CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;17 of 17 results for author: <span class="mathjax">Aubert, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Aubert%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Aubert, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Aubert%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Aubert, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17914">arXiv:2410.17914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17914">pdf</a>, <a href="https://arxiv.org/format/2410.17914">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rspa.2024.0067">10.1098/rspa.2024.0067 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barrois%2C+O">Olivier Barrois</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J">Julien Aubert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17914v1-abstract-short" style="display: inline;"> Motivated by recent observations of rapid (interannual) signals in the geomagnetic data, and by advances in numerical simulations approaching the Earth&#39;s outer core conditions, we present a study on the dynamics of hydromagnetic waves evolving over a static base state. Under the assumption of timescales separation between the rapid waves and the slow convection, we linearise the classical magneto-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17914v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17914v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17914v1-abstract-full" style="display: none;"> Motivated by recent observations of rapid (interannual) signals in the geomagnetic data, and by advances in numerical simulations approaching the Earth&#39;s outer core conditions, we present a study on the dynamics of hydromagnetic waves evolving over a static base state. Under the assumption of timescales separation between the rapid waves and the slow convection, we linearise the classical magneto-hydrodynamics equations over a steady non-axisymmetric background magnetic field and a zero velocity field. The initial perturbation is a super-rotating pulse of the inner core, which sets the amplitude and length-scales of the waves in the system. The initial pulse triggers axisymmetric, outward propagating torsional Alfv茅n waves, with characteristic thickness scaling with the magnetic Ekman number as $Ek_M^{1/4}$. Because the background state is non-axisymmetric, the pulse also triggers non-axisymmetric, quasi-geostrophic Alfv茅n waves. As these latter waves propagate outwards, they turn into quasi-geostrophic, magneto-Coriolis waves (QG-MC) as the Coriolis force supersedes inertia in the force balance. The period of the initial wave packet is preserved across the shell but the QG-MC wave front disperses and a westward drift is observed after this transformation. Upon reaching the core surface, the westward drift of the QG-MC waves presents an estimated phase speed of about $1100\,km/y$. This analysis confirms the QG-MC nature of the rapid magnetic signals observed in geomagnetic field models near the equator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17914v1-abstract-full').style.display = 'none'; document.getElementById('2410.17914v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings Royal Society A, 2024: 480 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07230">arXiv:2405.07230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07230">pdf</a>, <a href="https://arxiv.org/format/2405.07230">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Acoustic Positioning for Deep Sea Neutrino Telescopes with a System of Piezo Sensors Integrated into Glass Spheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+S">S. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Andr%C3%A9%2C+M">M. Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+S">S. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J+-">J. -J. Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Aublin%2C+J">J. Aublin</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/physics?searchtype=author&amp;query=Becherini%2C+Y">Y. Becherini</a>, <a href="/search/physics?searchtype=author&amp;query=Belhorma%2C+B">B. Belhorma</a>, <a href="/search/physics?searchtype=author&amp;query=Bendahman%2C+M">M. Bendahman</a>, <a href="/search/physics?searchtype=author&amp;query=Benfenati%2C+F">F. Benfenati</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Boumaaza%2C+J">J. Boumaaza</a>, <a href="/search/physics?searchtype=author&amp;query=Bouta%2C+M">M. Bouta</a>, <a href="/search/physics?searchtype=author&amp;query=Bouwhuis%2C+M+C">M. C. Bouwhuis</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%A2nza%C5%9F%2C+H">H. Br芒nza艧</a>, <a href="/search/physics?searchtype=author&amp;query=Bruijn%2C+R">R. Bruijn</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Caiffi%2C+B">B. Caiffi</a>, <a href="/search/physics?searchtype=author&amp;query=Calvo%2C+D">D. Calvo</a>, <a href="/search/physics?searchtype=author&amp;query=Campion%2C+S">S. Campion</a> , et al. (115 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07230v1-abstract-short" style="display: inline;"> Position calibration in the deep sea is typically done by means of acoustic multilateration using three or more acoustic emitters installed at known positions. Rather than using hydrophones as receivers that are exposed to the ambient pressure, the sound signals can be coupled to piezo ceramics glued to the inside of existing containers for electronics or measuring instruments of a deep sea infras&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07230v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07230v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07230v1-abstract-full" style="display: none;"> Position calibration in the deep sea is typically done by means of acoustic multilateration using three or more acoustic emitters installed at known positions. Rather than using hydrophones as receivers that are exposed to the ambient pressure, the sound signals can be coupled to piezo ceramics glued to the inside of existing containers for electronics or measuring instruments of a deep sea infrastructure. The ANTARES neutrino telescope operated from 2006 until 2022 in the Mediterranean Sea at a depth exceeding 2000m. It comprised nearly 900 glass spheres with 432mm diameter and 15mm thickness, equipped with photomultiplier tubes to detect Cherenkov light from tracks of charged elementary particles. In an experimental setup within ANTARES, piezo sensors have been glued to the inside of such - otherwise empty - glass spheres. These sensors recorded signals from acoustic emitters with frequencies from 46545 to 60235Hz. Two waves propagating through the glass sphere are found as a result of the excitation by the waves in the water. These can be qualitatively associated with symmetric and asymmetric Lamb-like waves of zeroth order: a fast (early) one with $v_e \approx 