CINXE.COM

Search results for: absorbed and unabsorbed overheads

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: absorbed and unabsorbed overheads</title> <meta name="description" content="Search results for: absorbed and unabsorbed overheads"> <meta name="keywords" content="absorbed and unabsorbed overheads"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="absorbed and unabsorbed overheads" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="absorbed and unabsorbed overheads"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 299</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: absorbed and unabsorbed overheads</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">299</span> Case Study Approach Using Scenario Analysis to Analyze Unabsorbed Head Office Overheads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Iyer">K. C. Iyer</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gupta"> T. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Bindal"> Y. M. Bindal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Head office overhead (HOOH) is an indirect cost and is recovered through individual project billings by the contractor. Delay in a project impacts the absorption of HOOH cost allocated to that particular project and thus diminishes the expected profit of the contractor. This unabsorbed HOOH cost is later claimed by contractors as damages. The subjective nature of the available formulae to compute unabsorbed HOOH is the difficulty that contractors and owners face and thus dispute it. The paper attempts to bring together the rationale of various HOOH formulae by gathering contractor&rsquo;s HOOH cost data on all of its project, using case study approach and comparing variations in values of HOOH using scenario analysis. The case study approach uses project data collected from four construction projects of a contractor in India to calculate unabsorbed HOOH costs from various available formulae. Scenario analysis provides further variations in HOOH values after considering two independent situations mainly scope changes and new projects during the delay period. Interestingly, one of the findings in this study reveals that, in spite of HOOH getting absorbed by additional works available during the period of delay, a few formulae depict an increase in the value of unabsorbed HOOH, neglecting any absorption by the increase in scope. This indicates that these formulae are inappropriate for use in case of a change to the scope of work. Results of this study can help both parties in deciding on an appropriate formula more objectively, considering the events on a project causing the delay and contractor&#39;s position in respect of obtaining new projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20and%20unabsorbed%20overheads" title="absorbed and unabsorbed overheads">absorbed and unabsorbed overheads</a>, <a href="https://publications.waset.org/abstracts/search?q=head%20office%20overheads" title=" head office overheads"> head office overheads</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario%20analysis" title=" scenario analysis"> scenario analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=scope%20variation" title=" scope variation"> scope variation</a> </p> <a href="https://publications.waset.org/abstracts/97343/case-study-approach-using-scenario-analysis-to-analyze-unabsorbed-head-office-overheads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">298</span> Human Absorbed Dose Assessment of 68Ga-Dotatoc Based on Biodistribution Data in Syrian Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri">S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naderi"> M. Naderi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ramazani"> A. Ramazani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Jalilian"> A. R. Jalilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to evaluate the values of absorbed dose of 68Ga-DOTATOC in numerous human organs. 68Ga-DOTATOC was prepared with the radiochemical purity of higher than 98% and by specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37° C at least 2 h after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreas and adrenal. The absorbed dose received by human organs was evaluated based on biodistribution studies in Syrian rats by the radiation absorbed dose assessment resource (RADAR) method. Maximum absorbed dose was obtained in the pancreas, kidneys, and adrenal with 0.105, 0.074, and 0.010 mGy/MBq, respectively. The effective absorbed dose was 0.026 mSv/MBq for 68Ga-DOTATOC. The results showed that 68Ga-DOTATOC can be considered as a safe and effective agent for clinically PET imaging applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20absorbed%20dose" title="effective absorbed dose">effective absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga-68" title=" Ga-68"> Ga-68</a>, <a href="https://publications.waset.org/abstracts/search?q=octreotide" title=" octreotide"> octreotide</a>, <a href="https://publications.waset.org/abstracts/search?q=MIRD" title=" MIRD"> MIRD</a> </p> <a href="https://publications.waset.org/abstracts/32477/human-absorbed-dose-assessment-of-68ga-dotatoc-based-on-biodistribution-data-in-syrian-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">297</span> Factors Influencing Site Overhead Cost of Construction Projects in Egypt: A Comparative Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aya%20Effat">Aya Effat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ossama%20A.%20Hosny"> Ossama A. Hosny</a>, <a href="https://publications.waset.org/abstracts/search?q=Elkhayam%20M.