CINXE.COM
Search results for: corrugated tubes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: corrugated tubes</title> <meta name="description" content="Search results for: corrugated tubes"> <meta name="keywords" content="corrugated tubes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="corrugated tubes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="corrugated tubes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 363</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: corrugated tubes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Deformation and Energy Absorption of Corrugated Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Rahim">Mohammad R. Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagil%20Akhtar"> Shagil Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prem%20K.%20Bharti"> Prem K. Bharti</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Muneeb%20Iqbal"> Syed Muneeb Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deformation and energy absorption studies with corrugated tubes where corrugation is perpendicular to the line of action which coincides exactly with the unstrained axis of the tubes. In the present study, several specimens with various geometric parameters are prepared and compressed quasi-statistically in ANSYS Workbench. It is observed that tubes with perpendicular corrugation alters the deformation condition considerably and culminates in a substantial escalation in energy absorption scope in juxtaposed with the tubes having a circular cross-section. This study will help automotive, aerospace and various other industries to design superior components with perpendicular corrugated tubes and will reduce the experimental trials by conducting the numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20Workbench" title="ANSYS Workbench">ANSYS Workbench</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20and%20energy%20absorption" title=" deformation and energy absorption"> deformation and energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes" title=" corrugated tubes"> corrugated tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-static%20compression" title=" quasi-static compression"> quasi-static compression</a> </p> <a href="https://publications.waset.org/abstracts/69163/deformation-and-energy-absorption-of-corrugated-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> Crushing Behaviour of Thin Tubes with Various Corrugated Sections Using Finite Element Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shagil%20Akhtar">Shagil Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Muneeb%20Iqbal"> Syed Muneeb Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20R.%20Rahim"> Mohammed R. Rahim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Common steel tubes with similar confines were used in simulation of tubes with distinctive type of corrugated sections. These corrugated cross-sections were arc-tangent, triangular, trapezoidal and square corrugated sections. The outcome of fluctuating structures of tube cross-section shape on the deformation feedback, collapse form and energy absorption characteristics of tubes under quasi-static axial compression have been prepared numerically. The finite element package of ANSYS Workbench was applied in the current analysis. The axial load-displacement products accompanied by the fold formation of disparate tubes were inspected and compared. Deviation of the initial peak load and the mean crushing force of the tubes with distinctive cross-sections were conscientiously examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20energy" title="absorbed energy">absorbed energy</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20loading" title=" axial loading"> axial loading</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes" title=" corrugated tubes"> corrugated tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20peak%20load" title=" initial peak load"> initial peak load</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20crushing%20force" title=" mean crushing force"> mean crushing force</a> </p> <a href="https://publications.waset.org/abstracts/69172/crushing-behaviour-of-thin-tubes-with-various-corrugated-sections-using-finite-element-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> Numerical Simulation of the Heat Transfer Process in a Double Pipe Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20I.%20Corcoles">J. I. Corcoles</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20D.%20Moya-Rico"> J. D. Moya-Rico</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Molina"> A. Molina</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Belmonte"> J. F. Belmonte</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Almendros-Ibanez"> J. A. Almendros-Ibanez </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most common heat exchangers technology in engineering processes is the use of double-pipe heat exchangers (DPHx), mainly in the food industry. To improve the heat transfer performance, several passive geometrical devices can be used, such as the wall corrugation of tubes, which increases the wet perimeter maintaining a constant cross-section area, increasing consequently the convective surface area. It contributes to enhance heat transfer in forced convection, promoting secondary recirculating flows. One of the most extended tools to analyse heat exchangers' efficiency is the use of computational fluid dynamic techniques (CFD), a complementary activity to the experimental studies as well as a previous step for the design of heat exchangers. In this study, a double pipe heat exchanger behaviour with two different inner tubes, smooth and spirally corrugated tube, have been analysed. Hence, experimental analysis and steady 3-D numerical simulations using the commercial code ANSYS Workbench v. 17.0 are carried out to analyse the influence of geometrical parameters for spirally corrugated tubes at turbulent flow. To validate the numerical results, an experimental setup has been used. To heat up or cool down the cold fluid as it passes through the heat exchanger, the installation includes heating and cooling loops served by an electric boiler with a heating capacity of 72 kW and a chiller, with a cooling capacity of 48 kW. Two tests have been carried out for the smooth tube and for the corrugated one. In all the tests, the hot fluid has a constant flowrate of 50 l/min and inlet temperature of 59.5°C. For the cold fluid, the flowrate range from 25 l/min (Test 1) and 30 l/min (Test 2) with an inlet temperature of 22.1°C. The heat exchanger is made of stainless steel, with an external diameter of 35 mm and wall thickness of 1.5 mm. Both inner tubes have an external diameter of 24 mm and 1 mm thickness of stainless steel with a length of 2.8 m. The corrugated tube has a corrugation height (H) of 1.1 mm and helical pitch (P) of 25 mm. It is characterized using three non-dimensional parameters, the ratio of the corrugation shape and the diameter (H/D), the helical pitch (P/D) and the severity index (SI = H²/P x D). The results showed good agreement between the numerical and the experimental results. Hence, the lowest differences were shown for the fluid