CINXE.COM

Search results for: computed tomography

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: computed tomography</title> <meta name="description" content="Search results for: computed tomography"> <meta name="keywords" content="computed tomography"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="computed tomography" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="computed tomography"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1053</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: computed tomography</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1053</span> Comparison of Computed Tomography Dose Index, Dose Length Product and Effective Dose Among Male and Female Patients From Contrast Enhanced Computed Tomography Pancreatitis Protocol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babina%20Aryal">Babina Aryal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The diagnosis of pancreatitis is generally based on clinical and laboratory findings; however, Computed Tomography (CT) is an imaging technique of choice specially Contrast Enhanced Computed Tomography (CECT) shows morphological characteristic findings that allow for establishing the diagnosis of pancreatitis and determining the extent of disease severity which is done along with the administration of appropriate contrast medium. The purpose of this study was to compare Computed Tomography Dose Index (CTDI), Dose Length Product (DLP) and Effective Dose (ED) among male and female patients from Contrast Enhanced Computed Tomography (CECT) Pancreatitis Protocol. Methods: This retrospective study involved data collection based on clinical/laboratory/ultrasonography diagnosis of Pancreatitis and has undergone CECT Abdomen pancreatitis protocol. data collection involved detailed information about a patient's Age and Gender, Clinical history, Individual Computed Tomography Dose Index and Dose Length Product and effective dose. Results: We have retrospectively collected dose data from 150 among which 127 were males and 23 were females. The values obtained from the display of the CT screen were measured, calculated and compared to determine whether the CTDI, DLP and ED values were similar or not. CTDI for females was more as compared to males. The differences in CTDI values for females and males were 32.2087 and 37.1609 respectively. DLP values and Effective dose for both the genders did not show significant differences. Conclusion: This study concluded that there were no more significant changes in the DLP and ED values among both the genders however we noticed that female patients had more CTDI than males. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20enhanced%20computed%20tomography" title=" contrast enhanced computed tomography"> contrast enhanced computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography%20dose%20index" title=" computed tomography dose index"> computed tomography dose index</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20length%20product" title=" dose length product"> dose length product</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20dose" title=" effective dose"> effective dose</a> </p> <a href="https://publications.waset.org/abstracts/175402/comparison-of-computed-tomography-dose-index-dose-length-product-and-effective-dose-among-male-and-female-patients-from-contrast-enhanced-computed-tomography-pancreatitis-protocol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1052</span> Geometric Calibration of Computed Tomography Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Hung%20Liao">Chia-Hung Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Chieh%20Lin"> Shih-Chieh Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-ray computed tomography (CT) technology has been used in the electronics industry as one of the non-destructive inspection tools for years. The key advantage of X-ray computed tomography technology superior to traditional optical inspection is the penetrating characteristics of X-rays can be used to detect defects in the interior of objects. The objective of this study is to find a way to estimate the system geometric deviation of X-ray CT equipment. Projection trajectories of the characteristic points of standard parts were tracked, and ways to calculate the deviation of various geometric parameters of the system will be proposed and evaluated. A simulation study will be conducted to first find out the effects of system geometric deviation on projected trajectories. Then ways to estimate geometric deviation with collected trajectories will be proposed and tested through simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20calibration" title="geometric calibration">geometric calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20computed%20tomography" title=" X-ray computed tomography"> X-ray computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracing" title=" trajectory tracing"> trajectory tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20optimization" title=" reconstruction optimization"> reconstruction optimization</a> </p> <a href="https://publications.waset.org/abstracts/163099/geometric-calibration-of-computed-tomography-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1051</span> 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Suk%20Oh">Sung-Suk Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong-Keun%20Kang"> Bong-Keun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Wook%20Park"> Sang-Wook Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Jin%20Joo"> Hui-Jin Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Ryul%20Choi"> Jong-Ryul Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Jun%20Lee"> Seong-Jun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Woo%20Sohn"> Jeong-Woo Sohn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imaging%20phantom" title="imaging phantom">imaging phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI%20%28Magnetic%20Resonance%20Imaging%29" title=" MRI (Magnetic Resonance Imaging)"> MRI (Magnetic Resonance Imaging)</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%20%2F%20CT%20%28Positron%20Emission%20Tomography%20%2F%20Computed%20Tomography%29" title=" PET / CT (Positron Emission Tomography / Computed Tomography)"> PET / CT (Positron Emission Tomography / Computed Tomography)</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing "> 3D printing </a> </p> <a href="https://publications.waset.org/abstracts/62972/3d-printed-multi-modal-phantom-using-computed-tomography-and-3d-x-ray-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1050</span> Establishment of Diagnostic Reference Levels for Computed Tomography Examination at the University of Ghana Medical Centre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shirazu%20Issahaku">Shirazu Issahaku</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Kwesi%20Acquah"> Isaac Kwesi Acquah</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Mensah%20Amoh"> Simon Mensah Amoh</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Nunoo"> George Nunoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Diagnostic Reference Levels are important indicators for monitoring and optimizing protocol and procedure in medical imaging between facilities and equipment. This helps to evaluate whether, in routine clinical conditions, the median value obtained for a representative group of patients within an agreed range from a specified procedure is unusually high or low for that procedure. This study aimed to propose Diagnostic Reference Levels for Computed Tomography examination of the most common routine examination of the head, chest and abdominal pelvis regions at the University of Ghana Medical Centre. Methods: The Diagnostic Reference Levels were determined based on the investigation of the most common routine examinations, including head Computed Tomography examination with and without contrast, abdominopelvic Computed Tomography examination with and without contrast, and chest Computed Tomography examination without contrast. The study was based on two dose indicators: the volumetric Computed Tomography Dose Index and Dose-Length Product. Results: The estimated median distribution for head Computed Tomography with contrast for volumetric-Computed Tomography dose index and Dose-Length Product were 38.33 mGy and 829.35 mGy.cm, while without contrast, were 38.90 mGy and 860.90 mGy.cm respectively. For an abdominopelvic Computed Tomography examination with contrast, the estimated