CINXE.COM
Search results for: and dose estimation (RADTRAD)
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: and dose estimation (RADTRAD)</title> <meta name="description" content="Search results for: and dose estimation (RADTRAD)"> <meta name="keywords" content="and dose estimation (RADTRAD)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="and dose estimation (RADTRAD)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="and dose estimation (RADTRAD)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3257</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: and dose estimation (RADTRAD)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3257</span> Using SNAP and RADTRAD to Establish the Analysis Model for Maanshan PWR Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang">J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Chen"> H. C. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Yang"> J. H. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Chiang"> Y. Chiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we focus on the establishment of the analysis model for Maanshan PWR nuclear power plant (NPP) by using RADTRAD and SNAP codes with the FSAR, manuals, and other data. In order to evaluate the cumulative dose at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) outer boundary, Maanshan NPP RADTRAD/SNAP model was used to perform the analysis of the DBA LOCA case. The analysis results of RADTRAD were similar to FSAR data. These analysis results were lower than the failure criteria of 10 CFR 100.11 (a total radiation dose to the whole body, 250 mSv; a total radiation dose to the thyroid from iodine exposure, 3000 mSv). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RADionuclide" title="RADionuclide">RADionuclide</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29" title=" and dose estimation (RADTRAD)"> and dose estimation (RADTRAD)</a>, <a href="https://publications.waset.org/abstracts/search?q=symbolic%20nuclear%20analysis%20package%20%28SNAP%29" title=" symbolic nuclear analysis package (SNAP)"> symbolic nuclear analysis package (SNAP)</a>, <a href="https://publications.waset.org/abstracts/search?q=dose" title=" dose"> dose</a>, <a href="https://publications.waset.org/abstracts/search?q=PWR" title=" PWR"> PWR</a> </p> <a href="https://publications.waset.org/abstracts/73319/using-snap-and-radtrad-to-establish-the-analysis-model-for-maanshan-pwr-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3256</span> Dose Evaluations with SNAP/RADTRAD for Loss of Coolant Accidents in a BWR6 Nuclear Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Chun%20Yang">Kai Chun Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao-Wen%20Chen"> Shao-Wen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Rong%20Wang"> Jong-Rong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunkuan%20Shih"> Chunkuan Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Hua%20Yang"> Jung-Hua Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiung-Chih%20Chen"> Hsiung-Chih Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Sheng%20Hsu"> Wen-Sheng Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we build RADionuclide Transport, Removal And Dose Estimation/Symbolic Nuclear Analysis Package (SNAP/RADTRAD) model of Kuosheng Nuclear Power Plant which is based on the Final Safety Evaluation Report (FSAR) and other data of Kuosheng Nuclear Power Plant. It is used to estimate the radiation dose of the Exclusion Area Boundary (EAB), the Low Population Zone (LPZ), and the control room following ‘release from the containment’ case in Loss Of Coolant Accident (LOCA). The RADTRAD analysis result shows that the evaluation dose at EAB, LPZ, and the control room are close to the FSAR data, and all of the doses are lower than the regulatory limits. At last, we do a sensitivity analysis and observe that the evaluation doses increase as the intake rate of the control room increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RADTRAD" title="RADTRAD">RADTRAD</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclide%20transport" title=" radionuclide transport"> radionuclide transport</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20and%20dose%20estimation" title=" removal and dose estimation"> removal and dose estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=snap" title=" snap"> snap</a>, <a href="https://publications.waset.org/abstracts/search?q=symbolic%20nuclear%20analysis%20package" title=" symbolic nuclear analysis package"> symbolic nuclear analysis package</a>, <a href="https://publications.waset.org/abstracts/search?q=boiling%20water%20reactor" title=" boiling water reactor"> boiling water reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=NPP" title=" NPP"> NPP</a>, <a href="https://publications.waset.org/abstracts/search?q=kuosheng" title=" kuosheng"> kuosheng</a> </p> <a href="https://publications.waset.org/abstracts/92352/dose-evaluations-with-snapradtrad-for-loss-of-coolant-accidents-in-a-bwr6-nuclear-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3255</span> Results of EPR Dosimetry Study of Population Residing in the Vicinity of the Uranium Mines and Uranium Processing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Zhumadilov">K. Zhumadilov</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kazymbet"> P. Kazymbet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ivannikov"> A. Ivannikov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bakhtin"> M. Bakhtin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Akylbekov"> A. Akylbekov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kadyrzhanov"> K. Kadyrzhanov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Morzabayev"> A. Morzabayev</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hoshi"> M. Hoshi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to evaluate the possible excess of dose received by uranium processing plant workers. The possible excess of dose of workers was evaluated with comparison with population pool (Stepnogorsk) and control pool (Astana city). The measured teeth samples were extracted according to medical indications. In total, twenty-seven tooth enamel samples were analyzed from the residents of Stepnogorsk city (180 km from Astana city, Kazakhstan). About 6 tooth samples were collected from the workers of uranium processing plant. The results of tooth enamel dose estimation show us small influence of working conditions to workers, the maximum excess dose is less than 100 mGy. This is pilot study of EPR dose estimation and for a final conclusion additional sample is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EPR%20dose" title="EPR dose">EPR dose</a>, <a href="https://publications.waset.org/abstracts/search?q=workers" title=" workers"> workers</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium%20mines" title=" uranium mines"> uranium mines</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20samples" title=" tooth samples"> tooth samples</a> </p> <a href="https://publications.waset.org/abstracts/2357/results-of-epr-dosimetry-study-of-population-residing-in-the-vicinity-of-the-uranium-mines-and-uranium-processing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3254</span> Effective Dose and Size Specific Dose Estimation with and without Tube Current Modulation for Thoracic Computed Tomography Examinations: A Phantom Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Gharbi">S. Gharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Labidi"> S. Labidi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mars"> M. Mars</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chelli"> M. Chelli</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ladeb"> F. Ladeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to reduce radiation dose for chest CT examination by including Tube Current Modulation (TCM) to a standard CT protocol. A scan of an anthropomorphic male Alderson phantom was performed on a 128-slice scanner. The estimation of effective dose (ED) in both scans with and without mAs modulation was done via multiplication of Dose Length Product (DLP) to a conversion factor. Results were compared to those measured with a CT-Expo software. The size specific dose estimation (SSDE) values were obtained by multiplication of the volume CT dose index (CTDIvol) with a conversion size factor related to the phantom’s effective diameter. Objective assessment of