CINXE.COM

Ruth Stornetta | University of Virginia - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Ruth Stornetta | University of Virginia - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="KtXnuMAOQF/PmRsN5Fwl9BI7lIlzx4r5VwXc0l7OhIsHzeZQhbZThXUU9fwM6WlNv4z+IfgbmvOR4goxHPRPTw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="ruth stornetta" /> <meta name="description" content="Ruth Stornetta, University of Virginia: 24 Followers, 14 Following, 104 Research papers. Research interests: Autonomic Nervous System, Brain Mapping, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '640e319a5feb821ef61cccaf77c34b260ff56349'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15272,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277486399,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732744002000); window.Aedu.timeDifference = new Date().getTime() - 1732744002000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7734a8b54dedb8fefe75ef934203d0ef41d066c1c5cfa6ba2a13dd7ec8bce449.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-9eaa790b1139e2d88eb4ac931dcbc6d7cea4403a763db5cc5a695dd2eaa34151.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://virginia.academia.edu/RuthStornetta" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-533ab26e53b28997c1064a839643ef40d866d497c665279ed26b743aacb62042.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta","photo":"https://gravatar.com/avatar/0805e9643a5bb5a34e1504746bb61205?s=65","has_photo":true,"department":{"id":82177,"name":"Pharmacology","url":"https://virginia.academia.edu/Departments/Pharmacology/Documents","university":{"id":538,"name":"University of Virginia","url":"https://virginia.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":41220,"name":"Autonomic Nervous System","url":"https://www.academia.edu/Documents/in/Autonomic_Nervous_System"},{"id":52176,"name":"Brain Mapping","url":"https://www.academia.edu/Documents/in/Brain_Mapping"},{"id":147196,"name":"Monoclonal Antibodies","url":"https://www.academia.edu/Documents/in/Monoclonal_Antibodies"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":88321,"name":"Blood Pressure","url":"https://www.academia.edu/Documents/in/Blood_Pressure"},{"id":140,"name":"Pharmacology","url":"https://www.academia.edu/Documents/in/Pharmacology"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://virginia.academia.edu/RuthStornetta&quot;,&quot;location&quot;:&quot;/RuthStornetta&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;virginia.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/RuthStornetta&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-62e2a82d-0d33-4a75-888f-92d86788c198"></div> <div id="ProfileCheckPaperUpdate-react-component-62e2a82d-0d33-4a75-888f-92d86788c198"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Ruth Stornetta" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" src="https://gravatar.com/avatar/0805e9643a5bb5a34e1504746bb61205?s=200" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Ruth Stornetta</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://virginia.academia.edu/">University of Virginia</a>, <a class="u-tcGrayDarker" href="https://virginia.academia.edu/Departments/Pharmacology/Documents">Pharmacology</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Ruth" data-follow-user-id="57481840" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="57481840"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">24</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">14</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">14</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="57481840">View All (6)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="57481840" href="https://www.academia.edu/Documents/in/Autonomic_Nervous_System"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://virginia.academia.edu/RuthStornetta&quot;,&quot;location&quot;:&quot;/RuthStornetta&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;virginia.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/RuthStornetta&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Autonomic Nervous System&quot;]}" data-trace="false" data-dom-id="Pill-react-component-a04b3a79-7a64-4ecf-b35c-53514de849bf"></div> <div id="Pill-react-component-a04b3a79-7a64-4ecf-b35c-53514de849bf"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="57481840" href="https://www.academia.edu/Documents/in/Brain_Mapping"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Brain Mapping&quot;]}" data-trace="false" data-dom-id="Pill-react-component-5acc832f-286d-4d89-964d-301e20248259"></div> <div id="Pill-react-component-5acc832f-286d-4d89-964d-301e20248259"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="57481840" href="https://www.academia.edu/Documents/in/Monoclonal_Antibodies"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Monoclonal Antibodies&quot;]}" data-trace="false" data-dom-id="Pill-react-component-498d6ffe-fa15-43d8-aa67-0f8f046191a0"></div> <div id="Pill-react-component-498d6ffe-fa15-43d8-aa67-0f8f046191a0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="57481840" href="https://www.academia.edu/Documents/in/Medical_Physiology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Medical Physiology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-d4e73072-4265-4ad5-9df3-4decb19d5c10"></div> <div id="Pill-react-component-d4e73072-4265-4ad5-9df3-4decb19d5c10"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="57481840" href="https://www.academia.edu/Documents/in/Blood_Pressure"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Blood Pressure&quot;]}" data-trace="false" data-dom-id="Pill-react-component-9dbc2c88-1b1e-439c-98cd-3636b58a24e3"></div> <div id="Pill-react-component-9dbc2c88-1b1e-439c-98cd-3636b58a24e3"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Ruth Stornetta</h3></div><div class="js-work-strip profile--work_container" data-work-id="30582768"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30582768/Coexpression_of_vesicular_glutamate_transporters_1_and_2_glutamic_acid_decarboxylase_and_calretinin_in_rat_entorhinal_cortex"><img alt="Research paper thumbnail of Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex" class="work-thumbnail" src="https://attachments.academia-assets.com/51025465/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30582768/Coexpression_of_vesicular_glutamate_transporters_1_and_2_glutamic_acid_decarboxylase_and_calretinin_in_rat_entorhinal_cortex">Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JohnnySimmons3">Johnny Simmons</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/WH%C3%A4rtig">W. Härtig</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a></span></div><div class="wp-workCard_item"><span>Brain Structure and Function</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6c887ae6ecf7e5f0e17885cd154987d4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51025465,&quot;asset_id&quot;:30582768,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51025465/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30582768"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30582768"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30582768; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30582768]").text(description); $(".js-view-count[data-work-id=30582768]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30582768; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30582768']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30582768, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6c887ae6ecf7e5f0e17885cd154987d4" } } $('.js-work-strip[data-work-id=30582768]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30582768,"title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex","translated_title":"","metadata":{"grobid_abstract":"We studied the distribution and coexpression of vesicular glutamate transporters (VGluT1, VGluT2), glutamic acid decarboxylase (GAD) and calretinin (CR, calcium-binding protein) in rat entorhinal cortex, using immunofluorescence staining and multichannel confocal laser scanning microscopy. Images were computer processed and subjected to automated 3D object recognition, colocalization analysis and 3D reconstruction. Since the VGluTs (in contrast to CR and GAD) occurred in fibers and axon terminals only, we focused our attention on these neuronal processes. An intense, punctate VGluT1-staining occurred everywhere in the entorhinal cortex. Our computer program resolved these punctae as small 3D objects. Also VGluT2 showed a punctate immunostaining pattern, yet with half the number of 3D objects per tissue volume compared with VGluT1, and with statistically significantly larger 3D objects. Both VGluTs were distributed homogeneously across cortical layers, with in MEA VGluT1 slightly more densely distributed than in LEA. The distribution pattern and the size distribution of GAD 3D objects resembled that of VGluT2. CR-immunopositive fibers were abundant in all cortical layers. In double-stained sections we noted ample colocalization of CR and VGluT2, whereas coexpression of CR and VGluT1 was nearly absent. Also in triple-staining experiments (VGluT2, GAD and CR combined) we noted coexpression of VGluT2 and CR and, in addition, frequent coexpression of GAD and CR. Modest colocalization occurred of VGluT2 and GAD, and incidental colocalization of all three markers. We conclude that the CR-containing axon terminals in the entorhinal cortex belong to at least two subpopulations of CRneurons: a glutamatergic excitatory and a GABAergic inhibitory.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Brain Structure and Function","grobid_abstract_attachment_id":51025465},"translated_abstract":null,"internal_url":"https://www.academia.edu/30582768/Coexpression_of_vesicular_glutamate_transporters_1_and_2_glutamic_acid_decarboxylase_and_calretinin_in_rat_entorhinal_cortex","translated_internal_url":"","created_at":"2016-12-22T23:39:51.355-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":58281155,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26746760,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":3260114,"email":"y***s@aist.go.jp","display_order":0,"name":"Shouki Yatsushiro","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26746761,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":805366,"email":"p***g@virginia.edu","display_order":4194304,"name":"Patrice Guyenet","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26746768,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":34265895,"co_author_invite_id":null,"email":"f***d@vumc.nl","display_order":7340032,"name":"F. Wouterlood","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779093,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2301775,"email":"m***a@pharm.okayama-u.ac.jp","display_order":7864320,"name":"Yoshinori Moriyama","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779094,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2661473,"email":"o***a@cc.okayama-u.ac.jp","display_order":8126464,"name":"Masato Otsuka","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779095,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":1863720,"email":"h***o@h.hokkyodai.ac.jp","display_order":8257536,"name":"Mitsuko Hayashi","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779096,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2615437,"email":"a***o@nagahama-i-bio.ac.jp","display_order":8323072,"name":"Akitsugu Yamamoto","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779097,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":5894206,"email":"n***c@hotmail.com","display_order":8355840,"name":"Nina Vujovic","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779098,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2772377,"email":"j***n@kuleuven.be","display_order":8372224,"name":"Jeroen Beliën","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779099,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":34561771,"co_author_invite_id":null,"email":"w***g@medizin.uni-leipzig.de","display_order":8380416,"name":"W. Härtig","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779100,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":5894207,"email":"v***e@rub.de","display_order":8384512,"name":"Verena Aliane","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779101,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":50318627,"co_author_invite_id":null,"email":"c***o@nin.knaw.nl","display_order":8386560,"name":"C. Canto","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779103,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":57503629,"co_author_invite_id":null,"email":"t***n@propagenix.com","display_order":8387584,"name":"Travis McQuiston","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779107,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2483730,"email":"m***n@progressiverecruitment.com","display_order":8388096,"name":"Matthew Weston","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779111,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":57481840,"co_author_invite_id":null,"email":"r***j@virginia.edu","affiliation":"University of Virginia","display_order":8388352,"name":"Ruth Stornetta","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"}],"downloadable_attachments":[{"id":51025465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025465/thumbnails/1.jpg","file_name":"s00429-007-0163-z20161222-12297-d9z6y4.pdf","download_url":"https://www.academia.edu/attachments/51025465/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coexpression_of_vesicular_glutamate_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025465/s00429-007-0163-z20161222-12297-d9z6y4-libre.pdf?1482479222=\u0026response-content-disposition=attachment%3B+filename%3DCoexpression_of_vesicular_glutamate_tran.pdf\u0026Expires=1732747601\u0026Signature=dgLzVwaETBOdNILUh0VAvkneqIPnzPSeyTsGM-xQSu9eKOoZOjfdjS3ZoVV7SYBSXZLOUTsw1CqvqOtVanrmg3JfGecTIis6Isq~g2mv3nnGR4bM5o~oFXDOKY~8otxhX7LVVT-JuIVcQ3CW0phE82-wWWknbSYqcr1dUezb9nvxBSil1W8idoo-Kej-SHOiDEZpvNu6TqP2JroUPxgi0q~GLiDWGFd25pxsqZ-C6mA4FxqiUZzRxxePLoG3Oi6-7yTtcqF8jHpNl-~OPuDuqBWcw79AKGVG0hRK7pq6UIY8bm6v7am6OpI1P4d7i0FUQrt8bU~S8I9YF2zU3NLmuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Coexpression_of_vesicular_glutamate_transporters_1_and_2_glutamic_acid_decarboxylase_and_calretinin_in_rat_entorhinal_cortex","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":58281155,"first_name":"Johnny","middle_initials":null,"last_name":"Simmons","page_name":"JohnnySimmons3","domain_name":"independent","created_at":"2016-12-22T23:38:07.387-08:00","display_name":"Johnny Simmons","url":"https://independent.academia.edu/JohnnySimmons3"},"attachments":[{"id":51025465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025465/thumbnails/1.jpg","file_name":"s00429-007-0163-z20161222-12297-d9z6y4.pdf","download_url":"https://www.academia.edu/attachments/51025465/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coexpression_of_vesicular_glutamate_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025465/s00429-007-0163-z20161222-12297-d9z6y4-libre.pdf?1482479222=\u0026response-content-disposition=attachment%3B+filename%3DCoexpression_of_vesicular_glutamate_tran.pdf\u0026Expires=1732747601\u0026Signature=dgLzVwaETBOdNILUh0VAvkneqIPnzPSeyTsGM-xQSu9eKOoZOjfdjS3ZoVV7SYBSXZLOUTsw1CqvqOtVanrmg3JfGecTIis6Isq~g2mv3nnGR4bM5o~oFXDOKY~8otxhX7LVVT-JuIVcQ3CW0phE82-wWWknbSYqcr1dUezb9nvxBSil1W8idoo-Kej-SHOiDEZpvNu6TqP2JroUPxgi0q~GLiDWGFd25pxsqZ-C6mA4FxqiUZzRxxePLoG3Oi6-7yTtcqF8jHpNl-~OPuDuqBWcw79AKGVG0hRK7pq6UIY8bm6v7am6OpI1P4d7i0FUQrt8bU~S8I9YF2zU3NLmuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":123287,"name":"Three Dimensional Imaging","url":"https://www.academia.edu/Documents/in/Three_Dimensional_Imaging"},{"id":171327,"name":"3-D Reconstruction","url":"https://www.academia.edu/Documents/in/3-D_Reconstruction"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":258979,"name":"Computer Program","url":"https://www.academia.edu/Documents/in/Computer_Program"},{"id":319071,"name":"Entorhinal Cortex","url":"https://www.academia.edu/Documents/in/Entorhinal_Cortex"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":383077,"name":"Calbindin","url":"https://www.academia.edu/Documents/in/Calbindin"},{"id":535564,"name":"Brain Structure","url":"https://www.academia.edu/Documents/in/Brain_Structure"},{"id":549122,"name":"Confocal Laser Scanning Microscopy","url":"https://www.academia.edu/Documents/in/Confocal_Laser_Scanning_Microscopy"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":1010730,"name":"Calcium Binding Protein","url":"https://www.academia.edu/Documents/in/Calcium_Binding_Protein"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1598058,"name":"Glutamate decarboxylase","url":"https://www.academia.edu/Documents/in/Glutamate_decarboxylase"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30582769"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30582769/Water_deprivation_activates_a_glutamatergic_projection_from_the_hypothalamic_paraventricular_nucleus_to_the_rostral_ventrolateral_medulla"><img alt="Research paper thumbnail of Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla" class="work-thumbnail" src="https://attachments.academia-assets.com/51025463/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30582769/Water_deprivation_activates_a_glutamatergic_projection_from_the_hypothalamic_paraventricular_nucleus_to_the_rostral_ventrolateral_medulla">Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JohnnySimmons3">Johnny Simmons</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a></span></div><div class="wp-workCard_item"><span>The Journal of Comparative Neurology</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5f1debc29ad93398d35f138471fabea0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51025463,&quot;asset_id&quot;:30582769,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51025463/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30582769"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30582769"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30582769; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30582769]").text(description); $(".js-view-count[data-work-id=30582769]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30582769; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30582769']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30582769, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5f1debc29ad93398d35f138471fabea0" } } $('.js-work-strip[data-work-id=30582769]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30582769,"title":"Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla","translated_title":"","metadata":{"grobid_abstract":"Elevated sympathetic outflow contributes to the maintenance of blood pressure in water-deprived rats. The neural circuitry underlying this response may involve activation of a pathway from the hypothalamic paraventricular nucleus (PVH) to the rostral ventrolateral medulla (RVLM). We sought to determine whether the PVH-RVLM projection activated by water deprivation is glutamatergic and/or contains vasopressin-or oxytocin-neurophysins. Vesicular glutamate transporter2 (VGLUT2) mRNA was detected by in situ hybridization in the majority of PVH neurons retrogradely labeled from the ipsilateral RVLM with cholera-toxin subunit B (CTB; 85% on average with regional differences). Very few RVLM-projecting PVH neurons were immunoreactive for oxytocin-or vasopressin-associated neurophysin. Injection of biotinylated dextran amine (BDA) into the PVH produced clusters of BDA-positive nerve terminals within the ipsilateral RVLM that were immunoreactive (ir) for the VGLUT2 protein. Some of these terminals made close appositions with tyrosine-hydroxylase-ir dendrites (presumptive C1 cells). In waterdeprived rats (n=4), numerous VGLUT2 mRNA-positive PVH neurons retrogradely labeled from the ipsilateral RVLM with CTB were c-Fos-ir (16-40% depending on PVH region). In marked contrast, few glutamatergic, RVLM-projecting PVH neurons were c-Fos-ir in control rats (n=3; 0-3% depending on PVH region). Most (94 ± 4%) RVLM-projecting PVH neurons activated by water deprivation contained VGLUT2 mRNA. In summary, the majority of PVH neurons that innervate the RVLM are glutamatergic and this population includes the neurons that are activated by water deprivation. One mechanism by which water deprivation may increase the sympathetic outflow is the activation of a glutamatergic pathway from the PVH to the RVLM.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"The Journal of Comparative Neurology","grobid_abstract_attachment_id":51025463},"translated_abstract":null,"internal_url":"https://www.academia.edu/30582769/Water_deprivation_activates_a_glutamatergic_projection_from_the_hypothalamic_paraventricular_nucleus_to_the_rostral_ventrolateral_medulla","translated_internal_url":"","created_at":"2016-12-22T23:39:51.497-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":58281155,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26746757,"work_id":30582769,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":5888019,"email":"s***r@uky.edu","display_order":0,"name":"Sean Stocker","title":"Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla"},{"id":26746762,"work_id":30582769,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":805366,"email":"p***g@virginia.edu","display_order":4194304,"name":"Patrice Guyenet","title":"Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla"},{"id":26779092,"work_id":30582769,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2955901,"email":"t***y@uthscsa.edu","display_order":6291456,"name":"Glenn Toney","title":"Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla"},{"id":26779110,"work_id":30582769,"tagging_user_id":58281155,"tagged_user_id":57481840,"co_author_invite_id":null,"email":"r***j@virginia.edu","affiliation":"University of Virginia","display_order":7340032,"name":"Ruth Stornetta","title":"Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla"}],"downloadable_attachments":[{"id":51025463,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025463/thumbnails/1.jpg","file_name":"Water_deprivation_activates_a_glutamater20161222-12303-agqjle.pdf","download_url":"https://www.academia.edu/attachments/51025463/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Water_deprivation_activates_a_glutamater.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025463/Water_deprivation_activates_a_glutamater20161222-12303-agqjle-libre.pdf?1482479231=\u0026response-content-disposition=attachment%3B+filename%3DWater_deprivation_activates_a_glutamater.pdf\u0026Expires=1732747601\u0026Signature=adFVOu4VM5Um87fuqpbQ3cZtTCAWHS9aSszE1owlWOoE1A6tVlgxI-ExJ2tsWVMjA6Ku3jtddr1lRp4TEBpao9V9puQu4Z8f0gO3s2u2tnOl9KholYYXSy-5HWbQGlchH4i4BTXzGeH4mcNd55wWcq4Ks2hyDJC8AOSNR9Ydl0zuO1dGn-cTjmrBULrcDQxdEnBuT-7YKjD6sz5t~dNTomERluiaS8TVAbbrVAOc8QKIXpDXxe4~9UDcRBbpZ8oFPL6a5rAuGiis~~MGiRYfbvVTwrCKOephE5t47jtINXLoevF~GZWBz6eV3dQsNBpKojUMGYT1n2i2WiassAeRRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Water_deprivation_activates_a_glutamatergic_projection_from_the_hypothalamic_paraventricular_nucleus_to_the_rostral_ventrolateral_medulla","translated_slug":"","page_count":28,"language":"en","content_type":"Work","owner":{"id":58281155,"first_name":"Johnny","middle_initials":null,"last_name":"Simmons","page_name":"JohnnySimmons3","domain_name":"independent","created_at":"2016-12-22T23:38:07.387-08:00","display_name":"Johnny Simmons","url":"https://independent.academia.edu/JohnnySimmons3"},"attachments":[{"id":51025463,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025463/thumbnails/1.jpg","file_name":"Water_deprivation_activates_a_glutamater20161222-12303-agqjle.pdf","download_url":"https://www.academia.edu/attachments/51025463/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Water_deprivation_activates_a_glutamater.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025463/Water_deprivation_activates_a_glutamater20161222-12303-agqjle-libre.pdf?1482479231=\u0026response-content-disposition=attachment%3B+filename%3DWater_deprivation_activates_a_glutamater.pdf\u0026Expires=1732747601\u0026Signature=adFVOu4VM5Um87fuqpbQ3cZtTCAWHS9aSszE1owlWOoE1A6tVlgxI-ExJ2tsWVMjA6Ku3jtddr1lRp4TEBpao9V9puQu4Z8f0gO3s2u2tnOl9KholYYXSy-5HWbQGlchH4i4BTXzGeH4mcNd55wWcq4Ks2hyDJC8AOSNR9Ydl0zuO1dGn-cTjmrBULrcDQxdEnBuT-7YKjD6sz5t~dNTomERluiaS8TVAbbrVAOc8QKIXpDXxe4~9UDcRBbpZ8oFPL6a5rAuGiis~~MGiRYfbvVTwrCKOephE5t47jtINXLoevF~GZWBz6eV3dQsNBpKojUMGYT1n2i2WiassAeRRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":173,"name":"Zoology","url":"https://www.academia.edu/Documents/in/Zoology"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":194429,"name":"Paraventricular Nucleus","url":"https://www.academia.edu/Documents/in/Paraventricular_Nucleus"},{"id":224775,"name":"Tyrosine Hydroxylase","url":"https://www.academia.edu/Documents/in/Tyrosine_Hydroxylase"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":675419,"name":"Sympathetic Nervous System","url":"https://www.academia.edu/Documents/in/Sympathetic_Nervous_System"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1002863,"name":"Comparative Neurology","url":"https://www.academia.edu/Documents/in/Comparative_Neurology"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1292998,"name":"Glutamic Acid","url":"https://www.academia.edu/Documents/in/Glutamic_Acid"},{"id":2463495,"name":"Random Allocation","url":"https://www.academia.edu/Documents/in/Random_Allocation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30582771"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30582771/Respiratory_control_by_ventral_surface_chemoreceptor_neurons_in_rats"><img alt="Research paper thumbnail of Respiratory control by ventral surface chemoreceptor neurons in rats" class="work-thumbnail" src="https://attachments.academia-assets.com/51025466/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30582771/Respiratory_control_by_ventral_surface_chemoreceptor_neurons_in_rats">Respiratory control by ventral surface chemoreceptor neurons in rats</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JohnnySimmons3">Johnny Simmons</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a></span></div><div class="wp-workCard_item"><span>Nature Neuroscience</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="33761310f6a900d412075f695f5297c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51025466,&quot;asset_id&quot;:30582771,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51025466/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30582771"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30582771"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30582771; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30582771]").text(description); $(".js-view-count[data-work-id=30582771]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30582771; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30582771']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30582771, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "33761310f6a900d412075f695f5297c7" } } $('.js-work-strip[data-work-id=30582771]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30582771,"title":"Respiratory control by ventral surface chemoreceptor neurons in rats","translated_title":"","metadata":{"grobid_abstract":"The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Nature Neuroscience","grobid_abstract_attachment_id":51025466},"translated_abstract":null,"internal_url":"https://www.academia.edu/30582771/Respiratory_control_by_ventral_surface_chemoreceptor_neurons_in_rats","translated_internal_url":"","created_at":"2016-12-22T23:39:51.904-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":58281155,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26746758,"work_id":30582771,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":5888020,"email":"d***p@virginia.edu","display_order":0,"name":"Daniel Mulkey","title":"Respiratory control by ventral surface chemoreceptor neurons in rats"},{"id":26746764,"work_id":30582771,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":805366,"email":"p***g@virginia.edu","display_order":4194304,"name":"Patrice Guyenet","title":"Respiratory control by ventral surface chemoreceptor neurons in rats"},{"id":26779089,"work_id":30582771,"tagging_user_id":58281155,"tagged_user_id":57502100,"co_author_invite_id":null,"email":"a***r@gmail.com","display_order":6291456,"name":"Anson Parker","title":"Respiratory control by ventral surface chemoreceptor neurons in rats"},{"id":26779104,"work_id":30582771,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2483730,"email":"m***n@progressiverecruitment.com","display_order":7340032,"name":"Matthew Weston","title":"Respiratory control by ventral surface chemoreceptor neurons in rats"},{"id":26779108,"work_id":30582771,"tagging_user_id":58281155,"tagged_user_id":57481840,"co_author_invite_id":null,"email":"r***j@virginia.edu","affiliation":"University of Virginia","display_order":7864320,"name":"Ruth Stornetta","title":"Respiratory control by ventral surface chemoreceptor neurons in rats"}],"downloadable_attachments":[{"id":51025466,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025466/thumbnails/1.jpg","file_name":"Respiratory_control_by_ventral_surface_c20161222-12303-hlitw.pdf","download_url":"https://www.academia.edu/attachments/51025466/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Respiratory_control_by_ventral_surface_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025466/Respiratory_control_by_ventral_surface_c20161222-12303-hlitw-libre.pdf?1482479234=\u0026response-content-disposition=attachment%3B+filename%3DRespiratory_control_by_ventral_surface_c.pdf\u0026Expires=1732747601\u0026Signature=aF0uvvgQFw6oJgQIgtuhsv3YtsEk~2oCAc6r00pGQALXNVtKwlRaKjAgf7KHY-Ox7E6c5~TBrkWK0tN-JtS8jhenlOpKZCrzLaKEmDx~UYLIIF6FTRcdzkgF09Nt5LRUpweQ0dsqMNXavX70b1MsKeuM-IyH5lGaeVSJDqwrmHd8dj2l-6NjFGRFEWhnqAh9~E5QgRAzjFeQzgxyRntwlJ4dHpfxxw6f2xlOvJn7c6tCe5rQzUPAxl-Z6y6XHTZXBd2UVj8VhUscI18gn-S474qgG7kZJsqDyml9RTyJUO7~iev7em6fzoQDs0pQMu51xqQbCWo-oD~lSduzxuEqpg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Respiratory_control_by_ventral_surface_chemoreceptor_neurons_in_rats","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":58281155,"first_name":"Johnny","middle_initials":null,"last_name":"Simmons","page_name":"JohnnySimmons3","domain_name":"independent","created_at":"2016-12-22T23:38:07.387-08:00","display_name":"Johnny Simmons","url":"https://independent.academia.edu/JohnnySimmons3"},"attachments":[{"id":51025466,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025466/thumbnails/1.jpg","file_name":"Respiratory_control_by_ventral_surface_c20161222-12303-hlitw.pdf","download_url":"https://www.academia.edu/attachments/51025466/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Respiratory_control_by_ventral_surface_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025466/Respiratory_control_by_ventral_surface_c20161222-12303-hlitw-libre.pdf?1482479234=\u0026response-content-disposition=attachment%3B+filename%3DRespiratory_control_by_ventral_surface_c.pdf\u0026Expires=1732747601\u0026Signature=aF0uvvgQFw6oJgQIgtuhsv3YtsEk~2oCAc6r00pGQALXNVtKwlRaKjAgf7KHY-Ox7E6c5~TBrkWK0tN-JtS8jhenlOpKZCrzLaKEmDx~UYLIIF6FTRcdzkgF09Nt5LRUpweQ0dsqMNXavX70b1MsKeuM-IyH5lGaeVSJDqwrmHd8dj2l-6NjFGRFEWhnqAh9~E5QgRAzjFeQzgxyRntwlJ4dHpfxxw6f2xlOvJn7c6tCe5rQzUPAxl-Z6y6XHTZXBd2UVj8VhUscI18gn-S474qgG7kZJsqDyml9RTyJUO7~iev7em6fzoQDs0pQMu51xqQbCWo-oD~lSduzxuEqpg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":4594,"name":"Carbon Dioxide","url":"https://www.academia.edu/Documents/in/Carbon_Dioxide"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature"},{"id":115437,"name":"Nature Neuroscience","url":"https://www.academia.edu/Documents/in/Nature_Neuroscience"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":715895,"name":"Carotid Body","url":"https://www.academia.edu/Documents/in/Carotid_Body"},{"id":902401,"name":"Pattern Generation","url":"https://www.academia.edu/Documents/in/Pattern_Generation"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30582767"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30582767/Detection_of_amino_acid_and_peptide_transmitters_in_physiologically_identified_brainstem_cardiorespiratory_neurons"><img alt="Research paper thumbnail of Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons" class="work-thumbnail" src="https://attachments.academia-assets.com/51025462/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30582767/Detection_of_amino_acid_and_peptide_transmitters_in_physiologically_identified_brainstem_cardiorespiratory_neurons">Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JohnnySimmons3">Johnny Simmons</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a></span></div><div class="wp-workCard_item"><span>Autonomic Neuroscience</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2371d1f38cb6b666fe773825584a8931" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51025462,&quot;asset_id&quot;:30582767,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51025462/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30582767"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30582767"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30582767; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30582767]").text(description); $(".js-view-count[data-work-id=30582767]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30582767; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30582767']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30582767, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2371d1f38cb6b666fe773825584a8931" } } $('.js-work-strip[data-work-id=30582767]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30582767,"title":"Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons","translated_title":"","metadata":{"grobid_abstract":"Most of the CNS neurons that regulate circulation and respiration reside in regions of