volumetric-Computed Tomography dose index and Dose-Length Product values were 40.19 mGy and 2096.60 mGy.cm. In the absence of contrast, the calculated values were 14.65 mGy and 800.40 mGy.cm, respectively. Additionally, for chest Computed Tomography examination, the estimated values were 12.75 mGy and 423.95 mGy.cm for volumetric-Computed Tomography dose index and Dose-Length Product, respectively. These median values represent the proposed diagnostic reference values of the head, chest, and abdominal pelvis regions. Conclusions: The proposed Diagnostic Reference Level is comparable to the recommended International Atomic Energy Agency and International Commission Radiation Protection Publication 135 and other regional published data by the European Commission and Regional National Diagnostic Reference Level in Africa. These reference levels will serve as benchmarks to guide clinicians in optimizing radiation dose levels while ensuring accurate diagnostic image quality at the facility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20reference%20levels" title="diagnostic reference levels">diagnostic reference levels</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography%20dose%20index" title=" computed tomography dose index"> computed tomography dose index</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20exposure" title=" radiation exposure"> radiation exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=dose-length%20product" title=" dose-length product"> dose-length product</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20protection" title=" radiation protection"> radiation protection</a> </p> <a href="https://publications.waset.org/abstracts/188321/establishment-of-diagnostic-reference-levels-for-computed-tomography-examination-at-the-university-of-ghana-medical-centre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1049</span> Evaluation of Computed Tomographic Anatomy of Respiratory System in Caspian Pond Turtle (Mauremys caspica)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saghar%20Karimi">Saghar Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saeed%20Ahrari%20Khafi"> Mohammad Saeed Ahrari Khafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Abolhasani%20Foroughi"> Amin Abolhasani Foroughi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, keeping exotic species as pet animals has become widespread. Turtles are exotic species from chelonians, which are interested by many people. Caspian pond and European pond turtles from Emydidea family are commonly kept as pets in Iran. Presence of the shell in turtles makes achievement to a comprehensive clinical examination impossible. Respiratory system is one of the most important structures to be examined completely. Presence of the air in the respiratory system makes radiography the first modality to think of; however, image quality would be affected by the shell. Computed tomography (CT) as a radiography-based and non-invasive technique provides cross-sectional scans with little superimposition. The aim of this study was to depict normal computed tomographic anatomy of the respiratory system in Caspian Pond Turtle. Five adult Caspian pond turtle were scanned using a 16-detector CT machine. Our results showed that computed tomography is able to well illustrated different parts of respiratory system in turtle and can be used for detecting abnormalities and disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anatomy" title="anatomy">anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20system" title=" respiratory system"> respiratory system</a>, <a href="https://publications.waset.org/abstracts/search?q=turtle" title=" turtle"> turtle</a> </p> <a href="https://publications.waset.org/abstracts/97439/evaluation-of-computed-tomographic-anatomy-of-respiratory-system-in-caspian-pond-turtle-mauremys-caspica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1048</span> Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Martinez-Garcia">Jorge Martinez-Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20Stelzner"> Ingrid Stelzner</a>, <a href="https://publications.waset.org/abstracts/search?q=Joerg%20Stelzner"> Joerg Stelzner</a>, <a href="https://publications.waset.org/abstracts/search?q=Damian%20Gwerder"> Damian Gwerder</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Schuetz"> Philipp Schuetz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator&rsquo;s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ring%20recognition" title="ring recognition">ring recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection"> edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20computed%20tomography" title=" X-ray computed tomography"> X-ray computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrochronology" title=" dendrochronology"> dendrochronology</a> </p> <a href="https://publications.waset.org/abstracts/130684/image-processing-approach-for-detection-of-three-dimensional-tree-rings-from-x-ray-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1047</span> O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography/Computed Tomography in Patients with Suspicious Recurrent Low and High-Grade Glioma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahkameh%20Asadi">Mahkameh Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Habibollah%20Dadgar"> Habibollah Dadgar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The precise definition margin of high and low-grade glioma is crucial for choosing best treatment approach after surgery and radio-chemotherapy. The aim of the current study was to assess the O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in patients with low (LGG) and high grade glioma (HGG). We retrospectively analyzed 18F-FET PET/CT of 10 patients (age: 33 ± 12 years) with suspicious for recurrent LGG and HGG. The final decision of recurrence was made by magnetic resonance imaging (MRI) and registered clinical data. While response to radio-chemotherapy by MRI is often complex and sophisticated due to the edema, necrosis, and inflammation, emerging amino acid PET leading to better interpretations with more specifically differentiate true tumor boundaries from equivocal lesions. Therefore, integrating amino acid PET in the management of glioma to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positron%20emission%20tomography" title="positron emission tomography">positron emission tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20positron%20emission%20tomography" title=" amino acid positron emission tomography"> amino acid positron emission tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20and%20high%20grade%20glioma" title=" low and high grade glioma"> low and high grade glioma</a> </p> <a href="https://publications.waset.org/abstracts/127798/o-2-18f-fluoroethyl-l-tyrosine-positron-emission-tomographycomputed-tomography-in-patients-with-suspicious-recurrent-low-and-high-grade-glioma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1046</span> Computed Tomography Brain and Inpatient Falls: An Audit Evaluating the Indications and Outcomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zain%20Khan">Zain Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Ahn"> Steve Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathy%20Monypenny"> Kathy Monypenny</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Fink"> James Fink</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Australian public hospitals, there were approximately 34,000 reported inpatient falls between 2015 to 2016. The gold standard for diagnosing intracranial injury is non-contrast enhanced brain computed tomography (CTB). Over a three-month timeframe, a total of one hundred and eighty (180) falls were documented between the hours of 4pm and 8am at a large metro hospital. Only three (3) of these scans demonstrated a positive intra-cranial finding. The rationale for scanning varied. The common indications included a fall with head strike, the presence of blood thinning medication, loss of consciousness, reduced Glasgow Coma Scale (GCS), vomiting and new neurological findings. There are several validated tools to aid in decision-making around ordering CTB scans in the acute setting, but no such accepted tool exists for the inpatient space. With further data collection, spanning a greater length of time and through involving multiple centres, work can be done towards generating such a tool that can be utilized for inpatient falls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=falls" title=" falls"> falls</a>, <a href="https://publications.waset.org/abstracts/search?q=inpatient" title=" inpatient"> inpatient</a>, <a href="https://publications.waset.org/abstracts/search?q=intracranial%20hemorrhage" title=" intracranial hemorrhage"> intracranial hemorrhage</a> </p> <a href="https://publications.waset.org/abstracts/178242/computed-tomography-brain-and-inpatient-falls-an-audit-evaluating-the-indications-and-outcomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1045</span> Heat-Induced Uncertainty of Industrial Computed Tomography Measuring a Stainless Steel Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Verena%20M.