image quality was performed with Signal to Noise Ratio (SNR) measurements in phantom. SPSS software was used for data analysis. Results showed including CARE Dose 4D; ED was lowered by 48.35% and 51.51% using DLP and CT-expo, respectively. In addition, ED ranges between 7.01 mSv and 6.6 mSv in case of standard protocol, while it ranges between 3.62 mSv and 3.2 mSv with TCM. Similar results are found for SSDE; dose was higher without TCM of 16.25 mGy and was lower by 48.8% including TCM. The SNR values calculated were significantly different (p=0.03<0.05). The highest one is measured on images acquired with TCM and reconstructed with Filtered back projection (FBP). In conclusion, this study proves the potential of TCM technique in SSDE and ED reduction and in conserving image quality with high diagnostic reference level for thoracic CT examinations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthropomorphic%20phantom" title="anthropomorphic phantom">anthropomorphic phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=CT-expo" title=" CT-expo"> CT-expo</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a> </p> <a href="https://publications.waset.org/abstracts/60056/effective-dose-and-size-specific-dose-estimation-with-and-without-tube-current-modulation-for-thoracic-computed-tomography-examinations-a-phantom-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3253</span> Comparative Study between the Absorbed Dose of 67ga-Ecc and 68ga-Ecc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shanesazzadeh"> S. Shanesazzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Lahooti"> A.Lahooti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Jalilian"> A. R. Jalilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, 68Ga-ECC and 67Ga-ECC were both prepared with the radiochemical purity of higher than 97% in less than 30 min. The biodistribution data for 68Ga-ECC showed the extraction of the most of the activity from the urinary tract. The absorbed dose was estimated based on biodistribution data in mice by the medical internal radiation dose (MIRD) method. Comparison between human absorbed dose estimation for these two agents indicated the values of approximately ten-fold higher after injection of 67Ga-ECC than 68Ga-ECC in the most organs. The results showed that 68Ga-ECC can be considered as a more potential agent for renal imaging compared to 67Ga-ECC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20absorbed%20dose" title="effective absorbed dose">effective absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylenecysteamine%20cysteine" title=" ethylenecysteamine cysteine"> ethylenecysteamine cysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga-67" title=" Ga-67"> Ga-67</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga-68" title=" Ga-68"> Ga-68</a> </p> <a href="https://publications.waset.org/abstracts/32476/comparative-study-between-the-absorbed-dose-of-67ga-ecc-and-68ga-ecc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3252</span> Human Absorbed Dose Estimation of a New In-111 Imaging Agent Based on Rat Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The measurement of organ radiation exposure dose is one of the most important steps to be taken initially, for developing a new radiopharmaceutical. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In-1,4,7,10-tetraazacyclododecane-1,4,7,10 tetraethylene phosphonic acid (111In-DOTMP) complex, have been carried out to estimate the dose in human organs based on the data derived from rats. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian rats at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the rats by the radiation absorbed dose assessment resource (RADAR) method. 111In-DOTMP complex was prepared with high radiochemical purity of >99% (ITLC). Total body effective absorbed dose for 111In-DOTMP was 0.061 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In-DOTMP has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-111" title="In-111">In-111</a>, <a href="https://publications.waset.org/abstracts/search?q=DOTMP" title=" DOTMP"> DOTMP</a>, <a href="https://publications.waset.org/abstracts/search?q=Internal%20Dosimetry" title=" Internal Dosimetry"> Internal Dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=RADAR" title=" RADAR"> RADAR</a> </p> <a href="https://publications.waset.org/abstracts/34600/human-absorbed-dose-estimation-of-a-new-in-111-imaging-agent-based-on-rat-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3251</span> Estimation of Human Absorbed Dose Using Compartmental Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mousavi-Daramoroudi">M. Mousavi-Daramoroudi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Abbasi-Davani"> F. Abbasi-Davani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dosimetry is an indispensable and precious factor in patient treatment planning to minimize the absorbed dose in vital tissues. In this study, compartmental model was used in order to estimate the human absorbed dose of <sup>177</sup>Lu-DOTATOC from the biodistribution data in wild type rats. For this purpose, <sup>177</sup>Lu-DOTATOC was prepared under optimized conditions and its biodistribution was studied in male Syrian rats up to 168 h. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. Dosimetric estimation of the complex was performed using radiation absorbed dose assessment resource (RADAR). The biodistribution data showed high accumulation in the adrenal and pancreas as the major expression sites for somatostatin receptor (SSTR). While kidneys as the major route of excretion receive 0.037 mSv/MBq, pancreas and adrenal also obtain 0.039 and 0.028 mSv/MBq. Due to the usage of this method, the points of accumulated activity data were enhanced, and further information of tissues uptake was collected that it will be followed by high (or improved) precision in dosimetric calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compartmental%20modeling" title="compartmental modeling">compartmental modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20absorbed%20dose" title=" human absorbed dose"> human absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B7%E2%81%B7Lu-DOTATOC" title=" ¹⁷⁷Lu-DOTATOC"> ¹⁷⁷Lu-DOTATOC</a>, <a href="https://publications.waset.org/abstracts/search?q=Syrian%20rats" title=" Syrian rats"> Syrian rats</a> </p> <a href="https://publications.waset.org/abstracts/94409/estimation-of-human-absorbed-dose-using-compartmental-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3250</span> Design, Construction and Performance Evaluation of a HPGe Detector Shield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sharifi">M. Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mirzaii"> M. Mirzaii</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Bolourinovin"> F. Bolourinovin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Akbari"> M. Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Yousefi-Mojir"> K. Yousefi-Mojir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A multilayer passive shield composed of low-activity lead (Pb), copper (Cu), tin (Sn) and iron (Fe) was designed and manufactured for a coaxial HPGe detector placed at a surface laboratory for reducing background radiation and radiation dose to the personnel. The performance of the shield was evaluated and efficiency curves of the detector were plotted by using of the various standard sources in different distances. Monte Carlo simulations and a set of TLD chips were used for dose estimation in two distances of 20 and 40 cm. The results show that the shield reduced background spectrum and the personnel dose more than 95%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HPGe%20shield" title="HPGe shield">HPGe shield</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20count" title=" background count"> background count</a>, <a href="https://publications.waset.org/abstracts/search?q=personnel%20dose" title=" personnel dose"> personnel dose</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20curve" title=" efficiency curve"> efficiency curve</a> </p> <a href="https://publications.waset.org/abstracts/34295/design-construction-and-performance-evaluation-of-a-hpge-detector-shield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3249</span> Estimation of Adult Patient Doses for Chest X-Ray Diagnostic Examinations in a Tertiary Institution Health Centre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20E.