CINXE.COM
Radian - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Radian - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"81d0c3ee-09ec-40f6-b2a9-eba2dd2f2192","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Radian","wgTitle":"Radian","wgCurRevisionId":1258410919,"wgRevisionId":1258410919,"wgArticleId":26003,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 location test","CS1: long volume value","CS1 Latin-language sources (la)","CS1 French-language sources (fr)","Articles with short description","Short description is different from Wikidata","Wikipedia indefinitely semi-protected pages","Wikipedia indefinitely move-protected pages","Commons category link from Wikidata","Natural units","SI derived units","Pi","Units of plane angle"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Radian" ,"wgRelevantArticleId":26003,"wgIsProbablyEditable":false,"wgRelevantPageIsProbablyEditable":false,"wgRestrictionEdit":["autoconfirmed"],"wgRestrictionMove":["sysop"],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q33680","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList", "mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp", "ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/4/4e/Circle_radians.gif"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/4/4e/Circle_radians.gif"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Radian - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Radian"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Radian"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject page-Radian rootpage-Radian skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Radian" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Radian" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Radian" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Radian" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Unit_symbol" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Unit_symbol"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Unit symbol</span> </div> </a> <ul id="toc-Unit_symbol-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dimensional_analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dimensional_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Dimensional analysis</span> </div> </a> <ul id="toc-Dimensional_analysis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Conversions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Conversions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Conversions</span> </div> </a> <button aria-controls="toc-Conversions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Conversions subsection</span> </button> <ul id="toc-Conversions-sublist" class="vector-toc-list"> <li id="toc-Between_degrees" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Between_degrees"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Between degrees</span> </div> </a> <ul id="toc-Between_degrees-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Between_gradians" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Between_gradians"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Between gradians</span> </div> </a> <ul id="toc-Between_gradians-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Usage" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Usage"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Usage</span> </div> </a> <button aria-controls="toc-Usage-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Usage subsection</span> </button> <ul id="toc-Usage-sublist" class="vector-toc-list"> <li id="toc-Mathematics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Mathematics</span> </div> </a> <ul id="toc-Mathematics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Physics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Physics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Physics</span> </div> </a> <ul id="toc-Physics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Prefixes_and_variants" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Prefixes_and_variants"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Prefixes and variants</span> </div> </a> <ul id="toc-Prefixes_and_variants-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Pre-20th_century" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pre-20th_century"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Pre-20th century</span> </div> </a> <ul id="toc-Pre-20th_century-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-As_an_SI_unit" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#As_an_SI_unit"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>As an SI unit</span> </div> </a> <ul id="toc-As_an_SI_unit-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Radian</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 84 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-84" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">84 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Radiaal" title="Radiaal – Afrikaans" lang="af" hreflang="af" data-title="Radiaal" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B1%D8%A7%D8%AF%D9%8A%D8%A7%D9%86" title="راديان – Arabic" lang="ar" hreflang="ar" data-title="راديان" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Radi%C3%A1n" title="Radián – Asturian" lang="ast" hreflang="ast" data-title="Radián" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Radian" title="Radian – Azerbaijani" lang="az" hreflang="az" data-title="Radian" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B0%E0%A7%87%E0%A6%A1%E0%A6%BF%E0%A6%AF%E0%A6%BC%E0%A6%BE%E0%A6%A8" title="রেডিয়ান – Bangla" lang="bn" hreflang="bn" data-title="রেডিয়ান" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D1%8B%D1%8F%D0%BD" title="Радыян – Belarusian" lang="be" hreflang="be" data-title="Радыян" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D1%8B%D1%8F%D0%BD" title="Радыян – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Радыян" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%B0%D0%BD" title="Радиан – Bulgarian" lang="bg" hreflang="bg" data-title="Радиан" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bo mw-list-item"><a href="https://bo.wikipedia.org/wiki/%E0%BD%82%E0%BD%9E%E0%BD%B4%E0%BC%8B%E0%BD%9A%E0%BD%91%E0%BC%8D" title="གཞུ་ཚད། – Tibetan" lang="bo" hreflang="bo" data-title="གཞུ་ཚད།" data-language-autonym="བོད་ཡིག" data-language-local-name="Tibetan" class="interlanguage-link-target"><span>བོད་ཡིག</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Radijan" title="Radijan – Bosnian" lang="bs" hreflang="bs" data-title="Radijan" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Radian" title="Radian – Catalan" lang="ca" hreflang="ca" data-title="Radian" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%B0%D0%BD" title="Радиан – Chuvash" lang="cv" hreflang="cv" data-title="Радиан" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Radi%C3%A1n" title="Radián – Czech" lang="cs" hreflang="cs" data-title="Radián" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Radian" title="Radian – Welsh" lang="cy" hreflang="cy" data-title="Radian" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Radian" title="Radian – Danish" lang="da" hreflang="da" data-title="Radian" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Radiant_(Einheit)" title="Radiant (Einheit) – German" lang="de" hreflang="de" data-title="Radiant (Einheit)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Radiaan" title="Radiaan – Estonian" lang="et" hreflang="et" data-title="Radiaan" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%91%CE%BA%CF%84%CE%AF%CE%BD%CE%B9%CE%BF_(%CE%BC%CE%BF%CE%BD%CE%AC%CE%B4%CE%B1_%CE%BC%CE%AD%CF%84%CF%81%CE%B7%CF%83%CE%B7%CF%82)" title="Ακτίνιο (μονάδα μέτρησης) – Greek" lang="el" hreflang="el" data-title="Ακτίνιο (μονάδα μέτρησης)" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Radi%C3%A1n" title="Radián – Spanish" lang="es" hreflang="es" data-title="Radián" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Radiano" title="Radiano – Esperanto" lang="eo" hreflang="eo" data-title="Radiano" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Radian" title="Radian – Basque" lang="eu" hreflang="eu" data-title="Radian" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B1%D8%A7%D8%AF%DB%8C%D8%A7%D9%86" title="رادیان – Persian" lang="fa" hreflang="fa" data-title="رادیان" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Radian" title="Radian – French" lang="fr" hreflang="fr" data-title="Radian" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Raidian" title="Raidian – Irish" lang="ga" hreflang="ga" data-title="Raidian" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Radi%C3%A1n" title="Radián – Galician" lang="gl" hreflang="gl" data-title="Radián" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E5%BC%A7%E5%BA%A6" title="弧度 – Gan" lang="gan" hreflang="gan" data-title="弧度" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%9D%BC%EB%94%94%EC%95%88" title="라디안 – Korean" lang="ko" hreflang="ko" data-title="라디안" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ha mw-list-item"><a href="https://ha.wikipedia.org/wiki/Radiya" title="Radiya – Hausa" lang="ha" hreflang="ha" data-title="Radiya" data-language-autonym="Hausa" data-language-local-name="Hausa" class="interlanguage-link-target"><span>Hausa</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8C%D5%A1%D5%A4%D5%AB%D5%A1%D5%B6" title="Ռադիան – Armenian" lang="hy" hreflang="hy" data-title="Ռադիան" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B0%E0%A5%87%E0%A4%A1%E0%A4%BF%E0%A4%AF%E0%A4%A8" title="रेडियन – Hindi" lang="hi" hreflang="hi" data-title="रेडियन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Radijan" title="Radijan – Croatian" lang="hr" hreflang="hr" data-title="Radijan" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Radian" title="Radian – Indonesian" lang="id" hreflang="id" data-title="Radian" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Radiano" title="Radiano – Interlingua" lang="ia" hreflang="ia" data-title="Radiano" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Rad%C3%ADanar" title="Radíanar – Icelandic" lang="is" hreflang="is" data-title="Radíanar" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Radiante" title="Radiante – Italian" lang="it" hreflang="it" data-title="Radiante" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A8%D7%93%D7%99%D7%90%D7%9F" title="רדיאן – Hebrew" lang="he" hreflang="he" data-title="רדיאן" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A0%E1%83%90%E1%83%93%E1%83%98%E1%83%90%E1%83%9C%E1%83%98" title="რადიანი – Georgian" lang="ka" hreflang="ka" data-title="რადიანი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%B0%D0%BD" title="Радиан – Kazakh" lang="kk" hreflang="kk" data-title="Радиан" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Radians_(unitas)" title="Radians (unitas) – Latin" lang="la" hreflang="la" data-title="Radians (unitas)" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Radi%C4%81ns" title="Radiāns – Latvian" lang="lv" hreflang="lv" data-title="Radiāns" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Radiant_(Eenheet)" title="Radiant (Eenheet) – Luxembourgish" lang="lb" hreflang="lb" data-title="Radiant (Eenheet)" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxembourgish" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Radianas" title="Radianas – Lithuanian" lang="lt" hreflang="lt" data-title="Radianas" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Radi%C3%A1n" title="Radián – Hungarian" lang="hu" hreflang="hu" data-title="Radián" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D1%98%D0%B0%D0%BD" title="Радијан – Macedonian" lang="mk" hreflang="mk" data-title="Радијан" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%9C%E0%A5%8D%E0%A4%AF%E0%A5%80" title="त्रिज्यी – Marathi" lang="mr" hreflang="mr" data-title="त्रिज्यी" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Radian" title="Radian – Malay" lang="ms" hreflang="ms" data-title="Radian" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%B0%D0%BD" title="Радиан – Mongolian" lang="mn" hreflang="mn" data-title="Радиан" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Radiaal_(wiskunde)" title="Radiaal (wiskunde) – Dutch" lang="nl" hreflang="nl" data-title="Radiaal (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%A9%E3%82%B8%E3%82%A2%E3%83%B3" title="ラジアン – Japanese" lang="ja" hreflang="ja" data-title="ラジアン" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Radian" title="Radian – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Radian" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Radian" title="Radian – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Radian" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Radian" title="Radian – Occitan" lang="oc" hreflang="oc" data-title="Radian" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Radian" title="Radian – Uzbek" lang="uz" hreflang="uz" data-title="Radian" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B0%E0%A9%87%E0%A8%A1%E0%A9%80%E0%A8%85%E0%A8%A8" title="ਰੇਡੀਅਨ – Punjabi" lang="pa" hreflang="pa" data-title="ਰੇਡੀਅਨ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Riedian" title="Riedian – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Riedian" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Rajant" title="Rajant – Piedmontese" lang="pms" hreflang="pms" data-title="Rajant" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Radian" title="Radian – Polish" lang="pl" hreflang="pl" data-title="Radian" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Radiano" title="Radiano – Portuguese" lang="pt" hreflang="pt" data-title="Radiano" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Radian" title="Radian – Romanian" lang="ro" hreflang="ro" data-title="Radian" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%B0%D0%BD" title="Радиан – Russian" lang="ru" hreflang="ru" data-title="Радиан" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Radiani" title="Radiani – Albanian" lang="sq" hreflang="sq" data-title="Radiani" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Radianti" title="Radianti – Sicilian" lang="scn" hreflang="scn" data-title="Radianti" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%BB%E0%B7%9A%E0%B6%A9%E0%B7%92%E0%B6%BA%E0%B6%B1%E0%B6%BA" title="රේඩියනය – Sinhala" lang="si" hreflang="si" data-title="රේඩියනය" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Radian" title="Radian – Simple English" lang="en-simple" hreflang="en-simple" data-title="Radian" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Radi%C3%A1n" title="Radián – Slovak" lang="sk" hreflang="sk" data-title="Radián" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Radian" title="Radian – Slovenian" lang="sl" hreflang="sl" data-title="Radian" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%95%D8%A7%D8%AF%DB%8C%D8%A7%D9%86" title="ڕادیان – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ڕادیان" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D1%98%D0%B0%D0%BD" title="Радијан – Serbian" lang="sr" hreflang="sr" data-title="Радијан" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Radijan" title="Radijan – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Radijan" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Radiaani" title="Radiaani – Finnish" lang="fi" hreflang="fi" data-title="Radiaani" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Radian" title="Radian – Swedish" lang="sv" hreflang="sv" data-title="Radian" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%86%E0%AE%B0%E0%AF%88%E0%AE%AF%E0%AE%AE%E0%AF%8D" title="ஆரையம் – Tamil" lang="ta" hreflang="ta" data-title="ஆரையம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B0%E0%B1%87%E0%B0%A1%E0%B0%BF%E0%B0%AF%E0%B0%A8%E0%B1%8D" title="రేడియన్ – Telugu" lang="te" hreflang="te" data-title="రేడియన్" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%A3%E0%B9%80%E0%B8%94%E0%B8%B5%E0%B8%A2%E0%B8%99" title="เรเดียน – Thai" lang="th" hreflang="th" data-title="เรเดียน" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%B0%D0%BD" title="Радиан – Tajik" lang="tg" hreflang="tg" data-title="Радиан" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Radyan" title="Radyan – Turkish" lang="tr" hreflang="tr" data-title="Radyan" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D1%96%D0%B0%D0%BD" title="Радіан – Ukrainian" lang="uk" hreflang="uk" data-title="Радіан" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B1%DB%8C%DA%88%DB%8C%D9%86" title="ریڈین – Urdu" lang="ur" hreflang="ur" data-title="ریڈین" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Radian" title="Radian – Vietnamese" lang="vi" hreflang="vi" data-title="Radian" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%BC%A7%E5%BA%A6" title="弧度 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="弧度" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Radian" title="Radian – Waray" lang="war" hreflang="war" data-title="Radian" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%BC%A7%E5%BA%A6" title="弧度 – Wu" lang="wuu" hreflang="wuu" data-title="弧度" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%BC%A7%E5%BA%A6" title="弧度 – Cantonese" lang="yue" hreflang="yue" data-title="弧度" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%BC%A7%E5%BA%A6" title="弧度 – Chinese" lang="zh" hreflang="zh" data-title="弧度" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q33680#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Radian" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Radian" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Radian"><span>Read</span></a></li><li id="ca-viewsource" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Radian&action=edit" title="This page is protected. You can view its source [e]" accesskey="e"><span>View source</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Radian&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Radian"><span>Read</span></a></li><li id="ca-more-viewsource" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Radian&action=edit"><span>View source</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Radian&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Radian" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Radian" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Radian&oldid=1258410919" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Radian&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Radian&id=1258410919&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRadian"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRadian"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Radian&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Radian&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Radian" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Trigonometry/Radians" hreflang="en"><span>Wikibooks</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q33680" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-pp-default" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Protection_policy#semi" title="This article is semi-protected."