CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 120 results for author: <span class="mathjax">Tan, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Tan%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tan, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tan%2C+Z&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tan, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Tan%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Tan%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Tan%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Tan%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.20261">arXiv:2502.20261</a> <span> [<a href="https://arxiv.org/pdf/2502.20261">pdf</a>, <a href="https://arxiv.org/format/2502.20261">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Carrier Localization and Spontaneous Formation of Two-Dimensional Polarization Domain in Halide Perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Grieder%2C+A">Andrew Grieder</a>, <a href="/search/cond-mat?searchtype=author&query=Andrade%2C+M+C">Marcos Calegari Andrade</a>, <a href="/search/cond-mat?searchtype=author&query=Takenaka%2C+H">Hiroyuki Takenaka</a>, <a href="/search/cond-mat?searchtype=author&query=Ogitsu%2C+T">Tadashi Ogitsu</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Ping%2C+Y">Yuan Ping</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.20261v1-abstract-short" style="display: inline;"> Halide perovskites are known for their rich phase diagram and superior performance in diverse optoelectronics applications. The latter property is often attributed to the long electron-hole recombination time, whose underlying physical mechanism has been a long-standing controversy. In this work, we investigate the transport and localization properties of electron and hole carriers in a prototypic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.20261v1-abstract-full').style.display = 'inline'; document.getElementById('2502.20261v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.20261v1-abstract-full" style="display: none;"> Halide perovskites are known for their rich phase diagram and superior performance in diverse optoelectronics applications. The latter property is often attributed to the long electron-hole recombination time, whose underlying physical mechanism has been a long-standing controversy. In this work, we investigate the transport and localization properties of electron and hole carriers in a prototypical halide perovskite (CsPbBr3), through ab initio tight-binding non-adiabatic dynamics approach for large-scale (tens of nm size) supercell calculations. We found distinct structural, lattice polarization, and electron-phonon coupling properties at low (below 100 K) and high temperatures, consistent with experimental observations. In particular, at low temperature we find spontaneous formation of polar grain-boundaries in the nonpolar bulk systems, which result in two dimensional polarization patterns that serve to localize and separate electrons and holes. We reveal phonon-assisted variable-range hopping mostly responsible for low-temperature transport, and their characteristic frequency correlates with temperature-dependent phonon power spectrum and energy oscillation frequency in nonadiabatic dynamics. We answer the critical questions of long electron-hole recombination lifetime and offer the correlation among polarization domains, electron-phonon couplings, and photocarrier dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.20261v1-abstract-full').style.display = 'none'; document.getElementById('2502.20261v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15636">arXiv:2502.15636</a> <span> [<a href="https://arxiv.org/pdf/2502.15636">pdf</a>, <a href="https://arxiv.org/format/2502.15636">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Exactly Solvable and Integrable Systems">nlin.SI</span> </div> </div> <p class="title is-5 mathjax"> Spin-$s$ $Q$-systems: Twist and Open Boundaries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yi-Jun He</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+J">Jue Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yi-Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zi-Xi Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15636v1-abstract-short" style="display: inline;"> In integrable spin chains, the spectral problem can be solved by the method of Bethe ansatz, which transforms the problem of diagonalization of the Hamiltonian into the problem of solving a set of algebraic equations named Bethe equations. In this work, we systematically investigate the spin-$s$ XXX chain with twisted and open boundary conditions using the rational $Q$-system, which is a powerful… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15636v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15636v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15636v1-abstract-full" style="display: none;"> In integrable spin chains, the spectral problem can be solved by the method of Bethe ansatz, which transforms the problem of diagonalization of the Hamiltonian into the problem of solving a set of algebraic equations named Bethe equations. In this work, we systematically investigate the spin-$s$ XXX chain with twisted and open boundary conditions using the rational $Q$-system, which is a powerful tool to solve Bethe equations. We establish basic frameworks of the rational $Q$-system and confirm its completeness numerically in both cases. For twisted boundaries, we investigate the polynomiality conditions of the rational $Q$-system and derive physical conditions for singular solutions of Bethe equations. For open boundaries, we uncover novel phenomena such as hidden symmetries and magnetic strings under specific boundary parameters. Hidden symmetries lead to the appearance of extra degeneracies in the Hilbert space, while the magnetic string is a novel type of exact string configuration, whose length depends on the boundary magnetic fields. These findings, supported by both analytical and numerical evidences, offer new insights into the interplay between symmetries and boundary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15636v1-abstract-full').style.display = 'none'; document.getElementById('2502.15636v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09478">arXiv:2501.09478</a> <span> [<a href="https://arxiv.org/pdf/2501.09478">pdf</a>, <a href="https://arxiv.org/format/2501.09478">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Detecting Many-Body Scars from Fisher Zeros </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Y">Yuchen Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+S">Songtai Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zefan Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+E">Erhai Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+H">Haiyuan Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09478v1-abstract-short" style="display: inline;"> The far-from-equilibrium dynamics of interacting quantum systems still defy precise understanding. One example is the so-called quantum many-body scars (QMBSs), where a set of energy eigenstates evade thermalization to give rise to long-lived oscillations. Despite the success of viewing scars from the perspectives of symmetry, commutant algebra and quasiparticles, it remains a challenge to elucida… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09478v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09478v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09478v1-abstract-full" style="display: none;"> The far-from-equilibrium dynamics of interacting quantum systems still defy precise understanding. One example is the so-called quantum many-body scars (QMBSs), where a set of energy eigenstates evade thermalization to give rise to long-lived oscillations. Despite the success of viewing scars from the perspectives of symmetry, commutant algebra and quasiparticles, it remains a challenge to elucidate the mechanism underlying all QMBS and to distinguish them from other forms of ergodicity breaking. In this work, we introduce an alternative route to detect and diagnose QMBS based on Fisher zeros, i.e. the patterns of zeros of the analytically continued partition function $Z$ on the complex $尾$ (inverse temperature) plane. For systems with scars, a continuous line of Fisher zeros will appear off the imaginary $尾$ axis and extend upward, separating the $尾$ plane into regions with distinctive thermalization behaviors. This conjecture is motivated from interpreting the complex $Z$ as the survival amplitude of the thermofield double state, and it is validated by analyzing two models with QMBS, the $\bar{P}X\bar{P}$ model and the Ising chain in external fields. These models also illustrate another scenario of ergodicity breaking, where lines of Fisher zeros repeatedly intersect the imaginary $尾$ axis. This ``statistical mechanics" approach places QMBS within the same framework of thermal and dynamical phase transitions. It has the advantage of easily spotting the emergence of scars without exhaustively examining each individual quantum state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09478v1-abstract-full').style.display = 'none'; document.getElementById('2501.09478v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04688">arXiv:2501.04688</a> <span> [<a href="https://arxiv.org/pdf/2501.04688">pdf</a>, <a href="https://arxiv.org/format/2501.04688">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Observation of topological prethermal strong zero modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Si Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+Y">Yihang Han</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yiyang He</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Han Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jianan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yanzhe Wang</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04688v1-abstract-short" style="display: inline;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04688v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04688v1-abstract-full" style="display: none;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of systems with a bulk energy gap and would not survive at finite temperatures due to mobile thermal excitations. Here, we report the observation of a distinct type of topological edge modes, which are protected by emergent symmetries and persist even up to infinite temperature, with an array of 100 programmable superconducting qubits. In particular, through digital quantum simulation of the dynamics of a one-dimensional disorder-free "cluster" Hamiltonian, we observe robust long-lived topological edge modes over up to 30 cycles at a wide range of temperatures. By monitoring the propagation of thermal excitations, we show that despite the free mobility of these excitations, their interactions with the edge modes are substantially suppressed in the dimerized regime due to an emergent U(1)$\times$U(1) symmetry, resulting in an unusually prolonged lifetime of the topological edge modes even at infinite temperature. In addition, we exploit these topological edge modes as logical qubits and prepare a logical Bell state, which exhibits persistent coherence in the dimerized and off-resonant regime, despite the system being disorder-free and far from its ground state. Our results establish a viable digital simulation approach to experimentally exploring a variety of finite-temperature topological phases and demonstrate a potential route to construct long-lived robust boundary qubits that survive to infinite temperature in disorder-free systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'none'; document.getElementById('2501.04688v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04679">arXiv:2501.04679</a> <span> [<a href="https://arxiv.org/pdf/2501.04679">pdf</a>, <a href="https://arxiv.org/format/2501.04679">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Exploring nontrivial topology at quantum criticality in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Sheng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yujie Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+Y">Yihang Han</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yiyang He</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Han Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jianan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yanzhe Wang</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04679v1-abstract-short" style="display: inline;"> The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04679v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04679v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04679v1-abstract-full" style="display: none;"> The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimental challenge in statistical and condensed matter physics. Programmable quantum processors can directly prepare and manipulate exotic quantum many-body states, offering a powerful path for exploring the physics behind these states. Here, we present an experimental exploration of the critical cluster Ising model by preparing its low-lying critical states on a superconducting processor with up to $100$ qubits. We develop an efficient method to probe the boundary $g$-function based on prepared low-energy states, which allows us to uniquely identify the nontrivial topology of the critical systems under study. Furthermore, by adapting the entanglement Hamiltonian tomography technique, we recognize two-fold topological degeneracy in the entanglement spectrum under periodic boundary condition, experimentally verifying the universal bulk-boundary correspondence in topological critical systems. Our results demonstrate the low-lying critical states as useful quantum resources for investigating the interplay between topology and quantum criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04679v1-abstract-full').style.display = 'none'; document.getElementById('2501.04679v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17673">arXiv:2412.17673</a> <span> [<a href="https://arxiv.org/pdf/2412.17673">pdf</a>, <a href="https://arxiv.org/format/2412.17673">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Trypanosoma brucei moving in microchannels and through constrictions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zihan Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Peters%2C+J+I+U">Julian I. U. Peters</a>, <a href="/search/cond-mat?searchtype=author&query=Stark%2C+H">Holger Stark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17673v1-abstract-short" style="display: inline;"> Trypanosoma brucei (T. brucei), a single-celled parasite and natural microswimmer, is responsible for fatal sleeping sickness in infected mammals, including humans. Understanding how T. brucei interacts with fluid environments and navigates through confining spaces is crucial not only for medical and clinical applications but also for a fundamental understanding of how life organizes in a confined… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17673v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17673v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17673v1-abstract-full" style="display: none;"> Trypanosoma brucei (T. brucei), a single-celled parasite and natural microswimmer, is responsible for fatal sleeping sickness in infected mammals, including humans. Understanding how T. brucei interacts with fluid environments and navigates through confining spaces is crucial not only for medical and clinical applications but also for a fundamental understanding of how life organizes in a confined microscopic world. Using a hybrid multi-particle collision dynamics (MPCD)--molecular dynamics (MD) approach, we present our investigations on the locomotion of an in silico T. brucei in three types of fluid environments: bulk fluid, straight cylindrical microchannels, and microchannels with constrictions. We observe that the helical swimming trajectory of the in silico T. brucei becomes rectified in straight cylindrical channels compared to bulk fluid. The swimming speed for different channel widths is governed by the diameter of the helical trajectory. The speed first slightly increases as the channel narrows and then decreases when the helix diameter is compressed. An optimal swimming speed is achieved, when the channel width is approximately twice the bulk helix diameter. It results from an interplay of the trypanosome's hydrodynamic interactions with the cylindrical channel walls and the high deformability of the parasite. In microchannels with constrictions, the motions of the anterior and posterior ends, the end-to-end distance, and the log-rolling motion of the cell body are characterized and show salient differences compared to the straight-channel case. Depending on the constriction length and width, we observe characteristic slip, stuck, and stuck-slip motions of the model T. brucei within the constriction. Our findings may provide some mechanical insights into how T. brucei moves through blood vessels and tissues, and across the blood-brain barrier. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17673v1-abstract-full').style.display = 'none'; document.getElementById('2412.17673v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span> [<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54332-9">10.1038/s41467-024-54332-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+C">Chu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10115 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02880">arXiv:2411.02880</a> <span> [<a href="https://arxiv.org/pdf/2411.02880">pdf</a>, <a href="https://arxiv.org/format/2411.02880">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Transverse Bending Mimicry of Longitudinal Piezoelectricity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zhi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+X">Xiang Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Xing%2C+J">Jie Xing</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+S">Shaoxiong Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jianguo Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02880v4-abstract-short" style="display: inline;"> The origin of frequently observed ultrahigh electric-induced longitudinal strain, ranging from 1% to 26%, remains an open question. Recent evidence suggests that this phenomenon is linked to the bending deformation of samples, but the mechanisms driving this bending and the strong dependence of nominal strain on sample thickness have yet to be fully understood. Here, we demonstrate that the bendin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02880v4-abstract-full').style.display = 'inline'; document.getElementById('2411.02880v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02880v4-abstract-full" style="display: none;"> The origin of frequently observed ultrahigh electric-induced longitudinal strain, ranging from 1% to 26%, remains an open question. Recent evidence suggests that this phenomenon is linked to the bending deformation of samples, but the mechanisms driving this bending and the strong dependence of nominal strain on sample thickness have yet to be fully understood. Here, we demonstrate that the bending in piezoceramics can be induced by non-zero gradient of d31 acrcoss thickness direction. Our calculations show that in standard perovskite piezoceramics, such as KNbO3, a 0.69% concentration of oxygen vacancies results in a 6.3 pC/N change in d31 by inhibiting polarization rotation, which is sufficient to produce ultrahigh nominal strain in thin samples. The gradients of defect concentration, composition, and stress can all cause sufficient inhomogeneity in the distribution of d31, leading to the bending effect. We propose several approaches to distinguish true electric-induced strain from bending-induced effects. Our work provides clarity on the origin of nominal ultrahigh electricinduced strain and offers valuable insights for advancing piezoelectric materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02880v4-abstract-full').style.display = 'none'; document.getElementById('2411.02880v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17718">arXiv:2409.17718</a> <span> [<a href="https://arxiv.org/pdf/2409.17718">pdf</a>, <a href="https://arxiv.org/format/2409.17718">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Optical control of spin-splitting in an altermagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rajpurohit%2C+S">Sangeeta Rajpurohit</a>, <a href="/search/cond-mat?searchtype=author&query=Karaalp%2C+R">Revsen Karaalp</a>, <a href="/search/cond-mat?searchtype=author&query=Ping%2C+Y">Yuan Ping</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Ogitsu%2C+T">Tadashi Ogitsu</a>, <a href="/search/cond-mat?searchtype=author&query=Bl%C3%B6chl%2C+P+E">Peter E. Bl枚chl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17718v1-abstract-short" style="display: inline;"> Manipulating and controlling the band structure and the spin-splitting in the newly discovered class of magnetic materials known as 'altermagnets' is highly desirable for their application in spintronics. Based on real-time simulations for an interacting multiband tight-binding model, we propose optical excitations as an effective way to selectively control the spin-splitting of an altermagnet. Th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17718v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17718v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17718v1-abstract-full" style="display: none;"> Manipulating and controlling the band structure and the spin-splitting in the newly discovered class of magnetic materials known as 'altermagnets' is highly desirable for their application in spintronics. Based on real-time simulations for an interacting multiband tight-binding model, we propose optical excitations as an effective way to selectively control the spin-splitting of an altermagnet. The consistent treatment of electronic interactions and electron-phonon coupling in the model allows for a systematic study of the effect of these interactions on the spin-splitting of the altermagnet in the ground as well as in the excited-state. Our simulations reveal that optical excitations modify the band structure and thus lead to significant changes in the spin-splitting within 50 fs. The relative spin-splitting in the conduction band grows up to four times in the optically excited altermagnet. We disentangle the roles of Coulomb $U$ and $J$ in the enhancement of the spin-splitting in the photoexcited state. Our study elucidates the potential for exploiting optical control of spin-splitting gaps to obtain desirable properties in altermagnets on the fastest possible timescales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17718v1-abstract-full').style.display = 'none'; document.getElementById('2409.17718v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03857">arXiv:2409.03857</a> <span> [<a href="https://arxiv.org/pdf/2409.03857">pdf</a>, <a href="https://arxiv.org/format/2409.03857">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Factors influencing quantum evaporation of helium from polar semiconductors from first principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dheer%2C+L">Lakshay Dheer</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Lyon%2C+S+A">S. A. Lyon</a>, <a href="/search/cond-mat?searchtype=author&query=Schenkel%2C+T">Thomas Schenkel</a>, <a href="/search/cond-mat?searchtype=author&query=Griffin%2C+S+M">Sin茅ad M. Griffin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03857v1-abstract-short" style="display: inline;"> While there is much indirect evidence for the existence of dark matter (DM), to date it has evaded detection. Current efforts focus on DM masses over $\sim$GeV -- to push the sensitivity of DM searches to lower masses, new DM targets and detection schemes are needed. In this work, we focus on the latter - a novel detection scheme recently proposed to detect ~10-100 meV phonons in polar target mate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03857v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03857v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03857v1-abstract-full" style="display: none;"> While there is much indirect evidence for the existence of dark matter (DM), to date it has evaded detection. Current efforts focus on DM masses over $\sim$GeV -- to push the sensitivity of DM searches to lower masses, new DM targets and detection schemes are needed. In this work, we focus on the latter - a novel detection scheme recently proposed to detect ~10-100 meV phonons in polar target materials. Previous work showed that well-motivated models of DM can interact with polar semiconductors to produce an athermal population of phonons. This new sensing scheme proposes that these phonons then facilitate quantum evaporation of $^3$He from a van der Waals film deposited on the target material. However, a fundamental understanding of the underlying process is still unclear, with several uncertainties related to the precise rate of evaporation and how it can be controlled. In this work, we use \textit{ab initio} density functional theory (DFT) calculations to compare the adsorption energies of helium atoms on a polar target material, sodium iodide (NaI), to understand the underlying evaporation physics. We explore the role of surface termination, monolayer coverage and elemental species on the rate of He evaporation from the target material. Using this, we discuss the optimal target features for He-evaporation experiments and their range of tunability through chemical and physical modifications such as applied field and surface termination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03857v1-abstract-full').style.display = 'none'; document.getElementById('2409.03857v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11900">arXiv:2408.11900</a> <span> [<a href="https://arxiv.org/pdf/2408.11900">pdf</a>, <a href="https://arxiv.org/format/2408.11900">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum highway: Observation of minimal and maximal speed limits for few and many-body states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+L">Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengfei Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11900v1-abstract-short" style="display: inline;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11900v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11900v1-abstract-full" style="display: none;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states. We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics. We also unveil the observation of minimal quantum speed limits in addition to more common maximal ones, i.e., the lowest rate of change of a unitarily evolved quantum state. Our results establish a comprehensive experimental characterization of quantum speed limits and pave the way for their subsequent study in engineered non-unitary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'none'; document.getElementById('2408.11900v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06320">arXiv:2408.06320</a> <span> [<a href="https://arxiv.org/pdf/2408.06320">pdf</a>, <a href="https://arxiv.org/format/2408.06320">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of ballistic photocurrents driven by Coulomb scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Andrade%2C+X">Xavier Andrade</a>, <a href="/search/cond-mat?searchtype=author&query=Rajpurohit%2C+S">Sangeeta Rajpurohit</a>, <a href="/search/cond-mat?searchtype=author&query=Correa%2C+A+A">Alfredo A. Correa</a>, <a href="/search/cond-mat?searchtype=author&query=Ogitsu%2C+T">Tadashi Ogitsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06320v1-abstract-short" style="display: inline;"> First principles real-time time dependent density functional theory (rt-TDDFT) calculations reveal the existence of ballistic photocurrents generated by Coulomb scattering, a form of photocurrent that has not previously been considered as a mechanism for the bulk photovoltaic effect. With monolayer GeS as an example, it is predicted that ballistic currents can exceed shift currents under experimen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06320v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06320v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06320v1-abstract-full" style="display: none;"> First principles real-time time dependent density functional theory (rt-TDDFT) calculations reveal the existence of ballistic photocurrents generated by Coulomb scattering, a form of photocurrent that has not previously been considered as a mechanism for the bulk photovoltaic effect. With monolayer GeS as an example, it is predicted that ballistic currents can exceed shift currents under experimentally accessible conditions. Moreover, these simulations reveal recombination pathways that work to modify shift current magnitudes beyond perturbation theory predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06320v1-abstract-full').style.display = 'none'; document.getElementById('2408.06320v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07418">arXiv:2407.07418</a> <span> [<a href="https://arxiv.org/pdf/2407.07418">pdf</a>, <a href="https://arxiv.org/format/2407.07418">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.224411">10.1103/PhysRevB.110.224411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of asymmetrically deformed skyrmion driven by internal forces and strain force in a flower-shaped magnetic nanostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zhen-Yu Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Ji-Pei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yu-Ke Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yuan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+M">Ming-Hui Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+X">Xing-Sen Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jun-Ming Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07418v1-abstract-short" style="display: inline;"> Magnetic skyrmions emerge as promising quasi-particles for encoding information in nextgeneration spintronic devices. Their innate flexibility in shape is essential for the applications although they were often ideally treated as rigid particles. In this work, we investigated the voltagecontrolled uniform strain mediated dynamics of deformed skyrmions in heterostructures with a flower-shaped magne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07418v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07418v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07418v1-abstract-full" style="display: none;"> Magnetic skyrmions emerge as promising quasi-particles for encoding information in nextgeneration spintronic devices. Their innate flexibility in shape is essential for the applications although they were often ideally treated as rigid particles. In this work, we investigated the voltagecontrolled uniform strain mediated dynamics of deformed skyrmions in heterostructures with a flower-shaped magnetic nanostructure, using micromagnetic simulations. The simulated results revealed the possible states of isolated skyrmion nucleated in the nanostructure, which can be mutually switched by applying suitable in-plane strain pulses. In addition, it was found that the skyrmion motions are driven by the emerging internal forces and strain force, which originate from the asymmetric deformation of skyrmion structures. Furthermore, an analytical model of deformed skyrmions was proposed to interpret the dependences of internal forces and strain force on the asymmetric deformation of skyrmion, with some formulae derived for these forces in a semi-analytical approach. Further calculations based on these formulae verified the forces appearing in the skyrmion motion, with the resulting forces showing consistence with the simulated data. This suggested that our semi-analytical model successfully captures the main physics responsible for the motion of deformed skyrmion in the nanostructure. Our work extends the understanding of the mechanics emerging in deformed skyrmion, and provides an effective approach for deterministic manipulation of deformed skyrmion motion via strain forces and internal forces, which may be instructive to design of skyrmion-based spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07418v1-abstract-full').style.display = 'none'; document.getElementById('2407.07418v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18981">arXiv:2406.18981</a> <span> [<a href="https://arxiv.org/pdf/2406.18981">pdf</a>, <a href="https://arxiv.org/format/2406.18981">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.043139">10.1103/PhysRevResearch.6.043139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact Fisher zeros and thermofield dynamics across a quantum critical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+S">Songtai Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Y">Yuchen Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zefan Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+E">Erhai Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+H">Haiyuan Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18981v4-abstract-short" style="display: inline;"> By setting the inverse temperature $尾$ loose to occupy the complex plane, Fisher showed that the zeros of the complex partition function $Z$, if approaching the real $尾$ axis, reveal a thermodynamic phase transition. More recently, Fisher zeros were used to mark the dynamical phase transition in quench dynamics. It remains unclear, however, how Fisher zeros can be employed to better understand qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18981v4-abstract-full').style.display = 'inline'; document.getElementById('2406.18981v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18981v4-abstract-full" style="display: none;"> By setting the inverse temperature $尾$ loose to occupy the complex plane, Fisher showed that the zeros of the complex partition function $Z$, if approaching the real $尾$ axis, reveal a thermodynamic phase transition. More recently, Fisher zeros were used to mark the dynamical phase transition in quench dynamics. It remains unclear, however, how Fisher zeros can be employed to better understand quantum phase transitions or the non-unitary dynamics of open quantum systems. Here we answer this question by a comprehensive analysis of the analytically continued one-dimensional transverse field Ising model. We exhaust all the Fisher zeros to show that in the thermodynamic limit they congregate into a remarkably simple pattern in the form of continuous open or closed lines. These Fisher lines evolve smoothly as the coupling constant is tuned, and a qualitative change identifies the quantum critical point. By exploiting the connection between $Z$ and the thermofield double states, we obtain analytical expressions for the short- and long-time dynamics of the survival amplitude, including its scaling behavior at the quantum critical point. We point out $Z$ can be realized and probed in monitored quantum circuits. The exact analytical results are corroborated by the numerical tensor renormalization group. We further show that similar patterns of Fisher zeros also emerge in other spin models. Therefore, the approach outlined may serve as a powerful tool for interacting quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18981v4-abstract-full').style.display = 'none'; document.getElementById('2406.18981v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages; 3+6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 043139 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06041">arXiv:2405.06041</a> <span> [<a href="https://arxiv.org/pdf/2405.06041">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Gate Tunable Asymmetric Ozone Adsorption on Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Z">Zhen Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wanlei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+J">Jun Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Z">Zhongxin Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Chenglong Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zuoquan Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Z">Zhiting Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yongchao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+Z">Zichen Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shanshan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yonglin He</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yapei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jinsong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yayu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+P">Peng Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06041v1-abstract-short" style="display: inline;"> Molecular adsorption is pivotal in device fabrication and material synthesis for quantum technology. However, elucidating the behavior of physisorption poses technical challenges. Here graphene with ultrahigh sensitivity was utilized to detect ozone adsorption at cryogenic temperatures. Significant hole doping observed in graphene indicates a strong interaction between ozone and graphene. Interest… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06041v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06041v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06041v1-abstract-full" style="display: none;"> Molecular adsorption is pivotal in device fabrication and material synthesis for quantum technology. However, elucidating the behavior of physisorption poses technical challenges. Here graphene with ultrahigh sensitivity was utilized to detect ozone adsorption at cryogenic temperatures. Significant hole doping observed in graphene indicates a strong interaction between ozone and graphene. Interestingly, the adsorption exhibits asymmetry with positive and negative gate voltages. The strong affinity of ozone provides a tool to modulate materials and devices, while the gate tunability of adsorption offers new insights into construction and manipulation of oxide quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06041v1-abstract-full').style.display = 'none'; document.getElementById('2405.06041v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15611">arXiv:2403.15611</a> <span> [<a href="https://arxiv.org/pdf/2403.15611">pdf</a>, <a href="https://arxiv.org/format/2403.15611">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electrically Switchable Circular Photogalvanic Effect in Methylammonium Lead Iodide Microcrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yuqing Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Ziyi Song</a>, <a href="/search/cond-mat?searchtype=author&query=Silva%2C+R+B">Rodrigo Becerra Silva</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B+M">Bob Minyu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Travaglini%2C+H+C">Henry Clark Travaglini</a>, <a href="/search/cond-mat?searchtype=author&query=Grieder%2C+A+C">Andrew C Grieder</a>, <a href="/search/cond-mat?searchtype=author&query=Ping%2C+Y">Yuan Ping</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+D">Dong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15611v1-abstract-short" style="display: inline;"> We investigate the circular photogalvanic effect (CPGE) in single-crystalline methylammonium lead iodide microcrystals under a static electric field. The external electric field can enhance the magnitude of the helicity dependent photocurrent (HDPC) by two orders of magnitude and flip its sign, which we attribute to magnetic shift currents induced by the Rashba-Edelstein effect. This HDPC induced… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15611v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15611v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15611v1-abstract-full" style="display: none;"> We investigate the circular photogalvanic effect (CPGE) in single-crystalline methylammonium lead iodide microcrystals under a static electric field. The external electric field can enhance the magnitude of the helicity dependent photocurrent (HDPC) by two orders of magnitude and flip its sign, which we attribute to magnetic shift currents induced by the Rashba-Edelstein effect. This HDPC induced by the static electric field may be viewed as an unusually strong third-order photoresponse, which produces a current two orders of magnitude larger than second-order injection current. Furthermore, the HDPC is highly nonlocal and can be created by photoexcitation out of the device channel, indicating a spin diffusion length up to 50 $渭$m at 78 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15611v1-abstract-full').style.display = 'none'; document.getElementById('2403.15611v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures in main text. 20 pages, 14 figures in supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.08284">arXiv:2401.08284</a> <span> [<a href="https://arxiv.org/pdf/2401.08284">pdf</a>, <a href="https://arxiv.org/format/2401.08284">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53140-5">10.1038/s41467-024-53140-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang-Ren Liu</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.08284v2-abstract-short" style="display: inline;"> Greenberger-Horne-Zeilinger (GHZ) states, also known as two-component Schr枚dinger cats, play vital roles in the foundation of quantum physics and, more attractively, in future quantum technologies such as fault-tolerant quantum computation. Enlargement in size and coherent control of GHZ states are both crucial for harnessing entanglement in advanced computational tasks with practical advantages,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08284v2-abstract-full').style.display = 'inline'; document.getElementById('2401.08284v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.08284v2-abstract-full" style="display: none;"> Greenberger-Horne-Zeilinger (GHZ) states, also known as two-component Schr枚dinger cats, play vital roles in the foundation of quantum physics and, more attractively, in future quantum technologies such as fault-tolerant quantum computation. Enlargement in size and coherent control of GHZ states are both crucial for harnessing entanglement in advanced computational tasks with practical advantages, which unfortunately pose tremendous challenges as GHZ states are vulnerable to noise. Here we propose a general strategy for creating, preserving, and manipulating large-scale GHZ entanglement, and demonstrate a series of experiments underlined by high-fidelity digital quantum circuits. For initialization, we employ a scalable protocol to create genuinely entangled GHZ states with up to 60 qubits, almost doubling the previous size record. For protection, we take a new perspective on discrete time crystals (DTCs), originally for exploring exotic nonequilibrium quantum matters, and embed a GHZ state into the eigenstates of a tailor-made cat scar DTC to extend its lifetime. For manipulation, we switch the DTC eigenstates with in-situ quantum gates to modify the effectiveness of the GHZ protection. Our findings establish a viable path towards coherent operations on large-scale entanglement, and further highlight superconducting processors as a promising platform to explore nonequilibrium quantum matters and emerging applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08284v2-abstract-full').style.display = 'none'; document.getElementById('2401.08284v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures + supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 8823 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04333">arXiv:2401.04333</a> <span> [<a href="https://arxiv.org/pdf/2401.04333">pdf</a>, <a href="https://arxiv.org/format/2401.04333">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53077-9">10.1038/s41467-024-53077-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-lived topological time-crystalline order on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W">Wenjie Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengfei Zhang</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04333v1-abstract-short" style="display: inline;"> Topologically ordered phases of matter elude Landau's symmetry-breaking theory, featuring a variety of intriguing properties such as long-range entanglement and intrinsic robustness against local perturbations. Their extension to periodically driven systems gives rise to exotic new phenomena that are forbidden in thermal equilibrium. Here, we report the observation of signatures of such a phenomen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04333v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04333v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04333v1-abstract-full" style="display: none;"> Topologically ordered phases of matter elude Landau's symmetry-breaking theory, featuring a variety of intriguing properties such as long-range entanglement and intrinsic robustness against local perturbations. Their extension to periodically driven systems gives rise to exotic new phenomena that are forbidden in thermal equilibrium. Here, we report the observation of signatures of such a phenomenon -- a prethermal topologically ordered time crystal -- with programmable superconducting qubits arranged on a square lattice. By periodically driving the superconducting qubits with a surface-code Hamiltonian, we observe discrete time-translation symmetry breaking dynamics that is only manifested in the subharmonic temporal response of nonlocal logical operators. We further connect the observed dynamics to the underlying topological order by measuring a nonzero topological entanglement entropy and studying its subsequent dynamics. Our results demonstrate the potential to explore exotic topologically ordered nonequilibrium phases of matter with noisy intermediate-scale quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04333v1-abstract-full').style.display = 'none'; document.getElementById('2401.04333v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages (main text), 16 pages (supplementary information)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15736">arXiv:2310.15736</a> <span> [<a href="https://arxiv.org/pdf/2310.15736">pdf</a>, <a href="https://arxiv.org/format/2310.15736">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Excitons and singlet fission at hybrid inorganic-organic semiconductor interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Klymenko%2C+M+V">M. V. Klymenko</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">L. Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Russo%2C+S+P">S. P. Russo</a>, <a href="/search/cond-mat?searchtype=author&query=Cole%2C+J+H">J. H. Cole</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15736v1-abstract-short" style="display: inline;"> Excitons in organic crystalline semiconductors play a crucial role in the operation of optoelectronic devices such as organic solar cells, light-emitting diodes, and photodetectors. The excitonic properties of materials are dramatically affected by the presence of surfaces and interfaces. In this work, we investigate the influence of a neutral hydrogen-passivated 1x2 reconstructed (100) silicon su… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15736v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15736v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15736v1-abstract-full" style="display: none;"> Excitons in organic crystalline semiconductors play a crucial role in the operation of optoelectronic devices such as organic solar cells, light-emitting diodes, and photodetectors. The excitonic properties of materials are dramatically affected by the presence of surfaces and interfaces. In this work, we investigate the influence of a neutral hydrogen-passivated 1x2 reconstructed (100) silicon substrate on excitons within the crystalline tetracene layer deposited on the top of it. Our findings reveal that singlet excitons in the contact tetracene layer are situated within the continuum of unbound Wannier-Mott excitonic states in silicon, with noteworthy hybridization between these states. Consequently, in the contact tetracene layer, all singlet excitons exhibit a pronounced interlayer charge transfer character, while the triplet exciton remains confined to the tetracene layer. This makes the singlet fission effect highly improbable for the contact tetracene layer. Additionally, the presence of the silicon substrate results in a modification of the singlet-triplet gap by 144 meV. This change is solely attributed to the hybridization with excitons in silicon, which influences the exchange energy. Our results show that the dynamic dielectric screening caused by the substrate does not impact the singlet-triplet gap but alters the exciton binding energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15736v1-abstract-full').style.display = 'none'; document.getElementById('2310.15736v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05197">arXiv:2310.05197</a> <span> [<a href="https://arxiv.org/pdf/2310.05197">pdf</a>, <a href="https://arxiv.org/format/2310.05197">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Clustering in quasi-two-dimensional dispersions of Brownian particles with competitive interactions: Phase diagram and structural properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zihan Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Calandrini%2C+V">Vania Calandrini</a>, <a href="/search/cond-mat?searchtype=author&query=Dhont%2C+J+K+G">Jan K. G. Dhont</a>, <a href="/search/cond-mat?searchtype=author&query=N%C3%A4gele%2C+G">Gerhard N盲gele</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05197v1-abstract-short" style="display: inline;"> Competing short-range attractive (SA) and long range repulsive (LR) interactions have been invoked to describe colloid or protein solutions, as well as membrane proteins interactions mediated by lipid molecules. Using Langevin dynamics simulations, we determine the generalized phase diagram, the cluster shapes and size distributions of a generic Q2D dispersion of spherical SALR particles confined… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05197v1-abstract-full').style.display = 'inline'; document.getElementById('2310.05197v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05197v1-abstract-full" style="display: none;"> Competing short-range attractive (SA) and long range repulsive (LR) interactions have been invoked to describe colloid or protein solutions, as well as membrane proteins interactions mediated by lipid molecules. Using Langevin dynamics simulations, we determine the generalized phase diagram, the cluster shapes and size distributions of a generic Q2D dispersion of spherical SALR particles confined to in-plane motion. SA and LR interactions are modelled by a generalized Lenard-Jones potential and a screened Coulomb potential, respectively. The microstructures of the various equilibrium and non-equilibrium phases turn out to be distinctly different from the ones observed in three-dimensional (3D) SALR systems. We discuss perturbation theory predictions for the metastable binodal line of a reference system of particles with SA interactions only, which in the Q2D-SALR phase diagram separates cluster from non-cluster phases. The transition from the high-temperature (low SA) dispersed fluid phase to the lower-temperature equilibrium cluster phase is characterised by a low-wavenumber peak of the static structure factor (corresponding to a thermal correlation length of about twice the particle diameter) featuring a distinctly smaller height ($\approx1.4$) than in 3D SALR systems. By further decreasing the temperature (increasing SA), the cluster morphology changes from disk-like shapes in the equilibrium cluster phase, to double-stranded anisotropic hexagonal cluster forms in the cluster-percolated gel phase. This transition is quantified by the hexagonal order parameter distribution function. The mean cluster size and coordination number of particles in the gel phase are insensitive to changes in the attraction strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05197v1-abstract-full').style.display = 'none'; document.getElementById('2310.05197v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02201">arXiv:2308.02201</a> <span> [<a href="https://arxiv.org/pdf/2308.02201">pdf</a>, <a href="https://arxiv.org/format/2308.02201">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Charge State-Dependent Symmetry Breaking of Atomic Defects in Transition Metal Dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+F">Feifei Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Huberich%2C+L">Lysander Huberich</a>, <a href="/search/cond-mat?searchtype=author&query=Vargas%2C+P+A">Preston A. Vargas</a>, <a href="/search/cond-mat?searchtype=author&query=Torsi%2C+R">Riccardo Torsi</a>, <a href="/search/cond-mat?searchtype=author&query=Allerbeck%2C+J">Jonas Allerbeck</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+A+M+Z">Anne Marie Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+C">Chengye Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Ruffieux%2C+P">Pascal Ruffieux</a>, <a href="/search/cond-mat?searchtype=author&query=Fasel%2C+R">Roman Fasel</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%B6ning%2C+O">Oliver Gr枚ning</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Y">Yu-Chuan Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Hennig%2C+R+G">Richard G. Hennig</a>, <a href="/search/cond-mat?searchtype=author&query=Robinson%2C+J+A">Joshua A. Robinson</a>, <a href="/search/cond-mat?searchtype=author&query=Schuler%2C+B">Bruno Schuler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02201v1-abstract-short" style="display: inline;"> The functionality of atomic quantum emitters is intrinsically linked to their host lattice coordination. Structural distortions that spontaneously break the lattice symmetry strongly impact their optical emission properties and spin-photon interface. Here we report on the