%20Okungbowa">G. E. Okungbowa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20O.%20Adams"> H. O. Adams</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Eze"> S. E. Eze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is on the estimation of adult patient doses for Chest X-ray diagnostic examinations of new admitted undergraduate students attending a tertiary institution health centre as part of their routine clearance and check up on admitted into the institution. A total of 531 newly admitted undergraduate students were recruited for this survey in the first quarter of 2016 (January to March, 2016). CALDOSE_X 5.0 software was used to compute the Entrance Surface Dose (ESD) and Effective Dose (ED); while the Statistical Package for Social Sciences (SPSS) version 21.0 was used to carry out the statistical analyses. The basic patients' data and exposure parameters required for the software are age, sex, examination type, projection posture, tube potential and current-time product. The mean Entrance Surface Dose and Effective Doses of the undergraduate students were calculated using the software, and the values were compared with existing literature and internationally established diagnostic reference levels. The mean ESD calculated is 0.29 mGy, and the mean effective dose is 0.04 mSv. The values of ESD and ED obtained are below the internationally established diagnostic reference levels, which could be attributed to good radiographic techniques employed during the chest X-ray procedure for these students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=x-ray" title="x-ray">x-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=dose" title=" dose"> dose</a>, <a href="https://publications.waset.org/abstracts/search?q=examination" title=" examination"> examination</a>, <a href="https://publications.waset.org/abstracts/search?q=chest" title=" chest"> chest</a> </p> <a href="https://publications.waset.org/abstracts/65198/estimation-of-adult-patient-doses-for-chest-x-ray-diagnostic-examinations-in-a-tertiary-institution-health-centre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3248</span> Estimation Model for Concrete Slump Recovery by Using Superplasticizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaiyakrit%20Raoupatham">Chaiyakrit Raoupatham</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Hari%20Dhakal"> Ram Hari Dhakal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chalermchai%20Wanichlamlert"> Chalermchai Wanichlamlert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice, in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%- 1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameter, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimation%20model" title="estimation model">estimation model</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20superplasticizer%20dosage" title=" second superplasticizer dosage"> second superplasticizer dosage</a>, <a href="https://publications.waset.org/abstracts/search?q=slump%20loss" title=" slump loss"> slump loss</a>, <a href="https://publications.waset.org/abstracts/search?q=slump%20recovery" title=" slump recovery"> slump recovery</a> </p> <a href="https://publications.waset.org/abstracts/41122/estimation-model-for-concrete-slump-recovery-by-using-superplasticizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3247</span> The Use of the Matlab Software as the Best Way to Recognize Penumbra Region in Radiotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Shayegan">Alireza Shayegan</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Amirabadi"> Morteza Amirabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The y tool was developed to quantitatively compare dose distributions, either measured or calculated. Before computing ɣ, the dose and distance scales of the two distributions, referred to as evaluated and reference, are re-normalized by dose and distance criteria, respectively. The re-normalization allows the dose distribution comparison to be conducted simultaneously along dose and distance axes. Several two-dimensional images were acquired using a Scanning Liquid Ionization Chamber EPID and Extended Dose Range (EDR2) films for regular and irregular radiation fields. The raw images were then converted into two-dimensional dose maps. Transitional and rotational manipulations were performed for images using Matlab software. As evaluated dose distribution maps, they were then compared with the corresponding original dose maps as the reference dose maps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energetic%20electron" title="energetic electron">energetic electron</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20function" title=" gamma function"> gamma function</a>, <a href="https://publications.waset.org/abstracts/search?q=penumbra" title=" penumbra"> penumbra</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab%20software" title=" Matlab software "> Matlab software </a> </p> <a href="https://publications.waset.org/abstracts/1778/the-use-of-the-matlab-software-as-the-best-way-to-recognize-penumbra-region-in-radiotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3246</span> Experimental and Analytical Dose Assessment of Patient's Family Members Treated with I-131</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Ebrahimi">Marzieh Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Changizi"> Vahid Changizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Kardan"> Mohammad Reza Kardan</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mahdi%20Hosseini%20Pooya"> Seyed Mahdi Hosseini Pooya</a>, <a href="https://publications.waset.org/abstracts/search?q=Parham%20Geramifar"> Parham Geramifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation exposure to the patient's family members is one of the major concerns during thyroid cancer radionuclide therapy. The aim of this study was to measure the total effective dose of the family members by means of thermoluminescence personal dosimeter, and compare with those calculated by analytical methods. Eighty-five adult family members of fifty-one patients volunteered to participate in this research study. Considering the minimum and maximum range of dose rate from 15 µsv/h to 120 µsv/h at patients' release time, the calculated mean and median dose values of family members were 0.45 mSv and 0.28 mSv, respectively. Moreover, almost all family members’ doses were measured to be less than the dose constraint of 5 mSv recommended by Basic Safety Standards. Considering the influence parameters such as patient dose rate and administrated activity, the total effective doses of family members were calculated by TEDE and NRC formulas and compared with those of experimental results. The results indicated that, it is fruitful to use the quantitative calculations for releasing patients treated with I-131 and correct estimation of patients' family doses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20dose" title="effective dose">effective dose</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title=" thermoluminescence"> thermoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=I-131" title=" I-131"> I-131</a>, <a href="https://publications.waset.org/abstracts/search?q=thyroid%20cancer" title=" thyroid cancer"> thyroid cancer</a> </p> <a href="https://publications.waset.org/abstracts/50786/experimental-and-analytical-dose-assessment-of-patients-family-members-treated-with-i-131" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3245</span> Estimation of Effective Radiation Dose Following Computed Tomography Urography at Aminu Kano Teaching Hospital, Kano Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Idris%20Garba">Idris Garba</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Rabiu%20Abdullahi"> Aisha Rabiu Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansur%20Yahuza"> Mansur Yahuza</a>, <a href="https://publications.waset.org/abstracts/search?q=Akintade%20Dare"> Akintade Dare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: CT urography (CTU) is efficient radiological examination for the evaluation of the urinary system disorders. However, patients are exposed to a significant radiation dose which is in a way associated with increased cancer risks. Objectives: To determine Computed Tomography Dose Index following CTU, and to evaluate organs equivalent doses. Materials and Methods: A prospective cohort study