><img alt="Page semi-protected" src="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/20px-Semi-protection-shackle.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/30px-Semi-protection-shackle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/40px-Semi-protection-shackle.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">SI derived unit of angle</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"㎭" redirects here. Not to be confused with <a href="/wiki/Rad_(radiation_unit)" title="Rad (radiation unit)">Rad (radiation unit)</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">For other uses, see <a href="/wiki/Radian_(disambiguation)" class="mw-disambig" title="Radian (disambiguation)">Radian (disambiguation)</a>.</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox ib-unit"><tbody><tr><th colspan="2" class="infobox-above">Radian</th></tr><tr><td colspan="2" class="infobox-image notheme" style="background-color: #f8f9fa;"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:Circle_radians.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Circle_radians.gif/220px-Circle_radians.gif" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Circle_radians.gif/330px-Circle_radians.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Circle_radians.gif/440px-Circle_radians.gif 2x" data-file-width="450" data-file-height="450" /></a></span><div class="infobox-caption">An arc of a <a href="/wiki/Circle" title="Circle">circle</a> with the same length as the <a href="/wiki/Radius" title="Radius">radius</a> of that circle subtends an <i>angle</i> of 1 radian. The circumference subtends an angle of 2<span class="texhtml"><a href="/wiki/Pi" title="Pi">π</a></span> radians.</div></td></tr><tr><th colspan="2" class="infobox-header">General information</th></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/System_of_units_of_measurement" title="System of units of measurement">Unit system</a></th><td class="infobox-data"><a href="/wiki/SI" class="mw-redirect" title="SI">SI</a></td></tr><tr><th scope="row" class="infobox-label">Unit of</th><td class="infobox-data"><a href="/wiki/Angle" title="Angle">angle</a></td></tr><tr><th scope="row" class="infobox-label">Symbol</th><td class="infobox-data">rad, <sup>R</sup><sup id="cite_ref-Hall_1909_1-0" class="reference"><a href="#cite_note-Hall_1909-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></td></tr><tr><th colspan="2" class="infobox-header">Conversions </th></tr><tr class="nowrap"><td>1 rad <i>in ...</i></td><td><i>... is equal to ...</i></td></tr><tr style="display:none"><th colspan="2"> </th></tr><tr><th scope="row" class="infobox-label"><span class="nowrap">   </span><a href="/wiki/Milliradian" title="Milliradian">milliradians</a></th><td class="infobox-data"><span class="nowrap">   </span>1000 mrad</td></tr><tr><th scope="row" class="infobox-label"><span class="nowrap">   </span><a href="/wiki/Turn_(unit)" class="mw-redirect" title="Turn (unit)">turns</a></th><td class="infobox-data"><span class="nowrap">   </span><style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2<span class="texhtml mvar" style="font-style:italic;">π</span></span></span>⁠</span> turn ≈ 0.159154 turn</td></tr><tr><th scope="row" class="infobox-label"><span class="nowrap">   </span><a href="/wiki/Degree_(angle)" title="Degree (angle)">degrees</a></th><td class="infobox-data"><span class="nowrap">   </span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">180</span><span class="sr-only">/</span><span class="den"><span class="texhtml mvar" style="font-style:italic;">π</span></span></span>⁠</span>° ≈ 57.295779513°</td></tr><tr><th scope="row" class="infobox-label"><span class="nowrap">   </span><a href="/wiki/Gradian" title="Gradian">gradians</a></th><td class="infobox-data"><span class="nowrap">   </span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">200</span><span class="sr-only">/</span><span class="den"><span class="texhtml mvar" style="font-style:italic;">π</span></span></span>⁠</span> grad ≈ 63.661977<sup>g</sup></td></tr></tbody></table><style data-mw-deduplicate="TemplateStyles:r1236303919">@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-has-images-with-white-backgrounds img{background:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-has-images-with-white-backgrounds img{background:white}}</style> <p>The <b>radian</b>, denoted by the symbol <b>rad</b>, is the unit of <a href="/wiki/Angle" title="Angle">angle</a> in the <a href="/wiki/International_System_of_Units" title="International System of Units">International System of Units</a> (SI) and is the standard unit of angular measure used in many areas of <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>. It is defined such that one radian is the angle subtended at the centre of a circle by an arc that is equal in length to the radius.<sup id="cite_ref-DDUnits_2-0" class="reference"><a href="#cite_note-DDUnits-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> The unit was formerly an <a href="/wiki/SI_supplementary_unit" class="mw-redirect" title="SI supplementary unit">SI supplementary unit</a> and is currently a <a href="/wiki/Dimensionless_unit" class="mw-redirect" title="Dimensionless unit">dimensionless</a> <a href="/wiki/SI_derived_unit" title="SI derived unit">SI derived unit</a>,<sup id="cite_ref-DDUnits_2-1" class="reference"><a href="#cite_note-DDUnits-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> defined in the SI as 1 rad = 1<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> and expressed in terms of the <a href="/wiki/SI_base_unit" title="SI base unit">SI base unit</a> <a href="/wiki/Metre" title="Metre">metre</a> (m) as <span class="nowrap">rad = m/m</span>.<sup id="cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019137_4-0" class="reference"><a href="#cite_note-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019137-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Angles without explicitly specified units are generally assumed to be measured in radians, especially in mathematical writing.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2></div> <p>One radian is defined as the angle at the center of a circle in a plane that <a href="https://en.wiktionary.org/wiki/subtend" class="extiw" title="wikt:subtend">subtends</a> an arc whose length equals the radius of the circle.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> More generally, the <a href="/wiki/Magnitude_(mathematics)" title="Magnitude (mathematics)">magnitude</a> in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta ={\frac {s}{r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mi>r</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta ={\frac {s}{r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f7d68caa29ae24caf4c436f270327373a36367d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.116ex; height:4.676ex;" alt="{\displaystyle \theta ={\frac {s}{r}}}"></span>, where <span class="texhtml mvar" style="font-style:italic;">θ</span> is the magnitude in radians of the subtended angle, <span class="texhtml mvar" style="font-style:italic;">s</span> is arc length, and <span class="texhtml mvar" style="font-style:italic;">r</span> is radius. A <a href="/wiki/Right_angle" title="Right angle">right angle</a> is exactly <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\pi }{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\pi }{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98f98bef5d4981ff6e2aa827d4699e347fb30db2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:2.168ex; height:4.676ex;" alt="{\displaystyle {\frac {\pi }{2}}}"></span> radians.<sup id="cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019151_7-0" class="reference"><a href="#cite_note-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019151-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p><p>One <a href="/wiki/Complete_revolution" class="mw-redirect" title="Complete revolution">complete revolution</a>, expressed as an angle in radians, is the length of the circumference divided by the radius, which is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2\pi r}{r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> <mi>r</mi> </mrow> <mi>r</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2\pi r}{r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d28b7d772d434f6c720e3a34d0c535c2374266d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:4.379ex; height:5.176ex;" alt="{\displaystyle {\frac {2\pi r}{r}}}"></span>, or <span class="texhtml">2<i>π</i></span>. Thus, <span class="texhtml">2<i>π</i></span> radians is equal to 360 degrees. The relation <span class="texhtml">2<i>π</i> rad = 360°</span> can be derived using the formula for <a href="/wiki/Arc_length" title="Arc length">arc length</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \ell _{\text{arc}}=2\pi r\left({\tfrac {\theta }{360^{\circ }}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>arc</mtext> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>r</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>θ<!-- θ --></mi> <msup> <mn>360</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \ell _{\text{arc}}=2\pi r\left({\tfrac {\theta }{360^{\circ }}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72e4b265d38d20fabfb63a41e01ab69df09aa268" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.336ex; height:4.843ex;" alt="{\textstyle \ell _{\text{arc}}=2\pi r\left({\tfrac {\theta }{360^{\circ }}}\right)}"></span>. Since radian is the measure of an angle that is subtended by an arc of a length equal to the radius of the circle, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 1=2\pi \left({\tfrac {1{\text{ rad}}}{360^{\circ }}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>1</mn> <mo>=</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> </mrow> <msup> <mn>360</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 1=2\pi \left({\tfrac {1{\text{ rad}}}{360^{\circ }}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/959e703bed7bcda672810995f78c1ccb0a49fd08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.537ex; height:4.843ex;" alt="{\textstyle 1=2\pi \left({\tfrac {1{\text{ rad}}}{360^{\circ }}}\right)}"></span>. This can be further simplified to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 1={\tfrac {2\pi {\text{ rad}}}{360^{\circ }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>1</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> </mrow> <msup> <mn>360</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 1={\tfrac {2\pi {\text{ rad}}}{360^{\circ }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6ab6e40cba37dbb4dbb924f329acf43088d45f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:9.822ex; height:3.843ex;" alt="{\textstyle 1={\tfrac {2\pi {\text{ rad}}}{360^{\circ }}}}"></span>. Multiplying both sides by <span class="texhtml">360°</span> gives <span class="texhtml">360° = 2<i>π</i> rad</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Unit_symbol">Unit symbol</h3></div> <p>The <a href="/wiki/International_Bureau_of_Weights_and_Measures" title="International Bureau of Weights and Measures">International Bureau of Weights and Measures</a><sup id="cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019151_7-1" class="reference"><a href="#cite_note-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019151-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/International_Organization_for_Standardization" title="International Organization for Standardization">International Organization for Standardization</a><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> specify <b>rad</b> as the symbol for the radian. Alternative symbols that were in use in 1909 are <sup>c</sup> (the superscript letter c, for "circular measure"), the letter r, or a superscript <sup>R</sup>,<sup id="cite_ref-Hall_1909_1-1" class="reference"><a href="#cite_note-Hall_1909-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> but these variants are infrequently used, as they may be mistaken for a <a href="/wiki/Degree_symbol" title="Degree symbol">degree symbol</a> (°) or a radius (r). Hence an angle of 1.2 radians would be written today as 1.2 rad; archaic notations include 1.2 r, 1.2<sup>rad</sup>, 1.2<sup>c</sup>, or 1.2<sup>R</sup>. </p><p>In mathematical writing, the symbol "rad" is often omitted. When quantifying an angle in the absence of any symbol, radians are assumed, and when degrees are meant, the <a href="/wiki/Degree_sign" class="mw-redirect" title="Degree sign">degree sign</a> <span class="nounderlines" style="border: 1px solid var(--border-color-muted,#ddd); color: var(--color-base); background-color: var( --background-color-neutral-subtle, #fdfdfd); padding: 1px 1px;">°</span> is used. </p> <div class="mw-heading mw-heading3"><h3 id="Dimensional_analysis">Dimensional analysis</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="#As_an_SI_unit">§ As an SI unit</a></div> <p>Plane angle may be defined as <span class="texhtml"><i><a href="/wiki/%CE%98" class="mw-redirect" title="Θ">θ</a></i> = <i>s</i>/<i>r</i></span>, where <span class="texhtml mvar" style="font-style:italic;">θ</span> is the magnitude in radians of the subtended angle, <span class="texhtml mvar" style="font-style:italic;">s</span> is circular arc length, and <span class="texhtml mvar" style="font-style:italic;">r</span> is radius. One radian corresponds to the angle for which <span class="texhtml"><i>s</i> = <i>r</i></span>, hence <span class="texhtml">1 radian = 1 m/m</span> = 1.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> However, <span class="texhtml">rad</span> is only to be used to express angles, not to express ratios of lengths in general.<sup id="cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019151_7-2" class="reference"><a href="#cite_note-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019151-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> A similar calculation using <a href="/wiki/Circular_sector#Area" title="Circular sector">the area of a circular sector</a> <span class="texhtml"><i>θ</i> = 2<i>A</i>/<i>r</i><sup>2</sup></span> gives 1 radian as 1 m<sup>2</sup>/m<sup>2</sup> = 1.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> The key fact is that the radian is a <a href="/wiki/Dimensionless_unit" class="mw-redirect" title="Dimensionless unit">dimensionless unit</a> equal to <a href="/wiki/1" title="1">1</a>. In SI 2019, the SI radian is defined accordingly as <span class="nowrap">1 rad = 1</span>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> It is a long-established practice in mathematics and across all areas of science to make use of <span class="texhtml">rad = 1</span>.<sup id="cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019137_4-1" class="reference"><a href="#cite_note-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019137-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>Giacomo Prando writes "the current state of affairs leads inevitably to ghostly appearances and disappearances of the radian in the dimensional analysis of physical equations".<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> For example, an object hanging by a string from a pulley will rise or drop by <span class="texhtml"><i>y</i> = <i>rθ</i></span> centimetres, where <span class="texhtml mvar" style="font-style:italic;">r</span> is the magnitude of the radius of the pulley in centimetres and <span class="texhtml mvar" style="font-style:italic;">θ</span> is the magnitude of the angle through which the pulley turns in radians. When multiplying <span class="texhtml mvar" style="font-style:italic;">r</span> by <span class="texhtml mvar" style="font-style:italic;">θ</span>, the unit radian does not appear in the product, nor does the unit centimetre—because both factors are magnitudes (numbers). Similarly in the formula for the <a href="/wiki/Angular_velocity" title="Angular velocity">angular velocity</a> of a rolling wheel, <span class="texhtml"><i>ω</i> = <i>v</i>/<i>r</i></span>, radians appear in the units of <span class="texhtml mvar" style="font-style:italic;">ω</span> but not on the right hand side.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> Anthony French calls this phenomenon "a perennial problem in the teaching of mechanics".<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> Oberhofer says that the typical advice of ignoring radians during dimensional analysis and adding or removing radians in units according to convention and contextual knowledge is "pedagogically unsatisfying".<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p>In 1993 the <a href="/wiki/American_Association_of_Physics_Teachers" title="American Association of Physics Teachers">American Association of Physics Teachers</a> Metric Committee specified that the radian should explicitly appear in quantities only when different numerical values would be obtained when other angle measures were used, such as in the quantities of <a href="/wiki/Angle_measure" class="mw-redirect" title="Angle measure">angle measure</a> (rad), <a href="/wiki/Angular_speed" class="mw-redirect" title="Angular speed">angular speed</a> (rad/s), <a href="/wiki/Angular_acceleration" title="Angular acceleration">angular acceleration</a> (rad/s<sup>2</sup>), and <a href="/wiki/Torsion_constant#Torsional_Rigidity_(GJ)_and_Stiffness_(GJ/L)" title="Torsion constant">torsional stiffness</a> (N⋅m/rad), and not in the quantities of <a href="/wiki/Torque" title="Torque">torque</a> (N⋅m) and <a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a> (kg⋅m<sup>2</sup>/s).