%20Moock">Verena M. Moock</a>, <a href="https://publications.waset.org/abstracts/search?q=Darien%20E.%20Arce%20Ch%C3%A1vez"> Darien E. Arce Chávez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20M.%20Espejel%20Gonz%C3%A1lez"> Mariana M. Espejel González</a>, <a href="https://publications.waset.org/abstracts/search?q=Leopoldo%20Ru%C3%ADz-Huerta"> Leopoldo Ruíz-Huerta</a>, <a href="https://publications.waset.org/abstracts/search?q=Crescencio%20Garc%C3%ADa-Segundo"> Crescencio García-Segundo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncertainty analysis in industrial computed tomography is commonly related to metrological trace tools, which offer precision measurements of external part features. Unfortunately, there is no such reference tool for internal measurements to profit from the unique imaging potential of X-rays. Uncertainty approximations for computed tomography are still based on general aspects of the industrial machine and do not adapt to acquisition parameters or part characteristics. The present study investigates the impact of the acquisition time on the dimensional uncertainty measuring a stainless steel cylinder with a circular tomography scan. The authors develop the figure difference method for X-ray radiography to evaluate the volumetric differences introduced within the projected absorption maps of the metal workpiece. The dimensional uncertainty is dominantly influenced by photon energy dissipated as heat causing the thermal expansion of the metal, as monitored by an infrared camera within the industrial tomograph. With the proposed methodology, we are able to show evolving temperature differences throughout the tomography acquisition. This is an early study showing that the number of projections in computer tomography induces dimensional error due to energy absorption. The error magnitude would depend on the thermal properties of the sample and the acquisition parameters by placing apparent non-uniform unwanted volumetric expansion. We introduce infrared imaging for the experimental display of metrological uncertainty in a particular metal part of symmetric geometry. We assess that the current results are of fundamental value to reach the balance between the number of projections and uncertainty tolerance when performing analysis with X-ray dimensional exploration in precision measurements with industrial tomography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20metrology" title=" digital metrology"> digital metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20imaging" title=" infrared imaging"> infrared imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20expansion" title=" thermal expansion"> thermal expansion</a> </p> <a href="https://publications.waset.org/abstracts/157387/heat-induced-uncertainty-of-industrial-computed-tomography-measuring-a-stainless-steel-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1044</span> Efects of Data Corelation in a Sparse-View Compresive Sensing Based Image Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajid%20Abas">Sajid Abas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jon%20Pyo%20Hong"> Jon Pyo Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Ryun%20Le"> Jung-Ryun Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungryong%20Cho"> Seungryong Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20laminography" title=" computed laminography"> computed laminography</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20sending" title=" compressive sending"> compressive sending</a>, <a href="https://publications.waset.org/abstracts/search?q=low-dose" title=" low-dose"> low-dose</a> </p> <a href="https://publications.waset.org/abstracts/13025/efects-of-data-corelation-in-a-sparse-view-compresive-sensing-based-image-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1043</span> &#039;Low Electronic Noise&#039; Detector Technology in Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ikhlef">A. Ikhlef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image noise in computed tomography, is mainly caused by the statistical noise, system noise reconstruction algorithm filters. Since last few years, low dose x-ray imaging became more and more desired and looked as a technical differentiating technology among CT manufacturers. In order to achieve this goal, several technologies and techniques are being investigated, including both hardware (integrated electronics and photon counting) and software (artificial intelligence and machine learning) based solutions. From a hardware point of view, electronic noise could indeed be a potential driver for low and ultra-low dose imaging. We demonstrated that the reduction or elimination of this term could lead to a reduction of dose without affecting image quality. Also, in this study, we will show that we can achieve this goal using conventional electronics (low cost and affordable technology), designed carefully and optimized for maximum detective quantum efficiency. We have conducted the tests using large imaging objects such as 30 cm water and 43 cm polyethylene phantoms. We compared the image quality with conventional imaging protocols with radiation as low as 10 mAs (<< 1 mGy). Clinical validation of such results has been performed as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20noise" title=" electronic noise"> electronic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillation%20detector" title=" scintillation detector"> scintillation detector</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20detector" title=" x-ray detector"> x-ray detector</a> </p> <a href="https://publications.waset.org/abstracts/105183/low-electronic-noise-detector-technology-in-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1042</span> Comparative Study of Different Enhancement Techniques for Computed Tomography Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Jinimole">C. G. Jinimole</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Harsha"> A. Harsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20techniques" title=" enhancement techniques"> enhancement techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=increasing%20contrast" title=" increasing contrast"> increasing contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR%20and%20MSE" title=" PSNR and MSE"> PSNR and MSE</a> </p> <a href="https://publications.waset.org/abstracts/69868/comparative-study-of-different-enhancement-techniques-for-computed-tomography-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1041</span> Recent Advances of Photo-Detectors in Single Photon Emission Computed Tomography Imaging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasem%20A.