the brain characterized by extreme cellular heterogeneity (nucleus of the solitary tract, reticular formation, parabrachial nuclei, periaqueductal gray matter, hypothalamus, etc.). The chemical neuroanatomy of these regions is correspondingly complex and teasing out specific circuits in their midst remains a problem that is usually very difficult if not impossible to solve by conventional tract-tracing methods, Fos methodology or electrophysiology in slices. In addition, identifying the type of amino acid or peptide transmitter used by electrophysiologically recorded neurons has been until recently an especially difficult task either for lack of a specific marker or because such markers (many peptides for example) are exported to synaptic terminals and thus undetectable in neuronal cell bodies. In this review, we describe a general purpose method that solves many of these problems. The approach combines juxtacellular labeling in vivo with the histological identification of mRNAs that provide definitive neurochemical phenotypic identification (e.g. vesicular glutamate transporter 1 or 2, glutamic acid decarboxylase). The results obtained with this method are discussed in the general context of amino acid transmission in brainstem cardiorespiratory pathways. The presence of markers of amino acid transmission in specific aminergic pre-sympathetic neurons is especially emphasized as is the extensive co-localization of markers of GABAergic and glycinergic transmission in the brainstem reticular formation. D","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Autonomic Neuroscience","grobid_abstract_attachment_id":51025462},"translated_abstract":null,"internal_url":"https://www.academia.edu/30582767/Detection_of_amino_acid_and_peptide_transmitters_in_physiologically_identified_brainstem_cardiorespiratory_neurons","translated_internal_url":"","created_at":"2016-12-22T23:39:51.194-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":58281155,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26746763,"work_id":30582767,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":805366,"email":"p***g@virginia.edu","display_order":0,"name":"Patrice Guyenet","title":"Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons"},{"id":26779102,"work_id":30582767,"tagging_user_id":58281155,"tagged_user_id":57503629,"co_author_invite_id":null,"email":"t***n@propagenix.com","display_order":4194304,"name":"Travis McQuiston","title":"Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons"},{"id":26779106,"work_id":30582767,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2483730,"email":"m***n@progressiverecruitment.com","display_order":6291456,"name":"Matthew Weston","title":"Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons"},{"id":26779109,"work_id":30582767,"tagging_user_id":58281155,"tagged_user_id":57481840,"co_author_invite_id":null,"email":"r***j@virginia.edu","affiliation":"University of Virginia","display_order":7340032,"name":"Ruth Stornetta","title":"Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons"}],"downloadable_attachments":[{"id":51025462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025462/thumbnails/1.jpg","file_name":"j.autneu.2004.06.00320161222-12303-13swwg.pdf","download_url":"https://www.academia.edu/attachments/51025462/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detection_of_amino_acid_and_peptide_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025462/j.autneu.2004.06.00320161222-12303-13swwg-libre.pdf?1482479223=\u0026response-content-disposition=attachment%3B+filename%3DDetection_of_amino_acid_and_peptide_tran.pdf\u0026Expires=1732747601\u0026Signature=SZtH5Bk-W7Oeb1xO85dYArFf~lQfdvDKylPxQiYXP6oq5uMFRP37iGldYY8VQfkv7YuWLZEfhY--Dynwir6D6QqY8AtqpW0xdznMcp9wP~joaSYeu9txztDI5QOIZ7K5A4RFzHGJ0nUCLSDXgLgC6p1IKOJBNTKDbZGkqwFNXvIEhjMcNnwDOuw-K6HbWld9qkmG5kQjCEyiTojk9~He0iyvJBg8pM0xsiSg9W69gpDVQ08s92frzqZb1JG47WbNDOtRAJuxUDdCfUL9BYYBobbBNY6PUt4nsqOjWnam53RavMVjkXssygzJfPJOORjzE~T17MBABjbEcyxLllYxhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Detection_of_amino_acid_and_peptide_transmitters_in_physiologically_identified_brainstem_cardiorespiratory_neurons","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":58281155,"first_name":"Johnny","middle_initials":null,"last_name":"Simmons","page_name":"JohnnySimmons3","domain_name":"independent","created_at":"2016-12-22T23:38:07.387-08:00","display_name":"Johnny Simmons","url":"https://independent.academia.edu/JohnnySimmons3"},"attachments":[{"id":51025462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025462/thumbnails/1.jpg","file_name":"j.autneu.2004.06.00320161222-12303-13swwg.pdf","download_url":"https://www.academia.edu/attachments/51025462/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detection_of_amino_acid_and_peptide_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025462/j.autneu.2004.06.00320161222-12303-13swwg-libre.pdf?1482479223=\u0026response-content-disposition=attachment%3B+filename%3DDetection_of_amino_acid_and_peptide_tran.pdf\u0026Expires=1732747601\u0026Signature=SZtH5Bk-W7Oeb1xO85dYArFf~lQfdvDKylPxQiYXP6oq5uMFRP37iGldYY8VQfkv7YuWLZEfhY--Dynwir6D6QqY8AtqpW0xdznMcp9wP~joaSYeu9txztDI5QOIZ7K5A4RFzHGJ0nUCLSDXgLgC6p1IKOJBNTKDbZGkqwFNXvIEhjMcNnwDOuw-K6HbWld9qkmG5kQjCEyiTojk9~He0iyvJBg8pM0xsiSg9W69gpDVQ08s92frzqZb1JG47WbNDOtRAJuxUDdCfUL9BYYBobbBNY6PUt4nsqOjWnam53RavMVjkXssygzJfPJOORjzE~T17MBABjbEcyxLllYxhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37836,"name":"In Situ Hybridization","url":"https://www.academia.edu/Documents/in/In_Situ_Hybridization"},{"id":151086,"name":"Peptides","url":"https://www.academia.edu/Documents/in/Peptides"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":202428,"name":"Respiration","url":"https://www.academia.edu/Documents/in/Respiration"},{"id":220742,"name":"Membrane transport proteins","url":"https://www.academia.edu/Documents/in/Membrane_transport_proteins"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":295928,"name":"Amino Acids","url":"https://www.academia.edu/Documents/in/Amino_Acids"},{"id":585573,"name":"Amino Acid Profile","url":"https://www.academia.edu/Documents/in/Amino_Acid_Profile"},{"id":1147486,"name":"Autonomic","url":"https://www.academia.edu/Documents/in/Autonomic"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1598058,"name":"Glutamate decarboxylase","url":"https://www.academia.edu/Documents/in/Glutamate_decarboxylase"},{"id":2426000,"name":"Brain stem","url":"https://www.academia.edu/Documents/in/Brain_stem"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189279"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189279/Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ"><img alt="Research paper thumbnail of Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189279/Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ">Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ</a></div><div class="wp-workCard_item"><span>The Journal of Physiology</span><span>, Jun 1, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4174aa8674f27e39b8188c2c94399958" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648596,&quot;asset_id&quot;:30189279,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648596/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189279"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189279"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189279; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189279]").text(description); $(".js-view-count[data-work-id=30189279]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189279; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189279']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189279, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4174aa8674f27e39b8188c2c94399958" } } $('.js-work-strip[data-work-id=30189279]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189279,"title":"Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ","translated_title":"","metadata":{"grobid_abstract":"The user has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.","publication_date":{"day":1,"month":6,"year":2009,"errors":{}},"publication_name":"The Journal of Physiology","grobid_abstract_attachment_id":50648596},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189279/Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ","translated_internal_url":"","created_at":"2016-11-30T19:48:07.073-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312783,"work_id":30189279,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804496,"email":"w***n@dartmouth.edu","display_order":0,"name":"Walter St-John","title":"Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ"}],"downloadable_attachments":[{"id":50648596,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Location_and_properties_of_respiratory_n20161130-27487-1qezhvs.pdf","download_url":"https://www.academia.edu/attachments/50648596/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Location_and_properties_of_respiratory_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648596/Location_and_properties_of_respiratory_n20161130-27487-1qezhvs-libre.pdf?1480564711=\u0026response-content-disposition=attachment%3B+filename%3DLocation_and_properties_of_respiratory_n.pdf\u0026Expires=1732747601\u0026Signature=Ok83IkBzZ6aKAlT14BPbjoRhdUo5~Eyh3rCeK9x~O2f8E6iI~43QCQD0P6RLO9Q8L5uAfy~pVxRKxw2WSYoIurO8XbZT9ShCTzs~JqZozuopt9T7nFjdNugJnLITsu9I1M0LcBu~kYQo0gMv1IJwDUiOmSUQld6NO0hH7c7TlVhzJ3uG710Xy771g8uK~To4ukR-j7k7KN0IhquovT3IQvh1hPvK8LcgWgHlpRB6yJ03r~Jt2kh0ISDD1J~fXLqzvMffd5gTYdFJXY6omcZCM3T-AaMVj0jj8MN89Jw~qBLH55zPuaAUZ5C-vCTwOM2uyahdFws38lk25fHlacgBkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648596,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Location_and_properties_of_respiratory_n20161130-27487-1qezhvs.pdf","download_url":"https://www.academia.edu/attachments/50648596/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Location_and_properties_of_respiratory_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648596/Location_and_properties_of_respiratory_n20161130-27487-1qezhvs-libre.pdf?1480564711=\u0026response-content-disposition=attachment%3B+filename%3DLocation_and_properties_of_respiratory_n.pdf\u0026Expires=1732747601\u0026Signature=Ok83IkBzZ6aKAlT14BPbjoRhdUo5~Eyh3rCeK9x~O2f8E6iI~43QCQD0P6RLO9Q8L5uAfy~pVxRKxw2WSYoIurO8XbZT9ShCTzs~JqZozuopt9T7nFjdNugJnLITsu9I1M0LcBu~kYQo0gMv1IJwDUiOmSUQld6NO0hH7c7TlVhzJ3uG710Xy771g8uK~To4ukR-j7k7KN0IhquovT3IQvh1hPvK8LcgWgHlpRB6yJ03r~Jt2kh0ISDD1J~fXLqzvMffd5gTYdFJXY6omcZCM3T-AaMVj0jj8MN89Jw~qBLH55zPuaAUZ5C-vCTwOM2uyahdFws38lk25fHlacgBkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37793,"name":"Patch-clamp and imaging techniques","url":"https://www.academia.edu/Documents/in/Patch-clamp_and_imaging_techniques"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":202428,"name":"Respiration","url":"https://www.academia.edu/Documents/in/Respiration"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":386342,"name":"Sodium","url":"https://www.academia.edu/Documents/in/Sodium"}],"urls":[{"id":7783925,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=21692522"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189278"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189278/GABAergicNeuronsintheCentralRegionoftheSpinalCord_ANovelSubstrateforSympatheticInhibition"><img alt="Research paper thumbnail of GABAergicNeuronsintheCentralRegionoftheSpinalCord: ANovelSubstrateforSympatheticInhibition" class="work-thumbnail" src="https://attachments.academia-assets.com/50648570/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189278/GABAergicNeuronsintheCentralRegionoftheSpinalCord_ANovelSubstrateforSympatheticInhibition">GABAergicNeuronsintheCentralRegionoftheSpinalCord: ANovelSubstrateforSympatheticInhibition</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="37748a859116bfe0b62f214beb678501" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648570,&quot;asset_id&quot;:30189278,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648570/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189278"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189278"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189278; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189278]").text(description); $(".js-view-count[data-work-id=30189278]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189278; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189278']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189278, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "37748a859116bfe0b62f214beb678501" } } $('.js-work-strip[data-work-id=30189278]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189278,"title":"GABAergicNeuronsintheCentralRegionoftheSpinalCord: ANovelSubstrateforSympatheticInhibition","translated_title":"","metadata":{"grobid_abstract":"Homeostatic maintenance of widespread functions is critically dependent on the activity of the sympathetic nervous system. This activity is generated by the CNS acting on the sole output cells in the spinal cord, sympathetic preganglionic neurons (SPNs). SPNs are subject to control from both supraspinal and spinal inputs that exert effects through activation of direct or indirect pathways. A high proportion of indirect control is attributable to activation of spinal interneurons in a number of locations. However, little is known about the different groups of interneurons with respect to their neurochemistry or function. In this study, we report on a novel group of GABAergic interneurons located in the spinal central autonomic area (CAA) that directly inhibit SPN activity. In situ hybridization studies demonstrated a group of neurons that contained mRNA for glutamic acid decarboxylase (GAD) 65 and GAD 67 within the CAA. Combining in situ hybridization with trans-synaptic labeling from the adrenal gland using pseudorabies virus identified presympathetic GABAergic neurons in the CAA. Electrical stimulation of the CAA elicited monosynaptic IPSPs in SPNs located laterally in the intermediolateral cell column. IPSPs were GABAergic, because they reversed at the chloride reversal potential and were blocked by bicuculline. Chemical activation of neurons in the CAA hyperpolarized SPNs, an effect that was also bicuculline sensitive. We conclude that the CAA contains GABAergic interneurons that impinge directly onto SPNs to inhibit their activity and suggest that these newly identified interneurons may play an essential role in the regulation of sympathetic activity and thus homeostasis.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"grobid_abstract_attachment_id":50648570},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189278/GABAergicNeuronsintheCentralRegionoftheSpinalCord_ANovelSubstrateforSympatheticInhibition","translated_internal_url":"","created_at":"2016-11-30T19:48:06.901-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312753,"work_id":30189278,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804478,"email":"c***n@wolterskluwer.com","display_order":0,"name":"Carol Milligan","title":"GABAergicNeuronsintheCentralRegionoftheSpinalCord: ANovelSubstrateforSympatheticInhibition"}],"downloadable_attachments":[{"id":50648570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648570/thumbnails/1.jpg","file_name":"1063.pdf","download_url":"https://www.academia.edu/attachments/50648570/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"GABAergicNeuronsintheCentralRegionoftheS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648570/1063-libre.pdf?1480564440=\u0026response-content-disposition=attachment%3B+filename%3DGABAergicNeuronsintheCentralRegionoftheS.pdf\u0026Expires=1732747601\u0026Signature=D-Qb7YYfbpu6pAjIC-jj3rryUt9bRPnlbeGVq2F-5Cn909Pw9ihpQvbHXMoe7ISculq2Xh24JZhP60GMc43WPVBTpOZr3EAk7ehabepNIGG4t8~OcDo9TZnL2Su1aPAhZcscoQRqiY97jO59v8q-DQuTCdpMrYf4vnUzBS6t14fAdppwwvIQWK6-S147le~ICFDyhlVqh2JvXitchVJ4c0dyX1-rb9~MEjAIWrPNlLd0ujv5jrjb79ygsYIBpkqu2LG79i7RWjOrjS8g7gfqatxJMeMR-FRpV6jym6jZQ8bB3f0nUTcxGgyPhBb-bpM3YTaE3OauwGTzRM7xmfz9Tw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"GABAergicNeuronsintheCentralRegionoftheSpinalCord_ANovelSubstrateforSympatheticInhibition","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648570/thumbnails/1.jpg","file_name":"1063.pdf","download_url":"https://www.academia.edu/attachments/50648570/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"GABAergicNeuronsintheCentralRegionoftheS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648570/1063-libre.pdf?1480564440=\u0026response-content-disposition=attachment%3B+filename%3DGABAergicNeuronsintheCentralRegionoftheS.pdf\u0026Expires=1732747601\u0026Signature=D-Qb7YYfbpu6pAjIC-jj3rryUt9bRPnlbeGVq2F-5Cn909Pw9ihpQvbHXMoe7ISculq2Xh24JZhP60GMc43WPVBTpOZr3EAk7ehabepNIGG4t8~OcDo9TZnL2Su1aPAhZcscoQRqiY97jO59v8q-DQuTCdpMrYf4vnUzBS6t14fAdppwwvIQWK6-S147le~ICFDyhlVqh2JvXitchVJ4c0dyX1-rb9~MEjAIWrPNlLd0ujv5jrjb79ygsYIBpkqu2LG79i7RWjOrjS8g7gfqatxJMeMR-FRpV6jym6jZQ8bB3f0nUTcxGgyPhBb-bpM3YTaE3OauwGTzRM7xmfz9Tw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":50648571,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648571/thumbnails/1.jpg","file_name":"1063.pdf","download_url":"https://www.academia.edu/attachments/50648571/download_file","bulk_download_file_name":"GABAergicNeuronsintheCentralRegionoftheS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648571/1063-libre.pdf?1480564439=\u0026response-content-disposition=attachment%3B+filename%3DGABAergicNeuronsintheCentralRegionoftheS.pdf\u0026Expires=1732747601\u0026Signature=BKa-pxvOatk1AnO82NJhuqRjRxy3ZOFgkWg4c~8GjmS-Hf9lflrA6X~F0zjhQqEyij-qUNvD46jlI7O87dgxC0m2X4z3O1cVUQB~EjIUXSZ8rPoQhHKQ1gi9wjtkud2aAjv94AKNFrLvn8pF7-ku3~VnnRzvI-WieTMxae1~Yn28Ram15706cM91i5ZXPKXaCo~KEp2anSYgVQ-0ZPqWsXN8-5t3o3upXIhjZEXpRjRIFhSLBWCppiyU6PEBqK4BpXbvveC9Rk1oDnHm~4QADpDAf68ZOBdQSCWicTStJQvV2-YDD-nNbhAQaX8x1iziECLYhrCajI8ot08h7bW0IQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":7783924,"url":"http://www.jneurosci.org/cgi/reprint/25/5/1063.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189277"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189277/Antagonist_precipitated_clonidine_withdrawal_in_rat_effects_on_locus_coeruleus_neurons_sympathetic_nerves_and_cardiovascular_parameters"><img alt="Research paper thumbnail of Antagonist precipitated clonidine withdrawal in rat: effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189277/Antagonist_precipitated_clonidine_withdrawal_in_rat_effects_on_locus_coeruleus_neurons_sympathetic_nerves_and_cardiovascular_parameters">Antagonist precipitated clonidine withdrawal in rat: effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PenceR">R. Pence</a></span></div><div class="wp-workCard_item"><span>Journal of the autonomic nervous system</span><span>, Jan 15, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The goal of the present study was to examine the effect of clonidine withdrawal on the neural con...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The goal of the present study was to examine the effect of clonidine withdrawal on the neural control of blood pressure. Rats were treated for 7-13 days with clonidine via osmotic minipumps (200 microg kg(-1) day(-1), s.c.). Controls received saline or were sham operated. Withdrawal was precipitated by the alpha2-adrenergic receptor (alpha2-AR) antagonist atipamezole. Most experiments were done under halothane anesthesia. Chronic treatment with clonidine did not change mean arterial pressure (MAP) or heart rate (HR) but raised femoral artery resistance and the activity of locus coeruleus neurons slightly. Atipamezole given to rats treated chronically with clonidine produced the following effects: no change in MAP, severe tachycardia, sustained increase in splanchnic sympathetic nerve discharge (SND; +75 +/- 13%), transient increase in lumbar SND (+23 +/- 7%), ON-OFF activity pattern in the locus coeruleus (LC). The ON phase of LC activity was synchronized with upswings of SND and wi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189277"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189277"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189277; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189277]").text(description); $(".js-view-count[data-work-id=30189277]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189277; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189277']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189277, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30189277]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189277,"title":"Antagonist precipitated clonidine withdrawal in rat: effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters","translated_title":"","metadata":{"abstract":"The goal of the present study was to examine the effect of clonidine withdrawal on the neural control of blood pressure. Rats were treated for 7-13 days with clonidine via osmotic minipumps (200 microg kg(-1) day(-1), s.c.). Controls received saline or were sham operated. Withdrawal was precipitated by the alpha2-adrenergic receptor (alpha2-AR) antagonist atipamezole. Most experiments were done under halothane anesthesia. Chronic treatment with clonidine did not change mean arterial pressure (MAP) or heart rate (HR) but raised femoral artery resistance and the activity of locus coeruleus neurons slightly. Atipamezole given to rats treated chronically with clonidine produced the following effects: no change in MAP, severe tachycardia, sustained increase in splanchnic sympathetic nerve discharge (SND; +75 +/- 13%), transient increase in lumbar SND (+23 +/- 7%), ON-OFF activity pattern in the locus coeruleus (LC). The ON phase of LC activity was synchronized with upswings of SND and wi...","publication_date":{"day":15,"month":1,"year":1998,"errors":{}},"publication_name":"Journal of the autonomic nervous system"},"translated_abstract":"The goal of the present study was to examine the effect of clonidine withdrawal on the neural control of blood pressure. Rats were treated for 7-13 days with clonidine via osmotic minipumps (200 microg kg(-1) day(-1), s.c.). Controls received saline or were sham operated. Withdrawal was precipitated by the alpha2-adrenergic receptor (alpha2-AR) antagonist atipamezole. Most experiments were done under halothane anesthesia. Chronic treatment with clonidine did not change mean arterial pressure (MAP) or heart rate (HR) but raised femoral artery resistance and the activity of locus coeruleus neurons slightly. Atipamezole given to rats treated chronically with clonidine produced the following effects: no change in MAP, severe tachycardia, sustained increase in splanchnic sympathetic nerve discharge (SND; +75 +/- 13%), transient increase in lumbar SND (+23 +/- 7%), ON-OFF activity pattern in the locus coeruleus (LC). The ON phase of LC activity was synchronized with upswings of SND and wi...","internal_url":"https://www.academia.edu/30189277/Antagonist_precipitated_clonidine_withdrawal_in_rat_effects_on_locus_coeruleus_neurons_sympathetic_nerves_and_cardiovascular_parameters","translated_internal_url":"","created_at":"2016-11-30T19:48:06.782-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312754,"work_id":30189277,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804479,"email":"g***m@aol.com","display_order":0,"name":"Michele Grubb","title":"Antagonist precipitated clonidine withdrawal in rat: effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters"},{"id":26312756,"work_id":30189277,"tagging_user_id":57481840,"tagged_user_id":57496418,"co_author_invite_id":5804480,"email":"r***5@yahoo.com","display_order":4194304,"name":"R. Pence","title":"Antagonist precipitated clonidine withdrawal in rat: effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters"}],"downloadable_attachments":[],"slug":"Antagonist_precipitated_clonidine_withdrawal_in_rat_effects_on_locus_coeruleus_neurons_sympathetic_nerves_and_cardiovascular_parameters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[],"research_interests":[{"id":9040,"name":"Consciousness","url":"https://www.academia.edu/Documents/in/Consciousness"},{"id":88321,"name":"Blood Pressure","url":"https://www.academia.edu/Documents/in/Blood_Pressure"},{"id":129739,"name":"Anesthesia","url":"https://www.academia.edu/Documents/in/Anesthesia"},{"id":131298,"name":"Heart rate","url":"https://www.academia.edu/Documents/in/Heart_rate"},{"id":174781,"name":"Oscillations","url":"https://www.academia.edu/Documents/in/Oscillations"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":312834,"name":"Cardiovascular system","url":"https://www.academia.edu/Documents/in/Cardiovascular_system"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":548890,"name":"Locus coeruleus","url":"https://www.academia.edu/Documents/in/Locus_coeruleus"},{"id":675419,"name":"Sympathetic Nervous System","url":"https://www.academia.edu/Documents/in/Sympathetic_Nervous_System"},{"id":801409,"name":"Imidazoles","url":"https://www.academia.edu/Documents/in/Imidazoles"},{"id":936573,"name":"Halothane","url":"https://www.academia.edu/Documents/in/Halothane"},{"id":1128575,"name":"Neural Control","url":"https://www.academia.edu/Documents/in/Neural_Control"},{"id":1969879,"name":"Vascular Resistance","url":"https://www.academia.edu/Documents/in/Vascular_Resistance"},{"id":2085017,"name":"Clonidine","url":"https://www.academia.edu/Documents/in/Clonidine"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189276"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189276/Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ"><img alt="Research paper thumbnail of Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189276/Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ">Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ</a></div><div class="wp-workCard_item"><span>The Journal of Physiology</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="300f1445392be3036495edce95381bcf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648592,&quot;asset_id&quot;:30189276,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648592/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189276"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189276"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189276; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189276]").text(description); $(".js-view-count[data-work-id=30189276]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189276; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189276']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189276, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "300f1445392be3036495edce95381bcf" } } $('.js-work-strip[data-work-id=30189276]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189276,"title":"Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ","translated_title":"","metadata":{"grobid_abstract":"The user has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"The Journal of Physiology","grobid_abstract_attachment_id":50648592},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189276/Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ","translated_internal_url":"","created_at":"2016-11-30T19:48:06.666-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312782,"work_id":30189276,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804496,"email":"w***n@dartmouth.edu","display_order":0,"name":"Walter St-John","title":"Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ"}],"downloadable_attachments":[{"id":50648592,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Location_and_properties_of_respiratory_n20161130-29154-1ngqnsq.pdf","download_url":"https://www.academia.edu/attachments/50648592/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Location_and_properties_of_respiratory_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648592/Location_and_properties_of_respiratory_n20161130-29154-1ngqnsq-libre.pdf?1480564712=\u0026response-content-disposition=attachment%3B+filename%3DLocation_and_properties_of_respiratory_n.pdf\u0026Expires=1732747601\u0026Signature=A8ze8ytV4giYXIFHs8JyQG9ox1Obnxfx~8s6GNhzPaw1C9ZnFPgivdxq52IYnfyCyP0MrYKm8aY0BL2NLFt19x0qgWgQogi0mUvb0xSA6fO7liVpRnBK1RRW5uXPUZeWObvzfPZN0cUEYYciQCPEaoziyJMLl6oIOjt68-c60-vA7Y9zAeHEMiSXnQ4G1SaCk4Gj8boKEuEGWGFCkMsolZ82qLJ1UK332Xe8-fY-Wzeur4XUgYXyKuQG6x~6Dz05-mp-VpVTY8uu66II13USeWxsorQYl-Dgr8YrZvvFnwnsrzmmaj0fKtLNg9MHcm~aFQvSXnfRcewW6GZXODZpcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648592,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Location_and_properties_of_respiratory_n20161130-29154-1ngqnsq.pdf","download_url":"https://www.academia.edu/attachments/50648592/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Location_and_properties_of_respiratory_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648592/Location_and_properties_of_respiratory_n20161130-29154-1ngqnsq-libre.pdf?1480564712=\u0026response-content-disposition=attachment%3B+filename%3DLocation_and_properties_of_respiratory_n.pdf\u0026Expires=1732747601\u0026Signature=A8ze8ytV4giYXIFHs8JyQG9ox1Obnxfx~8s6GNhzPaw1C9ZnFPgivdxq52IYnfyCyP0MrYKm8aY0BL2NLFt19x0qgWgQogi0mUvb0xSA6fO7liVpRnBK1RRW5uXPUZeWObvzfPZN0cUEYYciQCPEaoziyJMLl6oIOjt68-c60-vA7Y9zAeHEMiSXnQ4G1SaCk4Gj8boKEuEGWGFCkMsolZ82qLJ1UK332Xe8-fY-Wzeur4XUgYXyKuQG6x~6Dz05-mp-VpVTY8uu66II13USeWxsorQYl-Dgr8YrZvvFnwnsrzmmaj0fKtLNg9MHcm~aFQvSXnfRcewW6GZXODZpcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37793,"name":"Patch-clamp and imaging techniques","url":"https://www.academia.edu/Documents/in/Patch-clamp_and_imaging_techniques"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":202428,"name":"Respiration","url":"https://www.academia.edu/Documents/in/Respiration"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":386342,"name":"Sodium","url":"https://www.academia.edu/Documents/in/Sodium"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189275"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189275/Chandelier_Cells_Control_Excessive_Cortical_Excitation_Characteristics_of_Whisker_Evoked_Synaptic_Responses_of_Layer_2_3_Nonpyramidal_and_Pyramidal_Neurons"><img alt="Research paper thumbnail of Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons" class="work-thumbnail" src="https://attachments.academia-assets.com/50648598/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189275/Chandelier_Cells_Control_Excessive_Cortical_Excitation_Characteristics_of_Whisker_Evoked_Synaptic_Responses_of_Layer_2_3_Nonpyramidal_and_Pyramidal_Neurons">Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons</a></div><div class="wp-workCard_item"><span>Journal of Neuroscience</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f798dd5591321b13adf72e41c2b7c911" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648598,&quot;asset_id&quot;:30189275,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648598/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189275"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189275"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189275; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189275]").text(description); $(".js-view-count[data-work-id=30189275]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189275; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189275']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189275, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f798dd5591321b13adf72e41c2b7c911" } } $('.js-work-strip[data-work-id=30189275]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189275,"title":"Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons","translated_title":"","metadata":{"grobid_abstract":"show that chandelier cells, which rarely fire action potentials spontaneously, fire more robustly than other types of cortical neurons when the overall cortical excitation increases. Thus, chandelier cells may not process fast ascending sensory information but instead may be reserved to prevent excessive excitatory activity in neuronal networks.