temperatures. In all the analysed tests and for both analysed tubes, the temperature obtained numerically was slightly higher than the experimental results, with values ranged between 0.1% and 0.7%. Regarding the pressure drop, the maximum differences between the values obtained numerically, and the experimental values were close to 16%. Based on the experimental and the numerical results, for the corrugated tube, it can be highlighted that the temperature difference between the inlet and the outlet of the cold fluid is 42%, higher than the smooth tube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20tube" title="corrugated tube">corrugated tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/104108/numerical-simulation-of-the-heat-transfer-process-in-a-double-pipe-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Uses and Manufacturing of Beech Corrugated Plywood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prochazka%20Jiri">Prochazka Jiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Beranek%20Tomas"> Beranek Tomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Podlena%20Milan"> Podlena Milan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeidler%20Ales"> Zeidler Ales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The poster deals with the issue of ISO shipping containers’ sheathing made of corrugated plywood instead of traditional corrugated metal sheets. It was found that the corrugated plywood is a suitable material for the sheathing due to its great flexural strength perpendicular to the course of the wave, sufficient impact resistance, surface compressive strength and low weight. Three sample sets of different thicknesses 5, 8 and 10 mm were tested in the experiments. The tests have shown that the 5 cm corrugated plywood is the most suitable thickness for sheathing. Experiments showed that to increase bending strength at needed value, it was necessary to increase the weight of the timber only by 1.6%. Flat cash test showed that 5 mm corrugated plywood is sufficient material for sheathing from a mechanical point of view. Angle of corrugation was found as a very important factor which massively affects the mechanical properties. The impact strength test has shown that plywood is relatively tough material in direction of corrugation. It was calculated that the use of corrugated plywood sheathing for the containers can reduce the weight of the walls up to 75%. Corrugated plywood is also suitable material for web of I-joists and wide interior design applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20plywood" title="corrugated plywood">corrugated plywood</a>, <a href="https://publications.waset.org/abstracts/search?q=veneer" title=" veneer"> veneer</a>, <a href="https://publications.waset.org/abstracts/search?q=beech%20plywood" title=" beech plywood"> beech plywood</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO%20shipping%20container" title=" ISO shipping container"> ISO shipping container</a>, <a href="https://publications.waset.org/abstracts/search?q=I-joist" title=" I-joist"> I-joist</a> </p> <a href="https://publications.waset.org/abstracts/47801/uses-and-manufacturing-of-beech-corrugated-plywood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> Numerical Investigation of Fluid Flow, Characteristics of Thermal Performance and Enhancement of Heat Transfer of Corrugated Pipes with Various Geometrical Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ramadhan%20Al-Obaidi">Ahmed Ramadhan Al-Obaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jassim%20Alhamid"> Jassim Alhamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, the flow pattern, characteristics of thermal-hydraulic, and improvement of heat transfer performance are evaluated using a numerical technique in three dimensions corrugated pipe heat exchanger. The modification was made under different corrugated pipe geometrical parameters, including corrugated ring angle (CRA), distance between corrugated ring (DBCR), and corrugated diameter (CD), the range of Re number from 2000 to 12000. The numerical results are validated with available experimental data. The numerical outcomes reveal that there is an important change in flow field behaviour and a significant increase in friction factor and improvement in heat transfer performance owing to the use of the corrugated shape in the heat exchanger pipe as compared to the conventional smooth pipe. Using corrugated pipe with different configurations makes the flow more turbulence, flow separation, boundary layer distribution, flow mixing, and that leads to augmenting the performance of heat transfer. Moreover, the value of pressure drop, and the Nusselt number increases as the corrugated pipe geometrical parameters increase. Furthermore, the corrugation configuration shapes have an important influence on the thermal evaluation performance factor, and the maximum value was more than 1.3. Numerical simulation can be performed to predict the various geometrical configurations effects on fluid flow, thermal performance, and heat transfer enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20ring%20angle" title="corrugated ring angle">corrugated ring angle</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated%20diameter" title=" corrugated diameter"> corrugated diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer "> heat transfer </a> </p> <a href="https://publications.waset.org/abstracts/127154/numerical-investigation-of-fluid-flow-characteristics-of-thermal-performance-and-enhancement-of-heat-transfer-of-corrugated-pipes-with-various-geometrical-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Analysis of Control by Flattening of the Welded Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hannachi%20Med%20Tahar">Hannachi Med Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Djebaili"> H. Djebaili</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Daheche"> B. Daheche </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this approach, we have tried to describe the flattening of welded tubes, and its experimental application. The test is carried out at the (National product processing company dishes and tubes production). Usually, the final products (tubes) undergo a series of non-destructive inspection online and offline welding, and obviously destructive mechanical testing (bending, flattening, flaring, etc.). For this and for the purpose of implementing the flattening test, which applies to the processing of round tubes in other forms, it took four sections of welded tubes draft (before stretching hot) and welded tubes finished (after drawing hot and annealing), it was also noted the report 'health' flattened tubes must not show or crack or tear. The test is considered poor if it reveals a lack of ductility of the metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flattening" title="flattening">flattening</a>, <a href="https://publications.waset.org/abstracts/search?q=destructive%20testing" title=" destructive testing"> destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=tube%20drafts" title=" tube drafts"> tube drafts</a>, <a href="https://publications.waset.org/abstracts/search?q=finished%20tube" title=" finished tube"> finished tube</a>, <a href="https://publications.waset.org/abstracts/search?q=Castem%202001" title=" Castem 2001"> Castem 2001</a> </p> <a href="https://publications.waset.org/abstracts/31484/analysis-of-control-by-flattening-of-the-welded-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Sharma">S. P. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Som%20Nath%20Saha"> Som Nath Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heater under same operating conditions. However, the corrugated absorber leads to higher pressure drop thereby increasing pumping power. The results revealed that the energy and exergy efficiencies of double flow corrugated absorber solar air heater is much higher than conventional solar air heater with the concept involving of increase in heat transfer surface area and turbulence in air flow. The results indicate that the energy efficiency increases, however, exergy efficiency decreases with increase in mass flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20absorber" title="corrugated absorber">corrugated absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20flow" title=" double flow"> double flow</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title=" exergy efficiency"> exergy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title=" solar air heater"> solar air heater</a> </p> <a href="https://publications.waset.org/abstracts/69781/exergy-based-performance-analysis-of-double-flow-solar-air-heater-with-corrugated-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Analysis of the Effect of GSR on the Performance of Double Flow Corrugated Absorber Solar Air Heater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Sharma">S. P. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Som%20Nath%20Saha"> Som Nath Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effect of Global Solar Radiation (GSR) on the performance of double flow corrugated absorber solar air heater. A mathematical model of a double flow solar air heater, in which air is flowing simultaneously over and under the absorbing plate is presented and solved by developing a computer program in C++ language. The performance evaluation is studied in terms of air temperature rise, energy, effective and exergy efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that double flow effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results show that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20absorber" title="corrugated absorber">corrugated absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20flow" title=" double flow"> double flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20plate" title=" flat plate"> flat plate</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title=" solar air heater"> solar air heater</a> </p> <a href="https://publications.waset.org/abstracts/68855/analysis-of-the-effect-of-gsr-on-the-performance-of-double-flow-corrugated-absorber-solar-air-heater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Numerical Analysis of End Plate Bolted Connection with Corrugated Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Sadeghian">M. A. Sadeghian</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Yang"> J. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20F.%20Liu"> Q. F. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel extended end plate bolted connections are recommended to be widely utilized in special moment-resisting frame subjected to monotonic loading. Improper design of steel beam to column connection can lead to the collapse and fatality of structures. Therefore comprehensive research studies of beam to column connection design should be carried out. Also the performance and effect of corrugated on the strength of beam column end plate connection up to failure under monotonic loading in horizontal direction is presented in this paper. The non-linear elastic–plastic behavior has been considered through a finite element analysis using the multi-purpose software package LUSAS. The effect of vertically and horizontally types of corrugated web was also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20beam" title="corrugated beam">corrugated beam</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonic%20loading" title=" monotonic loading"> monotonic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20plate%20connection" title=" end plate connection"> end plate connection</a> </p> <a href="https://publications.waset.org/abstracts/41852/numerical-analysis-of-end-plate-bolted-connection-with-corrugated-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> The Effect of Global Solar Radiation on the Thermal and Thermohydraulic Performance of Double Flow Corrugated Absorber Solar Air Heater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Prasad%20Sharma">Suresh Prasad Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Som%20Nath%20Saha"> Som Nath Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the effect of Global Solar Radiation (GSR) on the performance of double flow solar air heater having corrugated plate as an absorber. An analytical model of a double flow solar air heater has been presented, and a computer program in C++ language has been developed to calculate the outlet air temperature, heat gain, pressure drop for estimating the thermal and thermohydraulic efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that the double flow arrangement effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results indicate that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20absorber" title="corrugated absorber">corrugated absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20flow" title=" double flow"> double flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20plate" title=" flat plate"> flat plate</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title=" solar air heater"> solar air heater</a> </p> <a href="https://publications.waset.org/abstracts/75539/the-effect-of-global-solar-radiation-on-the-thermal-and-thermohydraulic-performance-of-double-flow-corrugated-absorber-solar-air-heater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Experimental Investigation of Folding of Rubber-Filled Circular Tubes on Energy Absorption Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=MohammadSadegh%20SaeediFakher">MohammadSadegh SaeediFakher</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Rouzegar"> Jafar Rouzegar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Assaee"> Hassan Assaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, mechanical behavior and energy absorption capacity of empty and rubber-filled brazen circular tubes under quasi-static axial loading are investigated, experimentally. The brazen tubes were cut out of commercially available brazen circular tubes with the same length and diameter. Some of the specimens were filled with rubbers with three different shores and also, an empty tube was prepared. The specimens were axially compressed between two rigid plates in a quasi-static process using a Zwick testing machine. Load-displacement diagrams and energy absorption of the tested tubes were extracted from experimental data. The results show that filling the