CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 306 results for author: <span class="mathjax">Thompson, J D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Thompson%2C+J+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Thompson, J D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Thompson%2C+J+D&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Thompson, J D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13178">arXiv:2501.13178</a> <span> [<a href="https://arxiv.org/pdf/2501.13178">pdf</a>, <a href="https://arxiv.org/format/2501.13178">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Coexistence of Kondo Coherence and Localized Magnetic Moments in the Normal State of Molten Salt-Flux Grown UTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Azari%2C+N">N. Azari</a>, <a href="/search/cond-mat?searchtype=author&query=Yakovlev%2C+M">M. Yakovlev</a>, <a href="/search/cond-mat?searchtype=author&query=Dunsiger%2C+S+R">S. R. Dunsiger</a>, <a href="/search/cond-mat?searchtype=author&query=Uzoh%2C+O+P">O. P. Uzoh</a>, <a href="/search/cond-mat?searchtype=author&query=Mun%2C+E">E. Mun</a>, <a href="/search/cond-mat?searchtype=author&query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&query=Blundell%2C+S+J">S. J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&query=Bordelon%2C+M+M">M. M. Bordelon</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Sonier%2C+J+E">J. E. Sonier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13178v1-abstract-short" style="display: inline;"> The development of Kondo lattice coherence in UTe2 leads to the formation of a heavy Fermi liquid state from which superconductivity emerges at lower temperature. In Kondo lattice systems, the nuclear magnetic resonance (NMR) and muon Knight shift have proven to be particularly sensitive to the properties of the developing heavy-electron fluid. Here we report muon Knight shift measurements on high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13178v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13178v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13178v1-abstract-full" style="display: none;"> The development of Kondo lattice coherence in UTe2 leads to the formation of a heavy Fermi liquid state from which superconductivity emerges at lower temperature. In Kondo lattice systems, the nuclear magnetic resonance (NMR) and muon Knight shift have proven to be particularly sensitive to the properties of the developing heavy-electron fluid. Here we report muon Knight shift measurements on high-quality UTe2 single crystals grown by a molten salt-flux method. Together with previous data from a single crystal grown by a chemical-vapor transport method, our results show the contribution of the heavy-electron liquid to the muon Knight shift increases below a crossover temperature T* ~ 30 K in accord with a universal scaling function of T/T* for heavy-fermion materials. An observed departure from this universal scaling below a temperature T ~ 12 K at certain muon stopping sites signifies a reversal of the Kondo hybridization and a relocalization of U 5f moments with an antiferromagnetic coupling. The preservation of universal scaling at a different muon site demonstrates a coexistence of itinerant and localized 5f electron states preceding the superconducting phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13178v1-abstract-full').style.display = 'none'; document.getElementById('2501.13178v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 111, 014513 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10998">arXiv:2412.10998</a> <span> [<a href="https://arxiv.org/pdf/2412.10998">pdf</a>, <a href="https://arxiv.org/ps/2412.10998">ps</a>, <a href="https://arxiv.org/format/2412.10998">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Evidence for incommensurate antiferromagnetism in nonsymmorphic UPd$_{0.65}$Bi$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mishra%2C+S">Sanu Mishra</a>, <a href="/search/cond-mat?searchtype=author&query=Kengle%2C+C+S">Caitlin S. Kengle</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Joe D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Scheie%2C+A+O">Allen O. Scheie</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">Sean. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">Filip Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">Priscila F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10998v1-abstract-short" style="display: inline;"> The intersection between nonsymmorphic symmetry and electronic correlations has emerged as a platform for topological Kondo semimetallic states and unconventional spin textures. Here we report the synthesis of nonsymmorphic UPd$_{0.65}$Bi$_2$ single crystals and their structural, electronic, magnetic, and thermodynamic properties. UPd$_{0.65}$Bi$_2$ orders antiferromagnetically (AFM) below… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10998v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10998v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10998v1-abstract-full" style="display: none;"> The intersection between nonsymmorphic symmetry and electronic correlations has emerged as a platform for topological Kondo semimetallic states and unconventional spin textures. Here we report the synthesis of nonsymmorphic UPd$_{0.65}$Bi$_2$ single crystals and their structural, electronic, magnetic, and thermodynamic properties. UPd$_{0.65}$Bi$_2$ orders antiferromagnetically (AFM) below $T_N\simeq$ 161 K as evidenced by a sharp cusp in magnetic susceptibility, a second-order phase transition in specific heat, and an upturn in electrical resistivity, which suggests an incommensurate AFM structure that deviates from the A-type magnetism typically observed in this class of materials. Across $T_N$, Hall effect measurements reveal a change from electron-dominated to hole-dominated transport, which points to a sharp reconstruction in the electronic structure at $T_N$. Upon further cooling, a first-order transition is observed at $T_1 \simeq 30 $K in magnetic susceptibility and heat capacity but not in electrical resistivity or Hall measurements, which indicates a small change in the AFM structure that does not affect the electronic structure. Our specific heat data reveal a small Sommerfeld coefficient ($纬\simeq$13 mJmol$^{-1}$K$^{-2}$), consistent with localized 5$f$ electrons. Our results indicate that UPd$_{0.65}$Bi$_2$ hosts weak electronic correlations and is likely away from a Kondo semimetallic state. Low-temperature magnetization measurements show that the AFM structure is remarkably stable to 160 kOe and does not undergo any field-induced transitions. Neutron diffraction and magnetization experiments at higher fields would be valuable to probe the presence of unconventional spin textures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10998v1-abstract-full').style.display = 'none'; document.getElementById('2412.10998v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11666">arXiv:2408.11666</a> <span> [<a href="https://arxiv.org/pdf/2408.11666">pdf</a>, <a href="https://arxiv.org/format/2408.11666">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Massively multiplexed nanoscale magnetometry with diamond quantum sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+K">Kai-Hung Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Kazi%2C+Z">Zeeshawn Kazi</a>, <a href="/search/cond-mat?searchtype=author&query=Rovny%2C+J">Jared Rovny</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+B">Bichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Nassar%2C+L">Lila Nassar</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Jeff D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=de+Leon%2C+N+P">Nathalie P. de Leon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11666v2-abstract-short" style="display: inline;"> Single nitrogen vacancy (NV) centers in diamond have been used extensively for high-sensitivity nanoscale sensing, but conventional approaches use confocal microscopy to measure individual centers sequentially, limiting throughput and access to non-local physical properties. Here we design and implement a multiplexed NV sensing platform that allows us to read out many single NV centers simultaneou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11666v2-abstract-full').style.display = 'inline'; document.getElementById('2408.11666v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11666v2-abstract-full" style="display: none;"> Single nitrogen vacancy (NV) centers in diamond have been used extensively for high-sensitivity nanoscale sensing, but conventional approaches use confocal microscopy to measure individual centers sequentially, limiting throughput and access to non-local physical properties. Here we design and implement a multiplexed NV sensing platform that allows us to read out many single NV centers simultaneously using a low-noise camera. Using this platform, we coherently manipulate and read out the spin states of hundreds of individual NV centers in parallel, achieving comparable magnetic field sensitivity to confocal measurements. We also implement a parallelized version of spin-to-charge-conversion readout for low NV center spin state readout noise and use it to demonstrate multiplexed covariance magnetometry, in which we measure six two-point magnetic field correlators from four NV centers simultaneously. The number of correlators we can measure is limited only by the available laser power, opening the door to massively multiplexed covariance magnetometry. Our platform significantly increases the throughput and broadens the applications of nanoscale sensing using diamond quantum sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11666v2-abstract-full').style.display = 'none'; document.getElementById('2408.11666v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19395">arXiv:2407.19395</a> <span> [<a href="https://arxiv.org/pdf/2407.19395">pdf</a>, <a href="https://arxiv.org/ps/2407.19395">ps</a>, <a href="https://arxiv.org/format/2407.19395">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Quantum Critical Scaling in Quasi-One-Dimensional YbFe$_5$P$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Avers%2C+K+E">K. E. Avers</a>, <a href="/search/cond-mat?searchtype=author&query=Asaba%2C+T">T. Asaba</a>, <a href="/search/cond-mat?searchtype=author&query=Seo%2C+S">S. Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Weiland%2C+A">A. Weiland</a>, <a href="/search/cond-mat?searchtype=author&query=Continentino%2C+M+A">M. A. Continentino</a>, <a href="/search/cond-mat?searchtype=author&query=Lawrence%2C+J+M">J. M. Lawrence</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19395v1-abstract-short" style="display: inline;"> We report measurements of the low temperature magnetization $M$ and specific heat $C$ as a function of temperature and magnetic field of the quasi-one-dimensional spin chain, heavy fermion compound YbFe$_5$P$_3$, which resides close to a quantum critical point. The results are compared to the predictions of scaling laws obtained from a generalized free energy function expected near an antiferromag… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19395v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19395v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19395v1-abstract-full" style="display: none;"> We report measurements of the low temperature magnetization $M$ and specific heat $C$ as a function of temperature and magnetic field of the quasi-one-dimensional spin chain, heavy fermion compound YbFe$_5$P$_3$, which resides close to a quantum critical point. The results are compared to the predictions of scaling laws obtained from a generalized free energy function expected near an antiferromagnetic quantum critical point (AFQCP). The scaling behavior depends on the dimensionality $d$ of the fluctuations, the coherence length exponent $谓$, and the dynamic exponent $z$. The free energy treats the magnetic field as a relevant renormalization group variable, which leads to a new exponent $蠁=谓z_h$, where $z_h$ is a dynamic exponent expected in the presence of a magnetic field. When $z_h=z$, $T/H$ scaling is expected, as observed in several compounds close to a QCP; whereas in YbFe$_5$P$_3$, a $T/H^{3/4}$ dependence of the scaling is observed. This dependence reflects the relationship $z_h=(4z/3)$ and a field exponent $蠁=4/3$. A feature of the scaling law is that it restricts the possible values of the exponents to two cases for YbFe$_5$P$_3$: $d$=1, $谓$=1, $z$=1, and $d$=2, $谓$=1/2, $z$=2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19395v1-abstract-full').style.display = 'none'; document.getElementById('2407.19395v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages (including Supplemental Material)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19422">arXiv:2403.19422</a> <span> [<a href="https://arxiv.org/pdf/2403.19422">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.236002">10.1103/PhysRevLett.132.236002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Normal Fermi Surface in the Nodal Superconductor CeCoIn$_5$ Revealed via Thermal Conductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+S">Sangyun Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D+Y">Duk Y. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">Priscila F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">Filip Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+S">Shi-Zeng Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Movshovich%2C+R">Roman Movshovich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19422v1-abstract-short" style="display: inline;"> The thermal conductivity of heavy-fermion superconductor CeCoIn$_5$ was measured with a magnetic field rotating in the tetragonal a-b plane, with the heat current in the anti-nodal direction, $J$ || [100]. We observe a sharp resonance in thermal conductivity for the magnetic field at an angle $胃$ $\sim$ 12$^{\circ}$, measured from the heat current direction [100]. This resonance corresponds to the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19422v1-abstract-full').style.display = 'inline'; document.getElementById('2403.19422v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19422v1-abstract-full" style="display: none;"> The thermal conductivity of heavy-fermion superconductor CeCoIn$_5$ was measured with a magnetic field rotating in the tetragonal a-b plane, with the heat current in the anti-nodal direction, $J$ || [100]. We observe a sharp resonance in thermal conductivity for the magnetic field at an angle $胃$ $\sim$ 12$^{\circ}$, measured from the heat current direction [100]. This resonance corresponds to the reported resonance at an angle $胃'$ $\sim$ 33$^{\circ}$ from the direction of the heat current applied along the nodal direction, $J$ || [110]. Both resonances, therefore, occur when the magnetic field is applied in the same crystallographic orientation in the two experiments, regardless of the direction of the heat current, proving conclusively that these resonances are due to the structure of the Fermi surface of CeCoIn$_5$. We argue that the uncondensed Landau quasiparticles, emerging with field, are responsible for the observed resonance. We support our experimental results with density-functional-theory model calculations of the density of states in a rotating magnetic field. Our calculations, using a model Fermi surface of CeCoIn$_5$, reveal several sharp peaks as a function of the field direction. Our study demonstrates that the thermal-conductivity measurement in rotating magnetic field can probe the normal parts of the Fermi surface deep inside the superconducting state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19422v1-abstract-full').style.display = 'none'; document.getElementById('2403.19422v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 236002 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07812">arXiv:2403.07812</a> <span> [<a href="https://arxiv.org/pdf/2403.07812">pdf</a>, <a href="https://arxiv.org/format/2403.07812">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.L121105">10.1103/PhysRevB.109.L121105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing quantum criticality in ferromagnetic CeRh6Ge4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Seo%2C+S">S. Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Asaba%2C+T">T. Asaba</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07812v1-abstract-short" style="display: inline;"> CeRh$_6$Ge$_4$ is unusual in that its ferromagnetic transition can be suppressed continuously to zero temperature, i.e., to a ferromagnetic quantum-critical point (QCP), through the application of modest hydrostatic pressure. This discovery has raised the possibility that the ferromagnetic QCP may be of the Kondo-breakdown type characterized by a jump in Fermi volume, to which thermopower S measur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07812v1-abstract-full').style.display = 'inline'; document.getElementById('2403.07812v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07812v1-abstract-full" style="display: none;"> CeRh$_6$Ge$_4$ is unusual in that its ferromagnetic transition can be suppressed continuously to zero temperature, i.e., to a ferromagnetic quantum-critical point (QCP), through the application of modest hydrostatic pressure. This discovery has raised the possibility that the ferromagnetic QCP may be of the Kondo-breakdown type characterized by a jump in Fermi volume, to which thermopower S measurements should be sensitive. Though $S/T$ changes both sign and magnitude around the critical pressure P$_{c}\approx{}0.8$ GPa, these changes are not abrupt but extend over a pressure interval from within the ferromagnetic state up to P$_c$. Together with temperature and pressure variations in electrical resistivity and previously reported heat capacity, thermopower results point to the near coincidence of two sequential effects near P$_c$, delocalization of 4f degrees-of-freedom through orbital-selective hybridization followed by quantum criticality of itinerant ferromagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07812v1-abstract-full').style.display = 'none'; document.getElementById('2403.07812v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15054">arXiv:2312.15054</a> <span> [<a href="https://arxiv.org/pdf/2312.15054">pdf</a>, <a href="https://arxiv.org/format/2312.15054">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Unusual magnetism of the axion-insulator candidate Eu$_5$In$_2$Sb$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">C. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&query=Bombardi%2C+A">A. Bombardi</a>, <a href="/search/cond-mat?searchtype=author&query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&query=Bereciartua%2C+P">P. Bereciartua</a>, <a href="/search/cond-mat?searchtype=author&query=Sukhanov%2C+A+S">A. S. Sukhanov</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">T. Lancaster</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Janoschek%2C+M">M. Janoschek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15054v1-abstract-short" style="display: inline;"> Eu$_5$In$_2$Sb$_6$ is a member of a family of orthorhombic nonsymmorphic rare-earth intermetallics that combines large localized magnetic moments and itinerant exchange with a low carrier density and perpendicular glide planes. This may result in special topological crystalline (wallpaper fermion) or axion insulating phases. Recent studies of Eu$_5$In$_2$Sb$_6$ single crystals have revealed coloss… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15054v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15054v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15054v1-abstract-full" style="display: none;"> Eu$_5$In$_2$Sb$_6$ is a member of a family of orthorhombic nonsymmorphic rare-earth intermetallics that combines large localized magnetic moments and itinerant exchange with a low carrier density and perpendicular glide planes. This may result in special topological crystalline (wallpaper fermion) or axion insulating phases. Recent studies of Eu$_5$In$_2$Sb$_6$ single crystals have revealed colossal negative magnetoresistance and multiple magnetic phase transitions. Here, we clarify this ordering process using neutron scattering, resonant elastic X-ray scattering, muon spin-rotation, and magnetometry. The nonsymmorphic and multisite character of Eu$_5$In$_2$Sb$_6$ results in coplanar noncollinear magnetic structure with an Ising-like net magnetization along the $a$ axis. A reordering transition, attributable to competing ferro- and antiferromagnetic couplings, manifests as the onset of a second commensurate Fourier component. In the absence of spatially resolved probes, the experimental evidence for this low-temperature state can be interpreted either as an unusual double-$q$ structure or in a phase separation scenario. The net magnetization produces variable anisotropic hysteretic effects which also couple to charge transport. The implied potential for functional domain physics and topological transport suggests that this structural family may be a promising platform to implement concepts of topological antiferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15054v1-abstract-full').style.display = 'none'; document.getElementById('2312.15054v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14283">arXiv:2312.14283</a> <span> [<a href="https://arxiv.org/pdf/2312.14283">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3938/NPSM.73.1023">10.3938/NPSM.73.1023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 40 Years of SCES at Los Alamos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fisk%2C+Z">Z. Fisk</a>, <a href="/search/cond-mat?searchtype=author&query=Smith%2C+J+L">J. L. Smith</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14283v1-abstract-short" style="display: inline;"> Reports of unconventional superconductivity in UBe13 in 1983 and soon thereafter of the possible coexistence of bulk superconductivity and spin fluctuations in UPt3 marked the beginning of a 40-year adventure in the study of strongly correlated quantum materials and phenomena at Los Alamos. The subsequent discovery and exploration of heavy-fermion magnetism, cuprates, Kondo insulators, Ce- and Pu-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14283v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14283v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14283v1-abstract-full" style="display: none;"> Reports of unconventional superconductivity in UBe13 in 1983 and soon thereafter of the possible coexistence of bulk superconductivity and spin fluctuations in UPt3 marked the beginning of a 40-year adventure in the study of strongly correlated quantum materials and phenomena at Los Alamos. The subsequent discovery and exploration of heavy-fermion magnetism, cuprates, Kondo insulators, Ce- and Pu-115 superconductors and, more broadly, quantum states of narrow-band systems provided challenges for the next 30 years. Progress was not made in a vacuum but benefitted from significant advances in the Americas, Asia and Europe as well as from essential collaborations, visitors and Los Alamos students and postdocs, many subsequently setting their own course in SCES. As often the case, serendipity played a role in shaping this history. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14283v1-abstract-full').style.display = 'none'; document.getElementById('2312.14283v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Special session at the 2023 International Conference on Strongly Correlated Electron Systems</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New Physics: Sae Mulli, vol. 73, No. 12 December 2023, pp.1023-1036 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08928">arXiv:2311.08928</a> <span> [<a href="https://arxiv.org/pdf/2311.08928">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-42965-1">10.1038/s41467-023-42965-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for charge delocalization crossover in the quantum critical superconductor CeRhIn$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Honghong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+T+B">Tae Beom Park</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J">Jihyun Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Jang%2C+H">Harim Jang</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Joe D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+T">Tuson Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08928v1-abstract-short" style="display: inline;"> The nature of charge degrees-of-freedom distinguishes scenarios for interpreting the character of a second order magnetic transition at zero temperature, that is, a magnetic quantum critical point (QCP). Heavy-fermion systems are prototypes of this paradigm, and in those, the relevant question is where, relative to a magnetic QCP, does the Kondo effect delocalize their $f$-electron degrees-of-free… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08928v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08928v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08928v1-abstract-full" style="display: none;"> The nature of charge degrees-of-freedom distinguishes scenarios for interpreting the character of a second order magnetic transition at zero temperature, that is, a magnetic quantum critical point (QCP). Heavy-fermion systems are prototypes of this paradigm, and in those, the relevant question is where, relative to a magnetic QCP, does the Kondo effect delocalize their $f$-electron degrees-of-freedom. Herein, we use pressure-dependent Hall measurements to identify a finite-temperature scale $E_\text{loc}$ that signals a crossover from $f$-localized to $f$-delocalized character. As a function of pressure, $E_\text{loc}(P)$ extrapolates smoothly to zero temperature at the antiferromagnetic QCP of CeRhIn$_5$ where its Fermi surface reconstructs, hallmarks of Kondo-breakdown criticality that generates critical magnetic and charge fluctuations. In 4.4% Sn-doped CeRhIn$_5$, however, $E_\text{loc}(P)$ extrapolates into its magnetically ordered phase and is decoupled from the pressure-induced magnetic QCP, which implies a spin-density-wave (SDW) type of criticality that produces only critical fluctuations of the SDW order parameter. Our results demonstrate the importance of experimentally determining $E_\text{loc}$ to characterize quantum criticality and the associated consequences for understanding the pairing mechanism of superconductivity that reaches a maximum $T_\text{c}$ in both materials at their respective magnetic QCP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08928v1-abstract-full').style.display = 'none'; document.getElementById('2311.08928v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures, published in Nature Communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 7341 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10491">arXiv:2310.10491</a> <span> [<a href="https://arxiv.org/pdf/2310.10491">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.114801">10.1103/PhysRevMaterials.6.114801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Metastable phase of UTe$_2$ formed under high pressure above 5 GPa </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huston%2C+L+Q">L. Q. Huston</a>, <a href="/search/cond-mat?searchtype=author&query=Popov%2C+D+Y">D. Y. Popov</a>, <a href="/search/cond-mat?searchtype=author&query=Weiland%2C+A">A. Weiland</a>, <a href="/search/cond-mat?searchtype=author&query=Bordelon%2C+M+M">M. M. Bordelon</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Rowland%2C+R+L">R. L. Rowland II</a>, <a href="/search/cond-mat?searchtype=author&query=Scott%2C+B+L">B. L. Scott</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+G">G. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+C">C. Park</a>, <a href="/search/cond-mat?searchtype=author&query=Moss%2C+E+K">E. K. Moss</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Sturtevant%2C+B+T">B. T. Sturtevant</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10491v1-abstract-short" style="display: inline;"> Uranium ditelluride (UTe$_2$) has attracted recent interest due to its unique superconducting properties, which include the potential for a topological odd-parity superconducting state. Recently, ac-calorimetry measurements under pressure indicate a change in the ground state of UTe$_2$ from superconducting to antiferromagnetic at 1.4 GPa. Here, we investigate the effect of pressure on the crystal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10491v1-abstract-full').style.display = 'inline'; document.getElementById('2310.10491v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10491v1-abstract-full" style="display: none;"> Uranium ditelluride (UTe$_2$) has attracted recent interest due to its unique superconducting properties, which include the potential for a topological odd-parity superconducting state. Recently, ac-calorimetry measurements under pressure indicate a change in the ground state of UTe$_2$ from superconducting to antiferromagnetic at 1.4 GPa. Here, we investigate the effect of pressure on the crystal structure of UTe$_2$ up to 25 GPa at room temperature using x-ray diffraction. We find that UTe$_2$, which at ambient conditions has an orthorhombic ($Immm$) structure, transforms to a body-centered tetragonal ($I4/mmm$) structure at 5 GPa in a quasi-hydrostatic neon (Ne) pressure transmitting medium. In the absence of a pressure-transmitting medium, this transformation occurs between 5 and 8 GPa. The data were fit with a third-order Birch-Murnaghan equation of state resulting in values of $B_0$=46.0 $\pm$ 0.6 GPa, $B^{\prime}$=9.3 $\pm$ 0.5 (no pressure medium) and $B_0$=42.5 $\pm$ 2.0 GPa, $B^{\prime}$=9.3 (fixed) (neon pressure medium) for the $Immm$ phase. For the $I4/mmm$ phase, $B_0$=78.9 $\pm$ 0.5 GPa and $B^{\prime}$=4.2 $\pm$ 0.1 (no pressure transmitting medium), and $B_0$=70.0 $\pm$ 1.1 GPa and $B^{\prime}$=4.1 $\pm$ 0.2 (neon pressure medium). The high-pressure tetragonal phase is retained after decompression to ambient pressure, with approximately 30% remaining after 2 days. We argue that the observed phase transition into a higher symmetry structure at P~5 GPa (orthorhombic to tetragonal), is accompanied by an increase in the shortest distance between uranium atoms from 3.6 Angstrom (orthorhombic) to 3.9 Angstrom (tetragonal), which suggests localization of the 5f electrons, albeit with a 10.7% decrease in volume. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10491v1-abstract-full').style.display = 'none'; document.getElementById('2310.10491v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Includes supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Materials 6, 114801 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.09904">arXiv:2310.09904</a> <span> [<a href="https://arxiv.org/pdf/2310.09904">pdf</a>, <a href="https://arxiv.org/ps/2310.09904">ps</a>, <a href="https://arxiv.org/format/2310.09904">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structural and physical properties of the chiral antiferromagnet CeRhC$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ajeesh%2C+M+O">M. O. Ajeesh</a>, <a href="/search/cond-mat?searchtype=author&query=Scheie%2C+A+O">A. O. Scheie</a>, <a href="/search/cond-mat?searchtype=author&query=Cruz%2C+C+R+d">C. R. dela Cruz</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.09904v1-abstract-short" style="display: inline;"> We report a study of the structural, magnetic, transport, and thermodynamic properties of polycrystalline samples of CeRhC$_2$. CeRhC$_2$ crystallizes in a tetragonal structure with space group $P4_1$ and it orders antiferromagnetically below $T_\textrm{N1} \approx$ 1.8 K. Powder neutron diffraction measurements reveal a chiral magnetic structure with a single propagation vector… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09904v1-abstract-full').style.display = 'inline'; document.getElementById('2310.09904v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.09904v1-abstract-full" style="display: none;"> We report a study of the structural, magnetic, transport, and thermodynamic properties of polycrystalline samples of CeRhC$_2$. CeRhC$_2$ crystallizes in a tetragonal structure with space group $P4_1$ and it orders antiferromagnetically below $T_\textrm{N1} \approx$ 1.8 K. Powder neutron diffraction measurements reveal a chiral magnetic structure with a single propagation vector $Q_m = (1/2,1/2,0.228(5))$, indicating an antiferromagnetic arrangement of Ce magnetic moments in the $ab$-plane and incommensurate order along the $c$-axis with a root-mean-square ordered moment of $m_\textrm{ord}$= 0.68 $渭_\textrm{B}$/Ce. Applying a magnetic field suppresses the N茅el temperature $T_\textrm{N1}$ to zero near $渭_0H_\textrm{c1}\sim$0.75 T. A second antiferromagnetic phase ($T_\textrm{N2}$), however, becomes apparent in electrical resistivity, Hall and heat capacity measurements in fields above 0.5 T and extrapolates to zero temperature at $渭_0H_\textrm{c2}\sim$ 1 T. Electrical resistivity measurements reveal that LaRhC$_2$ is a semiconductor with a bandgap of $E_\textrm{g}\sim24$ meV; whereas, resistivity and Hall measurements indicate that CeRhC$_2$ is a semimetal with a low carrier concentration of $n\sim10^{20}$ cm$^{-3}$. With applied hydrostatic pressure, the zero-field antiferromagnetic transition of CeRhC$_2$ is slightly enhanced and CeRhC$_2$ becomes notably more metallic up to 1.36 GPa. The trend toward metallicity is in line with density-functional calculations that indicate that both LaRhC$_2$ and CeRhC$_2$ are semimetals, but the band overlap is larger for CeRhC$_2$, which has a smaller unit cell volume that its La counterpart. This suggests that the bandgap closes due to a lattice contraction when replacing La with Ce in RRhC$_2$ (R = rare-earth), in agreement with experimental results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09904v1-abstract-full').style.display = 'none'; document.getElementById('2310.09904v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.02559">arXiv:2309.02559</a> <span> [<a href="https://arxiv.org/pdf/2309.02559">pdf</a>, <a href="https://arxiv.org/format/2309.02559">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.245125">10.1103/PhysRevB.108.245125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Localized f-electron magnetism in the semimetal Ce3Bi4Au3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ajeesh%2C+M+O">M. O. Ajeesh</a>, <a href="/search/cond-mat?searchtype=author&query=Kushwaha%2C+S+K">S. K. Kushwaha</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+M+K">M. K. Chan</a>, <a href="/search/cond-mat?searchtype=author&query=Harrison%2C+N">N. Harrison</a>, <a href="/search/cond-mat?searchtype=author&query=Tomczak%2C+J+M">J. M. Tomczak</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.02559v1-abstract-short" style="display: inline;"> Ce$_{3}$Bi$_{4}$Au$_{3}$ crystallizes in the same non-centrosymmetric cubic structure as the prototypical Kondo insulator Ce$_{3}$Bi$_{4}$Pt$_{3}$. Here we report the physical properties of Ce$_{3}$Bi$_{4}$Au$_{3}$ single crystals using magnetization, thermodynamic, and electrical-transport measurements. Magnetic-susceptibility and heat-capacity data reveal antiferromagnetic (AFM) order below… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02559v1-abstract-full').style.display = 'inline'; document.getElementById('2309.02559v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.02559v1-abstract-full" style="display: none;"> Ce$_{3}$Bi$_{4}$Au$_{3}$ crystallizes in the same non-centrosymmetric cubic structure as the prototypical Kondo insulator Ce$_{3}$Bi$_{4}$Pt$_{3}$. Here we report the physical properties of Ce$_{3}$Bi$_{4}$Au$_{3}$ single crystals using magnetization, thermodynamic, and electrical-transport measurements. Magnetic-susceptibility and heat-capacity data reveal antiferromagnetic (AFM) order below $T_N=3.2$ K. The magnetic entropy $S_{\rm mag}$ reaches $R$ln2 slightly above $T_N$, which suggests localized $4f$-moments in a doublet ground state. Multiple field-induced magnetic transitions are observed at temperatures