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Journal of Neuroscience","grobid_abstract_attachment_id":50648598},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189275/Chandelier_Cells_Control_Excessive_Cortical_Excitation_Characteristics_of_Whisker_Evoked_Synaptic_Responses_of_Layer_2_3_Nonpyramidal_and_Pyramidal_Neurons","translated_internal_url":"","created_at":"2016-11-30T19:48:06.560-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312784,"work_id":30189275,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804497,"email":"y***u@northwestern.edu","display_order":0,"name":"Y. Zhu","title":"Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons"}],"downloadable_attachments":[{"id":50648598,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648598/thumbnails/1.jpg","file_name":"5101.pdf","download_url":"https://www.academia.edu/attachments/50648598/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chandelier_Cells_Control_Excessive_Corti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648598/5101-libre.pdf?1480564706=\u0026response-content-disposition=attachment%3B+filename%3DChandelier_Cells_Control_Excessive_Corti.pdf\u0026Expires=1732747601\u0026Signature=A2MYFkYR62YRDxyer5I39M~h1d3allKT0tvErki0Tm--shFMtlXdvql3IwjlEVwnF3W~~MfMCq8HB1fnGmMPfHlAII4KX0apAcqkb04mxRztNBt3IP2WXvveeXO71kwjL-nrYXyTlpgjQeLHhbXV58OcATM3LBIhi5VHs9JeFN-XmT65BAh8lyEQJjp3XFMWcnJ13QQdr7RMLq3V8d7XJplWv6o7aag8Xq86XJyWquvHLwvTdFlh0ab7tUoIZEy9Xg8XvVo0V8um8PjGxzf6G3TdC2fMGhWeH1b7VKB9g-xO0mZcBp8Cp8iIxazfTDJZKWLGtbWsh17V6kQvzAy1LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Chandelier_Cells_Control_Excessive_Cortical_Excitation_Characteristics_of_Whisker_Evoked_Synaptic_Responses_of_Layer_2_3_Nonpyramidal_and_Pyramidal_Neurons","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648598,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648598/thumbnails/1.jpg","file_name":"5101.pdf","download_url":"https://www.academia.edu/attachments/50648598/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chandelier_Cells_Control_Excessive_Corti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648598/5101-libre.pdf?1480564706=\u0026response-content-disposition=attachment%3B+filename%3DChandelier_Cells_Control_Excessive_Corti.pdf\u0026Expires=1732747601\u0026Signature=A2MYFkYR62YRDxyer5I39M~h1d3allKT0tvErki0Tm--shFMtlXdvql3IwjlEVwnF3W~~MfMCq8HB1fnGmMPfHlAII4KX0apAcqkb04mxRztNBt3IP2WXvveeXO71kwjL-nrYXyTlpgjQeLHhbXV58OcATM3LBIhi5VHs9JeFN-XmT65BAh8lyEQJjp3XFMWcnJ13QQdr7RMLq3V8d7XJplWv6o7aag8Xq86XJyWquvHLwvTdFlh0ab7tUoIZEy9Xg8XvVo0V8um8PjGxzf6G3TdC2fMGhWeH1b7VKB9g-xO0mZcBp8Cp8iIxazfTDJZKWLGtbWsh17V6kQvzAy1LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":37793,"name":"Patch-clamp and imaging techniques","url":"https://www.academia.edu/Documents/in/Patch-clamp_and_imaging_techniques"},{"id":61926,"name":"Neuronal Network","url":"https://www.academia.edu/Documents/in/Neuronal_Network"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":277717,"name":"Somatosensory Cortex","url":"https://www.academia.edu/Documents/in/Somatosensory_Cortex"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":432091,"name":"Barrel Cortex","url":"https://www.academia.edu/Documents/in/Barrel_Cortex"},{"id":525245,"name":"Layer","url":"https://www.academia.edu/Documents/in/Layer"},{"id":666669,"name":"Action potential","url":"https://www.academia.edu/Documents/in/Action_potential"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":2111545,"name":"Spontaneous Activity","url":"https://www.academia.edu/Documents/in/Spontaneous_Activity"},{"id":2222134,"name":"Cortical Excitability","url":"https://www.academia.edu/Documents/in/Cortical_Excitability"},{"id":2367569,"name":"Excitatory Postsynaptic Potentials","url":"https://www.academia.edu/Documents/in/Excitatory_Postsynaptic_Potentials"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189274"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189274/GABAergic_Neurons_in_the_Central_Region_of_the_Spinal_Cord_A_Novel_Substrate_for_Sympathetic_Inhibition"><img alt="Research paper thumbnail of GABAergic Neurons in the Central Region of the Spinal Cord: A Novel Substrate for Sympathetic Inhibition" class="work-thumbnail" src="https://attachments.academia-assets.com/50648599/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189274/GABAergic_Neurons_in_the_Central_Region_of_the_Spinal_Cord_A_Novel_Substrate_for_Sympathetic_Inhibition">GABAergic Neurons in the Central Region of the Spinal Cord: A Novel Substrate for Sympathetic Inhibition</a></div><div class="wp-workCard_item"><span>Journal of Neuroscience</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="04b51a3e9b5418aa1d427b6b3a3ceeeb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648599,&quot;asset_id&quot;:30189274,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648599/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189274"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189274"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189274; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189274]").text(description); $(".js-view-count[data-work-id=30189274]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189274; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189274']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189274, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "04b51a3e9b5418aa1d427b6b3a3ceeeb" } } $('.js-work-strip[data-work-id=30189274]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189274,"title":"GABAergic Neurons in the Central Region of the Spinal Cord: A Novel Substrate for Sympathetic Inhibition","translated_title":"","metadata":{"grobid_abstract":"Homeostatic maintenance of widespread functions is critically dependent on the activity of the sympathetic nervous system. This activity is generated by the CNS acting on the sole output cells in the spinal cord, sympathetic preganglionic neurons (SPNs). SPNs are subject to control from both supraspinal and spinal inputs that exert effects through activation of direct or indirect pathways. A high proportion of indirect control is attributable to activation of spinal interneurons in a number of locations. However, little is known about the different groups of interneurons with respect to their neurochemistry or function. In this study, we report on a novel group of GABAergic interneurons located in the spinal central autonomic area (CAA) that directly inhibit SPN activity. In situ hybridization studies demonstrated a group of neurons that contained mRNA for glutamic acid decarboxylase (GAD) 65 and GAD 67 within the CAA. Combining in situ hybridization with trans-synaptic labeling from the adrenal gland using pseudorabies virus identified presympathetic GABAergic neurons in the CAA. Electrical stimulation of the CAA elicited monosynaptic IPSPs in SPNs located laterally in the intermediolateral cell column. IPSPs were GABAergic, because they reversed at the chloride reversal potential and were blocked by bicuculline. Chemical activation of neurons in the CAA hyperpolarized SPNs, an effect that was also bicuculline sensitive. We conclude that the CAA contains GABAergic interneurons that impinge directly onto SPNs to inhibit their activity and suggest that these newly identified interneurons may play an essential role in the regulation of sympathetic activity and thus homeostasis.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Journal of Neuroscience","grobid_abstract_attachment_id":50648599},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189274/GABAergic_Neurons_in_the_Central_Region_of_the_Spinal_Cord_A_Novel_Substrate_for_Sympathetic_Inhibition","translated_internal_url":"","created_at":"2016-11-30T19:48:06.454-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312751,"work_id":30189274,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804477,"email":"d***m@hotmail.com","display_order":0,"name":"Jim Deuchars","title":"GABAergic Neurons in the Central Region of the Spinal Cord: A Novel Substrate for Sympathetic Inhibition"},{"id":26312752,"work_id":30189274,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804478,"email":"c***n@wolterskluwer.com","display_order":4194304,"name":"Carol Milligan","title":"GABAergic Neurons in the Central Region of the Spinal Cord: A Novel Substrate for Sympathetic Inhibition"}],"downloadable_attachments":[{"id":50648599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648599/thumbnails/1.jpg","file_name":"GABAergic_neurons_in_the_central_region_20161130-27487-acddaj.pdf","download_url":"https://www.academia.edu/attachments/50648599/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"GABAergic_Neurons_in_the_Central_Region.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648599/GABAergic_neurons_in_the_central_region_20161130-27487-acddaj-libre.pdf?1480564707=\u0026response-content-disposition=attachment%3B+filename%3DGABAergic_Neurons_in_the_Central_Region.pdf\u0026Expires=1732747601\u0026Signature=QnqbP9HK-4RGS-fODkFnrqXarGgv88NoILJ5h2VmFgVmpDcw0exMuf~lHOl9vPzHBEcY-uboeBgzB5H1K2NzrqE461rhlhahF~OFhIXuAZltUzrXqqgjq4s9NWgY-M3HkyOFwo6eh1T0q5cLMN4i~rti5H8pTV-sjYlFy1wP0qYsNfK2WvEYyGVptGxYeoXzNZDXxD08quLs46Vk3obIqj2DSjbpfJDS96zAY~~8UG8Jg1~tdLspLzqplWIYMdbYffDKgAZn1w7HijTa8sbWtgqHXA0CsnXGiKKxpZiXyGNMaK8wfqQGJ5QiH2~SXlpjdG0rqkGGLHGNJbdFYRIjWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"GABAergic_Neurons_in_the_Central_Region_of_the_Spinal_Cord_A_Novel_Substrate_for_Sympathetic_Inhibition","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648599/thumbnails/1.jpg","file_name":"GABAergic_neurons_in_the_central_region_20161130-27487-acddaj.pdf","download_url":"https://www.academia.edu/attachments/50648599/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"GABAergic_Neurons_in_the_Central_Region.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648599/GABAergic_neurons_in_the_central_region_20161130-27487-acddaj-libre.pdf?1480564707=\u0026response-content-disposition=attachment%3B+filename%3DGABAergic_Neurons_in_the_Central_Region.pdf\u0026Expires=1732747601\u0026Signature=QnqbP9HK-4RGS-fODkFnrqXarGgv88NoILJ5h2VmFgVmpDcw0exMuf~lHOl9vPzHBEcY-uboeBgzB5H1K2NzrqE461rhlhahF~OFhIXuAZltUzrXqqgjq4s9NWgY-M3HkyOFwo6eh1T0q5cLMN4i~rti5H8pTV-sjYlFy1wP0qYsNfK2WvEYyGVptGxYeoXzNZDXxD08quLs46Vk3obIqj2DSjbpfJDS96zAY~~8UG8Jg1~tdLspLzqplWIYMdbYffDKgAZn1w7HijTa8sbWtgqHXA0CsnXGiKKxpZiXyGNMaK8wfqQGJ5QiH2~SXlpjdG0rqkGGLHGNJbdFYRIjWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":37793,"name":"Patch-clamp and imaging techniques","url":"https://www.academia.edu/Documents/in/Patch-clamp_and_imaging_techniques"},{"id":37836,"name":"In Situ Hybridization","url":"https://www.academia.edu/Documents/in/In_Situ_Hybridization"},{"id":99421,"name":"Spinal Cord","url":"https://www.academia.edu/Documents/in/Spinal_Cord"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":379889,"name":"Homeostasis","url":"https://www.academia.edu/Documents/in/Homeostasis"},{"id":437728,"name":"Isoenzymes","url":"https://www.academia.edu/Documents/in/Isoenzymes"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1287048,"name":"Interneurons","url":"https://www.academia.edu/Documents/in/Interneurons"},{"id":1292998,"name":"Glutamic Acid","url":"https://www.academia.edu/Documents/in/Glutamic_Acid"},{"id":1422473,"name":"Bicuculline","url":"https://www.academia.edu/Documents/in/Bicuculline"},{"id":1598058,"name":"Glutamate decarboxylase","url":"https://www.academia.edu/Documents/in/Glutamate_decarboxylase"},{"id":1619808,"name":"Gamma-Aminobutyric Acid","url":"https://www.academia.edu/Documents/in/Gamma-Aminobutyric_Acid"},{"id":2158441,"name":"Strychnine","url":"https://www.academia.edu/Documents/in/Strychnine"},{"id":2260515,"name":"Chlorides","url":"https://www.academia.edu/Documents/in/Chlorides"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189273"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189273/Synaptic_AMPA_Receptor_Exchange_Maintains_Bidirectional_Plasticity"><img alt="Research paper thumbnail of Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189273/Synaptic_AMPA_Receptor_Exchange_Maintains_Bidirectional_Plasticity">Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity</a></div><div class="wp-workCard_item"><span>Neuron</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange is essential for maintaining the capacity for bidirectional plasticity. The exchange process consists of activity-independent synaptic removal of GluR1-, GluR2L-, or GluR4-containing AMPA-Rs and refilling with GluR2-containing AMPA-Rs at hippocampal and cortical synapses in vitro and in intact brains. In GluR1 and GluR2 knockout mice, initiation or completion of synaptic AMPA-R exchange is compromised, respectively. The complementary AMPA-R removal and refilling events in the exchange process ultimately maintain synaptic strength unchanged, but their long rate time constants ( approximately 15-18 hr) render transmission temporarily depressed in the middle of the exchange. These results suggest that the previously hypothesized &amp;amp;amp;amp;quot;slot&amp;amp;amp;amp;quot; proteins, rather than AMPA-Rs, code and maintain transmission efficacy at central synapses.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189273"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189273"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189273; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189273]").text(description); $(".js-view-count[data-work-id=30189273]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189273; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189273']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189273, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30189273]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189273,"title":"Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity","translated_title":"","metadata":{"abstract":"Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange is essential for maintaining the capacity for bidirectional plasticity. The exchange process consists of activity-independent synaptic removal of GluR1-, GluR2L-, or GluR4-containing AMPA-Rs and refilling with GluR2-containing AMPA-Rs at hippocampal and cortical synapses in vitro and in intact brains. In GluR1 and GluR2 knockout mice, initiation or completion of synaptic AMPA-R exchange is compromised, respectively. The complementary AMPA-R removal and refilling events in the exchange process ultimately maintain synaptic strength unchanged, but their long rate time constants ( approximately 15-18 hr) render transmission temporarily depressed in the middle of the exchange. These results suggest that the previously hypothesized \u0026amp;amp;amp;quot;slot\u0026amp;amp;amp;quot; proteins, rather than AMPA-Rs, code and maintain transmission efficacy at central synapses.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Neuron"},"translated_abstract":"Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange is essential for maintaining the capacity for bidirectional plasticity. The exchange process consists of activity-independent synaptic removal of GluR1-, GluR2L-, or GluR4-containing AMPA-Rs and refilling with GluR2-containing AMPA-Rs at hippocampal and cortical synapses in vitro and in intact brains. In GluR1 and GluR2 knockout mice, initiation or completion of synaptic AMPA-R exchange is compromised, respectively. The complementary AMPA-R removal and refilling events in the exchange process ultimately maintain synaptic strength unchanged, but their long rate time constants ( approximately 15-18 hr) render transmission temporarily depressed in the middle of the exchange. These results suggest that the previously hypothesized \u0026amp;amp;amp;quot;slot\u0026amp;amp;amp;quot; proteins, rather than AMPA-Rs, code and maintain transmission efficacy at central synapses.","internal_url":"https://www.academia.edu/30189273/Synaptic_AMPA_Receptor_Exchange_Maintains_Bidirectional_Plasticity","translated_internal_url":"","created_at":"2016-11-30T19:48:06.346-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312767,"work_id":30189273,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804485,"email":"s***c@gmail.com","display_order":0,"name":"Stefanie McCormack","title":"Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity"}],"downloadable_attachments":[],"slug":"Synaptic_AMPA_Receptor_Exchange_Maintains_Bidirectional_Plasticity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":4247,"name":"Long Term Potentiation","url":"https://www.academia.edu/Documents/in/Long_Term_Potentiation"},{"id":37793,"name":"Patch-clamp and imaging techniques","url":"https://www.academia.edu/Documents/in/Patch-clamp_and_imaging_techniques"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":70902,"name":"Magnesium","url":"https://www.academia.edu/Documents/in/Magnesium"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":132020,"name":"Neuronal Plasticity","url":"https://www.academia.edu/Documents/in/Neuronal_Plasticity"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":418263,"name":"SYNAPSES","url":"https://www.academia.edu/Documents/in/SYNAPSES"},{"id":473565,"name":"Neuron","url":"https://www.academia.edu/Documents/in/Neuron"},{"id":572924,"name":"Tetrodotoxin","url":"https://www.academia.edu/Documents/in/Tetrodotoxin"},{"id":620070,"name":"Transfection","url":"https://www.academia.edu/Documents/in/Transfection"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189272"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189272/Location_and_electrophysiological_characterization_of_rostral_medullary_adrenergic_neurons_that_contain_neuropeptide_Y_mRNA_in_rat_medulla"><img alt="Research paper thumbnail of Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat medulla" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189272/Location_and_electrophysiological_characterization_of_rostral_medullary_adrenergic_neurons_that_contain_neuropeptide_Y_mRNA_in_rat_medulla">Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat medulla</a></div><div class="wp-workCard_item"><span>The Journal of Comparative Neurology</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The objective of this study was to characterize the projection pattern and electrophysiological p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The objective of this study was to characterize the projection pattern and electrophysiological properties of the rostral medullary adrenergic neurons (C(1)) that express neuropeptide Y (NPY) mRNA in rat. NPY mRNA was found in a variable fraction of tyrosine hydroxylase immunoreactive (TH-IR) neurons depending on the medullary level. By retrograde labeling (Fast Blue, FluoroGold), NPY mRNA was detected in virtually all C(1) cells (96%) and C(3) cells (100%) with hypothalamic projections but in only 9% of C(1) cells and 58% of C(3) cells projecting to thoracic segment 3 (T(3)) or T(6) of the spinal cord. To identify the electrophysiological properties of the C(1) cells that express NPY mRNA, we recorded from baroinhibited neurons within the C(1) region of the ventrolateral medulla (RVLM) and tested for projections to segment T(3), the hypothalamus, or both. By using the juxtacellular method, we labeled these cells with biotinamide and determined whether the recorded neurons were TH-IR and contained NPY mRNA. At rostral levels (Bregma -11.8 mm), barosensitive neurons had a wide range of conduction velocities (0.4-6.0 m/second) and discharge rates (2-28 spikes/second). Most projected to T(3) only (27 of 31 cells), and 4 projected to both the hypothalamus and the spinal cord. Most of the baroinhibited cells with spinal projections but with no hypothalamic projections had TH-IR but no NPY mRNA (11 of 17 cells). Only 1 cell had both (1 of 17 cells), and 5 cells had neither (5 of 17 cells). Both TH-IR and NPY mRNA were found in neurons with dual projections (2 of 2 cells). At level Bregma -12.5 mm, baroinhibited neurons had projections to the hypothalamus only (13 of 13 cells) and had unmyelinated axons and a low discharge rate. Four of five neurons contained both TH-IR and NPY mRNA, and 1 neuron contained neither. In short, NPY is expressed mostly by C(1) cells with projection to the hypothalamus. NPY-positive C(1) neurons are barosensitive, have unmyelinated axons, and have a very low rate of discharge. Most bulbospinal C(1) cells with a putative sympathoexcitatory role do not make NPY.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189272"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189272"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189272; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189272]").text(description); $(".js-view-count[data-work-id=30189272]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189272; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189272']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189272, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30189272]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189272,"title":"Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat medulla","translated_title":"","metadata":{"abstract":"The objective of this study was to characterize the projection pattern and electrophysiological properties of the rostral medullary adrenergic neurons (C(1)) that express neuropeptide Y (NPY) mRNA in rat. NPY mRNA was found in a variable fraction of tyrosine hydroxylase immunoreactive (TH-IR) neurons depending on the medullary level. By retrograde labeling (Fast Blue, FluoroGold), NPY mRNA was detected in virtually all C(1) cells (96%) and C(3) cells (100%) with hypothalamic projections but in only 9% of C(1) cells and 58% of C(3) cells projecting to thoracic segment 3 (T(3)) or T(6) of the spinal cord. To identify the electrophysiological properties of the C(1) cells that express NPY mRNA, we recorded from baroinhibited neurons within the C(1) region of the ventrolateral medulla (RVLM) and tested for projections to segment T(3), the hypothalamus, or both. By using the juxtacellular method, we labeled these cells with biotinamide and determined whether the recorded neurons were TH-IR and contained NPY mRNA. At rostral levels (Bregma -11.8 mm), barosensitive neurons had a wide range of conduction velocities (0.4-6.0 m/second) and discharge rates (2-28 spikes/second). Most projected to T(3) only (27 of 31 cells), and 4 projected to both the hypothalamus and the spinal cord. Most of the baroinhibited cells with spinal projections but with no hypothalamic projections had TH-IR but no NPY mRNA (11 of 17 cells). Only 1 cell had both (1 of 17 cells), and 5 cells had neither (5 of 17 cells). Both TH-IR and NPY mRNA were found in neurons with dual projections (2 of 2 cells). At level Bregma -12.5 mm, baroinhibited neurons had projections to the hypothalamus only (13 of 13 cells) and had unmyelinated axons and a low discharge rate. Four of five neurons contained both TH-IR and NPY mRNA, and 1 neuron contained neither. In short, NPY is expressed mostly by C(1) cells with projection to the hypothalamus. NPY-positive C(1) neurons are barosensitive, have unmyelinated axons, and have a very low rate of discharge. Most bulbospinal C(1) cells with a putative sympathoexcitatory role do not make NPY.","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"The Journal of Comparative Neurology"},"translated_abstract":"The objective of this study was to characterize the projection pattern and electrophysiological properties of the rostral medullary adrenergic neurons (C(1)) that express neuropeptide Y (NPY) mRNA in rat. NPY mRNA was found in a variable fraction of tyrosine hydroxylase immunoreactive (TH-IR) neurons depending on the medullary level. By retrograde labeling (Fast Blue, FluoroGold), NPY mRNA was detected in virtually all C(1) cells (96%) and C(3) cells (100%) with hypothalamic projections but in only 9% of C(1) cells and 58% of C(3) cells projecting to thoracic segment 3 (T(3)) or T(6) of the spinal cord. To identify the electrophysiological properties of the C(1) cells that express NPY mRNA, we recorded from baroinhibited neurons within the C(1) region of the ventrolateral medulla (RVLM) and tested for projections to segment T(3), the hypothalamus, or both. By using the juxtacellular method, we labeled these cells with biotinamide and determined whether the recorded neurons were TH-IR and contained NPY mRNA. At rostral levels (Bregma -11.8 mm), barosensitive neurons had a wide range of conduction velocities (0.4-6.0 m/second) and discharge rates (2-28 spikes/second). Most projected to T(3) only (27 of 31 cells), and 4 projected to both the hypothalamus and the spinal cord. Most of the baroinhibited cells with spinal projections but with no hypothalamic projections had TH-IR but no NPY mRNA (11 of 17 cells). Only 1 cell had both (1 of 17 cells), and 5 cells had neither (5 of 17 cells). Both TH-IR and NPY mRNA were found in neurons with dual projections (2 of 2 cells). At level Bregma -12.5 mm, baroinhibited neurons had projections to the hypothalamus only (13 of 13 cells) and had unmyelinated axons and a low discharge rate. Four of five neurons contained both TH-IR and NPY mRNA, and 1 neuron contained neither. In short, NPY is expressed mostly by C(1) cells with projection to the hypothalamus. NPY-positive C(1) neurons are barosensitive, have unmyelinated axons, and have a very low rate of discharge. Most bulbospinal C(1) cells with a putative sympathoexcitatory role do not make NPY.","internal_url":"https://www.academia.edu/30189272/Location_and_electrophysiological_characterization_of_rostral_medullary_adrenergic_neurons_that_contain_neuropeptide_Y_mRNA_in_rat_medulla","translated_internal_url":"","created_at":"2016-11-30T19:48:06.236-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312764,"work_id":30189272,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804483,"email":"p***e@servproofmonroeville.com","display_order":0,"name":"Peter Akey","title":"Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat medulla"}],"downloadable_attachments":[],"slug":"Location_and_electrophysiological_characterization_of_rostral_medullary_adrenergic_neurons_that_contain_neuropeptide_Y_mRNA_in_rat_medulla","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[],"research_interests":[{"id":173,"name":"Zoology","url":"https://www.academia.edu/Documents/in/Zoology"},{"id":52176,"name":"Brain Mapping","url":"https://www.academia.edu/Documents/in/Brain_Mapping"},{"id":71454,"name":"Epinephrine","url":"https://www.academia.edu/Documents/in/Epinephrine"},{"id":88321,"name":"Blood Pressure","url":"https://www.academia.edu/Documents/in/Blood_Pressure"},{"id":95704,"name":"Hypothalamus","url":"https://www.academia.edu/Documents/in/Hypothalamus"},{"id":99421,"name":"Spinal Cord","url":"https://www.academia.edu/Documents/in/Spinal_Cord"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":213897,"name":"Phenotype","url":"https://www.academia.edu/Documents/in/Phenotype"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":382393,"name":"Neuropeptide Y","url":"https://www.academia.edu/Documents/in/Neuropeptide_Y"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1002863,"name":"Comparative Neurology","url":"https://www.academia.edu/Documents/in/Comparative_Neurology"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189271"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189271/A_potassium_leak_channel_silences_hyperactive_neurons_and_ameliorates_status_epilepticus"><img alt="Research paper thumbnail of A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus" class="work-thumbnail" src="https://attachments.academia-assets.com/50648602/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189271/A_potassium_leak_channel_silences_hyperactive_neurons_and_ameliorates_status_epilepticus">A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IuliiaVitko">Iuliia Vitko</a></span></div><div class="wp-workCard_item"><span>Epilepsia</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="00a88447c32ef63d766259498fe18408" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648602,&quot;asset_id&quot;:30189271,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648602/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189271"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189271"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189271; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189271]").text(description); $(".js-view-count[data-work-id=30189271]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189271; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189271']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189271, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "00a88447c32ef63d766259498fe18408" } } $('.js-work-strip[data-work-id=30189271]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189271,"title":"A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus","translated_title":"","metadata":{"ai_title_tag":"TREK-M K+ Leak Channel Reduces Seizures in Epileptic Rats","grobid_abstract":"Objective: To develop a constitutively active K + leak channel using TREK-1 (TWIKrelated potassium channel 1; TREK-M) that is resistant to compensatory down-regulation by second messenger cascades, and to validate the ability of TREK-M to silence hyperactive neurons using cultured hippocampal neurons. To test if adenoassociated viral (AAV) delivery of TREK-M could reduce the duration of status epilepticus and reduce neuronal death induced by lithium-pilocarpine administration. Methods: Molecular cloning techniques were used to engineer novel vectors to deliver TREK-M via plasmids, lentivirus, and AAV using a cytomegalovirus (CMV)-enhanced GABRA4 promoter. Electrophysiology was used to characterize the activity and regulation of TREK-M in human embryonic kidney (HEK-293) cells, and the ability to reduce spontaneous activity in cultured hippocampal neurons. Adult male rats were injected bilaterally with self-complementary AAV particles composed of serotype 5 capsid into the hippocampus and entorhinal cortex. Lithium-pilocarpine was used to induce status epilepticus. Seizures were monitored using continuous video-electroencephalography (EEG) monitoring. Neuronal death was measured using Fluoro-Jade C staining of paraformaldehyde-fixed brain slices. Results: TREK-M inhibited neuronal firing by hyperpolarizing the resting membrane potential and decreasing input resistance. AAV delivery of TREK-M decreased the duration of status epilepticus by 50%. Concomitantly it reduced neuronal death in areas targeted by the AAV injection. Significance: These findings demonstrate that TREK-M can silence hyperexcitable neurons in the brain of epileptic rats and treat acute seizures. This study paves the way for an alternative gene therapy treatment of status epilepticus, and provides the rationale for studies of AAV-TREK-M's effect on spontaneous seizures in chronic models of temporal lobe epilepsy.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Epilepsia","grobid_abstract_attachment_id":50648602},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189271/A_potassium_leak_channel_silences_hyperactive_neurons_and_ameliorates_status_epilepticus","translated_internal_url":"","created_at":"2016-11-30T19:48:06.133-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312781,"work_id":30189271,"tagging_user_id":57481840,"tagged_user_id":57584541,"co_author_invite_id":5804495,"email":"i***n@virginia.edu","display_order":0,"name":"Iuliia Vitko","title":"A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus"}],"downloadable_attachments":[{"id":50648602,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648602/thumbnails/1.jpg","file_name":"A_potassium_leak_channel_silences_hypera20161130-27482-1tu5qsx.pdf","download_url":"https://www.academia.edu/attachments/50648602/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_potassium_leak_channel_silences_hypera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648602/A_potassium_leak_channel_silences_hypera20161130-27482-1tu5qsx-libre.pdf?1480564707=\u0026response-content-disposition=attachment%3B+filename%3DA_potassium_leak_channel_silences_hypera.pdf\u0026Expires=1732747601\u0026Signature=KE9CiNam5x1auNSjXan41e4GWvL2cVaMTS1ONI-C4GEKCCt1Iq3UN06ZZALExF6eTKSizQwyIUmmP1WmBesG3kzlWFwwSiFQIeUMAY6KyXFjtbsAtPkxfORZy4i~-HN9BcZ1Wm4Uh-IaTvdrFCASeYT~~nU3AHSkivprDWaMA8-zgFVCB1zsqSsGuXyka2tZ-gKaXMtg6cmGCsqkzYW0emL15c6Z5nN0SY7E0NJNmWoQinWLLpl6kqJeio9ubOrU4i8O6v8owHnv0bdw5MKbHgROVdYQzqNmbTrsg8Gseg7EpuZVcowcI0owe09R-cyjs~KNrrKr2Ug5m3ebxc4D6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_potassium_leak_channel_silences_hyperactive_neurons_and_ameliorates_status_epilepticus","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648602,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648602/thumbnails/1.jpg","file_name":"A_potassium_leak_channel_silences_hypera20161130-27482-1tu5qsx.pdf","download_url":"https://www.academia.edu/attachments/50648602/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_potassium_leak_channel_silences_hypera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648602/A_potassium_leak_channel_silences_hypera20161130-27482-1tu5qsx-libre.pdf?1480564707=\u0026response-content-disposition=attachment%3B+filename%3DA_potassium_leak_channel_silences_hypera.pdf\u0026Expires=1732747601\u0026Signature=KE9CiNam5x1auNSjXan41e4GWvL2cVaMTS1ONI-C4GEKCCt1Iq3UN06ZZALExF6eTKSizQwyIUmmP1WmBesG3kzlWFwwSiFQIeUMAY6KyXFjtbsAtPkxfORZy4i~-HN9BcZ1Wm4Uh-IaTvdrFCASeYT~~nU3AHSkivprDWaMA8-zgFVCB1zsqSsGuXyka2tZ-gKaXMtg6cmGCsqkzYW0emL15c6Z5nN0SY7E0NJNmWoQinWLLpl6kqJeio9ubOrU4i8O6v8owHnv0bdw5MKbHgROVdYQzqNmbTrsg8Gseg7EpuZVcowcI0owe09R-cyjs~KNrrKr2Ug5m3ebxc4D6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":57556,"name":"Hippocampus","url":"https://www.academia.edu/Documents/in/Hippocampus"},{"id":111011,"name":"Gene transfer techniques","url":"https://www.academia.edu/Documents/in/Gene_transfer_techniques"},{"id":112576,"name":"Cell Death","url":"https://www.academia.edu/Documents/in/Cell_Death"},{"id":122569,"name":"Cell Polarity","url":"https://www.academia.edu/Documents/in/Cell_Polarity"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":228487,"name":"Epilepsia","url":"https://www.academia.edu/Documents/in/Epilepsia"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":776033,"name":"Status Epilepticus","url":"https://www.academia.edu/Documents/in/Status_Epilepticus"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189270"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189270/Autonomic_areas_of_rat_brain_exhibit_increased_Fos_like_immunoreactivity_during_opiate_withdrawal_in_rats"><img alt="Research paper thumbnail of Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats" class="work-thumbnail" src="https://attachments.academia-assets.com/50648593/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189270/Autonomic_areas_of_rat_brain_exhibit_increased_Fos_like_immunoreactivity_during_opiate_withdrawal_in_rats">Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats</a></div><div class="wp-workCard_item"><span>Brain Research</span><span>, 1993</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="39a1ff27faafcfaef0a54945d60a80b7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648593,&quot;asset_id&quot;:30189270,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648593/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189270"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189270"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189270; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189270]").text(description); $(".js-view-count[data-work-id=30189270]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189270; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189270']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189270, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "39a1ff27faafcfaef0a54945d60a80b7" } } $('.js-work-strip[data-work-id=30189270]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189270,"title":"Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats","translated_title":"","metadata":{"grobid_abstract":"We