5$mm/$渭$s and a slow (late) one with $v_\ell \approx 2$mm/$渭$s. Taking these findings into account improves the accuracy of the position calibration. The results can be transferred to the KM3NeT neutrino telescope, currently under construction at multiple sites in the Mediterranean Sea, for which the concept of piezo sensors glued to the inside of glass spheres has been adapted for monitoring the positions of the photomultiplier tubes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07230v1-abstract-full').style.display = 'none'; document.getElementById('2405.07230v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to &#34;Experimental Astronomy&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09942">arXiv:2312.09942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09942">pdf</a>, <a href="https://arxiv.org/format/2312.09942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/gji/ggx280">10.1093/gji/ggx280 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Contributions to the geomagnetic secular variation from a reanalysis of core surface dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barrois%2C+O">Olivier Barrois</a>, <a href="/search/physics?searchtype=author&amp;query=Gillet%2C+N">Nicolas Gillet</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J">Julien Aubert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09942v1-abstract-short" style="display: inline;"> We invert for motions at the surface of Earth&#39;s core under spatial and temporal constraints that depart from the mathematical smoothings usually employed to ensure spectral convergence of the flow solutions. Our spatial constraints are derived from geodynamo simulations. The model is advected in time using stochastic differential equations coherent with the occurrence of geomagnetic jerks. Togethe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09942v1-abstract-full').style.display = 'inline'; document.getElementById('2312.09942v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09942v1-abstract-full" style="display: none;"> We invert for motions at the surface of Earth&#39;s core under spatial and temporal constraints that depart from the mathematical smoothings usually employed to ensure spectral convergence of the flow solutions. Our spatial constraints are derived from geodynamo simulations. The model is advected in time using stochastic differential equations coherent with the occurrence of geomagnetic jerks. Together with a Kalman filter, these spatial and temporal constraints enable the estimation of core flows as a function of length and time-scales. From synthetic experiments, we find it crucial to account for subgrid errors to obtain an unbiased reconstruction. This is achieved through an augmented state approach. We show that a significant contribution from diffusion to the geomagnetic secular variation should be considered even on short periods, because diffusion is dynamically related to the rapidly changing flow below the core surface. Our method, applied to geophysical observations over the period 1950-2015, gives access to reasonable solutions in terms of misfit to the data. We highlight an important signature of diffusion in the Eastern equatorial area, where the eccentric westward gyre reaches low latitudes, in relation with important up/down-wellings. Our results also confirm that the dipole decay, observed over the past decades, is primarily driven by advection processes. Our method allows us to provide probability densities for forecasts of the core flow and the secular variation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09942v1-abstract-full').style.display = 'none'; document.getElementById('2312.09942v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Geophysical Journal International publication; Earth core; Data assimilation; Core flows inversion; 22 pages; 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> GJI, 2017, 211, 50-68 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08063">arXiv:2107.08063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.08063">pdf</a>, <a href="https://arxiv.org/format/2107.08063">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> </div> </div> <p class="title is-5 mathjax"> Studying Bioluminescence Flashes with the ANTARES Deep Sea Neutrino Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Reeb%2C+N">N. Reeb</a>, <a href="/search/physics?searchtype=author&amp;query=Hutschenreuter%2C+S">S. Hutschenreuter</a>, <a href="/search/physics?searchtype=author&amp;query=Zehetner%2C+P">P. Zehetner</a>, <a href="/search/physics?searchtype=author&amp;query=Ensslin%2C+T">T. Ensslin</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+S">S. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Andr%C3%A9%2C+M">M. Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Anghinolfi%2C+M">M. Anghinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J+-">J. -J. Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Aublin%2C+J">J. Aublin</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/physics?searchtype=author&amp;query=Belhorma%2C+B">B. Belhorma</a>, <a href="/search/physics?searchtype=author&amp;query=Bendahman%2C+M">M. Bendahman</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Bissinger%2C+M">M. Bissinger</a>, <a href="/search/physics?searchtype=author&amp;query=Boumaaza%2C+J">J. Boumaaza</a>, <a href="/search/physics?searchtype=author&amp;query=Bouta%2C+M">M. Bouta</a>, <a href="/search/physics?searchtype=author&amp;query=Bouwhuis%2C+M+C">M. C. Bouwhuis</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%A2nza%C5%9F%2C+H">H. Br芒nza艧</a>, <a href="/search/physics?searchtype=author&amp;query=Bruijn%2C+R">R. Bruijn</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a> , et al. (119 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08063v1-abstract-short" style="display: inline;"> We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emissio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08063v1-abstract-full').style.display = 'inline'; document.getElementById('2107.08063v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08063v1-abstract-full" style="display: none;"> We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emission of individual organisms, as well as their location and movement. A mathematical model is built to describe the measurement process of underwater neutrino telescopes and the signal generation of the biological organisms. The Metric Gaussian Variational Inference algorithm is used to reconstruct the model parameters using photon counts recorded by the neutrino detectors. We apply this method to synthetic data sets and data collected by the ANTARES neutrino telescope. The telescope is located 40 km off the French coast and fixed to the sea floor at a depth of 2475 m. The runs with synthetic data reveal that we can reliably model the emitted bioluminescent flashes of the