<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>At least a dozen scientists between 1936 and 2022 have made proposals to treat the radian as a <a href="/wiki/Base_unit_of_measurement" title="Base unit of measurement">base unit of measurement</a> for a <a href="/wiki/Base_quantity" class="mw-redirect" title="Base quantity">base quantity</a> (and dimension) of "plane angle".<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEMohrPhillips2015_19-0" class="reference"><a href="#cite_note-FOOTNOTEMohrPhillips2015-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Quincey_20-0" class="reference"><a href="#cite_note-Quincey-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> Quincey's review of proposals outlines two classes of proposal. The first option changes the unit of a radius to meters per radian, but this is incompatible with dimensional analysis for the <a href="/wiki/Area_of_a_circle" title="Area of a circle">area of a circle</a>, <span class="texhtml">π<i>r</i><sup>2</sup></span>. The other option is to introduce a dimensional constant. According to Quincey this approach is "logically rigorous" compared to SI, but requires "the modification of many familiar mathematical and physical equations".<sup id="cite_ref-FOOTNOTEQuincey2016_21-0" class="reference"><a href="#cite_note-FOOTNOTEQuincey2016-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> A dimensional constant for angle is "rather strange" and the difficulty of modifying equations to add the dimensional constant is likely to preclude widespread use.<sup id="cite_ref-Quincey_20-1" class="reference"><a href="#cite_note-Quincey-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>In particular, Quincey identifies Torrens' proposal to introduce a constant <span class="texhtml mvar" style="font-style:italic;"><a href="/wiki/%CE%97" class="mw-redirect" title="Η">η</a></span> equal to 1 inverse radian (1 rad<sup>−1</sup>) in a fashion similar to the <a href="/wiki/Vacuum_permittivity#Historical_origin_of_the_parameter_ε0" title="Vacuum permittivity">introduction of the constant <i>ε</i><sub>0</sub></a>.<sup id="cite_ref-FOOTNOTEQuincey2016_21-1" class="reference"><a href="#cite_note-FOOTNOTEQuincey2016-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> With this change the formula for the angle subtended at the center of a circle, <span class="texhtml"><i>s</i> = <i>rθ</i></span>, is modified to become <span class="texhtml"><i>s</i> = <i>ηrθ</i></span>, and the <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> for the <a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a> of an angle <span class="texhtml mvar" style="font-style:italic;">θ</span> becomes:<sup id="cite_ref-Quincey_20-2" class="reference"><a href="#cite_note-Quincey-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTETorrens1986_23-0" class="reference"><a href="#cite_note-FOOTNOTETorrens1986-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Sin} \theta =\sin \ x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots =\eta \theta -{\frac {(\eta \theta )^{3}}{3!}}+{\frac {(\eta \theta )^{5}}{5!}}-{\frac {(\eta \theta )^{7}}{7!}}+\cdots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>=</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mtext> </mtext> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mrow> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>=</mo> <mi>η<!-- η --></mi> <mi>θ<!-- θ --></mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>η<!-- η --></mi> <mi>θ<!-- θ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>η<!-- η --></mi> <mi>θ<!-- θ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>η<!-- η --></mi> <mi>θ<!-- θ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> </mrow> <mrow> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Sin} \theta =\sin \ x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots =\eta \theta -{\frac {(\eta \theta )^{3}}{3!}}+{\frac {(\eta \theta )^{5}}{5!}}-{\frac {(\eta \theta )^{7}}{7!}}+\cdots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7df4a16dcdaff73203b89de36f938b4155ccf136" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:79.49ex; height:6.009ex;" alt="{\displaystyle \operatorname {Sin} \theta =\sin \ x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots =\eta \theta -{\frac {(\eta \theta )^{3}}{3!}}+{\frac {(\eta \theta )^{5}}{5!}}-{\frac {(\eta \theta )^{7}}{7!}}+\cdots ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\eta \theta =\theta /{\text{rad}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>η<!-- η --></mi> <mi>θ<!-- θ --></mi> <mo>=</mo> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rad</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\eta \theta =\theta /{\text{rad}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/276b9dd82af828185ef24250fd0a78dc2edb1057" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.406ex; height:2.843ex;" alt="{\displaystyle x=\eta \theta =\theta /{\text{rad}}}"></span> is the angle in radians. The capitalized function <span class="texhtml">Sin</span> is the "complete" function that takes an argument with a dimension of angle and is independent of the units expressed,<sup id="cite_ref-FOOTNOTETorrens1986_23-1" class="reference"><a href="#cite_note-FOOTNOTETorrens1986-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> while <span class="texhtml">sin</span> is the traditional function on <a href="/wiki/Pure_number" class="mw-redirect" title="Pure number">pure numbers</a> which assumes its argument is a dimensionless number in radians.<sup id="cite_ref-FOOTNOTEMohrShirleyPhillipsTrott20226_24-0" class="reference"><a href="#cite_note-FOOTNOTEMohrShirleyPhillipsTrott20226-24"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> The capitalised symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Sin} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Sin</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Sin} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22f133e3f320f11daba5f13277480b2ec04cb3a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.232ex; height:2.176ex;" alt="{\displaystyle \operatorname {Sin} }"></span> can be denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee55beec18afd710e7ab767964b915b020c65093" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.856ex; height:2.176ex;" alt="{\displaystyle \sin }"></span> if it is clear that the complete form is meant.<sup id="cite_ref-Quincey_20-3" class="reference"><a href="#cite_note-Quincey-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEMohrShirleyPhillipsTrott20228–9_25-0" class="reference"><a href="#cite_note-FOOTNOTEMohrShirleyPhillipsTrott20228–9-25"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p><p>Current SI can be considered relative to this framework as a <a href="/wiki/Natural_unit" class="mw-redirect" title="Natural unit">natural unit</a> system where the equation <span class="texhtml"><i>η</i> = 1</span> is assumed to hold, or similarly, <span class="nowrap">1 rad = 1</span>. This <i>radian convention</i> allows the omission of <span class="texhtml mvar" style="font-style:italic;">η</span> in mathematical formulas.<sup id="cite_ref-FOOTNOTEQuincey2021_26-0" class="reference"><a href="#cite_note-FOOTNOTEQuincey2021-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>Defining radian as a base unit may be useful for software, where the disadvantage of longer equations is minimal.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> For example, the <a href="/wiki/Boost_(C%2B%2B_libraries)" title="Boost (C++ libraries)">Boost</a> units library defines angle units with a <code>plane_angle</code> dimension,<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Mathematica" class="mw-redirect" title="Mathematica">Mathematica</a>'s unit system similarly considers angles to have an angle dimension.<sup id="cite_ref-FOOTNOTEMohrShirleyPhillipsTrott20223_29-0" class="reference"><a href="#cite_note-FOOTNOTEMohrShirleyPhillipsTrott20223-29"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Conversions">Conversions</h2></div> <table class="wikitable" style="text-align:center;float:right;clear:right;margin-left:1em;"> <caption>Conversion of common angles </caption> <tbody><tr> <th><a href="/wiki/Turn_(angle)" title="Turn (angle)">Turns</a> </th> <th><a class="mw-selflink selflink">Radians</a> </th> <th><a href="/wiki/Degree_(angle)" title="Degree (angle)">Degrees</a> </th> <th><a href="/wiki/Gradian" title="Gradian">Gradians</a> </th></tr> <tr> <td>0 turn </td> <td>0 rad </td> <td>0° </td> <td>0<sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">72</span></span>⁠</span> turn </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">36</span></span>⁠</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">𝜏</span><span class="sr-only">/</span><span class="den">72</span></span>⁠</span> rad </td> <td>5° </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠5<span class="sr-only">+</span><span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">9</span></span>⁠</span><sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">24</span></span>⁠</span> turn </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">12</span></span>⁠</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">𝜏</span><span class="sr-only">/</span><span class="den">24</span></span>⁠</span> rad </td> <td>15° </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠16<span class="sr-only">+</span><span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span><sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span> turn </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">𝜏</span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span> rad </td> <td>22.5° </td> <td>25<sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>⁠</span> turn </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">𝜏</span><span class="sr-only">/</span><span class="den">12</span></span>⁠</span> rad </td> <td>30° </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠33<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span><sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">10</span></span>⁠</span> turn </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">𝜏</span><span class="sr-only">/</span><span class="den">10</span></span>⁠</span> rad </td> <td>36° </td> <td>40<sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span> turn </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">𝜏</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span> rad </td> <td>45° </td> <td>50<sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2<span class="texhtml mvar" style="font-style:italic;">π</span> or 𝜏</span></span>⁠</span> turn </td> <td>1 rad </td> <td><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><span class="rt-commentedText tooltip tooltip-dotted" title="approximately">approx.</span> 57.3° </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><span class="rt-commentedText tooltip tooltip-dotted" title="approximately">approx.</span> 63.7<sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span> turn </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">𝜏</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span> rad </td> <td>60° </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠66<span class="sr-only">+</span><span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span><sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span> turn </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2<span class="texhtml mvar" style="font-style:italic;">π</span> or 𝜏</span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span> rad </td> <td>72° </td> <td>80<sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> turn </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">𝜏</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> rad </td> <td>90° </td> <td>100<sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span> turn </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2<span class="texhtml mvar" style="font-style:italic;">π</span> or 𝜏</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span> rad </td> <td>120° </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠133<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span><sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span> turn </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">4<span class="texhtml mvar" style="font-style:italic;">π</span> or 2𝜏 or α</span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span> rad </td> <td>144° </td> <td>160<sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> turn </td> <td><span class="texhtml mvar" style="font-style:italic;">π</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">𝜏</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> rad </td> <td>180° </td> <td>200<sup>g</sup> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> turn </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3<span class="texhtml mvar" style="font-style:italic;">π</span> or ρ</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3𝜏</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> rad </td> <td>270° </td> <td>300<sup>g</sup> </td></tr> <tr> <td>1 turn </td> <td>𝜏 or 2<span class="texhtml mvar" style="font-style:italic;">π</span> rad </td> <td>360° </td> <td>400<sup>g</sup> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Between_degrees">Between degrees</h3></div> <p>As stated, one radian is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {180^{\circ }}/{\pi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>π<!-- π --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {180^{\circ }}/{\pi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4c30e963e934eeedc7a8db2b1c6271e3ab6c910" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.036ex; height:2.843ex;" alt="{\displaystyle {180^{\circ }}/{\pi }}"></span>. Thus, to convert from radians to degrees, multiply by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {180^{\circ }}/{\pi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>π<!-- π --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {180^{\circ }}/{\pi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4c30e963e934eeedc7a8db2b1c6271e3ab6c910" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.036ex; height:2.843ex;" alt="{\displaystyle {180^{\circ }}/{\pi }}"></span>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{angle in degrees}}={\text{angle in radians}}\cdot {\frac {180^{\circ }}{\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>angle in degrees</mtext> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>angle in radians</mtext> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> <mi>π<!-- π --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{angle in degrees}}={\text{angle in radians}}\cdot {\frac {180^{\circ }}{\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6d0aecff9df80c8451bd90170aee6d9c9d3ca3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:41.715ex; height:5.343ex;" alt="{\displaystyle {\text{angle in degrees}}={\text{angle in radians}}\cdot {\frac {180^{\circ }}{\pi }}}"></span></dd></dl> <p>For example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1{\text{ rad}}=1\cdot {\frac {180^{\circ }}{\pi }}\approx 57.2958^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> <mo>=</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> <mi>π<!-- π --></mi> </mfrac> </mrow> <mo>≈<!-- ≈ --></mo> <msup> <mn>57.2958</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1{\text{ rad}}=1\cdot {\frac {180^{\circ }}{\pi }}\approx 57.2958^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2942db06bf85253a68de787c5325a313e6ac4d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.202ex; height:5.343ex;" alt="{\displaystyle 1{\text{ rad}}=1\cdot {\frac {180^{\circ }}{\pi }}\approx 57.2958^{\circ }}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2.5{\text{ rad}}=2.5\cdot {\frac {180^{\circ }}{\pi }}\approx 143.2394^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2.5</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> <mo>=</mo> <mn>2.5</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> <mi>π<!-- π --></mi> </mfrac> </mrow> <mo>≈<!-- ≈ --></mo> <msup> <mn>143.2394</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2.5{\text{ rad}}=2.5\cdot {\frac {180^{\circ }}{\pi }}\approx 143.2394^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3bd0b667a34c7f0b6fa53d84e59f556cacb8915" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.983ex; height:5.343ex;" alt="{\displaystyle 2.5{\text{ rad}}=2.5\cdot {\frac {180^{\circ }}{\pi }}\approx 143.2394^{\circ }}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\pi }{3}}{\text{ rad}}={\frac {\pi }{3}}\cdot {\frac {180^{\circ }}{\pi }}=60^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>3</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>3</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> <mi>π<!-- π --></mi> </mfrac> </mrow> <mo>=</mo> <msup> <mn>60</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\pi }{3}}{\text{ rad}}={\frac {\pi }{3}}\cdot {\frac {180^{\circ }}{\pi }}=60^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1c99c65c21ada1bc1baca5000c3a634b482d07b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.916ex; height:5.343ex;" alt="{\displaystyle {\frac {\pi }{3}}{\text{ rad}}={\frac {\pi }{3}}\cdot {\frac {180^{\circ }}{\pi }}=60^{\circ }}"></span></dd></dl> <p>Conversely, to convert from degrees to radians, multiply by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\pi }/{180}{\text{ rad}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>π<!