brazen tubes with rubber causes those to absorb more energy and the energy absorption of specimens are increased by increasing the shore of rubbers. In comparison to the empty tube, the first fold for the rubber-filled tubes occurs at lower load and it can be concluded that the rubber-filled tubes are better energy absorbers than the empty tubes. Also, in contrast with the empty tubes, the tubes that were filled with lower rubber shore deform asymmetrically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20compression" title="axial compression">axial compression</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-static%20loading" title=" quasi-static loading"> quasi-static loading</a>, <a href="https://publications.waset.org/abstracts/search?q=folding" title=" folding"> folding</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorbers" title=" energy absorbers"> energy absorbers</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber-filled%20tubes" title=" rubber-filled tubes"> rubber-filled tubes</a> </p> <a href="https://publications.waset.org/abstracts/19152/experimental-investigation-of-folding-of-rubber-filled-circular-tubes-on-energy-absorption-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> Performance Improvement of UWB Corrugated Antipodal Vivaldi Antenna Using Spiral Shape Negative Index Metamaterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Singha">Rahul Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Vakula"> D. Vakula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a corrugated antipodal vivaldi antenna with improved performance by using negative index metamaterial (NIM) of the Archimedean spiral design. A single layer NIM piece is placed perpendicular middle of the two arm of the proposed antenna. The antenna size is 30×60×0.787 mm3 operating at 8GHz. The simulated results of NIM corrugated antipodal vivaldi antenna show that the gain and directivity has increased up to 1.2dB and 1dB respectively. The HPBW is increased by 90 with the reflection coefficient less than ‒10 dB from 4.7 GHz to 11 GHz for UWB application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negative%20Index%20Metamaterial%20%28NIM%29" title="Negative Index Metamaterial (NIM)">Negative Index Metamaterial (NIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Ultra%20Wide%20Band%20%28UWB%29" title=" Ultra Wide Band (UWB)"> Ultra Wide Band (UWB)</a>, <a href="https://publications.waset.org/abstracts/search?q=Half%20Power%20Beam%20Width%20%28HPBW%29" title=" Half Power Beam Width (HPBW)"> Half Power Beam Width (HPBW)</a>, <a href="https://publications.waset.org/abstracts/search?q=vivaldi%20antenna" title=" vivaldi antenna"> vivaldi antenna</a> </p> <a href="https://publications.waset.org/abstracts/15963/performance-improvement-of-uwb-corrugated-antipodal-vivaldi-antenna-using-spiral-shape-negative-index-metamaterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> Analysis of Contact Width and Contact Stress of Three-Layer Corrugated Metal Gasket</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Made%20Gatot%20Karohika">I. Made Gatot Karohika</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Kaminishi"> Ken Kaminishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oke%20Oktavianty"> Oke Oktavianty</a>, <a href="https://publications.waset.org/abstracts/search?q=Didik%20Nurhadiyanto"> Didik Nurhadiyanto </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contact width and contact stress are important parameters related to the leakage behavior of corrugated metal gasket. In this study, contact width and contact stress of three-layer corrugated metal gasket are investigated due to the modulus of elasticity and thickness of surface layer for 2 type gasket (0-MPa and 400-MPa mode). A finite element method was employed to develop simulation solution to analysis the effect of each parameter. The result indicated that lowering the modulus of elasticity ratio of surface layer will result in better contact width but the average contact stresses are smaller. When the modulus of elasticity ratio is held constant with thickness ratio increase, its contact width has an increscent trend otherwise the average contact stress has decreased trend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20width" title="contact width">contact width</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20gasket" title=" metal gasket"> metal gasket</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated" title=" corrugated"> corrugated</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/64226/analysis-of-contact-width-and-contact-stress-of-three-layer-corrugated-metal-gasket" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">350</span> Electromagnetic Interference Shielding Effectiveness of a Corrugated Rectangular Waveguide for a Microwave Conveyor-Belt Drier </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Hyeon%20Bae">Sang-Hyeon Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Yeon%20Kim"> Sung-Yeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Gyo%20Jeong"> Min-Gyo Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Hong%20Kim"> Ji-Hong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang-Sang%20Lee"> Wang-Sang Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional heating methods such as electric ovens or steam heating are slow and not very efficient. For continuously heating the objects, a microwave conveyor-belt drier is widely used in the industrial microwave heating systems. However, there is a problem in which electromagnetic wave leaks toward outside of the heating cavity through the insertion opening. To achieve the prevention of the leakage of microwaves and improved heating characteristics, the corrugated rectangular waveguide at the entrance and exit openings of a microwave conveyor-belt drier is proposed and its electromagnetic interference (EMI) shielding effectiveness is analyzed and verified. The corrugated waveguides in the proposed microwave heating system achieve at least 20 dB shielding effectiveness while ensuring a sufficient height of the openings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated" title="corrugated">corrugated</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20wave" title=" electromagnetic wave"> electromagnetic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20conveyor-belt%20drier" title=" microwave conveyor-belt drier"> microwave conveyor-belt drier</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20waveguide" title=" rectangular waveguide"> rectangular waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20effectiveness" title=" shielding effectiveness"> shielding effectiveness</a> </p> <a href="https://publications.waset.org/abstracts/62070/electromagnetic-interference-shielding-effectiveness-of-a-corrugated-rectangular-waveguide-for-a-microwave-conveyor-belt-drier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">349</span> Turbulent Flow in Corrugated Pipes with Helical Grooves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Mendes">P. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Stel"> H. Stel</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20E.%20M.