direct imaging of charge state-dependent symmetry breaking of two prototypical atomic quantum emitters in mono- and bilayer MoS… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02201v1-abstract-full').style.display = 'inline'; document.getElementById('2308.02201v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02201v1-abstract-full" style="display: none;"> The functionality of atomic quantum emitters is intrinsically linked to their host lattice coordination. Structural distortions that spontaneously break the lattice symmetry strongly impact their optical emission properties and spin-photon interface. Here we report on the direct imaging of charge state-dependent symmetry breaking of two prototypical atomic quantum emitters in mono- and bilayer MoS$_2$ by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). By substrate chemical gating different charge states of sulfur vacancies (Vac$_\text{S}$) and substitutional rhenium dopants (Re$_\text{Mo}$) can be stabilized. Vac$_\text{S}^{-1}$ as well as Re$_\text{Mo}^{0}$ and Re$_\text{Mo}^{-1}$ exhibit local lattice distortions and symmetry-broken defect orbitals attributed to a Jahn-Teller effect (JTE) and pseudo-JTE, respectively. By mapping the electronic and geometric structure of single point defects, we disentangle the effects of spatial averaging, charge multistability, configurational dynamics, and external perturbations that often mask the presence of local symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02201v1-abstract-full').style.display = 'none'; document.getElementById('2308.02201v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.16451">arXiv:2307.16451</a> <span> [<a href="https://arxiv.org/pdf/2307.16451">pdf</a>, <a href="https://arxiv.org/format/2307.16451">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.134431">10.1103/PhysRevB.109.134431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistent spin dynamics in magnetically ordered honeycomb cobalt oxides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Miao%2C+P">Ping Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+X">Xianghong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+W">Weiliang Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yue Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Koda%2C+A">Akihiro Koda</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zhenhong Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+W">Wu Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+W">Wenhai Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Kamiyama%2C+T">Takashi Kamiyama</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yuan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.16451v1-abstract-short" style="display: inline;"> In the quest to find quantum spin liquids, layered cobalt oxides Na2Co2TeO6 and Na3Co2SbO6 have been proposed as promising candidates for approximating the Kitaev honeycomb model. Yet, their suitability has been thrown into question due to observed long-range magnetic order at low temperatures and indications of easy-plane, rather than Kitaev-type, spin anisotropy. Here we use muon spin relaxation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16451v1-abstract-full').style.display = 'inline'; document.getElementById('2307.16451v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.16451v1-abstract-full" style="display: none;"> In the quest to find quantum spin liquids, layered cobalt oxides Na2Co2TeO6 and Na3Co2SbO6 have been proposed as promising candidates for approximating the Kitaev honeycomb model. Yet, their suitability has been thrown into question due to observed long-range magnetic order at low temperatures and indications of easy-plane, rather than Kitaev-type, spin anisotropy. Here we use muon spin relaxation to reveal an unexpected picture: contrary to the anticipated static nature of the long-range order, the systems show prevalent spin dynamics with spatially uneven distribution and varied correlation times. This underlines that the magnetic ground states cannot be solely described by the long-range order, suggesting a significant role of quantum fluctuations. Our findings not only shed new light on the complex physics of these systems but also underscore the need for a refined approach in the search for realizable quantum spin liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16451v1-abstract-full').style.display = 'none'; document.getElementById('2307.16451v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 134431 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00659">arXiv:2307.00659</a> <span> [<a href="https://arxiv.org/pdf/2307.00659">pdf</a>, <a href="https://arxiv.org/format/2307.00659">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Parameterized Density Functional Models for Block Copolymer Melts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Sulin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yuan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zengqiang Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Promislow%2C+K">Keith Promislow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00659v1-abstract-short" style="display: inline;"> The derivation of density functional energies from the random phase approximation of self-consistent mean field theory is generalized and applied to a binary blend of diblock copolymers and homopolymers. A nonlocal transformation is incorporated into the density functional model prior to the strong segregation extrapolation step employed by Uneyama and Doi. The transformation affords a systematic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00659v1-abstract-full').style.display = 'inline'; document.getElementById('2307.00659v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00659v1-abstract-full" style="display: none;"> The derivation of density functional energies from the random phase approximation of self-consistent mean field theory is generalized and applied to a binary blend of diblock copolymers and homopolymers. A nonlocal transformation is incorporated into the density functional model prior to the strong segregation extrapolation step employed by Uneyama and Doi. The transformation affords a systematic parameterization of the free energy that preserves key structural features such as scattering structure factor. A simple choice of transformation is shown to incorporate the Tuebner and Strey microemulsion structure factor and provide a reduction to the microemulsion free energy. Without adjustable parameters, the associated phase diagrams are compared to experimental and self consistent mean field based results. A gradient descent of the free energy recovers dependence of end-state morphology on initial configurations, and identifies coexisting microstructures and transitions to two-phase behavior. Small angle x-ray data is simulated and used in classification of microphase morphology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00659v1-abstract-full').style.display = 'none'; document.getElementById('2307.00659v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.15332">arXiv:2306.15332</a> <span> [<a href="https://arxiv.org/pdf/2306.15332">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-45129-x">10.1038/s41467-024-45129-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase transitions associated with magnetic-field induced topological orbital momenta in a non-collinear antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Deng%2C+S">Sihao Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Gomonay%2C+O">Olena Gomonay</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jie Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+G">Gerda Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+L">Lunhua He</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Cong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Q">Qingzhen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Feiran Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zhijian Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+R">Rui Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Z">Ze Hu</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0mejkal%2C+L">Libor 艩mejkal</a>, <a href="/search/cond-mat?searchtype=author&query=Sinova%2C+J">Jairo Sinova</a>, <a href="/search/cond-mat?searchtype=author&query=Wernsdorfer%2C+W">Wolfgang Wernsdorfer</a>, <a href="/search/cond-mat?searchtype=author&query=S%C3%BCrgers%2C+C">Christoph S眉rgers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.15332v1-abstract-short" style="display: inline;"> Resistivity measurements are widely exploited to uncover electronic excitations and phase transitions in metallic solids. While single crystals are preferably studied to explore crystalline anisotropies, these usually cancel out in polycrystalline materials. Here we show that in polycrystalline Mn3Zn0.5Ge0.5N with non-collinear antiferromagnetic order, changes in the diagonal and, rather unexpecte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15332v1-abstract-full').style.display = 'inline'; document.getElementById('2306.15332v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.15332v1-abstract-full" style="display: none;"> Resistivity measurements are widely exploited to uncover electronic excitations and phase transitions in metallic solids. While single crystals are preferably studied to explore crystalline anisotropies, these usually cancel out in polycrystalline materials. Here we show that in polycrystalline Mn3Zn0.5Ge0.5N with non-collinear antiferromagnetic order, changes in the diagonal and, rather unexpected, off-diagonal components of the resistivity tensor occur at low temperatures indicating subtle transitions between magnetic phases of different symmetry. This is supported by neutron scattering and explained within a phenomenological model which suggests that the phase transitions in magnetic field are associated with field induced topological orbital momenta. The fact that we observe transitions between spin phases in a polycrystal, where effects of crystalline anisotropy are cancelled suggests that they are only controlled by exchange interactions. The observation of an off-diagonal resistivity extends the possibilities for realising antiferromagnetic spintronics with polycrystalline materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15332v1-abstract-full').style.display = 'none'; document.getElementById('2306.15332v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Comm. 15:822 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13417">arXiv:2306.13417</a> <span> [<a href="https://arxiv.org/pdf/2306.13417">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wireless magneto-ionics: voltage control of magnetism by bipolar electrochemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Z">Zheng Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Fuentes-Rodriguez%2C+L">Laura Fuentes-Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zhengwei Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Pellicer%2C+E">Eva Pellicer</a>, <a href="/search/cond-mat?searchtype=author&query=Abad%2C+L">Llibertat Abad</a>, <a href="/search/cond-mat?searchtype=author&query=Herrero-Mart%C3%ADn%2C+J">Javier Herrero-Mart铆n</a>, <a href="/search/cond-mat?searchtype=author&query=Men%C3%A9ndez%2C+E">Enric Men茅ndez</a>, <a href="/search/cond-mat?searchtype=author&query=Casa%C3%B1-Pastor%2C+N">Nieves Casa帽-Pastor</a>, <a href="/search/cond-mat?searchtype=author&query=Sort%2C+J">Jordi Sort</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13417v1-abstract-short" style="display: inline;"> Modulation of magnetic properties through voltage-driven ion motion and redox processes, i.e., magneto-ionics, is a unique approach to control magnetism with electric field for low-power memory and spintronic applications. So far, magneto-ionics has been achieved through direct electrical connections to the actuated material. Here we evidence that an alternative way to reach such control exists in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13417v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13417v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13417v1-abstract-full" style="display: none;"> Modulation of magnetic properties through voltage-driven ion motion and redox processes, i.e., magneto-ionics, is a unique approach to control magnetism with electric field for low-power memory and spintronic applications. So far, magneto-ionics has been achieved through direct electrical connections to the actuated material. Here we evidence that an alternative way to reach such control exists in a wireless manner. Induced polarization in the conducting material immersed in the electrolyte, without direct wire contact, promotes wireless bipolar electrochemistry, an alternative pathway to achieve voltage-driven control of magnetism based on the same electrochemical processes involved in direct-contact magneto-ionics. A significant tunability of magnetization is accomplished for cobalt nitride thin films, including transitions between paramagnetic and ferromagnetic states. Such effects can be either volatile or non-volatile depending on the electrochemical cell configuration. These results represent a fundamental breakthrough that may inspire future device designs for applications in bioelectronics, catalysis, neuromorphic computing, or wireless communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13417v1-abstract-full').style.display = 'none'; document.getElementById('2306.13417v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 4 figures, Supplementary Information (9 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09107">arXiv:2306.09107</a> <span> [<a href="https://arxiv.org/pdf/2306.09107">pdf</a>, <a href="https://arxiv.org/format/2306.09107">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Characteristic THz-emissions induced by optically excited collective orbital modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rajpurohit%2C+S">Sangeeta Rajpurohit</a>, <a href="/search/cond-mat?searchtype=author&query=Jooss%2C+C">Christian Jooss</a>, <a href="/search/cond-mat?searchtype=author&query=Techert%2C+S">Simone Techert</a>, <a href="/search/cond-mat?searchtype=author&query=Ogitsu%2C+T">Tadashi Ogitsu</a>, <a href="/search/cond-mat?searchtype=author&query=Bl%C3%B6chl%2C+P+E">P. E. Bl枚chl</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">L. Z. Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09107v2-abstract-short" style="display: inline;"> We study the generation of collective orbital modes, their evolution, and the characteristic nonlinear optical response induced by them in a photoinduced orbital-ordered correlated oxide using real-time simulations based on an interacting multiband tight-binding (TB) model. The d-d optical transitions under femtoseconds light-pulse in an orbital-ordered state excite collective orbital modes, also… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09107v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09107v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09107v2-abstract-full" style="display: none;"> We study the generation of collective orbital modes, their evolution, and the characteristic nonlinear optical response induced by them in a photoinduced orbital-ordered correlated oxide using real-time simulations based on an interacting multiband tight-binding (TB) model. The d-d optical transitions under femtoseconds light-pulse in an orbital-ordered state excite collective orbital modes, also known as "orbitons". Consistently incorporating electronic interactions and the interplay between charge, spin, and lattice degrees of freedom in the TB-model provides a clearer understanding of how these factors influence the generation and evolution of collective orbital modes. The dynamics of Jahn-Teller vibrational modes in the photoinduced state modify the intersite orbital interaction, which further amplifies these orbital modes. In the presence of weak ferroelectricity, the excitation of collective orbital modes induces a strong THz oscillatory photocurrent, which is long-lived. This suggests an alternative way to experimentally detect low-energy collective modes through THz-emission studies in the photoinduced state. Our study also elucidates that quasiparticle dynamics in improper ferroelectric oxides can be exploited to achieve highly interesting and non-trivial optoelectronic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09107v2-abstract-full').style.display = 'none'; document.getElementById('2306.09107v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages and 4 figures (accepted in PRB)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05635">arXiv:2306.05635</a> <span> [<a href="https://arxiv.org/pdf/2306.05635">pdf</a>, <a href="https://arxiv.org/format/2306.05635">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1162/netn_a_00269">10.1162/netn_a_00269 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theoretical foundations of studying criticality in the brain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tian%2C+Y">Yang Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zeren Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+H">Hedong Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">Guoqi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+A">Aohua Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+Y">Yike Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Weng%2C+K">Kangyu Weng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+C">Chun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+P">Pei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05635v1-abstract-short" style="display: inline;"> Criticality is hypothesized as a physical mechanism underlying efficient transitions between cortical states and remarkable information processing capacities in the brain. While considerable evidence generally supports this hypothesis, non-negligible controversies persist regarding the ubiquity of criticality in neural dynamics and its role in information processing. Validity issues frequently