sought to identify the brain areas that might contribute to the increased autonomic activity seen during morphine withdrawal by mapping neuronal expression of c-los protein (Fos) and Fos-related antigens. Rats were implanted with morphine pellets or placebo pellets over a 5 day regimen and injected on day 6 with either saline or naltrexone (100 mg/kg). After a standard PAP immunocytochemical protocol, Fos-like immunoreactivity (Fos-LIR) was observed in medullary nuclei including the NTS (nucleus of the solitary tract), caudal (CVL) and rostral ventrolateral medulla (RVL). Although some Fos-LIR was seen in these areas in control rats (either morphine-implanted, saline injected, or placebo-implanted, saline or naltrexone injected), a significantly higher number of Fos-LIR-positive cells in NTS, CVL and RVL were seen after morphine withdrawal. Large numbers of Fos-like immunoreactive cells were also seen in the A5 area, the parabrachial nuclei of the pons and the locus coeruleus. Increased Fos-LIR was also detected in the paraventricular nucleus of the hypothalamus and the amygdala of morphine withdrawn rats. The Fos-LIR was co-localized with tyrosine hydroxylase immunoreactivity in many of the cells in caudal and rostral ventrolateral medulla, A5 and locus coeruleus. These data support the conclusion that autonomic areas in brain and noradrenergic/adrenergic cells in these areas are activated during morphine withdrawal and may contribute to the autonomic symptoms of opiate withdrawal.","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"Brain Research","grobid_abstract_attachment_id":50648593},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189270/Autonomic_areas_of_rat_brain_exhibit_increased_Fos_like_immunoreactivity_during_opiate_withdrawal_in_rats","translated_internal_url":"","created_at":"2016-11-30T19:48:05.992-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312758,"work_id":30189270,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804481,"email":"f***n@libertymutual.com","display_order":0,"name":"Frederick Norton","title":"Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats"}],"downloadable_attachments":[{"id":50648593,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648593/thumbnails/1.jpg","file_name":"0006-8993_2893_2990055-r20161130-28527-cue969.pdf","download_url":"https://www.academia.edu/attachments/50648593/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Autonomic_areas_of_rat_brain_exhibit_inc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648593/0006-8993_2893_2990055-r20161130-28527-cue969-libre.pdf?1480564713=\u0026response-content-disposition=attachment%3B+filename%3DAutonomic_areas_of_rat_brain_exhibit_inc.pdf\u0026Expires=1732747601\u0026Signature=YKykW1lbF8AJWfkCmTVa5IhdXseUykIF9vWFdEqzyJwggzDfr140Nm2iLWjY6AIq-vn-U3cJzRM8laNJvNA9PWrY0ieiOgzy6712SaJYX71HHjWK0eXCcSsrWFquPDxGSsnOk8nR~L2jmTwRJ8a1ogLkHUhxX91rH2PgkxdFQGQubUtCo2tdHGZjc~w8~diIf1Z7O4YkW6G2YmOjKBRufsS4w4n9Rfy6FfxeCAsMNbe811erWa~sabNSfQf9XQVwn7L2T-et71zWOCa2q7gQM~VL9W97~cGH0ZSuAdoySMEfHWSp0uHMCOpf1xs8YEwKIRFwJzLcycK0OvZ9MZfZHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Autonomic_areas_of_rat_brain_exhibit_increased_Fos_like_immunoreactivity_during_opiate_withdrawal_in_rats","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648593,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648593/thumbnails/1.jpg","file_name":"0006-8993_2893_2990055-r20161130-28527-cue969.pdf","download_url":"https://www.academia.edu/attachments/50648593/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Autonomic_areas_of_rat_brain_exhibit_inc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648593/0006-8993_2893_2990055-r20161130-28527-cue969-libre.pdf?1480564713=\u0026response-content-disposition=attachment%3B+filename%3DAutonomic_areas_of_rat_brain_exhibit_inc.pdf\u0026Expires=1732747601\u0026Signature=YKykW1lbF8AJWfkCmTVa5IhdXseUykIF9vWFdEqzyJwggzDfr140Nm2iLWjY6AIq-vn-U3cJzRM8laNJvNA9PWrY0ieiOgzy6712SaJYX71HHjWK0eXCcSsrWFquPDxGSsnOk8nR~L2jmTwRJ8a1ogLkHUhxX91rH2PgkxdFQGQubUtCo2tdHGZjc~w8~diIf1Z7O4YkW6G2YmOjKBRufsS4w4n9Rfy6FfxeCAsMNbe811erWa~sabNSfQf9XQVwn7L2T-et71zWOCa2q7gQM~VL9W97~cGH0ZSuAdoySMEfHWSp0uHMCOpf1xs8YEwKIRFwJzLcycK0OvZ9MZfZHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":2749,"name":"Animal Behavior","url":"https://www.academia.edu/Documents/in/Animal_Behavior"},{"id":12071,"name":"Immunohistochemistry","url":"https://www.academia.edu/Documents/in/Immunohistochemistry"},{"id":41220,"name":"Autonomic Nervous System","url":"https://www.academia.edu/Documents/in/Autonomic_Nervous_System"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":165467,"name":"Rat Brain","url":"https://www.academia.edu/Documents/in/Rat_Brain"},{"id":218374,"name":"Morphine","url":"https://www.academia.edu/Documents/in/Morphine"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189269"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189269/Atipamezole_precipitated_clonidine_withdrawal_induces_c_Fos_expression_in_rat_central_nervous_system"><img alt="Research paper thumbnail of Atipamezole-precipitated clonidine withdrawal induces c-Fos expression in rat central nervous system" class="work-thumbnail" src="https://attachments.academia-assets.com/50648595/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189269/Atipamezole_precipitated_clonidine_withdrawal_induces_c_Fos_expression_in_rat_central_nervous_system">Atipamezole-precipitated clonidine withdrawal induces c-Fos expression in rat central nervous system</a></div><div class="wp-workCard_item"><span>Brain Research</span><span>, 1997</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="af9011129ca15b23d73ca21183e273df" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648595,&quot;asset_id&quot;:30189269,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648595/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189269"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189269"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189269; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189269]").text(description); $(".js-view-count[data-work-id=30189269]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189269; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189269']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189269, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "af9011129ca15b23d73ca21183e273df" } } $('.js-work-strip[data-work-id=30189269]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189269,"title":"Atipamezole-precipitated clonidine withdrawal induces c-Fos expression in rat central nervous system","translated_title":"","metadata":{"grobid_abstract":"We sought to identify a clonidine withdrawal syndrome in conscious rats by investigating the effects of a single injection of the Ž . Ž specific a -adrenergic antagonist atipamezole 1.5 mgrkg i.p. after chronic treatment with the a -adrenergic agonist clonidine 200 2 2 q 1997 Elsevier Science B.V.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Brain Research","grobid_abstract_attachment_id":50648595},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189269/Atipamezole_precipitated_clonidine_withdrawal_induces_c_Fos_expression_in_rat_central_nervous_system","translated_internal_url":"","created_at":"2016-11-30T19:48:05.887-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312755,"work_id":30189269,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804479,"email":"g***m@aol.com","display_order":0,"name":"Michele Grubb","title":"Atipamezole-precipitated clonidine withdrawal induces c-Fos expression in rat central nervous system"}],"downloadable_attachments":[{"id":50648595,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648595/thumbnails/1.jpg","file_name":"s0006-8993_2897_2900424-120161130-27487-oed34r.pdf","download_url":"https://www.academia.edu/attachments/50648595/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Atipamezole_precipitated_clonidine_withd.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648595/s0006-8993_2897_2900424-120161130-27487-oed34r-libre.pdf?1480564709=\u0026response-content-disposition=attachment%3B+filename%3DAtipamezole_precipitated_clonidine_withd.pdf\u0026Expires=1732747601\u0026Signature=K9F313RJE3wmkDFUnQqGCaTiVr546ZgJqC7~qO-QbhW2vB8tD~-u2p33zUKySoXVkqS1b1gy1BSBBYF2EFYs7ky3FOvrr7j70euaiuKZVspy~2FESBc90oUtJyuNOzKAw73xPJN8XAG5zZaNwVLKoV-EsLTeQ7cUYaFyhQ63igg6FvV5jB7AwghSBweeOr6M5~xtswrBBCzgJZJlhywmv2XHP7~k~qP8FJAbOJzDTOZSylHJzU1R~qg2N31XtH2UcFXEOTTROhgsHlAz3-YZS9XoD7hzA74G7Ybd7ccB3An9w5yIpf-Db8r~wxg2f7pE9oosuGAofc5-PLAU2uowJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Atipamezole_precipitated_clonidine_withdrawal_induces_c_Fos_expression_in_rat_central_nervous_system","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648595,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648595/thumbnails/1.jpg","file_name":"s0006-8993_2897_2900424-120161130-27487-oed34r.pdf","download_url":"https://www.academia.edu/attachments/50648595/download_file?st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Atipamezole_precipitated_clonidine_withd.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648595/s0006-8993_2897_2900424-120161130-27487-oed34r-libre.pdf?1480564709=\u0026response-content-disposition=attachment%3B+filename%3DAtipamezole_precipitated_clonidine_withd.pdf\u0026Expires=1732747601\u0026Signature=K9F313RJE3wmkDFUnQqGCaTiVr546ZgJqC7~qO-QbhW2vB8tD~-u2p33zUKySoXVkqS1b1gy1BSBBYF2EFYs7ky3FOvrr7j70euaiuKZVspy~2FESBc90oUtJyuNOzKAw73xPJN8XAG5zZaNwVLKoV-EsLTeQ7cUYaFyhQ63igg6FvV5jB7AwghSBweeOr6M5~xtswrBBCzgJZJlhywmv2XHP7~k~qP8FJAbOJzDTOZSylHJzU1R~qg2N31XtH2UcFXEOTTROhgsHlAz3-YZS9XoD7hzA74G7Ybd7ccB3An9w5yIpf-Db8r~wxg2f7pE9oosuGAofc5-PLAU2uowJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":2749,"name":"Animal Behavior","url":"https://www.academia.edu/Documents/in/Animal_Behavior"},{"id":12071,"name":"Immunohistochemistry","url":"https://www.academia.edu/Documents/in/Immunohistochemistry"},{"id":55175,"name":"Peroxidase","url":"https://www.academia.edu/Documents/in/Peroxidase"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":147195,"name":"Central Nervous System","url":"https://www.academia.edu/Documents/in/Central_Nervous_System"},{"id":224775,"name":"Tyrosine Hydroxylase","url":"https://www.academia.edu/Documents/in/Tyrosine_Hydroxylase"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":801409,"name":"Imidazoles","url":"https://www.academia.edu/Documents/in/Imidazoles"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1426712,"name":"Immunoglobulin","url":"https://www.academia.edu/Documents/in/Immunoglobulin"},{"id":1631043,"name":"Control Group","url":"https://www.academia.edu/Documents/in/Control_Group"},{"id":2085017,"name":"Clonidine","url":"https://www.academia.edu/Documents/in/Clonidine"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189111"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189111/State_dependent_regulation_of_breathing_by_the_retrotrapezoid_nucleus_872_10_"><img alt="Research paper thumbnail of State-dependent regulation of breathing by the retrotrapezoid nucleus (872.10)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189111/State_dependent_regulation_of_breathing_by_the_retrotrapezoid_nucleus_872_10_">State-dependent regulation of breathing by the retrotrapezoid nucleus (872.10)</a></div><div class="wp-workCard_item"><span>The Faseb Journal</span><span>, Apr 1, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189111"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189111"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189111; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189111]").text(description); $(".js-view-count[data-work-id=30189111]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189111; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189111']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189111, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30189111]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189111,"title":"State-dependent regulation of breathing by the retrotrapezoid nucleus (872.10)","translated_title":"","metadata":{"publication_date":{"day":1,"month":4,"year":2014,"errors":{}},"publication_name":"The Faseb Journal"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189111/State_dependent_regulation_of_breathing_by_the_retrotrapezoid_nucleus_872_10_","translated_internal_url":"","created_at":"2016-11-30T19:37:54.656-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312523,"work_id":30189111,"tagging_user_id":57481840,"tagged_user_id":57627058,"co_author_invite_id":5804395,"email":"m***c@virginia.edu","display_order":0,"name":"Melissa Coates","title":"State-dependent regulation of breathing by the retrotrapezoid nucleus (872.10)"},{"id":26312592,"work_id":30189111,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804408,"email":"k***e@cms.mail.virginia.edu","display_order":4194304,"name":"Kenneth Viar","title":"State-dependent regulation of breathing by the retrotrapezoid nucleus (872.10)"},{"id":26312776,"work_id":30189111,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804491,"email":"w***g@virginia.edu","display_order":6291456,"name":"Walter Hodges","title":"State-dependent regulation of breathing by the retrotrapezoid nucleus (872.10)"}],"downloadable_attachments":[],"slug":"State_dependent_regulation_of_breathing_by_the_retrotrapezoid_nucleus_872_10_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[],"research_interests":[],"urls":[{"id":7783915,"url":"http://www.fasebj.org/content/28/1_Supplement/872.10.short"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189110"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189110/Homing_in_on_the_specific_phenotype_s_of_central_respiratory_chemoreceptors"><img alt="Research paper thumbnail of Homing in on the specific phenotype(s) of central respiratory chemoreceptors" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189110/Homing_in_on_the_specific_phenotype_s_of_central_respiratory_chemoreceptors">Homing in on the specific phenotype(s) of central respiratory chemoreceptors</a></div><div class="wp-workCard_item"><span>Exp Physiol</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To some it may seem that we now know less about respiratory chemoreception than we did 20 years a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To some it may seem that we now know less about respiratory chemoreception than we did 20 years ago. Back then, it was widely accepted that the central respiratory chemoreceptors (CRCs) were located exclusively on or near the surface of the ventrolateral medulla (VLMS). Now, instead, it is generally believed that there are widespread sites of chemoreception, and there is little agreement on when and how each of these sites is involved in respiratory control. However, those in the field know that this actually is progress, primarily because we have gone from simply identifying candidate regions, to identifying specific neuronal subtypes that may be the sensors. In this invited review, we have been asked to discuss some of the current controversies in the field. First, we define the minimal requirements for a cell to be a CRC, and what assumptions can not be made without more data. Then we review the evidence that two neuronal subtypes, serotonergic neurones of the midline raphe and glutamatergic neurones of the retrotrapezoid nucleus, are chemoreceptors. There is evidence supporting a role in respiratory chemoreception for both types of neurone, as well as the other candidates, but there is also information that is missing. Future work will need to focus on which of the candidates are indeed chemoreceptors, what percentage of the overall response each one contributes, and how this percentage varies under different conditions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189110"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189110"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189110; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189110]").text(description); $(".js-view-count[data-work-id=30189110]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189110; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189110']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189110, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30189110]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189110,"title":"Homing in on the specific phenotype(s) of central respiratory chemoreceptors","translated_title":"","metadata":{"abstract":"To some it may seem that we now know less about respiratory chemoreception than we did 20 years ago. Back then, it was widely accepted that the central respiratory chemoreceptors (CRCs) were located exclusively on or near the surface of the ventrolateral medulla (VLMS). Now, instead, it is generally believed that there are widespread sites of chemoreception, and there is little agreement on when and how each of these sites is involved in respiratory control. However, those in the field know that this actually is progress, primarily because we have gone from simply identifying candidate regions, to identifying specific neuronal subtypes that may be the sensors. In this invited review, we have been asked to discuss some of the current controversies in the field. First, we define the minimal requirements for a cell to be a CRC, and what assumptions can not be made without more data. Then we review the evidence that two neuronal subtypes, serotonergic neurones of the midline raphe and glutamatergic neurones of the retrotrapezoid nucleus, are chemoreceptors. There is evidence supporting a role in respiratory chemoreception for both types of neurone, as well as the other candidates, but there is also information that is missing. Future work will need to focus on which of the candidates are indeed chemoreceptors, what percentage of the overall response each one contributes, and how this percentage varies under different conditions.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Exp Physiol"},"translated_abstract":"To some it may seem that we now know less about respiratory chemoreception than we did 20 years ago. Back then, it was widely accepted that the central respiratory chemoreceptors (CRCs) were located exclusively on or near the surface of the ventrolateral medulla (VLMS). Now, instead, it is generally believed that there are widespread sites of chemoreception, and there is little agreement on when and how each of these sites is involved in respiratory control. However, those in the field know that this actually is progress, primarily because we have gone from simply identifying candidate regions, to identifying specific neuronal subtypes that may be the sensors. In this invited review, we have been asked to discuss some of the current controversies in the field. First, we define the minimal requirements for a cell to be a CRC, and what assumptions can not be made without more data. Then we review the evidence that two neuronal subtypes, serotonergic neurones of the midline raphe and glutamatergic neurones of the retrotrapezoid nucleus, are chemoreceptors. There is evidence supporting a role in respiratory chemoreception for both types of neurone, as well as the other candidates, but there is also information that is missing. Future work will need to focus on which of the candidates are indeed chemoreceptors, what percentage of the overall response each one contributes, and how this percentage varies under different conditions.","internal_url":"https://www.academia.edu/30189110/Homing_in_on_the_specific_phenotype_s_of_central_respiratory_chemoreceptors","translated_internal_url":"","created_at":"2016-11-30T19:37:54.446-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312502,"work_id":30189110,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804393,"email":"d***y@cms.mail.virginia.edu","display_order":0,"name":"Douglas Bayliss","title":"Homing in on the specific phenotype(s) of central respiratory chemoreceptors"}],"downloadable_attachments":[],"slug":"Homing_in_on_the_specific_phenotype_s_of_central_respiratory_chemoreceptors","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[],"research_interests":[{"id":167,"name":"Physiology","url":"https://www.academia.edu/Documents/in/Physiology"},{"id":4594,"name":"Carbon Dioxide","url":"https://www.academia.edu/Documents/in/Carbon_Dioxide"},{"id":31804,"name":"Experimental Physiology","url":"https://www.academia.edu/Documents/in/Experimental_Physiology"},{"id":51565,"name":"Serotonin","url":"https://www.academia.edu/Documents/in/Serotonin"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":197297,"name":"Lung","url":"https://www.academia.edu/Documents/in/Lung"},{"id":202428,"name":"Respiration","url":"https://www.academia.edu/Documents/in/Respiration"},{"id":213897,"name":"Phenotype","url":"https://www.academia.edu/Documents/in/Phenotype"},{"id":1292998,"name":"Glutamic Acid","url":"https://www.academia.edu/Documents/in/Glutamic_Acid"}],"urls":[{"id":7783914,"url":"http://blackwell-synergy.com/links/doi/10.1111/j.1469-445x.2005.00135.x"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189109"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189109/Distribution_of_a2C_adrenergic_receptor_like_immunoreactivity_in_the_rat_central_nervous_system"><img alt="Research paper thumbnail of Distribution of a2C-adrenergic receptor-like immunoreactivity in the rat central nervous system" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189109/Distribution_of_a2C_adrenergic_receptor_like_immunoreactivity_in_the_rat_central_nervous_system">Distribution of a2C-adrenergic receptor-like immunoreactivity in the rat central nervous system</a></div><div class="wp-workCard_item"><span>J Comp Neurol</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189109"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189109"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189109; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189109]").text(description); $(".js-view-count[data-work-id=30189109]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189109; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189109']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189109, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30189109]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189109,"title":"Distribution of a2C-adrenergic receptor-like immunoreactivity in the rat central nervous system","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"J Comp Neurol"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189109/Distribution_of_a2C_adrenergic_receptor_like_immunoreactivity_in_the_rat_central_nervous_system","translated_internal_url":"","created_at":"2016-11-30T19:37:54.292-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312482,"work_id":30189109,"tagging_user_id":57481840,"tagged_user_id":109945574,"co_author_invite_id":5804391,"email":"k***h@cstone.net","display_order":0,"name":"Kevin Lynch","title":"Distribution of a2C-adrenergic receptor-like immunoreactivity in the rat central nervous system"}],"downloadable_attachments":[],"slug":"Distribution_of_a2C_adrenergic_receptor_like_immunoreactivity_in_the_rat_central_nervous_system","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189108"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189108/Pathophysiology_of_Dyspnea_in_Chronic_Obstructive_Pulmonary_Disease_A_Roundtable"><img alt="Research paper thumbnail of Pathophysiology of Dyspnea in Chronic Obstructive Pulmonary Disease A Roundtable" class="work-thumbnail" src="https://attachments.academia-assets.com/50648363/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189108/Pathophysiology_of_Dyspnea_in_Chronic_Obstructive_Pulmonary_Disease_A_Roundtable">Pathophysiology of Dyspnea in Chronic Obstructive Pulmonary Disease A Roundtable</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fb15b41494faf3340016f6573b14e727" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648363,&quot;asset_id&quot;:30189108,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648363/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189108"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189108"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189108; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189108]").text(description); $(".js-view-count[data-work-id=30189108]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189108; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189108']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189108, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fb15b41494faf3340016f6573b14e727" } } $('.js-work-strip[data-work-id=30189108]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189108,"title":"Pathophysiology of Dyspnea in Chronic Obstructive Pulmonary Disease A Roundtable","translated_title":"","metadata":{"grobid_abstract":"hypercapnic drives to breathe generate equivalent levels of air hunger in humans. suggest that hypoxia does not elicit dyspnea. An opposing view is that any stimulus to medullary respiratory centers generates dyspnea via \"corollary discharge\" to higher centers; absence of dyspnea during low inspired PO 2 may result from increased ventilation and hypocapnia. We hypothesized that, with fixed ventilation, hypoxia and hypercapnia generate equal dyspnea when matched by ventilatory drive. Steady-state levels of hypoxic normocapnia (end-tidal PO2 ϭ 60-40 Torr) and hypercapnic hyperoxia (end-tidal PCO2 ϭ 40-50 Torr) were induced in naive subjects when they were free breathing and during fixed mechanical ventilation. In a separate experiment, normocapnic hypoxia and normoxic hypercapnia, \"matched\" by ventilation in free-breathing trials, were presented to experienced subjects breathing with constrained rate and tidal volume. \"Air hunger\" was rated every 30 s on a visual analog scale. Air hunger-PETO 2 curves rose sharply at PETO 2 Ͻ50 Torr. Air hunger was not different between matched stimuli (P Ͼ 0.05). Hypercapnia had unpleasant nonrespiratory effects but was otherwise perceptually indistinguishable from hypoxia. We conclude that hypoxia and hypercapnia have equal potency for air hunger when matched by ventilatory drive. Air hunger may, therefore, arise via brain stem respiratory drive. visual analog scale; perception; adverse electrocardiogram effects; steady state; shortness of breath; breathlessness","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":50648363},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189108/Pathophysiology_of_Dyspnea_in_Chronic_Obstructive_Pulmonary_Disease_A_Roundtable","translated_internal_url":"","created_at":"2016-11-30T19:37:54.086-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312541,"work_id":30189108,"tagging_user_id":57481840,"tagged_user_id":31325144,"co_author_invite_id":5804396,"email":"s***t@city.ac.uk","display_order":0,"name":"Stephen Abbott","title":"Pathophysiology of Dyspnea in Chronic Obstructive Pulmonary Disease A Roundtable"},{"id":26312556,"work_id":30189108,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804399,"email":"s***x@virginia.edu","display_order":4194304,"name":"Seth Depuy","title":"Pathophysiology of Dyspnea in Chronic Obstructive Pulmonary Disease A Roundtable"}],"downloadable_attachments":[{"id":50648363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648363/thumbnails/1.jpg","file_name":"141.pdf","download_url":"https://www.academia.edu/attachments/50648363/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pathophysiology_of_Dyspnea_in_Chronic_Ob.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648363/141-libre.pdf?1480564169=\u0026response-content-disposition=attachment%3B+filename%3DPathophysiology_of_Dyspnea_in_Chronic_Ob.pdf\u0026Expires=1732747602\u0026Signature=M5gBzuK1RuGRRt4cJnCB78El1224O1pT4GvxO-nsnQSZTr7INUqDeql8xv01TugWidLTh1p8VcKYXZuA-fhN7AfWmxxlU9I88jwokoFUuAh1~NtukxFcF45dj0qksn9QoBPWUbEPaFnyiI88wRw4cuZ5Y7aBsobpqXZTv9T6tJ4NTILBptmT1GXWtIO4H~JKstI7DErsS1Rl2VpbNhFsmqy5IfB1Clt4t9yg~mN8T6xVXQhd8CQz0~te-VFkrI2GvHlkjVqDNtdFm4KO6My52~plEXMhnBzI6BcK5I~xeSRqaPo~bZTreEm1TwQyGN6EXl-h8lMZk9UjZSxCxemjCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pathophysiology_of_Dyspnea_in_Chronic_Obstructive_Pulmonary_Disease_A_Roundtable","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648363/thumbnails/1.jpg","file_name":"141.pdf","download_url":"https://www.academia.edu/attachments/50648363/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pathophysiology_of_Dyspnea_in_Chronic_Ob.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648363/141-libre.pdf?1480564169=\u0026response-content-disposition=attachment%3B+filename%3DPathophysiology_of_Dyspnea_in_Chronic_Ob.pdf\u0026Expires=1732747602\u0026Signature=M5gBzuK1RuGRRt4cJnCB78El1224O1pT4GvxO-nsnQSZTr7INUqDeql8xv01TugWidLTh1p8VcKYXZuA-fhN7AfWmxxlU9I88jwokoFUuAh1~NtukxFcF45dj0qksn9QoBPWUbEPaFnyiI88wRw4cuZ5Y7aBsobpqXZTv9T6tJ4NTILBptmT1GXWtIO4H~JKstI7DErsS1Rl2VpbNhFsmqy5IfB1Clt4t9yg~mN8T6xVXQhd8CQz0~te-VFkrI2GvHlkjVqDNtdFm4KO6My52~plEXMhnBzI6BcK5I~xeSRqaPo~bZTreEm1TwQyGN6EXl-h8lMZk9UjZSxCxemjCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":556576,"name":"Chronic obstructive pulmonary disease","url":"https://www.academia.edu/Documents/in/Chronic_obstructive_pulmonary_disease"},{"id":1348950,"name":"Respiratory Mechanics","url":"https://www.academia.edu/Documents/in/Respiratory_Mechanics"}],"urls":[{"id":7783913,"url":"http://jap.physiology.org/cgi/reprint/94/1/141.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189107"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189107/Neurokinin_1_Receptor_Expressing_Cells_of_the_Ventral_Respiratory_Group_Are_Functionally_Heterogeneous_and_Predominantly_Glutamatergic"><img alt="Research paper thumbnail of Neurokinin-1 Receptor-Expressing Cells of the Ventral Respiratory Group Are Functionally Heterogeneous and Predominantly Glutamatergic" class="work-thumbnail" src="https://attachments.academia-assets.com/50648362/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189107/Neurokinin_1_Receptor_Expressing_Cells_of_the_Ventral_Respiratory_Group_Are_Functionally_Heterogeneous_and_Predominantly_Glutamatergic">Neurokinin-1 Receptor-Expressing Cells of the Ventral Respiratory Group Are Functionally Heterogeneous and Predominantly Glutamatergic</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CSevigny">Charles Sevigny</a></span></div><div class="wp-workCard_item"><span>The Journal of Neuroscience the Official Journal of the Society For Neuroscience</span><span>, May 1, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c03500468583e1a8aac68a7c52963176" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648362,&quot;asset_id&quot;:30189107,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648362/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189107"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189107"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189107; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189107]").text(description); $(".js-view-count[data-work-id=30189107]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189107; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189107']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189107, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c03500468583e1a8aac68a7c52963176" } } $('.js-work-strip[data-work-id=30189107]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189107,"title":"Neurokinin-1 Receptor-Expressing Cells of the Ventral Respiratory Group Are Functionally Heterogeneous and Predominantly Glutamatergic","translated_title":"","metadata":{"grobid_abstract":"According to a recent theory the neurokinin-1 receptor (NK1R)-immunoreactive (ir) neurons of the ventral respiratory group (VRG) are confined to the pre-Bö tzinger complex (pre-Bö tC) and might be glutamatergic interneurons that drive respiratory rhythmogenesis. In this study we tested","publication_date":{"day":1,"month":5,"year":2002,"errors":{}},"publication_name":"The Journal of Neuroscience the Official Journal of the Society For Neuroscience","grobid_abstract_attachment_id":50648362},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189107/Neurokinin_1_Receptor_Expressing_Cells_of_the_Ventral_Respiratory_Group_Are_Functionally_Heterogeneous_and_Predominantly_Glutamatergic","translated_internal_url":"","created_at":"2016-11-30T19:37:53.876-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312512,"work_id":30189107,"tagging_user_id":57481840,"tagged_user_id":57742613,"co_author_invite_id":5804394,"email":"s***c@unimelb.edu.au","display_order":0,"name":"Charles Sevigny","title":"Neurokinin-1 Receptor-Expressing Cells of the Ventral Respiratory Group Are Functionally Heterogeneous and Predominantly Glutamatergic"},{"id":26312575,"work_id":30189107,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804403,"email":"w***4@sbcglobal.net","display_order":4194304,"name":"Matthew Weston","title":"Neurokinin-1 Receptor-Expressing Cells of the Ventral Respiratory Group Are Functionally Heterogeneous and Predominantly Glutamatergic"}],"downloadable_attachments":[{"id":50648362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648362/thumbnails/1.jpg","file_name":"3806.pdf","download_url":"https://www.academia.edu/attachments/50648362/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neurokinin_1_Receptor_Expressing_Cells_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648362/3806-libre.pdf?1480564169=\u0026response-content-disposition=attachment%3B+filename%3DNeurokinin_1_Receptor_Expressing_Cells_o.pdf\u0026Expires=1732747602\u0026Signature=Ssq2sLNFEZAnHheEoZXX8sGxIGtUgMUpfb7ayhjeJnKGbRuBllHpqmWco9cYG~ywt60zvxEoEmlchaHxHCz4Dr80tnMLojT8MntN-Ge1BsMIZXMAGMwUTJZKX9XT27SDA4LD9oftdi7W~RCQWoaM6TmCYQzGi142s0jYrJiYYADmaE2rFy28tV-j5MWngrX1dA~2-~uDT75Rndfhpi3PFylDxl8yIt~6tEOTyUiE-r-MBSa0r-Gj9N3ePfOrJun4Jbn~hbV0W2eMgJnLxyoAFe7hP1SuFbIEuTgjNL1ru85AkOT8JGDQQRR1BPqm~vKEWaT69WyfhYogdJzO8i89sw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Neurokinin_1_Receptor_Expressing_Cells_of_the_Ventral_Respiratory_Group_Are_Functionally_Heterogeneous_and_Predominantly_Glutamatergic","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648362/thumbnails/1.jpg","file_name":"3806.pdf","download_url":"https://www.academia.edu/attachments/50648362/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neurokinin_1_Receptor_Expressing_Cells_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648362/3806-libre.pdf?1480564169=\u0026response-content-disposition=attachment%3B+filename%3DNeurokinin_1_Receptor_Expressing_Cells_o.pdf\u0026Expires=1732747602\u0026Signature=Ssq2sLNFEZAnHheEoZXX8sGxIGtUgMUpfb7ayhjeJnKGbRuBllHpqmWco9cYG~ywt60zvxEoEmlchaHxHCz4Dr80tnMLojT8MntN-Ge1BsMIZXMAGMwUTJZKX9XT27SDA4LD9oftdi7W~RCQWoaM6TmCYQzGi142s0jYrJiYYADmaE2rFy28tV-j5MWngrX1dA~2-~uDT75Rndfhpi3PFylDxl8yIt~6tEOTyUiE-r-MBSa0r-Gj9N3ePfOrJun4Jbn~hbV0W2eMgJnLxyoAFe7hP1SuFbIEuTgjNL1ru85AkOT8JGDQQRR1BPqm~vKEWaT69WyfhYogdJzO8i89sw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":11271,"name":"Motor neuron","url":"https://www.academia.edu/Documents/in/Motor_neuron"},{"id":99421,"name":"Spinal Cord","url":"https://www.academia.edu/Documents/in/Spinal_Cord"},{"id":190905,"name":"Periodicity","url":"https://www.academia.edu/Documents/in/Periodicity"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":201209,"name":"Biotin","url":"https://www.academia.edu/Documents/in/Biotin"},{"id":202428,"name":"Respiration","url":"https://www.academia.edu/Documents/in/Respiration"},{"id":220742,"name":"Membrane transport proteins","url":"https://www.academia.edu/Documents/in/Membrane_transport_proteins"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":404000,"name":"Cross Section","url":"https://www.academia.edu/Documents/in/Cross_Section"},{"id":612551,"name":"Substance P","url":"https://www.academia.edu/Documents/in/Substance_P"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1292998,"name":"Glutamic Acid","url":"https://www.academia.edu/Documents/in/Glutamic_Acid"}],"urls":[{"id":7783912,"url":"http://jneurosci.org/cgi/reprint/22/9/3806.