below $T_N$, which indicate a complex spin structure with competing interactions. Ce$_{3}$Bi$_{4}$Au$_{3}$ shows semimetallic behavior in electrical resistivity measurements in contrast to the majority of reported Cerium-based 343 compounds. Electrical-resistivity measurements under hydrostatic pressure reveal a slight enhancement of $T_N$ under pressures up to 2.3 GPa, which supports a scenario wherein Ce$_{3}$Bi$_{4}$Au$_{3}$ belongs to the far left of the Doniach phase diagram dominated by Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Using realistic many-body simulations, we confirm the semi-metallic electronic structure of Ce$_{3}$Bi$_{4}$Au$_{3}$ and quantitatively reproduce its local moment behavior in the paramagnetic state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02559v1-abstract-full').style.display = 'none'; document.getElementById('2309.02559v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.09773">arXiv:2308.09773</a> <span> [<a href="https://arxiv.org/pdf/2308.09773">pdf</a>, <a href="https://arxiv.org/ps/2308.09773">ps</a>, <a href="https://arxiv.org/format/2308.09773">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.226504">10.1103/PhysRevLett.131.226504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of Spontaneous Magnetic Fields Due to Time-Reversal Symmetry Breaking in Bulk Superconducting UTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Azari%2C+N">N. Azari</a>, <a href="/search/cond-mat?searchtype=author&query=Yakovlev%2C+M">M. Yakovlev</a>, <a href="/search/cond-mat?searchtype=author&query=Rye%2C+N">N. Rye</a>, <a href="/search/cond-mat?searchtype=author&query=Dunsiger%2C+S+R">S. R. Dunsiger</a>, <a href="/search/cond-mat?searchtype=author&query=Sundar%2C+S">S. Sundar</a>, <a href="/search/cond-mat?searchtype=author&query=Bordelon%2C+M+M">M. M. Bordelon</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Sonier%2C+J+E">J. E. Sonier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.09773v2-abstract-short" style="display: inline;"> We have investigated the low-temperature local magnetic properties in the bulk of molten salt-flux (MSF) grown single crystals of the candidate odd-parity superconductor UTe2 by zero-field muon spin relaxation (muSR). In contrast to previous muSR studies of UTe2 single crystals grown by a chemical vapour transport (CVT) method, we find no evidence of magnetic clusters or electronic moments fluctua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09773v2-abstract-full').style.display = 'inline'; document.getElementById('2308.09773v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.09773v2-abstract-full" style="display: none;"> We have investigated the low-temperature local magnetic properties in the bulk of molten salt-flux (MSF) grown single crystals of the candidate odd-parity superconductor UTe2 by zero-field muon spin relaxation (muSR). In contrast to previous muSR studies of UTe2 single crystals grown by a chemical vapour transport (CVT) method, we find no evidence of magnetic clusters or electronic moments fluctuating slow enough to cause a discernible relaxation of the zero-field muSR asymmetry spectrum. Consequently, our measurements on MSF-grown single crystals rule out the generation of spontaneous magnetic fields in the bulk that would occur near impurities or lattice defects if the superconducting state of UTe2 breaks time-reversal symmetry. This result suggests UTe2 is characterized by a single-component superconducting order parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09773v2-abstract-full').style.display = 'none'; document.getElementById('2308.09773v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 226504 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07699">arXiv:2308.07699</a> <span> [<a href="https://arxiv.org/pdf/2308.07699">pdf</a>, <a href="https://arxiv.org/format/2308.07699">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.184416">10.1103/PhysRevB.108.184416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning the confinement potential between spinons in the Ising chain CoNb2O6 using longitudinal fields and quantitative determination of the microscopic Hamiltonian </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Woodland%2C+L">Leonie Woodland</a>, <a href="/search/cond-mat?searchtype=author&query=Macdougal%2C+D">David Macdougal</a>, <a href="/search/cond-mat?searchtype=author&query=Cabrera%2C+I+M">Ivelisse M. Cabrera</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Jordan D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Bewley%2C+R+I">Robert I. Bewley</a>, <a href="/search/cond-mat?searchtype=author&query=Coldea%2C+R">Radu Coldea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07699v2-abstract-short" style="display: inline;"> The Ising chain realizes the fundamental paradigm of spin fractionalization, where locally flipping a spin creates two domain walls (spinons) that can separate apart at no energy cost. In a quasi-one-dimensional system, the mean-field effects of the weak three-dimensional couplings confine the spinons into a Zeeman ladder of two-spinon bound states. Here, we experimentally tune the confinement pot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07699v2-abstract-full').style.display = 'inline'; document.getElementById('2308.07699v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07699v2-abstract-full" style="display: none;"> The Ising chain realizes the fundamental paradigm of spin fractionalization, where locally flipping a spin creates two domain walls (spinons) that can separate apart at no energy cost. In a quasi-one-dimensional system, the mean-field effects of the weak three-dimensional couplings confine the spinons into a Zeeman ladder of two-spinon bound states. Here, we experimentally tune the confinement potential between spinons in the quasi-one-dimensional Ising ferromagnet CoNb2O6 by means of an applied magnetic field with a large component along the Ising direction. Using high-resolution single crystal inelastic neutron scattering, we directly observe how the spectrum evolves from the limit of very weak confinement at low field (with many closely-spaced bound states with energies scaling as the field strength to the power 2/3) to very strong confinement at high field (where it consists of a magnon and a dispersive two-magnon bound state, with a linear field dependence). At intermediate fields, we explore how the higher-order bound states disappear from the spectrum as they move to higher energies and overlap with the two-particle continuum. By performing a global fit to the observed spectrum in zero field and high field applied along two orthogonal directions, combined with a quantitative parameterization of the interchain couplings, we propose a refined single chain and interchain Hamiltonian that quantitatively reproduces all observed dispersions and their field dependence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07699v2-abstract-full').style.display = 'none'; document.getElementById('2308.07699v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 14 figures. Accepted version after comments from referees</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 184416 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11854">arXiv:2306.11854</a> <span> [<a href="https://arxiv.org/pdf/2306.11854">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Erbium-excess gallium garnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+C">Chen Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Haozhe Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+L">Lun Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xianghan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+D">Danrui Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Jeff D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+W">Weiwei Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11854v1-abstract-short" style="display: inline;"> A series of garnets of formula Er3+xGa5-xO12 is described, for which we report the crystal structures for both polycrystalline and single-crystal samples. The x limit in the garnet phase is between 0.5 and 0.6 under our conditions, with the Er fully occupying the normal garnet site plus half-occupying the octahedral site at x = 0.5 in place of the Ga normally present. Long-range antiferromagnetic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11854v1-abstract-full').style.display = 'inline'; document.getElementById('2306.11854v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11854v1-abstract-full" style="display: none;"> A series of garnets of formula Er3+xGa5-xO12 is described, for which we report the crystal structures for both polycrystalline and single-crystal samples. The x limit in the garnet phase is between 0.5 and 0.6 under our conditions, with the Er fully occupying the normal garnet site plus half-occupying the octahedral site at x = 0.5 in place of the Ga normally present. Long-range antiferromagnetic order with spin ice-like frustration is suggested by the transition temperature (TN=0.8K) being much lower than the Curie-Weiss theta. The magnetic ordering temperature does not depend on the Er excess, but there is increasing residual entropy as the Er excess is increased, highlighting the potential for unusual magnetic behavior in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11854v1-abstract-full').style.display = 'none'; document.getElementById('2306.11854v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00589">arXiv:2305.00589</a> <span> [<a href="https://arxiv.org/pdf/2305.00589">pdf</a>, <a href="https://arxiv.org/format/2305.00589">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.041019">10.1103/PhysRevX.13.041019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The fate of time-reversal symmetry breaking in UTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ajeesh%2C+M+O">M. O. Ajeesh</a>, <a href="/search/cond-mat?searchtype=author&query=Bordelon%2C+M">M. Bordelon</a>, <a href="/search/cond-mat?searchtype=author&query=Girod%2C+C">C. Girod</a>, <a href="/search/cond-mat?searchtype=author&query=Mishra%2C+S">S. Mishra</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Maiorov%2C+B">B. Maiorov</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00589v1-abstract-short" style="display: inline;"> Topological superconductivity is a long-sought state of matter in bulk materials, and odd-parity superconductor UTe$_2$ is a prime candidate. The recent observation of a field-trainable spontaneous Kerr signal in UTe$_2$ at the onset of superconductivity provides strong evidence that the superconducting order parameter is multicomponent and breaks time-reversal symmetry. Here, we perform Kerr effe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00589v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00589v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00589v1-abstract-full" style="display: none;"> Topological superconductivity is a long-sought state of matter in bulk materials, and odd-parity superconductor UTe$_2$ is a prime candidate. The recent observation of a field-trainable spontaneous Kerr signal in UTe$_2$ at the onset of superconductivity provides strong evidence that the superconducting order parameter is multicomponent and breaks time-reversal symmetry. Here, we perform Kerr effect measurements on a number of UTe$_2$ samples -- grown $via$ both chemical vapor transport and the molten-salt-flux methods -- that show a single superconducting transition between 1.6~K and 2.1~K. Our results show no evidence for a spontaneous Kerr signal in zero field measurements. This implies that the superconducting state of UTe$_2$ does not intrinsically break time-reversal symmetry. Instead, we observe a field-trainable signal that varies in magnitude between samples and between different locations on a single sample, which is a sign of inhomogeneous magnetic regions. Our results provide an examination of representative UTe$_2$ samples and place strong constraints on the superconducting order parameter of UTe$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00589v1-abstract-full').style.display = 'none'; document.getElementById('2305.00589v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.11242">arXiv:2304.11242</a> <span> [<a href="https://arxiv.org/pdf/2304.11242">pdf</a>, <a href="https://arxiv.org/ps/2304.11242">ps</a>, <a href="https://arxiv.org/format/2304.11242">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L081103">10.1103/PhysRevB.108.L081103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $渭^+$ Knight Shift in UTe$_2$: Evidence for Relocalization in a Kondo Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Azari%2C+N">N. Azari</a>, <a href="/search/cond-mat?searchtype=author&query=Goeks%2C+M+R">M. R. Goeks</a>, <a href="/search/cond-mat?searchtype=author&query=Yakovlev%2C+M">M. Yakovlev</a>, <a href="/search/cond-mat?searchtype=author&query=Abedi%2C+M">M. Abedi</a>, <a href="/search/cond-mat?searchtype=author&query=Dunsiger%2C+S+R">S. R. Dunsiger</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Sonier%2C+J+E">J. E. Sonier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.11242v1-abstract-short" style="display: inline;"> The local magnetic susceptibility of the spin-triplet superconductor UTe$_2$ has been investigated by positive muon ($渭^+$) Knight shift measurements in the normal state. Three distinct $渭^+$ Knight shift components are observed for a magnetic field applied parallel to the $c$ axis. Two of these exhibit a breakdown in the linear relationship with the bulk magnetic susceptibility ($蠂$) below a temp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11242v1-abstract-full').style.display = 'inline'; document.getElementById('2304.11242v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.11242v1-abstract-full" style="display: none;"> The local magnetic susceptibility of the spin-triplet superconductor UTe$_2$ has been investigated by positive muon ($渭^+$) Knight shift measurements in the normal state. Three distinct $渭^+$ Knight shift components are observed for a magnetic field applied parallel to the $c$ axis. Two of these exhibit a breakdown in the linear relationship with the bulk magnetic susceptibility ($蠂$) below a temperature $T^* \! \sim \! 30$ K, which points to a gradual emergence of a correlated Kondo liquid. Below $T_{\rm r} \! \sim \! 12$ K linearity is gradually restored, indicating partial relocalization of the Kondo liquid quasiparticles. The third Knight shift component is two orders of magnitude larger, and despite the $c$-axis alignment of the external field, scales with the $a$-axis $蠂$ above $T_{\rm r} \! \sim \! 12$ K. We conjecture that this component is associated with magnetic clusters and the change in the temperature dependence of all three Knight shift components below $T_{\rm r}$ is associated with a change in magnetic correlations. Our findings indicate that prior to the onset of superconductivity the development of the itinerant heavy-electron fluid is halted by a gradual development of local U $5f$-moment fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11242v1-abstract-full').style.display = 'none'; document.getElementById('2304.11242v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, L081103 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.08075">arXiv:2302.08075</a> <span> [<a href="https://arxiv.org/pdf/2302.08075">pdf</a>, <a href="https://arxiv.org/format/2302.08075">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.064507">10.1103/PhysRevB.107.064507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nodeless superconductivity in the noncentrosymmetric ThIrSi compound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tay%2C+D">D. Tay</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+T">T. Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">Priscila F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Santos%2C+F+B">F. B. Santos</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Fisk%2C+Z">Z. Fisk</a>, <a href="/search/cond-mat?searchtype=author&query=Ott%2C+H+-">H. -R. Ott</a>, <a href="/search/cond-mat?searchtype=author&query=Shiroka%2C+T">T. Shiroka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.08075v1-abstract-short" style="display: inline;"> The ThIrSi superconductor, with $T_c = 6.5$ K, is expected to show unusual features in view of its noncentrosymmetric structure and the presence of heavy elements featuring a sizable spin-orbit coupling. Here, we report a comprehensive study of its electronic properties by means of local-probe techniques: muon-spin rotation and relaxation ({\textmu}SR) and nuclear magnetic resonance (NMR). Both th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08075v1-abstract-full').style.display = 'inline'; document.getElementById('2302.08075v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.08075v1-abstract-full" style="display: none;"> The ThIrSi superconductor, with $T_c = 6.5$ K, is expected to show unusual features in view of its noncentrosymmetric structure and the presence of heavy elements featuring a sizable spin-orbit coupling. Here, we report a comprehensive study of its electronic properties by means of local-probe techniques: muon-spin rotation and relaxation ({\textmu}SR) and nuclear magnetic resonance (NMR). Both the superfluid density $蟻_\mathrm{sc}(T)$ (determined via transverse-field {\textmu}SR) and the spin-lattice relaxation rate $T_1^{-1}(T)$ (determined via NMR) suggest a nodeless superconductivity. Furthermore, the absence of spontaneous magnetic fields below $T_c$, as evinced from zero-field {\textmu}SR measurements, indicates a preserved time-reversal symmetry in the superconducting state of ThIrSi. Temperature-dependent upper critical fields as well as field-dependent superconducting muon-spin relaxations suggest the presence of multiple superconducting gaps in ThIrSi. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08075v1-abstract-full').style.display = 'none'; document.getElementById('2302.08075v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 064507 (2023) (Editors' Suggestion) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12189">arXiv:2210.12189</a> <span> [<a href="https://arxiv.org/pdf/2210.12189">pdf</a>, <a href="https://arxiv.org/format/2210.12189">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Differences in the Resistive and Thermodynamic Properties of the Single Crystalline Chiral Superconductor Candidate SrPtAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Weiland%2C+A">A. Weiland</a>, <a href="/search/cond-mat?searchtype=author&query=Santos%2C+F+B">F. B. Santos</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12189v1-abstract-short" style="display: inline;"> $\require{mediawiki-texvc}$The locally non-centrosymmetric superconductor SrPtAs is proposed to host a topological chiral $d$-wave state, but experimental reports have been limited to polycrystalline samples. Here we report the synthesis of single crystalline SrPtAs grown from Pb flux. SrPtAs crystallizes in the hexagonal space group $P6_{3}$/$mmc$ with lattice parameters $a$ = 4.2445(4) $脜… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12189v1-abstract-full').style.display = 'inline'; document.getElementById('2210.12189v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12189v1-abstract-full" style="display: none;"> $\require{mediawiki-texvc}$The locally non-centrosymmetric superconductor SrPtAs is proposed to host a topological chiral $d$-wave state, but experimental reports have been limited to polycrystalline samples. Here we report the synthesis of single crystalline SrPtAs grown from Pb flux. SrPtAs crystallizes in the hexagonal space group $P6_{3}$/$mmc$ with lattice parameters $a$ = 4.2445(4) $脜$ and $c$ = 8.9513(18) $脜$. Magnetic susceptibility and electrical resistivity measurements reveal a superconducting transition at T$_c$ $\sim$2.2 K, in agreement with previous reports on polycrystalline samples. Surprisingly, heat capacity data show only a small bulk transition at 0.7 K. We discuss the possible origins of the discrepancy between the various measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12189v1-abstract-full').style.display = 'none'; document.getElementById('2210.12189v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07507">arXiv:2210.07507</a> <span> [<a href="https://arxiv.org/pdf/2210.07507">pdf</a>, <a href="https://arxiv.org/ps/2210.07507">ps</a>, <a href="https://arxiv.org/format/2210.07507">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.094407">10.1103/PhysRevMaterials.6.094407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physical properties of the layered $f$-electron van der Waals magnet Ce$_2$Te$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Bordelon%2C+M+M">M. M. Bordelon</a>, <a href="/search/cond-mat?searchtype=author&query=Weiland%2C+A">A. Weiland</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07507v1-abstract-short" style="display: inline;"> We report a detailed study of the magnetic, transport, and thermodynamic properties of Ce$_2$Te$_5$ single crystals, a layered $f$-electron van der Waals magnet. Four consecutive transitions at $\sim$ 5.2, 2.1, 0.9, and 0.4 K were observed in the $ac$-plane electrical resistivity $蟻$(T), which were further confirmed in specific heat $C_\textrm{p}$(T) measurements. Analysis of the magnetic suscepti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07507v1-abstract-full').style.display = 'inline'; document.getElementById('2210.07507v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07507v1-abstract-full" style="display: none;"> We report a detailed study of the magnetic, transport, and thermodynamic properties of Ce$_2$Te$_5$ single crystals, a layered $f$-electron van der Waals magnet. Four consecutive transitions at $\sim$ 5.2, 2.1, 0.9, and 0.4 K were observed in the $ac$-plane electrical resistivity $蟻$(T), which were further confirmed in specific heat $C_\textrm{p}$(T) measurements. Analysis of the magnetic susceptibility $蠂$(T), the magnetic-field variation of $蟻$(T), and the increase of the first transition temperature ($T_\textrm{c} \sim$ 5.2 K) with applied magnetic field indicates ferromagnetic order, while the decrease of the other transitions with field suggests different states with dominant antiferromagnetic interactions below $T_2 \sim$ 2.1 K, $T_3 \sim$ 0.9 K, and $T_4$ = 0.4 K. Critical behavior analysis around $T_\textrm{c}$ that gives critical exponents $尾= 0.31(2)$, $纬= 0.99(2)$, $未= 4.46(1)$, $T_\textrm{c} = 5.32(1)$ K indicates that Ce$_2$Te$_5$ shows a three-dimensional magnetic critical behavior. Moreover, the Hall resistivity $蟻_{\textrm{xy}}$ indicates that Ce$_2$Te$_5$ is a multi-band system with a relatively high electron mobility $\sim 2900$ cm$^2$ V$^{-1}$ s$^{-1}$ near $T_\textrm{c}$, providing further opportunities for future device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07507v1-abstract-full').style.display = 'none'; document.getElementById('2210.07507v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review MATERIALS 6, 094407 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.01031">arXiv:2210.01031</a> <span> [<a href="https://arxiv.org/pdf/2210.01031">pdf</a>, <a href="https://arxiv.org/format/2210.01031">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.214433">10.1103/PhysRevB.106.214433 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interwoven atypical quantum states in CeLiBi$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bordelon%2C+M+M">Mitchell M. Bordelon</a>, <a href="/search/cond-mat?searchtype=author&query=Girod%2C+C">Cl茅ment Girod</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">Filip Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Rubi%2C+K">Km Rubi</a>, <a href="/search/cond-mat?searchtype=author&query=Harrison%2C+N">Neil Harrison</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Joe D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Cruz%2C+C+d">Clarina dela Cruz</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">Sean M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">Priscila F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.01031v2-abstract-short" style="display: inline;"> We report the discovery of CeLiBi$_2$, the first example of a material in the tetragonal Ce$TX_2$ ($T$ = transition metal; $X$ = pnictogen) family wherein an alkali cation replaces the typical transition metal. Magnetic susceptibility and neutron powder diffraction measurements are consistent with a crystal-field $螕_6$ ground state Kramers doublet that orders antiferromagnetically below… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01031v2-abstract-full').style.display = 'inline'; document.getElementById('2210.01031v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.01031v2-abstract-full" style="display: none;"> We report the discovery of CeLiBi$_2$, the first example of a material in the tetragonal Ce$TX_2$ ($T$ = transition metal; $X$ = pnictogen) family wherein an alkali cation replaces the typical transition metal. Magnetic susceptibility and neutron powder diffraction measurements are consistent with a crystal-field $螕_6$ ground state Kramers doublet that orders antiferromagnetically below $T_N = 3.4$ K with an incommensurate propagation wave vector ${\bf{k}} = (0, 0.0724(4), 0.5)$ that generates a nanometric modulation of the magnetic structure. The best model of the ordered state is an elliptical cycloid with Ce moments primarily residing in the $ab$ plane. This is highly unusual, as all other $螕_6$ Ce$TX_2$ members order ferromagnetically. Further, we observe an atypical hard-axis metamagnetic transition at $2$ T in magnetostriction, magnetization, and resistivity measurements. CeLiBi$_2$ is a rare example of a highly conductive material with dominant skew scattering leading to a large anomalous Hall effect. Quantum oscillations with five frequencies arise in magnetostriction and magnetic susceptibility data to $T = 30$ K and $渭_0H = 55$ T, which indicate small Fermi pockets of light carriers with effective masses as low as 0.07$m_e$. Density functional theory calculations indicate that square-net Dirac-like Bi$-p$ bands are responsible for these ultralight carriers. Together, our results show that CeLiBi$_2$ enables multiple atypical magnetic and electronic properties in a single clean material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01031v2-abstract-full').style.display = 'none'; document.getElementById('2210.01031v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08381">arXiv:2207.08381</a> <span> [<a href="https://arxiv.org/pdf/2207.08381">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.245150">10.1103/PhysRevB.105.245150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistence of correlation-driven surface states in SmB6 under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Seo%2C+S">Soonbeom Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+Y">Yongkang Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Fisk%2C+Z">Z. Fisk</a>, <a href="/search/cond-mat?searchtype=author&query=Erten%2C+O">O. Erten</a>, <a href="/search/cond-mat?searchtype=author&query=Riseborough%2C+P+S">P. S. Riseborough</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08381v1-abstract-short" style="display: inline;"> The proposed topological Kondo insulator SmB$_{6}$ hosts a bulk Kondo hybridization gap that stems from strong electronic correlations and a metallic surface state whose effective mass remains disputed. Thermopower and scanning tunneling spectroscopy measurements argue for heavy surface states that also stem from strong correlations, whereas quantum oscillation and angle-resolved photoemission mea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08381v1-abstract-full').style.display = 'inline'; document.getElementById('2207.08381v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08381v1-abstract-full" style="display: none;"> The proposed topological Kondo insulator SmB$_{6}$ hosts a bulk Kondo hybridization gap that stems from strong electronic correlations and a metallic surface state whose effective mass remains disputed. Thermopower and scanning tunneling spectroscopy measurements argue for heavy surface states that also stem from strong correlations, whereas quantum oscillation and angle-resolved photoemission measurements reveal light effective masses that would be consistent with a Kondo breakdown scenario at the surface. Here we investigate the evolution of the surface state via electrical and thermoelectric transport measurements under hydrostatic pressure, a clean symmetry-preserving tuning parameter that suppresses the Kondo gap and increases the valence of Sm from 2.6+ towards a 3+ magnetic metallic state. Electrical resistivity measurements reveal that the surface carrier density increases with increasing pressure, whereas thermopower measurements show an unchanged Fermi energy under pressure. As a result, the effective mass of the surface state charge carriers linearly increases with pressure as the Sm valence approaches 3+. Our results are consistent with the presence of correlation-driven surface states in SmB$_{6}$ and suggest that the surface Kondo effect persists under pressure to 2 GPa. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08381v1-abstract-full').style.display = 'none'; document.getElementById('2207.08381v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 245150 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02634">arXiv:2207.02634</a> <span> [<a href="https://arxiv.org/pdf/2207.02634">pdf</a>, <a href="https://arxiv.org/format/2207.02634">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Nanometric modulations of the magnetic structure of the element Nd </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Arachchige%2C+H+S">H. Suriya Arachchige</a>, <a href="/search/cond-mat?searchtype=author&query=DeBeer-Schmitt%2C+L+M">L. M. DeBeer-Schmitt</a>, <a href="/search/cond-mat?searchtype=author&query=Kish%2C+L+L">L. L. Kish</a>, <a href="/search/cond-mat?searchtype=author&query=Rai%2C+B+K">Binod K. Rai</a>, <a href="/search/cond-mat?searchtype=author&query=May%2C+A+F">A. F. May</a>, <a href="/search/cond-mat?searchtype=author&query=Parker%2C+D+S">D. S. Parker</a>, <a href="/search/cond-mat?searchtype=author&query=Pokharel%2C+G">G. Pokharel</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Mandrus%2C+D+G">D. G. Mandrus</a>, <a href="/search/cond-mat?searchtype=author&query=Bleuel%2C+M">M. Bleuel</a>, <a href="/search/cond-mat?searchtype=author&query=Islam%2C+Z">Z. Islam</a>, <a href="/search/cond-mat?searchtype=author&query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H+X">H. X. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+S">S. Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+S">Shi-Zeng Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Christianson%2C+A+D">A. D. Christianson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02634v1-abstract-short" style="display: inline;"> The rare earth neodymium arguably exhibits the most complex magnetic ordering and series of magnetic phase transitions of the elements. Here we report the results of small-angle neutron scattering (SANS) measurements as a function of temperature and applied magnetic field to study magnetic correlations on nanometer length scales in Nd. The SANS measurements reveal the presence of previously unrepo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02634v1-abstract-full').style.display = 'inline'; document.getElementById('2207.02634v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02634v1-abstract-full" style="display: none;"> The rare earth neodymium arguably exhibits the most complex magnetic ordering and series of magnetic phase transitions of the elements. Here we report the results of small-angle neutron scattering (SANS) measurements as a function of temperature and applied magnetic field to study magnetic correlations on nanometer length scales in Nd. The SANS measurements reveal the presence of previously unreported modulation vectors characterizing the ordered spin configuration which exhibit changes in magnitude and direction that are phase dependent. Between 5.9 and 7.6 K the additional modulation vector has a magnitude $Q$ =0.12 脜$^{-1}$ and is primarily due to order of the Nd layers which contain a center of inversion. In this region of the phase diagram, the SANS measurements also identify a phase boundary at $\approx$1 T. An important feature of these modulation vectors is that they indicate the presence of nanometer length scale spin textures which are likely stabilized by frustrated Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions rather than a Dzyaloshinskii-Moriya (DM) exchange interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02634v1-abstract-full').style.display = 'none'; document.getElementById('2207.02634v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14073">arXiv:2206.14073</a> <span> [<a href="https://arxiv.org/pdf/2206.14073">pdf</a>, <a href="https://arxiv.org/format/2206.14073">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.045110">10.1103/PhysRevB.106.045110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Colossal piezoresistance in narrow-gap Eu5In2Sb6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">S. Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Lane%2C+C">C. Lane</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J+-">J. -X. Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14073v1-abstract-short" style="display: inline;"> Piezoresistance, the change of a material's electrical resistance ($R$) in response to an applied mechanical stress ($蟽$), is the driving principle of electromechanical devices such as strain gauges, accelerometers, and cantilever force sensors. Enhanced piezoresistance has been traditionally observed in two classes of uncorrelated materials: nonmagnetic semiconductors and composite structures. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14073v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14073v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14073v1-abstract-full" style="display: none;"> Piezoresistance, the change of a material's electrical resistance ($R$) in response to an applied mechanical stress ($蟽$), is the driving principle of electromechanical devices such as strain gauges, accelerometers, and cantilever force sensors. Enhanced piezoresistance has been traditionally observed in two classes of uncorrelated materials: nonmagnetic semiconductors and composite structures. We report the discovery of a remarkably large piezoresistance in Eu$_5$In$_2$Sb$_6$ single crystals, wherein anisotropic metallic clusters naturally form within a semiconducting matrix due to electronic interactions. Eu$_5$In$_2$Sb$_6$ shows a highly anisotropic piezoresistance, and uniaxial pressure along [001] of only 0.4~GPa leads to a resistivity drop of more than 99.95\% that results in a colossal piezoresistance factor of $5000\times10^{-11}$Pa$^{-1}$. Our result not only reveals the role of interactions and phase separation in the realization of colossal piezoresistance, but it also highlights a novel route to multi-functional devices with large responses to both pressure and magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14073v1-abstract-full').style.display = 'none'; document.getElementById('2206.14073v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04588">arXiv:2205.04588</a> <span> [<a href="https://arxiv.org/pdf/2205.04588">pdf</a>, <a href="https://arxiv.org/format/2205.04588">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L121101">10.1103/PhysRevB.106.L121101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermodynamic and electrical transport properties of UTe$_2$ under uniaxial stress </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Girod%2C+C">Cl茅ment Girod</a>, <a href="/search/cond-mat?searchtype=author&query=Stevens%2C+C+R">Callum R. Stevens</a>, <a href="/search/cond-mat?searchtype=author&query=Huxley%2C+A">Andrew Huxley</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Santos%2C+F+B">Frederico B. Santos</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Joe D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jian-Xin Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">Filip Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">Priscila F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">Sean M. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04588v1-abstract-short" style="display: inline;"> Despite intense experimental efforts, the nature of the unconventional superconducting order parameter of UTe$_2$ remains elusive. This puzzle stems from different reported numbers of superconducting transitions at ambient pressure, as well as a complex pressure-temperature phase diagram. To bring new insights into the superconducting properties of UTe$_2$, we measured the heat capacity and electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04588v1-abstract-full').style.display = 'inline'; document.getElementById('2205.04588v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04588v1-abstract-full" style="display: none;"> Despite intense experimental efforts, the nature of the unconventional superconducting order parameter of UTe$_2$ remains elusive. This puzzle stems from different reported numbers of superconducting transitions at ambient pressure, as well as a complex pressure-temperature phase diagram. To bring new insights into the superconducting properties of UTe$_2$, we measured the heat capacity and electrical resistivity of single crystals under compressive uniaxial stress $蟽$ applied along different crystallographic directions. We find that the critical temperature $T_{\rm c}$ of the single observed bulk superconducting transition decreases with $蟽$ along $[100]$ and $[110]$ but increases with $蟽$ along $[001]$. Aside from its effect on $T_{\rm c}$, we notice that $c$-axis stress leads to a significant piezoresistivity, which we associate with the shift of the zero-pressure resistivity peak at $T^\star \approx 15\, \rm K$ to lower temperatures under stress. Finally, we show that an in-plane shear stress $蟽_{xy}$ does not induce any observable splitting of the superconducting transition over a stress range of $蟽_{xy}\approx 0.17 \, \rm GPa$. This result suggests that the superconducting order parameter of UTe$_2$ may be single-component at ambient pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04588v1-abstract-full').style.display = 'none'; document.getElementById('2205.04588v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10049">arXiv:2203.10049</a> <span> [<a href="https://arxiv.org/pdf/2203.10049">pdf</a>, <a href="https://arxiv.org/format/2203.10049">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.094443">10.1103/PhysRevB.105.094443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of external pressure on the narrow gap semiconductor Ce$_{3}$Cd$_{2}$As$_{6}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Piva%2C+M+M">M. M. Piva</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+L">L. Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/cond-mat?searchtype=author&query=Ribeiro%2C+R+A">R. A. Ribeiro</a>, <a href="/search/cond-mat?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10049v1-abstract-short" style="display: inline;"> Here we report the magnetic and electronic properties of recently discovered Ce$_{3}$Cd$_{2}$As$_{6}$. At ambient pressure, Ce$_{3}$Cd$_{2}$As$_{6}$ presents a semiconducting behavior with an activation gap of 74(1)~meV. At 136~K, a sudden increase of the electrical resistivity and a peak in specific heat are consistent with a charge density wave transition. At low temperatures, antiferromagnetic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10049v1-abstract-full').style.display = 'inline'; document.getElementById('2203.10049v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10049v1-abstract-full" style="display: none;"> Here we report the magnetic and electronic properties of recently discovered Ce$_{3}$Cd$_{2}$As$_{6}$. At ambient pressure, Ce$_{3}$Cd$_{2}$As$_{6}$ presents a semiconducting behavior with an activation gap of 74(1)~meV. At 136~K, a sudden increase of the electrical resistivity and a peak in specific heat are consistent with a charge density wave transition. At low temperatures, antiferromagnetic order of the Ce$^{3+}$ ions occurs below $T_{\rm N} = 4.0$~K with a magnetic hard axis along the $c$-axis and a $螕_{6} = |\pm1/2\rangle$ doublet ground state. The application of external pressure strongly suppresses the charge density wave order, which is completely suppressed above 0.8(1)~GPa, and induces a metallic ground state. No evidence for superconductivity is detected above 2~K. Conversely, the antiferromagnetic state is favored by pressure, reaching a transition temperature of 5.3~K at 3.8(1)~GPa. Notably, the resistivity anomaly characterizing the antiferromagnetic order changes with increasing pressure, indicating that two different magnetic phases might be present in Ce$_{3}$Cd$_{2}$As$_{6}$ under pressure. This change in ordering appears to be associated to the crossing of the $T_{\rm CDW}$ and $T_{\rm N}$ lines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10049v1-abstract-full').style.display = 'none'; document.getElementById('2203.10049v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04464">arXiv:2201.04464</a> <span> [<a href="https://arxiv.org/pdf/2201.04464">pdf</a>, <a href="https://arxiv.org/format/2201.04464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.035135">10.1103/PhysRevB.105.035135 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microscopic probe of magnetic polarons in antiferromagnetic Eu$_{5}$In$_{2}$Sb$_{6}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Souza%2C+J+C">J. C. Souza</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Pagliuso%2C+P+G">P. G. Pagliuso</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04464v1-abstract-short" style="display: inline;"> Colossal magnetoresistance (CMR) emerges from intertwined spin and charge degrees of freedom in the form of ferromagnetic clusters also known as trapped magnetic polarons. As a result, CMR is rarely observed in antiferromagnetic materials. Here we use electron spin resonance (ESR) to reveal microscopic evidence for the formation of magnetic polarons in antiferromagnetic Eu$_{5}$In$_{2}$Sb$_{6}$. F… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04464v1-abstract-full').style.display = 'inline'; document.getElementById('2201.04464v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04464v1-abstract-full" style="display: none;"> Colossal magnetoresistance (CMR) emerges from intertwined spin and charge degrees of freedom in the form of ferromagnetic clusters also known as trapped magnetic polarons. As a result, CMR is rarely observed in antiferromagnetic materials. Here we use electron spin resonance (ESR) to reveal microscopic evidence for the formation of magnetic polarons in antiferromagnetic Eu$_{5}$In$_{2}$Sb$_{6}$. First, we observe a reduction of the Eu$^{2+}$ ESR linewidth as a function of the applied magnetic field consistent with ferromagnetic clusters that are antiferromagnetically coupled. Additionally, the Eu$^{2+}$ lineshape changes markedly below T' ~ 200 K, a temperature scale that coincides with the onset of CMR. The combination of these two effects provide strong evidence that magnetic polarons grow in size below T' and start influencing the macroscopic properties of the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04464v1-abstract-full').style.display = 'none'; document.getElementById('2201.04464v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Accepted in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 035135 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.08230">arXiv:2110.08230</a> <span> [<a href="https://arxiv.org/pdf/2110.08230">pdf</a>, <a href="https://arxiv.org/format/2110.08230">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L161105">10.1103/PhysRevB.106.L161105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground state of Ce$_{3}$Bi$_{4}$Pd$_{3}$ unraveled by hydrostatic pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ajeesh%2C+M+O">M. O. Ajeesh</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Kushwaha%2C+S+K">S. K. Kushwaha</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Harrison%2C+N">N. Harrison</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.08230v1-abstract-short" style="display: inline;"> Noncentrosymmetric Ce$_{3}$Bi$_{4}$Pd$_{3}$ has attracted a lot of attention as a candidate for strongly correlated topological material, yet its experimental ground state remains a matter of contention. Two conflicting scenarios have emerged from a comparison to prototypical Kondo insulator Ce$_{3}$Bi$_{4}$Pt$_{3}$: either Ce$_{3}$Bi$_{4}$Pd$_{3}$ is a spin-orbit-driven topological semimetal or a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08230v1-abstract-full').style.display = 'inline'; document.getElementById('2110.08230v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.08230v1-abstract-full" style="display: none;"> Noncentrosymmetric Ce$_{3}$Bi$_{4}$Pd$_{3}$ has attracted a lot of attention as a candidate for strongly correlated topological material, yet its experimental ground state remains a matter of contention. Two conflicting scenarios have emerged from a comparison to prototypical Kondo insulator Ce$_{3}$Bi$_{4}$Pt$_{3}$: either Ce$_{3}$Bi$_{4}$Pd$_{3}$ is a spin-orbit-driven topological semimetal or a Kondo insulator with smaller Kondo coupling than its Pt counterpart. Here we determine the ground state of Ce$_{3}$Bi$_{4}$Pd$_{3}$ via electrical resistivity measurements under hydrostatic pressure, which is a clean symmetry-preserving tuning parameter that increases hybridization but virtually preserves spin-orbit coupling. Ce$_{3}$Bi$_{4}$Pd$_{3}$ becomes more insulating under pressure, which is a signature of Ce-based Kondo insulating materials. Its small zero-pressure gap increases quadratically with pressure, similar to the behavior observed in the series Ce$_{3}$Bi$_{4}$(Pt$_{1-x}$Pd$_{x}$)$_{3}$, which indicates that Pt substitution and applied pressure have a similar effect. Our result not only demonstrates that Kondo coupling, rather than spin-orbit coupling, is the main tuning parameter in this class of materials, but it also establishes that Ce$_{3}$Bi$_{4}$Pd$_{3}$ has a narrow-gap Kondo insulating ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08230v1-abstract-full').style.display = 'none'; document.getElementById('2110.08230v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 Figures, includes Supplementary Information (6 pages, 5 Figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, L161105 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.06200">arXiv:2110.06200</a> <span> [<a href="https://arxiv.org/pdf/2110.06200">pdf</a>, <a href="https://arxiv.org/format/2110.06200">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-022-00254-2">10.1038/s43246-022-00254-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-component superconducting state in UTe2 at 2 K </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Weiland%2C+A">A. Weiland</a>, <a href="/search/cond-mat?searchtype=author&query=Fender%2C+S+S">S. S. Fender</a>, <a href="/search/cond-mat?searchtype=author&query=Scott%2C+B+L">B. L. Scott</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.06200v1-abstract-short" style="display: inline;"> UTe2 is a newly-discovered unconventional superconductor wherein multicomponent topological superconductivity is anticipated based on the presence of two superconducting transitions and time-reversal symmetry breaking in the superconducting state. The observation of two superconducting transitions, however, remains controversial. Here we demonstrate that UTe2 single crystals displaying an optimal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.06200v1-abstract-full').style.display = 'inline'; document.getElementById('2110.06200v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.06200v1-abstract-full" style="display: none;"> UTe2 is a newly-discovered unconventional superconductor wherein multicomponent topological superconductivity is anticipated based on the presence of two superconducting transitions and time-reversal symmetry breaking in the superconducting state. The observation of two superconducting transitions, however, remains controversial. Here we demonstrate that UTe2 single crystals displaying an optimal superconducting transition temperature at 2 K exhibit a single transition and remarkably high quality supported by their small residual heat capacity in the superconducting state and large residual resistance ratio. Our results shed light on the intrinsic superconducting properties of UTe2 and bring into question whether UTe2 is a multicomponent superconductor at ambient pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.06200v1-abstract-full').style.display = 'none'; document.getElementById('2110.06200v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Materials 3, 33 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.05452">arXiv:2110.05452</a> <span> [<a href="https://arxiv.org/pdf/2110.05452">pdf</a>, <a href="https://arxiv.org/format/2110.05452">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.104503">10.1103/PhysRevB.104.104503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bi kagome sublattice distortions by quenching and flux pinning in superconducting RbBi$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Philip%2C+S+S">Sharon S. Philip</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Junjie Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Page%2C+K+L">K. L. Page</a>, <a href="/search/cond-mat?searchtype=author&query=Louca%2C+D">Despina Louca</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.05452v1-abstract-short" style="display: inline;"> The properties of RbBi$_2$, a 4.15 K superconductor, were investigated using magnetic field, pressure and neutron diffraction. Under hydrostatic pressure, an almost 50 % reduction of T$_c$ is observed, linked to a low Debye temperature estimated at 165 K. The resistivity and magnetic susceptibility were measured on quenched and slow-cooled polycrystalline samples. The resistivity follows a low tem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05452v1-abstract-full').style.display = 'inline'; document.getElementById('2110.05452v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.05452v1-abstract-full" style="display: none;"> The properties of RbBi$_2$, a 4.15 K superconductor, were investigated using magnetic field, pressure and neutron diffraction. Under hydrostatic pressure, an almost 50 % reduction of T$_c$ is observed, linked to a low Debye temperature estimated at 165 K. The resistivity and magnetic susceptibility were measured on quenched and slow-cooled polycrystalline samples. The resistivity follows a low temperature power-law dependence in both types of samples, while the diamagnetic susceptibility, $蠂$, is dependent on the sample cooling history. Slow-cooled samples have a $蠂= -1$ while quenched samples have $蠂< -1$ due to grain size differences. Evidence of the effects of the cooling rate is also discerned from the local structure, obtained by neutron diffraction and the pair density function analysis. Slow-cooled samples have structurally symmetric Bi hexagons, in contrast to quenched samples in which disorder is manifested in periodic distortions of the Bi hexagonal rings of the kagome sublattice. Disorder may lead to flux pinning that reduces vortex mobility, but T$_c$ remains unaffected by the cooling rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05452v1-abstract-full').style.display = 'none'; document.getElementById('2110.05452v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages including References, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 104, 104503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.04876">arXiv:2110.04876</a> <span> [<a href="https://arxiv.org/pdf/2110.04876">pdf</a>, <a href="https://arxiv.org/format/2110.04876">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.224106">10.1103/PhysRevB.105.224106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Erbium-Implanted Materials for Quantum Communication Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Stevenson%2C+P">Paul Stevenson</a>, <a href="/search/cond-mat?searchtype=author&query=Phenicie%2C+C+M">Christopher M Phenicie</a>, <a href="/search/cond-mat?searchtype=author&query=Gray%2C+I">Isaiah Gray</a>, <a href="/search/cond-mat?searchtype=author&query=Horvath%2C+S+P">Sebastian P Horvath</a>, <a href="/search/cond-mat?searchtype=author&query=Welinski%2C+S">Sacha Welinski</a>, <a href="/search/cond-mat?searchtype=author&query=Ferrenti%2C+A+M">Austin M Ferrenti</a>, <a href="/search/cond-mat?searchtype=author&query=Ferrier%2C+A">Alban Ferrier</a>, <a href="/search/cond-mat?searchtype=author&query=Goldner%2C+P">Philippe Goldner</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">Sujit Das</a>, <a href="/search/cond-mat?searchtype=author&query=Ramesh%2C+R">Ramamoorthy Ramesh</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">Robert J Cava</a>, <a href="/search/cond-mat?searchtype=author&query=de+Leon%2C+N+P">Nathalie P de Leon</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Jeff D Thompson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.04876v1-abstract-short" style="display: inline;"> Erbium-doped materials can serve as spin-photon interfaces with optical transitions in the telecom C-band, making them an exciting class of materials for long-distance quantum communication. However, the spin and optical coherence times of Er3+ ions are limited by currently available host materials, motivating the development of new Er3+-containing materials. Here, we demonstrate the use of ion im… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04876v1-abstract-full').style.display = 'inline'; document.getElementById('2110.04876v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.04876v1-abstract-full" style="display: none;"> Erbium-doped materials can serve as spin-photon interfaces with optical transitions in the telecom C-band, making them an exciting class of materials for long-distance quantum communication. However, the spin