantum computation of reaction chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=M%C3%B6rchen%2C+M">Maximilian M枚rchen</a>, <a href="/search/physics?searchtype=author&query=Low%2C+G+H">Guang Hao Low</a>, <a href="/search/physics?searchtype=author&query=Weymuth%2C+T">Thomas Weymuth</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongbin Liu</a>, <a href="/search/physics?searchtype=author&query=Troyer%2C+M">Matthias Troyer</a>, <a href="/search/physics?searchtype=author&query=Reiher%2C+M">Markus Reiher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08910v1-abstract-short" style="display: inline;"> Quantum computation for chemical problems will require the construction of guiding states with sufficient overlap with a target state. Since easily available and initializable mean-field states are characterized by an overlap that is reduced for multi-configurational electronic structures and even vanishes with growing system size, we here investigate the severity of state preparation for reaction… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08910v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08910v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08910v1-abstract-full" style="display: none;"> Quantum computation for chemical problems will require the construction of guiding states with sufficient overlap with a target state. Since easily available and initializable mean-field states are characterized by an overlap that is reduced for multi-configurational electronic structures and even vanishes with growing system size, we here investigate the severity of state preparation for reaction chemistry. We emphasize weaknesses in current traditional approaches (even for weakly correlated molecules) and highlight the advantage of quantum phase estimation algorithms. An important result is the introduction of a new classification scheme for electronic structures based on orbital entanglement information. We identify two categories of multi-configurational molecules. Whereas class-1 molecules are dominated by very few determinants and often found in reaction chemistry, class-2 molecules do not allow one to single out a reasonably sized number of important determinants. The latter are particularly hard for traditional approaches and an ultimate target for quantum computation. Some open-shell iron-sulfur clusters belong to class 2. We discuss the role of the molecular orbital basis set and show that true class-2 molecules remain in this class independent of the choice of the orbital basis, with the iron-molybdenum cofactor of nitrogenase being a prototypical example. We stress that class-2 molecules can be build in a systematic fashion from open-shell centers or unsaturated carbon atoms. Our key result is that it will always be possible to initialize a guiding state for chemical reaction chemistry in the ground state based on initial low-cost approximate electronic structure information, which is facilitated by the finite size of the atomistic structures to be considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08910v1-abstract-full').style.display = 'none'; document.getElementById('2409.08910v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">58 pages, 10 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06943">arXiv:2409.06943</a> <span> [<a href="https://arxiv.org/pdf/2409.06943">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Optomechanical sensor network with fiber Bragg gratings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+S">Shiwei Yang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L">Linrun Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hanghua Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Quansen Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+H">Heng Shen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yongmin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06943v1-abstract-short" style="display: inline;"> Cavity optomechanics offers a versatile platform for both fundamental physics and ultrasensitive sensing. Importantly, resonant enhancement in both optical and mechanical responses enables the highly sensitive optical detection of small forces, displacements, vibrations, and magnetic fields, enabling it a promising candidate of the next generation of ultrasensitive sensor networks. However, this i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06943v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06943v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06943v1-abstract-full" style="display: none;"> Cavity optomechanics offers a versatile platform for both fundamental physics and ultrasensitive sensing. Importantly, resonant enhancement in both optical and mechanical responses enables the highly sensitive optical detection of small forces, displacements, vibrations, and magnetic fields, enabling it a promising candidate of the next generation of ultrasensitive sensor networks. However, this is impeded by the fiber optic-incompatibility and intrinsic nature of existing optomechanical sensors. Here, we report the first demonstration of an optomechanical sensor network in terms of magnetic field detection, wherein multiple fiber-optic optomechanical sensors are connected into a standard single mode fiber. Building upon a commercially available fiber Bragg gratings, we realize a robust low-loss, low-noise, and polarization-insensitive coupling with light sources in a way compatible with fiber optics. This thus enables our optomechanical senor to fulfill the requirements for ultrasensitive sensor networks. Furthermore, in this sensor network we demonstrate the sensitivity of 8.73 pm/Gs for DC magnetic fields and 537 fT/Hz1/2 for AC magnetic fields in a magnetically unshielded environment with the ambient temperature and pressure, better than the reported values in previous optomechanical magnetometers. Our work sheds light on exploiting cavity optomechanics in the practical applications and ultrasensitive senor networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06943v1-abstract-full').style.display = 'none'; document.getElementById('2409.06943v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05094">arXiv:2409.05094</a> <span> [<a href="https://arxiv.org/pdf/2409.05094">pdf</a>, <a href="https://arxiv.org/format/2409.05094">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Particle resuspension from complex multilayer deposits by laminar flows: statistical analysis and modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hao Liu</a>, <a href="/search/physics?searchtype=author&query=Bossy%2C+M">Mireille Bossy</a>, <a href="/search/physics?searchtype=author&query=Vowinckel%2C+B">Bernhard Vowinckel</a>, <a href="/search/physics?searchtype=author&query=Henry%2C+C">Christophe Henry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05094v1-abstract-short" style="display: inline;"> Particle resuspension refers to the physical process by which solid particles deposited on a surface are, first, detached and, then, entrained away by the action of a fluid flow. In this study, we explore the dynamics of large and heavy spherical particles forming a complex sediment bed which is exposed to a laminar shear flow. For that purpose, we rely on fine-scale simulations based on a