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="6234625" id="papers"><div class="js-work-strip profile--work_container" data-work-id="30582768"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30582768/Coexpression_of_vesicular_glutamate_transporters_1_and_2_glutamic_acid_decarboxylase_and_calretinin_in_rat_entorhinal_cortex"><img alt="Research paper thumbnail of Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex" class="work-thumbnail" src="https://attachments.academia-assets.com/51025465/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30582768/Coexpression_of_vesicular_glutamate_transporters_1_and_2_glutamic_acid_decarboxylase_and_calretinin_in_rat_entorhinal_cortex">Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JohnnySimmons3">Johnny Simmons</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/WH%C3%A4rtig">W. Härtig</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a></span></div><div class="wp-workCard_item"><span>Brain Structure and Function</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6c887ae6ecf7e5f0e17885cd154987d4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51025465,&quot;asset_id&quot;:30582768,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51025465/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30582768"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30582768"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30582768; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30582768]").text(description); $(".js-view-count[data-work-id=30582768]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30582768; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30582768']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30582768, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6c887ae6ecf7e5f0e17885cd154987d4" } } $('.js-work-strip[data-work-id=30582768]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30582768,"title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex","translated_title":"","metadata":{"grobid_abstract":"We studied the distribution and coexpression of vesicular glutamate transporters (VGluT1, VGluT2), glutamic acid decarboxylase (GAD) and calretinin (CR, calcium-binding protein) in rat entorhinal cortex, using immunofluorescence staining and multichannel confocal laser scanning microscopy. Images were computer processed and subjected to automated 3D object recognition, colocalization analysis and 3D reconstruction. Since the VGluTs (in contrast to CR and GAD) occurred in fibers and axon terminals only, we focused our attention on these neuronal processes. An intense, punctate VGluT1-staining occurred everywhere in the entorhinal cortex. Our computer program resolved these punctae as small 3D objects. Also VGluT2 showed a punctate immunostaining pattern, yet with half the number of 3D objects per tissue volume compared with VGluT1, and with statistically significantly larger 3D objects. Both VGluTs were distributed homogeneously across cortical layers, with in MEA VGluT1 slightly more densely distributed than in LEA. The distribution pattern and the size distribution of GAD 3D objects resembled that of VGluT2. CR-immunopositive fibers were abundant in all cortical layers. In double-stained sections we noted ample colocalization of CR and VGluT2, whereas coexpression of CR and VGluT1 was nearly absent. Also in triple-staining experiments (VGluT2, GAD and CR combined) we noted coexpression of VGluT2 and CR and, in addition, frequent coexpression of GAD and CR. Modest colocalization occurred of VGluT2 and GAD, and incidental colocalization of all three markers. We conclude that the CR-containing axon terminals in the entorhinal cortex belong to at least two subpopulations of CRneurons: a glutamatergic excitatory and a GABAergic inhibitory.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Brain Structure and Function","grobid_abstract_attachment_id":51025465},"translated_abstract":null,"internal_url":"https://www.academia.edu/30582768/Coexpression_of_vesicular_glutamate_transporters_1_and_2_glutamic_acid_decarboxylase_and_calretinin_in_rat_entorhinal_cortex","translated_internal_url":"","created_at":"2016-12-22T23:39:51.355-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":58281155,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26746760,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":3260114,"email":"y***s@aist.go.jp","display_order":0,"name":"Shouki Yatsushiro","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26746761,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":805366,"email":"p***g@virginia.edu","display_order":4194304,"name":"Patrice Guyenet","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26746768,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":34265895,"co_author_invite_id":null,"email":"f***d@vumc.nl","display_order":7340032,"name":"F. Wouterlood","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779093,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2301775,"email":"m***a@pharm.okayama-u.ac.jp","display_order":7864320,"name":"Yoshinori Moriyama","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779094,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2661473,"email":"o***a@cc.okayama-u.ac.jp","display_order":8126464,"name":"Masato Otsuka","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779095,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":1863720,"email":"h***o@h.hokkyodai.ac.jp","display_order":8257536,"name":"Mitsuko Hayashi","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779096,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2615437,"email":"a***o@nagahama-i-bio.ac.jp","display_order":8323072,"name":"Akitsugu Yamamoto","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779097,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":5894206,"email":"n***c@hotmail.com","display_order":8355840,"name":"Nina Vujovic","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779098,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2772377,"email":"j***n@kuleuven.be","display_order":8372224,"name":"Jeroen Beliën","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779099,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":34561771,"co_author_invite_id":null,"email":"w***g@medizin.uni-leipzig.de","display_order":8380416,"name":"W. Härtig","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779100,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":5894207,"email":"v***e@rub.de","display_order":8384512,"name":"Verena Aliane","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779101,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":50318627,"co_author_invite_id":null,"email":"c***o@nin.knaw.nl","display_order":8386560,"name":"C. Canto","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779103,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":57503629,"co_author_invite_id":null,"email":"t***n@propagenix.com","display_order":8387584,"name":"Travis McQuiston","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779107,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2483730,"email":"m***n@progressiverecruitment.com","display_order":8388096,"name":"Matthew Weston","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"},{"id":26779111,"work_id":30582768,"tagging_user_id":58281155,"tagged_user_id":57481840,"co_author_invite_id":null,"email":"r***j@virginia.edu","affiliation":"University of Virginia","display_order":8388352,"name":"Ruth Stornetta","title":"Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex"}],"downloadable_attachments":[{"id":51025465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025465/thumbnails/1.jpg","file_name":"s00429-007-0163-z20161222-12297-d9z6y4.pdf","download_url":"https://www.academia.edu/attachments/51025465/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coexpression_of_vesicular_glutamate_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025465/s00429-007-0163-z20161222-12297-d9z6y4-libre.pdf?1482479222=\u0026response-content-disposition=attachment%3B+filename%3DCoexpression_of_vesicular_glutamate_tran.pdf\u0026Expires=1732747601\u0026Signature=dgLzVwaETBOdNILUh0VAvkneqIPnzPSeyTsGM-xQSu9eKOoZOjfdjS3ZoVV7SYBSXZLOUTsw1CqvqOtVanrmg3JfGecTIis6Isq~g2mv3nnGR4bM5o~oFXDOKY~8otxhX7LVVT-JuIVcQ3CW0phE82-wWWknbSYqcr1dUezb9nvxBSil1W8idoo-Kej-SHOiDEZpvNu6TqP2JroUPxgi0q~GLiDWGFd25pxsqZ-C6mA4FxqiUZzRxxePLoG3Oi6-7yTtcqF8jHpNl-~OPuDuqBWcw79AKGVG0hRK7pq6UIY8bm6v7am6OpI1P4d7i0FUQrt8bU~S8I9YF2zU3NLmuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Coexpression_of_vesicular_glutamate_transporters_1_and_2_glutamic_acid_decarboxylase_and_calretinin_in_rat_entorhinal_cortex","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":58281155,"first_name":"Johnny","middle_initials":null,"last_name":"Simmons","page_name":"JohnnySimmons3","domain_name":"independent","created_at":"2016-12-22T23:38:07.387-08:00","display_name":"Johnny Simmons","url":"https://independent.academia.edu/JohnnySimmons3"},"attachments":[{"id":51025465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025465/thumbnails/1.jpg","file_name":"s00429-007-0163-z20161222-12297-d9z6y4.pdf","download_url":"https://www.academia.edu/attachments/51025465/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coexpression_of_vesicular_glutamate_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025465/s00429-007-0163-z20161222-12297-d9z6y4-libre.pdf?1482479222=\u0026response-content-disposition=attachment%3B+filename%3DCoexpression_of_vesicular_glutamate_tran.pdf\u0026Expires=1732747601\u0026Signature=dgLzVwaETBOdNILUh0VAvkneqIPnzPSeyTsGM-xQSu9eKOoZOjfdjS3ZoVV7SYBSXZLOUTsw1CqvqOtVanrmg3JfGecTIis6Isq~g2mv3nnGR4bM5o~oFXDOKY~8otxhX7LVVT-JuIVcQ3CW0phE82-wWWknbSYqcr1dUezb9nvxBSil1W8idoo-Kej-SHOiDEZpvNu6TqP2JroUPxgi0q~GLiDWGFd25pxsqZ-C6mA4FxqiUZzRxxePLoG3Oi6-7yTtcqF8jHpNl-~OPuDuqBWcw79AKGVG0hRK7pq6UIY8bm6v7am6OpI1P4d7i0FUQrt8bU~S8I9YF2zU3NLmuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":123287,"name":"Three Dimensional Imaging","url":"https://www.academia.edu/Documents/in/Three_Dimensional_Imaging"},{"id":171327,"name":"3-D Reconstruction","url":"https://www.academia.edu/Documents/in/3-D_Reconstruction"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":258979,"name":"Computer Program","url":"https://www.academia.edu/Documents/in/Computer_Program"},{"id":319071,"name":"Entorhinal Cortex","url":"https://www.academia.edu/Documents/in/Entorhinal_Cortex"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":383077,"name":"Calbindin","url":"https://www.academia.edu/Documents/in/Calbindin"},{"id":535564,"name":"Brain Structure","url":"https://www.academia.edu/Documents/in/Brain_Structure"},{"id":549122,"name":"Confocal Laser Scanning Microscopy","url":"https://www.academia.edu/Documents/in/Confocal_Laser_Scanning_Microscopy"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":1010730,"name":"Calcium Binding Protein","url":"https://www.academia.edu/Documents/in/Calcium_Binding_Protein"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1598058,"name":"Glutamate decarboxylase","url":"https://www.academia.edu/Documents/in/Glutamate_decarboxylase"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30582769"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30582769/Water_deprivation_activates_a_glutamatergic_projection_from_the_hypothalamic_paraventricular_nucleus_to_the_rostral_ventrolateral_medulla"><img alt="Research paper thumbnail of Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla" class="work-thumbnail" src="https://attachments.academia-assets.com/51025463/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30582769/Water_deprivation_activates_a_glutamatergic_projection_from_the_hypothalamic_paraventricular_nucleus_to_the_rostral_ventrolateral_medulla">Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JohnnySimmons3">Johnny Simmons</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a></span></div><div class="wp-workCard_item"><span>The Journal of Comparative Neurology</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5f1debc29ad93398d35f138471fabea0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51025463,&quot;asset_id&quot;:30582769,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51025463/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30582769"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30582769"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30582769; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30582769]").text(description); $(".js-view-count[data-work-id=30582769]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30582769; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30582769']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30582769, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5f1debc29ad93398d35f138471fabea0" } } $('.js-work-strip[data-work-id=30582769]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30582769,"title":"Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla","translated_title":"","metadata":{"grobid_abstract":"Elevated sympathetic outflow contributes to the maintenance of blood pressure in water-deprived rats. The neural circuitry underlying this response may involve activation of a pathway from the hypothalamic paraventricular nucleus (PVH) to the rostral ventrolateral medulla (RVLM). We sought to determine whether the PVH-RVLM projection activated by water deprivation is glutamatergic and/or contains vasopressin-or oxytocin-neurophysins. Vesicular glutamate transporter2 (VGLUT2) mRNA was detected by in situ hybridization in the majority of PVH neurons retrogradely labeled from the ipsilateral RVLM with cholera-toxin subunit B (CTB; 85% on average with regional differences). Very few RVLM-projecting PVH neurons were immunoreactive for oxytocin-or vasopressin-associated neurophysin. Injection of biotinylated dextran amine (BDA) into the PVH produced clusters of BDA-positive nerve terminals within the ipsilateral RVLM that were immunoreactive (ir) for the VGLUT2 protein. Some of these terminals made close appositions with tyrosine-hydroxylase-ir dendrites (presumptive C1 cells). In waterdeprived rats (n=4), numerous VGLUT2 mRNA-positive PVH neurons retrogradely labeled from the ipsilateral RVLM with CTB were c-Fos-ir (16-40% depending on PVH region). In marked contrast, few glutamatergic, RVLM-projecting PVH neurons were c-Fos-ir in control rats (n=3; 0-3% depending on PVH region). Most (94 ± 4%) RVLM-projecting PVH neurons activated by water deprivation contained VGLUT2 mRNA. In summary, the majority of PVH neurons that innervate the RVLM are glutamatergic and this population includes the neurons that are activated by water deprivation. One mechanism by which water deprivation may increase the sympathetic outflow is the activation of a glutamatergic pathway from the PVH to the RVLM.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"The Journal of Comparative Neurology","grobid_abstract_attachment_id":51025463},"translated_abstract":null,"internal_url":"https://www.academia.edu/30582769/Water_deprivation_activates_a_glutamatergic_projection_from_the_hypothalamic_paraventricular_nucleus_to_the_rostral_ventrolateral_medulla","translated_internal_url":"","created_at":"2016-12-22T23:39:51.497-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":58281155,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26746757,"work_id":30582769,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":5888019,"email":"s***r@uky.edu","display_order":0,"name":"Sean Stocker","title":"Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla"},{"id":26746762,"work_id":30582769,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":805366,"email":"p***g@virginia.edu","display_order":4194304,"name":"Patrice Guyenet","title":"Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla"},{"id":26779092,"work_id":30582769,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2955901,"email":"t***y@uthscsa.edu","display_order":6291456,"name":"Glenn Toney","title":"Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla"},{"id":26779110,"work_id":30582769,"tagging_user_id":58281155,"tagged_user_id":57481840,"co_author_invite_id":null,"email":"r***j@virginia.edu","affiliation":"University of Virginia","display_order":7340032,"name":"Ruth Stornetta","title":"Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla"}],"downloadable_attachments":[{"id":51025463,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025463/thumbnails/1.jpg","file_name":"Water_deprivation_activates_a_glutamater20161222-12303-agqjle.pdf","download_url":"https://www.academia.edu/attachments/51025463/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Water_deprivation_activates_a_glutamater.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025463/Water_deprivation_activates_a_glutamater20161222-12303-agqjle-libre.pdf?1482479231=\u0026response-content-disposition=attachment%3B+filename%3DWater_deprivation_activates_a_glutamater.pdf\u0026Expires=1732747601\u0026Signature=adFVOu4VM5Um87fuqpbQ3cZtTCAWHS9aSszE1owlWOoE1A6tVlgxI-ExJ2tsWVMjA6Ku3jtddr1lRp4TEBpao9V9puQu4Z8f0gO3s2u2tnOl9KholYYXSy-5HWbQGlchH4i4BTXzGeH4mcNd55wWcq4Ks2hyDJC8AOSNR9Ydl0zuO1dGn-cTjmrBULrcDQxdEnBuT-7YKjD6sz5t~dNTomERluiaS8TVAbbrVAOc8QKIXpDXxe4~9UDcRBbpZ8oFPL6a5rAuGiis~~MGiRYfbvVTwrCKOephE5t47jtINXLoevF~GZWBz6eV3dQsNBpKojUMGYT1n2i2WiassAeRRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Water_deprivation_activates_a_glutamatergic_projection_from_the_hypothalamic_paraventricular_nucleus_to_the_rostral_ventrolateral_medulla","translated_slug":"","page_count":28,"language":"en","content_type":"Work","owner":{"id":58281155,"first_name":"Johnny","middle_initials":null,"last_name":"Simmons","page_name":"JohnnySimmons3","domain_name":"independent","created_at":"2016-12-22T23:38:07.387-08:00","display_name":"Johnny Simmons","url":"https://independent.academia.edu/JohnnySimmons3"},"attachments":[{"id":51025463,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025463/thumbnails/1.jpg","file_name":"Water_deprivation_activates_a_glutamater20161222-12303-agqjle.pdf","download_url":"https://www.academia.edu/attachments/51025463/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Water_deprivation_activates_a_glutamater.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025463/Water_deprivation_activates_a_glutamater20161222-12303-agqjle-libre.pdf?1482479231=\u0026response-content-disposition=attachment%3B+filename%3DWater_deprivation_activates_a_glutamater.pdf\u0026Expires=1732747601\u0026Signature=adFVOu4VM5Um87fuqpbQ3cZtTCAWHS9aSszE1owlWOoE1A6tVlgxI-ExJ2tsWVMjA6Ku3jtddr1lRp4TEBpao9V9puQu4Z8f0gO3s2u2tnOl9KholYYXSy-5HWbQGlchH4i4BTXzGeH4mcNd55wWcq4Ks2hyDJC8AOSNR9Ydl0zuO1dGn-cTjmrBULrcDQxdEnBuT-7YKjD6sz5t~dNTomERluiaS8TVAbbrVAOc8QKIXpDXxe4~9UDcRBbpZ8oFPL6a5rAuGiis~~MGiRYfbvVTwrCKOephE5t47jtINXLoevF~GZWBz6eV3dQsNBpKojUMGYT1n2i2WiassAeRRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":173,"name":"Zoology","url":"https://www.academia.edu/Documents/in/Zoology"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":194429,"name":"Paraventricular Nucleus","url":"https://www.academia.edu/Documents/in/Paraventricular_Nucleus"},{"id":224775,"name":"Tyrosine Hydroxylase","url":"https://www.academia.edu/Documents/in/Tyrosine_Hydroxylase"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":675419,"name":"Sympathetic Nervous System","url":"https://www.academia.edu/Documents/in/Sympathetic_Nervous_System"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1002863,"name":"Comparative Neurology","url":"https://www.academia.edu/Documents/in/Comparative_Neurology"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1292998,"name":"Glutamic Acid","url":"https://www.academia.edu/Documents/in/Glutamic_Acid"},{"id":2463495,"name":"Random Allocation","url":"https://www.academia.edu/Documents/in/Random_Allocation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30582771"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30582771/Respiratory_control_by_ventral_surface_chemoreceptor_neurons_in_rats"><img alt="Research paper thumbnail of Respiratory control by ventral surface chemoreceptor neurons in rats" class="work-thumbnail" src="https://attachments.academia-assets.com/51025466/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30582771/Respiratory_control_by_ventral_surface_chemoreceptor_neurons_in_rats">Respiratory control by ventral surface chemoreceptor neurons in rats</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JohnnySimmons3">Johnny Simmons</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a></span></div><div class="wp-workCard_item"><span>Nature Neuroscience</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="33761310f6a900d412075f695f5297c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51025466,&quot;asset_id&quot;:30582771,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51025466/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30582771"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30582771"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30582771; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30582771]").text(description); $(".js-view-count[data-work-id=30582771]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30582771; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30582771']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30582771, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "33761310f6a900d412075f695f5297c7" } } $('.js-work-strip[data-work-id=30582771]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30582771,"title":"Respiratory control by ventral surface chemoreceptor neurons in rats","translated_title":"","metadata":{"grobid_abstract":"The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Nature Neuroscience","grobid_abstract_attachment_id":51025466},"translated_abstract":null,"internal_url":"https://www.academia.edu/30582771/Respiratory_control_by_ventral_surface_chemoreceptor_neurons_in_rats","translated_internal_url":"","created_at":"2016-12-22T23:39:51.904-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":58281155,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26746758,"work_id":30582771,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":5888020,"email":"d***p@virginia.edu","display_order":0,"name":"Daniel Mulkey","title":"Respiratory control by ventral surface chemoreceptor neurons in rats"},{"id":26746764,"work_id":30582771,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":805366,"email":"p***g@virginia.edu","display_order":4194304,"name":"Patrice Guyenet","title":"Respiratory control by ventral surface chemoreceptor neurons in rats"},{"id":26779089,"work_id":30582771,"tagging_user_id":58281155,"tagged_user_id":57502100,"co_author_invite_id":null,"email":"a***r@gmail.com","display_order":6291456,"name":"Anson Parker","title":"Respiratory control by ventral surface chemoreceptor neurons in rats"},{"id":26779104,"work_id":30582771,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2483730,"email":"m***n@progressiverecruitment.com","display_order":7340032,"name":"Matthew Weston","title":"Respiratory control by ventral surface chemoreceptor neurons in rats"},{"id":26779108,"work_id":30582771,"tagging_user_id":58281155,"tagged_user_id":57481840,"co_author_invite_id":null,"email":"r***j@virginia.edu","affiliation":"University of Virginia","display_order":7864320,"name":"Ruth Stornetta","title":"Respiratory control by ventral surface chemoreceptor neurons in rats"}],"downloadable_attachments":[{"id":51025466,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025466/thumbnails/1.jpg","file_name":"Respiratory_control_by_ventral_surface_c20161222-12303-hlitw.pdf","download_url":"https://www.academia.edu/attachments/51025466/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Respiratory_control_by_ventral_surface_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025466/Respiratory_control_by_ventral_surface_c20161222-12303-hlitw-libre.pdf?1482479234=\u0026response-content-disposition=attachment%3B+filename%3DRespiratory_control_by_ventral_surface_c.pdf\u0026Expires=1732747601\u0026Signature=aF0uvvgQFw6oJgQIgtuhsv3YtsEk~2oCAc6r00pGQALXNVtKwlRaKjAgf7KHY-Ox7E6c5~TBrkWK0tN-JtS8jhenlOpKZCrzLaKEmDx~UYLIIF6FTRcdzkgF09Nt5LRUpweQ0dsqMNXavX70b1MsKeuM-IyH5lGaeVSJDqwrmHd8dj2l-6NjFGRFEWhnqAh9~E5QgRAzjFeQzgxyRntwlJ4dHpfxxw6f2xlOvJn7c6tCe5rQzUPAxl-Z6y6XHTZXBd2UVj8VhUscI18gn-S474qgG7kZJsqDyml9RTyJUO7~iev7em6fzoQDs0pQMu51xqQbCWo-oD~lSduzxuEqpg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Respiratory_control_by_ventral_surface_chemoreceptor_neurons_in_rats","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":58281155,"first_name":"Johnny","middle_initials":null,"last_name":"Simmons","page_name":"JohnnySimmons3","domain_name":"independent","created_at":"2016-12-22T23:38:07.387-08:00","display_name":"Johnny Simmons","url":"https://independent.academia.edu/JohnnySimmons3"},"attachments":[{"id":51025466,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025466/thumbnails/1.jpg","file_name":"Respiratory_control_by_ventral_surface_c20161222-12303-hlitw.pdf","download_url":"https://www.academia.edu/attachments/51025466/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Respiratory_control_by_ventral_surface_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025466/Respiratory_control_by_ventral_surface_c20161222-12303-hlitw-libre.pdf?1482479234=\u0026response-content-disposition=attachment%3B+filename%3DRespiratory_control_by_ventral_surface_c.pdf\u0026Expires=1732747601\u0026Signature=aF0uvvgQFw6oJgQIgtuhsv3YtsEk~2oCAc6r00pGQALXNVtKwlRaKjAgf7KHY-Ox7E6c5~TBrkWK0tN-JtS8jhenlOpKZCrzLaKEmDx~UYLIIF6FTRcdzkgF09Nt5LRUpweQ0dsqMNXavX70b1MsKeuM-IyH5lGaeVSJDqwrmHd8dj2l-6NjFGRFEWhnqAh9~E5QgRAzjFeQzgxyRntwlJ4dHpfxxw6f2xlOvJn7c6tCe5rQzUPAxl-Z6y6XHTZXBd2UVj8VhUscI18gn-S474qgG7kZJsqDyml9RTyJUO7~iev7em6fzoQDs0pQMu51xqQbCWo-oD~lSduzxuEqpg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":4594,"name":"Carbon Dioxide","url":"https://www.academia.edu/Documents/in/Carbon_Dioxide"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature"},{"id":115437,"name":"Nature Neuroscience","url":"https://www.academia.edu/Documents/in/Nature_Neuroscience"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":715895,"name":"Carotid Body","url":"https://www.academia.edu/Documents/in/Carotid_Body"},{"id":902401,"name":"Pattern Generation","url":"https://www.academia.edu/Documents/in/Pattern_Generation"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30582767"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30582767/Detection_of_amino_acid_and_peptide_transmitters_in_physiologically_identified_brainstem_cardiorespiratory_neurons"><img alt="Research paper thumbnail of Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons" class="work-thumbnail" src="https://attachments.academia-assets.com/51025462/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30582767/Detection_of_amino_acid_and_peptide_transmitters_in_physiologically_identified_brainstem_cardiorespiratory_neurons">Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JohnnySimmons3">Johnny Simmons</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a></span></div><div class="wp-workCard_item"><span>Autonomic Neuroscience</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2371d1f38cb6b666fe773825584a8931" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51025462,&quot;asset_id&quot;:30582767,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51025462/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30582767"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30582767"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30582767; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30582767]").text(description); $(".js-view-count[data-work-id=30582767]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30582767; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30582767']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30582767, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2371d1f38cb6b666fe773825584a8931" } } $('.js-work-strip[data-work-id=30582767]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30582767,"title":"Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons","translated_title":"","metadata":{"grobid_abstract":"Most of the CNS neurons that regulate circulation and respiration reside in regions of the brain characterized by extreme cellular heterogeneity (nucleus of the solitary tract, reticular formation, parabrachial nuclei, periaqueductal gray matter, hypothalamus, etc.). The chemical neuroanatomy of these regions is correspondingly complex and teasing out specific circuits in their midst remains a problem that is usually very difficult if not impossible to solve by conventional tract-tracing methods, Fos methodology or electrophysiology in slices. In addition, identifying the type of amino acid or peptide transmitter used by electrophysiologically recorded neurons has been until recently an especially difficult task either for lack of a specific marker or because such markers (many peptides for example) are exported to synaptic terminals and thus undetectable in neuronal cell bodies. In this review, we describe a general purpose method that solves many of these problems. The approach combines juxtacellular labeling in vivo with the histological identification of mRNAs that provide definitive neurochemical phenotypic identification (e.g. vesicular glutamate transporter 1 or 2, glutamic acid decarboxylase). The results obtained with this method are discussed in the general context of amino acid transmission in brainstem cardiorespiratory pathways. The presence of markers of amino acid transmission in specific aminergic pre-sympathetic neurons is especially emphasized as is the extensive co-localization of markers of GABAergic and glycinergic transmission in the brainstem reticular formation. D","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Autonomic Neuroscience","grobid_abstract_attachment_id":51025462},"translated_abstract":null,"internal_url":"https://www.academia.edu/30582767/Detection_of_amino_acid_and_peptide_transmitters_in_physiologically_identified_brainstem_cardiorespiratory_neurons","translated_internal_url":"","created_at":"2016-12-22T23:39:51.194-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":58281155,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26746763,"work_id":30582767,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":805366,"email":"p***g@virginia.edu","display_order":0,"name":"Patrice Guyenet","title":"Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons"},{"id":26779102,"work_id":30582767,"tagging_user_id":58281155,"tagged_user_id":57503629,"co_author_invite_id":null,"email":"t***n@propagenix.com","display_order":4194304,"name":"Travis McQuiston","title":"Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons"},{"id":26779106,"work_id":30582767,"tagging_user_id":58281155,"tagged_user_id":null,"co_author_invite_id":2483730,"email":"m***n@progressiverecruitment.com","display_order":6291456,"name":"Matthew Weston","title":"Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons"},{"id":26779109,"work_id":30582767,"tagging_user_id":58281155,"tagged_user_id":57481840,"co_author_invite_id":null,"email":"r***j@virginia.edu","affiliation":"University of Virginia","display_order":7340032,"name":"Ruth