was carried at a tertiary institution located in Kano northwestern. Ethical clearance was sought and obtained from the research ethics board of the institution. Demographic, scan parameters and CT radiation dose data were obtained from patients that had CTU procedure. Effective dose, organ equivalent doses, and cancer risks were estimated using SPSS statistical software version 16 and CT dose calculator software. Result: A total of 56 patients were included in the study, consisting of 29 males and 27 females. The common indication for CTU examination was found to be renal cyst seen commonly among young adults (15-44yrs). CT radiation dose values in DLP, CTDI and effective dose for CTU were 2320 mGy cm, CTDIw 9.67 mGy and 35.04 mSv respectively. The probability of cancer risks was estimated to be 600 per a million CTU examinations. Conclusion: In this study, the radiation dose for CTU is considered significantly high, with increase in cancer risks probability. Wide radiation dose variations between patient doses suggest that optimization is not fulfilled yet. Patient radiation dose estimate should be taken into consideration when imaging protocols are established for CT urography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20urography" title="CT urography">CT urography</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20risks" title=" cancer risks"> cancer risks</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20dose" title=" effective dose"> effective dose</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20exposure" title=" radiation exposure"> radiation exposure</a> </p> <a href="https://publications.waset.org/abstracts/61467/estimation-of-effective-radiation-dose-following-computed-tomography-urography-at-aminu-kano-teaching-hospital-kano-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3244</span> Determining the Effectiveness of Radiation Shielding and Safe Time for Radiation Worker by Employing Monitoring of Accumulation Dose in the Operator Room of CT Scan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Risalatul%20Latifah">Risalatul Latifah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bunawas%20Bunawas"> Bunawas Bunawas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lailatul%20Muqmiroh"> Lailatul Muqmiroh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anggraini%20D.%20Sensusiati"> Anggraini D. Sensusiati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with the increasing frequency of the use of CT-Scan for radiodiagnostics purposes, it is necessary to study radiation protection. This study examined aspects of radiation protection of workers. This study tried using thermoluminescent dosimeter (TLD) for evaluating radiation shielding and estimating safe time for workers during CT Scan examination. Six TLDs were placed on door, wall, and window inside and outside of the CT Scan room for 1 month. By using TLD monitoring, it could be seen how much radiation was exposed in the operator room. The results showed the effective dose at door, window, and wall was respectively 0.04 mSv, 0.05 mSv, and 0.04 mSv. With these values, it could be evaluated the effectiveness of radiation shielding on doors, glass and walls were respectively 90.6%, 95.5%, and 92.2%. By applying the dose constraint and the estimation of the accumulated dose for one month, radiation workers were still safe to perform the irradiation for 180 patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20scan%20room" title="CT scan room">CT scan room</a>, <a href="https://publications.waset.org/abstracts/search?q=TLD" title=" TLD"> TLD</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20worker" title=" radiation worker"> radiation worker</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20constraint" title=" dose constraint"> dose constraint</a> </p> <a href="https://publications.waset.org/abstracts/63239/determining-the-effectiveness-of-radiation-shielding-and-safe-time-for-radiation-worker-by-employing-monitoring-of-accumulation-dose-in-the-operator-room-of-ct-scan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3243</span> Absorbed Dose Estimation of 68Ga-EDTMP in Human Organs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri">S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Jalilian"> A. R. Jalilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone metastases are observed in a wide range of cancers leading to intolerable pain. While early detection can help the physicians in the decision of the type of treatment, various radiopharmaceuticals using phosphonates like <sup>68</sup>Ga-EDTMP have been developed. In this work, due to the importance of absorbed dose, human absorbed dose of this new agent was calculated for the first time based on biodistribution data in Wild-type rats. <sup>68</sup>Ga was obtained from <sup>68</sup>Ge/<sup>68</sup>Ga generator with radionuclidic purity and radiochemical purity of higher than 99%. The radiolabeled complex was prepared in the optimized conditions. Radiochemical purity of the radiolabeled complex was checked by instant thin layer chromatography (ITLC) method using Whatman No. 2 paper and saline. The results indicated the radiochemical purity of higher than 99%. The radiolabelled complex was injected into the Wild-type rats and its biodistribution was studied up to 120 min. As expected, major accumulation was observed in the bone. Absorbed dose of each human organ was calculated based on biodistribution in the rats using RADAR method. Bone surface and bone marrow with 0.112 and 0.053 mSv/MBq, respectively, received the highest absorbed dose. According to these results, the radiolabeled complex is a suitable and safe option for PET bone imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose" title="absorbed dose">absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=EDTMP" title=" EDTMP"> EDTMP</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%81%B6%E2%81%B8Ga" title=" ⁶⁸Ga"> ⁶⁸Ga</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a> </p> <a href="https://publications.waset.org/abstracts/81329/absorbed-dose-estimation-of-68ga-edtmp-in-human-organs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3242</span> Organ Dose Calculator for Fetus Undergoing Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Choonsik%20Lee">Choonsik Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Les%20Folio"> Les Folio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pregnant patients may undergo CT in emergencies unrelated with pregnancy, and potential risk to the developing fetus is of concern. It is critical to accurately estimate fetal organ doses in CT scans. We developed a fetal organ dose calculation tool using pregnancy-specific computational phantoms combined with Monte Carlo radiation transport techniques. We adopted a series of pregnancy computational phantoms developed at the University of Florida at the gestational ages of 8, 10, 15, 20, 25, 30, 35, and 38 weeks (Maynard et al. 2011). More than 30 organs and tissues and 20 skeletal sites are defined in each fetus model. We calculated fetal organ dose-normalized by CTDIvol to derive organ dose conversion coefficients (mGy/mGy) for the eight fetuses for consequential slice locations ranging from the top to the bottom of the pregnancy phantoms with 1 cm slice thickness. Organ dose from helical scans was approximated by the summation of doses from multiple axial slices included in the given scan range of interest. We then compared dose conversion coefficients for major fetal organs in the abdominal-pelvis CT scan of pregnancy phantoms with the uterine dose of a non-pregnant adult female computational phantom. A comprehensive library of organ conversion coefficients was established for the eight developing fetuses undergoing CT. They were implemented into an in-house graphical user interface-based computer program for convenient estimation of fetal organ doses by inputting CT technical parameters as well as the age of the fetus. We found that the esophagus received the least dose, whereas the kidneys received the greatest dose in all fetuses in AP scans of the pregnancy phantoms. We also found that when the uterine dose of a non-pregnant adult female phantom is used as a surrogate for fetal organ doses, root-mean-square-error ranged from 0.08 mGy (8 weeks) to 0.38 mGy (38 weeks). The uterine dose was up to 1.7-fold greater than the esophagus dose of the 38-week fetus model. The