fully-r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05094v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05094v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05094v1-abstract-full" style="display: none;"> Particle resuspension refers to the physical process by which solid particles deposited on a surface are, first, detached and, then, entrained away by the action of a fluid flow. In this study, we explore the dynamics of large and heavy spherical particles forming a complex sediment bed which is exposed to a laminar shear flow. For that purpose, we rely on fine-scale simulations based on a fully-resolved flow field around individual particles whose motion is explicitly tracked. Using statistical tools, we characterize several features: (a) the overall bed dynamics (e.g. the average particle velocity as a function of the elevation), (b) the evolution of the top surface of the sediment bed (e.g. distribution of the surface elevation or of the surface slope) and (c) the dynamics of individual particles as they detach from or re-attach to the sediment bed (including the frequency of these events, and the velocity difference / surface angle for each event). These results show that particles detach more frequently around the peaks in the top surface of the sediment bed and that, once detached, they undergo short hops as particles quickly sediment towards the sediment bed. A simple model based on the surface characteristics (including its slope and elevation) is proposed to reproduce the detachment ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05094v1-abstract-full').style.display = 'none'; document.getElementById('2409.05094v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03383">arXiv:2409.03383</a> <span> [<a href="https://arxiv.org/pdf/2409.03383">pdf</a>, <a href="https://arxiv.org/format/2409.03383">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Generating customized field concentration via virtual surface transmission resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+Y">Yueguang Hu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongyu Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xianchao Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Deyue Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03383v3-abstract-short" style="display: inline;"> In this paper, we develop a mathematical framework for generating strong customized field concentration locally around the inhomogeneous medium inclusion via surface transmission resonance. The purpose of this paper is twofold. Firstly, we show that for a given inclusion embedded in an otherwise uniformly homogeneous background space, we can design an incident field to generate strong localized fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03383v3-abstract-full').style.display = 'inline'; document.getElementById('2409.03383v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03383v3-abstract-full" style="display: none;"> In this paper, we develop a mathematical framework for generating strong customized field concentration locally around the inhomogeneous medium inclusion via surface transmission resonance. The purpose of this paper is twofold. Firstly, we show that for a given inclusion embedded in an otherwise uniformly homogeneous background space, we can design an incident field to generate strong localized field concentration at any specified places around the inclusion. The aforementioned customized field concentration is crucially reliant on the peculiar spectral and geometric patterns of certain transmission eigenfunctions. Secondly, we prove the existence of a sequence of transmission eigenfunctions for a specific wavenumber and they exhibit distinct surface resonant behaviors, accompanying strong surface-localization and surface-oscillation properties. These eigenfunctions as the surface transmission resonant modes fulfill the requirement for generating the field concentration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03383v3-abstract-full').style.display = 'none'; document.getElementById('2409.03383v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 35P25; 35R30 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02240">arXiv:2409.02240</a> <span> [<a href="https://arxiv.org/pdf/2409.02240">pdf</a>, <a href="https://arxiv.org/format/2409.02240">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Computational Methods to Investigate Intrinsically Disordered Proteins and their Complexes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Z+H">Zi Hao Liu</a>, <a href="/search/physics?searchtype=author&query=Tsanai%2C+M">Maria Tsanai</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+O">Oufan Zhang</a>, <a href="/search/physics?searchtype=author&query=Forman-Kay%2C+J">Julie Forman-Kay</a>, <a href="/search/physics?searchtype=author&query=Head-Gordon%2C+T">Teresa Head-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02240v1-abstract-short" style="display: inline;"> In 1999 Wright and Dyson highlighted the fact that large sections of the proteome of all organisms are comprised of protein sequences that lack globular folded structures under physiological conditions. Since then the biophysics community has made significant strides in unraveling the intricate structural and dynamic characteristics of intrinsically disordered proteins (IDPs) and intrinsically dis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02240v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02240v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02240v1-abstract-full" style="display: none;"> In 1999 Wright and Dyson highlighted the fact that large sections of the proteome of all organisms are comprised of protein sequences that lack globular folded structures under physiological conditions. Since then the biophysics community has made significant strides in unraveling the intricate structural and dynamic characteristics of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). Unlike crystallographic beamlines and their role in streamlining acquisition of structures for folded proteins, an integrated experimental and computational approach aimed at IDPs/IDRs has emerged. In this Perspective we aim to provide a robust overview of current computational tools for IDPs and IDRs, and most recently their complexes and phase separated states, including statistical models, physics-based approaches, and machine learning methods that permit structural ensemble generation and validation against many solution experimental data types. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02240v1-abstract-full').style.display = 'none'; document.getElementById('2409.02240v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01594">arXiv:2409.01594</a> <span> [<a href="https://arxiv.org/pdf/2409.01594">pdf</a>, <a href="https://arxiv.org/format/2409.01594">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Solute-mediated colloidal vortex in a microfluidic T-junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haoyu Liu</a>, <a href="/search/physics?searchtype=author&query=Pahlavan%2C+A+A">Amir A. Pahlavan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01594v1-abstract-short" style="display: inline;"> Solute gradients next to an interface drive a diffusioosmotic flow, the origin of which lies in the intermolecular interactions between the solute and the interface. These flows on the surface of colloids introduce an effective slip velocity, driving their diffusiophoretic migration. In confined environments, we expect the interplay between diffusiophoretic migration and diffusioosmotic flows near… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01594v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01594v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01594v1-abstract-full" style="display: none;"> Solute gradients next to an interface drive a diffusioosmotic flow, the origin of which lies in the intermolecular interactions between the solute and the interface. These flows on the surface of colloids introduce an effective slip velocity, driving their diffusiophoretic migration. In confined environments, we expect the interplay between diffusiophoretic migration and diffusioosmotic flows near the walls to govern the motion of colloids. These near-wall osmotic flows are, however, often considered weak and neglected. Here, using microfluidic experiments in a T-junction, numerical simulations, and theoretical modeling, we show that the interplay between osmotic and phoretic effects leads to unexpected outcomes: forming a colloidal vortex in the absence of inertial effects, and demixing and focusing of the colloids in the direction opposite to what is commonly expected from diffusiophoresis alone. We show these colloidal vortices to be persistent for a range of salt types, salt gradients, and flow rates, and establish a criterion for their emergence. Our work sheds light on how boundaries modulate the solute-mediated transport of colloids in confined environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01594v1-abstract-full').style.display = 'none'; document.getElementById('2409.01594v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01203">arXiv:2409.01203</a> <span> [<a href="https://arxiv.org/pdf/2409.01203">pdf</a>, <a href="https://arxiv.org/format/2409.01203">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Deriving a working hypothesis in thermodynamics on electromagnetic work from first principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Q+H">Q. H. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01203v1-abstract-short" style="display: inline;"> The Maxwell stress tensor for the linear and uniform media in static electromagnetic field implies a new form of pressure caused by the mutual field energy density. When it is introduced into the fundamental thermodynamic equation for the media, we have a new pressure-volume work term. The combination of new term and proper electromagnetic work term naturally gives the well-known form that is curr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01203v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01203v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01203v1-abstract-full" style="display: none;"> The Maxwell stress tensor for the linear and uniform media in static electromagnetic field implies a new form of pressure caused by the mutual field energy density. When it is introduced into the fundamental thermodynamic equation for the media, we have a new pressure-volume work term. The combination of new term and proper electromagnetic work term naturally gives the well-known form that is currently obtained by a working hypothesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01203v1-abstract-full').style.display = 'none'; document.getElementById('2409.01203v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00900">arXiv:2409.00900</a> <span> [<a href="https://arxiv.org/pdf/2409.00900">pdf</a>, <a href="https://arxiv.org/format/2409.00900">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Scaling laws for the sound generation of bio-inspired flapping wings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+L">Li Wang</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+X">Xueyu Ji</a>, <a href="/search/physics?searchtype=author&query=Young%2C+J">John Young</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hao Liu</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+F">Fang-Bao Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00900v3-abstract-short" style="display: inline;"> Bio-inspired flapping wings have been extensively studied for their remarkable aerodynamic performance. Recently, their noise emission has attracted growing interest, but a careful analysis of scaling laws for their sound generation is missing. This work presents scaling laws for the sound generation of bio-inspired flapping wings during hovering flight based on the potential flow theory and Ffowc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00900v3-abstract-full').style.display = 'inline'; document.getElementById('2409.00900v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00900v3-abstract-full" style="display: none;"> Bio-inspired flapping wings have been extensively studied for their remarkable aerodynamic performance. Recently, their noise emission has attracted growing interest, but a careful analysis of scaling laws for their sound generation is missing. This work presents scaling laws for the sound generation of bio-inspired flapping wings during hovering flight based on the potential flow theory and Ffowcs Williams-Hawkings acoustic analogy. Direct numerical simulations considering a range of parameters including the Reynolds number, Mach number and wing kinematics confirms that the proposed scaling laws capture the major physics involved and their predictions agree well with the numerical results. The scaling laws can be used as a powerful tool for engineers in the design of micro-aerial vehicles considering both aerodynamics and acoustics performances simultaneously. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00900v3-abstract-full').style.display = 'none'; document.getElementById('2409.00900v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12868">arXiv:2408.12868</a> <span> [<a href="https://arxiv.org/pdf/2408.12868">pdf</a>, <a href="https://arxiv.org/format/2408.12868">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Effective field theories of dissipative fluids with one-form symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Vardhan%2C+S">Shreya Vardhan</a>, <a href="/search/physics?searchtype=author&query=Grozdanov%2C+S">Sa拧o Grozdanov</a>, <a href="/search/physics?searchtype=author&query=Leutheusser%2C+S">Samuel Leutheusser</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12868v1-abstract-short" style="display: inline;"> A system with a one-form global symmetry at finite temperature can be viewed as a dissipative fluid of string-like objects. In this work, we classify and construct the most general effective field theories for hydrodynamics of such string fluids, in a probe limit where the one-form charge density is decoupled from the energy-momentum tensor. We show that at leading order in the derivative expansio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12868v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12868v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12868v1-abstract-full" style="display: none;"> A system with a one-form global symmetry at finite temperature can be viewed as a dissipative fluid of string-like objects. In this work, we classify and construct the most general effective field theories for hydrodynamics of such string fluids, in a probe