ari… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05635v1-abstract-full').style.display = 'inline'; document.getElementById('2306.05635v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05635v1-abstract-full" style="display: none;"> Criticality is hypothesized as a physical mechanism underlying efficient transitions between cortical states and remarkable information processing capacities in the brain. While considerable evidence generally supports this hypothesis, non-negligible controversies persist regarding the ubiquity of criticality in neural dynamics and its role in information processing. Validity issues frequently arise during identifying potential brain criticality from empirical data. Moreover, the functional benefits implied by brain criticality are frequently misconceived or unduly generalized. These problems stem from the non-triviality and immaturity of the physical theories that analytically derive brain criticality and the statistic techniques that estimate brain criticality from empirical data. To help solve these problems, we present a systematic review and reformulate the foundations of studying brain criticality, i.e., ordinary criticality (OC), quasi-criticality (qC), self-organized criticality (SOC), and self-organized quasi-criticality (SOqC), using the terminology of neuroscience. We offer accessible explanations of the physical theories and statistic techniques of brain criticality, providing step-by-step derivations to characterize neural dynamics as a physical system with avalanches. We summarize error-prone details and existing limitations in brain criticality analysis and suggest possible solutions. Moreover, we present a forward-looking perspective on how optimizing the foundations of studying brain criticality can deepen our understanding of various neuroscience questions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05635v1-abstract-full').style.display = 'none'; document.getElementById('2306.05635v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Theoretical foundations of studying criticality in the brain. Network Neuroscience 2022; 6 (4): 1148-1185 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.13682">arXiv:2305.13682</a> <span> [<a href="https://arxiv.org/pdf/2305.13682">pdf</a>, <a href="https://arxiv.org/format/2305.13682">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Correlated Anharmonicity and Dynamic Disorder Control Carrier Transport in Halide Perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Schilcher%2C+M+J">Maximilian J. Schilcher</a>, <a href="/search/cond-mat?searchtype=author&query=Abramovitch%2C+D+J">David J. Abramovitch</a>, <a href="/search/cond-mat?searchtype=author&query=Mayers%2C+M+Z">Matthew Z. Mayers</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Reichman%2C+D+R">David R. Reichman</a>, <a href="/search/cond-mat?searchtype=author&query=Egger%2C+D+A">David A. Egger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.13682v2-abstract-short" style="display: inline;"> Halide pervoskites are an important class of semiconducting materials which hold great promise for optoelectronic applications. In this work we investigate the relationship between vibrational anharmonicity and dynamic disorder in this class of solids. Via a multi-scale model parameterized from first-principles calculations, we demonstrate that the non-Gaussian lattice motion in halide perovskites… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13682v2-abstract-full').style.display = 'inline'; document.getElementById('2305.13682v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.13682v2-abstract-full" style="display: none;"> Halide pervoskites are an important class of semiconducting materials which hold great promise for optoelectronic applications. In this work we investigate the relationship between vibrational anharmonicity and dynamic disorder in this class of solids. Via a multi-scale model parameterized from first-principles calculations, we demonstrate that the non-Gaussian lattice motion in halide perovskites is microscopically connected to the dynamic disorder of overlap fluctuations among electronic states. This connection allows us to rationalize the emergent differences in temperature-dependent mobilities of prototypical MAPbI$_3$ and MAPbBr$_3$ compounds across structural phase-transitions, in agreement with experimental findings. Our analysis suggests that the details of vibrational anharmonicity and dynamic disorder can complement known predictors of electronic conductivity and can provide structure-property guidelines for the tuning of carrier transport characteristics in anharmonic semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13682v2-abstract-full').style.display = 'none'; document.getElementById('2305.13682v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11825">arXiv:2305.11825</a> <span> [<a href="https://arxiv.org/pdf/2305.11825">pdf</a>, <a href="https://arxiv.org/format/2305.11825">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning Moment Tensor Potential for Modelling Dislocation and Fracture in L1$_0$-TiAl and D0$_{19}$-Ti$_3$Al Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qi%2C+J">Ji Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Aitken%2C+Z+H">Z. H. Aitken</a>, <a href="/search/cond-mat?searchtype=author&query=Pei%2C+Q">Qingxiang Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+A+M+Z">Anne Marie Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Zuo%2C+Y">Yunxing Zuo</a>, <a href="/search/cond-mat?searchtype=author&query=Jhon%2C+M+H">M. H. Jhon</a>, <a href="/search/cond-mat?searchtype=author&query=Quek%2C+S+S">S. S. Quek</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+T">T. Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Zhaoxuan Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Ong%2C+S+P">Shyue Ping Ong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11825v2-abstract-short" style="display: inline;"> Dual-phase $纬$-TiAl and $伪_2$-Ti$_{3}$Al alloys exhibit high strength and creep resistance at high temperatures. However, they suffer from low tensile ductility and fracture toughness at room temperature. Experimental studies show unusual plastic behaviour associated with ordinary and superdislocations, making it necessary to gain a detailed understanding on their core properties in individual pha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11825v2-abstract-full').style.display = 'inline'; document.getElementById('2305.11825v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11825v2-abstract-full" style="display: none;"> Dual-phase $纬$-TiAl and $伪_2$-Ti$_{3}$Al alloys exhibit high strength and creep resistance at high temperatures. However, they suffer from low tensile ductility and fracture toughness at room temperature. Experimental studies show unusual plastic behaviour associated with ordinary and superdislocations, making it necessary to gain a detailed understanding on their core properties in individual phases and at the two-phase interfaces. Unfortunately, extended superdislocation cores are widely dissociated beyond the length scales practical for routine first-principles density-functional theory (DFT) calculations, while extant interatomic potentials are not quantitatively accurate to reveal mechanistic origins of the unusual core-related behaviour in either phases. Here, we develop a highly-accurate moment tensor potential (MTP) for the binary Ti-Al alloy system using a DFT dataset covering a broad range of intermetallic and solid solution structures. The optimized MTP is rigorously benchmarked against both previous and new DFT calculations, and unlike existing potentials, is shown to possess outstanding accuracy in nearly all tested mechanical properties, including lattice parameters, elastic constants, surface energies, and generalized stacking fault energies (GSFE) in both phases. The utility of the MTP is further demonstrated by producing dislocation core structures largely consistent with expectations from DFT-GSFE and experimental observations. The new MTP opens the path to realistic modelling and simulations of bulk lattice and defect properties relevant to the plastic deformation and fracture processes in $纬$-TiAl and $伪_2$-Ti$_{3}$Al dual-phase alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11825v2-abstract-full').style.display = 'none'; document.getElementById('2305.11825v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02750">arXiv:2304.02750</a> <span> [<a href="https://arxiv.org/pdf/2304.02750">pdf</a>, <a href="https://arxiv.org/format/2304.02750">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Intrinsic Origin and Enhancement of Topological Responses in Ferrimagnetic Antiperovskite Mn4N </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bayaraa%2C+T">Temuujin Bayaraa</a>, <a href="/search/cond-mat?searchtype=author&query=Ivanov%2C+V">Vsevolod Ivanov</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Griffin%2C+S+M">Sin茅ad M. Griffin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02750v1-abstract-short" style="display: inline;"> Using first-principles calculations we investigate the intrinsic origins of the anomalous Hall effect (AHE) and the anomalous Nernst effect (ANE) in antiperovskite ferrimagnet Mn4N. We predict that the AHE is significantly enhanced under both compressive and tensile strain, however, the ANE generally decreases under epitaxial strain, except for 1% compressive strain. We connect this behavior to th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02750v1-abstract-full').style.display = 'inline'; document.getElementById('2304.02750v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02750v1-abstract-full" style="display: none;"> Using first-principles calculations we investigate the intrinsic origins of the anomalous Hall effect (AHE) and the anomalous Nernst effect (ANE) in antiperovskite ferrimagnet Mn4N. We predict that the AHE is significantly enhanced under both compressive and tensile strain, however, the ANE generally decreases under epitaxial strain, except for 1% compressive strain. We connect this behavior to the evolution of the Berry curvature with strain, suggesting similar strategies for achieving large AHE and ANE changes with modest amounts of strain. Finally, we find that the non-monotonic characteristics of the AHE and ANE stem from the formation and movement of new Weyl points at the periphery of the Brillouin Zone under compressive and tensile strains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02750v1-abstract-full').style.display = 'none'; document.getElementById('2304.02750v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09052">arXiv:2303.09052</a> <span> [<a href="https://arxiv.org/pdf/2303.09052">pdf</a>, <a href="https://arxiv.org/ps/2303.09052">ps</a>, <a href="https://arxiv.org/format/2303.09052">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superconducting Diode Effect and Large Magnetochiral Anisotropy in T$_d$-MoTe$_2$ Thin Film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Du%2C+W">Wan-Shun Du</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">Weipeng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yangbo Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+T">Tengfei Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Guangjian Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zongteng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+Z">Zichuan Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+H">Hao Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Song Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yue Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zhensheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+T">Tingyong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+W">Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zhen-Bing Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jing-Jing Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+D">Da-Peng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09052v2-abstract-short" style="display: inline;"> In the absence of time-reversal invariance, metals without inversion symmetry may exhibit nonreciprocal charge transport -- a magnetochiral anisotropy that manifests as unequal electrical resistance for opposite current flow directions. If superconductivity also sets in, the charge transmission may become dissipationless in one direction while remaining dissipative in the opposite, thereby realizi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09052v2-abstract-full').style.display = 'inline'; document.getElementById('2303.09052v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09052v2-abstract-full" style="display: none;"> In the absence of time-reversal invariance, metals without inversion symmetry may exhibit nonreciprocal charge transport -- a magnetochiral anisotropy that manifests as unequal electrical resistance for opposite current flow directions. If superconductivity also sets in, the charge transmission may become dissipationless in one direction while remaining dissipative in the opposite, thereby realizing a superconducting diode. Through both direct-current and alternating-current measurements, we study the nonreciprocal effects in thin films of the noncentrosymmetric superconductor T$_d$-MoTe\textsubscript{2} with disorders. We observe nonreciprocal superconducting critical currents with a diode efficiency close to 20\%~, and a large magnetochiral anisotropy coefficient up to $\SI{5.9e8}{\per\tesla\per\ampere}$, under weak out-of-plane magnetic field in the millitesla range. The great enhancement of rectification efficiency under out-of-plane magnetic field is likely abscribed to the vortex ratchet effect, which naturally appears in the noncentrosymmetric superconductor with disorders. Intriguingly, unlike the finding in Rashba systems, the strongest in-plane nonreciprocal effect does not occur when the field is perpendicular to the current flow direction. We develop a phenomenological theory to demonstrate that this peculiar behavior can be attributed to the asymmetric structure of spin-orbit coupling in T$_d$-MoTe\textsubscript{2}. Our study highlights how the crystallographic symmetry critically impacts the nonreciprocal transport, and would further advance the research for designing the superconducting diode with the best performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09052v2-abstract-full').style.display = 'none'; document.getElementById('2303.09052v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.05814">arXiv:2302.05814</a> <span> [<a href="https://arxiv.org/pdf/2302.05814">pdf</a>, <a href="https://arxiv.org/format/2302.05814">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Quantum emitter formation dynamics and probing of radiation induced atomic disorder in silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+W">Wei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ivanov%2C+V">Vsevolod Ivanov</a>, <a href="/search/cond-mat?searchtype=author&query=Jhuria%2C+K">Kaushalya Jhuria</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Q">Qing Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Persaud%2C+A">Arun Persaud</a>, <a href="/search/cond-mat?searchtype=author&query=Redjem%2C+W">Walid Redjem</a>, <a href="/search/cond-mat?searchtype=author&query=Simoni%2C+J">Jacopo Simoni</a>, <a href="/search/cond-mat?searchtype=author&query=Zhiyenbayev%2C+Y">Yertay Zhiyenbayev</a>, <a href="/search/cond-mat?searchtype=author&query=Kante%2C+B">Boubacar Kante</a>, <a href="/search/cond-mat?searchtype=author&query=Lopez%2C+J+G">Javier Garcia Lopez</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Schenkel%2C+T">Thomas Schenkel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.05814v1-abstract-short" style="display: inline;"> Near infrared color centers in silicon are emerging candidates for on-chip integrated quantum emitters, optical access quantum memories and sensing. We access ensemble G color center formation dynamics and radiation-induced atomic disorder in silicon for a series of MeV proton flux conditions. Photoluminescence results reveal that the G-centers are formed more efficiently by pulsed proton irradiat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05814v1-abstract-full').style.display = 'inline'; document.getElementById('2302.05814v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.05814v1-abstract-full" style="display: none;"> Near infrared color centers in silicon are emerging candidates for on-chip integrated quantum emitters, optical access quantum memories and sensing. We access ensemble G color center formation dynamics and radiation-induced atomic disorder in silicon for a series of MeV proton flux conditions. Photoluminescence results reveal that the G-centers are formed more efficiently by pulsed proton irradiation than continuous wave proton irradiation. The enhanced transient excitations and dynamic annealing within nanoseconds allows optimizing the ratio of G-center formation to nonradiative defect accumulation. The G-centers preserve narrow linewidths of about 0.1 nm when they are generated by moderate pulsed proton fluences, while the linewidth broadens significantly as the pulsed proton fluence increases. This implies vacancy/interstitial clustering by overlapping collision cascades. Tracking G-center properties for a series of irradiation conditions enables sensitive probing of atomic disorder, serving as a complimentary analytical method for sensing damage accumulation. Aided by ${\it ab}$ ${\it initio}$ electronic structure calculations, we provide insight into the atomic disorder-induced inhomogeneous broadening by introducing vacancies and silicon interstitials in the vicinity of a G-center. A vacancy leads to a tensile strain and can result in either a redshift or blueshift of the G-center emission, depending on its position relative to the G-center. Meanwhile, Si interstitials lead to compressive strain, which results in a monotonic redshift. High flux and tunable ion pulses enable the exploration of fundamental dynamics of radiation-induced defects as well as methods