CINXE.COM
Search
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes"> <title>Search</title> <meta id="meta-title" property="citation_title" content="Search"/> <meta id="og-title" property="og:title" content="Search"/> <meta name="twitter:widgets:autoload" content="off"/> <meta name="twitter:dnt" content="on"/> <meta name="twitter:widgets:csp" content="on"/> <meta name="google-site-verification" content="lQbRRf0vgPqMbnbCsgELjAjIIyJjiIWo917M7hBshvI"/> <meta id="og-image" property="og:image" content="https://escholarship.org/images/escholarship-facebook2.jpg"/> <meta id="og-image-width" property="og:image:width" content="1242"/> <meta id="og-image-height" property="og:image:height" content="1242"/> <link rel="stylesheet" href="/css/main-fa87d2fbdbef47d2.css"> <link rel="resource" type="application/l10n" href="/node_modules/pdfjs-embed2/dist/locale/locale.properties"> <noscript><style> .jsonly { display: none } </style></noscript> <!-- Matomo --> <!-- TBD Configure Matomo for SPA https://developer.matomo.org/guides/spa-tracking --> <script type="text/plain" data-type="application/javascript" data-name="matomo"> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.cdlib.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '7']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); console.log('*** MATOMO LOADED ***'); })(); </script> <!-- End Matomo Code --> </head> <body> <div id="main"><div data-reactroot=""><div class="body"><a href="#maincontent" class="c-skipnav">Skip to main content</a><div class="l_search"><div><div style="margin-top:-10px"></div><header id="#top" class="c-header"><a class="c-header__logo2" href="/"><picture><source srcSet="/images/logo_eschol-small.svg" media="(min-width: 870px)"/><img src="/images/logo_eschol-mobile.svg" alt="eScholarship"/></picture><div class="c-header__logo2-tagline">Open Access Publications from the University of California</div></a><div class="c-header__search"><form class="c-search1"><label class="c-search1__label" for="c-search1__field">search</label><input type="search" id="c-search1__field" name="q" class="c-search1__field" placeholder="Search over 500,000 items" autoCapitalize="off" value="author:Estera-Molina, Katerina"/><button type="submit" class="c-search1__submit-button" aria-label="submit search"></button><button type="button" class="c-search1__search-close-button" aria-label="close search field"></button></form></div><button class="c-header__search-open-button" aria-label="open search field"></button></header></div><div class="c-navbar"><nav class="c-nav"><details open="" class="c-nav__main"><summary class="c-nav__main-button">Menu</summary><ul class="c-nav__main-items"><li><details class="c-nav__sub"><summary class="c-nav__sub-button">About eScholarship</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/repository">eScholarship Repository</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/policies">Site policies</a></li><li><a href="/terms">Terms of Use and Copyright Information</a></li><li><a href="/privacyPolicy">Privacy statement</a></li></ul></div></details></li><li><details class="c-nav__sub"><summary class="c-nav__sub-button">Campus Sites</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/uc/ucb">UC Berkeley</a></li><li><a href="/uc/ucd">UC Davis</a></li><li><a href="/uc/uci">UC Irvine</a></li><li><a href="/uc/ucla">UCLA</a></li><li><a href="/uc/ucm">UC Merced</a></li><li><a href="/uc/ucr">UC Riverside</a></li><li><a href="/uc/ucsd">UC San Diego</a></li><li><a href="/uc/ucsf">UCSF</a></li><li><a href="/uc/ucsb">UC Santa Barbara</a></li><li><a href="/uc/ucsc">UC Santa Cruz</a></li><li><a href="/uc/ucop">UC Office of the President</a></li><li><a href="/uc/lbnl">Lawrence Berkeley National Laboratory</a></li><li><a href="/uc/anrcs">UC Agriculture & Natural Resources</a></li></ul></div></details></li><li><a href="/ucoapolicies">UC Open Access Policies</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/ucpubs">UCPUBS</a></li></ul></details></nav></div><form id="facetForm" class="c-columns"><aside><div><div class="c-filter"><h1 class="c-filter__heading">Your search: "author:Estera-Molina, Katerina"</h1><input type="hidden" name="q" value="author:Estera-Molina, Katerina"/><div class="c-filter__results">8<!-- --> results</div><div class="c-filter__inactive-note">No filters applied</div><details class="c-filter__active" open=""><summary><span><strong></strong> filter<!-- -->s<!