calculation tool should be useful in cases requiring fetal organ dose in emergency CT scans as well as patient dose monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20dose" title=" fetal dose"> fetal dose</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnant%20women" title=" pregnant women"> pregnant women</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a> </p> <a href="https://publications.waset.org/abstracts/114436/organ-dose-calculator-for-fetus-undergoing-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3241</span> Estimation of Normalized Glandular Doses Using a Three-Layer Mammographic Phantom </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuan-Jen%20Lai">Kuan-Jen Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang-Yi%20Lin"> Fang-Yi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shang-Rong%20Huang"> Shang-Rong Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Zheng%20Zeng"> Yun-Zheng Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Chieh%20Hsu"> Po-Chieh Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Wu"> Jay Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The normalized glandular dose (DgN) estimates the energy deposition of mammography in clinical practice. The Monte Carlo simulations frequently use uniformly mixed phantom for calculating the conversion factor. However, breast tissues are not uniformly distributed, leading to errors of conversion factor estimation. This study constructed a three-layer phantom to estimated more accurate of normalized glandular dose. In this study, MCNP code (Monte Carlo N-Particles code) was used to create the geometric structure. We simulated three types of target/filter combinations (Mo/Mo, Mo/Rh, Rh/Rh), six voltages (25 ~ 35 kVp), six HVL parameters and nine breast phantom thicknesses (2 ~ 10 cm) for the three-layer mammographic phantom. The conversion factor for 25%, 50% and 75% glandularity was calculated. The error of conversion factors compared with the results of the American College of Radiology (ACR) was within 6%. For Rh/Rh, the difference was within 9%. The difference between the 50% average glandularity and the uniform phantom was 7.1% ~ -6.7% for the Mo/Mo combination, voltage of 27 kVp, half value layer of 0.34 mmAl, and breast thickness of 4 cm. According to the simulation results, the regression analysis found that the three-layer mammographic phantom at 0% ~ 100% glandularity can be used to accurately calculate the conversion factors. The difference in glandular tissue distribution leads to errors of conversion factor calculation. The three-layer mammographic phantom can provide accurate estimates of glandular dose in clinical practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title="Monte Carlo simulation">Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mammography" title=" mammography"> mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20glandular%20dose" title=" normalized glandular dose"> normalized glandular dose</a>, <a href="https://publications.waset.org/abstracts/search?q=glandularity" title=" glandularity"> glandularity</a> </p> <a href="https://publications.waset.org/abstracts/97111/estimation-of-normalized-glandular-doses-using-a-three-layer-mammographic-phantom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3240</span> Evaluation of Dynamic Log Files for Different Dose Rates in IMRT Plans </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Bin%20Saeed">Saad Bin Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fayzan%20Ahmed"> Fayzan Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahbaz%20Ahmed"> Shahbaz Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Hussain"> Amjad Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to evaluate dynamic log files (Dynalogs) at different dose rates by dose-volume histograms (DVH) and used as a (QA) procedure of IMRT. Seven patients of phase one head and neck cancer with similar OAR`s are selected randomly. Reference plans of dose rate 300 and 600 MU/Min with prescribed dose of 50Gy in 25 fractions for each patient is made. Dynalogs produced by delivery of reference plans processed by in-house MATLAB program which produces new field files contain actual positions of multi-leaf collimators (MLC`s) instead of planned positions in reference plans. Copies of reference plans are used to import new field files generated by MATLAB program and renamed as Dyn.plan. After dose calculations of Dyn.plans for different dose rates, DVH, and multiple linear regression tools are used to evaluate reference and Dyn.plans. The results indicate good agreement of correlation between different dose rate plans. The maximum dose difference among PTV and OAR`s are found to be less than 5% and 9% respectively. The study indicates the potential of dynalogs to be used as patient-specific QA of IMRT at different dose rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IMRT" title="IMRT">IMRT</a>, <a href="https://publications.waset.org/abstracts/search?q=dynalogs" title=" dynalogs"> dynalogs</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20rate" title=" dose rate"> dose rate</a>, <a href="https://publications.waset.org/abstracts/search?q=DVH" title=" DVH"> DVH</a> </p> <a href="https://publications.waset.org/abstracts/24120/evaluation-of-dynamic-log-files-for-different-dose-rates-in-imrt-plans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3239</span> Estimated Human Absorbed Dose of 111 In-BPAMD as a New Bone-Seeking Spect-Imaging Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An early diagnosis of bone metastases is very important for providing a profound decision on a subsequent therapy. A prerequisite for the clinical application of new diagnostic radiopharmaceutical is the measurement of organ radiation exposure dose from biodistribution data in animals. In this study, the dosimetric studies of a novel agent for SPECT-imaging of bone methastases, 111In-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been estimated in human organs based on mice data. The radiolabeled complex was prepared with high radiochemical purity at the optimal conditions. Biodistribution studies of the complex were investigated in male Syrian mice at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was performed based on mice data by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose to critical organs the complex is well within the acceptable considered range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastases in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-111" title="In-111">In-111</a>, <a href="https://publications.waset.org/abstracts/search?q=BPAMD" title=" BPAMD"> BPAMD</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose" title=" absorbed dose"> absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=RADAR" title=" RADAR"> RADAR</a> </p> <a href="https://publications.waset.org/abstracts/34599/estimated-human-absorbed-dose-of-111-in-bpamd-as-a-new-bone-seeking-spect-imaging-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3238</span> Absorbed Dose Estimation of 177Lu-DOTATOC in Adenocarcinoma Breast Cancer Bearing Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri">S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mousavi-Daramoroudi"> M. Mousavi-Daramoroudi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Abbasi-Davani"> F. Abbasi-Davani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the absorbed dose of human organs after injection of <sup>177</sup>Lu-DOTATOC was studied based on the biodistribution of the complex in adenocarcinoma breast cancer bearing mice. For this purpose, the biodistribution of the radiolabelled complex was studied and compartmental modeling was applied to calculate the absorbed dose with high precision. As expected, <sup>177</sup>Lu-DOTATOC illustrated a notable specific uptake in tumor and pancreas, organs with high level of somatostatin receptor on their surface and the effectiveness of the radio-conjugate for targeting of the breast adenocarcinoma tumors was indicated. The elicited results of modeling were the exponential equations, and those are utilized for obtaining the cumulated activity data by taking their integral. The results also exemplified that non-target absorbed-doses such as the liver, spleen and pancreas were approximately 0.008, 0.004, and 0.039, respectively. While these values were so much lower than target (tumor) absorbed-dose, it seems due to this low