for defect engineering and qubit synthesis for quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05814v1-abstract-full').style.display = 'none'; document.getElementById('2302.05814v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07394">arXiv:2212.07394</a> <span> [<a href="https://arxiv.org/pdf/2212.07394">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/sstr.202200378">10.1002/sstr.202200378 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface Effects on Anisotropic Photoluminescence in One-Dimensional Organic Metal Halide Hybrids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=McClintock%2C+L+M">Luke M. McClintock</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+L">Long Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Ziyi Song</a>, <a href="/search/cond-mat?searchtype=author&query=Pettes%2C+M+T">Michael T. Pettes</a>, <a href="/search/cond-mat?searchtype=author&query=Yarotski%2C+D">Dmitry Yarotski</a>, <a href="/search/cond-mat?searchtype=author&query=Karkee%2C+R">Rijan Karkee</a>, <a href="/search/cond-mat?searchtype=author&query=Strubbe%2C+D+A">David A. Strubbe</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Ben-Akacha%2C+A">Azza Ben-Akacha</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+B">Biwu Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yunshu Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Taufour%2C+V">Valentin Taufour</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+D">Dong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07394v1-abstract-short" style="display: inline;"> One-dimensional (1D) organic metal halide hybrids exhibit strongly anisotropic optical properties, highly efficient light emission, and large Stokes shift, holding promises for novel photodetection and lighting applications. However, the fundamental mechanisms governing their unique optical properties and in particular the impacts of surface effects are not understood. Here, we investigate 1D C4N2… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07394v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07394v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07394v1-abstract-full" style="display: none;"> One-dimensional (1D) organic metal halide hybrids exhibit strongly anisotropic optical properties, highly efficient light emission, and large Stokes shift, holding promises for novel photodetection and lighting applications. However, the fundamental mechanisms governing their unique optical properties and in particular the impacts of surface effects are not understood. Here, we investigate 1D C4N2H14PbBr4 by polarization-dependent time-averaged and time-resolved photoluminescence (TRPL) spectroscopy, as a function of photoexcitation energy. Surprisingly, we find that the emission under photoexcitation polarized parallel to the 1D metal halide chains can be either stronger or weaker than that under perpendicular polarization, depending on the excitation energy. We attribute the excitation-energy-dependent anisotropic emission to fast surface recombination, supported by first-principles calculations of optical absorption in this material. The fast surface recombination is directly confirmed by TRPL measurements, when the excitation is polarized parallel to the chains. Our comprehensive studies provide a more complete picture for a deeper understanding of the optical anisotropy in 1D organic metal halide hybrids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07394v1-abstract-full').style.display = 'none'; document.getElementById('2212.07394v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Small Struct. 2200378 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09802">arXiv:2211.09802</a> <span> [<a href="https://arxiv.org/pdf/2211.09802">pdf</a>, <a href="https://arxiv.org/format/2211.09802">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/40/6/060301">10.1088/0256-307X/40/6/060301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Digital simulation of non-Abelian anyons with 68 programmable superconducting qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zheng-Zhi Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Weikang Li</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09802v2-abstract-short" style="display: inline;"> Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter. They break the fermion-boson dichotomy and obey non-Abelian braiding statistics: their interchanges yield unitary operations, rather than merely a phase factor, in a space spanned by topologically degenerate wavefunctions. They are the building blocks of topological quantum computing. However, e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09802v2-abstract-full').style.display = 'inline'; document.getElementById('2211.09802v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09802v2-abstract-full" style="display: none;"> Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter. They break the fermion-boson dichotomy and obey non-Abelian braiding statistics: their interchanges yield unitary operations, rather than merely a phase factor, in a space spanned by topologically degenerate wavefunctions. They are the building blocks of topological quantum computing. However, experimental observation of non-Abelian anyons and their characterizing braiding statistics is notoriously challenging and has remained elusive hitherto, in spite of various theoretical proposals. Here, we report an experimental quantum digital simulation of projective non-Abelian anyons and their braiding statistics with up to 68 programmable superconducting qubits arranged on a two-dimensional lattice. By implementing the ground states of the toric-code model with twists through quantum circuits, we demonstrate that twists exchange electric and magnetic charges and behave as a particular type of non-Abelian anyons, i.e., the Ising anyons. In particular, we show experimentally that these twists follow the fusion rules and non-Abelian braiding statistics of the Ising type, and can be explored to encode topological logical qubits. Furthermore, we demonstrate how to implement both single- and two-qubit logic gates through applying a sequence of elementary Pauli gates on the underlying physical qubits. Our results demonstrate a versatile quantum digital approach for simulating non-Abelian anyons, offering a new lens into the study of such peculiar quasiparticles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09802v2-abstract-full').style.display = 'none'; document.getElementById('2211.09802v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 40 060301 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07773">arXiv:2211.07773</a> <span> [<a href="https://arxiv.org/pdf/2211.07773">pdf</a>, <a href="https://arxiv.org/format/2211.07773">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coactive-Staggered Feature in Weyl Materials for Enhancing the Anomalous Nernst Conductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ivanov%2C+V">Vsevolod Ivanov</a>, <a href="/search/cond-mat?searchtype=author&query=Banyas%2C+E">Ella Banyas</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07773v2-abstract-short" style="display: inline;"> Power generation through the anomalous Nernst effect in topological Weyl materials has several advantages over conventional thermoelectrics due to the transverse geometry. However, the magnitude of the anomalous Nernst conductivity (ANC) in most known materials is too small to be of practical use, and there exist few guiding principles for finding materials with optimal thermoelectric properties.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07773v2-abstract-full').style.display = 'inline'; document.getElementById('2211.07773v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07773v2-abstract-full" style="display: none;"> Power generation through the anomalous Nernst effect in topological Weyl materials has several advantages over conventional thermoelectrics due to the transverse geometry. However, the magnitude of the anomalous Nernst conductivity (ANC) in most known materials is too small to be of practical use, and there exist few guiding principles for finding materials with optimal thermoelectric properties. This work shows that the ANC is maximal when there is a ``coactive-staggered" feature in the anomalous Hall conductivity (AHC). It is shown that a minimal arrangement of two Weyl pairs leads to such a feature, and tuning the separations between the pairs controls the temperature at which the ANC is maximal. Several methods are proposed for creating such arrangements of Weyl points starting from Dirac semimetal materials. It is also demonstrated how an existing coactive-staggered AHC in a Heusler material can be exploited, by collectively tuning the positions of the Weyl points through strain to further enhance the ANC. A modest 20% amplification of the ANC is achieved, even with relatively minor changes in Weyl point positions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07773v2-abstract-full').style.display = 'none'; document.getElementById('2211.07773v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00742">arXiv:2211.00742</a> <span> [<a href="https://arxiv.org/pdf/2211.00742">pdf</a>, <a href="https://arxiv.org/format/2211.00742">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Photo-induced phase-transitions in complex solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rajpurohit%2C+S">Sangeeta Rajpurohit</a>, <a href="/search/cond-mat?searchtype=author&query=Simoni%2C+J">Jacopo Simoni</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00742v1-abstract-short" style="display: inline;"> Photo-induced phase-transitions (PIPTs) driven by highly cooperative interactions are of fundamental interest as they offer a way to tune and control material properties on ultrafast timescales. Due to strong correlations and interactions, complex quantum materials host several fascinating PIPTs such as light-induced charge density waves and ferroelectricity and have become a desirable setting for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00742v1-abstract-full').style.display = 'inline'; document.getElementById('2211.00742v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00742v1-abstract-full" style="display: none;"> Photo-induced phase-transitions (PIPTs) driven by highly cooperative interactions are of fundamental interest as they offer a way to tune and control material properties on ultrafast timescales. Due to strong correlations and interactions, complex quantum materials host several fascinating PIPTs such as light-induced charge density waves and ferroelectricity and have become a desirable setting for studying these PIPTs. A central issue in this field is the proper understanding of the underlying mechanisms driving the PIPTs. As these PIPTs are highly nonlinear processes and often involve multiple time and length scales, different theoretical approaches are often needed to understand the underlying mechanisms. In this review, we present a brief overview of PIPTs realized in complex materials, followed by a discussion of the available theoretical methods with selected examples of recent progress in understanding of the nonequilibrium pathways of PIPTs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00742v1-abstract-full').style.display = 'none'; document.getElementById('2211.00742v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.09545">arXiv:2208.09545</a> <span> [<a href="https://arxiv.org/pdf/2208.09545">pdf</a>, <a href="https://arxiv.org/format/2208.09545">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ballistic photocurrent driven by optical phonon modes in a polaronic ferroelectric </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rajpurohit%2C+S">Sangeeta Rajpurohit</a>, <a href="/search/cond-mat?searchtype=author&query=Ogitsu%2C+T">Tadashi Ogitsu</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.09545v1-abstract-short" style="display: inline;"> We investigate the effect of local electron-phonon coupling on nonlinear optical conductivity in an interacting ferroelectric system. Using real-time simulations, we show an enhancement in nonlinear conductivity under linearly-polarized light due to generation of the phonon-assisted ballistic-current in addition to the injection-current generated by electron-hole pairs. The optically excited phono… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09545v1-abstract-full').style.display = 'inline'; document.getElementById('2208.09545v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.09545v1-abstract-full" style="display: none;"> We investigate the effect of local electron-phonon coupling on nonlinear optical conductivity in an interacting ferroelectric system. Using real-time simulations, we show an enhancement in nonlinear conductivity under linearly-polarized light due to generation of the phonon-assisted ballistic-current in addition to the injection-current generated by electron-hole pairs. The optically excited phonon modes generate an asymmetric carrier distribution that causes a strong directional ballistic-current. The ballistic-current enhances the photocurrent several times at above band-gap excitation frequencies and is sublinearly dependent on the excitation intensity. This strong phonon-assisted zero-frequency directional ballistic-current demonstrates an alternative way to boost the bulk photovoltaic effect (BPVE) in electronic ferroelectric materials with strong local electron-phonon coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09545v1-abstract-full').style.display = 'none'; document.getElementById('2208.09545v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04824">arXiv:2206.04824</a> <span> [<a href="https://arxiv.org/pdf/2206.04824">pdf</a>, <a href="https://arxiv.org/format/2206.04824">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.134107">10.1103/PhysRevB.106.134107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of Localization on Photoluminescence and Zero-Field Splitting of Silicon Color Centers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ivanov%2C+V">Vsevolod Ivanov</a>, <a href="/search/cond-mat?searchtype=author&query=Simoni%2C+J">Jacopo Simoni</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Yeonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+W">Wei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jhuria%2C+K">Kaushalya Jhuria</a>, <a href="/search/cond-mat?searchtype=author&query=Redjem%2C+W">Walid Redjem</a>, <a href="/search/cond-mat?searchtype=author&query=Zhiyenbayev%2C+Y">Yertay Zhiyenbayev</a>, <a href="/search/cond-mat?searchtype=author&query=Papapanos%2C+C">Christos Papapanos</a>, <a href="/search/cond-mat?searchtype=author&query=Qarony%2C+W">Wayesh Qarony</a>, <a href="/search/cond-mat?searchtype=author&query=Kante%2C+B">Boubacar Kante</a>, <a href="/search/cond-mat?searchtype=author&query=Persaud%2C+A">Arun Persaud</a>, <a href="/search/cond-mat?searchtype=author&query=Schenkel%2C+T">Thomas Schenkel</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04824v3-abstract-short" style="display: inline;"> The study of defect centers in silicon has been recently reinvigorated by their potential applications in optical quantum information processing. A number of silicon defect centers emit single photons in the telecommunication $O$-band, making them promising building blocks for quantum networks between computing nodes. The two-carbon G-center, self-interstitial W-center, and spin-$1/2$ T-center are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04824v3-abstract-full').style.display = 'inline'; document.getElementById('2206.04824v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04824v3-abstract-full" style="display: none;"> The study of defect centers in silicon has been recently reinvigorated by their potential applications in optical quantum information processing. A number of silicon defect centers emit single photons in the telecommunication $O$-band, making them promising building blocks for quantum networks between computing nodes. The two-carbon G-center, self-interstitial W-center, and spin-$1/2$ T-center are the most intensively studied silicon defect centers, yet despite this, there is no consensus on the precise configurations of defect atoms in these centers, and their electronic structures remain ambiguous. Here we employ \textit{ab initio} density functional theory to characterize these defect centers, providing insight into the relaxed structures, bandstructures, and photoluminescence spectra, which are compared to experimental results. Motivation is provided for how these properties are intimately related to the localization of electronic states in the defect centers. In particular, we present the calculation of the zero-field splitting for the excited triplet state of the G-center defect as the structure is transformed from the A-configuration to the B-configuration, showing a sudden increase in the magnitude of the $D_{zz}$ component of the zero-field splitting tensor. By performing projections onto the local orbital states of the defect, we analyze this transition in terms of the symmetry and bonding character of the G-center defect which sheds light on its potential application as a spin-photon interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04824v3-abstract-full').style.display = 'none'; document.getElementById('2206.04824v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 134107 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04309">arXiv:2206.04309</a> <span> [<a href="https://arxiv.org/pdf/2206.04309">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.184515">10.1103/PhysRevB.105.184515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proximity-induced superconducting gap in the intrinsic magnetic topological insulator