-- --> applied</span></summary><button class="c-filter__clear-all">clear all</button><ul class="c-filter__active-list"></ul></details><a href="https://help.escholarship.org/support/solutions/articles/9000148939-using-advanced-search-beta-" class="c-filter__tips">Search tips</a></div><div class="c-refine--has-drawer"><button class="c-refine__button--open">Refine Results</button><button class="c-refine__button--close" hidden="">Back to Results</button><div class="c-refine__drawer--closed"><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox0">Type of Work</span></summary><fieldset aria-labelledby="facetbox0"><ul class="c-checkbox"><li class=""><input type="checkbox" id="type_of_work-article" class="c-checkbox__input" name="type_of_work" value="article"/><label for="type_of_work-article" class="c-checkbox__label">Article<!-- --> (<!-- -->7<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-monograph" class="c-checkbox__input" name="type_of_work" value="monograph"/><label for="type_of_work-monograph" class="c-checkbox__label">Book<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-dissertation" class="c-checkbox__input" name="type_of_work" value="dissertation"/><label for="type_of_work-dissertation" class="c-checkbox__label">Theses<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-multimedia" class="c-checkbox__input" name="type_of_work" value="multimedia"/><label for="type_of_work-multimedia" class="c-checkbox__label">Multimedia<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox1">Peer Review</span></summary><fieldset aria-labelledby="facetbox1"><ul class="c-checkbox"><li class=""><input type="checkbox" id="peer_reviewed-1" class="c-checkbox__input" name="peer_reviewed" value="1"/><label for="peer_reviewed-1" class="c-checkbox__label">Peer-reviewed only<!-- --> (<!-- -->8<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox2">Supplemental Material</span></summary><fieldset aria-labelledby="facetbox2"><ul class="c-checkbox--2column"><li class=""><input type="checkbox" id="supp_file_types-video" class="c-checkbox__input" name="supp_file_types" value="video"/><label for="supp_file_types-video" class="c-checkbox__label">Video<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-audio" class="c-checkbox__input" name="supp_file_types" value="audio"/><label for="supp_file_types-audio" class="c-checkbox__label">Audio<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-images" class="c-checkbox__input" name="supp_file_types" value="images"/><label for="supp_file_types-images" class="c-checkbox__label">Images<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-zip" class="c-checkbox__input" name="supp_file_types" value="zip"/><label for="supp_file_types-zip" class="c-checkbox__label">Zip<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-other_files" class="c-checkbox__input" name="supp_file_types" value="other files"/><label for="supp_file_types-other_files" class="c-checkbox__label">Other files<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox3">Publication Year</span></summary><fieldset aria-labelledby="facetbox3"><div class="c-pubyear"><div class="c-pubyear__field"><label for="c-pubyear__textfield1">From:</label><input type="text" id="c-pubyear__textfield1" name="pub_year_start" maxLength="4" placeholder="1900" value=""/></div><div class="c-pubyear__field"><label for="c-pubyear__textfield2">To:</label><input type="text" id="c-pubyear__textfield2" name="pub_year_end" maxLength="4" placeholder="2025" value=""/></div><button class="c-pubyear__button">Apply</button></div></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox4">Campus</span></summary><fieldset aria-labelledby="facetbox4"><ul class="c-checkbox"><li class=""><input type="checkbox" id="campuses-ucb" class="c-checkbox__input" name="campuses" value="ucb"/><label for="campuses-ucb" class="c-checkbox__label">UC Berkeley<!-- --> (<!-- -->7<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucd" class="c-checkbox__input" name="campuses" value="ucd"/><label for="campuses-ucd" class="c-checkbox__label">UC Davis<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-uci" class="c-checkbox__input" name="campuses" value="uci"/><label for="campuses-uci" class="c-checkbox__label">UC Irvine<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucla" class="c-checkbox__input" name="campuses" value="ucla"/><label for="campuses-ucla" class="c-checkbox__label">UCLA<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucm" class="c-checkbox__input" name="campuses" value="ucm"/><label for="campuses-ucm" class="c-checkbox__label">UC Merced<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucr" class="c-checkbox__input" name="campuses" value="ucr"/><label for="campuses-ucr" class="c-checkbox__label">UC Riverside<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsd" class="c-checkbox__input" name="campuses" value="ucsd"/><label for="campuses-ucsd" class="c-checkbox__label">UC San Diego<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsf" class="c-checkbox__input" name="campuses" value="ucsf"/><label for="campuses-ucsf" class="c-checkbox__label">UCSF<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsb" class="c-checkbox__input" name="campuses" value="ucsb"/><label for="campuses-ucsb" class="c-checkbox__label">UC Santa Barbara<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsc" class="c-checkbox__input" name="campuses" value="ucsc"/><label for="campuses-ucsc" class="c-checkbox__label">UC Santa Cruz<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucop" class="c-checkbox__input" name="campuses" value="ucop"/><label for="campuses-ucop" class="c-checkbox__label">UC Office of the President<!