-- π --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>180</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\pi }/{180}{\text{ rad}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f10c1de2043d1efa612037bfd917ed2a38ecb047" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.929ex; height:2.843ex;" alt="{\displaystyle {\pi }/{180}{\text{ rad}}}"></span>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{angle in radians}}={\text{angle in degrees}}\cdot {\frac {\pi }{180}}{\text{ rad}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>angle in radians</mtext> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>angle in degrees</mtext> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>180</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{angle in radians}}={\text{angle in degrees}}\cdot {\frac {\pi }{180}}{\text{ rad}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b0b689c2522a282bd5675883572730fd3529741" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:44.608ex; height:4.676ex;" alt="{\displaystyle {\text{angle in radians}}={\text{angle in degrees}}\cdot {\frac {\pi }{180}}{\text{ rad}}}"></span></dd></dl> <p>For example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1^{\circ }=1\cdot {\frac {\pi }{180}}{\text{ rad}}\approx 0.0175{\text{ rad}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>180</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> <mo>≈<!-- ≈ --></mo> <mn>0.0175</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1^{\circ }=1\cdot {\frac {\pi }{180}}{\text{ rad}}\approx 0.0175{\text{ rad}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cadb5f3cc75e2cf51186ef0dfe9d7ca876502621" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:29.932ex; height:4.676ex;" alt="{\displaystyle 1^{\circ }=1\cdot {\frac {\pi }{180}}{\text{ rad}}\approx 0.0175{\text{ rad}}}"></span></dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 23^{\circ }=23\cdot {\frac {\pi }{180}}{\text{ rad}}\approx 0.4014{\text{ rad}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>23</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> <mo>=</mo> <mn>23</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>180</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> <mo>≈<!-- ≈ --></mo> <mn>0.4014</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 23^{\circ }=23\cdot {\frac {\pi }{180}}{\text{ rad}}\approx 0.4014{\text{ rad}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd399e1f1e1ac68e34382036f274b4d5b164268b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.257ex; height:4.676ex;" alt="{\displaystyle 23^{\circ }=23\cdot {\frac {\pi }{180}}{\text{ rad}}\approx 0.4014{\text{ rad}}}"></span> </p><p>Radians can be converted to <a href="/wiki/Turn_(geometry)" class="mw-redirect" title="Turn (geometry)">turns</a> (one turn is the angle corresponding to a revolution) by dividing the number of radians by 2<span class="texhtml mvar" style="font-style:italic;">π</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Between_gradians">Between gradians</h3></div> <p>One revolution is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> radians, which equals one <a href="/wiki/Turn_(unit)" class="mw-redirect" title="Turn (unit)">turn</a>, which is by definition 400 <a href="/wiki/Gradian" title="Gradian">gradians</a> (400 <a href="/wiki/Gon_(unit)" class="mw-redirect" title="Gon (unit)">gons</a> or 400<sup>g</sup>). To convert from radians to gradians multiply by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 200^{\text{g}}/\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>200</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>g</mtext> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 200^{\text{g}}/\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c1d0ea57ccd08deffef7bd0dffec07d0dc32d3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.036ex; height:2.843ex;" alt="{\displaystyle 200^{\text{g}}/\pi }"></span>, and to convert from gradians to radians multiply by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /200{\text{ rad}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>200</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /200{\text{ rad}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/079aef1503512ec03135eb36bf00ac751ab827b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.929ex; height:2.843ex;" alt="{\displaystyle \pi /200{\text{ rad}}}"></span>. For example, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1.2{\text{ rad}}=1.2\cdot {\frac {200^{\text{g}}}{\pi }}\approx 76.3944^{\text{g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1.2</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> <mo>=</mo> <mn>1.2</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mn>200</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>g</mtext> </mrow> </msup> <mi>π<!-- π --></mi> </mfrac> </mrow> <mo>≈<!-- ≈ --></mo> <msup> <mn>76.3944</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>g</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1.2{\text{ rad}}=1.2\cdot {\frac {200^{\text{g}}}{\pi }}\approx 76.3944^{\text{g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f561b0ab4763c0812325fbcb1ea56aca4438b5a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.82ex; height:5.343ex;" alt="{\displaystyle 1.2{\text{ rad}}=1.2\cdot {\frac {200^{\text{g}}}{\pi }}\approx 76.3944^{\text{g}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 50^{\text{g}}=50\cdot {\frac {\pi }{200}}{\text{ rad}}\approx 0.7854{\text{ rad}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>50</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>g</mtext> </mrow> </msup> <mo>=</mo> <mn>50</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>200</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> <mo>≈<!-- ≈ --></mo> <mn>0.7854</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> rad</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 50^{\text{g}}=50\cdot {\frac {\pi }{200}}{\text{ rad}}\approx 0.7854{\text{ rad}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56ed60f7ddefc6c5cc50abb31b4169b404d2a43f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.257ex; height:4.676ex;" alt="{\displaystyle 50^{\text{g}}=50\cdot {\frac {\pi }{200}}{\text{ rad}}\approx 0.7854{\text{ rad}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Usage">Usage</h2></div> <div class="mw-heading mw-heading3"><h3 id="Mathematics">Mathematics</h3></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Radian-common.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Radian-common.svg/357px-Radian-common.svg.png" decoding="async" width="357" height="230" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Radian-common.svg/536px-Radian-common.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Radian-common.svg/714px-Radian-common.svg.png 2x" data-file-width="690" data-file-height="445" /></a><figcaption>Some common angles, measured in radians. All the large polygons in this diagram are <a href="/wiki/Regular_polygon" title="Regular polygon">regular polygons</a>.</figcaption></figure> <p>In <a href="/wiki/Calculus" title="Calculus">calculus</a> and most other branches of mathematics beyond practical <a href="/wiki/Geometry" title="Geometry">geometry</a>, angles are measured in radians. This is because radians have a mathematical naturalness that leads to a more elegant formulation of some important results. </p><p>Results in <a href="/wiki/Analysis_(mathematics)" class="mw-redirect" title="Analysis (mathematics)">analysis</a> involving <a href="/wiki/Trigonometric_function" class="mw-redirect" title="Trigonometric function">trigonometric functions</a> can be elegantly stated when the functions' arguments are expressed in radians. For example, the use of radians leads to the simple <a href="/wiki/Limit_of_a_function" title="Limit of a function">limit</a> formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{h\rightarrow 0}{\frac {\sin h}{h}}=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>h</mi> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{h\rightarrow 0}{\frac {\sin h}{h}}=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26bb2c7c053f12ce143283d40434c161841b938c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.125ex; height:5.509ex;" alt="{\displaystyle \lim _{h\rightarrow 0}{\frac {\sin h}{h}}=1,}"></span></dd></dl> <p>which is the basis of many other identities in mathematics, including </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\sin x=\cos x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\sin x=\cos x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0239876162b11c79d29c30db912b151793e03c1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.268ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}\sin x=\cos x}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d^{2}}{dx^{2}}}\sin x=-\sin x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d^{2}}{dx^{2}}}\sin x=-\sin x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cbddd7a23b3b22be9501d8314ba9b93357404d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:19.908ex; height:6.009ex;" alt="{\displaystyle {\frac {d^{2}}{dx^{2}}}\sin x=-\sin x.}"></span></dd></dl> <p>Because of these and other properties, the trigonometric functions appear in solutions to mathematical problems that are not obviously related to the functions' geometrical meanings (for example, the solutions to the <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {d^{2}y}{dx^{2}}}=-y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {d^{2}y}{dx^{2}}}=-y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/494e04d09142eac983a501a8fdf6308612679273" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:9.53ex; height:4.676ex;" alt="{\displaystyle {\tfrac {d^{2}y}{dx^{2}}}=-y}"></span>, the evaluation of the integral <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int {\frac {dx}{1+x^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int {\frac {dx}{1+x^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddfe7c9360bc927a2ee753b62a6e89e6d59a1ce9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:7.16ex; height:4.176ex;" alt="{\displaystyle \textstyle \int {\frac {dx}{1+x^{2}}},}"></span> and so on). In all such cases, it is appropriate that the arguments of the functions are treated as (dimensionless) numbers—without any reference to angles. </p><p>The trigonometric functions of angles also have simple and elegant series expansions when radians are used. For example, when <i>x</i> is the angle expressed in radians, the <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> for sin <i>x</i> becomes: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mrow> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6d39cc4bdec2487b57e0c58e878ccebc21de6d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:33.779ex; height:5.843ex;" alt="{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots .}"></span></dd></dl> <p>If <i>y</i> were the angle <i>x</i> but expressed in degrees, i.e. <span class="nowrap"><i>y</i> = <span class="texhtml mvar" style="font-style:italic;">π</span><i>x</i> / 180</span>, then the series would contain messy factors involving powers of <span class="texhtml mvar" style="font-style:italic;">π</span>/180: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin y={\frac {\pi }{180}}x-\left({\frac {\pi }{180}}\right)^{3}\ {\frac {x^{3}}{3!}}+\left({\frac {\pi }{180}}\right)^{5}\ {\frac {x^{5}}{5!}}-\left({\frac {\pi }{180}}\right)^{7}\ {\frac {x^{7}}{7!}}+\cdots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>180</mn> </mfrac> </mrow> <mi>x</mi> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>180</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>180</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>180</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mrow> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin y={\frac {\pi }{180}}x-\left({\frac {\pi }{180}}\right)^{3}\ {\frac {x^{3}}{3!}}+\left({\frac {\pi }{180}}\right)^{5}\ {\frac {x^{5}}{5!}}-\left({\frac {\pi }{180}}\right)^{7}\ {\frac {x^{7}}{7!}}+\cdots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc5cd0b253dd5679de35d2926a8dc4e63feeeed5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:64.13ex; height:5.843ex;" alt="{\displaystyle \sin y={\frac {\pi }{180}}x-\left({\frac {\pi }{180}}\right)^{3}\ {\frac {x^{3}}{3!}}+\left({\frac {\pi }{180}}\right)^{5}\ {\frac {x^{5}}{5!}}-\left({\frac {\pi }{180}}\right)^{7}\ {\frac {x^{7}}{7!}}+\cdots .}"></span></dd></dl> <p>In a similar spirit, if angles are involved, mathematically important relationships between the sine and cosine functions and the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a> (see, for example, <a href="/wiki/Euler%27s_formula" title="Euler's formula">Euler's formula</a>) can be elegantly stated when the functions' arguments are angles expressed in radians (and messy otherwise). More generally, in complex-number theory, the arguments of these functions are (dimensionless, possibly complex) numbers—without any reference to physical angles at all. </p> <div class="mw-heading mw-heading3"><h3 id="Physics">Physics</h3></div> <p>The radian is widely used in <a href="/wiki/Physics" title="Physics">physics</a> when angular measurements are required. For example, <a href="/wiki/Angular_velocity" title="Angular velocity">angular velocity</a> is typically expressed in the unit <a href="/wiki/Radian_per_second" title="Radian per second">radian per second</a> (rad/s). One revolution per second corresponds to 2<span class="texhtml mvar" style="font-style:italic;">π</span> radians per second. </p><p>Similarly, the unit used for <a href="/wiki/Angular_acceleration" title="Angular acceleration">angular acceleration</a> is often radian per second per second (rad/s<sup>2</sup>). </p><p>For the purpose of <a href="/wiki/Dimensional_analysis" title="Dimensional analysis">dimensional analysis</a>, the units of angular velocity and angular acceleration are s<sup>−1</sup> and s<sup>−2</sup> respectively. </p><p>Likewise, the phase angle difference of two waves can also be expressed using the radian as the unit. For example, if the phase angle difference of two waves is (<i>n</i>⋅2<span class="texhtml mvar" style="font-style:italic;">π</span>) radians, where <i>n</i> is an integer, they are considered to be in <a href="/wiki/Phase_(waves)" title="Phase (waves)">phase</a>, whilst if the phase angle difference of two waves is (<span class="nowrap"><i>n</i>⋅2<span class="texhtml mvar" style="font-style:italic;">π</span> + <span class="texhtml mvar" style="font-style:italic;">π</span></span>) radians, with <i>n</i> an integer, they are considered to be in antiphase. </p><p>A unit of reciprocal radian or inverse radian (rad<sup>-1</sup>) is involved in derived units such as meter per radian (for <a href="/wiki/Angular_wavelength" class="mw-redirect" title="Angular wavelength">angular wavelength</a>) or newton-metre per radian (for torsional stiffness). </p> <div class="mw-heading mw-heading3"><h3 id="Prefixes_and_variants">Prefixes and variants</h3></div> <p><a href="/wiki/Metric_prefix" title="Metric prefix">Metric prefixes</a> for submultiples are used with radians. A <a href="/wiki/Milliradian" title="Milliradian">milliradian</a> (mrad) is a thousandth of a radian (0.001 rad), i.e. <span class="nowrap">1 rad = 10<sup>3</sup> mrad</span>. There are 2<a href="/wiki/Pi" title="Pi"><span class="texhtml mvar" style="font-style:italic;">π</span></a> × 1000 milliradians (≈ 6283.185 mrad) in a circle. So a milliradian is just under <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6283</span></span>⁠</span> of the angle subtended by a full circle. This unit of angular measurement of a circle is in common use by <a href="/wiki/Telescopic_sight" title="Telescopic sight">telescopic sight</a> manufacturers using <a href="/wiki/Stadiametric_rangefinding" title="Stadiametric rangefinding">(stadiametric) rangefinding</a> in <a href="/wiki/Reticle" title="Reticle">reticles</a>. The <a href="/wiki/Beam_divergence" title="Beam divergence">divergence</a> of <a href="/wiki/Laser" title="Laser">laser</a> beams is also usually measured in milliradians. </p><p>The <a href="/wiki/Angular_mil" class="mw-redirect" title="Angular mil">angular mil</a> is an approximation of the milliradian used by <a href="/wiki/NATO" title="NATO">NATO</a> and other military organizations in <a href="/wiki/Gun" title="Gun">gunnery</a> and <a href="/wiki/Sniper#Targeting,_tactics_and_techniques" title="Sniper">targeting</a>. Each angular mil represents <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6400</span></span>⁠</span> of a circle and is <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">15</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span>% or 1.875% smaller than the milliradian. For the small angles typically found in targeting work, the convenience of using the number 6400 in calculation outweighs the small mathematical errors it introduces. In the past, other gunnery systems have used different approximations to <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2000<span class="texhtml mvar" style="font-style:italic;">π</span></span></span>⁠</span>; for example Sweden used the <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6300</span></span>⁠</span> <i>streck</i> and the USSR used <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6000</span></span>⁠</span>. Being based on the milliradian, the NATO mil subtends roughly 1 m at a range of 1000 m (at such small angles, the curvature is negligible). </p><p>Prefixes smaller than milli- are useful in measuring extremely small angles. Microradians (μrad, <span class="nowrap"><span data-sort-value="6992100000000000000♠"></span>10<sup>−6</sup> rad</span>) and nanoradians (nrad, <span class="nowrap"><span data-sort-value="6989100000000000000♠"></span>10<sup>−9</sup> rad</span>) are used in astronomy, and can also be used to measure the beam quality of lasers with ultra-low divergence. More common is the <a href="/wiki/Arc_second" class="mw-redirect" title="Arc second">arc second</a>, which is <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">648,000</span></span>⁠</span> rad (around 4.8481 microradians). </p><p><br /> </p> <table class="wikitable" style="text-align:center; margin:0 auto;"> <caption>SI multiples of radian (rad) </caption> <tbody><tr> <th scope="col" colspan="3">Submultiples </th> <th scope="col" colspan="3">Multiples </th></tr> <tr style="background:#d4d4d4;"> <th scope="col">Value </th> <th scope="col">SI symbol </th> <th scope="col">Name </th> <th scope="col">Value </th> <th scope="col">SI symbol </th> <th scope="col">Name </th></tr> <tr> <td>10<sup>−1</sup> rad </td> <td>drad </td> <td>deciradian </td> <td>10<sup>1</sup> rad </td> <td>darad </td> <td>decaradian </td></tr> <tr> <td>10<sup>−2</sup> rad </td> <td>crad </td> <td>centiradian </td> <td>10<sup>2</sup> rad </td> <td>hrad </td> <td>hectoradian </td></tr> <tr> <td>10<sup>−3</sup> rad </td> <td>mrad </td> <td><a href="/wiki/Milliradian" title="Milliradian">milliradian</a> </td> <td>10<sup>3</sup> rad </td> <td>krad </td> <td>kiloradian </td></tr> <tr> <td>10<sup>−6</sup> rad </td> <td>μrad </td> <td>microradian </td> <td>10<sup>6</sup> rad </td> <td>Mrad </td> <td>megaradian </td></tr> <tr> <td>10<sup>−9</sup> rad </td> <td>nrad </td> <td>nanoradian </td> <td>10<sup>9</sup> rad </td> <td>Grad </td> <td>gigaradian </td></tr> <tr> <td>10<sup>−12</sup> rad </td> <td>prad </td> <td>picoradian </td> <td>10<sup>12</sup> rad </td> <td>Trad </td> <td>teraradian </td></tr> <tr> <td>10<sup>−15</sup> rad </td> <td>frad </td> <td>femtoradian </td> <td>10<sup>15</sup> rad </td> <td>Prad </td> <td>petaradian </td></tr> <tr> <td>10<sup>−18</sup> rad </td> <td>arad </td> <td>attoradian </td> <td>10<sup>18</sup> rad </td> <td>Erad </td> <td>exaradian </td></tr> <tr> <td>10<sup>−21</sup> rad </td> <td>zrad </td> <td>zeptoradian </td> <td>10<sup>21</sup> rad </td> <td>Zrad </td> <td>zettaradian </td></tr> <tr> <td>10<sup>−24</sup> rad </td> <td>yrad </td> <td>yoctoradian </td> <td>10<sup>24</sup> rad </td> <td>Yrad </td> <td>yottaradian </td></tr> <tr> <td>10<sup>−27</sup> rad </td> <td>rrad </td> <td>rontoradian </td> <td>10<sup>27</sup> rad </td> <td>Rrad </td> <td>ronnaradian </td></tr> <tr> <td>10<sup>−30</sup> rad </td> <td>qrad </td> <td>quectoradian </td> <td>10<sup>30</sup> rad </td> <td>Qrad </td> <td>quettaradian </td></tr> </tbody></table> <div class="mw-heading mw-heading2"><h2 id="History">History</h2></div> <div class="mw-heading mw-heading3"><h3 id="Pre-20th_century">Pre-20th century</h3></div> <p>The idea of measuring angles by the length of the arc was in use by mathematicians quite early. For example, <a href="/wiki/Al-Kashi" class="mw-redirect" title="Al-Kashi">al-Kashi</a> (c. 1400) used so-called <i>diameter parts</i> as units, where one diameter part was <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">60</span></span>⁠</span> radian. They also used sexagesimal subunits of the diameter part.