toxicity, this complex is a good agent for therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B7%E2%81%B7Lu" title="¹⁷⁷Lu">¹⁷⁷Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=compartmental%20modeling" title=" compartmental modeling"> compartmental modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimetry" title=" dosimetry"> dosimetry</a> </p> <a href="https://publications.waset.org/abstracts/97772/absorbed-dose-estimation-of-177lu-dotatoc-in-adenocarcinoma-breast-cancer-bearing-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3237</span> Development of a Model for Predicting Radiological Risks in Interventional Cardiology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefaan%20Carpentier">Stefaan Carpentier</a>, <a href="https://publications.waset.org/abstracts/search?q=Aya%20Al%20Masri"> Aya Al Masri</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabrice%20Leroy"> Fabrice Leroy</a>, <a href="https://publications.waset.org/abstracts/search?q=Thibault%20Julien"> Thibault Julien</a>, <a href="https://publications.waset.org/abstracts/search?q=Safoin%20Aktaou"> Safoin Aktaou</a>, <a href="https://publications.waset.org/abstracts/search?q=Malorie%20Martin"> Malorie Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouad%20Maaloul"> Fouad Maaloul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: During an 'Interventional Radiology (IR)' procedure, the patient's skin-dose may become very high for a burn, necrosis, and ulceration to appear. In order to prevent these deterministic effects, a prediction of the peak skin-dose for the patient is important in order to improve the post-operative care to be given to the patient. The objective of this study is to estimate, before the intervention, the patient dose for ‘Chronic Total Occlusion (CTO)’ procedures by selecting relevant clinical indicators. Materials and methods: 103 procedures were performed in the ‘Interventional Cardiology (IC)’ department using a Siemens Artis Zee image intensifier that provides the Air Kerma of each IC exam. Peak Skin Dose (PSD) was measured for each procedure using radiochromic films. Patient parameters such as sex, age, weight, and height were recorded. The complexity index J-CTO score, specific to each intervention, was determined by the cardiologist. A correlation method applied to these indicators allowed to specify their influence on the dose. A predictive model of the dose was created using multiple linear regressions. Results: Out of 103 patients involved in the study, 5 were excluded for clinical reasons and 2 for placement of radiochromic films outside the exposure field. 96 2D-dose maps were finally used. The influencing factors having the highest correlation with the PSD are the patient's diameter and the J-CTO score. The predictive model is based on these parameters. The comparison between estimated and measured skin doses shows an average difference of 0.85 ± 0.55 Gy for doses of less than 6 Gy. The mean difference between air-Kerma and PSD is 1.66 Gy ± 1.16 Gy. Conclusion: Using our developed method, a first estimate of the dose to the skin of the patient is available before the start of the procedure, which helps the cardiologist in carrying out its intervention. This estimation is more accurate than that provided by the Air-Kerma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20total%20occlusion%20procedures" title="chronic total occlusion procedures">chronic total occlusion procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20experimentation" title=" clinical experimentation"> clinical experimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=interventional%20radiology" title=" interventional radiology"> interventional radiology</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%27s%20peak%20skin%20dose" title=" patient's peak skin dose"> patient's peak skin dose</a> </p> <a href="https://publications.waset.org/abstracts/119029/development-of-a-model-for-predicting-radiological-risks-in-interventional-cardiology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3236</span> Pharmacokinetic Modeling of Valsartan in Dog following a Single Oral Administration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-Hwan%20Baek">In-Hwan Baek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Valsartan is a potent and highly selective antagonist of the angiotensin II type 1 receptor, and is widely used for the treatment of hypertension. The aim of this study was to investigate the pharmacokinetic properties of the valsartan in dogs following oral administration of a single dose using quantitative modeling approaches. Forty beagle dogs were randomly divided into two group. Group A (n=20) was administered a single oral dose of valsartan 80 mg (Diovan® 80 mg), and group B (n=20) was administered a single oral dose of valsartan 160 mg (Diovan® 160 mg) in the morning after an overnight fast. Blood samples were collected into heparinized tubes before and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12 and 24 h following oral administration. The plasma concentrations of the valsartan were determined using LC-MS/MS. Non-compartmental pharmacokinetic analyses were performed using WinNonlin Standard Edition software, and modeling approaches were performed using maximum-likelihood estimation via the expectation maximization (MLEM) algorithm with sampling using ADAPT 5 software. After a single dose of valsartan 80 mg, the mean value of maximum concentration (Cmax) was 2.68 ± 1.17 μg/mL at 1.83 ± 1.27 h. The area under the plasma concentration-versus-time curve from time zero to the last measurable concentration (AUC24h) value was 13.21 ± 6.88 μg·h/mL. After dosing with valsartan 160 mg, the mean Cmax was 4.13 ± 1.49 μg/mL at 1.80 ± 1.53 h, the AUC24h was 26.02 ± 12.07 μg·h/mL. The Cmax and AUC values increased in proportion to the increment in valsartan dose, while the pharmacokinetic parameters of elimination rate constant, half-life, apparent of total clearance, and apparent of volume of distribution were not significantly different between the doses. Valsartan pharmacokinetic analysis fits a one-compartment model with first-order absorption and elimination following a single dose of valsartan 80 mg and 160 mg. In addition, high inter-individual variability was identified in the absorption rate constant. In conclusion, valsartan displays the dose-dependent pharmacokinetics in dogs, and Subsequent quantitative modeling approaches provided detailed pharmacokinetic information of valsartan. The current findings provide useful information in dogs that will aid future development of improved formulations or fixed-dose combinations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dose-dependent" title="dose-dependent">dose-dependent</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacokinetics" title=" pharmacokinetics"> pharmacokinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=valsartan" title=" valsartan"> valsartan</a> </p> <a href="https://publications.waset.org/abstracts/67162/pharmacokinetic-modeling-of-valsartan-in-dog-following-a-single-oral-administration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3235</span> A Varicella Outbreak in a Highly Vaccinated School Population in Voluntary 2-Dose Era in Beijing, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chengbin%20Wang">Chengbin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Lu"> Li Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Luodan%20Suo"> Luodan Suo</a>, <a href="https://publications.waset.org/abstracts/search?q=Qinghai%20Wang"> Qinghai Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20Yang"> Fan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Wang"> Xu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Marin"> Mona Marin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Two-dose varicella vaccination has been recommended in Beijing since November 2012. We investigated a varicella outbreak in a highly vaccinated elementary school population to examine transmission patterns and risk factors for vaccine failure. Methods: A varicella case was defined as an acute generalized maculopapulovesicular rash without other apparent cause in a student attending the school from March 28 to May 17, 2015. Breakthrough varicella was defined as varicella >42 days after last vaccine dose. Vaccination information was collected from immunization records. Information on prior disease and clinical presentation was collected via survey of students’ parents. Results: Of the 1056 school students, 1028 (97.3%) reported no varicella history, of whom 364 (35.4%) had received 1-dose and 650 (63.2%) had received 2-dose varicella vaccine, for 98.6% school-wide vaccination coverage with ≥ 1 dose before the outbreak. A total of 20 cases were identified for an overall attack rate of 1.9%. The index case was in a 2-dose vaccinated student who was not isolated. The majority of cases were breakthrough (19/20, 95%) with attack rates of 7.1% (1/14), 1.6% (6/364) and 2.0% (13/650) among unvaccinated, 1-dose, and 2-dose students, respectively. Most cases had < 50 lesions (18/20, 90%). No difference was found between 1-dose and 2-dose breakthrough cases in disease severity or sociodemographic factors. Conclusion: Moderate 2-dose varicella vaccine coverage was insufficient to prevent a varicella outbreak. Two-dose breakthrough varicella is still contagious. High 2-dose varicella vaccine coverage and timely isolation of ill persons might be needed for varicella outbreak control in the 2-dose era. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=varicella" title="varicella">varicella</a>, <a href="https://publications.waset.org/abstracts/search?q=outbreak" title=" outbreak"> outbreak</a>, <a href="https://publications.waset.org/abstracts/search?q=breakthrough%20varicella" title=" breakthrough varicella"> breakthrough varicella</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccination" title=" vaccination"> vaccination</a> </p> <a href="https://publications.waset.org/abstracts/57932/a-varicella-outbreak-in-a-highly-vaccinated-school-population-in-voluntary-2-dose-era-in-beijing-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3234</span> Investigation of Factors Affecting the Total Ionizing Dose Threshold of Electrically Erasable Read Only Memories for Use in Dose Rate Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liqian%20Li">Liqian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Liu"> Yu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Colins"> Karen Colins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dose rate present in a seriously contaminated area can be indirectly determined by monitoring radiation damage to inexpensive commercial electronics, instead of deploying expensive radiation hardened sensors. EEPROMs (Electrically Erasable Read Only Memories) are a good candidate for this purpose because they are inexpensive and are sensitive to radiation exposure. When the total ionizing dose threshold is reached, an EEPROM chip will show signs of damage that can be monitored and transmitted by less susceptible electronics. The dose rate can then be determined from the known threshold dose and the exposure time, assuming the radiation field remains constant with time. Therefore, the threshold dose needs to be well understood before this method can be used. There are many factors affecting the threshold dose, such as the gamma ray energy spectrum, the operating voltage, etc. The purpose of this study was to experimentally determine how the threshold dose depends on dose rate, temperature, voltage, and duty factor. It was found that the duty factor has the strongest effect on the total ionizing dose threshold, while the effect of the other three factors that were investigated is less significant. The effect of temperature was found to be opposite to that expected to result from annealing and is yet to be understood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEPROM" title="EEPROM">EEPROM</a>, <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title=" ionizing radiation"> ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20effects%20on%20electronics" title=" radiation effects on electronics"> radiation effects on electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20ionizing%20dose" title=" total ionizing dose"> total ionizing dose</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a> </p> <a href="https://publications.waset.org/abstracts/77107/investigation-of-factors-affecting-the-total-ionizing-dose-threshold-of-electrically-erasable-read-only-memories-for-use-in-dose-rate-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3233</span> Human Absorbed Dose Assessment of 68Ga-Dotatoc Based on Biodistribution Data in Syrian Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri">S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naderi"> M. Naderi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ramazani"> A. Ramazani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Jalilian"> A. R. Jalilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to evaluate the values of absorbed dose of 68Ga-DOTATOC in numerous human organs. 68Ga-DOTATOC was prepared with the radiochemical purity of higher than 98% and by specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37° C at least 2 h after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreas and adrenal. The absorbed dose received by human organs was evaluated based on biodistribution studies in Syrian rats by the radiation absorbed dose assessment resource (RADAR) method. Maximum absorbed dose was obtained in the pancreas, kidneys, and adrenal with 0.105, 0.074, and 0.010 mGy/MBq, respectively. The effective absorbed dose was 0.026 mSv/MBq for 68Ga-DOTATOC. The results showed that 68Ga-DOTATOC can be considered as a safe and effective agent for clinically PET imaging applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20absorbed%20dose" title="effective absorbed dose">effective absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga-68" title=" Ga-68"> Ga-68</a>, <a href="https://publications.waset.org/abstracts/search?q=octreotide" title=" octreotide"> octreotide</a>, <a href="https://publications.waset.org/abstracts/search?q=MIRD" title=" MIRD"> MIRD</a> </p> <a href="https://publications.waset.org/abstracts/32477/human-absorbed-dose-assessment-of-68ga-dotatoc-based-on-biodistribution-data-in-syrian-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3232</span> In vitro Estimation of Genotoxic Lesions in Peripheral Blood Lymphocytes of Rat Exposed to Organophosphate Pesticides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ojha">A. Ojha</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Gupta"> Y. K. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organophosphate (OP) pesticides are among the most widely used synthetic chemicals for controlling a wide variety of pests throughout the world. Chlorpyrifos (CPF), methyl parathion (MPT), and malathion (MLT) are among the most extensively used OP pesticides in India. DNA strand breaks and DNA-protein crosslinks (DPC) are toxic lesions associated with the mechanisms of toxicity of genotoxic compounds. In the present study, we have examined the potential of CPF, MPT, and MLT individually and in combination, to cause DNA strand breakage and DPC formation. Peripheral blood lymphocytes of rat were exposed to 1/4 and 1/10 LC50 dose of CPF, MPT, and MLT for 2, 4, 8, and 12h. The DNA strand break was measured by the comet assay and expressed as DNA damage index while DPC estimation was done by fluorescence emission. There was significantly marked increase in DNA damage and DNA-protein crosslink formation in time and dose dependent manner. It was also observed that MPT caused the highest level of DNA damage as compared to other studied OP compounds. Thus, from present study, we can conclude that studied pesticides have genotoxic potential. The pesticides mixture does not potentiate the toxicity of each other. Nonetheless, additional in vivo data are required before a definitive conclusion can be drawn regarding hazard prediction to humans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organophosphate" title="organophosphate">organophosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage" title=" DNA damage"> DNA damage</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20protein%20crosslink" title=" DNA protein crosslink"> DNA protein crosslink</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxic" title=" genotoxic"> genotoxic</a> </p> <a href="https://publications.waset.org/abstracts/14835/in-vitro-estimation-of-genotoxic-lesions-in-peripheral-blood-lymphocytes-of-rat-exposed-to-organophosphate-pesticides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3231</span> Comparison of the Response of TLD-100 and TLD-100H Dosimeters in Diagnostic Radiology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sina">S. Sina</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Zeinali"> B. Zeinali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karimipourfard"> M. Karimipourfard</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Lotfalizadeh"> F. Lotfalizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sadeghi"> M. Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Zamani"> E. Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zehtabian"> M. Zehtabian</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Faghihi"> R. Faghihi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proper dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg, Cu, P (TLD100H) in obtaining the entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. The results show a close agreement between the dose measured by the two dosimeters. According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e. signal(nc)/dose) than TLD-100. Therefore, it is suggested that the TLD-100H are effective dosimeters for dosimetry in low dose fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entrance%20skin%20dose" title="entrance skin dose">entrance skin dose</a>, <a href="https://publications.waset.org/abstracts/search?q=TLD" title=" TLD"> TLD</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20radiology" title=" diagnostic radiology"> diagnostic radiology</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimeter" title=" dosimeter"> dosimeter</a> </p> <a href="https://publications.waset.org/abstracts/12974/comparison-of-the-response-of-tld-100-and-tld-100h-dosimeters-in-diagnostic-radiology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3230</span> Standardization Of Miniature Neutron Research Reactor And Occupational Safety Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Limen%20Njinga">Raymond Limen Njinga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comparator factors (Fc) for miniature research reactors are of great importance in the field of nuclear physics as it provide accurate bases for the evaluation of elements in all form of samples via ko-NAA techniques. The Fc was initially simulated theoretically thereafter, series of experiments were performed to validate the results. In this situation, the experimental values were obtained using the alloy of Au(0.1%) - Al monitor foil and a neutron flux setting of 5.00E+11 cm-2.s-1. As was observed in the inner irradiation position, the average experimental value of 7.120E+05 was reported against the theoretical value of 7.330E+05. In comparison, a percentage deviation of 2.86 (from theoretical value) was observed. In the large case of the outer irradiation position, the experimental value of 1.170E+06 was recorded against the theoretical value of 1.210E+06 with a percentage deviation of 3.310 (from the theoretical value). The estimation of equivalent dose rate at 5m from neutron flux of 5.00E+11 cm-2.s-1 within the neutron energies of 1KeV, 10KeV, 100KeV, 500KeV, 1MeV, 5MeV and 10MeV were calculated to be 0.01 Sv/h, 0.01 Sv/h, 0.03 Sv/h, 0.15 Sv/h, 0.21Sv/h and 0.25 Sv/h respectively with a total dose within a period of an hour was obtained to be 0.66 Sv. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20flux" title="neutron flux">neutron flux</a>, <a href="https://publications.waset.org/abstracts/search?q=comparator%20factor" title=" comparator factor"> comparator factor</a>, <a href="https://publications.waset.org/abstracts/search?q=NAA%20techniques" title=" NAA techniques"> NAA techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20energy" title=" neutron energy"> neutron energy</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20dose" title=" equivalent dose"> equivalent dose</a> </p> <a href="https://publications.waset.org/abstracts/142174/standardization-of-miniature-neutron-research-reactor-and-occupational-safety-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3229</span> Comparison of Breast Surface Doses for Full-Field Digital Mammography and Digital Breast Tomosynthesis Using Breast Phantoms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Hui%20Chen">Chia-Hui Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Kuo%20Wang"> Chien-Kuo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Full field digital mammography (FFDM) is widely used in diagnosis of breast cancer. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Hence, the radiation dose delivered to the patients involved in an imaging protocol is of utmost concern. Aim: To compare the surface radiation dose (ESD) of digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) by using breast phantoms. Method: We analyzed the average entrance surface dose (ESD) of FFDM and DBT by using breast phantoms. Optically Stimulated luminescent Dosimeters (OSLD) were placed in a tissue-equivalent Breast phantom at difference sites of interest. Absorbed dose measurements were obtained after digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) exposures. Results: An automatic exposure control (AEC) is proposed for surface dose measurement during DBT and FFDM. The mean ESD values for DBT and FFDM were 6.37 mGy and 3.51mGy, respectively. Using of OSLD measured for surface dose during DBT and FFDM. There were 19.87 mGy and 11.36 mGy, respectively. The surface exposure dose of DBT could possibly be increased by two times with FFDM. Conclusion: The radiation dose from DBT was higher than that of FFDM and the difference in dose between AEC and OSLD measurements at phantom surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=full-field%20digital%20mammography" title="full-field digital mammography">full-field digital mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20breast%20tomosynthesis" title=" digital breast tomosynthesis"> digital breast tomosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=optically%20stimulated%20luminescent%20dosimeters" title=" optically stimulated luminescent dosimeters"> optically stimulated luminescent dosimeters</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20dose" title=" surface dose"> surface dose</a> </p> <a href="https://publications.waset.org/abstracts/73090/comparison-of-breast-surface-doses-for-full-field-digital-mammography-and-digital-breast-tomosynthesis-using-breast-phantoms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3228</span> The Study of γ- Radiolysis of 1.2.4-Trichlorobenzene in Methanol Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Karimov">Samir Karimov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elshad%20Abdullayev"> Elshad Abdullayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Muslum%20Gurbanov"> Muslum Gurbanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As one of the γ-radiolysis products of hexachlorocyclohexane and hexachlorobenzene, the study of 1.4 g/L concentrated 1,2,4-trichlorobenzene (TCB) in methanol solution has been irradiated at 0-209.3 kGy dose of γ-radiation and the results have been studied via GC-MS. At maximum radiation dose of 209.3 kGy 91.38% of TCB has converted into different organic compounds, such as 1,4-, 1,3- and 1,2- dichlorobenzenes (DCB), chlorobenzene, toluene, benzene and other chlorinated and non-chlorinated compounds. The variation of compounds formed by γ-radiolysis depends on the nature of solvent and radiation dose. One of the frequently identified radiolysis products of TCB in different organic solvents - 1,4-DCB studied quantitatively with external standard. The concentration of DCB increases by increasing absorbed radiation dose to approximately 131.8 kGy, then at higher doses with its conversion into chlorobenzene, it decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-radiolysis" title="γ-radiolysis">γ-radiolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorinated%20pesticides" title=" chlorinated pesticides"> chlorinated pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a>, <a href="https://publications.waset.org/abstracts/search?q=dechlorination" title=" dechlorination"> dechlorination</a> </p> <a href="https://publications.waset.org/abstracts/155160/the-study-of-gh-radiolysis-of-124-trichlorobenzene-in-methanol-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29&page=108">108</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29&page=109">109</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=and%20dose%20estimation%20%28RADTRAD%29&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>