-- --> (<!-- -->2<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-lbnl" class="c-checkbox__input" name="campuses" value="lbnl"/><label for="campuses-lbnl" class="c-checkbox__label">Lawrence Berkeley National Laboratory<!-- --> (<!-- -->6<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-anrcs" class="c-checkbox__input" name="campuses" value="anrcs"/><label for="campuses-anrcs" class="c-checkbox__label">UC Agriculture & Natural Resources<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox5">Department</span></summary><fieldset aria-labelledby="facetbox5"><ul class="c-checkbox"><li class=""><input type="checkbox" id="departments-lbnl_bs" class="c-checkbox__input" name="departments" value="lbnl_bs"/><label for="departments-lbnl_bs" class="c-checkbox__label">BioSciences<!-- --> (<!-- -->2<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-rgpo" class="c-checkbox__input" name="departments" value="rgpo"/><label for="departments-rgpo" class="c-checkbox__label">Research Grants Program Office<!-- --> (<!-- -->2<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-plantpath_ucd" class="c-checkbox__input" name="departments" value="plantpath_ucd"/><label for="departments-plantpath_ucd" class="c-checkbox__label">Department of Plant Pathology<!-- --> (<!-- -->1<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox6">Journal</span></summary><fieldset aria-labelledby="facetbox6"><ul class="c-checkbox"></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox7">Discipline</span></summary><fieldset aria-labelledby="facetbox7"><ul class="c-checkbox"></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox8">Reuse License</span></summary><fieldset aria-labelledby="facetbox8"><ul class="c-checkbox"><li class="c-checkbox__attrib-cc-by"><input type="checkbox" id="rights-CC_BY" class="c-checkbox__input" name="rights" value="CC BY"/><label for="rights-CC_BY" class="c-checkbox__label">BY - Attribution required<!-- --> (<!-- -->4<!-- -->)</label></li><li class="c-checkbox__attrib-cc-by-nc-nd"><input type="checkbox" id="rights-CC_BY-NC-ND" class="c-checkbox__input" name="rights" value="CC BY-NC-ND"/><label for="rights-CC_BY-NC-ND" class="c-checkbox__label">BY-NC-ND - Attribution; NonCommercial use; No derivatives<!-- --> (<!-- -->1<!-- -->)</label></li></ul></fieldset></details></div></div><button type="submit" id="facet-form-submit" style="display:none">Search</button></div></aside><main id="maincontent"><section class="o-columnbox1"><header><h2 class="o-columnbox1__heading" aria-live="polite">Scholarly Works (<!-- -->8 results<!-- -->)</h2></header><div class="c-sortpagination"><div class="c-sort"><div class="o-input__droplist1"><label for="c-sort1">Sort By:</label><select name="sort" id="c-sort1" form="facetForm"><option selected="" value="rel">Relevance</option><option value="a-title">A-Z By Title</option><option value="z-title">Z-A By Title</option><option value="a-author">A-Z By Author</option><option value="z-author">Z-A By Author</option><option value="asc">Date Ascending</option><option value="desc">Date Descending</option></select></div></div><input type="hidden" name="start" form="facetForm" value="0"/></div><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/3qx8k3cp"><div class="c-clientmarkup">Evaluating the Classical Versus an Emerging Conceptual Model of Peatland Methane Dynamics</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AYang%2C%20Wendy%20H">Yang, Wendy H</a>; </li><li><a href="/search/?q=author%3AMcNicol%2C%20Gavin">McNicol, Gavin</a>; </li><li><a href="/search/?q=author%3ATeh%2C%20Yit%20Arn">Teh, Yit Arn</a>; </li><li><a href="/search/?q=author%3AEstera%E2%80%90Molina%2C%20Katerina">Estera‐Molina, Katerina</a>; </li><li><a href="/search/?q=author%3AWood%2C%20Tana%20E">Wood, Tana E</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ASilver%2C%20Whendee%20L">Silver, Whendee L</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2017<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Methane (CH4) is a potent greenhouse gas that is both produced and consumed in soils by microbially mediated processes sensitive to soil redox. We