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> Newton in 1672 spoke of "the angular quantity of a body's circular motion", but used it only as a relative measure to develop an astronomical algorithm.<sup id="cite_ref-Roche_32-0" class="reference"><a href="#cite_note-Roche-32"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p><p>The concept of <i>the</i> radian measure is normally credited to <a href="/wiki/Roger_Cotes" title="Roger Cotes">Roger Cotes</a>, who died in 1716. By 1722, his cousin Robert Smith had collected and published Cotes' mathematical writings in a book, <i>Harmonia mensurarum</i>.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> In a chapter of editorial comments, Smith gave what is probably the first published calculation of one radian in degrees, citing a note of Cotes that has not survived. Smith described the radian in everything but name – "Now this number is equal to 180 degrees as the radius of a circle to the <a href="/wiki/Semicircumference" class="mw-redirect" title="Semicircumference">semicircumference</a>, this is as 1 to 3.141592653589" –, and recognized its naturalness as a unit of angular measure.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p><p>In 1765, <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> implicitly adopted the radian as a unit of angle.<sup id="cite_ref-Roche_32-1" class="reference"><a href="#cite_note-Roche-32"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> Specifically, Euler defined angular velocity as "The angular speed in rotational motion is the speed of that point, the distance of which from the axis of gyration is expressed by one."<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> Euler was probably the first to adopt this convention, referred to as the radian convention, which gives the simple formula for angular velocity <span class="texhtml"><i>ω</i> = <i>v</i>/<i>r</i></span>. As discussed in <i><a href="#Dimensional_analysis">§ Dimensional analysis</a></i>, the radian convention has been widely adopted, while dimensionally consistent formulations require the insertion of a dimensional constant, for example <span class="texhtml"><i>ω</i> = <i>v</i>/(<i>ηr</i>)</span>.<sup id="cite_ref-FOOTNOTEQuincey2021_26-1" class="reference"><a href="#cite_note-FOOTNOTEQuincey2021-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>Prior to the term <i>radian</i> becoming widespread, the unit was commonly called <i>circular measure</i> of an angle.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> The term <i>radian</i> first appeared in print on 5 June 1873, in examination questions set by <a href="/wiki/James_Thomson_(engineer)" title="James Thomson (engineer)">James Thomson</a> (brother of <a href="/wiki/Lord_Kelvin" title="Lord Kelvin">Lord Kelvin</a>) at <a href="/wiki/Queen%27s_University_Belfast" title="Queen's University Belfast">Queen's College</a>, <a href="/wiki/Belfast" title="Belfast">Belfast</a>. He had used the term as early as 1871, while in 1869, <a href="/wiki/Thomas_Muir_(mathematician)" title="Thomas Muir (mathematician)">Thomas Muir</a>, then of the <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a>, vacillated between the terms <i>rad</i>, <i>radial</i>, and <i>radian</i>. In 1874, after a consultation with James Thomson, Muir adopted <i>radian</i>.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> The name <i>radian</i> was not universally adopted for some time after this. <i>Longmans' School Trigonometry</i> still called the radian <i>circular measure</i> when published in 1890.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p><p>In 1893 <a href="/wiki/Alexander_Macfarlane" title="Alexander Macfarlane">Alexander Macfarlane</a> wrote "the true analytical argument for the circular ratios is not the ratio of the arc to the radius, but the ratio of twice the area of a sector to the square on the radius."<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> However, the paper was withdrawn from the published proceedings of mathematical congress held in connection with <a href="/wiki/World%27s_Columbian_Exposition" title="World's Columbian Exposition">World's Columbian Exposition</a> in Chicago (acknowledged at page 167), and privately published in his <i>Papers on Space Analysis</i> (1894). Macfarlane reached this idea or ratios of areas while considering the basis for <a href="/wiki/Hyperbolic_angle" title="Hyperbolic angle">hyperbolic angle</a> which is analogously defined.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="As_an_SI_unit">As an SI unit</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="#Dimensional_analysis">§ Dimensional analysis</a></div> <p>As Paul Quincey et al. write, "the status of angles within the <a href="/wiki/International_System_of_Units" title="International System of Units">International System of Units</a> (SI) has long been a source of controversy and confusion."<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> In 1960, the <a href="/wiki/General_Conference_on_Weights_and_Measures" title="General Conference on Weights and Measures">CGPM</a> established the SI and the radian was classified as a "supplementary unit" along with the <a href="/wiki/Steradian" title="Steradian">steradian</a>. This special class was officially regarded "either as base units or as derived units", as the CGPM could not reach a decision on whether the radian was a base unit or a derived unit.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> Richard Nelson writes "This ambiguity [in the classification of the supplemental units] prompted a spirited discussion over their proper interpretation."<sup id="cite_ref-Nelson_46-0" class="reference"><a href="#cite_note-Nelson-46"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> In May 1980 the <a href="/wiki/Consultative_Committee_for_Units" class="mw-redirect" title="Consultative Committee for Units">Consultative Committee for Units (CCU)</a> considered a proposal for making radians an SI base unit, using a constant <span class="texhtml"><i>α</i><sub>0</sub> = 1 rad</span>,<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEQuincey2021_26-2" class="reference"><a href="#cite_note-FOOTNOTEQuincey2021-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> but turned it down to avoid an upheaval to current practice.<sup id="cite_ref-FOOTNOTEQuincey2021_26-3" class="reference"><a href="#cite_note-FOOTNOTEQuincey2021-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>In October 1980 the CGPM decided that supplementary units were dimensionless derived units for which the CGPM allowed the freedom of using them or not using them in expressions for SI derived units,<sup id="cite_ref-Nelson_46-1" class="reference"><a href="#cite_note-Nelson-46"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> on the basis that "[no formalism] exists which is at the same time coherent and convenient and in which the quantities plane angle and solid angle might be considered as base quantities" and that "[the possibility of treating the radian and steradian as SI base units] compromises the internal coherence of the SI based on only seven base units".<sup id="cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019174–175_48-0" class="reference"><a href="#cite_note-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019174–175-48"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> In 1995 the CGPM eliminated the class of supplementary units and defined the radian and the steradian as "dimensionless derived units, the names and symbols of which may, but need not, be used in expressions for other SI derived units, as is convenient".<sup id="cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019179_49-0" class="reference"><a href="#cite_note-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019179-49"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> Mikhail Kalinin writing in 2019 has criticized the 1980 CGPM decision as "unfounded" and says that the 1995 CGPM decision used inconsistent arguments and introduced "numerous discrepancies, inconsistencies, and contradictions in the wordings of the SI".<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p><p>At the 2013 meeting of the CCU, Peter Mohr gave a presentation on alleged inconsistencies arising from defining the radian as a dimensionless unit rather than a base unit. CCU President Ian M. Mills declared this to be a "formidable problem" and the <i>CCU Working Group on Angles and Dimensionless Quantities in the SI</i> was established.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> The CCU met in 2021, but did not reach a consensus. A small number of members argued strongly that the radian should be a base unit, but the majority felt the status quo was acceptable or that the change would cause more problems than it would solve. A task group was established to "review the historical use of SI supplementary units and consider whether reintroduction would be of benefit", among other activities.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2></div> <ul><li><a href="/wiki/Angular_frequency" title="Angular frequency">Angular frequency</a></li> <li><a href="/wiki/Minute_and_second_of_arc" title="Minute and second of arc">Minute and second of arc</a></li> <li><a href="/wiki/Steradian" title="Steradian">Steradian</a>, a higher-dimensional analog of the radian which measures solid angle</li> <li><a href="/wiki/Trigonometry" title="Trigonometry">Trigonometry</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">Other proposals include the abbreviation "rad" (<a href="#CITEREFBrinsmade1936">Brinsmade 1936</a>), the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \theta \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>θ<!-- θ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \theta \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9eda2f58c19644eb126786716dcf01b62ee19e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.9ex; height:2.843ex;" alt="{\displaystyle \langle \theta \rangle }"></span> (<a href="#CITEREFRomain1962">Romain 1962</a>), and the constants <a href="/wiki/%D7%9D" class="mw-redirect" title="ם">ם</a> (<a href="#CITEREFBrownstein1997">Brownstein 1997</a>), ◁ (<a href="#CITEREFLévy-Leblond1998">Lévy-Leblond 1998</a>), <i>k</i> (<a href="#CITEREFFoster2010">Foster 2010</a>), <i>θ</i><sub>C</sub> (<a href="#CITEREFQuincey2021">Quincey 2021</a>), and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cal {C}}={\frac {2\pi }{\Theta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> <mi mathvariant="normal">Θ<!-- Θ --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cal {C}}={\frac {2\pi }{\Theta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/115315228178cfdcbeefbfc3873f9bd5ed6bb816" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.668ex; height:5.343ex;" alt="{\displaystyle {\cal {C}}={\frac {2\pi }{\Theta }}}"></span> (<a href="#CITEREFMohrShirleyPhillipsTrott2022">Mohr et al. 2022</a>).</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Hall_1909-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hall_1909_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hall_1909_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHallFrink1909" class="citation book cs1 cs1-prop-location-test cs1-prop-long-vol">Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter VII. The General Angle [55] Signs and Limitations in Value. Exercise XV.". Written at Ann Arbor, Michigan, USA. <a rel="nofollow" class="external text" href="https://archive.org/stream/planetrigonometr00hallrich#page/n88/mode/1up"><i>Trigonometry</i></a>. Vol. Part I: Plane Trigonometry. New York, USA: <a href="/wiki/Henry_Holt_and_Company" title="Henry Holt and Company">Henry Holt and Company</a> / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. p. 73<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-08-12</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+VII.+The+General+Angle+%5B55%5D+Signs+and+Limitations+in+Value.+Exercise+XV.&rft.btitle=Trigonometry&rft.place=New+York%2C+USA&rft.pages=73&rft.pub=Henry+Holt+and+Company+%2F+Norwood+Press+%2F+J.+S.+Cushing+Co.+-+Berwick+%26+Smith+Co.%2C+Norwood%2C+Massachusetts%2C+USA&rft.date=1909-01&rft.aulast=Hall&rft.aufirst=Arthur+Graham&rft.au=Frink%2C+Fred+Goodrich&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fplanetrigonometr00hallrich%23page%2Fn88%2Fmode%2F1up&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-DDUnits-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-DDUnits_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-DDUnits_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFInternational_Bureau_of_Weights_and_Measures2019">International Bureau of Weights and Measures 2019</a>, p. 151: "The CGPM decided to interpret the supplementary units in the SI, namely the radian and the steradian, as dimensionless derived units."</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="#CITEREFInternational_Bureau_of_Weights_and_Measures2019">International Bureau of Weights and Measures 2019</a>, p. 151: "One radian corresponds to the angle for which s = r, thus 1 rad = 1."</span> </li> <li id="cite_note-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019137-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019137_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019137_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFInternational_Bureau_of_Weights_and_Measures2019">International Bureau of Weights and Measures 2019</a>, p. 137.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="https://books.google.com/books?id=Bo0eAQAAIAAJ&pg=PA12"><i>Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3</i></a>. National Aeronautics and Space Administration, Goddard Space Flight Center. 2002. p. 12.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Ocean+Optics+Protocols+for+Satellite+Ocean+Color+Sensor+Validation%2C+Revision+3&rft.pages=12&rft.pub=National+Aeronautics+and+Space+Administration%2C+Goddard+Space+Flight+Center&rft.date=2002&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DBo0eAQAAIAAJ%26pg%3DPA12&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFProtterMorrey1970" class="citation cs2">Protter, Murray H.; Morrey, Charles B. Jr. (1970), <i>College Calculus with Analytic Geometry</i> (2nd ed.), Reading: <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>, p. APP-4, <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a> <a rel="nofollow" class="external text" href="https://lccn.loc.gov/76087042">76087042</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=College+Calculus+with+Analytic+Geometry&rft.place=Reading&rft.pages=APP-4&rft.edition=2nd&rft.pub=Addison-Wesley&rft.date=1970&rft_id=info%3Alccn%2F76087042&rft.aulast=Protter&rft.aufirst=Murray+H.&rft.au=Morrey%2C+Charles+B.+Jr.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019151-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019151_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019151_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019151_7-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFInternational_Bureau_of_Weights_and_Measures2019">International Bureau of Weights and Measures 2019</a>, p. 151.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.iso.org/standard/31888.html">"ISO 80000-3:2006 Quantities and Units - Space and Time"</a>. 17 January 2017.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=ISO+80000-3%3A2006+Quantities+and+Units+-+Space+and+Time&rft.date=2017-01-17&rft_id=https%3A%2F%2Fwww.iso.org%2Fstandard%2F31888.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a href="#CITEREFInternational_Bureau_of_Weights_and_Measures2019">International Bureau of Weights and Measures 2019</a>, p. 151: "One radian corresponds to the angle for which <span class="texhtml"><i>s</i> = <i>r</i></span>"</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><a href="#CITEREFQuincey2016">Quincey 2016</a>, p. 844: "Also, as alluded to in <a href="#CITEREFMohrPhillips2015">Mohr & Phillips 2015</a>, the radian can be defined in terms of the area <i>A</i> of a sector (<span class="texhtml"><i>A</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> <i>θ</i> <i>r</i><sup>2</sup></span>), in which case it has the units m<sup>2</sup>⋅m<sup>−2</sup>."