Stornetta","title":"Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons"}],"downloadable_attachments":[{"id":51025462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025462/thumbnails/1.jpg","file_name":"j.autneu.2004.06.00320161222-12303-13swwg.pdf","download_url":"https://www.academia.edu/attachments/51025462/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detection_of_amino_acid_and_peptide_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025462/j.autneu.2004.06.00320161222-12303-13swwg-libre.pdf?1482479223=\u0026response-content-disposition=attachment%3B+filename%3DDetection_of_amino_acid_and_peptide_tran.pdf\u0026Expires=1732747601\u0026Signature=SZtH5Bk-W7Oeb1xO85dYArFf~lQfdvDKylPxQiYXP6oq5uMFRP37iGldYY8VQfkv7YuWLZEfhY--Dynwir6D6QqY8AtqpW0xdznMcp9wP~joaSYeu9txztDI5QOIZ7K5A4RFzHGJ0nUCLSDXgLgC6p1IKOJBNTKDbZGkqwFNXvIEhjMcNnwDOuw-K6HbWld9qkmG5kQjCEyiTojk9~He0iyvJBg8pM0xsiSg9W69gpDVQ08s92frzqZb1JG47WbNDOtRAJuxUDdCfUL9BYYBobbBNY6PUt4nsqOjWnam53RavMVjkXssygzJfPJOORjzE~T17MBABjbEcyxLllYxhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Detection_of_amino_acid_and_peptide_transmitters_in_physiologically_identified_brainstem_cardiorespiratory_neurons","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":58281155,"first_name":"Johnny","middle_initials":null,"last_name":"Simmons","page_name":"JohnnySimmons3","domain_name":"independent","created_at":"2016-12-22T23:38:07.387-08:00","display_name":"Johnny Simmons","url":"https://independent.academia.edu/JohnnySimmons3"},"attachments":[{"id":51025462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51025462/thumbnails/1.jpg","file_name":"j.autneu.2004.06.00320161222-12303-13swwg.pdf","download_url":"https://www.academia.edu/attachments/51025462/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detection_of_amino_acid_and_peptide_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51025462/j.autneu.2004.06.00320161222-12303-13swwg-libre.pdf?1482479223=\u0026response-content-disposition=attachment%3B+filename%3DDetection_of_amino_acid_and_peptide_tran.pdf\u0026Expires=1732747601\u0026Signature=SZtH5Bk-W7Oeb1xO85dYArFf~lQfdvDKylPxQiYXP6oq5uMFRP37iGldYY8VQfkv7YuWLZEfhY--Dynwir6D6QqY8AtqpW0xdznMcp9wP~joaSYeu9txztDI5QOIZ7K5A4RFzHGJ0nUCLSDXgLgC6p1IKOJBNTKDbZGkqwFNXvIEhjMcNnwDOuw-K6HbWld9qkmG5kQjCEyiTojk9~He0iyvJBg8pM0xsiSg9W69gpDVQ08s92frzqZb1JG47WbNDOtRAJuxUDdCfUL9BYYBobbBNY6PUt4nsqOjWnam53RavMVjkXssygzJfPJOORjzE~T17MBABjbEcyxLllYxhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37836,"name":"In Situ Hybridization","url":"https://www.academia.edu/Documents/in/In_Situ_Hybridization"},{"id":151086,"name":"Peptides","url":"https://www.academia.edu/Documents/in/Peptides"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":202428,"name":"Respiration","url":"https://www.academia.edu/Documents/in/Respiration"},{"id":220742,"name":"Membrane transport proteins","url":"https://www.academia.edu/Documents/in/Membrane_transport_proteins"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":295928,"name":"Amino Acids","url":"https://www.academia.edu/Documents/in/Amino_Acids"},{"id":585573,"name":"Amino Acid Profile","url":"https://www.academia.edu/Documents/in/Amino_Acid_Profile"},{"id":1147486,"name":"Autonomic","url":"https://www.academia.edu/Documents/in/Autonomic"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1598058,"name":"Glutamate decarboxylase","url":"https://www.academia.edu/Documents/in/Glutamate_decarboxylase"},{"id":2426000,"name":"Brain stem","url":"https://www.academia.edu/Documents/in/Brain_stem"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189279"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189279/Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ"><img alt="Research paper thumbnail of Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189279/Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ">Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ</a></div><div class="wp-workCard_item"><span>The Journal of Physiology</span><span>, Jun 1, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4174aa8674f27e39b8188c2c94399958" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648596,&quot;asset_id&quot;:30189279,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648596/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189279"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189279"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189279; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189279]").text(description); $(".js-view-count[data-work-id=30189279]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189279; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189279']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189279, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4174aa8674f27e39b8188c2c94399958" } } $('.js-work-strip[data-work-id=30189279]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189279,"title":"Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ","translated_title":"","metadata":{"grobid_abstract":"The user has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.","publication_date":{"day":1,"month":6,"year":2009,"errors":{}},"publication_name":"The Journal of Physiology","grobid_abstract_attachment_id":50648596},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189279/Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ","translated_internal_url":"","created_at":"2016-11-30T19:48:07.073-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312783,"work_id":30189279,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804496,"email":"w***n@dartmouth.edu","display_order":0,"name":"Walter St-John","title":"Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ"}],"downloadable_attachments":[{"id":50648596,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Location_and_properties_of_respiratory_n20161130-27487-1qezhvs.pdf","download_url":"https://www.academia.edu/attachments/50648596/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Location_and_properties_of_respiratory_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648596/Location_and_properties_of_respiratory_n20161130-27487-1qezhvs-libre.pdf?1480564711=\u0026response-content-disposition=attachment%3B+filename%3DLocation_and_properties_of_respiratory_n.pdf\u0026Expires=1732747601\u0026Signature=Ok83IkBzZ6aKAlT14BPbjoRhdUo5~Eyh3rCeK9x~O2f8E6iI~43QCQD0P6RLO9Q8L5uAfy~pVxRKxw2WSYoIurO8XbZT9ShCTzs~JqZozuopt9T7nFjdNugJnLITsu9I1M0LcBu~kYQo0gMv1IJwDUiOmSUQld6NO0hH7c7TlVhzJ3uG710Xy771g8uK~To4ukR-j7k7KN0IhquovT3IQvh1hPvK8LcgWgHlpRB6yJ03r~Jt2kh0ISDD1J~fXLqzvMffd5gTYdFJXY6omcZCM3T-AaMVj0jj8MN89Jw~qBLH55zPuaAUZ5C-vCTwOM2uyahdFws38lk25fHlacgBkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648596,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Location_and_properties_of_respiratory_n20161130-27487-1qezhvs.pdf","download_url":"https://www.academia.edu/attachments/50648596/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Location_and_properties_of_respiratory_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648596/Location_and_properties_of_respiratory_n20161130-27487-1qezhvs-libre.pdf?1480564711=\u0026response-content-disposition=attachment%3B+filename%3DLocation_and_properties_of_respiratory_n.pdf\u0026Expires=1732747601\u0026Signature=Ok83IkBzZ6aKAlT14BPbjoRhdUo5~Eyh3rCeK9x~O2f8E6iI~43QCQD0P6RLO9Q8L5uAfy~pVxRKxw2WSYoIurO8XbZT9ShCTzs~JqZozuopt9T7nFjdNugJnLITsu9I1M0LcBu~kYQo0gMv1IJwDUiOmSUQld6NO0hH7c7TlVhzJ3uG710Xy771g8uK~To4ukR-j7k7KN0IhquovT3IQvh1hPvK8LcgWgHlpRB6yJ03r~Jt2kh0ISDD1J~fXLqzvMffd5gTYdFJXY6omcZCM3T-AaMVj0jj8MN89Jw~qBLH55zPuaAUZ5C-vCTwOM2uyahdFws38lk25fHlacgBkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37793,"name":"Patch-clamp and imaging techniques","url":"https://www.academia.edu/Documents/in/Patch-clamp_and_imaging_techniques"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":202428,"name":"Respiration","url":"https://www.academia.edu/Documents/in/Respiration"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":386342,"name":"Sodium","url":"https://www.academia.edu/Documents/in/Sodium"}],"urls":[{"id":7783925,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=21692522"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189278"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189278/GABAergicNeuronsintheCentralRegionoftheSpinalCord_ANovelSubstrateforSympatheticInhibition"><img alt="Research paper thumbnail of GABAergicNeuronsintheCentralRegionoftheSpinalCord: ANovelSubstrateforSympatheticInhibition" class="work-thumbnail" src="https://attachments.academia-assets.com/50648570/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189278/GABAergicNeuronsintheCentralRegionoftheSpinalCord_ANovelSubstrateforSympatheticInhibition">GABAergicNeuronsintheCentralRegionoftheSpinalCord: ANovelSubstrateforSympatheticInhibition</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="37748a859116bfe0b62f214beb678501" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648570,&quot;asset_id&quot;:30189278,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648570/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189278"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189278"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189278; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189278]").text(description); $(".js-view-count[data-work-id=30189278]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189278; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189278']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189278, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "37748a859116bfe0b62f214beb678501" } } $('.js-work-strip[data-work-id=30189278]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189278,"title":"GABAergicNeuronsintheCentralRegionoftheSpinalCord: ANovelSubstrateforSympatheticInhibition","translated_title":"","metadata":{"grobid_abstract":"Homeostatic maintenance of widespread functions is critically dependent on the activity of the sympathetic nervous system. This activity is generated by the CNS acting on the sole output cells in the spinal cord, sympathetic preganglionic neurons (SPNs). SPNs are subject to control from both supraspinal and spinal inputs that exert effects through activation of direct or indirect pathways. A high proportion of indirect control is attributable to activation of spinal interneurons in a number of locations. However, little is known about the different groups of interneurons with respect to their neurochemistry or function. In this study, we report on a novel group of GABAergic interneurons located in the spinal central autonomic area (CAA) that directly inhibit SPN activity. In situ hybridization studies demonstrated a group of neurons that contained mRNA for glutamic acid decarboxylase (GAD) 65 and GAD 67 within the CAA. Combining in situ hybridization with trans-synaptic labeling from the adrenal gland using pseudorabies virus identified presympathetic GABAergic neurons in the CAA. Electrical stimulation of the CAA elicited monosynaptic IPSPs in SPNs located laterally in the intermediolateral cell column. IPSPs were GABAergic, because they reversed at the chloride reversal potential and were blocked by bicuculline. Chemical activation of neurons in the CAA hyperpolarized SPNs, an effect that was also bicuculline sensitive. We conclude that the CAA contains GABAergic interneurons that impinge directly onto SPNs to inhibit their activity and suggest that these newly identified interneurons may play an essential role in the regulation of sympathetic activity and thus homeostasis.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"grobid_abstract_attachment_id":50648570},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189278/GABAergicNeuronsintheCentralRegionoftheSpinalCord_ANovelSubstrateforSympatheticInhibition","translated_internal_url":"","created_at":"2016-11-30T19:48:06.901-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312753,"work_id":30189278,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804478,"email":"c***n@wolterskluwer.com","display_order":0,"name":"Carol Milligan","title":"GABAergicNeuronsintheCentralRegionoftheSpinalCord: ANovelSubstrateforSympatheticInhibition"}],"downloadable_attachments":[{"id":50648570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648570/thumbnails/1.jpg","file_name":"1063.pdf","download_url":"https://www.academia.edu/attachments/50648570/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"GABAergicNeuronsintheCentralRegionoftheS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648570/1063-libre.pdf?1480564440=\u0026response-content-disposition=attachment%3B+filename%3DGABAergicNeuronsintheCentralRegionoftheS.pdf\u0026Expires=1732747601\u0026Signature=D-Qb7YYfbpu6pAjIC-jj3rryUt9bRPnlbeGVq2F-5Cn909Pw9ihpQvbHXMoe7ISculq2Xh24JZhP60GMc43WPVBTpOZr3EAk7ehabepNIGG4t8~OcDo9TZnL2Su1aPAhZcscoQRqiY97jO59v8q-DQuTCdpMrYf4vnUzBS6t14fAdppwwvIQWK6-S147le~ICFDyhlVqh2JvXitchVJ4c0dyX1-rb9~MEjAIWrPNlLd0ujv5jrjb79ygsYIBpkqu2LG79i7RWjOrjS8g7gfqatxJMeMR-FRpV6jym6jZQ8bB3f0nUTcxGgyPhBb-bpM3YTaE3OauwGTzRM7xmfz9Tw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"GABAergicNeuronsintheCentralRegionoftheSpinalCord_ANovelSubstrateforSympatheticInhibition","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648570/thumbnails/1.jpg","file_name":"1063.pdf","download_url":"https://www.academia.edu/attachments/50648570/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"GABAergicNeuronsintheCentralRegionoftheS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648570/1063-libre.pdf?1480564440=\u0026response-content-disposition=attachment%3B+filename%3DGABAergicNeuronsintheCentralRegionoftheS.pdf\u0026Expires=1732747601\u0026Signature=D-Qb7YYfbpu6pAjIC-jj3rryUt9bRPnlbeGVq2F-5Cn909Pw9ihpQvbHXMoe7ISculq2Xh24JZhP60GMc43WPVBTpOZr3EAk7ehabepNIGG4t8~OcDo9TZnL2Su1aPAhZcscoQRqiY97jO59v8q-DQuTCdpMrYf4vnUzBS6t14fAdppwwvIQWK6-S147le~ICFDyhlVqh2JvXitchVJ4c0dyX1-rb9~MEjAIWrPNlLd0ujv5jrjb79ygsYIBpkqu2LG79i7RWjOrjS8g7gfqatxJMeMR-FRpV6jym6jZQ8bB3f0nUTcxGgyPhBb-bpM3YTaE3OauwGTzRM7xmfz9Tw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":50648571,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648571/thumbnails/1.jpg","file_name":"1063.pdf","download_url":"https://www.academia.edu/attachments/50648571/download_file","bulk_download_file_name":"GABAergicNeuronsintheCentralRegionoftheS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648571/1063-libre.pdf?1480564439=\u0026response-content-disposition=attachment%3B+filename%3DGABAergicNeuronsintheCentralRegionoftheS.pdf\u0026Expires=1732747601\u0026Signature=BKa-pxvOatk1AnO82NJhuqRjRxy3ZOFgkWg4c~8GjmS-Hf9lflrA6X~F0zjhQqEyij-qUNvD46jlI7O87dgxC0m2X4z3O1cVUQB~EjIUXSZ8rPoQhHKQ1gi9wjtkud2aAjv94AKNFrLvn8pF7-ku3~VnnRzvI-WieTMxae1~Yn28Ram15706cM91i5ZXPKXaCo~KEp2anSYgVQ-0ZPqWsXN8-5t3o3upXIhjZEXpRjRIFhSLBWCppiyU6PEBqK4BpXbvveC9Rk1oDnHm~4QADpDAf68ZOBdQSCWicTStJQvV2-YDD-nNbhAQaX8x1iziECLYhrCajI8ot08h7bW0IQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":7783924,"url":"http://www.jneurosci.org/cgi/reprint/25/5/1063.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189277"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189277/Antagonist_precipitated_clonidine_withdrawal_in_rat_effects_on_locus_coeruleus_neurons_sympathetic_nerves_and_cardiovascular_parameters"><img alt="Research paper thumbnail of Antagonist precipitated clonidine withdrawal in rat: effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189277/Antagonist_precipitated_clonidine_withdrawal_in_rat_effects_on_locus_coeruleus_neurons_sympathetic_nerves_and_cardiovascular_parameters">Antagonist precipitated clonidine withdrawal in rat: effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PenceR">R. Pence</a></span></div><div class="wp-workCard_item"><span>Journal of the autonomic nervous system</span><span>, Jan 15, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The goal of the present study was to examine the effect of clonidine withdrawal on the neural con...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The goal of the present study was to examine the effect of clonidine withdrawal on the neural control of blood pressure. Rats were treated for 7-13 days with clonidine via osmotic minipumps (200 microg kg(-1) day(-1), s.c.). Controls received saline or were sham operated. Withdrawal was precipitated by the alpha2-adrenergic receptor (alpha2-AR) antagonist atipamezole. Most experiments were done under halothane anesthesia. Chronic treatment with clonidine did not change mean arterial pressure (MAP) or heart rate (HR) but raised femoral artery resistance and the activity of locus coeruleus neurons slightly. Atipamezole given to rats treated chronically with clonidine produced the following effects: no change in MAP, severe tachycardia, sustained increase in splanchnic sympathetic nerve discharge (SND; +75 +/- 13%), transient increase in lumbar SND (+23 +/- 7%), ON-OFF activity pattern in the locus coeruleus (LC). The ON phase of LC activity was synchronized with upswings of SND and wi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189277"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189277"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189277; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189277]").text(description); $(".js-view-count[data-work-id=30189277]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189277; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189277']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189277, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30189277]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189277,"title":"Antagonist precipitated clonidine withdrawal in rat: effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters","translated_title":"","metadata":{"abstract":"The goal of the present study was to examine the effect of clonidine withdrawal on the neural control of blood pressure. Rats were treated for 7-13 days with clonidine via osmotic minipumps (200 microg kg(-1) day(-1), s.c.). Controls received saline or were sham operated. Withdrawal was precipitated by the alpha2-adrenergic receptor (alpha2-AR) antagonist atipamezole. Most experiments were done under halothane anesthesia. Chronic treatment with clonidine did not change mean arterial pressure (MAP) or heart rate (HR) but raised femoral artery resistance and the activity of locus coeruleus neurons slightly. Atipamezole given to rats treated chronically with clonidine produced the following effects: no change in MAP, severe tachycardia, sustained increase in splanchnic sympathetic nerve discharge (SND; +75 +/- 13%), transient increase in lumbar SND (+23 +/- 7%), ON-OFF activity pattern in the locus coeruleus (LC). The ON phase of LC activity was synchronized with upswings of SND and wi...","publication_date":{"day":15,"month":1,"year":1998,"errors":{}},"publication_name":"Journal of the autonomic nervous system"},"translated_abstract":"The goal of the present study was to examine the effect of clonidine withdrawal on the neural control of blood pressure. Rats were treated for 7-13 days with clonidine via osmotic minipumps (200 microg kg(-1) day(-1), s.c.). Controls received saline or were sham operated. Withdrawal was precipitated by the alpha2-adrenergic receptor (alpha2-AR) antagonist atipamezole. Most experiments were done under halothane anesthesia. Chronic treatment with clonidine did not change mean arterial pressure (MAP) or heart rate (HR) but raised femoral artery resistance and the activity of locus coeruleus neurons slightly. Atipamezole given to rats treated chronically with clonidine produced the following effects: no change in MAP, severe tachycardia, sustained increase in splanchnic sympathetic nerve discharge (SND; +75 +/- 13%), transient increase in lumbar SND (+23 +/- 7%), ON-OFF activity pattern in the locus coeruleus (LC). The ON phase of LC activity was synchronized with upswings of SND and wi...","internal_url":"https://www.academia.edu/30189277/Antagonist_precipitated_clonidine_withdrawal_in_rat_effects_on_locus_coeruleus_neurons_sympathetic_nerves_and_cardiovascular_parameters","translated_internal_url":"","created_at":"2016-11-30T19:48:06.782-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312754,"work_id":30189277,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804479,"email":"g***m@aol.com","display_order":0,"name":"Michele Grubb","title":"Antagonist precipitated clonidine withdrawal in rat: effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters"},{"id":26312756,"work_id":30189277,"tagging_user_id":57481840,"tagged_user_id":57496418,"co_author_invite_id":5804480,"email":"r***5@yahoo.com","display_order":4194304,"name":"R. Pence","title":"Antagonist precipitated clonidine withdrawal in rat: effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters"}],"downloadable_attachments":[],"slug":"Antagonist_precipitated_clonidine_withdrawal_in_rat_effects_on_locus_coeruleus_neurons_sympathetic_nerves_and_cardiovascular_parameters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[],"research_interests":[{"id":9040,"name":"Consciousness","url":"https://www.academia.edu/Documents/in/Consciousness"},{"id":88321,"name":"Blood Pressure","url":"https://www.academia.edu/Documents/in/Blood_Pressure"},{"id":129739,"name":"Anesthesia","url":"https://www.academia.edu/Documents/in/Anesthesia"},{"id":131298,"name":"Heart rate","url":"https://www.academia.edu/Documents/in/Heart_rate"},{"id":174781,"name":"Oscillations","url":"https://www.academia.edu/Documents/in/Oscillations"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":312834,"name":"Cardiovascular system","url":"https://www.academia.edu/Documents/in/Cardiovascular_system"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":548890,"name":"Locus coeruleus","url":"https://www.academia.edu/Documents/in/Locus_coeruleus"},{"id":675419,"name":"Sympathetic Nervous System","url":"https://www.academia.edu/Documents/in/Sympathetic_Nervous_System"},{"id":801409,"name":"Imidazoles","url":"https://www.academia.edu/Documents/in/Imidazoles"},{"id":936573,"name":"Halothane","url":"https://www.academia.edu/Documents/in/Halothane"},{"id":1128575,"name":"Neural Control","url":"https://www.academia.edu/Documents/in/Neural_Control"},{"id":1969879,"name":"Vascular Resistance","url":"https://www.academia.edu/Documents/in/Vascular_Resistance"},{"id":2085017,"name":"Clonidine","url":"https://www.academia.edu/Documents/in/Clonidine"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189276"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189276/Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ"><img alt="Research paper thumbnail of Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189276/Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ">Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ</a></div><div class="wp-workCard_item"><span>The Journal of Physiology</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="300f1445392be3036495edce95381bcf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648592,&quot;asset_id&quot;:30189276,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648592/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189276"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189276"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189276; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189276]").text(description); $(".js-view-count[data-work-id=30189276]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189276; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189276']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189276, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "300f1445392be3036495edce95381bcf" } } $('.js-work-strip[data-work-id=30189276]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189276,"title":"Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ","translated_title":"","metadata":{"grobid_abstract":"The user has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"The Journal of Physiology","grobid_abstract_attachment_id":50648592},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189276/Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ","translated_internal_url":"","created_at":"2016-11-30T19:48:06.666-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312782,"work_id":30189276,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804496,"email":"w***n@dartmouth.edu","display_order":0,"name":"Walter St-John","title":"Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ"}],"downloadable_attachments":[{"id":50648592,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Location_and_properties_of_respiratory_n20161130-29154-1ngqnsq.pdf","download_url":"https://www.academia.edu/attachments/50648592/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Location_and_properties_of_respiratory_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648592/Location_and_properties_of_respiratory_n20161130-29154-1ngqnsq-libre.pdf?1480564712=\u0026response-content-disposition=attachment%3B+filename%3DLocation_and_properties_of_respiratory_n.pdf\u0026Expires=1732747601\u0026Signature=A8ze8ytV4giYXIFHs8JyQG9ox1Obnxfx~8s6GNhzPaw1C9ZnFPgivdxq52IYnfyCyP0MrYKm8aY0BL2NLFt19x0qgWgQogi0mUvb0xSA6fO7liVpRnBK1RRW5uXPUZeWObvzfPZN0cUEYYciQCPEaoziyJMLl6oIOjt68-c60-vA7Y9zAeHEMiSXnQ4G1SaCk4Gj8boKEuEGWGFCkMsolZ82qLJ1UK332Xe8-fY-Wzeur4XUgYXyKuQG6x~6Dz05-mp-VpVTY8uu66II13USeWxsorQYl-Dgr8YrZvvFnwnsrzmmaj0fKtLNg9MHcm~aFQvSXnfRcewW6GZXODZpcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Location_and_properties_of_respiratory_neurones_with_putative_intrinsic_bursting_properties_in_the_rat_in_situ","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648592,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Location_and_properties_of_respiratory_n20161130-29154-1ngqnsq.pdf","download_url":"https://www.academia.edu/attachments/50648592/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Location_and_properties_of_respiratory_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648592/Location_and_properties_of_respiratory_n20161130-29154-1ngqnsq-libre.pdf?1480564712=\u0026response-content-disposition=attachment%3B+filename%3DLocation_and_properties_of_respiratory_n.pdf\u0026Expires=1732747601\u0026Signature=A8ze8ytV4giYXIFHs8JyQG9ox1Obnxfx~8s6GNhzPaw1C9ZnFPgivdxq52IYnfyCyP0MrYKm8aY0BL2NLFt19x0qgWgQogi0mUvb0xSA6fO7liVpRnBK1RRW5uXPUZeWObvzfPZN0cUEYYciQCPEaoziyJMLl6oIOjt68-c60-vA7Y9zAeHEMiSXnQ4G1SaCk4Gj8boKEuEGWGFCkMsolZ82qLJ1UK332Xe8-fY-Wzeur4XUgYXyKuQG6x~6Dz05-mp-VpVTY8uu66II13USeWxsorQYl-Dgr8YrZvvFnwnsrzmmaj0fKtLNg9MHcm~aFQvSXnfRcewW6GZXODZpcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37793,"name":"Patch-clamp and imaging techniques","url":"https://www.academia.edu/Documents/in/Patch-clamp_and_imaging_techniques"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":202428,"name":"Respiration","url":"https://www.academia.edu/Documents/in/Respiration"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":386342,"name":"Sodium","url":"https://www.academia.edu/Documents/in/Sodium"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189275"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189275/Chandelier_Cells_Control_Excessive_Cortical_Excitation_Characteristics_of_Whisker_Evoked_Synaptic_Responses_of_Layer_2_3_Nonpyramidal_and_Pyramidal_Neurons"><img alt="Research paper thumbnail of Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons" class="work-thumbnail" src="https://attachments.academia-assets.com/50648598/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189275/Chandelier_Cells_Control_Excessive_Cortical_Excitation_Characteristics_of_Whisker_Evoked_Synaptic_Responses_of_Layer_2_3_Nonpyramidal_and_Pyramidal_Neurons">Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons</a></div><div class="wp-workCard_item"><span>Journal of Neuroscience</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f798dd5591321b13adf72e41c2b7c911" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648598,&quot;asset_id&quot;:30189275,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648598/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189275"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189275"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189275; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189275]").text(description); $(".js-view-count[data-work-id=30189275]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189275; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189275']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189275, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f798dd5591321b13adf72e41c2b7c911" } } $('.js-work-strip[data-work-id=30189275]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189275,"title":"Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons","translated_title":"","metadata":{"grobid_abstract":"show that chandelier cells, which rarely fire action potentials spontaneously, fire more robustly than other types of cortical neurons when the overall cortical excitation increases. Thus, chandelier cells may not process fast ascending sensory information but instead may be reserved to prevent excessive excitatory activity in neuronal networks.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Journal of Neuroscience","grobid_abstract_attachment_id":50648598},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189275/Chandelier_Cells_Control_Excessive_Cortical_Excitation_Characteristics_of_Whisker_Evoked_Synaptic_Responses_of_Layer_2_3_Nonpyramidal_and_Pyramidal_Neurons","translated_internal_url":"","created_at":"2016-11-30T19:48:06.560-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312784,"work_id":30189275,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804497,"email":"y***u@northwestern.edu","display_order":0,"name":"Y. Zhu","title":"Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons"}],"downloadable_attachments":[{"id":50648598,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648598/thumbnails/1.jpg","file_name":"5101.pdf","download_url":"https://www.academia.edu/attachments/50648598/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chandelier_Cells_Control_Excessive_Corti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648598/5101-libre.pdf?1480564706=\u0026response-content-disposition=attachment%3B+filename%3DChandelier_Cells_Control_Excessive_Corti.pdf\u0026Expires=1732747601\u0026Signature=A2MYFkYR62YRDxyer5I39M~h1d3allKT0tvErki0Tm--shFMtlXdvql3IwjlEVwnF3W~~MfMCq8HB1fnGmMPfHlAII4KX0apAcqkb04mxRztNBt3IP2WXvveeXO71kwjL-nrYXyTlpgjQeLHhbXV58OcATM3LBIhi5VHs9JeFN-XmT65BAh8lyEQJjp3XFMWcnJ13QQdr7RMLq3V8d7XJplWv6o7aag8Xq86XJyWquvHLwvTdFlh0ab7tUoIZEy9Xg8XvVo0V8um8PjGxzf6G3TdC2fMGhWeH1b7VKB9g-xO0mZcBp8Cp8iIxazfTDJZKWLGtbWsh17V6kQvzAy1LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Chandelier_Cells_Control_Excessive_Cortical_Excitation_Characteristics_of_Whisker_Evoked_Synaptic_Responses_of_Layer_2_3_Nonpyramidal_and_Pyramidal_Neurons","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648598,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648598/thumbnails/1.jpg","file_name":"5101.pdf","download_url":"https://www.academia.edu/attachments/50648598/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chandelier_Cells_Control_Excessive_Corti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648598/5101-libre.pdf?1480564706=\u0026response-content-disposition=attachment%3B+filename%3DChandelier_Cells_Control_Excessive_Corti.pdf\u0026Expires=1732747601\u0026Signature=A2MYFkYR62YRDxyer5I39M~h1d3allKT0tvErki0Tm--shFMtlXdvql3IwjlEVwnF3W~~MfMCq8HB1fnGmMPfHlAII4KX0apAcqkb04mxRztNBt3IP2WXvveeXO71kwjL-nrYXyTlpgjQeLHhbXV58OcATM3LBIhi5VHs9JeFN-XmT65BAh8lyEQJjp3XFMWcnJ13QQdr7RMLq3V8d7XJplWv6o7aag8Xq86XJyWquvHLwvTdFlh0ab7tUoIZEy9Xg8XvVo0V8um8PjGxzf6G3TdC2fMGhWeH1b7VKB9g-xO0mZcBp8Cp8iIxazfTDJZKWLGtbWsh17V6kQvzAy1LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":37793,"name":"Patch-clamp and imaging techniques","url":"https://www.academia.edu/Documents/in/Patch-clamp_and_imaging_techniques"},{"id":61926,"name":"Neuronal Network","url":"https://www.academia.edu/Documents/in/Neuronal_Network"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":277717,"name":"Somatosensory Cortex","url":"https://www.academia.edu/Documents/in/Somatosensory_Cortex"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":432091,"name":"Barrel Cortex","url":"https://www.academia.edu/Documents/in/Barrel_Cortex"},{"id":525245,"name":"Layer","url":"https://www.academia.edu/Documents/in/Layer"},{"id":666669,"name":"Action potential","url":"https://www.academia.edu/Documents/in/Action_potential"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":2111545,"name":"Spontaneous Activity","url":"https://www.academia.edu/Documents/in/Spontaneous_Activity"},{"id":2222134,"name":"Cortical Excitability","url":"https://www.academia.edu/Documents/in/Cortical_Excitability"},{"id":2367569,"name":"Excitatory Postsynaptic Potentials","url":"https://www.academia.edu/Documents/in/Excitatory_Postsynaptic_Potentials"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189274"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189274/GABAergic_Neurons_in_the_Central_Region_of_the_Spinal_Cord_A_Novel_Substrate_for_Sympathetic_Inhibition"><img alt="Research paper thumbnail of GABAergic Neurons in the Central Region of the Spinal Cord: A Novel Substrate for Sympathetic Inhibition" class="work-thumbnail" src="https://attachments.academia-assets.com/50648599/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189274/GABAergic_Neurons_in_the_Central_Region_of_the_Spinal_Cord_A_Novel_Substrate_for_Sympathetic_Inhibition">GABAergic Neurons in the Central Region of the Spinal Cord: A Novel Substrate for Sympathetic Inhibition</a></div><div class="wp-workCard_item"><span>Journal of Neuroscience</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="04b51a3e9b5418aa1d427b6b3a3ceeeb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648599,&quot;asset_id&quot;:30189274,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648599/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189274"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189274"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189274; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189274]").text(description); $(".js-view-count[data-work-id=30189274]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189274; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189274']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189274, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "04b51a3e9b5418aa1d427b6b3a3ceeeb" } } $('.js-work-strip[data-work-id=30189274]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189274,"title":"GABAergic Neurons in the Central Region of the Spinal Cord: A Novel Substrate for Sympathetic Inhibition","translated_title":"","metadata":{"grobid_abstract":"Homeostatic maintenance of widespread functions is critically dependent on the activity of the sympathetic nervous system. This activity is generated by the CNS acting on the sole output cells in the spinal cord, sympathetic preganglionic neurons (SPNs). SPNs are subject to control from both supraspinal and spinal inputs that exert effects through activation of direct or indirect pathways. A high proportion of indirect control is attributable to activation of spinal interneurons in a number of locations. However, little is known about the different groups of interneurons with respect to their neurochemistry or function. In this study, we report on a novel group of GABAergic interneurons located in the spinal central autonomic area (CAA) that directly inhibit SPN activity. In situ hybridization studies demonstrated a group of neurons that contained mRNA for glutamic acid decarboxylase (GAD) 65 and GAD 67 within the CAA. Combining in situ hybridization with trans-synaptic labeling from the adrenal gland using pseudorabies virus identified presympathetic GABAergic neurons in the CAA. Electrical stimulation of the CAA elicited monosynaptic IPSPs in SPNs located laterally in the intermediolateral cell column. IPSPs were GABAergic, because they reversed at the chloride reversal potential and were blocked by bicuculline. Chemical activation of neurons in the CAA hyperpolarized SPNs, an effect that was also bicuculline sensitive. We conclude that the CAA contains GABAergic interneurons that impinge directly onto SPNs to inhibit their activity and suggest that these newly identified interneurons may play an essential role in the regulation of sympathetic activity and thus homeostasis.