evaluated the classical conceptual model of peatland CH4 dynamics—in which the water table position determines the vertical distribution of methanogenesis and methanotrophy—versus an emerging model in which methanogenesis and methanotrophy can both occur throughout the soil profile due to spatially heterogeneous redox and anaerobic CH4 oxidation. We simultaneously measured gross CH4 production and oxidation in situ across a microtopographical gradient in a drained temperate peatland and ex situ along the soil profile, giving us novel insight into the component fluxes of landscape-level net CH4 fluxes. Net CH4 fluxes varied among landforms (p < 0.001), ranging from 180.3 ± 81.2 mg C m−2 d−1 in drainage ditches to −0.7 ± 1.2 mg C m−2 d−1 in the highest landform. Contrary to prediction by the classical conceptual model, variability in methanogenesis alone drove the landscape-level net CH4 flux patterns. Consistent with the emerging model, freshly collected soils from above the water table produced CH4 within anaerobic microsites. Even in soil from beneath the water table, gross CH4 production was best predicted by the methanogenic fraction of carbon mineralization, an index of highly reducing microsites. We measured low rates of anaerobic CH4 oxidation, which may have been limited by relatively low in situ CH4 concentrations in the hummock/hollow soil profile. Our study revealed complex CH4 dynamics better represented by the emerging heterogeneous conceptual model than the classical model based on redox strata.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/3qx8k3cp"><img src="/cms-assets/c875be008143f7bf693a4a0365842e8476e4c807c6d025dfd0ecd168cd4d8546" alt="Cover page: Evaluating the Classical Versus an Emerging Conceptual Model of Peatland Methane Dynamics"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/1z06d8p5"><div class="c-clientmarkup">Spatial turnover of soil viral populations and genotypes overlain by cohesive responses to moisture in grasslands</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ASantos-Medell%C3%ADn%2C%20Christian">Santos-Medellín, Christian</a>; </li><li><a href="/search/?q=author%3AEstera-Molina%2C%20Katerina">Estera-Molina, Katerina</a>; </li><li><a href="/search/?q=author%3AYuan%2C%20Mengting">Yuan, Mengting</a>; </li><li><a href="/search/?q=author%3APett-Ridge%2C%20Jennifer">Pett-Ridge, Jennifer</a>; </li><li><a href="/search/?q=author%3AFirestone%2C%20Mary%20K">Firestone, Mary K</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AEmerson%2C%20Joanne%20B">Emerson, Joanne B</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2022<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Viruses shape microbial communities, food web dynamics, and carbon and nutrient cycling in diverse ecosystems. However, little is known about the patterns and drivers of viral community composition, particularly in soil, precluding a predictive understanding of viral impacts on terrestrial habitats. To investigate soil viral community assembly processes, here we analyzed 43 soil viromes from a rainfall manipulation experiment in a Mediterranean grassland in California. We identified 5,315 viral populations (viral operational taxonomic units [vOTUs] with a representative sequence ≥10 kbp) and found that viral community composition exhibited a highly significant distance-decay relationship within the 200-m<sup>2</sup> field site. This pattern was recapitulated by the intrapopulation microheterogeneity trends of prevalent vOTUs (detected in ≥90% of the viromes), which tended to exhibit negative correlations between spatial distance and the genomic similarity of their predominant allelic variants. Although significant spatial structuring was also observed in the bacterial and archaeal communities, the signal was dampened relative to the viromes, suggesting differences in local assembly drivers for viruses and prokaryotes and/or differences in the temporal scales captured by viromes and total DNA. Despite the overwhelming spatial signal, evidence for environmental filtering was revealed in a protein-sharing network analysis, wherein a group of related vOTUs predicted to infect actinobacteria was shown to be significantly enriched in low-moisture samples distributed throughout the field. Overall, our results indicate a highly diverse, dynamic, active, and spatially structured soil virosphere capable of rapid responses to changing environmental conditions.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/1z06d8p5"><img src="/cms-assets/16d171af2ebc7f4ac938036f97809373c8f1c86be0823fff6459237efed89bef" alt="Cover page: Spatial turnover of soil viral populations and genotypes overlain by cohesive responses to moisture in grasslands"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/07x7d7d7"><div class="c-clientmarkup">Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil.</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AChuckran%2C%20Peter">Chuckran, Peter</a>; </li><li><a href="/search/?q=author%3AEstera-Molina%2C%20Katerina">Estera-Molina, Katerina</a>; </li><li><a href="/search/?q=author%3ANicolas%2C%20Alexa">Nicolas, Alexa</a>; </li><li><a href="/search/?q=author%3ASieradzki%2C%20Ella">Sieradzki, Ella</a>; </li><li><a href="/search/?q=author%3ADijkstra%2C%20Paul">Dijkstra, Paul</a>; </li><li><a href="/search/?q=author%3AFirestone%2C%20Mary">Firestone, Mary</a>; </li><li><a href="/search/?q=author%3APett-Ridge%2C%20Jennifer">Pett-Ridge, Jennifer</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ABlazewicz%2C%20Steven">Blazewicz, Steven</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2025<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with 18O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil. We found that codon bias in ribosomal protein genes was the strongest predictor of growth rate. We also found higher growth rates in bacteria with smaller genomes, suggesting that reduced genome size enables a faster response to pulses in soil bacteria. Faster transcriptional upregulation of ribosomal protein genes was associated with high codon bias and increased nucleotide skew. We found that several of these relationships existed within phyla, indicating that these associations between genomic traits and activity could be generalized characteristics of soil bacteria. Finally, we used publicly available metagenomes to assess the distribution of codon bias across a pH gradient and found that microbial communities in higher pH soils-which are often more water limited and pulse driven-have higher codon usage bias in their ribosomal protein genes. Together, these results provide evidence that genomic characteristics affect soil microbial activity during rewetting and pose a potential fitness advantage for soil bacteria where water and nutrient availability are episodic.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/07x7d7d7"><img src="/cms-assets/d80572e04bdfbadfad459c2113554507bc5c2a75b94ec2fade00bc64eff7a5b5" alt="Cover page: Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil."/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/9qw9m4fx"><div class="c-clientmarkup">Rhizosphere Carbon Turnover from Cradle to Grave: The Role of Microbe–Plant Interactions</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3APett-Ridge%2C%20Jennifer">Pett-Ridge, Jennifer</a>; </li><li><a href="/search/?q=author%3AShi%2C%20Shengjing">Shi, Shengjing</a>; </li><li><a href="/search/?q=author%3AEstera-Molina%2C%20Katerina">Estera-Molina, Katerina</a>; </li><li><a href="/search/?q=author%3ANuccio%2C%20Erin">Nuccio, Erin</a>; </li><li><a href="/search/?q=author%3AYuan%2C%20Mengting">Yuan, Mengting</a>; </li><li><a href="/search/?q=author%3ARijkers%2C%20Ruud">Rijkers, Ruud</a>; </li><li><a href="/search/?q=author%3ASwenson%2C%20Tami">Swenson, Tami</a>; </li><li><a href="/search/?q=author%3AZhalnina%2C%20Kateryna">Zhalnina, Kateryna</a>; </li><li><a href="/search/?q=author%3ANorthen%2C%20Trent">Northen, Trent</a>; </li><li><a href="/search/?q=author%3AZhou%2C%20Jizhong">Zhou, Jizhong</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AFirestone%2C%20Mary%20K">Firestone, Mary K</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/lbnl_rw">LBL Publications</a> (<!-- -->2021<!-- -->)</div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a href="https://creativecommons.org/licenses/by-nc-nd/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-nc-nd-small.svg" alt="Creative Commons 'BY-NC-ND' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/6xr1v5rm"><div class="c-clientmarkup">Belowground allocation and dynamics of recently fixed plant carbon in a California annual grassland</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AFossum%2C%20Christina">Fossum, Christina</a>; </li><li><a href="/search/?q=author%3AEstera-Molina%2C%20Katerina%20Y">Estera-Molina, Katerina Y</a>; </li><li><a href="/search/?q=author%3AYuan%2C%20Mengting">Yuan, Mengting</a>; </li><li><a href="/search/?q=author%3AHerman%2C%20Donald%20J">Herman, Donald J</a>; </li><li><a href="/search/?q=author%3AChu-Jacoby%2C%20Ilexis">Chu-Jacoby, Ilexis</a>; </li><li><a href="/search/?q=author%3ANico%2C%20Peter%20S">Nico, Peter S</a>; </li><li><a href="/search/?q=author%3AMorrison%2C%20Keith%20D">Morrison, Keith D</a>; </li><li><a href="/search/?q=author%3APett-Ridge%2C%20Jennifer">Pett-Ridge, Jennifer</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AFirestone%2C%20Mary%20K">Firestone, Mary