</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><a href="#CITEREFInternational_Bureau_of_Weights_and_Measures2019">International Bureau of Weights and Measures 2019</a>, p. 151: "One radian corresponds to the angle for which <span class="texhtml"><i>s</i> = <i>r</i></span>, thus <span class="texhtml">1 rad = 1</span>."</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBridgman1922" class="citation book cs1">Bridgman, Percy Williams (1922). <a rel="nofollow" class="external text" href="https://archive.org/details/dimensionalanaly00bridrich/page/n13/mode/2up"><i>Dimensional analysis</i></a>. New Haven : Yale University Press. <q>Angular amplitude of swing [...] No dimensions.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dimensional+analysis&rft.pub=New+Haven+%3A+Yale+University+Press&rft.date=1922&rft.aulast=Bridgman&rft.aufirst=Percy+Williams&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdimensionalanaly00bridrich%2Fpage%2Fn13%2Fmode%2F2up&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrando2020" class="citation journal cs1">Prando, Giacomo (August 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41567-020-0997-3">"A spectral unit"</a>. <i>Nature Physics</i>. <b>16</b> (8): 888. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020NatPh..16..888P">2020NatPh..16..888P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41567-020-0997-3">10.1038/s41567-020-0997-3</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:225445454">225445454</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Physics&rft.atitle=A+spectral+unit&rft.volume=16&rft.issue=8&rft.pages=888&rft.date=2020-08&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A225445454%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2Fs41567-020-0997-3&rft_id=info%3Abibcode%2F2020NatPh..16..888P&rft.aulast=Prando&rft.aufirst=Giacomo&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fs41567-020-0997-3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeonard1999" class="citation book cs1">Leonard, William J. (1999). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ShcCF5Gb408C&pg=PA262"><i>Minds-on Physics: Advanced topics in mechanics</i></a>. Kendall Hunt. p. 262. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7872-5412-4" title="Special:BookSources/978-0-7872-5412-4"><bdi>978-0-7872-5412-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Minds-on+Physics%3A+Advanced+topics+in+mechanics&rft.pages=262&rft.pub=Kendall+Hunt&rft.date=1999&rft.isbn=978-0-7872-5412-4&rft.aulast=Leonard&rft.aufirst=William+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DShcCF5Gb408C%26pg%3DPA262&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrench1992" class="citation journal cs1">French, Anthony P. (May 1992). "What happens to the 'radians'? (comment)". <i>The Physics Teacher</i>. <b>30</b> (5): 260–261. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.2343535">10.1119/1.2343535</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Physics+Teacher&rft.atitle=What+happens+to+the+%27radians%27%3F+%28comment%29&rft.volume=30&rft.issue=5&rft.pages=260-261&rft.date=1992-05&rft_id=info%3Adoi%2F10.1119%2F1.2343535&rft.aulast=French&rft.aufirst=Anthony+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOberhofer1992" class="citation journal cs1">Oberhofer, E. S. (March 1992). "What happens to the 'radians'?". <i>The Physics Teacher</i>. <b>30</b> (3): 170–171. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992PhTea..30..170O">1992PhTea..30..170O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.2343500">10.1119/1.2343500</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Physics+Teacher&rft.atitle=What+happens+to+the+%27radians%27%3F&rft.volume=30&rft.issue=3&rft.pages=170-171&rft.date=1992-03&rft_id=info%3Adoi%2F10.1119%2F1.2343500&rft_id=info%3Abibcode%2F1992PhTea..30..170O&rft.aulast=Oberhofer&rft.aufirst=E.+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAubrechtFrenchIonaWelch1993" class="citation journal cs1">Aubrecht, Gordon J.; French, Anthony P.; Iona, Mario; Welch, Daniel W. (February 1993). "The radian—That troublesome unit". <i>The Physics Teacher</i>. <b>31</b> (2): 84–87. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1993PhTea..31...84A">1993PhTea..31...84A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.2343667">10.1119/1.2343667</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Physics+Teacher&rft.atitle=The+radian%E2%80%94That+troublesome+unit&rft.volume=31&rft.issue=2&rft.pages=84-87&rft.date=1993-02&rft_id=info%3Adoi%2F10.1119%2F1.2343667&rft_id=info%3Abibcode%2F1993PhTea..31...84A&rft.aulast=Aubrecht&rft.aufirst=Gordon+J.&rft.au=French%2C+Anthony+P.&rft.au=Iona%2C+Mario&rft.au=Welch%2C+Daniel+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><a href="#CITEREFBrinsmade1936">Brinsmade 1936</a>; <a href="#CITEREFRomain1962">Romain 1962</a>; <a href="#CITEREFEder1982">Eder 1982</a>; <a href="#CITEREFTorrens1986">Torrens 1986</a>; <a href="#CITEREFBrownstein1997">Brownstein 1997</a>; <a href="#CITEREFLévy-Leblond1998">Lévy-Leblond 1998</a>; <a href="#CITEREFFoster2010">Foster 2010</a>; <a href="#CITEREFMills2016">Mills 2016</a>; <a href="#CITEREFQuincey2021">Quincey 2021</a>; <a href="#CITEREFLeonard2021">Leonard 2021</a>; <a href="#CITEREFMohrShirleyPhillipsTrott2022">Mohr et al. 2022</a></span> </li> <li id="cite_note-FOOTNOTEMohrPhillips2015-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMohrPhillips2015_19-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMohrPhillips2015">Mohr & Phillips 2015</a>.</span> </li> <li id="cite_note-Quincey-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Quincey_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Quincey_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Quincey_20-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Quincey_20-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuinceyBrown2016" class="citation journal cs1">Quincey, Paul; Brown, Richard J C (1 June 2016). "Implications of adopting plane angle as a base quantity in the SI". <i>Metrologia</i>. <b>53</b> (3): 998–1002. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1604.02373">1604.02373</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016Metro..53..998Q">2016Metro..53..998Q</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0026-1394%2F53%2F3%2F998">10.1088/0026-1394/53/3/998</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119294905">119294905</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=Implications+of+adopting+plane+angle+as+a+base+quantity+in+the+SI&rft.volume=53&rft.issue=3&rft.pages=998-1002&rft.date=2016-06-01&rft_id=info%3Aarxiv%2F1604.02373&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119294905%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0026-1394%2F53%2F3%2F998&rft_id=info%3Abibcode%2F2016Metro..53..998Q&rft.aulast=Quincey&rft.aufirst=Paul&rft.au=Brown%2C+Richard+J+C&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEQuincey2016-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEQuincey2016_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEQuincey2016_21-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFQuincey2016">Quincey 2016</a>.</span> </li> <li id="cite_note-FOOTNOTETorrens1986-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTETorrens1986_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTETorrens1986_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFTorrens1986">Torrens 1986</a>.</span> </li> <li id="cite_note-FOOTNOTEMohrShirleyPhillipsTrott20226-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMohrShirleyPhillipsTrott20226_24-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMohrShirleyPhillipsTrott2022">Mohr et al. 2022</a>, p. 6.</span> </li> <li id="cite_note-FOOTNOTEMohrShirleyPhillipsTrott20228–9-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMohrShirleyPhillipsTrott20228–9_25-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMohrShirleyPhillipsTrott2022">Mohr et al. 2022</a>, pp. 8–9.</span> </li> <li id="cite_note-FOOTNOTEQuincey2021-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEQuincey2021_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEQuincey2021_26-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEQuincey2021_26-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTEQuincey2021_26-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFQuincey2021">Quincey 2021</a>.</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuinceyBrown2017" class="citation journal cs1">Quincey, Paul; Brown, Richard J C (1 August 2017). "A clearer approach for defining unit systems". <i>Metrologia</i>. <b>54</b> (4): 454–460. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1705.03765">1705.03765</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Metro..54..454Q">2017Metro..54..454Q</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1681-7575%2Faa7160">10.1088/1681-7575/aa7160</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119418270">119418270</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=A+clearer+approach+for+defining+unit+systems&rft.volume=54&rft.issue=4&rft.pages=454-460&rft.date=2017-08-01&rft_id=info%3Aarxiv%2F1705.03765&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119418270%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1681-7575%2Faa7160&rft_id=info%3Abibcode%2F2017Metro..54..454Q&rft.aulast=Quincey&rft.aufirst=Paul&rft.au=Brown%2C+Richard+J+C&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchabelWatanabe" class="citation web cs1">Schabel, Matthias C.; Watanabe, Steven. <a rel="nofollow" class="external text" href="https://www.boost.org/doc/libs/1_79_0/doc/html/boost_units/FAQ.html#boost_units.FAQ.Angle_Are_Units">"Boost.Units FAQ – 1.79.0"</a>. <i>www.boost.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">5 May</span> 2022</span>. <q>Angles are treated as units</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.boost.org&rft.atitle=Boost.Units+FAQ+%E2%80%93+1.79.0&rft.aulast=Schabel&rft.aufirst=Matthias+C.&rft.au=Watanabe%2C+Steven&rft_id=https%3A%2F%2Fwww.boost.org%2Fdoc%2Flibs%2F1_79_0%2Fdoc%2Fhtml%2Fboost_units%2FFAQ.html%23boost_units.FAQ.Angle_Are_Units&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEMohrShirleyPhillipsTrott20223-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMohrShirleyPhillipsTrott20223_29-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMohrShirleyPhillipsTrott2022">Mohr et al. 2022</a>, p. 3.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://reference.wolfram.com/language/ref/UnityDimensions.html">"UnityDimensions—Wolfram Language Documentation"</a>. <i>reference.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">1 July</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=reference.wolfram.com&rft.atitle=UnityDimensions%E2%80%94Wolfram+Language+Documentation&rft_id=https%3A%2F%2Freference.wolfram.com%2Flanguage%2Fref%2FUnityDimensions.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuckey1953" class="citation book cs1">Luckey, Paul (1953) [Translation of 1424 book]. Siggel, A. (ed.). <i>Der Lehrbrief über den kreisumfang von Gamshid b. Mas'ud al-Kasi</i> [<i>Treatise on the Circumference of al-Kashi</i>]. Berlin: Akademie Verlag. p. 40.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Der+Lehrbrief+%C3%BCber+den+kreisumfang+von+Gamshid+b.+Mas%27ud+al-Kasi&rft.place=Berlin&rft.pages=40&rft.pub=Akademie+Verlag&rft.date=1953&rft.aulast=Luckey&rft.aufirst=Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-Roche-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-Roche_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Roche_32-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoche1998" class="citation book cs1">Roche, John J. (21 December 1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=eiQOqS-Q6EkC&pg=PA134"><i>The Mathematics of Measurement: A Critical History</i></a>. Springer Science & Business Media. p. 134. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-91581-4" title="Special:BookSources/978-0-387-91581-4"><bdi>978-0-387-91581-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mathematics+of+Measurement%3A+A+Critical+History&rft.pages=134&rft.pub=Springer+Science+%26+Business+Media&rft.date=1998-12-21&rft.isbn=978-0-387-91581-4&rft.aulast=Roche&rft.aufirst=John+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DeiQOqS-Q6EkC%26pg%3DPA134&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'ConnorRobertson2005" class="citation web cs1">O'Connor, J. J.; Robertson, E. F. (February 2005). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121019161705/http://www-groups.dcs.st-and.ac.uk/~history/Printonly/Cotes.html">"Biography of Roger Cotes"</a>. <i>The MacTutor History of Mathematics</i>. Archived from <a rel="nofollow" class="external text" href="http://www-groups.dcs.st-and.ac.uk/~history/Printonly/Cotes.html">the original</a> on 2012-10-19<span class="reference-accessdate">. Retrieved <span class="nowrap">2006-04-21</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+MacTutor+History+of+Mathematics&rft.atitle=Biography+of+Roger+Cotes&rft.date=2005-02&rft.aulast=O%27Connor&rft.aufirst=J.+J.&rft.au=Robertson%2C+E.+F.&rft_id=http%3A%2F%2Fwww-groups.dcs.st-and.ac.uk%2F~history%2FPrintonly%2FCotes.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCotes1722" class="citation book cs1 cs1-prop-foreign-lang-source">Cotes, Roger (1722). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=J6BGAAAAcAAJ&pg=RA2-PA95">"Editoris notæ ad Harmoniam mensurarum"</a>. In Smith, Robert (ed.). <i>Harmonia mensurarum</i> (in Latin). Cambridge, England. pp. 94–95. <q>In Canone Logarithmico exhibetur Systema quoddam menfurarum numeralium, quæ Logarithmi dicuntur: atque hujus systematis Modulus is est Logarithmus, qui metitur Rationem Modularem in Corol. 6. definitam. Similiter in Canone Trigonometrico finuum & tangentium, exhibetur Systema quoddam menfurarum numeralium, quæ Gradus appellantur: atque hujus systematis Modulus is est Numerus Graduum, qui metitur Angulum Modularem modo definitun, hoc est, qui continetur in arcu Radio æquali. Eft autem hic Numerus ad Gradus 180 ut Circuli Radius ad Semicircuinferentiam, hoc eft ut 1 ad 3.141592653589 &c. Unde Modulus Canonis Trigonometrici prodibit 57.2957795130 &c. Cujus Reciprocus eft 0.0174532925 &c. Hujus moduli subsidio (quem in chartula quadam Auctoris manu descriptum inveni) commodissime computabis mensuras angulares, queinadmodum oftendam in Nota III.</q> [In the Logarithmic Canon there is presented a certain system of numerical measures called Logarithms: and the Modulus of this system is the Logarithm, which measures the Modular Ratio as defined in Corollary 6. Similarly, in the Trigonometrical Canon of sines and tangents, there is presented a certain system of numerical measures called Degrees: and the Modulus of this system is the Number of Degrees which measures the Modular Angle defined in the manner defined, that is, which is contained in an equal Radius arc. Now this Number is equal to 180 Degrees as the Radius of a Circle to the Semicircumference, this is as 1 to 3.141592653589 &c. Hence the Modulus of the Trigonometric Canon will be 57.2957795130 &c. Whose Reciprocal is 0.0174532925 &c. With the help of this modulus (which I found described in a note in the hand of the Author) you will most conveniently calculate the angular measures, as mentioned in Note III.]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Editoris+not%C3%A6+ad+Harmoniam+mensurarum&rft.btitle=Harmonia+mensurarum&rft.place=Cambridge%2C+England&rft.pages=94-95&rft.date=1722&rft.aulast=Cotes&rft.aufirst=Roger&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJ6BGAAAAcAAJ%26pg%3DRA2-PA95&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGowing2002" class="citation book cs1">Gowing, Ronald (27 June 2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=I2Cy4wjj1soC&pg=PA39"><i>Roger Cotes - Natural Philosopher</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-52649-4" title="Special:BookSources/978-0-521-52649-4"><bdi>978-0-521-52649-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Roger+Cotes+-+Natural+Philosopher&rft.pub=Cambridge+University+Press&rft.date=2002-06-27&rft.isbn=978-0-521-52649-4&rft.aulast=Gowing&rft.aufirst=Ronald&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DI2Cy4wjj1soC%26pg%3DPA39&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEuler" class="citation book cs1 cs1-prop-foreign-lang-source">Euler, Leonhard. <a rel="nofollow" class="external text" href="http://www.17centurymaths.com/contents/euler/mechvol3/tmvol1ch2tr.pdf#page=3"><i>Theoria Motus Corporum Solidorum seu Rigidorum</i></a> [<i>Theory of the motion of solid or rigid bodies</i>] <span class="cs1-format">(PDF)</span> (in Latin). Translated by Bruce, Ian. Definition 6, paragraph 316.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Theoria+Motus+Corporum+Solidorum+seu+Rigidorum&rft.pages=Definition+6%2C+paragraph+316&rft.aulast=Euler&rft.aufirst=Leonhard&rft_id=http%3A%2F%2Fwww.17centurymaths.com%2Fcontents%2Feuler%2Fmechvol3%2Ftmvol1ch2tr.pdf%23page%3D3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text">Isaac Todhunter, <i>Plane Trigonometry: For the Use of Colleges and Schools</i>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bo5FAAAAcAAJ&pg=PA10">p. 10</a>, Cambridge and London: MacMillan, 1864 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/500022958">500022958</a></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCajori1929" class="citation book cs1"><a href="/wiki/Florian_Cajori" title="Florian Cajori">Cajori, Florian</a> (1929). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00cajo_0/page/147"><i>History of Mathematical Notations</i></a></span>. Vol. 2. Dover Publications. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00cajo_0/page/147">147–148</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-67766-4" title="Special:BookSources/0-486-67766-4"><bdi>0-486-67766-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=History+of+Mathematical+Notations&rft.pages=147-148&rft.pub=Dover+Publications&rft.date=1929&rft.isbn=0-486-67766-4&rft.aulast=Cajori&rft.aufirst=Florian&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema00cajo_0%2Fpage%2F147&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMuir1910" class="citation journal cs1">Muir, Thos. (1910). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1429528">"The Term "Radian" in Trigonometry"</a>. <i>Nature</i>. <b>83</b> (2110): 156. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1910Natur..83..156M">1910Natur..83..156M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F083156a0">10.1038/083156a0</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3958702">3958702</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=The+Term+%22Radian%22+in+Trigonometry&rft.volume=83&rft.issue=2110&rft.pages=156&rft.date=1910&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3958702%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2F083156a0&rft_id=info%3Abibcode%2F1910Natur..83..156M&rft.aulast=Muir&rft.aufirst=Thos.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1429528&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomson1910" class="citation journal cs1">Thomson, James (1910). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1429530">"The Term "Radian" in Trigonometry"</a>. <i>Nature</i>. <b>83</b> (2112): 217. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1910Natur..83..217T">1910Natur..83..217T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F083217c0">10.1038/083217c0</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3980250">3980250</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=The+Term+%22Radian%22+in+Trigonometry&rft.volume=83&rft.issue=2112&rft.pages=217&rft.date=1910&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3980250%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2F083217c0&rft_id=info%3Abibcode%2F1910Natur..83..217T&rft.aulast=Thomson&rft.aufirst=James&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1429530&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMuir1910" class="citation journal cs1">Muir, Thos. (1910). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1429528">"The Term "Radian" in Trigonometry"</a>. <i>Nature</i>. <b>83</b> (2120): 459–460. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1910Natur..83..459M">1910Natur..83..459M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F083459d0">10.1038/083459d0</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3971449">3971449</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=The+Term+%22Radian%22+in+Trigonometry&rft.volume=83&rft.issue=2120&rft.pages=459-460&rft.date=1910&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3971449%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2F083459d0&rft_id=info%3Abibcode%2F1910Natur..83..459M&rft.aulast=Muir&rft.aufirst=Thos.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1429528&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li></ul> </span></li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller2009" class="citation web cs1">Miller, Jeff (Nov 23, 2009). <a rel="nofollow" class="external text" href="http://jeff560.tripod.com/r.html">"Earliest Known Uses of Some of the Words of Mathematics"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">Sep 30,</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Earliest+Known+Uses+of+Some+of+the+Words+of+Mathematics&rft.date=2009-11-23&rft.aulast=Miller&rft.aufirst=Jeff&rft_id=http%3A%2F%2Fjeff560.tripod.com%2Fr.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">Frederick Sparks, <i>Longmans' School Trigonometry</i>, p. 6, London: Longmans, Green, and Co., 1890 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/877238863">877238863</a> (1891 edition)</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text">A. Macfarlane (1893) "On the definitions of the trigonometric functions", page 9, <a rel="nofollow" class="external text" href="https://archive.org/details/principlesalgeb01macfgoog/page/n138/mode/2up">link at Internet Archive</a></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikibooks-logo-en-noslogan.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/16px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/24px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/32px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></a></span> <a href="https://en.wikibooks.org/wiki/Geometry/Unified_Angles" class="extiw" title="wikibooks:Geometry/Unified Angles">Geometry/Unified Angles</a> at Wikibooks</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuinceyMohrPhillips2019" class="citation journal cs1">Quincey, Paul; Mohr, Peter J; Phillips, William D (1 August 2019). "Angles are inherently neither length ratios nor dimensionless". <i>Metrologia</i>. <b>56</b> (4): 043001. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1909.08389">1909.08389</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Metro..56d3001Q">2019Metro..56d3001Q</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1681-7575%2Fab27d7">10.1088/1681-7575/ab27d7</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:198428043">198428043</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=Angles+are+inherently+neither+length+ratios+nor+dimensionless&rft.volume=56&rft.issue=4&rft.pages=043001&rft.date=2019-08-01&rft_id=info%3Aarxiv%2F1909.08389&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A198428043%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1681-7575%2Fab27d7&rft_id=info%3Abibcode%2F2019Metro..56d3001Q&rft.aulast=Quincey&rft.aufirst=Paul&rft.au=Mohr%2C+Peter+J&rft.au=Phillips%2C+William+D&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2 cs1-prop-foreign-lang-source"><a rel="nofollow" class="external text" href="https://www.bipm.org/documents/20126/41483022/si_brochure_1.pdf/26bf12f9-1da7-e6c2-254b-c50fb978c01b"><i>Le Système international d'unités</i></a> <span class="cs1-format">(PDF)</span> (in French), 1970, p. 12, <q>Pour quelques unités du Système International, la Conférence Générale n'a pas ou n'a pas encore décidé s'il s'agit d'unités de base ou bien d'unités dérivées.</q> [For some units of the SI, the CGPM still hasn't yet decided whether they are base units or derived units.]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Le+Syst%C3%A8me+international+d%27unit%C3%A9s&rft.pages=12&rft.date=1970&rft_id=https%3A%2F%2Fwww.bipm.org%2Fdocuments%2F20126%2F41483022%2Fsi_brochure_1.pdf%2F26bf12f9-1da7-e6c2-254b-c50fb978c01b&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-Nelson-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-Nelson_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Nelson_46-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNelson1984" class="citation journal cs1">Nelson, Robert A. (March 1984). "The supplementary units". <i>The Physics Teacher</i>. <b>22</b> (3): 188–193. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1984PhTea..22..188N">1984PhTea..22..188N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.2341516">10.1119/1.2341516</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Physics+Teacher&rft.atitle=The+supplementary+units&rft.volume=22&rft.issue=3&rft.pages=188-193&rft.date=1984-03&rft_id=info%3Adoi%2F10.1119%2F1.2341516&rft_id=info%3Abibcode%2F1984PhTea..22..188N&rft.aulast=Nelson&rft.aufirst=Robert+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2 cs1-prop-foreign-lang-source"><a rel="nofollow" class="external text" href="https://www.bipm.org/documents/20126/30132777/cc-publication-ID-422/cd7e3b5f-471c-4e5c-e4e1-eb998acb155f"><i>Report of the 7th meeting</i></a> <span class="cs1-format">(PDF)</span> (in French), Consultative Committee for Units, May 1980, pp. 6–7</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Report+of+the+7th+meeting&rft.pages=6-7&rft.pub=Consultative+Committee+for+Units&rft.date=1980-05&rft_id=https%3A%2F%2Fwww.bipm.org%2Fdocuments%2F20126%2F30132777%2Fcc-publication-ID-422%2Fcd7e3b5f-471c-4e5c-e4e1-eb998acb155f&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019174–175-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019174–175_48-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFInternational_Bureau_of_Weights_and_Measures2019">International Bureau of Weights and Measures 2019</a>, pp. 174–175.</span> </li> <li id="cite_note-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019179-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEInternational_Bureau_of_Weights_and_Measures2019179_49-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFInternational_Bureau_of_Weights_and_Measures2019">International Bureau of Weights and Measures 2019</a>, p. 179.</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKalinin2019" class="citation journal cs1">Kalinin, Mikhail I (1 December 2019). "On the status of plane and solid angles in the International System of Units (SI)". <i>Metrologia</i>. <b>56</b> (6): 065009. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1810.12057">1810.12057</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Metro..56f5009K">2019Metro..56f5009K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1681-7575%2Fab3fbf">10.1088/1681-7575/ab3fbf</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53627142">53627142</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=On+the+status+of+plane+and+solid+angles+in+the+International+System+of+Units+%28SI%29&rft.volume=56&rft.issue=6&rft.pages=065009&rft.date=2019-12-01&rft_id=info%3Aarxiv%2F1810.12057&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53627142%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1681-7575%2Fab3fbf&rft_id=info%3Abibcode%2F2019Metro..56f5009K&rft.aulast=Kalinin&rft.aufirst=Mikhail+I&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConsultative_Committee_for_Units2013" class="citation report cs1"><a href="/wiki/Consultative_Committee_for_Units" class="mw-redirect" title="Consultative Committee for Units">Consultative Committee for Units</a> (11–12 June 2013). <a rel="nofollow" class="external text" href="https://www.bipm.org/documents/20126/31581067/21st+meeting/99596189-a3f2-bc60-46bf-f7828b980a5c">Report of the 21st meeting to the International Committee for Weights and Measures</a> (Report). pp. 18–20.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=report&rft.btitle=Report+of+the+21st+meeting+to+the+International+Committee+for+Weights+and+Measures&rft.pages=18-20&rft.date=2013-06-11%2F2013-06-12&rft.au=Consultative+Committee+for+Units&rft_id=https%3A%2F%2Fwww.bipm.org%2Fdocuments%2F20126%2F31581067%2F21st%2Bmeeting%2F99596189-a3f2-bc60-46bf-f7828b980a5c&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConsultative_Committee_for_Units2021" class="citation report cs1"><a href="/wiki/Consultative_Committee_for_Units" class="mw-redirect" title="Consultative Committee for Units">Consultative Committee for Units</a> (21–23 September 2021). <a rel="nofollow" class="external text" href="https://www.bipm.org/documents/20126/68201438/CCU25.pdf/ab1be833-d656-ae2e-36fa-feb04948ed4c#page=16">Report of the 25th meeting to the International Committee for Weights and Measures</a> (Report). pp. 16–17.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=report&rft.btitle=Report+of+the+25th+meeting+to+the+International+Committee+for+Weights+and+Measures&rft.pages=16-17&rft.date=2021-09-21%2F2021-09-23&rft.au=Consultative+Committee+for+Units&rft_id=https%3A%2F%2Fwww.bipm.org%2Fdocuments%2F20126%2F68201438%2FCCU25.pdf%2Fab1be833-d656-ae2e-36fa-feb04948ed4c%23page%3D16&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.bipm.org/en/committees/cc/ccu/wg/ccu-tg-adqsib">"CCU Task Group on angle and dimensionless quantities in the SI Brochure (CCU-TG-ADQSIB)"</a>. BIPM<span class="reference-accessdate">. Retrieved <span class="nowrap">26 June</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=CCU+Task+Group+on+angle+and+dimensionless+quantities+in+the+SI+Brochure+%28CCU-TG-ADQSIB%29&rft.pub=BIPM&rft_id=https%3A%2F%2Fwww.bipm.org%2Fen%2Fcommittees%2Fcc%2Fccu%2Fwg%2Fccu-tg-adqsib&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></span> </li> </ol></div></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFInternational_Bureau_of_Weights_and_Measures2019" class="citation cs2"><a href="/wiki/New_SI" class="mw-redirect" title="New SI">International Bureau of Weights and Measures</a> (20 May 2019), <a rel="nofollow" class="external text" href="https://www.bipm.org/documents/20126/41483022/SI-Brochure-9-EN.pdf#page=37"><i>The International System of Units (SI)</i></a> <span class="cs1-format">(PDF)</span> (9th ed.), <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-92-822-2272-0" title="Special:BookSources/978-92-822-2272-0"><bdi>978-92-822-2272-0</bdi></a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210508153809/https://www.bipm.org/documents/20126/41483022/SI-Brochure-9-EN.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 8 May 2021</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+International+System+of+Units+%28SI%29&rft.edition=9th&rft.date=2019-05-20&rft.isbn=978-92-822-2272-0&rft.au=International+Bureau+of+Weights+and+Measures&rft_id=https%3A%2F%2Fwww.bipm.org%2Fdocuments%2F20126%2F41483022%2FSI-Brochure-9-EN.pdf%23page%3D37&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrinsmade1936" class="citation journal cs1">Brinsmade, J. B. (December 1936). "Plane and Solid Angles. Their Pedagogic Value When Introduced Explicitly". <i>American Journal of Physics</i>. <b>4</b> (4): 175–179. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1936AmJPh...4..175B">1936AmJPh...4..175B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.1999110">10.1119/1.1999110</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Physics&rft.atitle=Plane+and+Solid+Angles.+Their+Pedagogic+Value+When+Introduced+Explicitly&rft.volume=4&rft.issue=4&rft.pages=175-179&rft.date=1936-12&rft_id=info%3Adoi%2F10.1119%2F1.1999110&rft_id=info%3Abibcode%2F1936AmJPh...4..175B&rft.aulast=Brinsmade&rft.aufirst=J.+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRomain1962" class="citation journal cs1">Romain, Jacques E. (July 1962). <a rel="nofollow" class="external text" href="https://doi.org/10.6028%2Fjres.066B.012">"Angle as a fourth fundamental quantity"</a>. <i>Journal of Research of the National Bureau of Standards Section B</i>. <b>66B</b> (3): 97. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.6028%2Fjres.066B.012">10.6028/jres.066B.012</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Research+of+the+National+Bureau+of+Standards+Section+B&rft.atitle=Angle+as+a+fourth+fundamental+quantity&rft.volume=66B&rft.issue=3&rft.pages=97&rft.date=1962-07&rft_id=info%3Adoi%2F10.6028%2Fjres.066B.012&rft.aulast=Romain&rft.aufirst=Jacques+E.&rft_id=https%3A%2F%2Fdoi.org%2F10.6028%252Fjres.066B.012&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEder1982" class="citation journal cs1">Eder, W E (January 1982). "A Viewpoint on the Quantity "Plane Angle"<span class="cs1-kern-right"></span>". <i>Metrologia</i>. <b>18</b> (1): 1–12. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982Metro..18....1E">1982Metro..18....1E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0026-1394%2F18%2F1%2F002">10.1088/0026-1394/18/1/002</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250750831">250750831</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=A+Viewpoint+on+the+Quantity+%22Plane+Angle%22&rft.volume=18&rft.issue=1&rft.pages=1-12&rft.date=1982-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250750831%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0026-1394%2F18%2F1%2F002&rft_id=info%3Abibcode%2F1982Metro..18....1E&rft.aulast=Eder&rft.aufirst=W+E&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTorrens1986" class="citation journal cs1">Torrens, A B (1 January 1986). "On Angles and Angular Quantities". <i>Metrologia</i>. <b>22</b> (1): 1–7. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1986Metro..22....1T">1986Metro..22....1T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0026-1394%2F22%2F1%2F002">10.1088/0026-1394/22/1/002</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250801509">250801509</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=On+Angles+and+Angular+Quantities&rft.volume=22&rft.issue=1&rft.pages=1-7&rft.date=1986-01-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250801509%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0026-1394%2F22%2F1%2F002&rft_id=info%3Abibcode%2F1986Metro..22....1T&rft.aulast=Torrens&rft.aufirst=A+B&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrownstein1997" class="citation journal cs1">Brownstein, K. R. (July 1997). <a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.18616">"Angles—Let's treat them squarely"</a>. <i>American Journal of Physics</i>. <b>65</b> (7): 605–614. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997AmJPh..65..605B">1997AmJPh..65..605B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.18616">10.1119/1.18616</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Physics&rft.atitle=Angles%E2%80%94Let%27s+treat+them+squarely&rft.volume=65&rft.issue=7&rft.pages=605-614&rft.date=1997-07&rft_id=info%3Adoi%2F10.1119%2F1.18616&rft_id=info%3Abibcode%2F1997AmJPh..65..605B&rft.aulast=Brownstein&rft.aufirst=K.+R.&rft_id=https%3A%2F%2Fdoi.org%2F10.1119%252F1.18616&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLévy-Leblond1998" class="citation journal cs1">Lévy-Leblond, Jean-Marc (September 1998). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/253371022">"Dimensional angles and universal constants"</a>. <i>American Journal of Physics</i>. <b>66</b> (9): 814–815. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998AmJPh..66..814L">1998AmJPh..66..814L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.18964">10.1119/1.18964</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Physics&rft.atitle=Dimensional+angles+and+universal+constants&rft.volume=66&rft.issue=9&rft.pages=814-815&rft.date=1998-09&rft_id=info%3Adoi%2F10.1119%2F1.18964&rft_id=info%3Abibcode%2F1998AmJPh..66..814L&rft.aulast=L%C3%A9vy-Leblond&rft.aufirst=Jean-Marc&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F253371022&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFoster2010" class="citation journal cs1">Foster, Marcus P (1 December 2010). <a rel="nofollow" class="external text" href="https://publications.csiro.au/rpr/download?pid=csiro:EP11794&dsid=DS4">"The next 50 years of the SI: a review of the opportunities for the e-Science age"</a>. <i>Metrologia</i>. <b>47</b> (6): R41–R51. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0026-1394%2F47%2F6%2FR01">10.1088/0026-1394/47/6/R01</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117711734">117711734</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=The+next+50+years+of+the+SI%3A+a+review+of+the+opportunities+for+the+e-Science+age&rft.volume=47&rft.issue=6&rft.pages=R41-R51&rft.date=2010-12-01&rft_id=info%3Adoi%2F10.1088%2F0026-1394%2F47%2F6%2FR01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117711734%23id-name%3DS2CID&rft.aulast=Foster&rft.aufirst=Marcus+P&rft_id=https%3A%2F%2Fpublications.csiro.au%2Frpr%2Fdownload%3Fpid%3Dcsiro%3AEP11794%26dsid%3DDS4&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMohrPhillips2015" class="citation journal cs1">Mohr, Peter J; Phillips, William D (1 February 2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0026-1394%2F52%2F1%2F40">"Dimensionless units in the SI"</a>. <i>Metrologia</i>. <b>52</b> (1): 40–47. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1409.2794">1409.2794</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015Metro..52...40M">2015Metro..52...40M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0026-1394%2F52%2F1%2F40">10.1088/0026-1394/52/1/40</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=Dimensionless+units+in+the+SI&rft.volume=52&rft.issue=1&rft.pages=40-47&rft.date=2015-02-01&rft_id=info%3Aarxiv%2F1409.2794&rft_id=info%3Adoi%2F10.1088%2F0026-1394%2F52%2F1%2F40&rft_id=info%3Abibcode%2F2015Metro..52...40M&rft.aulast=Mohr&rft.aufirst=Peter+J&rft.au=Phillips%2C+William+D&rft_id=https%3A%2F%2Fdoi.org%2F10.1088%252F0026-1394%252F52%252F1%252F40&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuincey2016" class="citation journal cs1">Quincey, Paul (1 April 2016). "The range of options for handling plane angle and solid angle within a system of units". <i>Metrologia</i>. <b>53</b> (2): 840–845. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016Metro..53..840Q">2016Metro..53..840Q</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0026-1394%2F53%2F2%2F840">10.1088/0026-1394/53/2/840</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125438811">125438811</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=The+range+of+options+for+handling+plane+angle+and+solid+angle+within+a+system+of+units&rft.volume=53&rft.issue=2&rft.pages=840-845&rft.date=2016-04-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125438811%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0026-1394%2F53%2F2%2F840&rft_id=info%3Abibcode%2F2016Metro..53..840Q&rft.aulast=Quincey&rft.aufirst=Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMills2016" class="citation journal cs1">Mills, Ian (1 June 2016). "On the units radian and cycle for the quantity plane angle". <i>Metrologia</i>. <b>53</b> (3): 991–997. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016Metro..53..991M">2016Metro..53..991M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0026-1394%2F53%2F3%2F991">10.1088/0026-1394/53/3/991</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:126032642">126032642</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=On+the+units+radian+and+cycle+for+the+quantity+plane+angle&rft.volume=53&rft.issue=3&rft.pages=991-997&rft.date=2016-06-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A126032642%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0026-1394%2F53%2F3%2F991&rft_id=info%3Abibcode%2F2016Metro..53..991M&rft.aulast=Mills&rft.aufirst=Ian&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuincey2021" class="citation journal cs1">Quincey, Paul (1 October 2021). "Angles in the SI: a detailed proposal for solving the problem". <i>Metrologia</i>. <b>58</b> (5): 053002. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2108.05704">2108.05704</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Metro..58e3002Q">2021Metro..58e3002Q</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1681-7575%2Fac023f">10.1088/1681-7575/ac023f</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:236547235">236547235</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=Angles+in+the+SI%3A+a+detailed+proposal+for+solving+the+problem&rft.volume=58&rft.issue=5&rft.pages=053002&rft.date=2021-10-01&rft_id=info%3Aarxiv%2F2108.05704&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A236547235%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1681-7575%2Fac023f&rft_id=info%3Abibcode%2F2021Metro..58e3002Q&rft.aulast=Quincey&rft.aufirst=Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeonard2021" class="citation journal cs1">Leonard, B P (1 October 2021). "Proposal for the dimensionally consistent treatment of angle and solid angle by the International System of Units (SI)". <i>Metrologia</i>. <b>58</b> (5): 052001. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Metro..58e2001L">2021Metro..58e2001L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1681-7575%2Fabe0fc">10.1088/1681-7575/abe0fc</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:234036217">234036217</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=Proposal+for+the+dimensionally+consistent+treatment+of+angle+and+solid+angle+by+the+International+System+of+Units+%28SI%29&rft.volume=58&rft.issue=5&rft.pages=052001&rft.date=2021-10-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A234036217%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1681-7575%2Fabe0fc&rft_id=info%3Abibcode%2F2021Metro..58e2001L&rft.aulast=Leonard&rft.aufirst=B+P&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMohrShirleyPhillipsTrott2022" class="citation journal cs1">Mohr, Peter J; Shirley, Eric L; Phillips, William D; Trott, Michael (23 June 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1681-7575%2Fac7bc2">"On the dimension of angles and their units"</a>. <i>Metrologia</i>. <b>59</b> (5): 053001. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2203.12392">2203.12392</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022Metro..59e3001M">2022Metro..59e3001M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1681-7575%2Fac7bc2">10.1088/1681-7575/ac7bc2</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=On+the+dimension+of+angles+and+their+units&rft.volume=59&rft.issue=5&rft.pages=053001&rft.date=2022-06-23&rft_id=info%3Aarxiv%2F2203.12392&rft_id=info%3Adoi%2F10.1088%2F1681-7575%2Fac7bc2&rft_id=info%3Abibcode%2F2022Metro..59e3001M&rft.aulast=Mohr&rft.aufirst=Peter+J&rft.au=Shirley%2C+Eric+L&rft.au=Phillips%2C+William+D&rft.au=Trott%2C+Michael&rft_id=https%3A%2F%2Fdoi.org%2F10.1088%252F1681-7575%252Fac7bc2&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadian" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">Wikibooks has a book on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Trigonometry/Radian_and_degree_measures" class="extiw" title="wikibooks:Trigonometry/Radian and degree measures">Trigonometry/Radian and degree measures</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/radian" class="extiw" title="wiktionary:radian">radian</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Category:Radian" class="extiw" title="commons:Category:Radian">Radian</a> at Wikimedia Commons</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="SI_units" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:SI_units" title="Template:SI units"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:SI_units" title="Template talk:SI units"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:SI_units" title="Special:EditPage/Template:SI units"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="SI_units" style="font-size:114%;margin:0 4em"><a href="/wiki/International_System_of_Units" title="International System of Units">SI units</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/SI_base_unit" title="SI base unit">Base units</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ampere" title="Ampere">ampere</a></li> <li><a href="/wiki/Candela" title="Candela">candela</a></li> <li><a href="/wiki/Kelvin" title="Kelvin">kelvin</a></li> <li><a href="/wiki/Kilogram" title="Kilogram">kilogram</a></li> <li><a href="/wiki/Metre" title="Metre">metre</a></li> <li><a href="/wiki/Mole_(unit)" title="Mole (unit)">mole</a></li> <li><a href="/wiki/Second" title="Second">second</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/SI_derived_unit" title="SI derived unit">Derived units <br />with special names</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Becquerel" title="Becquerel">becquerel</a></li> <li><a href="/wiki/Coulomb" title="Coulomb">coulomb</a></li> <li><a href="/wiki/Celsius" title="Celsius">degree Celsius</a></li> <li><a href="/wiki/Farad" title="Farad">farad</a></li> <li><a href="/wiki/Gray_(unit)" title="Gray (unit)">gray</a></li> <li><a href="/wiki/Henry_(unit)" title="Henry (unit)">henry</a></li> <li><a href="/wiki/Hertz" title="Hertz">hertz</a></li> <li><a href="/wiki/Joule" title="Joule">joule</a></li> <li><a href="/wiki/Katal" title="Katal">katal</a></li> <li><a href="/wiki/Lumen_(unit)" title="Lumen (unit)">lumen</a></li> <li><a href="/wiki/Lux" title="Lux">lux</a></li> <li><a href="/wiki/Newton_(unit)" title="Newton (unit)">newton</a></li> <li><a href="/wiki/Ohm" title="Ohm">ohm</a></li> <li><a href="/wiki/Pascal_(unit)" title="Pascal (unit)">pascal</a></li> <li><a class="mw-selflink selflink">radian</a></li> <li><a href="/wiki/Siemens_(unit)" title="Siemens (unit)">siemens</a></li> <li><a href="/wiki/Sievert" title="Sievert">sievert</a></li> <li><a href="/wiki/Steradian" title="Steradian">steradian</a></li> <li><a href="/wiki/Tesla_(unit)" title="Tesla (unit)">tesla</a></li> <li><a href="/wiki/Volt" title="Volt">volt</a></li> <li><a href="/wiki/Watt" title="Watt">watt</a></li> <li><a href="/wiki/Weber_(unit)" title="Weber (unit)">weber</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Non-SI_units_mentioned_in_the_SI" title="Non-SI units mentioned in the SI">Other accepted units</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Astronomical_unit" title="Astronomical unit">astronomical unit</a></li> <li><a href="/wiki/Dalton_(unit)" title="Dalton (unit)">dalton</a></li> <li><a href="/wiki/Day" title="Day">day</a></li> <li><a href="/wiki/Decibel" title="Decibel">decibel</a></li> <li><a href="/wiki/Degree_(angle)" title="Degree (angle)">degree of arc</a></li> <li><a href="/wiki/Electronvolt" title="Electronvolt">electronvolt</a></li> <li><a href="/wiki/Hectare" title="Hectare">hectare</a></li> <li><a href="/wiki/Hour" title="Hour">hour</a></li> <li><a href="/wiki/Litre" title="Litre">litre</a></li> <li><a href="/wiki/Minute" title="Minute">minute</a></li> <li><a href="/wiki/Minute_and_second_of_arc" title="Minute and second of arc">minute and second of arc</a></li> <li><a href="/wiki/Neper" title="Neper">neper</a></li> <li><a href="/wiki/Tonne" title="Tonne">tonne</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">See also</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Conversion_of_units" title="Conversion of units">Conversion of units</a></li> <li><a href="/wiki/Metric_prefix" title="Metric prefix">Metric prefixes</a></li> <li><a href="/wiki/Historical_definitions_of_the_SI_base_units" title="Historical definitions of the SI base units">Historical definitions of the SI base units</a></li> <li><a href="/wiki/2019_revision_of_the_SI" title="2019 revision of the SI">2019 revision of the SI</a></li> <li><a href="/wiki/System_of_units_of_measurement" title="System of units of measurement">System of units of measurement</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:SI_units" title="Category:SI units">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐7556f8b5dd‐2glkv Cached time: 20241122140714 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.969 seconds Real time usage: 1.211 seconds Preprocessor visited node count: 9047/1000000 Post‐expand include size: 181237/2097152 bytes Template argument size: 11111/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 224860/5000000 bytes Lua time usage: 0.558/10.000 seconds Lua memory usage: 11002452/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 984.317 1 -total 29.69% 292.268 2 Template:Reflist 12.73% 125.273 25 Template:Cite_journal 11.13% 109.530 10 Template:Cite_book 10.10% 99.383 19 Template:Sfn 8.03% 79.052 1 Template:SI_units 7.88% 77.589 1 Template:Short_description 7.18% 70.685 1 Template:Navbox 6.52% 64.211 1 Template:Infobox_unit 5.87% 57.738 1 Template:Infobox --> <!-- Saved in parser cache with key enwiki:pcache:idhash:26003-0!canonical and timestamp 20241122140714 and revision id 1258410919. Rendering was triggered because: unknown --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Radian&oldid=1258410919">https://en.wikipedia.org/w/index.php?title=Radian&oldid=1258410919</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Natural_units" title="Category:Natural units">Natural units</a></li><li><a href="/wiki/Category:SI_derived_units" title="Category:SI derived units">SI derived units</a></li><li><a href="/wiki/Category:Pi" title="Category:Pi">Pi</a></li><li><a href="/wiki/Category:Units_of_plane_angle" title="Category:Units of plane angle">Units of plane angle</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_location_test" title="Category:CS1 location test">CS1 location test</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:CS1_Latin-language_sources_(la)" title="Category:CS1 Latin-language sources (la)">CS1 Latin-language sources (la)</a></li><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_indefinitely_semi-protected_pages" title="Category:Wikipedia indefinitely semi-protected pages">Wikipedia indefinitely semi-protected pages</a></li><li><a href="/wiki/Category:Wikipedia_indefinitely_move-protected_pages" title="Category:Wikipedia indefinitely move-protected pages">Wikipedia indefinitely move-protected pages</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 19 November 2024, at 15:46<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Radian&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-gll7b","wgBackendResponseTime":156,"wgPageParseReport":{"limitreport":{"cputime":"0.969","walltime":"1.211","ppvisitednodes":{"value":9047,"limit":1000000},"postexpandincludesize":{"value":181237,"limit":2097152},"templateargumentsize":{"value":11111,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":224860,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 984.317 1 -total"," 29.69% 292.268 2 Template:Reflist"," 12.73% 125.273 25 Template:Cite_journal"," 11.13% 109.530 10 Template:Cite_book"," 10.10% 99.383 19 Template:Sfn"," 8.03% 79.052 1 Template:SI_units"," 7.88% 77.589 1 Template:Short_description"," 7.18% 70.685 1 Template:Navbox"," 6.52% 64.211 1 Template:Infobox_unit"," 5.87% 57.738 1 Template:Infobox"]},"scribunto":{"limitreport-timeusage":{"value":"0.558","limit":"10.000"},"limitreport-memusage":{"value":11002452,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAubrechtFrenchIonaWelch1993\"] = 1,\n [\"CITEREFBridgman1922\"] = 1,\n [\"CITEREFBrinsmade1936\"] = 1,\n [\"CITEREFBrownstein1997\"] = 1,\n [\"CITEREFCajori1929\"] = 1,\n [\"CITEREFConsultative_Committee_for_Units2013\"] = 1,\n [\"CITEREFConsultative_Committee_for_Units2021\"] = 1,\n [\"CITEREFCotes1722\"] = 1,\n [\"CITEREFEder1982\"] = 1,\n [\"CITEREFEuler\"] = 1,\n [\"CITEREFFoster2010\"] = 1,\n [\"CITEREFFrench1992\"] = 1,\n [\"CITEREFGowing2002\"] = 1,\n [\"CITEREFHallFrink1909\"] = 1,\n [\"CITEREFInternational_Bureau_of_Weights_and_Measures2019\"] = 1,\n [\"CITEREFKalinin2019\"] = 1,\n [\"CITEREFLeonard1999\"] = 1,\n [\"CITEREFLeonard2021\"] = 1,\n [\"CITEREFLuckey1953\"] = 1,\n [\"CITEREFLévy-Leblond1998\"] = 1,\n [\"CITEREFMiller2009\"] = 1,\n [\"CITEREFMills2016\"] = 1,\n [\"CITEREFMohrPhillips2015\"] = 1,\n [\"CITEREFMohrShirleyPhillipsTrott2022\"] = 1,\n [\"CITEREFMuir1910\"] = 2,\n [\"CITEREFNelson1984\"] = 1,\n [\"CITEREFO\u0026#039;ConnorRobertson2005\"] = 1,\n [\"CITEREFOberhofer1992\"] = 1,\n [\"CITEREFPrando2020\"] = 1,\n [\"CITEREFProtterMorrey1970\"] = 1,\n [\"CITEREFQuincey2016\"] = 1,\n [\"CITEREFQuincey2021\"] = 1,\n [\"CITEREFQuinceyBrown2016\"] = 1,\n [\"CITEREFQuinceyBrown2017\"] = 1,\n [\"CITEREFQuinceyMohrPhillips2019\"] = 1,\n [\"CITEREFRoche1998\"] = 1,\n [\"CITEREFRomain1962\"] = 1,\n [\"CITEREFSchabelWatanabe\"] = 1,\n [\"CITEREFThomson1910\"] = 1,\n [\"CITEREFTorrens1986\"] = 1,\n}\ntemplate_list = table#1 {\n [\"=\"] = 1,\n [\"Char\"] = 1,\n [\"Citation\"] = 4,\n [\"Cite book\"] = 10,\n [\"Cite journal\"] = 25,\n [\"Cite report\"] = 2,\n [\"Cite web\"] = 6,\n [\"Commons category-inline\"] = 1,\n [\"Efn\"] = 1,\n [\"Harv\"] = 7,\n [\"Harvnb\"] = 17,\n [\"Infobox unit\"] = 1,\n [\"Math\"] = 27,\n [\"Mvar\"] = 14,\n [\"Nobr\"] = 1,\n [\"Not a typo\"] = 1,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 5,\n [\"OCLC\"] = 1,\n [\"Oclc\"] = 1,\n [\"Other uses\"] = 1,\n [\"Pi\"] = 13,\n [\"Pp-move-indef\"] = 1,\n [\"Pp-semi-indef\"] = 1,\n [\"Redirect-distinguish\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"SI multiples\"] = 1,\n [\"SI units\"] = 1,\n [\"Section link\"] = 1,\n [\"See also\"] = 2,\n [\"Sfn\"] = 19,\n [\"Sfrac\"] = 12,\n [\"Short description\"] = 1,\n [\"Sup\"] = 5,\n [\"Table of angles\"] = 1,\n [\"Val\"] = 2,\n [\"Wikibooks\"] = 1,\n [\"Wikibooks-inline\"] = 1,\n [\"Wiktionary\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-api-ext.codfw.main-7556f8b5dd-2glkv","timestamp":"20241122140714","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Radian","url":"https:\/\/en.wikipedia.org\/wiki\/Radian","sameAs":"http:\/\/www.wikidata.org\/entity\/Q33680","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q33680","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-09-27T19:35:35Z","dateModified":"2024-11-19T15:46:21Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/4e\/Circle_radians.gif","headline":"SI unit of angular measure"}</script> </body> </html>