MnBi2Te4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+W">Wen-Zheng Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+C">Chun-Guang Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+Z">Zhen-Cun Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jing-Jing Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+A">An-Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zhen-Bing Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+P">Peng-Fei Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+X">Xing-Guo Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+D">Da-Peng Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+Z">Zhi-Min Liao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04309v1-abstract-short" style="display: inline;"> We report magnetotransport measurements in the NbN/ magnetic topological insulator MnBi2Te4 (MBT)/ NbN junction at low temperature. At 10 mK, the nonlinear current-voltage characteristic of the junction shows a tunneling behavior, indicating the existence of interfacial potential barriers within the heterostructure. Under an out of plane perpendicular magnetic field, a transition from negative to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04309v1-abstract-full').style.display = 'inline'; document.getElementById('2206.04309v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04309v1-abstract-full" style="display: none;"> We report magnetotransport measurements in the NbN/ magnetic topological insulator MnBi2Te4 (MBT)/ NbN junction at low temperature. At 10 mK, the nonlinear current-voltage characteristic of the junction shows a tunneling behavior, indicating the existence of interfacial potential barriers within the heterostructure. Under an out of plane perpendicular magnetic field, a transition from negative to positive magnetoresistance (MR) is found when increasing the bias voltage. A proximity-induced superconducting gap is estimated to be 0.1meV by a pair of differential resistance dips. Moreover, the induced gap is enhanced by gradually tuning the Fermi level toward the charge neutral point by a back gate voltage, which is ascribed to the increased transport contribution of the topological surface states in MBT. Intriguingly, the induced gap exhibits an anomalous magnetic field assisted enhancement, which may originate from the spin orbit coupling and magnetic order of MBT. Our results reveal the interplay between magnetism and superconductivity in MBT, paving the way for further studies on topological superconductivity and chiral Majorana edge modes in quantum anomalous Hall insulator/superconductor hybrid systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04309v1-abstract-full').style.display = 'none'; document.getElementById('2206.04309v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 184515 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.13781">arXiv:2203.13781</a> <span> [<a href="https://arxiv.org/pdf/2203.13781">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Defect engineering of silicon with ion pulses from laser acceleration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Redjem%2C+W">Walid Redjem</a>, <a href="/search/cond-mat?searchtype=author&query=Amsellem%2C+A+J">Ariel J. Amsellem</a>, <a href="/search/cond-mat?searchtype=author&query=Allen%2C+F+I">Frances I. Allen</a>, <a href="/search/cond-mat?searchtype=author&query=Benndorf%2C+G">Gabriele Benndorf</a>, <a href="/search/cond-mat?searchtype=author&query=Bin%2C+J">Jianhui Bin</a>, <a href="/search/cond-mat?searchtype=author&query=Bulanov%2C+S">Stepan Bulanov</a>, <a href="/search/cond-mat?searchtype=author&query=Esarey%2C+E">Eric Esarey</a>, <a href="/search/cond-mat?searchtype=author&query=Feldman%2C+L+C">Leonard C. Feldman</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandez%2C+J+F">Javier Ferrer Fernandez</a>, <a href="/search/cond-mat?searchtype=author&query=Lopez%2C+J+G">Javier Garcia Lopez</a>, <a href="/search/cond-mat?searchtype=author&query=Geulig%2C+L">Laura Geulig</a>, <a href="/search/cond-mat?searchtype=author&query=Geddes%2C+C+R">Cameron R. Geddes</a>, <a href="/search/cond-mat?searchtype=author&query=Hijazi%2C+H">Hussein Hijazi</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Q">Qing Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Ivanov%2C+V">Vsevolod Ivanov</a>, <a href="/search/cond-mat?searchtype=author&query=Kante%2C+B">Boubacar Kante</a>, <a href="/search/cond-mat?searchtype=author&query=Gonsalves%2C+A">Anthony Gonsalves</a>, <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+J">Jan Meijer</a>, <a href="/search/cond-mat?searchtype=author&query=Nakamura%2C+K">Kei Nakamura</a>, <a href="/search/cond-mat?searchtype=author&query=Persaud%2C+A">Arun Persaud</a>, <a href="/search/cond-mat?searchtype=author&query=Pong%2C+I">Ian Pong</a>, <a href="/search/cond-mat?searchtype=author&query=Obst-Huebl%2C+L">Lieselotte Obst-Huebl</a>, <a href="/search/cond-mat?searchtype=author&query=Seidl%2C+P+A">Peter A. Seidl</a>, <a href="/search/cond-mat?searchtype=author&query=Simoni%2C+J">Jacopo Simoni</a>, <a href="/search/cond-mat?searchtype=author&query=Schroeder%2C+C">Carl Schroeder</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.13781v1-abstract-short" style="display: inline;"> Defect engineering is foundational to classical electronic device development and for emerging quantum devices. Here, we report on defect engineering of silicon single crystals with ion pulses from a laser accelerator with ion flux levels up to 10^22 ions/cm^2/s. Low energy ions from plasma expansion of the laser-foil target are implanted near the surface and then diffuse into silicon samples that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13781v1-abstract-full').style.display = 'inline'; document.getElementById('2203.13781v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.13781v1-abstract-full" style="display: none;"> Defect engineering is foundational to classical electronic device development and for emerging quantum devices. Here, we report on defect engineering of silicon single crystals with ion pulses from a laser accelerator with ion flux levels up to 10^22 ions/cm^2/s. Low energy ions from plasma expansion of the laser-foil target are implanted near the surface and then diffuse into silicon samples that were locally pre-heated by high energy ions. We observe low energy ion fluences of ~10^16 cm^-2, about four orders of magnitude higher than the fluence of high energy (MeV) ions. In the areas of highest energy deposition, silicon crystals exfoliate from single ion pulses. Color centers, predominantly W and G-centers, form directly in response to ion pulses without a subsequent annealing step. We find that the linewidth of G-centers increase in areas with high ion flux much more than the linewidth of W-centers, consistent with density functional theory calculations of their electronic structure. Laser ion acceleration generates aligned pulses of high and low energy ions that expand the parameter range for defect engineering and doping of semiconductors with tunable balances of ion flux, damage rates and local heating. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13781v1-abstract-full').style.display = 'none'; document.getElementById('2203.13781v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07406">arXiv:2202.07406</a> <span> [<a href="https://arxiv.org/pdf/2202.07406">pdf</a>, <a href="https://arxiv.org/format/2202.07406">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.17.1.022">10.21468/SciPostPhys.17.1.022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Importance of the X-ray edge singularity for the detection of relic neutrinos in the PTOLEMY project </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zhiyang Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Cheianov%2C+V">Vadim Cheianov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07406v3-abstract-short" style="display: inline;"> Direct detection of relic neutrinos in a beta-decay experiment is an ambitious goal that has long been beyond the reach of available technology. One of the most challenging practical difficulties for such an experiment is managing a large amount of radioactive material without compromising the energy resolution required to distinguish useful events from the substantial beta-decay background. The P… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07406v3-abstract-full').style.display = 'inline'; document.getElementById('2202.07406v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07406v3-abstract-full" style="display: none;"> Direct detection of relic neutrinos in a beta-decay experiment is an ambitious goal that has long been beyond the reach of available technology. One of the most challenging practical difficulties for such an experiment is managing a large amount of radioactive material without compromising the energy resolution required to distinguish useful events from the substantial beta-decay background. The PTOLEMY project offers an innovative solution to this problem by depositing radioactive material on graphene. While this approach is expected to address the main challenge, it introduces new issues due to the proximity of the beta decayers to a solid-state system. In this work, we focus on the effect of the shakeup of the graphene electron system caused by a beta-decay event. We calculate the distortion of the relic neutrino peaks resulting from this shakeup, analyze the impact of the distortion on the visibility of neutrino capture events, and discuss potential technological solutions to enhance the visibility of these events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07406v3-abstract-full').style.display = 'none'; document.getElementById('2202.07406v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11715">arXiv:2112.11715</a> <span> [<a href="https://arxiv.org/pdf/2112.11715">pdf</a>, <a href="https://arxiv.org/format/2112.11715">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adts.202200413">10.1002/adts.202200413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A many-body perturbation theory approach to energy band alignment at the crystalline tetracene-silicon interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Klymenko%2C+M+V">M. V. Klymenko</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">L. Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Russo%2C+S+P">S. P. Russo</a>, <a href="/search/cond-mat?searchtype=author&query=Cole%2C+J+H">J. H. Cole</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11715v2-abstract-short" style="display: inline;"> Hybrid inorganic-organic semiconductor interfaces are of interest for new photovoltaic devices operating above the Shockley-Queisser limit. Predicting energy band alignment at the interfaces is crucial for their design, but represents a challenging problem due to the large scales of the system, the energy precision required and a wide range of physical phenomena that occur at the interface. To tac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11715v2-abstract-full').style.display = 'inline'; document.getElementById('2112.11715v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11715v2-abstract-full" style="display: none;"> Hybrid inorganic-organic semiconductor interfaces are of interest for new photovoltaic devices operating above the Shockley-Queisser limit. Predicting energy band alignment at the interfaces is crucial for their design, but represents a challenging problem due to the large scales of the system, the energy precision required and a wide range of physical phenomena that occur at the interface. To tackle this problem, we use many-body perturbation theory in the non-self-consistent GW approximation, orbital relaxation corrections for organic semiconductors, and line-up potential method for inorganic semiconductors which allows for tractable and accurate computing of energy band alignment in crystalline van-der-Waals hybrid inorganic-organic semiconductor interfaces. In this work, we study crystalline tetracene physisorbed on the clean hydrogen-passivated 1x2 reconstructed (100) silicon surface. Using this computational approach, we find that the energy band alignment is determined by an interplay of the mutual dynamic dielectric screening of two materials and the formation of a dipole layer due to a weak hybridization of atomic/molecular orbitals at the interface. We also emphasize the significant role of the exchange-correlation effects in predicting band offsets for the hybrid inorganic-organic semiconductor interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11715v2-abstract-full').style.display = 'none'; document.getElementById('2112.11715v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Theory Simul. 2022, 5, 2200413 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.14704">arXiv:2110.14704</a> <span> [<a href="https://arxiv.org/pdf/2110.14704">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> </div> <p class="title is-5 mathjax"> Direct observation of enhanced electron-phonon coupling in copper nanoparticles in the warm-dense matter regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nguyen%2C+Q+L+D">Quynh L. D. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&query=Simoni%2C+J">Jacopo Simoni</a>, <a href="/search/cond-mat?searchtype=author&query=Dorney%2C+K+M">Kevin M. Dorney</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+X">Xun Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Ellis%2C+J+L">Jennifer L. Ellis</a>, <a href="/search/cond-mat?searchtype=author&query=Brooks%2C+N+J">Nathan J. Brooks</a>, <a href="/search/cond-mat?searchtype=author&query=Hickstein%2C+D+D">Daniel D. Hickstein</a>, <a href="/search/cond-mat?searchtype=author&query=Grennell%2C+A+G">Amanda G. Grennell</a>, <a href="/search/cond-mat?searchtype=author&query=Yazdi%2C+S">Sadegh Yazdi</a>, <a href="/search/cond-mat?searchtype=author&query=Campbell%2C+E+E+B">Eleanor E. B. Campbell</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Prendergast%2C+D">David Prendergast</a>, <a href="/search/cond-mat?searchtype=author&query=Daligault%2C+J">Jerome Daligault</a>, <a href="/search/cond-mat?searchtype=author&query=Kapteyn%2C+H+C">Henry C. Kapteyn</a>, <a href="/search/cond-mat?searchtype=author&query=Murnane%2C+M+M">Margaret M. Murnane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.14704v4-abstract-short" style="display: inline;"> Warm-dense matter (WDM) is a highly-excited state that lies at the confluence of solids, plasmas, and liquids and that cannot be described by equilibrium theories. The transient nature of this state when created in a laboratory, as well as the difficulties in probing the strongly-coupled interactions between the electrons and the ions, make it challenging to develop a complete understanding of mat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14704v4-abstract-full').style.display = 'inline'; document.getElementById('2110.14704v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.14704v4-abstract-full" style="display: none;"> Warm-dense matter (WDM) is a highly-excited state that lies at the confluence of solids, plasmas, and liquids and that cannot be described by equilibrium theories. The transient nature of this state when created in a laboratory, as well as the difficulties in probing the strongly-coupled interactions between the electrons and the ions, make it challenging to develop a complete understanding of matter in this regime. In this work, by exciting isolated ~8 nm nanoparticles with a femtosecond laser below the ablation threshold, we create uniformly-excited WDM. We then use photoelectron spectroscopy to track the instantaneous electron temperature and directly extract the strongest electron-ion coupling observed experimentally to date. By directly comparing with state-of-the-art theories, we confirm that the superheated nanoparticles lie at the boundary between hot solids and plasmas, with associated strong electron-ion coupling. This is evidenced both by the fast energy loss of electrons to ions, as well as a strong modulation of the electron temperature by acoustic oscillations in the nanoparticle. This work demonstrates a new route for experimental exploration and theoretical validation of the exotic properties of WDM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14704v4-abstract-full').style.display = 'none'; document.getElementById('2110.14704v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.03495">arXiv:2110.03495</a> <span> [<a href="https://arxiv.org/pdf/2110.03495">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Twist-diameter coupling drives DNA twist changes by salt and temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+F">Fujia Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Y">Ying Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+B">Bing Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zhi-Jie Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xing-Hua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+L">Liang Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.03495v1-abstract-short" style="display: inline;"> DNA deformations play crucial roles in many biological processes and material applications. During DNA deformation, DNA structural parameters often exhibit non-trivial and counterintuitive couplings, such as the twist-stretch and twist-bending couplings. Here, we reveal an unexpectedly strong negative twist-diameter coupling through the synergy of magnetic-tweezers experiments, atomistic molecular… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03495v1-abstract-full').style.display = 'inline'; document.getElementById('2110.03495v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.03495v1-abstract-full" style="display: none;"> DNA deformations play crucial roles in many biological processes and material applications. During DNA deformation, DNA structural parameters often exhibit non-trivial and counterintuitive couplings, such as the twist-stretch and twist-bending couplings. Here, we reveal an unexpectedly strong negative twist-diameter coupling through the synergy of magnetic-tweezers experiments, atomistic molecular dynamics simulations, and theoretical calculations. In experiments, the DNA twist angle always increases with the concentration of NaCl, KCl, or RbCl. Our simulations quantitatively reproduce salt-induced twist changes and reveal the underlying physical mechanism: the reduction of DNA