%20Alyazji">Qasem A. Alyazji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main techniques for Positron emission tomography (PET), Single photon emission computed tomography (SPECT) is the development of radiation detectors. The NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes known as the Anger camera, is the most dominant detectors system in PET and SPECT devices. Technological advances in many materials, in addition to the emerging importance of specialized applications such as preclinical imaging and cardiac imaging, have encouraged innovation so that alternatives to the anger camera are now part in alternative imaging systems. In this paper we will discuss the main performance characteristics of detectors devices and scanning developments in both scintillation detectors, semiconductor (solid state) detectors, and Photon Transducers such as photomultiplier tubes (PMTs), position sensitive photomultiplier tubes (PSPMTs), Avalanche photodiodes (APDs) and Silicon photomultiplier (SiPMT). This paper discussed the detectors that showed promising results. This study is a review of recent developments in the detectors used in single photon emission computed tomography (SPECT) imaging system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPECT" title="SPECT">SPECT</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillation" title=" scintillation"> scintillation</a>, <a href="https://publications.waset.org/abstracts/search?q=PMTs" title=" PMTs"> PMTs</a>, <a href="https://publications.waset.org/abstracts/search?q=SiPMT" title=" SiPMT"> SiPMT</a>, <a href="https://publications.waset.org/abstracts/search?q=PSPMTs" title=" PSPMTs"> PSPMTs</a>, <a href="https://publications.waset.org/abstracts/search?q=APDs" title=" APDs"> APDs</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20%28solid%20state%29" title=" semiconductor (solid state)"> semiconductor (solid state)</a> </p> <a href="https://publications.waset.org/abstracts/157985/recent-advances-of-photo-detectors-in-single-photon-emission-computed-tomography-imaging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1040</span> Medical Experience: Usability Testing of Displaying Computed Tomography Scans and Magnetic Resonance Imaging in Virtual and Augmented Reality for Accurate Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alyona%20Gencheva">Alyona Gencheva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common way to study diagnostic results is using specialized programs at a stationary workplace. Magnetic Resonance Imaging is presented in a two-dimensional (2D) format, and Computed Tomography sometimes looks like a three-dimensional (3D) model that can be interacted with. The main idea of the research is to compare ways of displaying diagnostic results in virtual reality that can help a surgeon during or before an operation in augmented reality. During the experiment, the medical staff examined liver vessels in the abdominal area and heart boundaries. The search time and detection accuracy were measured on black-and-white and coloured scans. Usability testing in virtual reality shows convenient ways of interaction like hand input, voice activation, displaying risk to the patient, and the required number of scans. The results of the experiment will be used in the new C# program based on Magic Leap technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=magic%20leap" title=" magic leap"> magic leap</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=usability%20testing" title=" usability testing"> usability testing</a>, <a href="https://publications.waset.org/abstracts/search?q=VTE%20risk" title=" VTE risk"> VTE risk</a> </p> <a href="https://publications.waset.org/abstracts/163957/medical-experience-usability-testing-of-displaying-computed-tomography-scans-and-magnetic-resonance-imaging-in-virtual-and-augmented-reality-for-accurate-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1039</span> Automatic Post Stroke Detection from Computed Tomography Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Gopi%20Jinimole">C. Gopi Jinimole</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Harsha"> A. Harsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For detecting strokes, Computed Tomography (CT) scan is preferred for imaging the abnormalities or infarction in the brain. Because of the problems in the window settings used to evaluate brain CT images, they are very poor in the early stage infarction detection. This paper presents an automatic estimation method for the window settings of the CT images for proper contrast of the hyper infarction present in the brain. In the proposed work the window width is estimated automatically for each slice and the window centre is changed to a new value of 31HU, which is the average of the HU values of the grey matter and white matter in the brain. The automatic window width estimation is based on the average of median of statistical central moments. Thus with the new suggested window centre and estimated window width, the hyper infarction or post-stroke regions in CT brain images are properly detected. The proposed approach assists the radiologists in CT evaluation for early quantitative signs of delayed stroke, which leads to severe hemorrhage in the future can be prevented by providing timely medication to the patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography%20%28CT%29" title="computed tomography (CT)">computed tomography (CT)</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper%20infarction%20or%20post%20stroke%20region" title=" hyper infarction or post stroke region"> hyper infarction or post stroke region</a>, <a href="https://publications.waset.org/abstracts/search?q=Hounsefield%20Unit%20%28HU%29" title=" Hounsefield Unit (HU)"> Hounsefield Unit (HU)</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20centre%20%28WC%29" title=" window centre (WC)"> window centre (WC)</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20width%20%28WW%29" title=" window width (WW)"> window width (WW)</a> </p> <a href="https://publications.waset.org/abstracts/75360/automatic-post-stroke-detection-from-computed-tomography-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1038</span> The Analysis of Personalized Low-Dose Computed Tomography Protocol Based on Cumulative Effective Radiation Dose and Cumulative Organ Dose for Patients with Breast Cancer with Regular Chest Computed Tomography Follow up</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okhee%20Woo">Okhee Woo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The aim of this study is to evaluate 2-year cumulative effective radiation dose and cumulative organ dose on regular follow-up computed tomography (CT) scans in patients with breast cancer and to establish personalized low-dose CT protocol. Methods and Materials: A retrospective study was performed on the patients with breast cancer who were diagnosed and managed consistently on the basis of routine breast cancer follow-up protocol between 2012-01 and 2016-06. Based on ICRP (International Commission on Radiological Protection) 103, the cumulative effective radiation doses of each patient for 2-year follow-up were analyzed using the commercial radiation management software (Radimetrics, Bayer healthcare). The personalized effective doses on each organ were analyzed in detail by the software-providing Monte Carlo simulation. Results: A total of 3822 CT scans on 490 patients was evaluated (age: 52.32±10.69). The mean scan number for each patient was 7.8±4.54. Each patient was exposed 95.54±63.24 mSv of radiation for 2 years. The cumulative CT radiation dose was significantly higher in patients with lymph node metastasis (p = 0.00). The HER-2 positive patients were more exposed to radiation compared to estrogen or progesterone receptor positive patient (p = 0.00). There was no difference in the cumulative effective radiation dose with different age groups. Conclusion: To acknowledge how much radiation exposed to a patient is a starting point of management of radiation exposure for patients with long-term CT follow-up. The precise and personalized protocol, as well as iterative reconstruction, may reduce hazard from unnecessary radiation exposure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20radiation%20dose" title=" effective radiation dose"> effective radiation dose</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20organ%20dose" title=" cumulative organ dose"> cumulative organ dose</a> </p> <a href="https://publications.waset.org/abstracts/92617/the-analysis-of-personalized-low-dose-computed-tomography-protocol-based-on-cumulative-effective-radiation-dose-and-cumulative-organ-dose-for-patients-with-breast-cancer-with-regular-chest-computed-tomography-follow-up" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1037</span> Relation between Initial Stability of the Dental Implant and Bone-Implant Contact Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui-Ting%20Hsu">Jui-Ting Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng-Li%20Huang"> Heng-Li Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Tzu%20Tsai"> Ming-Tzu Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Chih%20Su"> Kuo-Chih Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Lih-Jyh%20Fuh"> Lih-Jyh Fuh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of this study were to measure the initial stability of the dental implant (ISQ and PTV) in the artificial foam bone block with three different quality levels. In addition, the 3D bone to implant contact percentage (BIC%) was measured based on the micro-computed tomography images. Furthermore, the relation between the initial stability of dental implant (ISQ and PTV) and BIC% were calculated. The experimental results indicated that enhanced the material property of the artificial foam bone increased the initial stability of the dental implant. The Pearson’s correlation coefficient between the BIC% and the two approaches (ISQ and PTV) were 0.652 and 0.745. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20implant" title="dental implant">dental implant</a>, <a href="https://publications.waset.org/abstracts/search?q=implant%20stability%20quotient" title=" implant stability quotient"> implant stability quotient</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20insertion%20torque" title=" peak insertion torque"> peak insertion torque</a>, <a href="https://publications.waset.org/abstracts/search?q=bone-implant%20contact" title=" bone-implant contact"> bone-implant contact</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-computed%20tomography" title=" micro-computed tomography"> micro-computed tomography</a> </p> <a href="https://publications.waset.org/abstracts/24176/relation-between-initial-stability-of-the-dental-implant-and-bone-implant-contact-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1036</span> MR-Implantology: Exploring the Use for Mixed Reality in Dentistry Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Areej%20R.%20Banjar">Areej R. Banjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraham%20G.%20Campbell"> Abraham G. Campbell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Mixed Reality (MR) in teaching and training is growing popular and can improve students’ ability to perform technical procedures. This short paper outlines the creation of an interactive educational MR 3D application that aims to improve the quality of instruction for dentistry students. This application is called MRImplantology and aims to teach the fundamentals and preoperative planning of dental implant placement. MRImplantology uses cone-beam computed tomography (CBCT) images as the source for 3D dental models that dentistry students will be able to freely manipulate within a 3D MR world to aid their learning process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=dentistry" title=" dentistry"> dentistry</a>, <a href="https://publications.waset.org/abstracts/search?q=cone-beam%20computed%20tomography%20CBCT" title=" cone-beam computed tomography CBCT"> cone-beam computed tomography CBCT</a>, <a href="https://publications.waset.org/abstracts/search?q=head%20mounted%20display%20HMD" title=" head mounted display HMD"> head mounted display HMD</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20reality" title=" mixed reality"> mixed reality</a> </p> <a href="https://publications.waset.org/abstracts/146861/mr-implantology-exploring-the-use-for-mixed-reality-in-dentistry-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1035</span> Using Scanning Electron Microscope and Computed Tomography for Concrete Diagnostics of Airfield Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Linek">M. Linek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the comparison of selected evaluation methods regarding microstructure modification of hardened cement concrete intended for airfield pavements. Basic test results were presented for two pavement quality concrete lots. Analysis included standard concrete used for airfield pavements and modern material solutions based on concrete composite modification. In case of basic grain size distribution of concrete cement CEM I 42,5HSR NA, fine aggregate and coarse aggregate fractions in the form of granite chippings, water and admixtures were considered. In case of grain size distribution of modified concrete, the use of modern modifier as substitute of fine aggregate was suggested. Modification influence on internal concrete structure parameters using scanning electron microscope was defined. Obtained images were compared to the results obtained using computed tomography. Opportunity to use this type of equipment for internal concrete structure diagnostics and an attempt of its parameters evaluation was presented. Obtained test results enabled to reach a conclusion that both methods can be applied for pavement quality concrete diagnostics, with particular purpose of airfield pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title="scanning electron microscope">scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20concrete" title=" cement concrete"> cement concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=airfield%20pavements" title=" airfield pavements"> airfield pavements</a> </p> <a href="https://publications.waset.org/abstracts/53038/using-scanning-electron-microscope-and-computed-tomography-for-concrete-diagnostics-of-airfield-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1034</span> Use of Digital Forensics for Sex Determination by Nasal Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20Kumar">Ashwini Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Nayak"> Vinod Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Shankar%20M.%20Bakkannavar"> Shankar M. Bakkannavar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The identification of humans is important in forensic investigations not only in living but also in dead, especially in cases of mass disorders. The procedure followed in dead known as post-mortem identification is a challenging task for the forensic pathologist. However, it is mandatory in terms of the law to fulfill the social norms. Many times, due to mutilation of body parts, the normal methods of identification using skeletal remains cannot be used in the process of identification. In such cases, the intact components of the skeletal remains or bony parts play an important role in identification. In these situations, digital forensics can come to our rescue. The authors hereby made a study for determination of sex based on nasal index by using (Big Bore 16 Slice) Multidetector Computed Tomography 2D Scans. The results are represented as a poster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sex%20determination" title="sex determination">sex determination</a>, <a href="https://publications.waset.org/abstracts/search?q=multidetector%20computed%20tomography" title=" multidetector computed tomography"> multidetector computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=nasal%20index" title=" nasal index"> nasal index</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensic" title=" digital forensic"> digital forensic</a> </p> <a href="https://publications.waset.org/abstracts/41862/use-of-digital-forensics-for-sex-determination-by-nasal-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1033</span> Uncommon Causes of Acute Abdominal Pain: A Pictorial Essay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Hariharan">Mahesh Hariharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajan%20Balasubramaniam"> Rajan Balasubramaniam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharath%20Kumar%20Shetty"> Sharath Kumar Shetty</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanthala%20Yadavalli"> Shanthala Yadavalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ahetasham"> Mohammed Ahetasham</a>, <a href="https://publications.waset.org/abstracts/search?q=Sravya%20Devarapalli"> Sravya Devarapalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acute abdomen is one of the most common clinical conditions requiring a radiological investigation. Ultrasound is the primary modality of choice which can diagnose some of the common causes of acute abdomen. However, sometimes the underlying cause for the pain is far more complicated than expected to mandate a high degree of suspicion to suggest further investigation with contrast-enhanced computed tomography or magnetic resonance imaging. Here, we have compiled a comprehensive series of selected cases to highlight the conditions which can be easily overlooked unless carefully sought for. This also emphasizes the importance of multimodality approach to arrive at the final diagnosis with an increased overall diagnostic accuracy which in turn improves patient management and prognosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20abdomen" title="acute abdomen">acute abdomen</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast-enhanced%20computed%20tomography%20scan" title=" contrast-enhanced computed tomography scan"> contrast-enhanced computed tomography scan</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=plain%20radiographs" title=" plain radiographs"> plain radiographs</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/53361/uncommon-causes-of-acute-abdominal-pain-a-pictorial-essay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1032</span> Using Discrete Event Simulation Approach to Reduce Waiting Times in Computed Tomography Radiology Department</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mwafak%20Shakoor">Mwafak Shakoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to reduce patient waiting times, improve system throughput and improve resources utilization in radiology department. A discrete event simulation model was developed using Arena simulation software to investigate different alternatives to improve the overall system delivery based on adding resource scenarios due to the linkage between patient waiting times and resource availability. The study revealed that there is no addition investment need to procure additional scanner but hospital management deploy managerial tactics to enhance machine utilization and reduce the long waiting time in the department. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=radiology%20department" title=" radiology department"> radiology department</a>, <a href="https://publications.waset.org/abstracts/search?q=arena" title=" arena"> arena</a>, <a href="https://publications.waset.org/abstracts/search?q=waiting%20time" title=" waiting time"> waiting time</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20modeling" title=" healthcare modeling"> healthcare modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography "> computed tomography </a> </p> <a href="https://publications.waset.org/abstracts/17539/using-discrete-event-simulation-approach-to-reduce-waiting-times-in-computed-tomography-radiology-department" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1031</span> Measurement of Nasal Septal Cartilage in Adult Filipinos Using Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Limbert%20Ramos">Miguel Limbert Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Amado%20Galvez"> Joseph Amado Galvez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The nasal septal cartilage is an autologous graft that is widely used in different otolaryngologic procedures of the different subspecialties, such as in septorhinoplasty and ear rehabilitation procedures. The cartilage can be easily accessed and harvested to be utilized for such procedures. However, the dimension of the nasal septal cartilage differs, corresponding to race, gender, and age. Measurements can be done via direct measurement of harvested septal cartilage in cadavers or utilizing radiographic imaging studies giving baseline measurement of the nasal septal cartilage distinct to every race. A preliminary baseline measurement of the dimensions of Filipino nasal septal cartilage was previously established by measuring harvested nasal septal cartilage in Filipino Malay cadavers. This study intends to reinforce this baseline measurement by utilizing computed tomography (CT) scans of adult Filipinos in a tertiary government hospital in the City of Manila, Philippines, which will cover a larger sampling population. Methods: The unit of observation and analysis will be the computed tomography (CT) scans of patients ≥ 18years old who underwent cranial, facial, orbital, paranasal sinus, and temporal bone studies for the year 2019. The measurements will be done in a generated best midsagittal image (155 subjects) which is a view through the midline of the cerebrum that is simultaneously viewed with its coronal and axial views for proper orientation. The view should reveal important structures that will be used to plot the anatomic boundaries, which will be measured by a DICOM image viewing software (RadiAnt). The measured area of nasal septal cartilage will be compared by gender and age. Results: The total area of the nasal septal cartilage is larger in males compared to females, with a mean value of 6.52 cm² and 5.71 cm², respectively. The harvestable nasal septal cartilage area is also larger in males with a mean value of 3.57 cm² compared to females with only a measured mean value of 3.13 cm². The total and harvestable area of the nasal septal cartilage is largest in the 18-30 year-old age group with a mean value of 6.47 cm² and 3.60 cm² respectively and tends to decrease with the advancement of age, which can be attributed to continuous ossification changes. Conclusion: The best time to perform septorhinoplasty and other otolaryngologic procedures which utilize the nasal septal cartilage as graft material is during post-pubertal age, hence surgeries should be avoided or delayed to allow growth and maturation of the cartilage. A computed tomography scan is a cost-effective and non-invasive tool that can provide information on septal cartilage areas prior to these procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autologous%20graft" title="autologous graft">autologous graft</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=nasal%20septal%20cartilage" title=" nasal septal cartilage"> nasal septal cartilage</a>, <a href="https://publications.waset.org/abstracts/search?q=septorhinoplasty" title=" septorhinoplasty"> septorhinoplasty</a> </p> <a href="https://publications.waset.org/abstracts/137973/measurement-of-nasal-septal-cartilage-in-adult-filipinos-using-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1030</span> Procedural Protocol for Dual Energy Computed Tomography (DECT) Inversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rezvan%20Ravanfar%20Haghighi">Rezvan Ravanfar Haghighi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chatterjee"> S. Chatterjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Kumar"> Pratik Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20C.%20Vani"> V. C. Vani</a>, <a href="https://publications.waset.org/abstracts/search?q=Priya%20Jagia"> Priya Jagia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjiv%20Sharma"> Sanjiv Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Susama%20Rani%20Mandal"> Susama Rani Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Lakshmy"> R. Lakshmy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dual energy computed tomography (DECT) aims at noting the HU(V) values for the sample at two different voltages V=V1, V2 and thus obtain the electron densities (ρe) and effective atomic number (Zeff) of the substance. In the present paper, we aim to obtain a numerical algorithm by which (ρe, Zeff) can be obtained from the HU(100) and HU(140) data, where V=100, 140 kVp. The idea is to use this inversion method to characterize and distinguish between the lipid and fibrous coronary artery plaques.With the idea to develop the inversion algorithm for low Zeff materials, as is the case with non calcified coronary artery plaque, we prepare aqueous samples whose calculated values of (ρe, Zeff) lie in the range (2.65×1023≤ ρe≤ 3.64×1023 per cc ) and (6.80≤ Zeff ≤ 8.90). We fill the phantom with these known samples and experimentally determine HU(100) and HU(140) for the same pixels. Knowing that the HU(V) values are related to the attenuation coefficient of the system, we present an algorithm by which the (ρe, Zeff) is calibrated with respect to (HU(100), HU(140)). The calibration is done with a known set of 20 samples; its accuracy is checked with a different set of 23 known samples. We find that the calibration gives the ρe with an accuracy of ± 4% while Zeff is found within ±1% of the actual value, the confidence being 95%.In this inversion method (ρe, Zeff) of the scanned sample can be found by eliminating the effects of the CT machine and also by ensuring that the determination of the two unknowns (ρe, Zeff) does not interfere with each other. It is found that this algorithm can be used for prediction of chemical characteristic (ρe, Zeff) of unknown scanned materials with 95% confidence level, by inversion of the DECT data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title="chemical composition">chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-energy%20computed%20tomography" title=" dual-energy computed tomography"> dual-energy computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=inversion%20algorithm" title=" inversion algorithm"> inversion algorithm</a> </p> <a href="https://publications.waset.org/abstracts/38567/procedural-protocol-for-dual-energy-computed-tomography-dect-inversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1029</span> A Questionnaire Survey Reviewing Radiographers&#039; Knowledge of Computed Tomography