limit where the one-form charge density is decoupled from the energy-momentum tensor. We show that at leading order in the derivative expansion, there are two distinct types of diffusive transport in a string fluid depending on the discrete spacetime symmetries present in it. One particular application of interest is magnetohydrodynamics (MHD), where the effective field theories describe the diffusion of magnetic field lines. Due to the distinction between the effective field theories for different discrete symmetries, we show that the MHD of a fluid with charge conjugation symmetry is qualitatively different from that of a neutron star, which we previously discussed in arXiv:2207.01636. The explicit effective actions that we write down can be used to obtain the dispersion relations $蠅(k)$ up to cubic order in momenta for each of the different discrete symmetry choices. As another application of this formalism, we show that when the one-form symmetry is spontaneously broken, the effective action reduces to the Maxwell theory. This confirms the interpretation of the photon as a Goldstone boson arising from the spontaneous breaking of a one-form symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12868v1-abstract-full').style.display = 'none'; document.getElementById('2408.12868v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5752 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12725">arXiv:2408.12725</a> <span> [<a href="https://arxiv.org/pdf/2408.12725">pdf</a>, <a href="https://arxiv.org/format/2408.12725">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12725v1-abstract-short" style="display: inline;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12725v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12725v1-abstract-full" style="display: none;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'none'; document.getElementById('2408.12725v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2833-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11872">arXiv:2408.11872</a> <span> [<a href="https://arxiv.org/pdf/2408.11872">pdf</a>, <a href="https://arxiv.org/ps/2408.11872">ps</a>, <a href="https://arxiv.org/format/2408.11872">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Two points are enough </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hao Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yanbin Zhao</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+H">Huarong Zheng</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+X">Xiulin Fan</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Zhihua Deng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">Mengchi Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xingkai Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhiyang Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+J">Jianguo Lu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jian Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11872v1-abstract-short" style="display: inline;"> Prognosis and diagnosis play an important role in accelerating the development of lithium-ion batteries, as well as reliable and long-life operation. In this work, we answer an important question: What is the minimum amount of data required to extract features for accurate battery prognosis and diagnosis? Based on the first principle, we successfully extracted the best two-point feature (BTPF) for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11872v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11872v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11872v1-abstract-full" style="display: none;"> Prognosis and diagnosis play an important role in accelerating the development of lithium-ion batteries, as well as reliable and long-life operation. In this work, we answer an important question: What is the minimum amount of data required to extract features for accurate battery prognosis and diagnosis? Based on the first principle, we successfully extracted the best two-point feature (BTPF) for accurate battery prognosis and diagnosis using the fewest data points (only two) and the simplest feature selection method (Pearson correlation coefficient). The BTPF extraction method is tested on 820 cells from 6 open-source datasets (covering five different chemistry types, seven manufacturers, and three data types). It achieves comparable accuracy to state-of-the-art features in both prognosis and diagnosis tasks. This work challenges the cognition of existing studies on the difficulty of battery prognosis and diagnosis tasks, subverts the fixed pattern of establishing prognosis and diagnosis methods for complex dynamic systems through deliberate feature engineering, highlights the promise of data-driven methods for field battery prognosis and diagnosis applications, and provides a new benchmark for future studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11872v1-abstract-full').style.display = 'none'; document.getElementById('2408.11872v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09470">arXiv:2408.09470</a> <span> [<a href="https://arxiv.org/pdf/2408.09470">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Rapid quench annealing of Er implanted Si for quantum networking applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hughes%2C+M+A">Mark A. Hughes</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Huan Liu</a>, <a href="/search/physics?searchtype=author&query=Brookfield%2C+A">Adam Brookfield</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tianrui Wang</a>, <a href="/search/physics?searchtype=author&query=Crowe%2C+I+F">Iain F. Crowe</a>, <a href="/search/physics?searchtype=author&query=Dan%2C+Y">Yaping Dan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09470v1-abstract-short" style="display: inline;"> Erbium implanted silicon (Er:Si) is a promising platform for quantum networking applications, but a major obstacle is the formation of multiple Er centres. We show that the previously identified cubic centre (Er-C) has C2v or lower symmetry. Using crystal field analysis of Er-C and other Er centres, and by comparison with extended X-ray absorption fine structure (EXAFS) measurements, we show that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09470v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09470v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09470v1-abstract-full" style="display: none;"> Erbium implanted silicon (Er:Si) is a promising platform for quantum networking applications, but a major obstacle is the formation of multiple Er centres. We show that the previously identified cubic centre (Er-C) has C2v or lower symmetry. Using crystal field analysis of Er-C and other Er centres, and by comparison with extended X-ray absorption fine structure (EXAFS) measurements, we show that Er centres can be arranged in a sequence, ranging from entirely Si coordinated, through mixed Si and oxygen (O) coordination, to entirely O coordinated. G-factors calculated from our crystal field fitting closely match those determined by Zeeman splitting and electron paramagnetic resonance (EPR) measurements. We co-implanted Si with Er and O (each to a concentration of 1019 cm-3). By increasing the quenching rate of the subsequent thermal anneal from ~100 掳C/s to ~1000 掳C/s, we change the dominant optically active centre, formed from Er2O3 clusters to the less energetically favourable Er-C centre with mixed Si and O coordination. Temperature dependent photoluminescence (PL) shows that Er2O3 clusters and Er-C centres have an O-related defect state at ~200 and 90 meV above the 4I13/2 Er manifold, respectively. PL lifetime measurements show that the Er2O3 clusters and Er-C centres fall into two or three classes, characterised by different non-radiative PL decay rates. Our high quench rate annealing process could facilitate the formation of a single, optically active Er centre, which is preferable for quantum networking applications of Er:Si. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09470v1-abstract-full').style.display = 'none'; document.getElementById('2408.09470v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00582">arXiv:2408.00582</a> <span> [<a href="https://arxiv.org/pdf/2408.00582">pdf</a>, <a href="https://arxiv.org/format/2408.00582">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.092011">10.1103/PhysRevD.110.092011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1341 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00582v1-abstract-short" style="display: inline;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00582v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00582v1-abstract-full" style="display: none;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'none'; document.getElementById('2408.00582v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-211, FERMILAB-PUB-24-0216-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, (2024) 092011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19641">arXiv:2407.19641</a> <span> [<a href="https://arxiv.org/pdf/2407.19641">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> High efficient 120W 1018nm single-frequency narrow linewidth amplification based on wide-tunable DBR fiber seed source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+P">Pan Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Linfeng Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mingze Wang</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+K">KaiMing Cao</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+R">Ruihong Gao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Heshan Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+M">Meng Shi</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Z">Ziren Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19641v1-abstract-short" style="display: inline;"> This paper reports the achievement of 120W single-frequency narrow linewidth 1018nm laser based on wide-tunable DBR fiber seed source. The DBR structure seed source uses 8mm long doped optical fibers with a line width of 3.25k. The wavelength tuning range of this seed source exceeds 1.5 nm with the temperature range from 1掳C to 95掳C. The tuning wavelength and temperature show extremely high linear… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19641v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19641v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19641v1-abstract-full" style="display: none;"> This paper reports the achievement of 120W single-frequency narrow linewidth 1018nm laser based on wide-tunable DBR fiber seed source. The DBR structure seed source uses 8mm long doped optical fibers with a line width of 3.25k. The wavelength tuning range of this seed source exceeds 1.5 nm with the temperature range from 1掳C to 95掳C. The tuning wavelength and temperature show extremely high linearity, and there is no mode hopping during the tuning process. By adopting a multi-level fiber amplification structure, selecting appropriate doped fibers and optimizing their length, an output power exceeding 120W of 1018nm laser has been achieved. Measurement results indicate that the slope efficiency of the main amplification 77.3%, with an amplified spontaneous emission (ASE) suppression ratio greater than 60 dB. he output linewidth is 10.3 kHz, and the beam quality factor M2 is less than 1.3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19641v1-abstract-full').style.display = 'none'; document.getElementById('2407.19641v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10339">arXiv:2407.10339</a> <span> [<a href="https://arxiv.org/pdf/2407.10339">pdf</a>, <a href="https://arxiv.org/format/2407.10339">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Supernova Pointing Capabilities of DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10339v1-abstract-short" style="display: inline;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10339v1-abstract-full" style="display: none;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'none'; document.getElementById('2407.10339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0319-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09315">arXiv:2407.09315</a> <span> [<a href="https://arxiv.org/pdf/2407.09315">pdf</a>, <a href="https://arxiv.org/format/2407.09315">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> RBMD: A molecular dynamics package enabling to simulate 10 million all-atom particles in a single graphics processing unit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gao%2C+W">Weihang Gao</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+T">Teng Zhao</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yongfa Guo</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+J">Jiuyang Liang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Huan Liu</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+M">Maoying Luo</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Z">Zedong Luo</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+W">Wei Qin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yichao Wang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Q">Qi Zhou</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+S">Shi Jin</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Z">Zhenli Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09315v3-abstract-short" style="display: inline;"> This paper introduces a random-batch molecular dynamics (RBMD) package for fast simulations of particle systems at the nano/micro scale. Different from existing packages, the RBMD uses random batch methods for nonbonded interactions of particle systems. The long-range part of Coulomb interactions is calculated in Fourier space by the random batch Ewald algorithm, which achieves linear complexity a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09315v3-abstract-full').style.display = 'inline'; document.getElementById('2407.09315v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09315v3-abstract-full" style="display: none;"> This paper introduces a random-batch molecular dynamics (RBMD) package for fast simulations of particle systems at the nano/micro scale. Different from existing packages, the RBMD uses random batch methods for nonbonded interactions of particle systems. The long-range part of Coulomb interactions is calculated in Fourier space by the random batch Ewald algorithm, which achieves linear complexity and superscalability, surpassing classical lattice-based Ewald methods. For the short-range part, the random batch list algorithm is used to construct neighbor lists, significantly reducing both computational and memory costs. The RBMD is implemented on GPU-CPU heterogeneous