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Journal of Neuroscience","grobid_abstract_attachment_id":50648599},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189274/GABAergic_Neurons_in_the_Central_Region_of_the_Spinal_Cord_A_Novel_Substrate_for_Sympathetic_Inhibition","translated_internal_url":"","created_at":"2016-11-30T19:48:06.454-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312751,"work_id":30189274,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804477,"email":"d***m@hotmail.com","display_order":0,"name":"Jim Deuchars","title":"GABAergic Neurons in the Central Region of the Spinal Cord: A Novel Substrate for Sympathetic Inhibition"},{"id":26312752,"work_id":30189274,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804478,"email":"c***n@wolterskluwer.com","display_order":4194304,"name":"Carol Milligan","title":"GABAergic Neurons in the Central Region of the Spinal Cord: A Novel Substrate for Sympathetic Inhibition"}],"downloadable_attachments":[{"id":50648599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648599/thumbnails/1.jpg","file_name":"GABAergic_neurons_in_the_central_region_20161130-27487-acddaj.pdf","download_url":"https://www.academia.edu/attachments/50648599/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"GABAergic_Neurons_in_the_Central_Region.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648599/GABAergic_neurons_in_the_central_region_20161130-27487-acddaj-libre.pdf?1480564707=\u0026response-content-disposition=attachment%3B+filename%3DGABAergic_Neurons_in_the_Central_Region.pdf\u0026Expires=1732747601\u0026Signature=QnqbP9HK-4RGS-fODkFnrqXarGgv88NoILJ5h2VmFgVmpDcw0exMuf~lHOl9vPzHBEcY-uboeBgzB5H1K2NzrqE461rhlhahF~OFhIXuAZltUzrXqqgjq4s9NWgY-M3HkyOFwo6eh1T0q5cLMN4i~rti5H8pTV-sjYlFy1wP0qYsNfK2WvEYyGVptGxYeoXzNZDXxD08quLs46Vk3obIqj2DSjbpfJDS96zAY~~8UG8Jg1~tdLspLzqplWIYMdbYffDKgAZn1w7HijTa8sbWtgqHXA0CsnXGiKKxpZiXyGNMaK8wfqQGJ5QiH2~SXlpjdG0rqkGGLHGNJbdFYRIjWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"GABAergic_Neurons_in_the_Central_Region_of_the_Spinal_Cord_A_Novel_Substrate_for_Sympathetic_Inhibition","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648599/thumbnails/1.jpg","file_name":"GABAergic_neurons_in_the_central_region_20161130-27487-acddaj.pdf","download_url":"https://www.academia.edu/attachments/50648599/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"GABAergic_Neurons_in_the_Central_Region.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648599/GABAergic_neurons_in_the_central_region_20161130-27487-acddaj-libre.pdf?1480564707=\u0026response-content-disposition=attachment%3B+filename%3DGABAergic_Neurons_in_the_Central_Region.pdf\u0026Expires=1732747601\u0026Signature=QnqbP9HK-4RGS-fODkFnrqXarGgv88NoILJ5h2VmFgVmpDcw0exMuf~lHOl9vPzHBEcY-uboeBgzB5H1K2NzrqE461rhlhahF~OFhIXuAZltUzrXqqgjq4s9NWgY-M3HkyOFwo6eh1T0q5cLMN4i~rti5H8pTV-sjYlFy1wP0qYsNfK2WvEYyGVptGxYeoXzNZDXxD08quLs46Vk3obIqj2DSjbpfJDS96zAY~~8UG8Jg1~tdLspLzqplWIYMdbYffDKgAZn1w7HijTa8sbWtgqHXA0CsnXGiKKxpZiXyGNMaK8wfqQGJ5QiH2~SXlpjdG0rqkGGLHGNJbdFYRIjWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":37793,"name":"Patch-clamp and imaging techniques","url":"https://www.academia.edu/Documents/in/Patch-clamp_and_imaging_techniques"},{"id":37836,"name":"In Situ Hybridization","url":"https://www.academia.edu/Documents/in/In_Situ_Hybridization"},{"id":99421,"name":"Spinal Cord","url":"https://www.academia.edu/Documents/in/Spinal_Cord"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":379889,"name":"Homeostasis","url":"https://www.academia.edu/Documents/in/Homeostasis"},{"id":437728,"name":"Isoenzymes","url":"https://www.academia.edu/Documents/in/Isoenzymes"},{"id":564879,"name":"Wistar Rats","url":"https://www.academia.edu/Documents/in/Wistar_Rats"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1287048,"name":"Interneurons","url":"https://www.academia.edu/Documents/in/Interneurons"},{"id":1292998,"name":"Glutamic Acid","url":"https://www.academia.edu/Documents/in/Glutamic_Acid"},{"id":1422473,"name":"Bicuculline","url":"https://www.academia.edu/Documents/in/Bicuculline"},{"id":1598058,"name":"Glutamate decarboxylase","url":"https://www.academia.edu/Documents/in/Glutamate_decarboxylase"},{"id":1619808,"name":"Gamma-Aminobutyric Acid","url":"https://www.academia.edu/Documents/in/Gamma-Aminobutyric_Acid"},{"id":2158441,"name":"Strychnine","url":"https://www.academia.edu/Documents/in/Strychnine"},{"id":2260515,"name":"Chlorides","url":"https://www.academia.edu/Documents/in/Chlorides"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189273"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189273/Synaptic_AMPA_Receptor_Exchange_Maintains_Bidirectional_Plasticity"><img alt="Research paper thumbnail of Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189273/Synaptic_AMPA_Receptor_Exchange_Maintains_Bidirectional_Plasticity">Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity</a></div><div class="wp-workCard_item"><span>Neuron</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange is essential for maintaining the capacity for bidirectional plasticity. The exchange process consists of activity-independent synaptic removal of GluR1-, GluR2L-, or GluR4-containing AMPA-Rs and refilling with GluR2-containing AMPA-Rs at hippocampal and cortical synapses in vitro and in intact brains. In GluR1 and GluR2 knockout mice, initiation or completion of synaptic AMPA-R exchange is compromised, respectively. The complementary AMPA-R removal and refilling events in the exchange process ultimately maintain synaptic strength unchanged, but their long rate time constants ( approximately 15-18 hr) render transmission temporarily depressed in the middle of the exchange. These results suggest that the previously hypothesized &amp;amp;amp;amp;quot;slot&amp;amp;amp;amp;quot; proteins, rather than AMPA-Rs, code and maintain transmission efficacy at central synapses.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189273"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189273"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189273; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189273]").text(description); $(".js-view-count[data-work-id=30189273]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189273; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189273']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189273, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30189273]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189273,"title":"Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity","translated_title":"","metadata":{"abstract":"Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange is essential for maintaining the capacity for bidirectional plasticity. The exchange process consists of activity-independent synaptic removal of GluR1-, GluR2L-, or GluR4-containing AMPA-Rs and refilling with GluR2-containing AMPA-Rs at hippocampal and cortical synapses in vitro and in intact brains. In GluR1 and GluR2 knockout mice, initiation or completion of synaptic AMPA-R exchange is compromised, respectively. The complementary AMPA-R removal and refilling events in the exchange process ultimately maintain synaptic strength unchanged, but their long rate time constants ( approximately 15-18 hr) render transmission temporarily depressed in the middle of the exchange. These results suggest that the previously hypothesized \u0026amp;amp;amp;quot;slot\u0026amp;amp;amp;quot; proteins, rather than AMPA-Rs, code and maintain transmission efficacy at central synapses.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Neuron"},"translated_abstract":"Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange is essential for maintaining the capacity for bidirectional plasticity. The exchange process consists of activity-independent synaptic removal of GluR1-, GluR2L-, or GluR4-containing AMPA-Rs and refilling with GluR2-containing AMPA-Rs at hippocampal and cortical synapses in vitro and in intact brains. In GluR1 and GluR2 knockout mice, initiation or completion of synaptic AMPA-R exchange is compromised, respectively. The complementary AMPA-R removal and refilling events in the exchange process ultimately maintain synaptic strength unchanged, but their long rate time constants ( approximately 15-18 hr) render transmission temporarily depressed in the middle of the exchange. These results suggest that the previously hypothesized \u0026amp;amp;amp;quot;slot\u0026amp;amp;amp;quot; proteins, rather than AMPA-Rs, code and maintain transmission efficacy at central synapses.","internal_url":"https://www.academia.edu/30189273/Synaptic_AMPA_Receptor_Exchange_Maintains_Bidirectional_Plasticity","translated_internal_url":"","created_at":"2016-11-30T19:48:06.346-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312767,"work_id":30189273,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804485,"email":"s***c@gmail.com","display_order":0,"name":"Stefanie McCormack","title":"Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity"}],"downloadable_attachments":[],"slug":"Synaptic_AMPA_Receptor_Exchange_Maintains_Bidirectional_Plasticity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":4247,"name":"Long Term Potentiation","url":"https://www.academia.edu/Documents/in/Long_Term_Potentiation"},{"id":37793,"name":"Patch-clamp and imaging techniques","url":"https://www.academia.edu/Documents/in/Patch-clamp_and_imaging_techniques"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":70902,"name":"Magnesium","url":"https://www.academia.edu/Documents/in/Magnesium"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":132020,"name":"Neuronal Plasticity","url":"https://www.academia.edu/Documents/in/Neuronal_Plasticity"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":418263,"name":"SYNAPSES","url":"https://www.academia.edu/Documents/in/SYNAPSES"},{"id":473565,"name":"Neuron","url":"https://www.academia.edu/Documents/in/Neuron"},{"id":572924,"name":"Tetrodotoxin","url":"https://www.academia.edu/Documents/in/Tetrodotoxin"},{"id":620070,"name":"Transfection","url":"https://www.academia.edu/Documents/in/Transfection"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189272"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189272/Location_and_electrophysiological_characterization_of_rostral_medullary_adrenergic_neurons_that_contain_neuropeptide_Y_mRNA_in_rat_medulla"><img alt="Research paper thumbnail of Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat medulla" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189272/Location_and_electrophysiological_characterization_of_rostral_medullary_adrenergic_neurons_that_contain_neuropeptide_Y_mRNA_in_rat_medulla">Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat medulla</a></div><div class="wp-workCard_item"><span>The Journal of Comparative Neurology</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The objective of this study was to characterize the projection pattern and electrophysiological p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The objective of this study was to characterize the projection pattern and electrophysiological properties of the rostral medullary adrenergic neurons (C(1)) that express neuropeptide Y (NPY) mRNA in rat. NPY mRNA was found in a variable fraction of tyrosine hydroxylase immunoreactive (TH-IR) neurons depending on the medullary level. By retrograde labeling (Fast Blue, FluoroGold), NPY mRNA was detected in virtually all C(1) cells (96%) and C(3) cells (100%) with hypothalamic projections but in only 9% of C(1) cells and 58% of C(3) cells projecting to thoracic segment 3 (T(3)) or T(6) of the spinal cord. To identify the electrophysiological properties of the C(1) cells that express NPY mRNA, we recorded from baroinhibited neurons within the C(1) region of the ventrolateral medulla (RVLM) and tested for projections to segment T(3), the hypothalamus, or both. By using the juxtacellular method, we labeled these cells with biotinamide and determined whether the recorded neurons were TH-IR and contained NPY mRNA. At rostral levels (Bregma -11.8 mm), barosensitive neurons had a wide range of conduction velocities (0.4-6.0 m/second) and discharge rates (2-28 spikes/second). Most projected to T(3) only (27 of 31 cells), and 4 projected to both the hypothalamus and the spinal cord. Most of the baroinhibited cells with spinal projections but with no hypothalamic projections had TH-IR but no NPY mRNA (11 of 17 cells). Only 1 cell had both (1 of 17 cells), and 5 cells had neither (5 of 17 cells). Both TH-IR and NPY mRNA were found in neurons with dual projections (2 of 2 cells). At level Bregma -12.5 mm, baroinhibited neurons had projections to the hypothalamus only (13 of 13 cells) and had unmyelinated axons and a low discharge rate. Four of five neurons contained both TH-IR and NPY mRNA, and 1 neuron contained neither. In short, NPY is expressed mostly by C(1) cells with projection to the hypothalamus. NPY-positive C(1) neurons are barosensitive, have unmyelinated axons, and have a very low rate of discharge. Most bulbospinal C(1) cells with a putative sympathoexcitatory role do not make NPY.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189272"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189272"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189272; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189272]").text(description); $(".js-view-count[data-work-id=30189272]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189272; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189272']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189272, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30189272]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189272,"title":"Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat medulla","translated_title":"","metadata":{"abstract":"The objective of this study was to characterize the projection pattern and electrophysiological properties of the rostral medullary adrenergic neurons (C(1)) that express neuropeptide Y (NPY) mRNA in rat. NPY mRNA was found in a variable fraction of tyrosine hydroxylase immunoreactive (TH-IR) neurons depending on the medullary level. By retrograde labeling (Fast Blue, FluoroGold), NPY mRNA was detected in virtually all C(1) cells (96%) and C(3) cells (100%) with hypothalamic projections but in only 9% of C(1) cells and 58% of C(3) cells projecting to thoracic segment 3 (T(3)) or T(6) of the spinal cord. To identify the electrophysiological properties of the C(1) cells that express NPY mRNA, we recorded from baroinhibited neurons within the C(1) region of the ventrolateral medulla (RVLM) and tested for projections to segment T(3), the hypothalamus, or both. By using the juxtacellular method, we labeled these cells with biotinamide and determined whether the recorded neurons were TH-IR and contained NPY mRNA. At rostral levels (Bregma -11.8 mm), barosensitive neurons had a wide range of conduction velocities (0.4-6.0 m/second) and discharge rates (2-28 spikes/second). Most projected to T(3) only (27 of 31 cells), and 4 projected to both the hypothalamus and the spinal cord. Most of the baroinhibited cells with spinal projections but with no hypothalamic projections had TH-IR but no NPY mRNA (11 of 17 cells). Only 1 cell had both (1 of 17 cells), and 5 cells had neither (5 of 17 cells). Both TH-IR and NPY mRNA were found in neurons with dual projections (2 of 2 cells). At level Bregma -12.5 mm, baroinhibited neurons had projections to the hypothalamus only (13 of 13 cells) and had unmyelinated axons and a low discharge rate. Four of five neurons contained both TH-IR and NPY mRNA, and 1 neuron contained neither. In short, NPY is expressed mostly by C(1) cells with projection to the hypothalamus. NPY-positive C(1) neurons are barosensitive, have unmyelinated axons, and have a very low rate of discharge. Most bulbospinal C(1) cells with a putative sympathoexcitatory role do not make NPY.","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"The Journal of Comparative Neurology"},"translated_abstract":"The objective of this study was to characterize the projection pattern and electrophysiological properties of the rostral medullary adrenergic neurons (C(1)) that express neuropeptide Y (NPY) mRNA in rat. NPY mRNA was found in a variable fraction of tyrosine hydroxylase immunoreactive (TH-IR) neurons depending on the medullary level. By retrograde labeling (Fast Blue, FluoroGold), NPY mRNA was detected in virtually all C(1) cells (96%) and C(3) cells (100%) with hypothalamic projections but in only 9% of C(1) cells and 58% of C(3) cells projecting to thoracic segment 3 (T(3)) or T(6) of the spinal cord. To identify the electrophysiological properties of the C(1) cells that express NPY mRNA, we recorded from baroinhibited neurons within the C(1) region of the ventrolateral medulla (RVLM) and tested for projections to segment T(3), the hypothalamus, or both. By using the juxtacellular method, we labeled these cells with biotinamide and determined whether the recorded neurons were TH-IR and contained NPY mRNA. At rostral levels (Bregma -11.8 mm), barosensitive neurons had a wide range of conduction velocities (0.4-6.0 m/second) and discharge rates (2-28 spikes/second). Most projected to T(3) only (27 of 31 cells), and 4 projected to both the hypothalamus and the spinal cord. Most of the baroinhibited cells with spinal projections but with no hypothalamic projections had TH-IR but no NPY mRNA (11 of 17 cells). Only 1 cell had both (1 of 17 cells), and 5 cells had neither (5 of 17 cells). Both TH-IR and NPY mRNA were found in neurons with dual projections (2 of 2 cells). At level Bregma -12.5 mm, baroinhibited neurons had projections to the hypothalamus only (13 of 13 cells) and had unmyelinated axons and a low discharge rate. Four of five neurons contained both TH-IR and NPY mRNA, and 1 neuron contained neither. In short, NPY is expressed mostly by C(1) cells with projection to the hypothalamus. NPY-positive C(1) neurons are barosensitive, have unmyelinated axons, and have a very low rate of discharge. Most bulbospinal C(1) cells with a putative sympathoexcitatory role do not make NPY.","internal_url":"https://www.academia.edu/30189272/Location_and_electrophysiological_characterization_of_rostral_medullary_adrenergic_neurons_that_contain_neuropeptide_Y_mRNA_in_rat_medulla","translated_internal_url":"","created_at":"2016-11-30T19:48:06.236-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312764,"work_id":30189272,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804483,"email":"p***e@servproofmonroeville.com","display_order":0,"name":"Peter Akey","title":"Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat medulla"}],"downloadable_attachments":[],"slug":"Location_and_electrophysiological_characterization_of_rostral_medullary_adrenergic_neurons_that_contain_neuropeptide_Y_mRNA_in_rat_medulla","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[],"research_interests":[{"id":173,"name":"Zoology","url":"https://www.academia.edu/Documents/in/Zoology"},{"id":52176,"name":"Brain Mapping","url":"https://www.academia.edu/Documents/in/Brain_Mapping"},{"id":71454,"name":"Epinephrine","url":"https://www.academia.edu/Documents/in/Epinephrine"},{"id":88321,"name":"Blood Pressure","url":"https://www.academia.edu/Documents/in/Blood_Pressure"},{"id":95704,"name":"Hypothalamus","url":"https://www.academia.edu/Documents/in/Hypothalamus"},{"id":99421,"name":"Spinal Cord","url":"https://www.academia.edu/Documents/in/Spinal_Cord"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":213897,"name":"Phenotype","url":"https://www.academia.edu/Documents/in/Phenotype"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":382393,"name":"Neuropeptide Y","url":"https://www.academia.edu/Documents/in/Neuropeptide_Y"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1002863,"name":"Comparative Neurology","url":"https://www.academia.edu/Documents/in/Comparative_Neurology"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189271"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189271/A_potassium_leak_channel_silences_hyperactive_neurons_and_ameliorates_status_epilepticus"><img alt="Research paper thumbnail of A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus" class="work-thumbnail" src="https://attachments.academia-assets.com/50648602/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189271/A_potassium_leak_channel_silences_hyperactive_neurons_and_ameliorates_status_epilepticus">A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/IuliiaVitko">Iuliia Vitko</a></span></div><div class="wp-workCard_item"><span>Epilepsia</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="00a88447c32ef63d766259498fe18408" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648602,&quot;asset_id&quot;:30189271,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648602/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189271"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189271"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189271; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189271]").text(description); $(".js-view-count[data-work-id=30189271]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189271; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189271']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189271, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "00a88447c32ef63d766259498fe18408" } } $('.js-work-strip[data-work-id=30189271]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189271,"title":"A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus","translated_title":"","metadata":{"ai_title_tag":"TREK-M K+ Leak Channel Reduces Seizures in Epileptic Rats","grobid_abstract":"Objective: To develop a constitutively active K + leak channel using TREK-1 (TWIKrelated potassium channel 1; TREK-M) that is resistant to compensatory down-regulation by second messenger cascades, and to validate the ability of TREK-M to silence hyperactive neurons using cultured hippocampal neurons. To test if adenoassociated viral (AAV) delivery of TREK-M could reduce the duration of status epilepticus and reduce neuronal death induced by lithium-pilocarpine administration. Methods: Molecular cloning techniques were used to engineer novel vectors to deliver TREK-M via plasmids, lentivirus, and AAV using a cytomegalovirus (CMV)-enhanced GABRA4 promoter. Electrophysiology was used to characterize the activity and regulation of TREK-M in human embryonic kidney (HEK-293) cells, and the ability to reduce spontaneous activity in cultured hippocampal neurons. Adult male rats were injected bilaterally with self-complementary AAV particles composed of serotype 5 capsid into the hippocampus and entorhinal cortex. Lithium-pilocarpine was used to induce status epilepticus. Seizures were monitored using continuous video-electroencephalography (EEG) monitoring. Neuronal death was measured using Fluoro-Jade C staining of paraformaldehyde-fixed brain slices. Results: TREK-M inhibited neuronal firing by hyperpolarizing the resting membrane potential and decreasing input resistance. AAV delivery of TREK-M decreased the duration of status epilepticus by 50%. Concomitantly it reduced neuronal death in areas targeted by the AAV injection. Significance: These findings demonstrate that TREK-M can silence hyperexcitable neurons in the brain of epileptic rats and treat acute seizures. This study paves the way for an alternative gene therapy treatment of status epilepticus, and provides the rationale for studies of AAV-TREK-M's effect on spontaneous seizures in chronic models of temporal lobe epilepsy.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Epilepsia","grobid_abstract_attachment_id":50648602},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189271/A_potassium_leak_channel_silences_hyperactive_neurons_and_ameliorates_status_epilepticus","translated_internal_url":"","created_at":"2016-11-30T19:48:06.133-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312781,"work_id":30189271,"tagging_user_id":57481840,"tagged_user_id":57584541,"co_author_invite_id":5804495,"email":"i***n@virginia.edu","display_order":0,"name":"Iuliia Vitko","title":"A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus"}],"downloadable_attachments":[{"id":50648602,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648602/thumbnails/1.jpg","file_name":"A_potassium_leak_channel_silences_hypera20161130-27482-1tu5qsx.pdf","download_url":"https://www.academia.edu/attachments/50648602/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_potassium_leak_channel_silences_hypera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648602/A_potassium_leak_channel_silences_hypera20161130-27482-1tu5qsx-libre.pdf?1480564707=\u0026response-content-disposition=attachment%3B+filename%3DA_potassium_leak_channel_silences_hypera.pdf\u0026Expires=1732747601\u0026Signature=KE9CiNam5x1auNSjXan41e4GWvL2cVaMTS1ONI-C4GEKCCt1Iq3UN06ZZALExF6eTKSizQwyIUmmP1WmBesG3kzlWFwwSiFQIeUMAY6KyXFjtbsAtPkxfORZy4i~-HN9BcZ1Wm4Uh-IaTvdrFCASeYT~~nU3AHSkivprDWaMA8-zgFVCB1zsqSsGuXyka2tZ-gKaXMtg6cmGCsqkzYW0emL15c6Z5nN0SY7E0NJNmWoQinWLLpl6kqJeio9ubOrU4i8O6v8owHnv0bdw5MKbHgROVdYQzqNmbTrsg8Gseg7EpuZVcowcI0owe09R-cyjs~KNrrKr2Ug5m3ebxc4D6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_potassium_leak_channel_silences_hyperactive_neurons_and_ameliorates_status_epilepticus","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648602,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648602/thumbnails/1.jpg","file_name":"A_potassium_leak_channel_silences_hypera20161130-27482-1tu5qsx.pdf","download_url":"https://www.academia.edu/attachments/50648602/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_potassium_leak_channel_silences_hypera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648602/A_potassium_leak_channel_silences_hypera20161130-27482-1tu5qsx-libre.pdf?1480564707=\u0026response-content-disposition=attachment%3B+filename%3DA_potassium_leak_channel_silences_hypera.pdf\u0026Expires=1732747601\u0026Signature=KE9CiNam5x1auNSjXan41e4GWvL2cVaMTS1ONI-C4GEKCCt1Iq3UN06ZZALExF6eTKSizQwyIUmmP1WmBesG3kzlWFwwSiFQIeUMAY6KyXFjtbsAtPkxfORZy4i~-HN9BcZ1Wm4Uh-IaTvdrFCASeYT~~nU3AHSkivprDWaMA8-zgFVCB1zsqSsGuXyka2tZ-gKaXMtg6cmGCsqkzYW0emL15c6Z5nN0SY7E0NJNmWoQinWLLpl6kqJeio9ubOrU4i8O6v8owHnv0bdw5MKbHgROVdYQzqNmbTrsg8Gseg7EpuZVcowcI0owe09R-cyjs~KNrrKr2Ug5m3ebxc4D6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":57556,"name":"Hippocampus","url":"https://www.academia.edu/Documents/in/Hippocampus"},{"id":111011,"name":"Gene transfer techniques","url":"https://www.academia.edu/Documents/in/Gene_transfer_techniques"},{"id":112576,"name":"Cell Death","url":"https://www.academia.edu/Documents/in/Cell_Death"},{"id":122569,"name":"Cell Polarity","url":"https://www.academia.edu/Documents/in/Cell_Polarity"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":228487,"name":"Epilepsia","url":"https://www.academia.edu/Documents/in/Epilepsia"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":776033,"name":"Status Epilepticus","url":"https://www.academia.edu/Documents/in/Status_Epilepticus"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189270"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189270/Autonomic_areas_of_rat_brain_exhibit_increased_Fos_like_immunoreactivity_during_opiate_withdrawal_in_rats"><img alt="Research paper thumbnail of Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats" class="work-thumbnail" src="https://attachments.academia-assets.com/50648593/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189270/Autonomic_areas_of_rat_brain_exhibit_increased_Fos_like_immunoreactivity_during_opiate_withdrawal_in_rats">Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats</a></div><div class="wp-workCard_item"><span>Brain Research</span><span>, 1993</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="39a1ff27faafcfaef0a54945d60a80b7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648593,&quot;asset_id&quot;:30189270,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648593/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189270"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189270"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189270; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189270]").text(description); $(".js-view-count[data-work-id=30189270]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189270; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189270']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189270, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "39a1ff27faafcfaef0a54945d60a80b7" } } $('.js-work-strip[data-work-id=30189270]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189270,"title":"Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats","translated_title":"","metadata":{"grobid_abstract":"We sought to identify the brain areas that might contribute to the increased autonomic activity seen during morphine withdrawal by mapping neuronal expression of c-los protein (Fos) and Fos-related antigens. Rats were implanted with morphine pellets or placebo pellets over a 5 day regimen and injected on day 6 with either saline or naltrexone (100 mg/kg). After a standard PAP immunocytochemical protocol, Fos-like immunoreactivity (Fos-LIR) was observed in medullary nuclei including the NTS (nucleus of the solitary tract), caudal (CVL) and rostral ventrolateral medulla (RVL). Although some Fos-LIR was seen in these areas in control rats (either morphine-implanted, saline injected, or placebo-implanted, saline or naltrexone injected), a significantly higher number of Fos-LIR-positive cells in NTS, CVL and RVL were seen after morphine withdrawal. Large numbers of Fos-like immunoreactive cells were also seen in the A5 area, the parabrachial nuclei of the pons and the locus coeruleus. Increased Fos-LIR was also detected in the paraventricular nucleus of the hypothalamus and the amygdala of morphine withdrawn rats. The Fos-LIR was co-localized with tyrosine hydroxylase immunoreactivity in many of the cells in caudal and rostral ventrolateral medulla, A5 and locus coeruleus. These data support the conclusion that autonomic areas in brain and noradrenergic/adrenergic cells in these areas are activated during morphine withdrawal and may contribute to the autonomic symptoms of opiate withdrawal.","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"Brain Research","grobid_abstract_attachment_id":50648593},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189270/Autonomic_areas_of_rat_brain_exhibit_increased_Fos_like_immunoreactivity_during_opiate_withdrawal_in_rats","translated_internal_url":"","created_at":"2016-11-30T19:48:05.992-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312758,"work_id":30189270,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804481,"email":"f***n@libertymutual.com","display_order":0,"name":"Frederick Norton","title":"Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats"}],"downloadable_attachments":[{"id":50648593,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648593/thumbnails/1.jpg","file_name":"0006-8993_2893_2990055-r20161130-28527-cue969.pdf","download_url":"https://www.academia.edu/attachments/50648593/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Autonomic_areas_of_rat_brain_exhibit_inc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648593/0006-8993_2893_2990055-r20161130-28527-cue969-libre.pdf?1480564713=\u0026response-content-disposition=attachment%3B+filename%3DAutonomic_areas_of_rat_brain_exhibit_inc.pdf\u0026Expires=1732747601\u0026Signature=YKykW1lbF8AJWfkCmTVa5IhdXseUykIF9vWFdEqzyJwggzDfr140Nm2iLWjY6AIq-vn-U3cJzRM8laNJvNA9PWrY0ieiOgzy6712SaJYX71HHjWK0eXCcSsrWFquPDxGSsnOk8nR~L2jmTwRJ8a1ogLkHUhxX91rH2PgkxdFQGQubUtCo2tdHGZjc~w8~diIf1Z7O4YkW6G2YmOjKBRufsS4w4n9Rfy6FfxeCAsMNbe811erWa~sabNSfQf9XQVwn7L2T-et71zWOCa2q7gQM~VL9W97~cGH0ZSuAdoySMEfHWSp0uHMCOpf1xs8YEwKIRFwJzLcycK0OvZ9MZfZHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Autonomic_areas_of_rat_brain_exhibit_increased_Fos_like_immunoreactivity_during_opiate_withdrawal_in_rats","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648593,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648593/thumbnails/1.jpg","file_name":"0006-8993_2893_2990055-r20161130-28527-cue969.pdf","download_url":"https://www.academia.edu/attachments/50648593/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Autonomic_areas_of_rat_brain_exhibit_inc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648593/0006-8993_2893_2990055-r20161130-28527-cue969-libre.pdf?1480564713=\u0026response-content-disposition=attachment%3B+filename%3DAutonomic_areas_of_rat_brain_exhibit_inc.pdf\u0026Expires=1732747601\u0026Signature=YKykW1lbF8AJWfkCmTVa5IhdXseUykIF9vWFdEqzyJwggzDfr140Nm2iLWjY6AIq-vn-U3cJzRM8laNJvNA9PWrY0ieiOgzy6712SaJYX71HHjWK0eXCcSsrWFquPDxGSsnOk8nR~L2jmTwRJ8a1ogLkHUhxX91rH2PgkxdFQGQubUtCo2tdHGZjc~w8~diIf1Z7O4YkW6G2YmOjKBRufsS4w4n9Rfy6FfxeCAsMNbe811erWa~sabNSfQf9XQVwn7L2T-et71zWOCa2q7gQM~VL9W97~cGH0ZSuAdoySMEfHWSp0uHMCOpf1xs8YEwKIRFwJzLcycK0OvZ9MZfZHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":2749,"name":"Animal Behavior","url":"https://www.academia.edu/Documents/in/Animal_Behavior"},{"id":12071,"name":"Immunohistochemistry","url":"https://www.academia.edu/Documents/in/Immunohistochemistry"},{"id":41220,"name":"Autonomic Nervous System","url":"https://www.academia.edu/Documents/in/Autonomic_Nervous_System"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":165467,"name":"Rat Brain","url":"https://www.academia.edu/Documents/in/Rat_Brain"},{"id":218374,"name":"Morphine","url":"https://www.academia.edu/Documents/in/Morphine"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189269"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189269/Atipamezole_precipitated_clonidine_withdrawal_induces_c_Fos_expression_in_rat_central_nervous_system"><img alt="Research paper thumbnail of Atipamezole-precipitated clonidine withdrawal induces c-Fos expression in rat central nervous system" class="work-thumbnail" src="https://attachments.academia-assets.com/50648595/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189269/Atipamezole_precipitated_clonidine_withdrawal_induces_c_Fos_expression_in_rat_central_nervous_system">Atipamezole-precipitated clonidine withdrawal induces c-Fos expression in rat central nervous system</a></div><div class="wp-workCard_item"><span>Brain Research</span><span>, 1997</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="af9011129ca15b23d73ca21183e273df" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648595,&quot;asset_id&quot;:30189269,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648595/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189269"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189269"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189269; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189269]").text(description); $(".js-view-count[data-work-id=30189269]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189269; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189269']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189269, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "af9011129ca15b23d73ca21183e273df" } } $('.js-work-strip[data-work-id=30189269]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189269,"title":"Atipamezole-precipitated clonidine withdrawal induces c-Fos expression in rat central nervous system","translated_title":"","metadata":{"grobid_abstract":"We sought to identify a clonidine withdrawal syndrome in conscious rats by investigating the effects of a single injection of the Ž . Ž specific a -adrenergic antagonist atipamezole 1.5 mgrkg i.p. after chronic treatment with the a -adrenergic agonist clonidine 200 2 2 q 1997 Elsevier Science B.V.