%20Dorra"> Elkhayam M. Dorra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimating costs is a crucial step in construction management and should be completed at the beginning of every project to establish the project's budget. The precision of the cost estimate plays a significant role in the success of construction projects as it allows project managers to effectively manage the project's costs. Site overhead costs constitute a significant portion of construction project budgets, necessitating accurate prediction and management. These costs are influenced by a multitude of factors, requiring a thorough examination and analysis to understand their relative importance and impact. Thus, the main aim of this research is to enhance the contractor’s ability to predict and manage site overheads by identifying and analyzing the main factors influencing the site overheads costs in the Egyptian construction industry. Through a comprehensive literature review, key factors were first identified and subsequently validated using a thorough comparative analysis of data from 55 real-life construction projects. Through this comparative analysis, the relationship between each factor and site overheads percentage as well as each site overheads subcategory and each project construction phase was identified and examined. Furthermore, correlation analysis was done to check for multicollinearity and identify factors with the highest impact. The findings of this research offer valuable insights into the key drivers of site overhead costs in the Egyptian construction industry. By understanding these factors, construction professionals can make informed decisions regarding the estimation and management of site overhead costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title="comparative analysis">comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20estimation" title=" cost estimation"> cost estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title=" construction management"> construction management</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20overheads" title=" site overheads"> site overheads</a> </p> <a href="https://publications.waset.org/abstracts/192563/factors-influencing-site-overhead-cost-of-construction-projects-in-egypt-a-comparative-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">296</span> Comparative Study between the Absorbed Dose of 67ga-Ecc and 68ga-Ecc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shanesazzadeh"> S. Shanesazzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Lahooti"> A.Lahooti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Jalilian"> A. R. Jalilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, 68Ga-ECC and 67Ga-ECC were both prepared with the radiochemical purity of higher than 97% in less than 30 min. The biodistribution data for 68Ga-ECC showed the extraction of the most of the activity from the urinary tract. The absorbed dose was estimated based on biodistribution data in mice by the medical internal radiation dose (MIRD) method. Comparison between human absorbed dose estimation for these two agents indicated the values of approximately ten-fold higher after injection of 67Ga-ECC than 68Ga-ECC in the most organs. The results showed that 68Ga-ECC can be considered as a more potential agent for renal imaging compared to 67Ga-ECC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20absorbed%20dose" title="effective absorbed dose">effective absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylenecysteamine%20cysteine" title=" ethylenecysteamine cysteine"> ethylenecysteamine cysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga-67" title=" Ga-67"> Ga-67</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga-68" title=" Ga-68"> Ga-68</a> </p> <a href="https://publications.waset.org/abstracts/32476/comparative-study-between-the-absorbed-dose-of-67ga-ecc-and-68ga-ecc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">295</span> A Comparison of TLD Measurements to MIRD Estimates of the Dose to the Ovaries and Uterus from Tc-99m in Liver </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Adinehvand">Karim Adinehvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakhtiar%20Azadbakht"> Bakhtiar Azadbakht</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Sahebnasagh"> Amin Sahebnasagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relation to high absorption fraction of Tc SESTAMIBI by internal organs in heart scan, and these organs are near to generation organs (Ovaries and uterus). In this study, Liver is specified as source organ. Method: we have set amount of absorbed fraction radiopharmaceutical in position of Liver in RANDO-phantom in form of elliptical surfaces, then absorbed dose to ovaries and uterus measured by TLD-100 that had set at position of these organs in RANDO-phantom. Calculation had done by MIRD method. Results from direct measurement and MIRD method are too similar. The absorbed dose to uterus and ovaries for Rest are 26.05µGyMBq-1, 17.23µGyMBq-1 and for Stress are 2.04µGyMBq-1, 1.35µGyMBq-1 respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose" title="absorbed dose">absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=TLD" title=" TLD"> TLD</a>, <a href="https://publications.waset.org/abstracts/search?q=MIRD" title=" MIRD"> MIRD</a>, <a href="https://publications.waset.org/abstracts/search?q=RANDO-phantom" title=" RANDO-phantom"> RANDO-phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=Tc-99m" title=" Tc-99m"> Tc-99m</a> </p> <a