organisms. Furthermore, we find that the spatial resolution of the localization of light sources highly depends on the configuration of the telescope. Precise measurements of the efficiencies of the detectors and the attenuation length of the water are crucial to reconstruct the light emission. Finally, the application to ANTARES data reveals the first precise localizations of bioluminescent organisms using neutrino telescope data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08063v1-abstract-full').style.display = 'none'; document.getElementById('2107.08063v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06552">arXiv:2102.06552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.06552">pdf</a>, <a href="https://arxiv.org/format/2102.06552">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/gji/ggab054">10.1093/gji/ggab054 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The interplay of fast waves and slow convection in geodynamo simulations nearing Earth&#39;s core conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J">Julien Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Gillet%2C+N">Nicolas Gillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06552v1-abstract-short" style="display: inline;"> Ground observatory and satellite-based determinations of temporal variations in the geomagnetic field probe a decadal to annual time scale range where Earth&#39;s core slow, inertialess convective motions and rapidly propagating, inertia-bearing hydromagnetic waves are in interplay. Here we numerically model and jointly investigate these two important features with the help of a geodynamo simulation t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06552v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06552v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06552v1-abstract-full" style="display: none;"> Ground observatory and satellite-based determinations of temporal variations in the geomagnetic field probe a decadal to annual time scale range where Earth&#39;s core slow, inertialess convective motions and rapidly propagating, inertia-bearing hydromagnetic waves are in interplay. Here we numerically model and jointly investigate these two important features with the help of a geodynamo simulation that (to date) is the closest to the dynamical regime of Earth&#39;s core. This model also considerably enlarges the scope of a previous asymptotic scaling analysis. Three classes of hydrodynamic and hydromagnetic waves are identified in the model output, all with propagation velocity largely exceeding that of convective advection: axisymmetric, geostrophic Alfv茅n torsional waves, and non-axisymmetric, quasi-geostrophic Alfv茅n and Rossby waves. The contribution of these waves to the geomagnetic acceleration amounts to an enrichment and flattening of its energy density spectral profile at decadal time scales, thereby providing a constraint on the extent of the $f^{-4}$ range observed in the geomagnetic frequency power spectrum. The flow and magnetic acceleration energies carried by waves both linearly increase with the ratio of the magnetic diffusion time scale to the Alfv茅n time scale, highlighting the dominance of Alfv茅n waves in the signal and the stabilising control of magnetic dissipation at non-axisymmetric scales. Extrapolation of the results to Earth&#39;s core conditions supports the detectability of Alfv茅n waves in geomagnetic observations, either as axisymmetric torsional oscillations or through the geomagnetic jerks caused by non-axisymmetric waves. In contrast, Rossby waves appear to be too fast and carry too little magnetic energy to be detectable in geomagnetic acceleration signals of limited spatio-temporal resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06552v1-abstract-full').style.display = 'none'; document.getElementById('2102.06552v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Geophysical Journal International, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.14701">arXiv:2011.14701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.14701">pdf</a>, <a href="https://arxiv.org/format/2011.14701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/gji/ggaa545">10.1093/gji/ggaa545 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relating force balances and flow length scales in geodynamo simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schwaiger%2C+T">Tobias Schwaiger</a>, <a href="/search/physics?searchtype=author&amp;query=Gastine%2C+T">Thomas Gastine</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J">Julien Aubert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.14701v1-abstract-short" style="display: inline;"> In fluid dynamics, the scaling behaviour of flow length scales is commonly used to infer the governing force balance of a system. The key to a successful approach is to measure length scales that are representative of the energy contained in the solution (energetically relevant) and indicative of the established force balance (dynamically relevant). In numerical simulations of rotating convection&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14701v1-abstract-full').style.display = 'inline'; document.getElementById('2011.14701v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.14701v1-abstract-full" style="display: none;"> In fluid dynamics, the scaling behaviour of flow length scales is commonly used to infer the governing force balance of a system. The key to a successful approach is to measure length scales that are representative of the energy contained in the solution (energetically relevant) and indicative of the established force balance (dynamically relevant). In numerical simulations of rotating convection and magneto-hydrodynamic dynamos in spherical shells, it has remained difficult to measure length scales that are both energetically and dynamically relevant, which has led to conflicting interpretations of the underlying force balance. By analysing an extensive set of magnetic and non-magnetic models, we focus on two length scales that achieve both energetic and dynamical relevance. The first one is the peak of the poloidal kinetic energy spectrum, which we successfully compare to crossover points on spectral representations of the force balance. In most dynamo models, this result confirms that the dominant length scale of the system is controlled by a quasi-geostrophic (QG-) MAC (Magneto-Archimedean-Coriolis) balance. In non-magnetic convection models, the analysis favours a QG-CIA (Coriolis-Inertia-Archimedean) balance. In dynamo models, we introduce a second energetically relevant length scale associated with the loss of axial invariance in the flow. We again relate this length scale to a crossover point in scale-dependent force balance diagrams, which marks the transition between large-scale geostrophy (the equilibrium of Coriolis and pressure forces) and small-scale magnetostrophy, where the Lorentz force overtakes the Coriolis force. Scaling analysis of these two energetically and dynamically relevant length scales suggests that the Earth&#39;s dynamo is controlled by a QG-MAC balance at a dominant scale of about 200 km, while magnetostrophic effects are deferred to scales smaller than 50 km. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14701v1-abstract-full').style.display = 'none'; document.getElementById('2011.14701v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.05102">arXiv:1910.05102</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.05102">pdf</a>, <a href="https://arxiv.org/format/1910.05102">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/gji/ggaa250">10.1093/gji/ggaa250 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamo-based limit to the extent of a stable layer atop Earth&#39;s core </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gastine%2C+T">Thomas Gastine</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J">Julien Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Fournier%2C+A">Alexandre Fournier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.05102v2-abstract-short" style="display: inline;"> The existence of a stably stratified layer underneath the core-mantle boundary (CMB) has been recently revived by corroborating evidences coming from seismic studies, mineral physics and thermal evolution models. Such a layer could find its physical origination either in compositional stratification due to the accumulation of light elements at the top or the core or in thermal stratification due t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05102v2-abstract-full').style.display = 'inline'; document.getElementById('1910.05102v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.05102v2-abstract-full" style="display: none;"> The existence of a stably stratified layer underneath the core-mantle boundary (CMB) has been recently revived by corroborating evidences coming from seismic studies, mineral physics and thermal evolution models. Such a layer could find its physical origination either in compositional stratification due to the accumulation of light elements at the top or the core or in thermal stratification due to the heat flux becoming locally sub-adiabatic. The exact properties of this stably-stratified layer, namely its size $\mathcal{H}_S$ and the degree of its stratification characterised by the Brunt-V盲is盲l盲 frequency $N$, are however uncertain and highly debated. A stable layer underneath the CMB can have crucial dynamical impacts on the geodynamo. Because of the inhibition of the convective motions, a stable layer is expected to primarily act as a low-pass filter on the magnetic field, smoothing out the rapidly-varying and small-scale features by skin effect. To investigate this effect more systematically, we compute 70 global geodynamo models varying the size of the stably-stratified layer from 0 to 300~km and its amplitude from $N/惟= 0$ to $N/惟\simeq 50$, $惟$ being the rotation rate. We show that the penetration of the convective flow in the stably-stratified layer is controlled by the typical size of the convective eddies and by the local variations of the ratio $N/惟$. Using quantitative measures of the degree of morphological semblance between the magnetic field obtained in numerical models and the geomagnetic field at the CMB, we establish an upper bound for the stable layer thickness $\mathcal{H}_s &lt; (N/惟)^{-1} d_c$, $d_c$ being the horizontal size of the convective flow at the base of the stable layer. This defines a strong geomagnetic constraint on the properties of a stably-stratified layer beneath the CMB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05102v2-abstract-full').style.display = 'none'; document.getElementById('1910.05102v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures, 2 tables, accepted for publication in GJI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.06049">arXiv:1905.06049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.06049">pdf</a>, <a href="https://arxiv.org/format/1905.06049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/gji/ggz232">10.1093/gji/ggz232 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Approaching Earth&#39;s core conditions in high-resolution geodynamo simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J">J. Aubert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.06049v1-abstract-short" style="display: inline;"> The geodynamo features a broad separation between the large scale at which Earth&#39;s magnetic field is sustained against ohmic dissipation and the small scales of the turbulent and electrically conducting underlying fluid flow in the outer core. Here, the properties of this scale separation are analysed using high-resolution numerical simulations that approach closer to Earth&#39;s core conditions than&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.06049v1-abstract-full').style.display = 'inline'; document.getElementById('1905.06049v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.06049v1-abstract-full" style="display: none;"> The geodynamo features a broad separation between the large scale at which Earth&#39;s magnetic field is sustained against ohmic dissipation and the small scales of the turbulent and electrically conducting underlying fluid flow in the outer core. Here, the properties of this scale separation are analysed using high-resolution numerical simulations that approach closer to Earth&#39;s core conditions than earlier models. The new simulations are obtained by increasing the resolution and gradually relaxing the hyperdiffusive approximation of previously published low-resolution cases. This upsizing process does not perturb the previously obtained large-scale, leading-order quasi-geostrophic (QG), and first-order magneto-Archimedes-Coriolis (MAC) force balances. As Earth&#39;s core conditions are approached in the upsized simulations, kinetic energy spectra feature a gradually broadening self-similar, power-law spectral range extending over more than a decade in length scale. In this range, the spectral energy density profile of vorticity is shown to be approximately flat between the large scale at which the magnetic field draws its energy from convection through the QG-MAC force balance and the small scale at which this energy is dissipated. The resulting velocity and density anomaly planforms in the physical space consist in large-scale columnar sheets and plumes, respectively co-existing with small-scale vorticity filaments and density anomaly ramifications. In contrast, magnetic field planforms keep their large-scale structure after upsizing. The diagnostic outputs of the upsized simulations are more consistent with the asymptotic QG-MAC theory than those of the low-resolution cases that they originate from, but still feature small