diameter under a high salt concentration leads to the increase in DNA twist angle through a strong negative twist-diameter coupling. The twist-diameter coupling is mediated by two dihedral angles in DNA structure and the coupling constant is 4.5 kBT/(deg nm) for one base-pair. Based on this coupling constant, we predict the temperature-dependence of DNA twist -0.0102 deg/K per bp, which agrees with our and previous experimental results. Our analysis suggests that the twist-diameter coupling is a common driving force for salt- and temperature-induced DNA twist changes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03495v1-abstract-full').style.display = 'none'; document.getElementById('2110.03495v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13413">arXiv:2107.13413</a> <span> [<a href="https://arxiv.org/pdf/2107.13413">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202105252">10.1002/adfm.202105252 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controllable p-type Doping of 2D WSe2 via Vanadium Substitution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kozhakhmetov%2C+A">Azimkhan Kozhakhmetov</a>, <a href="/search/cond-mat?searchtype=author&query=Stolz%2C+S">Samuel Stolz</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+A+M+Z">Anne Marie Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Pendurthi%2C+R">Rahul Pendurthi</a>, <a href="/search/cond-mat?searchtype=author&query=Bachu%2C+S">Saiphaneendra Bachu</a>, <a href="/search/cond-mat?searchtype=author&query=Turker%2C+F">Furkan Turker</a>, <a href="/search/cond-mat?searchtype=author&query=Alem%2C+N">Nasim Alem</a>, <a href="/search/cond-mat?searchtype=author&query=Kachian%2C+J">Jessica Kachian</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">Saptarshi Das</a>, <a href="/search/cond-mat?searchtype=author&query=Hennig%2C+R+G">Richard G. Hennig</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%B6ning%2C+O">Oliver Gr枚ning</a>, <a href="/search/cond-mat?searchtype=author&query=Schuler%2C+B">Bruno Schuler</a>, <a href="/search/cond-mat?searchtype=author&query=Robinson%2C+J+A">Joshua A. Robinson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13413v1-abstract-short" style="display: inline;"> Scalable substitutional doping of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is a prerequisite to developing next-generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, we report scalable growth and vanadium (V) doping of 2D WSe2 at front-end-of-line (FEOL) and back-end-of-line (BEOL) compatible temperatures of 800 掳C and 400… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13413v1-abstract-full').style.display = 'inline'; document.getElementById('2107.13413v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13413v1-abstract-full" style="display: none;"> Scalable substitutional doping of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is a prerequisite to developing next-generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, we report scalable growth and vanadium (V) doping of 2D WSe2 at front-end-of-line (FEOL) and back-end-of-line (BEOL) compatible temperatures of 800 掳C and 400 掳C, respectively. A combination of experimental and theoretical studies confirm that vanadium atoms substitutionally replace tungsten in WSe2, which results in p-type doping via the introduction of discrete defect levels that lie close to the valence band maxima. The p-type nature of the V dopants is further verified by constructed field-effect transistors, where hole conduction becomes dominant with increasing vanadium concentration. Hence, our study presents a method to precisely control the density of intentionally introduced impurities, which is indispensable in the production of electronic-grade wafer-scale extrinsic 2D semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13413v1-abstract-full').style.display = 'none'; document.getElementById('2107.13413v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Funct. Mater. 2021, 2105252 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04849">arXiv:2107.04849</a> <span> [<a href="https://arxiv.org/pdf/2107.04849">pdf</a>, <a href="https://arxiv.org/format/2107.04849">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Charged Vacancy Defects in Black Phosphorus Monolayer Phosphorene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rijal%2C+B">Biswas Rijal</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+A+M+Z">Anne Marie Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Freysoldt%2C+C">Christoph Freysoldt</a>, <a href="/search/cond-mat?searchtype=author&query=Hennig%2C+R+G">Richard G. Hennig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04849v1-abstract-short" style="display: inline;"> The two-dimensional semiconductor phosphorene has attracted extensive research interests for potential applications in optoelectronics, spintronics, catalysis, sensors, and energy conversion. To harness phosphorene's potential requires a better understanding of how intrinsic defects control carrier concentration, character, and mobility. Using density-functional theory and a charge correction sche… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04849v1-abstract-full').style.display = 'inline'; document.getElementById('2107.04849v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04849v1-abstract-full" style="display: none;"> The two-dimensional semiconductor phosphorene has attracted extensive research interests for potential applications in optoelectronics, spintronics, catalysis, sensors, and energy conversion. To harness phosphorene's potential requires a better understanding of how intrinsic defects control carrier concentration, character, and mobility. Using density-functional theory and a charge correction scheme to account for the appropriate boundary conditions, we conduct a comprehensive study of the effect of structure on the formation energy, electronic structure, and charge transition level of the charged vacancy point defects in phosphorene. We predict that the neutral vacancy exhibits a 9-5 ring structure with a formation energy of 1.7 eV and transitions to a negatively charged state at a Fermi level 1.04 eV above the valence band maximum. The corresponding optical charge transitions display sizeable Frank-Condon shifts with a large Stokes shift of 0.3 eV. Phosphorene vacancies should become negatively charged in n-doped phosphorene, which would passivate the dopants and reduce the charge carrier concentration and mobility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04849v1-abstract-full').style.display = 'none'; document.getElementById('2107.04849v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.03872">arXiv:2106.03872</a> <span> [<a href="https://arxiv.org/pdf/2106.03872">pdf</a>, <a href="https://arxiv.org/format/2106.03872">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> INQ, a modern GPU-accelerated computational framework for (time-dependent) density functional theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Andrade%2C+X">Xavier Andrade</a>, <a href="/search/cond-mat?searchtype=author&query=Pemmaraju%2C+C+D">Chaitanya Das Pemmaraju</a>, <a href="/search/cond-mat?searchtype=author&query=Kartsev%2C+A">Alexey Kartsev</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+J">Jun Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Lindenberg%2C+A">Aaron Lindenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Rajpurohit%2C+S">Sangeeta Rajpurohit</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Ogitsu%2C+T">Tadashi Ogitsu</a>, <a href="/search/cond-mat?searchtype=author&query=Correa%2C+A+A">Alfredo A. Correa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.03872v1-abstract-short" style="display: inline;"> We present INQ, a new implementation of density functional theory (DFT) and time-dependent DFT (TDDFT) written from scratch to work on graphical processing units (GPUs). Besides GPU support, INQ makes use of modern code design features and takes advantage of newly available hardware. By designing the code around algorithms, rather than against specific implementations and numerical libraries, we a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03872v1-abstract-full').style.display = 'inline'; document.getElementById('2106.03872v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.03872v1-abstract-full" style="display: none;"> We present INQ, a new implementation of density functional theory (DFT) and time-dependent DFT (TDDFT) written from scratch to work on graphical processing units (GPUs). Besides GPU support, INQ makes use of modern code design features and takes advantage of newly available hardware. By designing the code around algorithms, rather than against specific implementations and numerical libraries, we aim to provide a concise and modular code. The result is a fairly complete DFT/TDDFT implementation in roughly 12,000 lines of open-source C++ code representing a modular platform for community-driven application development on emerging high-performance computing architectures for the simulation of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03872v1-abstract-full').style.display = 'none'; document.getElementById('2106.03872v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.11310">arXiv:2105.11310</a> <span> [<a href="https://arxiv.org/pdf/2105.11310">pdf</a>, <a href="https://arxiv.org/format/2105.11310">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.094307">10.1103/PhysRevB.105.094307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A non-perturbative study of bulk photovoltaic effect enhanced by an optically induced phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rajpurohit%2C+S">Sangeeta Rajpurohit</a>, <a href="/search/cond-mat?searchtype=author&query=Pemmaraju%2C+C+D">C. Das Pemmaraju</a>, <a href="/search/cond-mat?searchtype=author&query=Ogitsu%2C+T">Tadashi Ogitsu</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.11310v1-abstract-short" style="display: inline;"> Solid systems with strong correlations and interactions under light illumination have the potential for exhibiting interesting bulk photovoltaic behavior in the non-perturbative regime, which has remained largely unexplored in the past theoretical studies. We investigate the bulk photovoltaic response of a perovskite manganite with strongly coupled electron-spin-lattice dynamics, using real-time s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11310v1-abstract-full').style.display = 'inline'; document.getElementById('2105.11310v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.11310v1-abstract-full" style="display: none;"> Solid systems with strong correlations and interactions under light illumination have the potential for exhibiting interesting bulk photovoltaic behavior in the non-perturbative regime, which has remained largely unexplored in the past theoretical studies. We investigate the bulk photovoltaic response of a perovskite manganite with strongly coupled electron-spin-lattice dynamics, using real-time simulations performed with a tight-binding model. The transient changes in the band structure and the photoinduced phase transitions, emerging from spin and phonon dynamics, result in a nonlinear current versus intensity behavior beyond the perturbative limit. The current rises sharply across a photoinduced magnetic phase transition, which later saturates at higher light intensities due to excited phonon and spin modes. The predicted peak photoresponsivity is orders of magnitude higher than other known ferroelectric oxides such as BiFeO$_3$. We disentangle phonon-and spin-assisted components to the ballistic photocurrent, showing that they are comparable in magnitude. Our results illustrate a promising alternative way for controlling and optimizing the bulk photovoltaic response through the photoinduced phase transitions in strongly-correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11310v1-abstract-full').style.display = 'none'; document.getElementById('2105.11310v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06525">arXiv:2105.06525</a> <span> [<a href="https://arxiv.org/pdf/2105.06525">pdf</a>, <a href="https://arxiv.org/format/2105.06525">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.085404">10.1103/PhysRevMaterials.5.085404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal fluctuations and carrier localization induced by dynamic disorder in MAPbI3 described by a first-principles based tight-binding model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Abramovitch%2C+D+J">David J. Abramovitch</a>, <a href="/search/cond-mat?searchtype=author&query=Saidi%2C+W+A">Wissam A. Saidi</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+L+Z">Liang Z. Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06525v2-abstract-short" style="display: inline;"> Halide perovskites are strongly influenced by large amplitude anharmonic lattice fluctuations at room temperature. We develop a tight binding model for dynamically disordered MAPbI$_3$ based on density functional theory (DFT) calculations to calculate electronic structure for finite temperature crystal structures at the length scale of thermal disorder and carrier localization. The model predicts… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06525v2-abstract-full').style.display = 'inline'; document.getElementById('2105.06525v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06525v2-abstract-full" style="display: none;"> Halide perovskites are strongly influenced by large amplitude anharmonic lattice fluctuations at room temperature. We develop a tight binding model for dynamically disordered MAPbI$_3$ based on density functional theory (DFT) calculations to calculate electronic structure for finite temperature crystal structures at the length scale of thermal disorder and carrier localization. The model predicts individual Hamiltonian matrix elements and band structures with high accuracy, owing to the inclusion of additional matrix elements and descriptors for non-Coulombic interactions. We apply this model to electronic structure at length and time scales inaccessible to first principles methods, finding an increase in band gap, carrier mass, and the sub-picosecond fluctuations in these quantities with increasing temperature as well as the onset of carrier localization in large supercells induced by thermal disorder at 300 K. We identify the length scale $L^*= 5$ nm as the onset of localization in the electronic structure, associated with associated with decreasing band edge fluctuations, increasing carrier mass, and Rashba splitting approaching zero. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06525v2-abstract-full').style.display = 'none'; document.getElementById('2105.06525v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 085404 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.01492">arXiv:2105.01492</a> <span> [<a href="https://arxiv.org/pdf/2105.01492">pdf</a>, <a href="https://arxiv.org/format/2105.01492">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D1SM00541C">10.1039/D1SM00541C <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydrodynamics of Immiscible Binary Fluids with Viscosity Contrast: A multiparticle collision dynamics approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Zihan Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Calandrini%2C+V">Vania Calandrini</a>, <a href="/search/cond-mat?searchtype=author&query=Dhont%2C+J+K+G">Jan K. G. Dhont</a>, <a href="/search/cond-mat?searchtype=author&query=N%C3%A4gele%2C+G">Gerhard N盲gele</a>, <a href="/search/cond-mat?searchtype=author&query=Winkler%2C+R+G">Roland G. Winkler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.01492v3-abstract-short" style="display: inline;"> We present a multiparticle collision dynamics (MPC) implementation of layered immiscible fluids $A$ and $B$ of different shear viscosities separated by planar interfaces. The simulated flow profile for imposed steady shear motion and the time-dependent shear stress functions are in excellent agreement with our continuum hydrodynamics results for the composite fluid. The wave-vector dependent trans… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01492v3-abstract-full').style.display = 'inline'; document.getElementById('2105.01492v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.01492v3-abstract-full" style="display: none;"> We present a multiparticle collision dynamics (MPC) implementation of layered immiscible fluids $A$ and $B$ of different shear viscosities separated by planar interfaces. The simulated flow profile for imposed steady shear motion and the time-dependent shear stress functions are in excellent agreement with our continuum hydrodynamics results for the composite fluid. The wave-vector dependent transverse velocity auto-correlation functions (TVAF) in the bulk-fluid regions of the layers decay exponentially, and agree with those of single-phase isotropic MPC fluids. In addition, we determine the hydrodynamic mobilities of an embedded colloidal sphere moving steadily parallel or transverse to a fluid-fluid interface, as functions of the distance from the interface. The obtained mobilities are in good agreement with hydrodynamic force multipoles calculations, for a no-slip sphere moving under creeping flow conditions near a clean, ideally flat interface. The proposed MPC fluid-layer model can be straightforwardly implemented, and it is computationally very efficient. Yet, owing to the spatial discretization inherent to the MPC method, the model can not reproduce all hydrodynamic features of an ideally flat interface between immiscible fluids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01492v3-abstract-full').style.display = 'none'; document.getElementById('2105.01492v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Soft Matter 17, 7978 (2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Tan%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Tan%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Tan%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Tan%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>