href="https://publications.waset.org/abstracts/23101/a-comparison-of-tld-measurements-to-mird-estimates-of-the-dose-to-the-ovaries-and-uterus-from-tc-99m-in-liver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">294</span> Assessment of the Radiation Absorbed Dose Produced by Lu-177, Ra-223, AC-225 for Metastatic Prostate Cancer in a Bone Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Tajadod">Maryam Tajadod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The treatment of cancer is one of the main challenges of nuclear medicine; while cancer begins in an organ, such as the breast or prostate, it spreads to the bone, resulting in metastatic bone. In the treatment of cancer with radiotherapy, the determination of the involved tissues’ dose is one of the important steps in the treatment protocol. Comparing absorbed doses for Lu-177 and Ra-223 and Ac-225 in the bone marrow and soft tissue of bone phantom with evaluating energetic emitted particles of these radionuclides is the important aim of this research. By the use of MCNPX computer code, a model for bone phantom was designed and the values of absorbed dose for Ra-223 and Ac-225, which are Alpha emitters & Lu-177, which is a beta emitter, were calculated. As a result of research, in comparing gamma radiation for three radionuclides, Lu-177 released the highest dose in the bone marrow and Ra-223 achieved the lowest level. On the other hand, the result showed that although the figures of absorbed dose for Ra and Ac in the bone marrow are near to each other, Ra spread more energy in cortical bone. Moreover, The alpha component of the Ra-223 and Ac-225 have very little effect on bone marrow and soft tissue than a beta component of the lu-177 and it leaves the highest absorbed dose in the bone where the source is located. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20metastases" title="bone metastases">bone metastases</a>, <a href="https://publications.waset.org/abstracts/search?q=lutetium-177" title=" lutetium-177"> lutetium-177</a>, <a href="https://publications.waset.org/abstracts/search?q=radium-223" title=" radium-223"> radium-223</a>, <a href="https://publications.waset.org/abstracts/search?q=actinium-225" title=" actinium-225"> actinium-225</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose" title=" absorbed dose"> absorbed dose</a> </p> <a href="https://publications.waset.org/abstracts/149268/assessment-of-the-radiation-absorbed-dose-produced-by-lu-177-ra-223-ac-225-for-metastatic-prostate-cancer-in-a-bone-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">293</span> Absorbed Dose Estimation of 68Ga-EDTMP in Human Organs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri">S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Jalilian"> A. R. Jalilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone metastases are observed in a wide range of cancers leading to intolerable pain. While early detection can help the physicians in the decision of the type of treatment, various radiopharmaceuticals using phosphonates like <sup>68</sup>Ga-EDTMP have been developed. In this work, due to the importance of absorbed dose, human absorbed dose of this new agent was calculated for the first time based on biodistribution data in Wild-type rats. <sup>68</sup>Ga was obtained from <sup>68</sup>Ge/<sup>68</sup>Ga generator with radionuclidic purity and radiochemical purity of higher than 99%. The radiolabeled complex was prepared in the optimized conditions. Radiochemical purity of the radiolabeled complex was checked by instant thin layer chromatography (ITLC) method using Whatman No. 2 paper and saline. The results indicated the radiochemical purity of higher than 99%. The radiolabelled complex was injected into the Wild-type rats and its biodistribution was studied up to 120 min. As expected, major accumulation was observed in the bone. Absorbed dose of each human organ was calculated based on biodistribution in the rats using RADAR method. Bone surface and bone marrow with 0.112 and 0.053 mSv/MBq, respectively, received the highest absorbed dose. According to these results, the radiolabeled complex is a suitable and safe option for PET bone imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose" title="absorbed dose">absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=EDTMP" title=" EDTMP"> EDTMP</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%81%B6%E2%81%B8Ga" title=" ⁶⁸Ga"> ⁶⁸Ga</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a> </p> <a href="https://publications.waset.org/abstracts/81329/absorbed-dose-estimation-of-68ga-edtmp-in-human-organs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">292</span> Absorbed Dose Estimation of 177Lu-DOTATOC in Adenocarcinoma Breast Cancer Bearing Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri">S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mousavi-Daramoroudi"> M. Mousavi-Daramoroudi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Abbasi-Davani"> F. Abbasi-Davani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the absorbed dose of human organs after injection of <sup>177</sup>Lu-DOTATOC was studied based on the biodistribution of the complex in adenocarcinoma breast cancer bearing mice. For this purpose, the biodistribution of the radiolabelled complex was studied and compartmental modeling was applied to calculate the absorbed dose with high precision. As expected, <sup>177</sup>Lu-DOTATOC illustrated a notable specific uptake in tumor and pancreas, organs with high level of somatostatin receptor on their surface and the effectiveness of the radio-conjugate for targeting of the breast adenocarcinoma tumors was indicated. The elicited results of modeling were the