architectures, with classical force fields for all-atom systems. Benchmark systems are used to validate accuracy and performance of the package. Comparison with the particle-particle particle-mesh method and the Verlet list method in the LAMMPS package is performed on three different NVIDIA GPUs, demonstrating high efficiency of the RBMD on heterogeneous architectures. Our results also show that the RBMD enables simulations on a single GPU with a CPU core up to 10 million particles. Typically, for systems of one million particles, the RBMD allows simulating all-atom systems with a high efficiency of 8.20 ms per step, demonstrating the attractive feature for running large-scale simulations of practical applications on a desktop machine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09315v3-abstract-full').style.display = 'none'; document.getElementById('2407.09315v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span> [<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00271">arXiv:2407.00271</a> <span> [<a href="https://arxiv.org/pdf/2407.00271">pdf</a>, <a href="https://arxiv.org/format/2407.00271">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Minimum Reduced-Order Models via Causal Inference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+N">Nan Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Honghu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00271v2-abstract-short" style="display: inline;"> Constructing sparse, effective reduced-order models (ROMs) for high-dimensional dynamical data is an active area of research in applied sciences. In this work, we study an efficient approach to identifying such sparse ROMs using an information-theoretic indicator called causation entropy. Given a feature library of possible building block terms for the sought ROMs, the causation entropy ranks the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00271v2-abstract-full').style.display = 'inline'; document.getElementById('2407.00271v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00271v2-abstract-full" style="display: none;"> Constructing sparse, effective reduced-order models (ROMs) for high-dimensional dynamical data is an active area of research in applied sciences. In this work, we study an efficient approach to identifying such sparse ROMs using an information-theoretic indicator called causation entropy. Given a feature library of possible building block terms for the sought ROMs, the causation entropy ranks the importance of each term to the dynamics conveyed by the training data before a parameter estimation procedure is performed. It thus allows for an efficient construction of a hierarchy of ROMs with varying degrees of sparsity to effectively handle different tasks. This article examines the ability of the causation entropy to identify skillful sparse ROMs when a relatively high-dimensional ROM is required to emulate the dynamics conveyed by the training dataset. We demonstrate that a Gaussian approximation of the causation entropy still performs exceptionally well even in presence of highly non-Gaussian statistics. Such approximations provide an efficient way to access the otherwise hard to compute causation entropies when the selected feature library contains a large number of candidate functions. Besides recovering long-term statistics, we also demonstrate good performance of the obtained ROMs in recovering unobserved dynamics via data assimilation with partial observations, a test that has not been done before for causation-based ROMs of partial differential equations. The paradigmatic Kuramoto-Sivashinsky equation placed in a chaotic regime with highly skewed, multimodal statistics is utilized for these purposes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00271v2-abstract-full').style.display = 'none'; document.getElementById('2407.00271v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19991">arXiv:2406.19991</a> <span> [<a href="https://arxiv.org/pdf/2406.19991">pdf</a>, <a href="https://arxiv.org/format/2406.19991">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Entanglement Assisted Squeezed States of Light in All Fiber Form-Factor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H">Han Liu</a>, <a href="/search/physics?searchtype=author&query=Iu%2C+M+L">Meng Lon Iu</a>, <a href="/search/physics?searchtype=author&query=Hamdash%2C+N">Noor Hamdash</a>, <a href="/search/physics?searchtype=author&query=Helmy%2C+A+S">Amr S. Helmy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19991v1-abstract-short" style="display: inline;"> Squeezed light sources, featuring significant degrees of squeezing, flexible time-frequency attributes, and a compact salable form factor, serve as crucial building blocks in an expanding range of applications, spanning from quantum computing to quantum sensing and communications. In this study, we introduce and demonstrate a novel approach to generating squeezed light that exclusively employs sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19991v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19991v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19991v1-abstract-full" style="display: none;"> Squeezed light sources, featuring significant degrees of squeezing, flexible time-frequency attributes, and a compact salable form factor, serve as crucial building blocks in an expanding range of applications, spanning from quantum computing to quantum sensing and communications. In this study, we introduce and demonstrate a novel approach to generating squeezed light that exclusively employs standard telecommunication fiber-optic components. The technique leverages the entanglement properties of spontaneous four-wave mixing (SFWM) to generate high squeezing with flexible time-frequency properties. Notably, a record squeezing of 7.5 \(\pm\)0.1 dB is measured within an all-fiber, all-guided-wave platform. The entanglement-assisted squeezing methodology empowers the attainment of squeezing for arbitrary time-frequency modes within the SFWM phase-matching bandwidth, extending beyond coherent laser modes, for the first time. In particular, we measured 5.1 dB and 1.1 dB squeezing on partially coherent and chaotic time-frequency modes that are defined by randomly modulated laser sources and filtered amplified spontaneous emission light, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19991v1-abstract-full').style.display = 'none'; document.getElementById('2406.19991v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13350">arXiv:2406.13350</a> <span> [<a href="https://arxiv.org/pdf/2406.13350">pdf</a>, <a href="https://arxiv.org/format/2406.13350">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Microwave amplification chain calibration in an axion haloscope via cavity-emitted radiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chang%2C+H">Hsin Chang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Han-Wen Liu</a>, <a href="/search/physics?searchtype=author&query=Doan%2C+H+T">Hien Thi Doan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yung-Fu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13350v1-abstract-short" style="display: inline;"> In an axion haloscope, the weak photon signal, theoretically converted from axions, is captured by a detection cavity. The amplification chain assists the signal receiver to read the signal