K</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2022<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Plant roots and the organisms that surround them are a primary source for stabilized soil organic carbon (SOC). While grassland soils have a large capacity to store organic carbon (C), few field-based studies have quantified the amount of plant-fixed C that moves into soil and persists belowground over multiple years. Yet this characteristic of the soil C cycle is critical to C storage, soil water holding capacity, nutrient provisions, and the management of soil health. We tracked the fate of plant-fixed C following a five-day 13CO2 labeling of a Northern California annual grassland, measuring C pools starting at the end of the labeling period, at three days, four weeks, six months, one year, and two years. Soil organic carbon was fractionated using a density-based approach to separate the free-light fraction (FLF), occluded-light fraction (OLF), and heavy fraction (HF). Using isotope ratio mass spectrometry, we measured 13C enrichment and total C content for plant shoots, roots, soil, soil dissolved organic carbon (DOC), and the FLF, OLF, and HF. The chemical nature of C in the HF was further analyzed by solid state 13C nuclear magnetic resonance (NMR) spectroscopy. At the end of the labeling period, a substantial portion of the 13C (40%) was already found belowground in roots, soil, and soil DOC. By 4 weeks, the highest isotope enrichment and 27% of the total amount of 13C remaining in the system was associated with the mineral-rich HF. At the 6-month sampling—after the dry summer period during which plants senesced and died—the amount of label in the FLF increased to an amount similar to that in the HF. The FLF 13C then declined substantially by 1 year and further decreased in the second year. By the end of the 2-year experiment, 67% of remaining label was in the HF, with 19% in the FLF and 14% in the OLF. While the 13C content in the HF was stable over the final year, the chemical forms associated with the HF evolved with time. The relative proportion of aliphatic/alkyl C functional groups declined in the newly formed SOC over the 2 years in the field; simultaneously, aromatic and carbonyl/carboxylic C functional groups increased and the proportion of carbohydrate (O-alkyl C) groups remained relatively constant. Our results indicate that plant-fixed C moved into soil within days of its fixation and was associated with the soil mineral fraction within weeks. While most of the annual plant C input in these grasslands cycles rapidly (<2-year timescale), a sizeable proportion (about 23% of the 13C present at day 0) persisted in the soil for longer than 2 years. While decadal studies would allow improved assessment of the long-term stabilization of newly fixed plant C, our 2-year field study reveals surprisingly rapid movement of plant C into the HF of soil, followed by subsequent evolution of the chemical forms of organic C in the HF.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/6xr1v5rm"><img src="/cms-assets/d562f4339d4f64e2cdb925f5e8e98c3ba2cd532f8896a38f2305037008523501" alt="Cover page: Belowground allocation and dynamics of recently fixed plant carbon in a California annual grassland"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/56k7r0x5"><div class="c-clientmarkup">Arbuscular mycorrhiza convey significant plant carbon to a diverse hyphosphere microbial food web and mineral‐associated organic matter</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AKakouridis%2C%20Anne">Kakouridis, Anne</a>; </li><li><a href="/search/?q=author%3AYuan%2C%20Mengting">Yuan, Mengting</a>; </li><li><a href="/search/?q=author%3ANuccio%2C%20Erin%20E">Nuccio, Erin E</a>; </li><li><a href="/search/?q=author%3AHagen%2C%20John%20A">Hagen, John A</a>; </li><li><a href="/search/?q=author%3AFossum%2C%20Christina%20A">Fossum, Christina A</a>; </li><li><a href="/search/?q=author%3AMoore%2C%20Madeline%20L">Moore, Madeline L</a>; </li><li><a href="/search/?q=author%3AEstera%E2%80%90Molina%2C%20Katerina%20Y">Estera‐Molina, Katerina Y</a>; </li><li><a href="/search/?q=author%3ANico%2C%20Peter%20S">Nico, Peter S</a>; </li><li><a href="/search/?q=author%3AWeber%2C%20Peter%20K">Weber, Peter K</a>; </li><li><a href="/search/?q=author%3APett%E2%80%90Ridge%2C%20Jennifer">Pett‐Ridge, Jennifer</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AFirestone%2C%20Mary%20K">Firestone, Mary K</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2024<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Arbuscular mycorrhizal fungi (AMF) transport substantial plant carbon (C) that serves as a substrate for soil organisms, a precursor of soil organic matter (SOM), and a driver of soil microbial