exponential equations, and those are utilized for obtaining the cumulated activity data by taking their integral. The results also exemplified that non-target absorbed-doses such as the liver, spleen and pancreas were approximately 0.008, 0.004, and 0.039, respectively. While these values were so much lower than target (tumor) absorbed-dose, it seems due to this low toxicity, this complex is a good agent for therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B7%E2%81%B7Lu" title="¹⁷⁷Lu">¹⁷⁷Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=compartmental%20modeling" title=" compartmental modeling"> compartmental modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimetry" title=" dosimetry"> dosimetry</a> </p> <a href="https://publications.waset.org/abstracts/97772/absorbed-dose-estimation-of-177lu-dotatoc-in-adenocarcinoma-breast-cancer-bearing-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">291</span> Estimation of Human Absorbed Dose Using Compartmental Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mousavi-Daramoroudi">M. Mousavi-Daramoroudi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Abbasi-Davani"> F. Abbasi-Davani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dosimetry is an indispensable and precious factor in patient treatment planning to minimize the absorbed dose in vital tissues. In this study, compartmental model was used in order to estimate the human absorbed dose of <sup>177</sup>Lu-DOTATOC from the biodistribution data in wild type rats. For this purpose, <sup>177</sup>Lu-DOTATOC was prepared under optimized conditions and its biodistribution was studied in male Syrian rats up to 168 h. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. Dosimetric estimation of the complex was performed using radiation absorbed dose assessment resource (RADAR). The biodistribution data showed high accumulation in the adrenal and pancreas as the major expression sites for somatostatin receptor (SSTR). While kidneys as the major route of excretion receive 0.037 mSv/MBq, pancreas and adrenal also obtain 0.039 and 0.028 mSv/MBq. Due to the usage of this method, the points of accumulated activity data were enhanced, and further information of tissues uptake was collected that it will be followed by high (or improved) precision in dosimetric calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compartmental%20modeling" title="compartmental modeling">compartmental modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20absorbed%20dose" title=" human absorbed dose"> human absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B7%E2%81%B7Lu-DOTATOC" title=" ¹⁷⁷Lu-DOTATOC"> ¹⁷⁷Lu-DOTATOC</a>, <a href="https://publications.waset.org/abstracts/search?q=Syrian%20rats" title=" Syrian rats"> Syrian rats</a> </p> <a href="https://publications.waset.org/abstracts/94409/estimation-of-human-absorbed-dose-using-compartmental-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">290</span> Speedup Breadth-First Search by Graph Ordering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiuyi%20Lyu">Qiuyi Lyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Gong"> Bin Gong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breadth-first%20search" title="breadth-first search">breadth-first search</a>, <a href="https://publications.waset.org/abstracts/search?q=BFS" title=" BFS"> BFS</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20ordering" title=" graph ordering"> graph ordering</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20algorithm" title=" graph algorithm"> graph algorithm</a> </p> <a href="https://publications.waset.org/abstracts/136790/speedup-breadth-first-search-by-graph-ordering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">289</span> Evolution of Cord Absorbed Dose during Larynx Cancer Radiotherapy, with 3D Treatment Planning and Tissue Equivalent Phantom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hassan%20Heidari">Mohammad Hassan Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Goodarzi"> Amir Hossein Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Azarniush"> Majid Azarniush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation doses to tissues and organs were measured using the anthropomorphic phantom as an equivalent to the human body. When high-energy X-rays are externally applied to treat laryngeal cancer, the absorbed dose at the laryngeal lumen is lower than given dose because of air space which it should pass through before reaching the lesion. Specially in case of high-energy X-rays, the loss of dose is considerable. Three-dimensional absorbed dose distributions have been computed for high-energy photon radiation therapy of laryngeal and hypo pharyngeal cancers, using a coaxial pair of opposing lateral beams in fixed positions. Treatment plans obtained under various conditions of irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20treatment%20planning" title="3D treatment planning">3D treatment planning</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropomorphic%20phantom" title=" anthropomorphic phantom"> anthropomorphic phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=larynx%20cancer" title=" larynx cancer"> larynx cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy "> radiotherapy </a> </p> <a href="https://publications.waset.org/abstracts/3432/evolution-of-cord-absorbed-dose-during-larynx-cancer-radiotherapy-with-3d-treatment-planning-and-tissue-equivalent-phantom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">288</span> Estimated Human Absorbed Dose of 111 In-BPAMD as a New Bone-Seeking