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Brain Research","grobid_abstract_attachment_id":50648595},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189269/Atipamezole_precipitated_clonidine_withdrawal_induces_c_Fos_expression_in_rat_central_nervous_system","translated_internal_url":"","created_at":"2016-11-30T19:48:05.887-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312755,"work_id":30189269,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804479,"email":"g***m@aol.com","display_order":0,"name":"Michele Grubb","title":"Atipamezole-precipitated clonidine withdrawal induces c-Fos expression in rat central nervous system"}],"downloadable_attachments":[{"id":50648595,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648595/thumbnails/1.jpg","file_name":"s0006-8993_2897_2900424-120161130-27487-oed34r.pdf","download_url":"https://www.academia.edu/attachments/50648595/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Atipamezole_precipitated_clonidine_withd.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648595/s0006-8993_2897_2900424-120161130-27487-oed34r-libre.pdf?1480564709=\u0026response-content-disposition=attachment%3B+filename%3DAtipamezole_precipitated_clonidine_withd.pdf\u0026Expires=1732747601\u0026Signature=K9F313RJE3wmkDFUnQqGCaTiVr546ZgJqC7~qO-QbhW2vB8tD~-u2p33zUKySoXVkqS1b1gy1BSBBYF2EFYs7ky3FOvrr7j70euaiuKZVspy~2FESBc90oUtJyuNOzKAw73xPJN8XAG5zZaNwVLKoV-EsLTeQ7cUYaFyhQ63igg6FvV5jB7AwghSBweeOr6M5~xtswrBBCzgJZJlhywmv2XHP7~k~qP8FJAbOJzDTOZSylHJzU1R~qg2N31XtH2UcFXEOTTROhgsHlAz3-YZS9XoD7hzA74G7Ybd7ccB3An9w5yIpf-Db8r~wxg2f7pE9oosuGAofc5-PLAU2uowJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Atipamezole_precipitated_clonidine_withdrawal_induces_c_Fos_expression_in_rat_central_nervous_system","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648595,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648595/thumbnails/1.jpg","file_name":"s0006-8993_2897_2900424-120161130-27487-oed34r.pdf","download_url":"https://www.academia.edu/attachments/50648595/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Atipamezole_precipitated_clonidine_withd.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648595/s0006-8993_2897_2900424-120161130-27487-oed34r-libre.pdf?1480564709=\u0026response-content-disposition=attachment%3B+filename%3DAtipamezole_precipitated_clonidine_withd.pdf\u0026Expires=1732747601\u0026Signature=K9F313RJE3wmkDFUnQqGCaTiVr546ZgJqC7~qO-QbhW2vB8tD~-u2p33zUKySoXVkqS1b1gy1BSBBYF2EFYs7ky3FOvrr7j70euaiuKZVspy~2FESBc90oUtJyuNOzKAw73xPJN8XAG5zZaNwVLKoV-EsLTeQ7cUYaFyhQ63igg6FvV5jB7AwghSBweeOr6M5~xtswrBBCzgJZJlhywmv2XHP7~k~qP8FJAbOJzDTOZSylHJzU1R~qg2N31XtH2UcFXEOTTROhgsHlAz3-YZS9XoD7hzA74G7Ybd7ccB3An9w5yIpf-Db8r~wxg2f7pE9oosuGAofc5-PLAU2uowJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":2749,"name":"Animal Behavior","url":"https://www.academia.edu/Documents/in/Animal_Behavior"},{"id":12071,"name":"Immunohistochemistry","url":"https://www.academia.edu/Documents/in/Immunohistochemistry"},{"id":55175,"name":"Peroxidase","url":"https://www.academia.edu/Documents/in/Peroxidase"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":147195,"name":"Central Nervous System","url":"https://www.academia.edu/Documents/in/Central_Nervous_System"},{"id":224775,"name":"Tyrosine Hydroxylase","url":"https://www.academia.edu/Documents/in/Tyrosine_Hydroxylase"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":801409,"name":"Imidazoles","url":"https://www.academia.edu/Documents/in/Imidazoles"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1426712,"name":"Immunoglobulin","url":"https://www.academia.edu/Documents/in/Immunoglobulin"},{"id":1631043,"name":"Control Group","url":"https://www.academia.edu/Documents/in/Control_Group"},{"id":2085017,"name":"Clonidine","url":"https://www.academia.edu/Documents/in/Clonidine"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189111"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189111/State_dependent_regulation_of_breathing_by_the_retrotrapezoid_nucleus_872_10_"><img alt="Research paper thumbnail of State-dependent regulation of breathing by the retrotrapezoid nucleus (872.10)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189111/State_dependent_regulation_of_breathing_by_the_retrotrapezoid_nucleus_872_10_">State-dependent regulation of breathing by the retrotrapezoid nucleus (872.10)</a></div><div class="wp-workCard_item"><span>The Faseb Journal</span><span>, Apr 1, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189111"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189111"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189111; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189111]").text(description); $(".js-view-count[data-work-id=30189111]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189111; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189111']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189111, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30189111]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189111,"title":"State-dependent regulation of breathing by the retrotrapezoid nucleus (872.10)","translated_title":"","metadata":{"publication_date":{"day":1,"month":4,"year":2014,"errors":{}},"publication_name":"The Faseb Journal"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189111/State_dependent_regulation_of_breathing_by_the_retrotrapezoid_nucleus_872_10_","translated_internal_url":"","created_at":"2016-11-30T19:37:54.656-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312523,"work_id":30189111,"tagging_user_id":57481840,"tagged_user_id":57627058,"co_author_invite_id":5804395,"email":"m***c@virginia.edu","display_order":0,"name":"Melissa Coates","title":"State-dependent regulation of breathing by the retrotrapezoid nucleus (872.10)"},{"id":26312592,"work_id":30189111,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804408,"email":"k***e@cms.mail.virginia.edu","display_order":4194304,"name":"Kenneth Viar","title":"State-dependent regulation of breathing by the retrotrapezoid nucleus (872.10)"},{"id":26312776,"work_id":30189111,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804491,"email":"w***g@virginia.edu","display_order":6291456,"name":"Walter Hodges","title":"State-dependent regulation of breathing by the retrotrapezoid nucleus (872.10)"}],"downloadable_attachments":[],"slug":"State_dependent_regulation_of_breathing_by_the_retrotrapezoid_nucleus_872_10_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[],"research_interests":[],"urls":[{"id":7783915,"url":"http://www.fasebj.org/content/28/1_Supplement/872.10.short"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189110"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189110/Homing_in_on_the_specific_phenotype_s_of_central_respiratory_chemoreceptors"><img alt="Research paper thumbnail of Homing in on the specific phenotype(s) of central respiratory chemoreceptors" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189110/Homing_in_on_the_specific_phenotype_s_of_central_respiratory_chemoreceptors">Homing in on the specific phenotype(s) of central respiratory chemoreceptors</a></div><div class="wp-workCard_item"><span>Exp Physiol</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To some it may seem that we now know less about respiratory chemoreception than we did 20 years a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To some it may seem that we now know less about respiratory chemoreception than we did 20 years ago. Back then, it was widely accepted that the central respiratory chemoreceptors (CRCs) were located exclusively on or near the surface of the ventrolateral medulla (VLMS). Now, instead, it is generally believed that there are widespread sites of chemoreception, and there is little agreement on when and how each of these sites is involved in respiratory control. However, those in the field know that this actually is progress, primarily because we have gone from simply identifying candidate regions, to identifying specific neuronal subtypes that may be the sensors. In this invited review, we have been asked to discuss some of the current controversies in the field. First, we define the minimal requirements for a cell to be a CRC, and what assumptions can not be made without more data. Then we review the evidence that two neuronal subtypes, serotonergic neurones of the midline raphe and glutamatergic neurones of the retrotrapezoid nucleus, are chemoreceptors. There is evidence supporting a role in respiratory chemoreception for both types of neurone, as well as the other candidates, but there is also information that is missing. Future work will need to focus on which of the candidates are indeed chemoreceptors, what percentage of the overall response each one contributes, and how this percentage varies under different conditions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189110"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189110"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189110; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189110]").text(description); $(".js-view-count[data-work-id=30189110]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189110; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189110']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189110, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30189110]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189110,"title":"Homing in on the specific phenotype(s) of central respiratory chemoreceptors","translated_title":"","metadata":{"abstract":"To some it may seem that we now know less about respiratory chemoreception than we did 20 years ago. Back then, it was widely accepted that the central respiratory chemoreceptors (CRCs) were located exclusively on or near the surface of the ventrolateral medulla (VLMS). Now, instead, it is generally believed that there are widespread sites of chemoreception, and there is little agreement on when and how each of these sites is involved in respiratory control. However, those in the field know that this actually is progress, primarily because we have gone from simply identifying candidate regions, to identifying specific neuronal subtypes that may be the sensors. In this invited review, we have been asked to discuss some of the current controversies in the field. First, we define the minimal requirements for a cell to be a CRC, and what assumptions can not be made without more data. Then we review the evidence that two neuronal subtypes, serotonergic neurones of the midline raphe and glutamatergic neurones of the retrotrapezoid nucleus, are chemoreceptors. There is evidence supporting a role in respiratory chemoreception for both types of neurone, as well as the other candidates, but there is also information that is missing. Future work will need to focus on which of the candidates are indeed chemoreceptors, what percentage of the overall response each one contributes, and how this percentage varies under different conditions.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Exp Physiol"},"translated_abstract":"To some it may seem that we now know less about respiratory chemoreception than we did 20 years ago. Back then, it was widely accepted that the central respiratory chemoreceptors (CRCs) were located exclusively on or near the surface of the ventrolateral medulla (VLMS). Now, instead, it is generally believed that there are widespread sites of chemoreception, and there is little agreement on when and how each of these sites is involved in respiratory control. However, those in the field know that this actually is progress, primarily because we have gone from simply identifying candidate regions, to identifying specific neuronal subtypes that may be the sensors. In this invited review, we have been asked to discuss some of the current controversies in the field. First, we define the minimal requirements for a cell to be a CRC, and what assumptions can not be made without more data. Then we review the evidence that two neuronal subtypes, serotonergic neurones of the midline raphe and glutamatergic neurones of the retrotrapezoid nucleus, are chemoreceptors. There is evidence supporting a role in respiratory chemoreception for both types of neurone, as well as the other candidates, but there is also information that is missing. Future work will need to focus on which of the candidates are indeed chemoreceptors, what percentage of the overall response each one contributes, and how this percentage varies under different conditions.","internal_url":"https://www.academia.edu/30189110/Homing_in_on_the_specific_phenotype_s_of_central_respiratory_chemoreceptors","translated_internal_url":"","created_at":"2016-11-30T19:37:54.446-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312502,"work_id":30189110,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804393,"email":"d***y@cms.mail.virginia.edu","display_order":0,"name":"Douglas Bayliss","title":"Homing in on the specific phenotype(s) of central respiratory chemoreceptors"}],"downloadable_attachments":[],"slug":"Homing_in_on_the_specific_phenotype_s_of_central_respiratory_chemoreceptors","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[],"research_interests":[{"id":167,"name":"Physiology","url":"https://www.academia.edu/Documents/in/Physiology"},{"id":4594,"name":"Carbon Dioxide","url":"https://www.academia.edu/Documents/in/Carbon_Dioxide"},{"id":31804,"name":"Experimental Physiology","url":"https://www.academia.edu/Documents/in/Experimental_Physiology"},{"id":51565,"name":"Serotonin","url":"https://www.academia.edu/Documents/in/Serotonin"},{"id":186234,"name":"Medical Physiology","url":"https://www.academia.edu/Documents/in/Medical_Physiology"},{"id":197297,"name":"Lung","url":"https://www.academia.edu/Documents/in/Lung"},{"id":202428,"name":"Respiration","url":"https://www.academia.edu/Documents/in/Respiration"},{"id":213897,"name":"Phenotype","url":"https://www.academia.edu/Documents/in/Phenotype"},{"id":1292998,"name":"Glutamic Acid","url":"https://www.academia.edu/Documents/in/Glutamic_Acid"}],"urls":[{"id":7783914,"url":"http://blackwell-synergy.com/links/doi/10.1111/j.1469-445x.2005.00135.x"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189109"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189109/Distribution_of_a2C_adrenergic_receptor_like_immunoreactivity_in_the_rat_central_nervous_system"><img alt="Research paper thumbnail of Distribution of a2C-adrenergic receptor-like immunoreactivity in the rat central nervous system" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189109/Distribution_of_a2C_adrenergic_receptor_like_immunoreactivity_in_the_rat_central_nervous_system">Distribution of a2C-adrenergic receptor-like immunoreactivity in the rat central nervous system</a></div><div class="wp-workCard_item"><span>J Comp Neurol</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189109"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189109"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189109; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189109]").text(description); $(".js-view-count[data-work-id=30189109]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189109; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189109']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189109, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30189109]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189109,"title":"Distribution of a2C-adrenergic receptor-like immunoreactivity in the rat central nervous system","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"J Comp Neurol"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189109/Distribution_of_a2C_adrenergic_receptor_like_immunoreactivity_in_the_rat_central_nervous_system","translated_internal_url":"","created_at":"2016-11-30T19:37:54.292-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312482,"work_id":30189109,"tagging_user_id":57481840,"tagged_user_id":109945574,"co_author_invite_id":5804391,"email":"k***h@cstone.net","display_order":0,"name":"Kevin Lynch","title":"Distribution of a2C-adrenergic receptor-like immunoreactivity in the rat central nervous system"}],"downloadable_attachments":[],"slug":"Distribution_of_a2C_adrenergic_receptor_like_immunoreactivity_in_the_rat_central_nervous_system","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189108"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189108/Pathophysiology_of_Dyspnea_in_Chronic_Obstructive_Pulmonary_Disease_A_Roundtable"><img alt="Research paper thumbnail of Pathophysiology of Dyspnea in Chronic Obstructive Pulmonary Disease A Roundtable" class="work-thumbnail" src="https://attachments.academia-assets.com/50648363/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189108/Pathophysiology_of_Dyspnea_in_Chronic_Obstructive_Pulmonary_Disease_A_Roundtable">Pathophysiology of Dyspnea in Chronic Obstructive Pulmonary Disease A Roundtable</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fb15b41494faf3340016f6573b14e727" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648363,&quot;asset_id&quot;:30189108,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648363/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189108"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189108"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189108; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189108]").text(description); $(".js-view-count[data-work-id=30189108]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189108; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189108']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189108, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fb15b41494faf3340016f6573b14e727" } } $('.js-work-strip[data-work-id=30189108]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189108,"title":"Pathophysiology of Dyspnea in Chronic Obstructive Pulmonary Disease A Roundtable","translated_title":"","metadata":{"grobid_abstract":"hypercapnic drives to breathe generate equivalent levels of air hunger in humans. suggest that hypoxia does not elicit dyspnea. An opposing view is that any stimulus to medullary respiratory centers generates dyspnea via \"corollary discharge\" to higher centers; absence of dyspnea during low inspired PO 2 may result from increased ventilation and hypocapnia. We hypothesized that, with fixed ventilation, hypoxia and hypercapnia generate equal dyspnea when matched by ventilatory drive. Steady-state levels of hypoxic normocapnia (end-tidal PO2 ϭ 60-40 Torr) and hypercapnic hyperoxia (end-tidal PCO2 ϭ 40-50 Torr) were induced in naive subjects when they were free breathing and during fixed mechanical ventilation. In a separate experiment, normocapnic hypoxia and normoxic hypercapnia, \"matched\" by ventilation in free-breathing trials, were presented to experienced subjects breathing with constrained rate and tidal volume. \"Air hunger\" was rated every 30 s on a visual analog scale. Air hunger-PETO 2 curves rose sharply at PETO 2 Ͻ50 Torr. Air hunger was not different between matched stimuli (P Ͼ 0.05). Hypercapnia had unpleasant nonrespiratory effects but was otherwise perceptually indistinguishable from hypoxia. We conclude that hypoxia and hypercapnia have equal potency for air hunger when matched by ventilatory drive. Air hunger may, therefore, arise via brain stem respiratory drive. visual analog scale; perception; adverse electrocardiogram effects; steady state; shortness of breath; breathlessness","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":50648363},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189108/Pathophysiology_of_Dyspnea_in_Chronic_Obstructive_Pulmonary_Disease_A_Roundtable","translated_internal_url":"","created_at":"2016-11-30T19:37:54.086-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312541,"work_id":30189108,"tagging_user_id":57481840,"tagged_user_id":31325144,"co_author_invite_id":5804396,"email":"s***t@city.ac.uk","display_order":0,"name":"Stephen Abbott","title":"Pathophysiology of Dyspnea in Chronic Obstructive Pulmonary Disease A Roundtable"},{"id":26312556,"work_id":30189108,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804399,"email":"s***x@virginia.edu","display_order":4194304,"name":"Seth Depuy","title":"Pathophysiology of Dyspnea in Chronic Obstructive Pulmonary Disease A Roundtable"}],"downloadable_attachments":[{"id":50648363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648363/thumbnails/1.jpg","file_name":"141.pdf","download_url":"https://www.academia.edu/attachments/50648363/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pathophysiology_of_Dyspnea_in_Chronic_Ob.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648363/141-libre.pdf?1480564169=\u0026response-content-disposition=attachment%3B+filename%3DPathophysiology_of_Dyspnea_in_Chronic_Ob.pdf\u0026Expires=1732747602\u0026Signature=M5gBzuK1RuGRRt4cJnCB78El1224O1pT4GvxO-nsnQSZTr7INUqDeql8xv01TugWidLTh1p8VcKYXZuA-fhN7AfWmxxlU9I88jwokoFUuAh1~NtukxFcF45dj0qksn9QoBPWUbEPaFnyiI88wRw4cuZ5Y7aBsobpqXZTv9T6tJ4NTILBptmT1GXWtIO4H~JKstI7DErsS1Rl2VpbNhFsmqy5IfB1Clt4t9yg~mN8T6xVXQhd8CQz0~te-VFkrI2GvHlkjVqDNtdFm4KO6My52~plEXMhnBzI6BcK5I~xeSRqaPo~bZTreEm1TwQyGN6EXl-h8lMZk9UjZSxCxemjCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pathophysiology_of_Dyspnea_in_Chronic_Obstructive_Pulmonary_Disease_A_Roundtable","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648363/thumbnails/1.jpg","file_name":"141.pdf","download_url":"https://www.academia.edu/attachments/50648363/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pathophysiology_of_Dyspnea_in_Chronic_Ob.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648363/141-libre.pdf?1480564169=\u0026response-content-disposition=attachment%3B+filename%3DPathophysiology_of_Dyspnea_in_Chronic_Ob.pdf\u0026Expires=1732747602\u0026Signature=M5gBzuK1RuGRRt4cJnCB78El1224O1pT4GvxO-nsnQSZTr7INUqDeql8xv01TugWidLTh1p8VcKYXZuA-fhN7AfWmxxlU9I88jwokoFUuAh1~NtukxFcF45dj0qksn9QoBPWUbEPaFnyiI88wRw4cuZ5Y7aBsobpqXZTv9T6tJ4NTILBptmT1GXWtIO4H~JKstI7DErsS1Rl2VpbNhFsmqy5IfB1Clt4t9yg~mN8T6xVXQhd8CQz0~te-VFkrI2GvHlkjVqDNtdFm4KO6My52~plEXMhnBzI6BcK5I~xeSRqaPo~bZTreEm1TwQyGN6EXl-h8lMZk9UjZSxCxemjCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":556576,"name":"Chronic obstructive pulmonary disease","url":"https://www.academia.edu/Documents/in/Chronic_obstructive_pulmonary_disease"},{"id":1348950,"name":"Respiratory Mechanics","url":"https://www.academia.edu/Documents/in/Respiratory_Mechanics"}],"urls":[{"id":7783913,"url":"http://jap.physiology.org/cgi/reprint/94/1/141.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30189107"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30189107/Neurokinin_1_Receptor_Expressing_Cells_of_the_Ventral_Respiratory_Group_Are_Functionally_Heterogeneous_and_Predominantly_Glutamatergic"><img alt="Research paper thumbnail of Neurokinin-1 Receptor-Expressing Cells of the Ventral Respiratory Group Are Functionally Heterogeneous and Predominantly Glutamatergic" class="work-thumbnail" src="https://attachments.academia-assets.com/50648362/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30189107/Neurokinin_1_Receptor_Expressing_Cells_of_the_Ventral_Respiratory_Group_Are_Functionally_Heterogeneous_and_Predominantly_Glutamatergic">Neurokinin-1 Receptor-Expressing Cells of the Ventral Respiratory Group Are Functionally Heterogeneous and Predominantly Glutamatergic</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://virginia.academia.edu/RuthStornetta">Ruth Stornetta</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CSevigny">Charles Sevigny</a></span></div><div class="wp-workCard_item"><span>The Journal of Neuroscience the Official Journal of the Society For Neuroscience</span><span>, May 1, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c03500468583e1a8aac68a7c52963176" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50648362,&quot;asset_id&quot;:30189107,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50648362/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30189107"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30189107"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30189107; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30189107]").text(description); $(".js-view-count[data-work-id=30189107]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30189107; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30189107']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30189107, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c03500468583e1a8aac68a7c52963176" } } $('.js-work-strip[data-work-id=30189107]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30189107,"title":"Neurokinin-1 Receptor-Expressing Cells of the Ventral Respiratory Group Are Functionally Heterogeneous and Predominantly Glutamatergic","translated_title":"","metadata":{"grobid_abstract":"According to a recent theory the neurokinin-1 receptor (NK1R)-immunoreactive (ir) neurons of the ventral respiratory group (VRG) are confined to the pre-Bö tzinger complex (pre-Bö tC) and might be glutamatergic interneurons that drive respiratory rhythmogenesis. In this study we tested","publication_date":{"day":1,"month":5,"year":2002,"errors":{}},"publication_name":"The Journal of Neuroscience the Official Journal of the Society For Neuroscience","grobid_abstract_attachment_id":50648362},"translated_abstract":null,"internal_url":"https://www.academia.edu/30189107/Neurokinin_1_Receptor_Expressing_Cells_of_the_Ventral_Respiratory_Group_Are_Functionally_Heterogeneous_and_Predominantly_Glutamatergic","translated_internal_url":"","created_at":"2016-11-30T19:37:53.876-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57481840,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26312512,"work_id":30189107,"tagging_user_id":57481840,"tagged_user_id":57742613,"co_author_invite_id":5804394,"email":"s***c@unimelb.edu.au","display_order":0,"name":"Charles Sevigny","title":"Neurokinin-1 Receptor-Expressing Cells of the Ventral Respiratory Group Are Functionally Heterogeneous and Predominantly Glutamatergic"},{"id":26312575,"work_id":30189107,"tagging_user_id":57481840,"tagged_user_id":null,"co_author_invite_id":5804403,"email":"w***4@sbcglobal.net","display_order":4194304,"name":"Matthew Weston","title":"Neurokinin-1 Receptor-Expressing Cells of the Ventral Respiratory Group Are Functionally Heterogeneous and Predominantly Glutamatergic"}],"downloadable_attachments":[{"id":50648362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648362/thumbnails/1.jpg","file_name":"3806.pdf","download_url":"https://www.academia.edu/attachments/50648362/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neurokinin_1_Receptor_Expressing_Cells_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648362/3806-libre.pdf?1480564169=\u0026response-content-disposition=attachment%3B+filename%3DNeurokinin_1_Receptor_Expressing_Cells_o.pdf\u0026Expires=1732747602\u0026Signature=Ssq2sLNFEZAnHheEoZXX8sGxIGtUgMUpfb7ayhjeJnKGbRuBllHpqmWco9cYG~ywt60zvxEoEmlchaHxHCz4Dr80tnMLojT8MntN-Ge1BsMIZXMAGMwUTJZKX9XT27SDA4LD9oftdi7W~RCQWoaM6TmCYQzGi142s0jYrJiYYADmaE2rFy28tV-j5MWngrX1dA~2-~uDT75Rndfhpi3PFylDxl8yIt~6tEOTyUiE-r-MBSa0r-Gj9N3ePfOrJun4Jbn~hbV0W2eMgJnLxyoAFe7hP1SuFbIEuTgjNL1ru85AkOT8JGDQQRR1BPqm~vKEWaT69WyfhYogdJzO8i89sw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Neurokinin_1_Receptor_Expressing_Cells_of_the_Ventral_Respiratory_Group_Are_Functionally_Heterogeneous_and_Predominantly_Glutamatergic","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":57481840,"first_name":"Ruth","middle_initials":null,"last_name":"Stornetta","page_name":"RuthStornetta","domain_name":"virginia","created_at":"2016-11-30T19:33:36.329-08:00","display_name":"Ruth Stornetta","url":"https://virginia.academia.edu/RuthStornetta"},"attachments":[{"id":50648362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50648362/thumbnails/1.jpg","file_name":"3806.pdf","download_url":"https://www.academia.edu/attachments/50648362/download_file?st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&st=MTczMjc0NDAwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neurokinin_1_Receptor_Expressing_Cells_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50648362/3806-libre.pdf?1480564169=\u0026response-content-disposition=attachment%3B+filename%3DNeurokinin_1_Receptor_Expressing_Cells_o.pdf\u0026Expires=1732747602\u0026Signature=Ssq2sLNFEZAnHheEoZXX8sGxIGtUgMUpfb7ayhjeJnKGbRuBllHpqmWco9cYG~ywt60zvxEoEmlchaHxHCz4Dr80tnMLojT8MntN-Ge1BsMIZXMAGMwUTJZKX9XT27SDA4LD9oftdi7W~RCQWoaM6TmCYQzGi142s0jYrJiYYADmaE2rFy28tV-j5MWngrX1dA~2-~uDT75Rndfhpi3PFylDxl8yIt~6tEOTyUiE-r-MBSa0r-Gj9N3ePfOrJun4Jbn~hbV0W2eMgJnLxyoAFe7hP1SuFbIEuTgjNL1ru85AkOT8JGDQQRR1BPqm~vKEWaT69WyfhYogdJzO8i89sw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":11271,"name":"Motor neuron","url":"https://www.academia.edu/Documents/in/Motor_neuron"},{"id":99421,"name":"Spinal Cord","url":"https://www.academia.edu/Documents/in/Spinal_Cord"},{"id":190905,"name":"Periodicity","url":"https://www.academia.edu/Documents/in/Periodicity"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":201209,"name":"Biotin","url":"https://www.academia.edu/Documents/in/Biotin"},{"id":202428,"name":"Respiration","url":"https://www.academia.edu/Documents/in/Respiration"},{"id":220742,"name":"Membrane transport proteins","url":"https://www.academia.edu/Documents/in/Membrane_transport_proteins"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":404000,"name":"Cross Section","url":"https://www.academia.edu/Documents/in/Cross_Section"},{"id":612551,"name":"Substance P","url":"https://www.academia.edu/Documents/in/Substance_P"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1292998,"name":"Glutamic Acid","url":"https://www.academia.edu/Documents/in/Glutamic_Acid"}],"urls":[{"id":7783912,"url":"http://jneurosci.org/cgi/reprint/22/9/3806.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "87511ae12423f3c88171075ae607ab2bd9659c09a2908ee1b614eaddf54486d9", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="W2X9ez2ZG5UPiaUc+5wO77rk6sUqo9Gc8mdYoL4ZNO12ffyTeCEIT7UES+0TKUJWF1OAbaF/wZY0gI5D/CP/KQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://virginia.academia.edu/RuthStornetta" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="qjj9+6fuHwJyv+zPX/UfolZjnB79E8aEe52/sp6UiAqHIPwT4lYM2MgyAj63QFMb+9T2tnbP1o69emlR3K5Dzg==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10