dynamics. Using two-chamber microcosms where an air gap isolated AMF from roots, we <sup>13</sup>CO<sub>2</sub>-labeled Avena barbata for 6 wk and measured the C Rhizophagus intraradices transferred to SOM and hyphosphere microorganisms. NanoSIMS imaging revealed hyphae and roots had similar <sup>13</sup>C enrichment. SOM density fractionation, <sup>13</sup>C NMR, and IRMS showed AMF transferred 0.77 mg C g<sup>-1</sup> of soil (increasing total C by 2% relative to non-mycorrhizal controls); 33% was found in occluded or mineral-associated pools. In the AMF hyphosphere, there was no overall change in community diversity but 36 bacterial ASVs significantly changed in relative abundance. With stable isotope probing (SIP)-enabled shotgun sequencing, we found taxa from the Solibacterales, Sphingobacteriales, Myxococcales, and Nitrososphaerales (ammonium oxidizing archaea) were highly enriched in AMF-imported <sup>13</sup>C (> 20 atom%). Mapping sequences from <sup>13</sup>C-SIP metagenomes to total ASVs showed at least 92 bacteria and archaea were significantly <sup>13</sup>C-enriched. Our results illustrate the quantitative and ecological impact of hyphal C transport on the formation of potentially protective SOM pools and microbial roles in the AMF hyphosphere soil food web.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/56k7r0x5"><img src="/cms-assets/cb0a1d76655586e4fc6e6c32792122d869e03cabb9e0765820bdff95b81a767f" alt="Cover page: Arbuscular mycorrhiza convey significant plant carbon to a diverse hyphosphere microbial food web and mineral‐associated organic matter"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/97t2j1n5"><div class="c-clientmarkup">Metatranscriptomes of California grassland soil microbial communities in response to rewetting.</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AChuckran%2C%20Peter">Chuckran, Peter</a>; </li><li><a href="/search/?q=author%3AEstera-Molina%2C%20Katerina">Estera-Molina, Katerina</a>; </li><li><a href="/search/?q=author%3AHuntemann%2C%20Marcel">Huntemann, Marcel</a>; </li><li><a href="/search/?q=author%3AFoster%2C%20Brian">Foster, Brian</a>; </li><li><a href="/search/?q=author%3ARoux%2C%20Simon">Roux, Simon</a>; </li><li><a href="/search/?q=author%3AMukherjee%2C%20Supratim">Mukherjee, Supratim</a>; </li><li><a href="/search/?q=author%3AHajek%2C%20Patrick">Hajek, Patrick</a>; </li><li><a href="/search/?q=author%3AReddy%2C%20TBK">Reddy, TBK</a>; </li><li><a href="/search/?q=author%3ADaum%2C%20Chris">Daum, Chris</a>; </li><li><a href="/search/?q=author%3AChen%2C%20I-Min">Chen, I-Min</a>; </li><li><a href="/search/?q=author%3APennacchio%2C%20Christa">Pennacchio, Christa</a>; </li><li><a href="/search/?q=author%3AEloe-Fadrosh%2C%20Emiley">Eloe-Fadrosh, Emiley</a>; </li><li><a href="/search/?q=author%3ADijkstra%2C%20Paul">Dijkstra, Paul</a>; </li><li><a href="/search/?q=author%3AFirestone%2C%20Mary">Firestone, Mary</a>; </li><li><a href="/search/?q=author%3ABlazewicz%2C%20Steven">Blazewicz, Steven</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3APett-Ridge%2C%20Jennifer">Pett-Ridge, Jennifer</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2024<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">When very dry soil is rewet, rapid stimulation of microbial activity has important implications for ecosystem biogeochemistry, yet associated changes in microbial transcription are poorly known. Here, we present metatranscriptomes of California annual grassland soil microbial communities, collected over 1 week from soils rewet after a summer drought-providing a time series of short-term transcriptional response during rewetting.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/97t2j1n5"><img src="/cms-assets/7f2fdb6afa5f1508c2be0f8ba64efe2184c45e2f874c7faf4037d9a2d329a1aa" alt="Cover page: Metatranscriptomes of California grassland soil microbial communities in response to rewetting."/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/36q3d77h"><div class="c-clientmarkup">The path from root input to mineral-associated soil carbon is dictated by habitat-specific microbial traits and soil moisture</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ASokol%2C%20Noah%20W">Sokol, Noah W</a>; </li><li><a href="/search/?q=author%3AFoley%2C%20Megan%20M">Foley, Megan M</a>; </li><li><a href="/search/?q=author%3ABlazewicz%2C%20Steven%20J">Blazewicz, Steven J</a>; </li><li><a href="/search/?q=author%3ABhattacharyya%2C%20Amrita">Bhattacharyya, Amrita</a>; </li><li><a href="/search/?q=author%3ADiDonato%2C%20Nicole">DiDonato, Nicole</a>; </li><li><a href="/search/?q=author%3AEstera-Molina%2C%20Katerina">Estera-Molina, Katerina</a>; </li><li><a href="/search/?q=author%3AFirestone%2C%20Mary">Firestone, Mary</a>; </li><li><a