residual deviations that may call for further theoretical refinements to account for the structuring constraints of the magnetic field on the flow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.06049v1-abstract-full').style.display = 'none'; document.getElementById('1905.06049v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 13 figures, accepted in Geophysical Journal International</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.04939">arXiv:1905.04939</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.04939">pdf</a>, <a href="https://arxiv.org/format/1905.04939">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/gji/ggz192">10.1093/gji/ggz192 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Force balance in numerical geodynamo simulations: a systematic study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schwaiger%2C+T">T. Schwaiger</a>, <a href="/search/physics?searchtype=author&amp;query=Gastine%2C+T">T. Gastine</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J">J. Aubert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.04939v1-abstract-short" style="display: inline;"> Dynamo action in the Earth&#39;s outer core is expected to be controlled by a balance between pressure, Coriolis, buoyancy and Lorentz forces, with marginal contributions from inertia and viscous forces. Current numerical simulations of the geodynamo, however, operate at much larger inertia and viscosity because of computational limitations. This casts some doubt on the physical relevance of these mod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04939v1-abstract-full').style.display = 'inline'; document.getElementById('1905.04939v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.04939v1-abstract-full" style="display: none;"> Dynamo action in the Earth&#39;s outer core is expected to be controlled by a balance between pressure, Coriolis, buoyancy and Lorentz forces, with marginal contributions from inertia and viscous forces. Current numerical simulations of the geodynamo, however, operate at much larger inertia and viscosity because of computational limitations. This casts some doubt on the physical relevance of these models. Our work aims at finding dynamo models in a moderate computational regime which reproduce the leading-order force balance of the Earth. By performing a systematic parameter space survey with Ekman numbers in the range $10^{-6} \leq E \leq 10^{-4}$, we study the variations of the force balance when changing the forcing (Rayleigh number, $Ra$) and the ratio between viscous and magnetic diffusivities (magnetic Prandtl number, $Pm$). For dipole-dominated dynamos, we observe that the force balance is structurally robust throughout the investigated parameter space, exhibiting a quasi-geostrophic (QG) balance (balance between Coriolis and pressure forces) at zeroth order, followed by a first-order MAC balance between the ageostrophic Coriolis, buoyancy and Lorentz forces. At second order this balance is disturbed by contributions from inertia and viscous forces. Dynamos with a different sequence of the forces, where inertia and/or viscosity replace the Lorentz force in the first-order force balance, can only be found close to the onset of dynamo action and in the multipolar regime. Our study illustrates that most classical numerical dynamos are controlled by a QG-MAC balance, while cases where viscosity and inertia play a dominant role are the exception rather than the norm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04939v1-abstract-full').style.display = 'none'; document.getElementById('1905.04939v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.04865">arXiv:1804.04865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.04865">pdf</a>, <a href="https://arxiv.org/format/1804.04865">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/gji/ggy161">10.1093/gji/ggy161 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geomagnetic acceleration and rapid hydromagnetic wave dynamics in advanced numerical simulations of the geodynamo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J">Julien Aubert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.04865v3-abstract-short" style="display: inline;"> Geomagnetic secular acceleration is a unique window on the dynamics taking place in Earth&#39;s core. In this study, the behaviours of the secular acceleration and underlying core dynamics are examined in new numerical simulations of the geodynamo that reside on a theoretical path in parameter space connecting the region where most classical models are found to the natural conditions. The typical time&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.04865v3-abstract-full').style.display = 'inline'; document.getElementById('1804.04865v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.04865v3-abstract-full" style="display: none;"> Geomagnetic secular acceleration is a unique window on the dynamics taking place in Earth&#39;s core. In this study, the behaviours of the secular acceleration and underlying core dynamics are examined in new numerical simulations of the geodynamo that reside on a theoretical path in parameter space connecting the region where most classical models are found to the natural conditions. The typical time scale for geomagnetic acceleration is found to be invariant along this path, at a value close to 10 years that matches Earth&#39;s core estimates. Despite this invariance, the spatio-temporal properties of secular acceleration show significant variability along the path, with an asymptotic regime of rapid rotation reached after 30% of this path (corresponding to a model Ekman number $E=3~10^{-7}$). In this regime, the energy of secular acceleration is entirely found at periods longer than that of planetary rotation, and the underlying flow acceleration patterns acquire a two-dimensional columnar structure representative of the rapid rotation limit. The spatial pattern of the secular acceleration at the core-mantle boundary shows significant localisation of energy within an equatorial belt. Rapid hydromagnetic wave dynamics is absent at the start of the path but can be clearly exhibited in the asymptotic regime. This study reports on ubiquitous axisymmetric geostrophic torsional waves of weak amplitude relatively to convective transport, and also stronger, laterally limited, quasi-geostrophic Alfv茅n waves propagating in the cylindrical radial direction from the tip of convective plumes towards the core-mantle boundary. Quasi-geostrophic Alfv茅n waves are shown to be an important carrier of flow acceleration to the core surface that links with the generation of strong, short-lived and intermittent equatorial pulses in the secular acceleration energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.04865v3-abstract-full').style.display = 'none'; document.getElementById('1804.04865v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Geophys. J. Int. 214 (1) 531-547, 2018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03649">arXiv:1708.03649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.03649">pdf</a>, <a href="https://arxiv.org/ps/1708.03649">ps</a>, <a href="https://arxiv.org/format/1708.03649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> An algorithm for the reconstruction of neutrino-induced showers in the ANTARES neutrino telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Andr%C3%A9%2C+M">M. Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Anghinolfi%2C+M">M. Anghinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J+-">J. -J. Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Avgitas%2C+T">T. Avgitas</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Barrios-Mart%C3%AD%2C+J">J. Barrios-Mart铆</a>, <a href="/search/physics?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/physics?searchtype=author&amp;query=Belhorma%2C+B">B. Belhorma</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Bormuth%2C+R">R. Bormuth</a>, <a href="/search/physics?searchtype=author&amp;query=Bourret%2C+S">S. Bourret</a>, <a href="/search/physics?searchtype=author&amp;query=Bouwhuis%2C+M+C">M. C. Bouwhuis</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%A2nza%C5%9F%2C+H">H. Br芒nza艧</a>, <a href="/search/physics?searchtype=author&amp;query=Bruijn%2C+R">R. Bruijn</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Capone%2C+A">A. Capone</a>, <a href="/search/physics?searchtype=author&amp;query=Caramete%2C+L">L. Caramete</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+J">J. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Celli%2C+S">S. Celli</a>, <a href="/search/physics?searchtype=author&amp;query=Moursli%2C+R+C+E">R. Cherkaoui El Moursli</a> , et al. (102 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03649v2-abstract-short" style="display: inline;"> Muons created by $谓_渭$ charged current (CC) interactions in the water surrounding the ANTARES neutrino telescope have been almost exclusively used so far in searches for cosmic neutrino sources. Due to their long range, highly energetic muons inducing Cherenkov radiation in the water are reconstructed with dedicated algorithms that allow the determination of the parent neutrino direction with a me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03649v2-abstract-full').style.display = 'inline'; document.getElementById('1708.03649v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03649v2-abstract-full" style="display: none;"> Muons created by $谓_渭$ charged current (CC) interactions in the water surrounding the ANTARES neutrino telescope have been almost exclusively used so far in searches for cosmic neutrino sources. Due to their long range, highly energetic muons inducing Cherenkov radiation in the water are reconstructed with dedicated algorithms that allow the determination of the parent neutrino direction with a median angular resolution of about \unit{0.4}{\degree} for an $E^{-2}$ neutrino spectrum. In this paper, an algorithm optimised for accurate reconstruction of energy and direction of shower events in the ANTARES detector is presented. Hadronic showers of electrically charged particles are produced by the disintegration of the nucleus both in CC and neutral current (NC) interactions of neutrinos in water. In addition, electromagnetic showers result from the CC interactions of electron neutrinos while the decay of a tau lepton produced in $谓_蟿$ CC interactions will in most cases lead to either a hadronic or an electromagnetic shower. A shower can be approximated as a point source of photons. With the presented method, the shower position is reconstructed with a precision of about \unit{1}{\metre}, the neutrino direction is reconstructed with a median angular resolution between \unit{2}{\degree} and \unit{3}{\degree} in the energy range of \SIrange{1}{1000}{TeV}. In this energy interval, the uncertainty on the reconstructed neutrino energy is about \SIrange{5}{10}{\%}. The increase in the detector sensitivity due to the use of additional information from shower events in the searches for a cosmic neutrino flux is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03649v2-abstract-full').style.display = 'none'; document.getElementById('1708.03649v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.04776">arXiv:1611.04776</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.04776">pdf</a>, <a href="https://arxiv.org/format/1611.04776">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2016.789">10.1017/jfm.2016.789 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spherical convective dynamos in the rapidly rotating asymptotic regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J">Julien Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Gastine%2C+T">Thomas Gastine</a>, <a href="/search/physics?searchtype=author&amp;query=Fournier%2C+A">Alexandre Fournier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.04776v3-abstract-short" style="display: inline;"> Self-sustained convective dynamos in planetary systems operate in an asymptotic regime of rapid rotation, where a balance is thought to hold between the Coriolis, pressure, buoyancy and Lorentz forces (the MAC balance). Classical numerical solutions have previously been obtained in a regime of moderate rotation where viscous and inertial forces are still significant. We define a unidimensional pat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.04776v3-abstract-full').style.display = 'inline'; document.getElementById('1611.04776v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.04776v3-abstract-full" style="display: none;"> Self-sustained convective dynamos in planetary systems operate in an asymptotic regime of rapid rotation, where a balance is thought to hold between the Coriolis, pressure, buoyancy and Lorentz forces (the MAC balance). Classical numerical solutions have previously been obtained in a regime of moderate rotation where viscous and inertial forces are still significant. We define a unidimensional path in parameter space between classical models and asymptotic conditions from the requirements to enforce a MAC balance and to preserve the ratio between the magnetic diffusion and convective overturn times (the magnetic Reynolds number). Direct numerical simulations performed along this path show that the spatial structure of the solution at scales larger than the magnetic dissipation length is largely invariant. This enables the definition of large-eddy simulations resting on the assumption that small-scale details of the hydrodynamic turbulence are irrelevant to the determination of the large-scale asymptotic state. These simulations are shown to be in good agreement with direct simulations in the range where both are feasible, and can be computed for control parameter values far beyond the current state of the art, such as an Ekman number $E=10^{-8}$. We obtain strong-field convective dynamos approaching the MAC balance and a Taylor state to an unprecedented degree of accuracy. The physical connection between classical models and asymptotic conditions is shown to be devoid of abrupt transitions, demonstrating the asymptotic relevance of classical numerical dynamo mechanisms. The fields of the system are confirmed to follow diffusivity-free, power-based scaling laws along the path. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.04776v3-abstract-full').style.display = 'none'; document.getElementById('1611.04776v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 13 figures. ATTENTION: the version published in JFM has a legend mismatch in figure 2. The correct figure 2 can be found here. A corrigendum was submitted to JFM but its publication was declined (correction being too minor)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Fluid. Mech. 813, 558-593, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.02372">arXiv:1609.02372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.02372">pdf</a>, <a href="https://arxiv.org/format/1609.02372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2016.659">10.1017/jfm.2016.659 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scaling regimes in spherical shell rotating convection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gastine%2C+T">T. Gastine</a>, <a href="/search/physics?searchtype=author&amp;query=Wicht%2C+J">J. Wicht</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J">J. Aubert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.02372v2-abstract-short" style="display: inline;"> Rayleigh-B茅nard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use three-dimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning $3\times 10^{-7} \leq E \leq 10^{-1}$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02372v2-abstract-full').style.display = 'inline'; document.getElementById('1609.02372v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.02372v2-abstract-full" style="display: none;"> Rayleigh-B茅nard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use three-dimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning $3\times 10^{-7} \leq E \leq 10^{-1}$, Rayleigh numbers within the range $10^3 &lt; Ra &lt; 2\times 10^{10}$ and a Prandtl number unity. We investigate the scaling behaviours of both local (length scales, boundary layers) and global (Nusselt and Reynolds numbers) properties across various physical regimes from onset of rotating convection to weakly-rotating convection. Close to critical, the convective flow is dominated by a triple force balance between viscosity, Coriolis force and buoyancy. For larger supercriticalities, a subset of our numerical data approaches the asymptotic diffusivity-free scaling of rotating convection $Nu\sim Ra^{3/2}E^{2}$ in a narrow fraction of the parameter space delimited by $6\,Ra_c \leq Ra \leq 0.4\,E^{-8/5}$. Using a decomposition of the viscous dissipation rate into bulk and boundary layer contributions, we establish a theoretical scaling of the flow velocity that accurately describes the numerical data. In rapidly-rotating turbulent convection, the fluid bulk is controlled by a triple force balance between Coriolis, inertia and buoyancy, while the remaining fraction of the dissipation can be attributed to the viscous friction in the Ekman layers. Beyond $Ra \simeq E^{-8/5}$, the rotational constraint on the convective flow is gradually lost and the flow properties vary to match the regime changes between rotation-dominated and non-rotating convection. The quantity $Ra E^{12/7}$ provides an accurate transition parameter to separate rotating and non-rotating convection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02372v2-abstract-full').style.display = 'none'; document.getElementById('1609.02372v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 20 figures, 3 tables, accepted for publication in JFM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.04182">arXiv:1507.04182</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.04182">pdf</a>, <a href="https://arxiv.org/ps/1507.04182">ps</a>, <a href="https://arxiv.org/format/1507.04182">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2016.02.001">10.1016/j.astropartphys.2016.02.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adri%C3%A1n-Mart%C3%ADnez%2C+S">S. Adri谩n-Mart铆nez</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Andr%C3%A9%2C+M">M. Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J+-">J. -J. Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Barrios-Mart%C3%AD%2C+J">J. Barrios-Mart铆</a>, <a href="/search/physics?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Bogazzi%2C+C">C. Bogazzi</a>, <a href="/search/physics?searchtype=author&amp;query=Bormuth%2C+R">R. Bormuth</a>, <a href="/search/physics?searchtype=author&amp;query=Bou-Cabo%2C+M">M. Bou-Cabo</a>, <a href="/search/physics?searchtype=author&amp;query=Bouwhuis%2C+M+C">M. C. Bouwhuis</a>, <a href="/search/physics?searchtype=author&amp;query=Bruijn%2C+R">R. Bruijn</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Capone%2C+A">A. Capone</a>, <a href="/search/physics?searchtype=author&amp;query=Caramete%2C+L">L. Caramete</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+J">J. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Chiarusi%2C+T">T. Chiarusi</a>, <a href="/search/physics?searchtype=author&amp;query=Circella%2C+M">M. Circella</a>, <a href="/search/physics?searchtype=author&amp;query=Coniglione%2C+R">R. Coniglione</a>, <a href="/search/physics?searchtype=author&amp;query=Costantini%2C+H">H. Costantini</a> , et al. (105 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.04182v1-abstract-short" style="display: inline;"> The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\sim$10 TeV the muon and the incident neutrino are almost c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04182v1-abstract-full').style.display = 'inline'; document.getElementById('1507.04182v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.04182v1-abstract-full" style="display: none;"> The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for photomultipliers on different lines at a precision level of 0.5 ns. It has also been validated for calibrating photomultipliers on the same line, using a system of LEDs and laser light devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04182v1-abstract-full').style.display = 'none'; document.getElementById('1507.04182v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Astroparticle Physics (17 pages, 11 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.6482">arXiv:1111.6482</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.6482">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.dsr.2011.06.006">10.1016/j.dsr.2011.06.