%20Morales"> R. E. M. Morales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a numerical and experimental study of turbulent flow in corrugated pipes with helically “d-type" grooves, for Reynolds numbers between 7500 and 100,000. The ANSYS-CFX software is used to solve the RANS equations with the BSL two equation turbulence model, through the element-based finite-volume method approach. Different groove widths and helix angles are considered. Numerical results are validated with experimental pressure drop measurements for the friction factor. A correlation for the friction factor is also proposed considering the geometric parameters and Reynolds numbers evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title="turbulent flow">turbulent flow</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated%20pipe" title=" corrugated pipe"> corrugated pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=helical" title=" helical"> helical</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20factor" title=" friction factor"> friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a> </p> <a href="https://publications.waset.org/abstracts/17407/turbulent-flow-in-corrugated-pipes-with-helical-grooves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">348</span> Lateral Torsional Buckling Resistance of Trapezoidally Corrugated Web Girders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annam%C3%A1ria%20K%C3%A4fern%C3%A9%20R%C3%A1cz">Annamária Käferné Rácz</a>, <a href="https://publications.waset.org/abstracts/search?q=Bence%20J%C3%A1ger"> Bence Jáger</a>, <a href="https://publications.waset.org/abstracts/search?q=Bal%C3%A1zs%20K%C3%B6vesdi"> Balázs Kövesdi</a>, <a href="https://publications.waset.org/abstracts/search?q=L%C3%A1szl%C3%B3%20Dunai"> László Dunai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the numerous advantages of steel corrugated web girders, its application field is growing for bridges as well as for buildings. The global stability behavior of such girders is significantly larger than those of conventional I-girders with flat web, thus the application of the structural steel material can be significantly reduced. Design codes and specifications do not provide clear and complete rules or recommendations for the determination of the lateral torsional buckling (LTB) resistance of corrugated web girders. Therefore, the authors made a thorough investigation regarding the LTB resistance of the corrugated web girders. Finite element (FE) simulations have been performed to develop new design formulas for the determination of the LTB resistance of trapezoidally corrugated web girders. FE model is developed considering geometrical and material nonlinear analysis using equivalent geometric imperfections (GMNI analysis). The equivalent geometric imperfections involve the initial geometric imperfections and residual stresses coming from rolling, welding and flame cutting. Imperfection sensitivity analysis was performed to determine the necessary magnitudes regarding only the first eigenmodes shape imperfections. By the help of the validated FE model, an extended parametric study is carried out to investigate the LTB resistance for different trapezoidal corrugation profiles. First, the critical moment of a specific girder was calculated by FE model. The critical moments from the FE calculations are compared to the previous analytical calculation proposals. Then, nonlinear analysis was carried out to determine the ultimate resistance. Due to the numerical investigations, new proposals are developed for the determination of the LTB resistance of trapezoidally corrugated web girders through a modification factor on the design method related to the conventional flat web girders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20web" title="corrugated web">corrugated web</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20torsional%20buckling" title=" lateral torsional buckling"> lateral torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20moment" title=" critical moment"> critical moment</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20modeling" title=" FE modeling"> FE modeling</a> </p> <a href="https://publications.waset.org/abstracts/85515/lateral-torsional-buckling-resistance-of-trapezoidally-corrugated-web-girders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> Optimization of Three-Layer Corrugated Metal Gasket by Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I%20Made%20Gatot%20Karohika">I Made Gatot Karohika</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Kaminishi"> Ken Kaminishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we proposed a three-layer metal gasket with Al, Cu, and SUS304 as the material, respectively. A finite element method was employed to develop simulation solution and design of experiment (DOE). Taguchi method was used to analysis the effect of each parameter design and predicts optimal design of new 25A-size three layer corrugated metal gasket. The L18 orthogonal array of Taguchi method was applied to design experiment matrix for eight factors with three levels. Based on elastic mode and plastic mode, optimum design gasket is gasket with core metal SUS304, surface layer aluminum, p1 = 4.5 mm, p2 = 4.5 mm, p3 = 4 mm, Tg = 1.2 mm, R = 3.5 mm, h = 0.4 mm and Ts = 0.3 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20width" title="contact width">contact width</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20gasket" title=" metal gasket"> metal gasket</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated" title=" corrugated"> corrugated</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/72207/optimization-of-three-layer-corrugated-metal-gasket-by-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">346</span> Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Sharma">S. P. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Som%20Nath%20Saha"> Som Nath Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C<sup>++</sup> language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20absorber" title="corrugated absorber">corrugated absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20flow" title=" double flow"> double flow</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title=" solar air heater"> solar air heater</a>, <a href="https://publications.waset.org/abstracts/search?q=thermos-hydraulic%20efficiency" title=" thermos-hydraulic efficiency"> thermos-hydraulic efficiency</a> </p> <a href="https://publications.waset.org/abstracts/69780/thermohydraulic-performance-of-double-flow-solar-air-heater-with-corrugated-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">345</span> Experimental Investigation on the Fire Performance of Corrugated Sandwich Panels made from Renewable Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avishek%20Chanda">Avishek Chanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Kyeun%20Kim"> Nam Kyeun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Debes%20Bhattacharyya"> Debes Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of renewable substitutes in various semi-structural and structural applications has experienced an increase since the last few decades. Sandwich panels have been used