Exposure Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rawashdeh">Mohammad Rawashdeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20McEntee"> Mark McEntee</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Zaitoun"> Maha Zaitoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Abdelrahman"> Mostafa Abdelrahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Brennan"> Patrick Brennan</a>, <a href="https://publications.waset.org/abstracts/search?q=Haytham%20Alewaidat"> Haytham Alewaidat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Lewis"> Sarah Lewis</a>, <a href="https://publications.waset.org/abstracts/search?q=Charbel%20Saade"> Charbel Saade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the tremendous advancements that have been generated by Computed Tomography (CT) in the field of diagnosis, concerns have been raised about the potential cancer induction risk from CT because of the exponentially increased use of it in medicine. This study aims at investigating the application and knowledge of practicing radiographers in Jordan about CT radiation. In order to collect the primary data of this study, a questionnaire was designed and distributed by social media using a snow-balling sampling method. The respondents (n=54) have answered 36 questions including the questions about their demographic information, knowledge about Diagnostic Reference Levels (DRLs), CT exposure and adaptation of pediatric patients exposure. The educational level of the respondents was either at a diploma degree (35.2%) or bachelor (64.8%). The results of this study have indicated a good level of general knowledge between radiographers about the relationship between image quality, exposure parameters, and patient dose. The level of knowledge related to DRL was poor where less than 7.4 percent of the sample members were able to give specific values for a number of common anatomical fields, including abdomen, brain, and chest. Overall, Jordanian radiographers need to gain more knowledge about the expected levels of the dose when applying good practice. Additional education on DRL or DRL inclusion in educational programs is highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%20scan" title=" CT scan"> CT scan</a>, <a href="https://publications.waset.org/abstracts/search?q=DRLs" title=" DRLs"> DRLs</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure%20parameters" title=" exposure parameters"> exposure parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20quality" title=" image quality"> image quality</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a> </p> <a href="https://publications.waset.org/abstracts/107826/a-questionnaire-survey-reviewing-radiographers-knowledge-of-computed-tomography-exposure-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1028</span> Liver Tumor Detection by Classification through FD Enhancement of CT Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ghatwary">N. Ghatwary</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ahmed"> A. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jalab"> H. Jalab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20differential%20%28FD%29" title="fractional differential (FD)">fractional differential (FD)</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography%20%28CT%29" title=" computed tomography (CT)"> computed tomography (CT)</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion" title=" fusion"> fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=aplha" title=" aplha"> aplha</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20features." title=" texture features."> texture features.</a> </p> <a href="https://publications.waset.org/abstracts/39719/liver-tumor-detection-by-classification-through-fd-enhancement-of-ct-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1027</span> Comparison of the Classification of Cystic Renal Lesions Using the Bosniak Classification System with Contrast Enhanced Ultrasound and Magnetic Resonance Imaging to Computed Tomography: A Prospective Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dechen%20Tshering%20Vogel">Dechen Tshering Vogel</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20T.%20Heverhagen"> Johannes T. Heverhagen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Kiss"> Bernard Kiss</a>, <a href="https://publications.waset.org/abstracts/search?q=Spyridon%20Arampatzis"> Spyridon Arampatzis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In addition to computed tomography (CT), contrast enhanced ultrasound (CEUS), and magnetic resonance imaging (MRI) are being increasingly used for imaging of renal lesions. The aim of this prospective study was to compare the classification of complex cystic renal lesions using the Bosniak classification with CEUS and MRI to CT. Forty-eight patients with 65 cystic renal lesions were included in this study. All participants signed written informed consent. The agreement between the Bosniak classifications of complex renal lesions ( ≥ BII-F) on CEUS and MRI were compared to that of CT and were tested using Cohen’s Kappa. Sensitivity, specificity, positive and negative predictive values (PPV/NPV) and the accuracy of CEUS and MRI compared to CT in the detection of complex renal lesions were calculated. Twenty-nine (45%) out of 65 cystic renal lesions were classified as complex using CT. The agreement between CEUS and CT in the classification of complex cysts was fair (agreement 50.8%, Kappa 0.31), and was excellent between MRI and CT (agreement 93.9%, Kappa 0.88). Compared to CT, MRI had a sensitivity of 96.6%, specificity of 91.7%, a PPV of 54.7%, and an NPV of 54.7% with an accuracy of 63.1%. The corresponding values for CEUS were sensitivity 100.0%, specificity 33.3%, PPV 90.3%, and NPV 97.1% with an accuracy 93.8%. The classification of complex renal cysts based on MRI and CT scans correlated well, and MRI can be used instead of CT for this purpose. CEUS can exclude complex lesions, but due to higher sensitivity, cystic lesions tend to be upgraded. However, it is useful for initial imaging, for follow up of lesions and in those patients with contraindications to CT and MRI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bosniak%20classification" title="Bosniak classification">Bosniak classification</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20enhanced%20ultrasound" title=" contrast enhanced ultrasound"> contrast enhanced ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=cystic%20renal%20lesions" title=" cystic renal lesions"> cystic renal lesions</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a> </p> <a href="https://publications.waset.org/abstracts/111885/comparison-of-the-classification-of-cystic-renal-lesions-using-the-bosniak-classification-system-with-contrast-enhanced-ultrasound-and-magnetic-resonance-imaging-to-computed-tomography-a-prospective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1026</span> Contrast Media Effects and Radiation Dose Assessment in Contrast Enhanced Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buhari%20Samaila">Buhari Samaila</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabiu%20Abdullahi"> Sabiu Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Buhari%20Maidamma"> Buhari Maidamma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Contrast-enhanced computed tomography (CE-CT) is a technique that uses contrast media to improve image quality and diagnostic accuracy. It is a widely used imaging modality in medical diagnostics, offering high-resolution images for accurate diagnosis. However, concerns regarding the potential adverse effects of contrast media and radiation dose exposure have prompted ongoing investigation and assessment. It is important to assess the effects of contrast media and radiation dose in CE-CT procedures. Objective: This study aims to assess the effects of contrast media and radiation dose in contrast-enhanced computed tomography (CECT) procedures. Methods: A comprehensive review of the literature was conducted to identify studies related to contrast media effects and radiation dose assessment in CECT. Relevant data, including location, type of research, objective, method, findings, conclusion, authors, and year of publications, were extracted, analyzed, and reported. Results: The findings revealed that several studies have investigated the impacts of contrast media and radiation doses in CECT procedures, with iodinated contrast agents being the most commonly employed. Adverse effects associated with contrast media