and optical coherence times of Er3+ ions are limited by currently available host materials, motivating the development of new Er3+-containing materials. Here, we demonstrate the use of ion implantation to efficiently screen prospective host candidates, and show that disorder introduced by ion implantation can be mitigated through post-implantation thermal processing to achieve inhomogeneous linewidths comparable to bulk linewidths in as-grown samples. We present optical spectroscopy data for each host material, which allows us to determine the level structure of each site, allowing us to compare the environments of Er3+ introduced via implantation and via doping during growth. We demonstrate that implantation can generate a range of local environments for Er3+, including those observed in bulk-doped materials, and that the populations of these sites can be controlled with thermal processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04876v1-abstract-full').style.display = 'none'; document.getElementById('2110.04876v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.08006">arXiv:2108.08006</a> <span> [<a href="https://arxiv.org/pdf/2108.08006">pdf</a>, <a href="https://arxiv.org/format/2108.08006">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.chemmater.1c00797">10.1021/acs.chemmater.1c00797 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust narrow-gap semiconducting behavior in square-net La$_{3}$Cd$_{2}$As$_{6}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Piva%2C+M+M">Mario M. Piva</a>, <a href="/search/cond-mat?searchtype=author&query=Rahn%2C+M+C">Marein C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">Sean M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Scott%2C+B+L">Brian L. Scott</a>, <a href="/search/cond-mat?searchtype=author&query=Pagliuso%2C+P+G">Pascoal G. Pagliuso</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Joe D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">Filip Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">Priscila F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.08006v1-abstract-short" style="display: inline;"> ABSTRACT: Narrow-gap semiconductors are sought-after materials due to their potential for long-wavelength detectors, thermoelectrics, and more recently non-trivial topology. Here we report the synthesis and characterization of a new family of narrow-gap semiconductors, $R$$_{3}$Cd$_{2}$As$_{6}$ ($R=$ La, Ce). Single crystal x-ray diffraction at room temperature reveals that the As square nets dist… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08006v1-abstract-full').style.display = 'inline'; document.getElementById('2108.08006v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.08006v1-abstract-full" style="display: none;"> ABSTRACT: Narrow-gap semiconductors are sought-after materials due to their potential for long-wavelength detectors, thermoelectrics, and more recently non-trivial topology. Here we report the synthesis and characterization of a new family of narrow-gap semiconductors, $R$$_{3}$Cd$_{2}$As$_{6}$ ($R=$ La, Ce). Single crystal x-ray diffraction at room temperature reveals that the As square nets distort and Cd vacancies order in a monoclinic superstructure. A putative charge-density ordered state sets in at 279~K in La$_{3}$Cd$_{2}$As$_{6}$ and at 136~K in Ce$_{3}$Cd$_{2}$As$_{6}$ and is accompanied by a substantial increase in the electrical resistivity in both compounds. The resistivity of the La member increases by thirteen orders of magnitude on cooling, which points to a remarkably clean semiconducting ground state. Our results suggest that light square net materials within a $I4/mmm$ parent structure are promising clean narrow-gap semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08006v1-abstract-full').style.display = 'none'; document.getElementById('2108.08006v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chem. Mater. 2021, 33, 11, 4122-4127 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13145">arXiv:2107.13145</a> <span> [<a href="https://arxiv.org/pdf/2107.13145">pdf</a>, <a href="https://arxiv.org/format/2107.13145">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Narrow-gap semiconducting behavior in antiferromagnetic Eu$_{11}$InSb$_9$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fender%2C+S+S">S. S. Fender</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13145v1-abstract-short" style="display: inline;"> Here we investigate the thermodynamic and electronic properties of Eu$_{11}$InSb$_9$ single crystals. Electrical transport data show that Eu$_{11}$InSb$_9$ has a semiconducting ground state with a relatively narrow band gap of $320$~meV. Magnetic susceptibility data reveal antiferromagnetic order at low temperatures, whereas ferromagnetic interactions dominate at high temperature. Specific heat, m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13145v1-abstract-full').style.display = 'inline'; document.getElementById('2107.13145v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13145v1-abstract-full" style="display: none;"> Here we investigate the thermodynamic and electronic properties of Eu$_{11}$InSb$_9$ single crystals. Electrical transport data show that Eu$_{11}$InSb$_9$ has a semiconducting ground state with a relatively narrow band gap of $320$~meV. Magnetic susceptibility data reveal antiferromagnetic order at low temperatures, whereas ferromagnetic interactions dominate at high temperature. Specific heat, magnetic susceptibility, and electrical resistivity measurements reveal three phase transitions at $T_{N1}=9.3$~K, $T_{N2} =8.3$~K, and $T_{N3} =4.3$~K. Unlike Eu$_{5}$In$_{2}$Sb$_6$, a related europium-containing Zintl compound, no colossal magnetoresistance (CMR) is observed in Eu$_{11}$InSb$_9$. We attribute the absence of CMR to the smaller carrier density and the larger distance between Eu ions and In-Sb polyhedra in Eu$_{11}$InSb$_9$. Our results indicate that Eu$_{11}$InSb$_9$ has potential applications as a thermoelectric material through doping or as a long-wavelength detector due to its narrow gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13145v1-abstract-full').style.display = 'none'; document.getElementById('2107.13145v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09060">arXiv:2104.09060</a> <span> [<a href="https://arxiv.org/pdf/2104.09060">pdf</a>, <a href="https://arxiv.org/format/2104.09060">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abf1467">10.1126/sciadv.abf1467 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Asaba%2C+T">T. Asaba</a>, <a href="/search/cond-mat?searchtype=author&query=Ivanov%2C+V">V. Ivanov</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Savrasov%2C+S+Y">S. Y. Savrasov</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09060v1-abstract-short" style="display: inline;"> Analogous to the Hall effect, the Nernst effect is the generation of a transverse voltage due to a temperature gradient in the presence of a perpendicular magnetic field. The Nernst effect has promise for thermoelectric applications and as a probe of electronic structure. In magnetic materials, a so-called anomalous Nernst effect (ANE) is possible in zero magnetic field. Here we report a colossal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09060v1-abstract-full').style.display = 'inline'; document.getElementById('2104.09060v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09060v1-abstract-full" style="display: none;"> Analogous to the Hall effect, the Nernst effect is the generation of a transverse voltage due to a temperature gradient in the presence of a perpendicular magnetic field. The Nernst effect has promise for thermoelectric applications and as a probe of electronic structure. In magnetic materials, a so-called anomalous Nernst effect (ANE) is possible in zero magnetic field. Here we report a colossal ANE reaching 23 $渭$V/K in the ferromagnetic metal UCo$_{0.8}$Ru$_{0.2}$Al. Uranium's $5f$ electrons provide strong electronic correlations that lead to narrow bands, which are a known route to producing a large thermoelectric response. Additionally, the large nuclear charge of uranium generates strong spin-orbit coupling, which produces an intrinsic transverse response in this material due to the Berry curvature associated with the relativistic electronic structure. Theoretical calculations show that at least 148 Weyl nodes and two nodal lines exist within $\pm$ 60 meV of the Fermi level in UCo$_{0.8}$Ru$_{0.2}$Al. This work demonstrates that magnetic actinide materials can host strong Nernst and Hall responses due to their combined correlated and topological nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09060v1-abstract-full').style.display = 'none'; document.getElementById('2104.09060v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 7 (13) eabf1467 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09194">arXiv:2103.09194</a> <span> [<a href="https://arxiv.org/pdf/2103.09194">pdf</a>, <a href="https://arxiv.org/format/2103.09194">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.224501">10.1103/PhysRevB.104.224501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatially inhomogeneous superconductivity in UTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Stevens%2C+C">C. Stevens</a>, <a href="/search/cond-mat?searchtype=author&query=Santos%2C+F+B">F. B. Santos</a>, <a href="/search/cond-mat?searchtype=author&query=Fender%2C+S+S">S. S. Fender</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Huxley%2C+A">A. Huxley</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09194v3-abstract-short" style="display: inline;"> Newly-discovered superconductor UTe$_2$ is a strong contender for a topological spin-triplet state wherein a multi-component order parameter arises from two nearly-degenerate superconducting states. A key issue is whether both of these states intrinsically exist at ambient pressure. Through thermal expansion and calorimetry, we show that UTe$_2$ at ambient conditions exhibits two detectable transi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09194v3-abstract-full').style.display = 'inline'; document.getElementById('2103.09194v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09194v3-abstract-full" style="display: none;"> Newly-discovered superconductor UTe$_2$ is a strong contender for a topological spin-triplet state wherein a multi-component order parameter arises from two nearly-degenerate superconducting states. A key issue is whether both of these states intrinsically exist at ambient pressure. Through thermal expansion and calorimetry, we show that UTe$_2$ at ambient conditions exhibits two detectable transitions only in some samples, and the size of the thermal expansion jump at each transition varies when the measurement is performed in different regions of the sample. This result indicates that the two transitions arise from two spatially separated regions that are inhomogeneously mixed throughout the volume of the sample, each with a discrete superconducting transition temperature (T$_c$). Notably, samples with higher T$_c$ only show a single transition at ambient pressure. Above 0.3 GPa, however, two transitions are invariably observed in ac calorimetry. Our results not only point to a nearly vertical line in the pressure-temperature phase diagram but also provide a unified scenario for the sample dependence of UTe$_{2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09194v3-abstract-full').style.display = 'none'; document.getElementById('2103.09194v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, includes supplemental information, changed conclusion on the origin of double-transition feature observed in some UTe2 samples</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.08000">arXiv:2103.08000</a> <span> [<a href="https://arxiv.org/pdf/2103.08000">pdf</a>, <a href="https://arxiv.org/format/2103.08000">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.054803">10.1103/PhysRevMaterials.5.054803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-beam Floating-zone Refined UCoGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Avers%2C+K+E">K. E. Avers</a>, <a href="/search/cond-mat?searchtype=author&query=Nguyen%2C+M+D">M. D. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&query=Scott%2C+J+W">J. W. Scott</a>, <a href="/search/cond-mat?searchtype=author&query=Zimmerman%2C+A+M">A. M. Zimmerman</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Halperin%2C+W+P">W. P. Halperin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.08000v1-abstract-short" style="display: inline;"> The interplay between unconventional superconductivity and quantum critical ferromagnetism in the U-Ge compounds represents an open problem in strongly correlated electron systems. Sample quality can have a strong influence on both of these ordered states in the compound UCoGe, as is true for most unconventional superconductors. We report results of a new approach at UCoGe crystal growth using a f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08000v1-abstract-full').style.display = 'inline'; document.getElementById('2103.08000v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.08000v1-abstract-full" style="display: none;"> The interplay between unconventional superconductivity and quantum critical ferromagnetism in the U-Ge compounds represents an open problem in strongly correlated electron systems. Sample quality can have a strong influence on both of these ordered states in the compound UCoGe, as is true for most unconventional superconductors. We report results of a new approach at UCoGe crystal growth using a floating-zone method with potential for improvements of sample quality and size as compared with traditional means such as Czochralski growth. Single crystals of the ferromagnetic superconductor UCoGe were produced using an ultra-high vacuum electron-beam floating-zone refining technique. Annealed single crystals show well-defined signatures of bulk ferromagnetism and superconductivity at $T_c \sim$2.6 K and $T_s \sim$0.55 K, respectively, in the resistivity and heat capacity. Scanning electron microscopy of samples with different surface treatments shows evidence of an off-stoichiometric uranium rich phase of UCoGe collected in cracks and voids that might be limiting sample quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08000v1-abstract-full').style.display = 'none'; document.getElementById('2103.08000v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 054803 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.02818">arXiv:2102.02818</a> <span> [<a href="https://arxiv.org/pdf/2102.02818">pdf</a>, <a href="https://arxiv.org/format/2102.02818">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.L180406">10.1103/PhysRevB.103.L180406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fingerprinting Triangular-Lattice Antiferromagnet by Excitation Gaps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Avers%2C+K+E">K. E. Avers</a>, <a href="/search/cond-mat?searchtype=author&query=Maksimov%2C+P+A">P. A. Maksimov</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Halperin%2C+W+P">W. P. Halperin</a>, <a href="/search/cond-mat?searchtype=author&query=Movshovich%2C+R">R. Movshovich</a>, <a href="/search/cond-mat?searchtype=author&query=Chernyshev%2C+A+L">A. L. Chernyshev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.02818v3-abstract-short" style="display: inline;"> CeCd$_3$As$_3$ is a rare-earth triangular-lattice antiferromagnet with large inter-layer separation. Our field-dependent heat capacity measurements at dilution fridge temperatures allow us to trace the field-evolution of the spin-excitation gaps throughout the antiferromagnetic and paramagnetic regions. The distinct gap evolution places strong constraints on the microscopic pseudo-spin model, whic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02818v3-abstract-full').style.display = 'inline'; document.getElementById('2102.02818v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.02818v3-abstract-full" style="display: none;"> CeCd$_3$As$_3$ is a rare-earth triangular-lattice antiferromagnet with large inter-layer separation. Our field-dependent heat capacity measurements at dilution fridge temperatures allow us to trace the field-evolution of the spin-excitation gaps throughout the antiferromagnetic and paramagnetic regions. The distinct gap evolution places strong constraints on the microscopic pseudo-spin model, which, in return, yields a close {\it quantitative} description of the gap behavior. This analysis provides crucial insights into the nature of the magnetic state of CeCd$_3$As$_3$, with a certainty regarding its stripe order and low-energy model parameters that sets a compelling paradigm for exploring and understanding the rapidly growing family of the rare-earth-based triangular-lattice systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02818v3-abstract-full').style.display = 'none'; document.getElementById('2102.02818v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main Text: 6 pages, 3 figures SM: 19 pages, 23 figures Some clarifications are made relative to previous version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 180406 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.15018">arXiv:2012.15018</a> <span> [<a href="https://arxiv.org/pdf/2012.15018">pdf</a>, <a href="https://arxiv.org/format/2012.15018">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.418081">10.1364/OE.418081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+D">Ding Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Abulnaga%2C+A">Alex Abulnaga</a>, <a href="/search/cond-mat?searchtype=author&query=Welinski%2C+S">Sacha Welinski</a>, <a href="/search/cond-mat?searchtype=author&query=Raha%2C+M">Mouktik Raha</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Jeff D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=de+Leon%2C+N+P">Nathalie P. de Leon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.15018v1-abstract-short" style="display: inline;"> Integrating atomic quantum memories based on color centers in diamond with on-chip photonic