for many decades, although research on understanding the effects of the core structures on the panels’ fire-reaction properties is limited. The current work investigates the fire-performance of a corrugated sandwich panel made from renewable, biodegradable, and sustainable material, plywood. The bench-scale fire testing apparatus, cone-calorimeter, was employed to evaluate the required fire-reaction properties of the sandwich core in a panel configuration, with three corrugated layers glued together with face-sheets under a heat irradiance of 50 kW/m<sup>2</sup>. The study helped in documenting a unique heat release trend associated with the fire performance of the 3-layered corrugated sandwich panels and in understanding the structural stability of the samples in the event of a fire. Furthermore, the total peak heat release rate was observed to be around 421 kW/m<sup>2</sup>, which is significantly low compared to many polymeric materials in the literature. The total smoke production was also perceived to be very limited compared to other structural materials, and the total heat release was also nominal. The time to ignition of 21.7 s further outlined the advantages of using the plywood component since polymeric composites, even with flame-retardant additives, tend to ignite faster. Overall, the corrugated plywood sandwich panels had significant fire-reaction properties and could have important structural applications. The possible use of structural panels made from bio-degradable material opens a new avenue for the use of similar structures in sandwich panel preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20sandwich%20panel" title="corrugated sandwich panel">corrugated sandwich panel</a>, <a href="https://publications.waset.org/abstracts/search?q=fire-reaction%20properties" title=" fire-reaction properties"> fire-reaction properties</a>, <a href="https://publications.waset.org/abstracts/search?q=plywood" title=" plywood"> plywood</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20material" title=" renewable material"> renewable material</a> </p> <a href="https://publications.waset.org/abstracts/132693/experimental-investigation-on-the-fire-performance-of-corrugated-sandwich-panels-made-from-renewable-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> Failure and Stress Analysis of Super Heater Tubes of a 67 TPH Coke Dry Quenching Boiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subodh%20N.%20Patel">Subodh N. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Pusty"> Abhijit Pusty</a>, <a href="https://publications.waset.org/abstracts/search?q=Manashi%20Adhikary"> Manashi Adhikary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Bhattacharyya"> Sandip Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steam superheater (SH) is a coil type heat exchanger which is used to produce superheated steam or to convert the wet steam to dry steam (69.6 kg/cm² and 495°C), generated by a boiler. There were two superheaters in the system, SH I and SH II. SH II is a set of tubes that faces the initial interaction with flue gas at high temperature followed by SH I tubes. After a service life of 2100 hours, a tube in the SH II found to be punctured. Dye penetrant test revealed that out of 50 such tubes, 14 more tubes had severe cracks at a similar location. The failure was investigated in detail. The materials and scale were characterized by optical microscope and advance characterization technique. Scale, observed on fracture surface, was characterized under scanning electron microscope and Raman spectroscopy. Stresses acting on the tubes in working condition were analyzed by finite element method software, ANSYS. Cyclic stresses were observed in the simulation at the same prone location due to restriction in expansion of tubes. Based on scale characterization and stress analysis, it was concluded that the tube failed in thermo-mechanical fatigue. Finally, prevention and control measures were taken to avoid such failure in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20scale" title=" oxide scale"> oxide scale</a>, <a href="https://publications.waset.org/abstracts/search?q=superheater%20tube" title=" superheater tube"> superheater tube</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20fatigue" title=" thermomechanical fatigue"> thermomechanical fatigue</a> </p> <a href="https://publications.waset.org/abstracts/107171/failure-and-stress-analysis-of-super-heater-tubes-of-a-67-tph-coke-dry-quenching-boiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">343</span> Press Hardening of Tubes with Additional Interior Spray Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Behrens">B. A. Behrens</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Maier"> H. J. Maier</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Neumann"> A. Neumann</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Moritz"> J. Moritz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H%C3%BCbner"> S. Hübner</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gretzki"> T. Gretzki</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20N%C3%BCrnberger"> F. Nürnberger</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Spiekermeier"> A. Spiekermeier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Press-hardened profiles are used e.g. for automotive applications in order to improve light weight construction due to the high reachable strength. The application of interior water-air spray cooling contributes to significantly reducing the cycle time in the production of heat-treated tubes. This paper describes a new manufacturing method for producing press-hardened hollow profiles by means of an additional interior cooling based on a water-air spray. Furthermore, this paper provides the results of thorough investigations on the properties of press-hardened tubes in dependence of varying spray parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=22MnB5" title="22MnB5">22MnB5</a>, <a href="https://publications.waset.org/abstracts/search?q=press%20hardening" title=" press hardening"> press hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=water-air%20spray%20cooling" title=" water-air spray cooling"> water-air spray cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20profiles" title=" hollow profiles"> hollow profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=tubes" title=" tubes"> tubes</a> </p> <a href="https://publications.waset.org/abstracts/22942/press-hardening-of-tubes-with-additional-interior-spray-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">342</span> Effect of Loose Bonding and Corrugated Boundary Surface on Propagation of Rayleigh-Type Wave</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshitish%20Ch.