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=van+Haren%2C+H">H. van Haren</a>, <a href="/search/physics?searchtype=author&amp;query=Taupier-Letage%2C+I">I. Taupier-Letage</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J+A">J. A. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Anghinolfi%2C+M">M. Anghinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Anvar%2C+S">S. Anvar</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Jesus%2C+A+C+A">A. C. Assis Jesus</a>, <a href="/search/physics?searchtype=author&amp;query=Astraatmadja%2C+T">T. Astraatmadja</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J+-">J. -J. Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Auer%2C+R">R. Auer</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/physics?searchtype=author&amp;query=Bazzotti%2C+M">M. Bazzotti</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/physics?searchtype=author&amp;query=Bou-Cabof%2C+M">M. Bou-Cabof</a>, <a href="/search/physics?searchtype=author&amp;query=Bouwhuis%2C+M+C">M. C. Bouwhuis</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Camarena%2C+F">F. Camarena</a>, <a href="/search/physics?searchtype=author&amp;query=Capone%2C+A">A. Capone</a> , et al. (116 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.6482v1-abstract-short" style="display: inline;"> An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.6482v1-abstract-full').style.display = 'inline'; document.getElementById('1111.6482v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.6482v1-abstract-full" style="display: none;"> An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the &#39;Northern Current&#39;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.6482v1-abstract-full').style.display = 'none'; document.getElementById('1111.6482v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 86-02 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Deep-Sea Research I, 58 (2011), 875-884 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.4116">arXiv:1105.4116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.4116">pdf</a>, <a href="https://arxiv.org/ps/1105.4116">ps</a>, <a href="https://arxiv.org/format/1105.4116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2011.01.003">10.1016/j.astropartphys.2011.01.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Fast Algorithm for Muon Track Reconstruction and its Application to the ANTARES Neutrino Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=ANTARES+collaboration"> ANTARES collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J+A">J. A. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Samarai%2C+I+A">I. Al Samarai</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Andre%2C+M">M. Andre</a>, <a href="/search/physics?searchtype=author&amp;query=Anghinolfi%2C+M">M. Anghinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Anvar%2C+S">S. Anvar</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Jesus%2C+A+C+A">A. C. Assis Jesus</a>, <a href="/search/physics?searchtype=author&amp;query=Astraatmadja%2C+T">T. Astraatmadja</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J">J-J. Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Auer%2C+R">R. Auer</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/physics?searchtype=author&amp;query=Bazzotti%2C+M">M. Bazzotti</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/physics?searchtype=author&amp;query=Bogazzi%2C+C">C. Bogazzi</a>, <a href="/search/physics?searchtype=author&amp;query=Bou-Cabo%2C+M">M. Bou-Cabo</a>, <a href="/search/physics?searchtype=author&amp;query=Bouwhuis%2C+M+C">M. C. Bouwhuis</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a> , et al. (118 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.4116v1-abstract-short" style="display: inline;"> An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.4116v1-abstract-full').style.display = 'inline'; document.getElementById('1105.4116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.4116v1-abstract-full" style="display: none;"> An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow-up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained in ANTARES data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.4116v1-abstract-full').style.display = 'none'; document.getElementById('1105.4116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astropart.Phys.34:652-662,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1012.2204">arXiv:1012.2204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1012.2204">pdf</a>, <a href="https://arxiv.org/ps/1012.2204">ps</a>, <a href="https://arxiv.org/format/1012.2204">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2010.12.004">10.1016/j.astropartphys.2010.12.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time Calibration of the ANTARES Neutrino Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+ANTARES+Collaboration"> The ANTARES Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J+A">J. A. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Samarai%2C+I+A">I. Al Samarai</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Andr%C3%A9%2C+M">M. Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Anghinolfi%2C+M">M. Anghinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Anvar%2C+S">S. Anvar</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Jesus%2C+A+C+A">A. C. Assis Jesus</a>, <a href="/search/physics?searchtype=author&amp;query=Astraatmadja%2C+T">T. Astraatmadja</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J+J">J. J. Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Auer%2C+R">R. Auer</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/physics?searchtype=author&amp;query=Bazzotti%2C+M">M. Bazzotti</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/physics?searchtype=author&amp;query=Bou-Cabo%2C+M">M. Bou-Cabo</a>, <a href="/search/physics?searchtype=author&amp;query=Bouwhuis%2C+M+C">M. C. Bouwhuis</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Camarena%2C+F">F. Camarena</a> , et al. (113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1012.2204v1-abstract-short" style="display: inline;"> The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 Te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.2204v1-abstract-full').style.display = 'inline'; document.getElementById('1012.2204v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1012.2204v1-abstract-full" style="display: none;"> The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of about 1ns. The methods developed to attain this level of precision are described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.2204v1-abstract-full').style.display = 'none'; document.getElementById('1012.2204v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 20 figures, accepted by Astropart. Phys</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astropart.Phys.34:539-549,2011 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10