href="/search/?q=author%3AGreenlon%2C%20Alex">Greenlon, Alex</a>; </li><li><a href="/search/?q=author%3AHungate%2C%20Bruce%20A">Hungate, Bruce A</a>; </li><li><a href="/search/?q=author%3AKimbrel%2C%20Jeffrey">Kimbrel, Jeffrey</a>; </li><li><a href="/search/?q=author%3ALiquet%2C%20Jose">Liquet, Jose</a>; </li><li><a href="/search/?q=author%3ALafler%2C%20Marissa">Lafler, Marissa</a>; </li><li><a href="/search/?q=author%3AMarple%2C%20Maxwell">Marple, Maxwell</a>; </li><li><a href="/search/?q=author%3ANico%2C%20Peter%20S">Nico, Peter S</a>; </li><li><a href="/search/?q=author%3APa%C5%A1a-Toli%C4%87%2C%20Ljiljana">Paša-Tolić, Ljiljana</a>; </li><li><a href="/search/?q=author%3ASlessarev%2C%20Eric">Slessarev, Eric</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3APett-Ridge%2C%20Jennifer">Pett-Ridge, Jennifer</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2024<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Soil microorganisms help transform plant inputs into mineral-associated soil organic carbon (SOC) – the largest and slowest-cycling pool of organic carbon on land. However, the microbial traits that influence this process are widely debated. While current theory and biogeochemical models have settled on carbon-use efficiency (CUE) and growth rate as positive predictors of mineral-associated SOC, empirical tests are sparse, with contradictory observations. Using 13C-labeling of an annual grass (Avena barbata) under two moisture regimes, we found that microbial traits associated with formation of 13C-mineral-associated SOC varied by soil habitat, as did active microbial taxa and SOC chemical composition. In the rhizosphere, bacterial-dominated communities with fast growth, high biomass, and high extracellular polymeric substance (EPS) production were positively associated with 13C-mineral-associated SOC. In contrast, the detritusphere held communities dominated by fungi and more filamentous bacteria, and with greater exoenzyme activity; there, 13C-mineral-associated SOC was associated with slower microbial growth and lower microbial biomass. CUE was a negative predictor of 13C-mineral-associated SOC in both habitats. Using 13C-quantitative stable isotope probing, we found that the majority of 13C assimilation in the rhizosphere and detritusphere at week 12 of the experiment was performed by very few bacterial and fungal taxa (3–5% of the total taxa that assimilated 13C). Several complementary chemical analyses (13C-NMR, FTICR-MS, and STXM-NEXAFS) suggested that SOC in the rhizosphere had a more oxidized chemical signature, while SOC in the detritusphere had a less oxidized, more lignin-like chemical signature. Our findings challenge current theory by demonstrating that microbial traits linked with mineral-associated SOC are not universal, but vary with soil habitat and moisture conditions, and are shaped by a small number of active taxa. Emerging SOC models that explicitly reflect these interactions may better predict SOC storage, since climate change causes shifts in soil moisture regimes and the ratio of living versus decaying roots.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/36q3d77h"><img src="/cms-assets/257f6332edf5b573c3b6400bd8416a3c0c36829a8634e8fca603d4fa774f1cc2" alt="Cover page: The path from root input to mineral-associated soil carbon is dictated by habitat-specific microbial traits and soil moisture"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section></section></main></form></div><div><div class="c-toplink"><a href="javascript:window.scrollTo(0, 0)">Top</a></div><footer class="c-footer"><nav class="c-footer__nav"><ul><li><a href="/">Home</a></li><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/campuses">Campus Sites</a></li><li><a href="/ucoapolicies">UC Open Access Policy</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="https://www.cdlib.org/about/accessibility.html">Accessibility</a></li><li><a href="/privacypolicy">Privacy Statement</a></li><li><a href="/policies">Site Policies</a></li><li><a href="/terms">Terms of Use</a></li><li><a href="/login"><strong>Admin Login</strong></a></li><li><a href="https://help.escholarship.org"><strong>Help</strong></a></li></ul></nav><div class="c-footer__logo"><a href="/"><img class="c-lazyimage" data-src="/images/logo_footer-eschol.svg" alt="eScholarship, University of California"/></a></div><div class="c-footer__copyright">Powered by the<br/><a href="http://www.cdlib.org">California Digital Library</a><br/>Copyright © 2017<br/>The Regents of the University of California</div></footer></div></div></div></div> <script src="/js/vendors~app-bundle-2aefc956e545366a5d4e.js"></script> <script src="/js/app-bundle-4477d7630fb8c6f70662.js"></script> </body> </html>