from the cavity and requires accurate calibration. Typically, the readout line is calibrated using the Y-factor method, involving a switch that directs the signal from either the detection line or the calibrati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13350v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13350v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13350v1-abstract-full" style="display: none;"> In an axion haloscope, the weak photon signal, theoretically converted from axions, is captured by a detection cavity. The amplification chain assists the signal receiver to read the signal from the cavity and requires accurate calibration. Typically, the readout line is calibrated using the Y-factor method, involving a switch that directs the signal from either the detection line or the calibration line. However, this switch introduces several disadvantages. In response, we propose a calibration method that eliminates the need for a switch. In this approach, the cavity temperature is decoupled to its incoming noise source and can be controlled, resulting in excess or deficiency of the noise spectrum near its resonance frequency. The experimental result shows that the amplification chain can be calibrated directly using the temperature-varied cavity-emitted radiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13350v1-abstract-full').style.display = 'none'; document.getElementById('2406.13350v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 journal pages, 5 figures, and 1 table in the main text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12298">arXiv:2406.12298</a> <span> [<a href="https://arxiv.org/pdf/2406.12298">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Research on Dangerous Flight Weather Prediction based on Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haoxing Liu</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+R">Renjie Xie</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+H">Haoshen Qin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yizhou Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12298v1-abstract-short" style="display: inline;"> With the continuous expansion of the scale of air transport, the demand for aviation meteorological support also continues to grow. The impact of hazardous weather on flight safety is critical. How to effectively use meteorological data to improve the early warning capability of flight dangerous weather and ensure the safe flight of aircraft is the primary task of aviation meteorological services.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12298v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12298v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12298v1-abstract-full" style="display: none;"> With the continuous expansion of the scale of air transport, the demand for aviation meteorological support also continues to grow. The impact of hazardous weather on flight safety is critical. How to effectively use meteorological data to improve the early warning capability of flight dangerous weather and ensure the safe flight of aircraft is the primary task of aviation meteorological services. In this work, support vector machine (SVM) models are used to predict hazardous flight weather, especially for meteorological conditions with high uncertainty such as storms and turbulence. SVM is a supervised learning method that distinguishes between different classes of data by finding optimal decision boundaries in a high-dimensional space. In order to meet the needs of this study, we chose the radial basis function (RBF) as the kernel function, which helps to deal with nonlinear problems and enables the model to better capture complex meteorological data structures. During the model training phase, we used historical meteorological observations from multiple weather stations, including temperature, humidity, wind speed, wind direction, and other meteorological indicators closely related to flight safety. From this data, the SVM model learns how to distinguish between normal and dangerous flight weather conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12298v1-abstract-full').style.display = 'none'; document.getElementById('2406.12298v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11185">arXiv:2406.11185</a> <span> [<a href="https://arxiv.org/pdf/2406.11185">pdf</a>, <a href="https://arxiv.org/format/2406.11185">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Acceleration without Disruption: DFT Software as a Service </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ju%2C+F">Fusong Ju</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+X">Xinran Wei</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">Lin Huang</a>, <a href="/search/physics?searchtype=author&query=Jenkins%2C+A+J">Andrew J. Jenkins</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+L">Leo Xia</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+J">Jianwei Zhu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Han Yang</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+B">Bin Shao</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+P">Peggy Dai</a>, <a href="/search/physics?searchtype=author&query=Mayya%2C+A">Ashwin Mayya</a>, <a href="/search/physics?searchtype=author&query=Hooshmand%2C+Z">Zahra Hooshmand</a>, <a href="/search/physics?searchtype=author&query=Efimovskaya%2C+A">Alexandra Efimovskaya</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+N+A">Nathan A. Baker</a>, <a href="/search/physics?searchtype=author&query=Troyer%2C+M">Matthias Troyer</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongbin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11185v1-abstract-short" style="display: inline;"> Density functional theory (DFT) has been a cornerstone in computational chemistry, physics, and materials science for decades, benefiting from advancements in computational power and theoretical methods. This paper introduces a novel, cloud-native application, Accelerated DFT, which offers an order of magnitude acceleration in DFT simulations. By integrating state-of-the-art cloud infrastructure a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11185v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11185v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11185v1-abstract-full" style="display: none;"> Density functional theory (DFT) has been a cornerstone in computational chemistry, physics, and materials science for decades, benefiting from advancements in computational power and theoretical methods. This paper introduces a novel, cloud-native application, Accelerated DFT, which offers an order of magnitude acceleration in DFT simulations. By integrating state-of-the-art cloud infrastructure and redesigning algorithms for graphic processing units (GPUs), Accelerated DFT achieves high-speed calculations without sacrificing accuracy. It provides an accessible and scalable solution for the increasing demands of DFT calculations in scientific communities. The implementation details, examples, and benchmark results illustrate how Accelerated DFT can significantly expedite scientific discovery across various domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11185v1-abstract-full').style.display = 'none'; document.getElementById('2406.11185v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10123">arXiv:2406.10123</a> <span> [<a