%20Mistri">Kshitish Ch. Mistri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Kumar%20Singh"> Abhishek Kumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of undulatory boundary surface of a medium as well as the degree of bonding between two consecutive mediums, on the propagation of surface waves is an unavoidable matter of fact. Therefore, this paper investigates the propagation of Rayleigh-type wave in a corrugated fibre-reinforced layer overlying an initially stressed orthotropic half-space under gravity. Also, the two mediums are assumed to be loosely (or imperfectly) bonded. Numerical computation of the obtained frequency equation has been carried out which aids to analyze the influence of corrugation, loose bonding, initial stress and gravity on the phase velocity of Rayleigh-type wave. Moreover, the presence and absence of corrugation, loose bonding and initial stress are also discussed in a comparative manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20boundary%20surface" title="corrugated boundary surface">corrugated boundary surface</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre-reinforced%20layer" title=" fibre-reinforced layer"> fibre-reinforced layer</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20stress" title=" initial stress"> initial stress</a>, <a href="https://publications.waset.org/abstracts/search?q=loose%20bonding" title=" loose bonding"> loose bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20half-space" title=" orthotropic half-space"> orthotropic half-space</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh-type%20wave" title=" Rayleigh-type wave"> Rayleigh-type wave</a> </p> <a href="https://publications.waset.org/abstracts/60386/effect-of-loose-bonding-and-corrugated-boundary-surface-on-propagation-of-rayleigh-type-wave" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Dolzyk">Grzegorz Dolzyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungmoon%20Jung"> Sungmoon Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20crushing" title="axial crushing">axial crushing</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=grooving" title=" grooving"> grooving</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-wall%20structures" title=" thin-wall structures"> thin-wall structures</a> </p> <a href="https://publications.waset.org/abstracts/109207/energy-absorption-of-circular-thin-walled-tube-with-curved-crease-patterns-under-axial-crushing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Calculating of the Heat Exchange in a Rotating Pipe: Application to the Cooling of Turbine Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Miloud">A. Miloud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the results of numerical simulations of the turbulent flow with 3D heat transfer are presented for the case of two U-shaped channels and rotating rectangular section. The purpose of this investigation was to study the effect of the corrugated walls of the heated portion on the improved cooling, in particular the influence of the wavelength. The calculations were performed for a Reynolds number ranging from 10 000 to 100 000, two values of the number of rotation (Ro = 0.0 to 0.14) and a ratio of the restricted density to 0.13. In these simulations, ANSYS FLUENT code was used to solve the Reynolds equations expressing relations between different fields averaged variables over time. Model performance k-omega SST model and RSM are evaluated through a comparison of the numerical results for each model and the experimental and numerical data available. In this work, detailed average temperature predictions, the scope of the secondary flow and distributions of local Nusselt are presented. It turns out that the corrugated configuration further urges the heat exchange provided to reduce the velocity of the coolant inside the channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20blades" title="cooling blades">cooling blades</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated%20walls" title=" corrugated walls"> corrugated walls</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20k-omega%20SST%20and%20RSM" title=" model k-omega SST and RSM"> model k-omega SST and RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent%20code" title=" fluent code"> fluent code</a>, <a href="https://publications.waset.org/abstracts/search?q=rotation%20effect" title=" rotation effect"> rotation effect</a> </p> <a href="https://publications.waset.org/abstracts/45617/calculating-of-the-heat-exchange-in-a-rotating-pipe-application-to-the-cooling-of-turbine-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Air Flow Characteristics and Pressure Distributions for Staggered Wing Shaped Tubes Bundle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20A.%20Elsayed">Sayed A. Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20Z.%20Ibrahim"> Emad Z. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20M.%20Mesalhy"> Osama M. Mesalhy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Abdelatief"> Mohamed A. Abdelatief</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental and numerical study has been conducted to clarify fluid flow characteristics and pressure drop distributions of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. Three cases of the tubes arrangements with various angles of attack, row angles of attack and 90° cone angles were employed at the considered Rea range. Correlation of pressure drop coefficient Pdc in terms of Rea, design parameters for the studied cases were presented. The flow pattern around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the values of Pdc were increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wing-shaped%20tubes" title="wing-shaped tubes">wing-shaped tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-flow%20cooling" title=" cross-flow cooling"> cross-flow cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement" title=" staggered arrangement"> staggered arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/16278/air-flow-characteristics-and-pressure-distributions-for-staggered-wing-shaped-tubes-bundle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> Zinc Oxid Nanotubes Modified by SiO2 as a Recyclable Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rakhshan%20Hakimelahi">Rakhshan Hakimelahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, zinc oxid nano tubes have attracted much attention. The direct use of zinc oxid nano tubes modified by SiO2 as recoverable catalysts for organic reactions is very rare. The catalysts were characterized by XRD. The average particle size of ZnO catalysts is 57 nm and there are high density defects on nano tubes surfaces. A simple and efficient method for the quinazolin derivatives synthesis from the condensation isatoic anhydride and an aromatic aldehyde with ammonium acetate in the presence of a catalytic amount zinc oxid nano tubes modified by SiO2 is described. The reason proposed for higher catalytic activity of zinc oxid nano tubes modified by SiO2 is a combination effect of the small particle size and high-density surface defects. The practical and simple method led to excellent yields of the 2,3-Di hydro quinazolin-4(1H)-one derivatives under mild conditions and within short times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2" title="2">2</a>, <a href="https://publications.waset.org/abstracts/search?q=3-Dihydroquinazolin-4%281H%29-one%20derivatives" title="3-Dihydroquinazolin-4(1H)-one derivatives">3-Dihydroquinazolin-4(1H)-one derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=reusable%20catalyst" title=" reusable catalyst"> reusable catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=SiO2" title=" SiO2"> SiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxid%20nanotubes" title=" zinc oxid nanotubes"> zinc oxid nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/57045/zinc-oxid-nanotubes-modified-by-sio2-as-a-recyclable-catalyst-for-the-synthesis-of-23-dihydroquinazolin-41h-ones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratch%20Kittipongpattana">Pratch Kittipongpattana</a>, <a href="https://publications.waset.org/abstracts/search?q=Thongchai%20Fongsamootr"> Thongchai Fongsamootr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boiler%20water%20wall%20tube" title="boiler water wall tube">boiler water wall tube</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20analysis" title=" stress analysis"> stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gage%20rosette" title=" strain gage rosette"> strain gage rosette</a> </p> <a href="https://publications.waset.org/abstracts/45920/stress-analysis-of-water-wall-tubes-of-a-coal-fired-boiler-during-soot-blowing-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Effect of CSL Tube Type on the Drilled Shaft Axial Load Carrying Capacity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Motevalli">Ali Motevalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahin%20Nayyeri%20Amiri"> Shahin Nayyeri Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cross-Hole Sonic Logging (CSL) is a common type of Non-Destructive Testing (NDT) method, which is currently used to check the integrity of placed drilled shafts. CSL evaluates the integrity of the concrete inside the cage and between the access tubes based on propagation of ultrasonic waves between two or more access tubes. A number of access tubes are installed inside the reinforcing cage prior to concrete placement as guides for sensors. The access tubes can be PVC or steel galvanized based on ASTM6760. The type of the CSL tubes can affect the axial strength of the drilled shaft. The objective of this study is to compare the amount of axial load capacity of drilled shafts due to using a different type of CSL tubes inside the caging. To achieve this, three (3) large-scale drilled shaft samples were built and tested using a hydraulic actuator at the Florida International University’s (FIU) Titan America Structures and Construction Testing (TASCT) laboratory. During the static load test, load-displacement curves were recorded by the data acquisition system (MegaDAC). Three drilled shaft samples were built to evaluate the effect of the type of the CSL tube on the axial load capacity in drilled shaft foundations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drilled%20shaft%20foundations" title="drilled shaft foundations">drilled shaft foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20load%20capacity" title=" axial load capacity"> axial load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=cage" title=" cage"> cage</a>, <a href="https://publications.waset.org/abstracts/search?q=PVC" title=" PVC"> PVC</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanized%20tube" title=" galvanized tube"> galvanized tube</a>, <a href="https://publications.waset.org/abstracts/search?q=CSL%20tube" title=" CSL tube"> CSL tube</a> </p> <a href="https://publications.waset.org/abstracts/16073/effect-of-csl-tube-type-on-the-drilled-shaft-axial-load-carrying-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Quasi-Static Resistance Function Quantification for Lightweight Sandwich Panels: Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20A.%20Khalifa">Yasser A. Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20Tait"> Michael J. Tait</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Asce"> A. M. Asce</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20W.%20El-Dakhakhni"> Wael W. El-Dakhakhni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Asce"> M. Asce</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quasi-static resistance functions for orthogonal corrugated core sandwich panels were determined experimentally. According to the American and Canadian codes for blast resistant designs of buildings UFC 3-340-02, ASCE/SEI 59-11, and CSA/ S850-12 the dynamic behavior is related to the static behavior under uniform loading. The target was to design a lightweight, relatively cheap, and quick sandwich panel to be employed as a sacrificial cladding for important buildings. For that an available corrugated cold formed steel sheet profile in North America was used as a core for the sandwich panel, in addition to using a quick, relatively low cost fabrication technique in the construction process. Six orthogonal corrugated core sandwich panels were tested and the influence of core sheet gauge on the behavior of the sandwich panels was explored using two different gauges. Failure modes, yield forces, ultimate forces, and corresponding deformations were determined and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20formed%20steel" title="cold formed steel">cold formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20structure" title=" lightweight structure"> lightweight structure</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20panel" title=" sandwich panel"> sandwich panel</a>, <a href="https://publications.waset.org/abstracts/search?q=sacrificial%20cladding" title=" sacrificial cladding"> sacrificial cladding</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20loading" title=" uniform loading"> uniform loading</a> </p> <a href="https://publications.waset.org/abstracts/19165/quasi-static-resistance-function-quantification-for-lightweight-sandwich-panels-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Numerical Analysis of Heat Transfer Enhancement in Heat Exchangers by using Dimpled Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bader%20Alhumaidi%20Alsubaei">Bader Alhumaidi Alsubaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20H.%20Akash"> Zahid H. Akash</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Imam%20Sunny"> Ali Imam Sunny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat transfer coefficient can be improved passively by using a dimpled surface on the tube. The contact area where heat transfer takes place can be enlarged and turbulence will be purposefully produced inside the duct; as a consequence, higher heat transfer quality will be achieved by employing an extended inner or outer surface (dimpled surface). In order to compare the rate and quality of heat transfer between a regular-shaped pipe and a dimpled pipe, a dimpled tube with a fixed dimple radius was created. Numerical analysis of the plain and dimpled pipes was performed using ANSYS. A 23% increase in Nusselt number was seen for dimpled tubes compared to plain tubes. In comparison to plain tubes, dimpled tubes' increase in thermal performance index was found to be between 8% and 10%. An increase in pressure drop of 18% was noted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=dimpled%20tube" title=" dimpled tube"> dimpled tube</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/156846/numerical-analysis-of-heat-transfer-enhancement-in-heat-exchangers-by-using-dimpled-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>