devices would enable entanglement distribution over long distances. However, efforts towards integration have been challenging because color centers can be highly sensitive to their environment, and their properties degrade in nanofabricated structures. Here, we describe a heterogeneously integrated, on-chi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.15018v1-abstract-full').style.display = 'inline'; document.getElementById('2012.15018v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.15018v1-abstract-full" style="display: none;"> Integrating atomic quantum memories based on color centers in diamond with on-chip photonic devices would enable entanglement distribution over long distances. However, efforts towards integration have been challenging because color centers can be highly sensitive to their environment, and their properties degrade in nanofabricated structures. Here, we describe a heterogeneously integrated, on-chip, III-V diamond platform designed for neutral silicon vacancy (SiV0) centers in diamond that circumvents the need for etching the diamond substrate. Through evanescent coupling to SiV0 centers near the surface of diamond, the platform will enable Purcell enhancement of SiV0 emission and efficient frequency conversion to the telecommunication C-band. The proposed structures can be realized with readily available fabrication techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.15018v1-abstract-full').style.display = 'none'; document.getElementById('2012.15018v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11656">arXiv:2009.11656</a> <span> [<a href="https://arxiv.org/pdf/2009.11656">pdf</a>, <a href="https://arxiv.org/format/2009.11656">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-020-00083-1">10.1038/s43246-020-00083-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Skyrmion lattice creep at ultra-low current densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Luo%2C+Y">Yongkang Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+S">Shizeng Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Leroux%2C+M">M. Leroux</a>, <a href="/search/cond-mat?searchtype=author&query=Wakeham%2C+N">N. Wakeham</a>, <a href="/search/cond-mat?searchtype=author&query=Fobes%2C+D+M">D. M. Fobes</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Betts%2C+J+B">J. B. Betts</a>, <a href="/search/cond-mat?searchtype=author&query=Migliori%2C+A">A. Migliori</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Janoschek%2C+M">M. Janoschek</a>, <a href="/search/cond-mat?searchtype=author&query=Maiorov%2C+B">Boris Maiorov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11656v2-abstract-short" style="display: inline;"> Magnetic skyrmions are well-suited for encoding information because they are nano-sized, topologically stable, and only require ultra-low critical current densities $j_c$ to depin from the underlying atomic lattice. Above $j_c$ skyrmions exhibit well-controlled motion, making them prime candidates for race-track memories. In thin films thermally-activated creep motion of isolated skyrmions was obs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11656v2-abstract-full').style.display = 'inline'; document.getElementById('2009.11656v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11656v2-abstract-full" style="display: none;"> Magnetic skyrmions are well-suited for encoding information because they are nano-sized, topologically stable, and only require ultra-low critical current densities $j_c$ to depin from the underlying atomic lattice. Above $j_c$ skyrmions exhibit well-controlled motion, making them prime candidates for race-track memories. In thin films thermally-activated creep motion of isolated skyrmions was observed below $j_c$ as predicted by theory. Uncontrolled skyrmion motion is detrimental for race-track memories and is not fully understood. Notably, the creep of skyrmion lattices in bulk materials remains to be explored. Here we show using resonant ultrasound spectroscopy--a probe highly sensitive to the coupling between skyrmion and atomic lattices--that in the prototypical skyrmion lattice material MnSi depinning occurs at $j_c^*$ that is only 4 percent of $j_c$. Our experiments are in excellent agreement with Anderson-Kim theory for creep and allow us to reveal a new dynamic regime at ultra-low current densities characterized by thermally-activated skyrmion-lattice-creep with important consequences for applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11656v2-abstract-full').style.display = 'none'; document.getElementById('2009.11656v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 4+4 figures, 1 table. arXiv admin note: substantial text overlap with arXiv:1711.08873</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Materials 1, 83 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.13380">arXiv:2008.13380</a> <span> [<a href="https://arxiv.org/pdf/2008.13380">pdf</a>, <a href="https://arxiv.org/ps/2008.13380">ps</a>, <a href="https://arxiv.org/format/2008.13380">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-020-00418-x">10.1038/s42005-020-00418-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Localized-to-itinerant transition preceding antiferromagnetic quantum critical point and gapless superconductivity in CeRh$_{0.5}$Ir$_{0.5}$In$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kawasaki%2C+S">Shinji Kawasaki</a>, <a href="/search/cond-mat?searchtype=author&query=Oka%2C+T">Toshihide Oka</a>, <a href="/search/cond-mat?searchtype=author&query=Sorime%2C+A">Akira Sorime</a>, <a href="/search/cond-mat?searchtype=author&query=Kogame%2C+Y">Yuji Kogame</a>, <a href="/search/cond-mat?searchtype=author&query=Uemoto%2C+K">Kazuhiro Uemoto</a>, <a href="/search/cond-mat?searchtype=author&query=Matano%2C+K">Kazuaki Matano</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+S">Shu Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+L">Liling Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Sarrao%2C+J+L">John L. Sarrao</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Joe D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+G">Guo-qing Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.13380v1-abstract-short" style="display: inline;"> A fundamental problem posed from the study of correlated electron compounds, of which heavy-fermion systems are prototypes, is the need to understand the physics of states near a quantum critical point (QCP). At a QCP, magnetic order is suppressed continuously to zero temperature and unconventional superconductivity often appears. Here, we report pressure ($P$) -dependent $^{115}$In nuclear quadru… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13380v1-abstract-full').style.display = 'inline'; document.getElementById('2008.13380v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.13380v1-abstract-full" style="display: none;"> A fundamental problem posed from the study of correlated electron compounds, of which heavy-fermion systems are prototypes, is the need to understand the physics of states near a quantum critical point (QCP). At a QCP, magnetic order is suppressed continuously to zero temperature and unconventional superconductivity often appears. Here, we report pressure ($P$) -dependent $^{115}$In nuclear quadrupole resonance (NQR) measurements on heavy-fermion antiferromagnet CeRh$_{0.5}$Ir$_{0.5}$In$_5$. These experiments reveal an antiferromagnetic (AF) QCP at $P_{\rm c}^{\rm AF}$ = 1.2 GPa where a dome of superconductivity reaches a maximum transition temperature $T_{\rm c}$. Preceding $P_{\rm c}^{\rm AF}$, however, the NQR frequency $谓_{\rm Q}$ undergoes an abrupt increase at $P_{\rm c}^{\rm *}$ = 0.8 GPa in the zero-temperature limit, indicating a change from localized to itinerant character of cerium's $f$-electron and associated small-to-large change in the Fermi surface. At $P_{\rm c}^{\rm AF}$ where $T_{\rm c}$ is optimized, there is an unusually large fraction of gapless excitations well below $T_{\rm c}$ that implicates spin-singlet, odd-frequency pairing symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13380v1-abstract-full').style.display = 'none'; document.getElementById('2008.13380v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 3, 148 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.04239">arXiv:2008.04239</a> <span> [<a href="https://arxiv.org/pdf/2008.04239">pdf</a>, <a href="https://arxiv.org/format/2008.04239">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.214431">10.1103/PhysRevB.101.214431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic and magnetic properties of stoichiometric CeAuBi$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Piva%2C+M+M">M. M. Piva</a>, <a href="/search/cond-mat?searchtype=author&query=Tartaglia%2C+R">R. Tartaglia</a>, <a href="/search/cond-mat?searchtype=author&query=Freitas%2C+G+S">G. S. Freitas</a>, <a href="/search/cond-mat?searchtype=author&query=Souza%2C+J+C">J. C. Souza</a>, <a href="/search/cond-mat?searchtype=author&query=Christovam%2C+D+S">D. S. Christovam</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Le%C3%A3o%2C+J+B">J. B. Le茫o</a>, <a href="/search/cond-mat?searchtype=author&query=Ratcliff%2C+W">W. Ratcliff</a>, <a href="/search/cond-mat?searchtype=author&query=Lynn%2C+J+W">J. W. Lynn</a>, <a href="/search/cond-mat?searchtype=author&query=Lane%2C+C">C. Lane</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J+-">J. -X. Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/cond-mat?searchtype=author&query=Granado%2C+E">E. Granado</a>, <a href="/search/cond-mat?searchtype=author&query=Pagliuso%2C+P+G">P. G. Pagliuso</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.04239v1-abstract-short" style="display: inline;"> We report the electronic and magnetic properties of stoichiometric CeAuBi$_{2}$ single crystals. At ambient pressure, CeAuBi$_{2}$ orders antiferromagnetically below a N茅el temperature ($T_{N}$) of 19 K. Neutron diffraction experiments revealed an antiferromagnetic propagation vector $\hat蟿 = [0, 0, 1/2]$, which doubles the paramagnetic unit cell along the $c$-axis. At low temperatures several met… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04239v1-abstract-full').style.display = 'inline'; document.getElementById('2008.04239v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.04239v1-abstract-full" style="display: none;"> We report the electronic and magnetic properties of stoichiometric CeAuBi$_{2}$ single crystals. At ambient pressure, CeAuBi$_{2}$ orders antiferromagnetically below a N茅el temperature ($T_{N}$) of 19 K. Neutron diffraction experiments revealed an antiferromagnetic propagation vector $\hat蟿 = [0, 0, 1/2]$, which doubles the paramagnetic unit cell along the $c$-axis. At low temperatures several metamagnetic transitions are induced by the application of fields parallel to the $c$-axis, suggesting that the magnetic structure of CeAuBi$_{2}$ changes as a function of field. At low temperatures, a linear positive magnetoresistance may indicate the presence of band crossings near the Fermi level. Finally, the application of external pressure favors the antiferromagnetic state, indicating that the 4$f$ electrons become more localized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04239v1-abstract-full').style.display = 'none'; document.getElementById('2008.04239v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 214431 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14436">arXiv:2007.14436</a> <span> [<a href="https://arxiv.org/pdf/2007.14436">pdf</a>, <a href="https://arxiv.org/ps/2007.14436">ps</a>, <a href="https://arxiv.org/format/2007.14436">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.174415">10.1103/PhysRevB.101.174415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous Hall Effect in Kagome Ferrimagnet GdMn$_6$Sn$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Asaba%2C+T">T. Asaba</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Curtis%2C+M">M. Curtis</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14436v1-abstract-short" style="display: inline;"> We present magnetotransport data on the ferrimagnet GdMn$_6$Sn$_6$. From the temperature dependent data we are able to extract a large instrinsic contribution to the anomalous Hall effect $蟽_{xz}^{int} \sim$ 32 $惟^{-1}cm^{-1}$ and $蟽_{xy}^{int} \sim$ 223 $惟^{-1}cm^{-1}$, which is comparable to values found in other systems also containing kagome nets of transition metals. From our transport anisot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14436v1-abstract-full').style.display = 'inline'; document.getElementById('2007.14436v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14436v1-abstract-full" style="display: none;"> We present magnetotransport data on the ferrimagnet GdMn$_6$Sn$_6$. From the temperature dependent data we are able to extract a large instrinsic contribution to the anomalous Hall effect $蟽_{xz}^{int} \sim$ 32 $惟^{-1}cm^{-1}$ and $蟽_{xy}^{int} \sim$ 223 $惟^{-1}cm^{-1}$, which is comparable to values found in other systems also containing kagome nets of transition metals. From our transport anisotropy, as well as our density functional theory calculations, we argue that the system is electronically best described as a three dimensional system. Thus, we show that reduced dimensionality is not a strong requirement for obtaining large Berry phase contributions to transport properties. In addition, the coexistence of rare-earth and transition metal magnetism makes the hexagonal MgFe$_6$Ge$_6$ structure type a promising system to tune the electronic and magnetic properties in future studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14436v1-abstract-full').style.display = 'none'; document.getElementById('2007.14436v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 174415 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14378">arXiv:2007.14378</a> <span> [<a href="https://arxiv.org/pdf/2007.14378">pdf</a>, <a href="https://arxiv.org/format/2007.14378">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.035127">10.1103/PhysRevB.102.035127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Tunable Anomalous Hall Effect in the Kagom$\acute{e}$ Antiferromagnet U$_3$Ru$_4$Al$_{12}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Asaba%2C+T">T. Asaba</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+Y">Ying Su</a>, <a href="/search/cond-mat?searchtype=author&query=Janoschek%2C+M">M. Janoschek</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+S">Shi-Zeng Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14378v1-abstract-short" style="display: inline;"> The Berry curvature in magnetic systems is attracting interest due to the potential tunability of topological features via the magnetic structure. $f$-electrons, with their large spin-orbit coupling, abundance of non-collinear magnetic structures and high electronic tunability, are attractive candidates to search for tunable topological properties. In this study, we measure anomalous Hall effect (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14378v1-abstract-full').style.display = 'inline'; document.getElementById('2007.14378v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14378v1-abstract-full" style="display: none;"> The Berry curvature in magnetic systems is attracting interest due to the potential tunability of topological features via the magnetic structure. $f$-electrons, with their large spin-orbit coupling, abundance of non-collinear magnetic structures and high electronic tunability, are attractive candidates to search for tunable topological properties. In this study, we measure anomalous Hall effect (AHE) in the distorted kagom$\acute{e}$ heavy fermion antiferromagnet U$_3$Ru$_4$Al$_{12}$. A large intrinsic AHE in high fields reveals the presence of a large Berry curvature. Moreover, the fields required to obtain the large Berry curvature are significantly different between $B \parallel a$ and $B \parallel a^*$, providing a mechanism to control the topological response in this system. Theoretical calculations illustrate that this sensitivity may be due to the heavy fermion character of the electronic structure. These results shed light on the Berry curvature of a strongly correlated band structure in magnetically frustrated heavy fermion materials, but also emphasize 5$f$-electrons as an ideal playground for studying field-tuned topological states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14378v1-abstract-full').style.display = 'none'; document.getElementById('2007.14378v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 035127 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.06556">arXiv:2007.06556</a> <span> [<a href="https://arxiv.org/pdf/2007.06556">pdf</a>, <a href="https://arxiv.org/format/2007.06556">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yuanfeng Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Kushwaha%2C+S+K">S. K. Kushwaha</a>, <a href="/search/cond-mat?searchtype=author&query=Souza%2C+J+C">J. C. Souza</a>, <a href="/search/cond-mat?searchtype=author&query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&query=Bombardi%2C+A">A. Bombardi</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Janoschek%2C+M">M. Janoschek</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+M+K">M. K. Chan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhijun Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Pagliuso%2C+P+G">P. G. Pagliuso</a>, <a href="/search/cond-mat?searchtype=author&query=Harrison%2C+N">N. Harrison</a>, <a href="/search/cond-mat?searchtype=author&query=Bernevig%2C+B+A">B. A. Bernevig</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.06556v2-abstract-short" style="display: inline;"> Here we investigate antiferromagnetic Eu$_{5}$In$_{2}$Sb$_{6}$, a nonsymmorphic Zintl phase. Our electrical transport data show that Eu$_{5}$In$_{2}$Sb$_{6}$ is remarkably insulating and exhibits an exceptionally large negative magnetoresistance, which is consistent with the presence of magnetic polarons. From {\it ab initio} calculations, the paramagnetic state of Eu$_{5}$In$_{2}$Sb$_{6}$ is a