administration were reported, including allergic reactions, nephrotoxicity, and thyroid dysfunction, albeit at relatively low incidence rates. Additionally, radiation dose levels varied depending on the imaging protocol and anatomical region scanned. Efforts to minimize radiation exposure through optimization techniques were evident across studies. Conclusion: Contrast-enhanced computed tomography (CECT) remains an invaluable tool in medical imaging; however, careful consideration of contrast media effects and radiation dose exposure is imperative. Healthcare practitioners should weigh the diagnostic benefits against potential risks, employing strategies to mitigate adverse effects and optimize radiation dose levels for patient safety and effective diagnosis. Further research is warranted to enhance the understanding and management of contrast media effects and radiation dose optimization in CECT procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT" title="CT">CT</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20media" title=" contrast media"> contrast media</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20radiation" title=" effect of radiation"> effect of radiation</a> </p> <a href="https://publications.waset.org/abstracts/192678/contrast-media-effects-and-radiation-dose-assessment-in-contrast-enhanced-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1025</span> Cone Beam Computed Tomography: A Useful Diagnostic Tool to Determine Root Canal Morphology in a Sample of Egyptian Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20El-Messiry">H. El-Messiry</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El-Zainy"> M. El-Zainy</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Abdelkhalek"> D. Abdelkhalek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cone-beam computed tomography (CBCT) provides high-quality 3-dimensional images of dental structures because of its high spatial resolution. The study of dental morphology is important in research as it provides information about diversities within a population. Many studies have shown different shapes and numbers of roots canals among different races, especially in molars. The aim of this study was to determine the morphology of root canals of mandibular first and third molars in a sample of Egyptian population using CBCT scanning. Fifty mandibular first Molars (M1) and fifty mandibular third (M3) extracted molars were collected. Thick rectangular molds were made using pink wax to hold the samples. Molars were embedded in the wax mold by aligning them in rows leaving arbitrary 0.5cm space between them. The molds with the samples in were submitted for CBCT scan. The number and morphology of root canals were assessed and classified according to Vertucci's classification. The mesial and the distal roots were examined separately. Finally, data was analyzed using Fisher exact test. The most prevalent mesial root canal frequency in M1 was type IV (60%) and type II (40 %), while M3 showed prevalence of type I (40%) and II (40%). Distal root canal morphology showed prevalence of type I in both M1 (66%) and M3 (86%). So, it can be concluded that CBCT scanning provides supplemental information about the root canal configurations of mandibular molars in a sample of Egyptian population. This study may help clinicians in the root canal treatment of mandibular molars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cone%20beam%20computed%20tomography" title="cone beam computed tomography">cone beam computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=mandibular%20first%20molar" title=" mandibular first molar"> mandibular first molar</a>, <a href="https://publications.waset.org/abstracts/search?q=mandibular%20third%20molar" title=" mandibular third molar"> mandibular third molar</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20canal%20morphology" title=" root canal morphology"> root canal morphology</a> </p> <a href="https://publications.waset.org/abstracts/61096/cone-beam-computed-tomography-a-useful-diagnostic-tool-to-determine-root-canal-morphology-in-a-sample-of-egyptian-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1024</span> Visibility of the Borders of the Mandibular Canal: A Comparative in Vitro Study Using Digital Panoramic Radiography, Reformatted Panoramic Radiography and Cross Sectional Cone Beam Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keerthilatha%20Pai">Keerthilatha Pai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakshi%20Kamra"> Sakshi Kamra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Determining the position of the mandibular canal prior to implant placement and surgeries of the posterior mandible are important to avoid the nerve injury. The visibility of the mandibular canal varies according to the imaging modality. Although panoramic radiography is the most common, slowly cone beam computed tomography is replacing it. This study was conducted with an aim to determine and compare the visibility of superior and inferior borders of the mandibular canal in digital panoramic radiograph, reformatted panoramic radiograph and cross-sectional images of cone beam computed tomography. Study design: digital panoramic, reformatted panoramic radiograph and cross sectional CBCT images of 25 human mandibles were evaluated for the visibility of the superior and inferior borders of the mandibular canal according to a 5 point scoring criteria. Also, the canal was evaluated as completely visible, partially visible and not visible. The mean scores and visibility percentage of all the imaging modalities were determined and compared. The interobserver and intraobserver agreement in the visualization of the superior and inferior borders of the mandibular canal were determined. Results: The superior and inferior borders of the mandibular canal were completely visible in 47% of the samples in digital panoramic, 63% in reformatted panoramic and 75.6% in CBCT cross-sectional images. The mandibular canal was invisible in 24% of samples in digital panoramic, 19% in reformatted panoramic and 2% in cross-sectional CBCT images. Maximum visibility was seen in Zone 5 and least visibility in Zone 1. On comparison of all the imaging modalities, CBCT cross-sectional images showed better visibility of superior border in Zones 2,3,4,6 and inferior border in Zones 2,3,4,6. The difference was statistically significant. Conclusion: CBCT cross-sectional images were much superior in the visualization of the mandibular canal in comparison to reformatted and digital panoramic radiographs. The inferior border was better visualized in comparison to the superior border in digital panoramic imaging. The mandibular canal was maximumly visible in posterior one-third region of the mandible and the visibility decreased towards the mental foramen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cone%20beam%20computed%20tomography" title="cone beam computed tomography">cone beam computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=mandibular%20canal" title=" mandibular canal"> mandibular canal</a>, <a href="https://publications.waset.org/abstracts/search?q=reformatted%20panoramic%20radiograph" title=" reformatted panoramic radiograph"> reformatted panoramic radiograph</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a> </p> <a href="https://publications.waset.org/abstracts/108093/visibility-of-the-borders-of-the-mandibular-canal-a-comparative-in-vitro-study-using-digital-panoramic-radiography-reformatted-panoramic-radiography-and-cross-sectional-cone-beam-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computed%20tomography&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computed%20tomography&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computed%20tomography&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computed%20tomography&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computed%20tomography&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computed%20tomography&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computed%20tomography&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computed%20tomography&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computed%20tomography&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computed%20tomography&amp;page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computed%20tomography&amp;page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computed%20tomography&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10