href="https://arxiv.org/pdf/2406.10123">pdf</a>, <a href="https://arxiv.org/format/2406.10123">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Improving neutrino energy estimation of charged-current interaction events with recurrent neural networks in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&query=Barnard%2C+A">A. Barnard</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&query=Bateman%2C+J">J. Bateman</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&query=Book%2C+J+Y">J. Y. Book</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10123v1-abstract-short" style="display: inline;"> We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10123v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10123v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10123v1-abstract-full" style="display: none;"> We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstructing and summing visible energies, often experience sizable biases and resolution smearing because of the complex nature of neutrino interactions and the detector response. The estimation of neutrino energy can be improved after considering the kinematics information of reconstructed final-state particles. Utilizing kinematic information of reconstructed particles, the deep learning-based approach shows improved resolution and reduced bias for the muon neutrino Monte Carlo simulation sample compared to the traditional approach. In order to address the common concern about the effectiveness of this method on experimental data, the RNN-based energy estimator is further examined and validated with dedicated data-simulation consistency tests using MicroBooNE data. We also assess its potential impact on a neutrino oscillation study after accounting for all statistical and systematic uncertainties and show that it enhances physics sensitivity. This method has good potential to improve the performance of other physics analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10123v1-abstract-full').style.display = 'none'; document.getElementById('2406.10123v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0287 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07819">arXiv:2406.07819</a> <span> [<a href="https://arxiv.org/pdf/2406.07819">pdf</a>, <a href="https://arxiv.org/format/2406.07819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAB.532583">10.1364/JOSAB.532583 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neon tetra fish (Paracheirodon innesi) as farm-to-optical-table Bragg reflectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sheffield%2C+D+R">D. Ryan Sheffield</a>, <a href="/search/physics?searchtype=author&query=Fiorito%2C+A">Anthony Fiorito III</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hengzhou Liu</a>, <a href="/search/physics?searchtype=author&query=Crescimanno%2C+M">Michael Crescimanno</a>, <a href="/search/physics?searchtype=author&query=Dawson%2C+N+J">Nathan J. Dawson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07819v1-abstract-short" style="display: inline;"> Iridophore networks in the skin of neon tetra fish are investigated for use as biologically sourced, tunable, Bragg reflector arrays. This paper reports on a method for immediate and fast post-processing of tissue to modify the structural color of iridophores found in the lateral color stripe. Conditions for fixation as well as the environment post-fixation to improve longevity of the structural c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07819v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07819v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07819v1-abstract-full" style="display: none;"> Iridophore networks in the skin of neon tetra fish are investigated for use as biologically sourced, tunable, Bragg reflector arrays. This paper reports on a method for immediate and fast post-processing of tissue to modify the structural color of iridophores found in the lateral color stripe. Conditions for fixation as well as the environment post-fixation to improve longevity of the structural color are also presented. Recent results from attempts to further increase the lifetime of post-mortem iridophore color through infiltration and embedding in low-acid glycol methacrylate are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07819v1-abstract-full').style.display = 'none'; document.getElementById('2406.07819v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, 5 amazing authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Opt. Soc. Am. B, 41, D24-D30 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06883">arXiv:2406.06883</a> <span> [<a href="https://arxiv.org/pdf/2406.06883">pdf</a>, <a href="https://arxiv.org/ps/2406.06883">ps</a>, <a href="https://arxiv.org/format/2406.06883">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0196706">10.1063/5.0196706 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A way to identify whether a DFT gap is from right reasons or error cancellations: The case of copper chalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shen%2C+J">Jiale Shen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haitao Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuanchang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06883v1-abstract-short" style="display: inline;"> Gap opening remains elusive in copper chalcogenides (Cu$_{2}X$, $X$ = S, Se and Te), not least because Hubbard + $U$, hybrid functional and ${GW}$ methods have also failed. In this work, we elucidate that their failure originates from a severe underestimation of the 4$s$-3$d$ orbital splitting of the Cu atom, which leads to a band-order inversion in the presence of an anionic crystal field. As a r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06883v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06883v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06883v1-abstract-full" style="display: none;"> Gap opening remains elusive in copper chalcogenides (Cu$_{2}X$, $X$ = S, Se and Te), not least because Hubbard + $U$, hybrid functional and ${GW}$ methods have also failed. In this work, we elucidate that their failure originates from a severe underestimation of the 4$s$-3$d$ orbital splitting of the Cu atom, which leads to a band-order inversion in the presence of an anionic crystal field. As a result, the Fermi energy is pinned due to symmetry, yielding an invariant zero gap. Utilizing the hybrid pseudopotentials to correct the underestimation on the atomic side opens up gaps of experimental magnitude in Cu$_{2}X$, suggesting their predominantly electronic nature. Our work not only clarifies the debate about the Cu$_{2}X$ gap, but also provides a way to identify which of the different methods really captures the physical essence and which is the result of error cancellation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06883v1-abstract-full').style.display = 'none'; document.getElementById('2406.06883v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by The Journal of Chemical Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 160, 244704 (2024) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+H&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+H&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+H&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>