to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06556v2-abstract-full').style.display = 'inline'; document.getElementById('2007.06556v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.06556v2-abstract-full" style="display: none;"> Here we investigate antiferromagnetic Eu$_{5}$In$_{2}$Sb$_{6}$, a nonsymmorphic Zintl phase. Our electrical transport data show that Eu$_{5}$In$_{2}$Sb$_{6}$ is remarkably insulating and exhibits an exceptionally large negative magnetoresistance, which is consistent with the presence of magnetic polarons. From {\it ab initio} calculations, the paramagnetic state of Eu$_{5}$In$_{2}$Sb$_{6}$ is a topologically nontrivial semimetal within the generalized gradient approximation (GGA), whereas an insulating state with trivial topological indices is obtained using a modified Becke-Johnson potential. Notably, GGA+U calculations suggest that the antiferromagnetic phase of Eu$_{5}$In$_{2}$Sb$_{6}$ may host an axion insulating state. Our results provide important feedback for theories of topological classification and highlight the potential of realizing clean magnetic narrow-gap semiconductors in Zintl materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06556v2-abstract-full').style.display = 'none'; document.getElementById('2007.06556v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in npj Quantum Materials. Author list and affiliations corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.14128">arXiv:2006.14128</a> <span> [<a href="https://arxiv.org/pdf/2006.14128">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Identifying candidate hosts for quantum defects via data mining </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ferrenti%2C+A+M">Austin M. Ferrenti</a>, <a href="/search/cond-mat?searchtype=author&query=de+Leon%2C+N+P">Nathalie P. de Leon</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Jeff D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.14128v1-abstract-short" style="display: inline;"> Atom-like defects in solid-state hosts are promising candidates for the development of quantum information systems, but despite their importance, the host substrate/defect combinations currently under study have almost exclusively been found serendipitously. Here we systematically evaluate the suitability of host materials by applying a combined four-stage data mining and manual screening process… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14128v1-abstract-full').style.display = 'inline'; document.getElementById('2006.14128v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.14128v1-abstract-full" style="display: none;"> Atom-like defects in solid-state hosts are promising candidates for the development of quantum information systems, but despite their importance, the host substrate/defect combinations currently under study have almost exclusively been found serendipitously. Here we systematically evaluate the suitability of host materials by applying a combined four-stage data mining and manual screening process to all entries in the Materials Project database, with literature-based experimental confirmation of band gap values. We identify 580 viable host substrates for quantum defect introduction and use in quantum information systems. While this constitutes a significant increase in the number of known and potentially viable material systems, it nonetheless represents a significant (99.54%) reduction from the total number of known inorganic phases, and the application of additional selection criteria for specific applications will reduce their number even further. The screening principles outlined may easily be applied to previously unrealized phases and other technologically important materials systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14128v1-abstract-full').style.display = 'none'; document.getElementById('2006.14128v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Currently under consideration at npj Computational Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.01659">arXiv:2005.01659</a> <span> [<a href="https://arxiv.org/pdf/2005.01659">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abc8709">10.1126/sciadv.abc8709 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for a pressure-induced antiferromagnetic quantum critical point in intermediate valence UTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Santos%2C+F+B">F. B. Santos</a>, <a href="/search/cond-mat?searchtype=author&query=Christensen%2C+M+H">M. H. Christensen</a>, <a href="/search/cond-mat?searchtype=author&query=Asaba%2C+T">T. Asaba</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandes%2C+R+M">R. M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.01659v2-abstract-short" style="display: inline;"> UTe$_2$ is a recently discovered unconventional superconductor that has attracted much interest due to its many intriguing properties - a large residual density-of-states in the superconducting state, re-entrant superconductivity in high magnetic fields, and potentially spin-triplet topological superconductivity. Our ac calorimetry, electrical resistivity, and x-ray absorption study of UTe$_2$ und… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01659v2-abstract-full').style.display = 'inline'; document.getElementById('2005.01659v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.01659v2-abstract-full" style="display: none;"> UTe$_2$ is a recently discovered unconventional superconductor that has attracted much interest due to its many intriguing properties - a large residual density-of-states in the superconducting state, re-entrant superconductivity in high magnetic fields, and potentially spin-triplet topological superconductivity. Our ac calorimetry, electrical resistivity, and x-ray absorption study of UTe$_2$ under applied pressure reveals key new insights on the superconducting and magnetic states surrounding pressure-induced quantum criticality at P$_{c1}$ = 1.3 GPa. First, our specific heat data at low pressures, combined with a phenomenological model, show that pressure alters the balance between two closely competing superconducting orders. Second, near 1.5 GPa we detect two bulk transitions that trigger changes in the resistivity which are consistent with antiferromagnetic order, rather than ferromagnetism. The presence of both bulk magnetism and superconductivity at pressures above P$_{c2}$ = 1.4 GPa results in a significant temperature difference between resistively and thermodynamically determined transitions into the superconducting state, which indicates a suppression of the superconducting volume fraction by magnetic order. Third, the emergence of magnetism is accompanied by an increase in valence towards a U$^{4+}$ (5f2) state, which indicates that UTe$_2$ exhibits intermediate valence at ambient pressure. Our results suggest that antiferromagnetic fluctuations may play a more significant role on the superconducting state of UTe$_2$ than previously thought. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01659v2-abstract-full').style.display = 'none'; document.getElementById('2005.01659v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures; added section S1 to supplemental, fixed geometrical factors in current density measurements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.06304">arXiv:1909.06304</a> <span> [<a href="https://arxiv.org/pdf/1909.06304">pdf</a>, <a href="https://arxiv.org/format/1909.06304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b03831">10.1021/acs.nanolett.9b03831 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Narrow optical linewidths in erbium implanted in TiO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Phenicie%2C+C+M">Christopher M. Phenicie</a>, <a href="/search/cond-mat?searchtype=author&query=Stevenson%2C+P">Paul Stevenson</a>, <a href="/search/cond-mat?searchtype=author&query=Welinski%2C+S">Sacha Welinski</a>, <a href="/search/cond-mat?searchtype=author&query=Rose%2C+B+C">Brendon C. Rose</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A+T">Abraham T. Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">Robert J. Cava</a>, <a href="/search/cond-mat?searchtype=author&query=Lyon%2C+S+A">Stephen A. Lyon</a>, <a href="/search/cond-mat?searchtype=author&query=de+Leon%2C+N+P">Nathalie P. de Leon</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Jeff D. Thompson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.06304v1-abstract-short" style="display: inline;"> Atomic and atom-like defects in the solid-state are widely explored for quantum computers, networks and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.06304v1-abstract-full').style.display = 'inline'; document.getElementById('1909.06304v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.06304v1-abstract-full" style="display: none;"> Atomic and atom-like defects in the solid-state are widely explored for quantum computers, networks and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magnetic noise from abundant nuclear spins in the most widely studied host crystals. Here, we demonstrate that Er$^{3+}$ ions can be introduced via ion implantation into TiO$_2$, a host crystal that has not been studied extensively for rare earth ions and has a low natural abundance of nuclear spins. We observe efficient incorporation of the implanted Er$^{3+}$ into the Ti$^{4+}$ site (40% yield), and measure narrow inhomogeneous spin and optical linewidths (20 and 460 MHz, respectively) that are comparable to bulk-doped crystalline hosts for Er$^{3+}$. This work demonstrates that ion implantation is a viable path to studying rare earth ions in new hosts, and is a significant step towards realizing individually addressed rare earth ions with long spin coherence times for quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.06304v1-abstract-full').style.display = 'none'; document.getElementById('1909.06304v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.09975">arXiv:1908.09975</a> <span> [<a href="https://arxiv.org/pdf/1908.09975">pdf</a>, <a href="https://arxiv.org/format/1908.09975">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.085141">10.1103/PhysRevB.100.085141 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal electric field splitting and f-electron hybridization in heavy fermion CePt2In7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Duan%2C+Y">Yu-Xia Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Rusz%2C+J">Jan Rusz</a>, <a href="/search/cond-mat?searchtype=author&query=Oppeneer%2C+P+M">Peter M. Oppeneer</a>, <a href="/search/cond-mat?searchtype=author&query=Durakiewicz%2C+T">Tomasz Durakiewicz</a>, <a href="/search/cond-mat?searchtype=author&query=Sassa%2C+Y">Yasmine Sassa</a>, <a href="/search/cond-mat?searchtype=author&query=Tjernberg%2C+O">Oscar Tjernberg</a>, <a href="/search/cond-mat?searchtype=author&query=Mansson%2C+M">Martin Mansson</a>, <a href="/search/cond-mat?searchtype=author&query=Berntsen%2C+M+H">Magnus H. Berntsen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+F">Fan-Ying Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yin-Zou Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+J">Jiao-Jiao Song</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Q">Qi-Yi Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+Y">Yang Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">Joe D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+J">Jian-Qiao Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.09975v1-abstract-short" style="display: inline;"> We use high-resolution angle-resolved photoemission spectroscopy to investigate the electronic structure of the antiferromagnetic heavy fermion compound CePt2In7, which is a member of the CeIn3-derived heavy fermion material family. Weak hybridization among 4f electron states and conduction bands was identified in CePt2In7 at low temperature much weaker than that in the other heavy fermion compoun… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09975v1-abstract-full').style.display = 'inline'; document.getElementById('1908.09975v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.09975v1-abstract-full" style="display: none;"> We use high-resolution angle-resolved photoemission spectroscopy to investigate the electronic structure of the antiferromagnetic heavy fermion compound CePt2In7, which is a member of the CeIn3-derived heavy fermion material family. Weak hybridization among 4f electron states and conduction bands was identified in CePt2In7 at low temperature much weaker than that in the other heavy fermion compounds like CeIrIn5 and CeRhIn5. The Ce 4f spectrum shows fine structures near the Fermi energy, reflecting the crystal electric field splitting of the 4f^1_5/2 and 4f^1_7/2 states. Also, we find that the Fermi surface has a strongly three-dimensional topology, in agreement with density-functional theory calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09975v1-abstract-full').style.display = 'none'; document.getElementById('1908.09975v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 85141 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.07649">arXiv:1908.07649</a> <span> [<a href="https://arxiv.org/pdf/1908.07649">pdf</a>, <a href="https://arxiv.org/format/1908.07649">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.10.011035">10.1103/PhysRevX.10.011035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nematic state in CeAuSb$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Seo%2C+S">S. Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&query=Carmo%2C+D">D. Carmo</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=Reis%2C+R+D+d">R. D. dos Reis</a>, <a href="/search/cond-mat?searchtype=author&query=Janoschek%2C+M">M. Janoschek</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandes%2C+R+M">R. M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.07649v1-abstract-short" style="display: inline;"> At ambient pressure and zero field, tetragonal CeAuSb$_{2}$ hosts stripe antiferromagnetic order at $T_{N} = 6.3$ K. Here we first show via bulk thermodynamic probes and x-ray diffraction measurements that this magnetic order is connected with a structural phase transition to a superstructure which likely breaks $C_{4}$ symmetry, thus signaling nematic order. The temperature-field-pressure phase d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07649v1-abstract-full').style.display = 'inline'; document.getElementById('1908.07649v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.07649v1-abstract-full" style="display: none;"> At ambient pressure and zero field, tetragonal CeAuSb$_{2}$ hosts stripe antiferromagnetic order at $T_{N} = 6.3$ K. Here we first show via bulk thermodynamic probes and x-ray diffraction measurements that this magnetic order is connected with a structural phase transition to a superstructure which likely breaks $C_{4}$ symmetry, thus signaling nematic order. The temperature-field-pressure phase diagram of CeAuSb$_{2}$ subsequently reveals the emergence of additional ordered states under applied pressure at a multicritical point. Our phenomenological model supports the presence of a vestigial nematic phase in CeAuSb$_{2}$ akin to iron-based high-temperature superconductors; however, superconductivity, if present, remains to be discovered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07649v1-abstract-full').style.display = 'none'; document.getElementById('1908.07649v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 10, 011035 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.10084">arXiv:1907.10084</a> <span> [<a href="https://arxiv.org/pdf/1907.10084">pdf</a>, <a href="https://arxiv.org/format/1907.10084">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.071202">10.1103/PhysRevMaterials.3.071202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CeAu$_{2}$Bi: a new nonsymmorphic antiferromagnetic compound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Piva%2C+M+M">M. M. Piva</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">W. Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Pagliuso%2C+P+G">P. G. Pagliuso</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.10084v1-abstract-short" style="display: inline;"> Here we report the structural and electronic properties of CeAu$_{2}$Bi, a new heavy-fermion compound crystallizing in a nonsymmorphic hexagonal structure ($P63/mmc$). The Ce$^{3+}$ ions form a triangular lattice which orders antiferromagnetically below $T_{N} = 3.1$~K with a magnetic hard axis along the c-axis. Under applied pressure, $T_{N}$ increases linearly at a rate of $0.07$~K/kbar, indicat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10084v1-abstract-full').style.display = 'inline'; document.getElementById('1907.10084v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.10084v1-abstract-full" style="display: none;"> Here we report the structural and electronic properties of CeAu$_{2}$Bi, a new heavy-fermion compound crystallizing in a nonsymmorphic hexagonal structure ($P63/mmc$). The Ce$^{3+}$ ions form a triangular lattice which orders antiferromagnetically below $T_{N} = 3.1$~K with a magnetic hard axis along the c-axis. Under applied pressure, $T_{N}$ increases linearly at a rate of $0.07$~K/kbar, indicating that the Ce $f$-electrons are fairly localized. In fact, heat capacity measurements provide an estimate of 150(10) mJ/mol.K$^{2}$ for the Sommerfeld coefficient. The crystal-field scheme obtained from our thermodynamic data points to a ground state with dominantly $|j_{z}=\pm1/2\rangle$ character, which commonly occurs in systems with a hard c-axis. Finally, electronic band structure calculations and symmetry analysis in $k$-space reveal that CeAu$_{2}$Bi hosts symmetry-protected crossings at $k_{z} = 蟺$ in the paramagnetic state <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10084v1-abstract-full').style.display = 'none'; document.getElementById('1907.10084v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures. Supplemental Material: 4 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 071202(R) (2019) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&query=Thompson%2C+J+D&start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>