Spect-Imaging Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An early diagnosis of bone metastases is very important for providing a profound decision on a subsequent therapy. A prerequisite for the clinical application of new diagnostic radiopharmaceutical is the measurement of organ radiation exposure dose from biodistribution data in animals. In this study, the dosimetric studies of a novel agent for SPECT-imaging of bone methastases, 111In-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been estimated in human organs based on mice data. The radiolabeled complex was prepared with high radiochemical purity at the optimal conditions. Biodistribution studies of the complex were investigated in male Syrian mice at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was performed based on mice data by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose to critical organs the complex is well within the acceptable considered range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastases in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-111" title="In-111">In-111</a>, <a href="https://publications.waset.org/abstracts/search?q=BPAMD" title=" BPAMD"> BPAMD</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose" title=" absorbed dose"> absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=RADAR" title=" RADAR"> RADAR</a> </p> <a href="https://publications.waset.org/abstracts/34599/estimated-human-absorbed-dose-of-111-in-bpamd-as-a-new-bone-seeking-spect-imaging-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">287</span> Preliminary dosimetric Evaluation of a New Therapeutic 177LU Complex for Human Based on Biodistribution Data in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Golabi%20Dezfuli"> A. Golabi Dezfuli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tris (1,10-phenanthroline) lanthanum(III)] trithiocyanate is a new compound that has shown to stop DNA synthesis in CCRF-CEM and Ehrlich ascites cells leading to a cell cycle arrest in G0/G1. One other important property of the phenanthroline nucleus is its ability to act as a triplet-state photosensitizer especially in complexes with lanthanides. In Nowadays, the radiation dose assessment resource (RADAR) method is known as the most common method for absorbed dose calculation. 177Lu was produced by irradiation of a natural Lu2O3 target at a thermal neutron flux of approximately 4 × 1013 n/cm2•s. 177Lu-PL3 was prepared in the optimized condition. The radiochemical yield was checked by ITLC method. The biodistribution of the complex was investigated by intravenously injection to wild-type rats via their tail veins. In this study, the absorbed dose of 177Lu-PL3 to human organs was estimated by RADAR method. 177Lu was prepared with a specific activity of 2.6-3 GBq.mg-1 and radionuclide purity of 99.98 %. The 177Lu-PL3 complex can prepare with high radiochemical yield (> 99 %) at optimized conditions. The results show that liver and spleen have received the highest absorbed dose of 1.051 and 0.441 mSv/MBq, respectivley. The absorbed dose values for these two dose-limiting tissues suggest more biological studies special in tumor-bearing animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20dosimetry" title="internal dosimetry">internal dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Lutetium-177" title=" Lutetium-177"> Lutetium-177</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a>, <a href="https://publications.waset.org/abstracts/search?q=animals" title=" animals"> animals</a> </p> <a href="https://publications.waset.org/abstracts/34297/preliminary-dosimetric-evaluation-of-a-new-therapeutic-177lu-complex-for-human-based-on-biodistribution-data-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">286</span> Human Absorbed Dose Estimation of a New In-111 Imaging Agent Based on Rat Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The measurement of organ radiation exposure dose is one of the most important steps to be taken initially, for developing a new radiopharmaceutical. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In-1,4,7,10-tetraazacyclododecane-1,4,7,10 tetraethylene phosphonic acid (111In-DOTMP) complex, have been carried out to estimate the dose in human organs based on the data derived from rats. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian rats at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the rats by the radiation absorbed dose assessment resource (RADAR) method. 111In-DOTMP complex was prepared with high radiochemical purity of >99% (ITLC). Total body effective absorbed dose for 111In-DOTMP was 0.061 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In-DOTMP has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-111" title="In-111">In-111</a>, <a href="https://publications.waset.org/abstracts/search?q=DOTMP" title=" DOTMP"> DOTMP</a>, <a href="https://publications.waset.org/abstracts/search?q=Internal%20Dosimetry" title=" Internal Dosimetry"> Internal Dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=RADAR" title=" RADAR"> RADAR</a> </p> <a href="https://publications.waset.org/abstracts/34600/human-absorbed-dose-estimation-of-a-new-in-111-imaging-agent-based-on-rat-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">285</span> Absorbed Dose Measurements for Teletherapy Prediction of Superficial Dose Using Halcyon Linear Accelerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Limen%20Njinga">Raymond Limen Njinga</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeneye%20Samuel%20Olaolu"> Adeneye Samuel Olaolu</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinyode%20Ojumoola%20Ajimo"> Akinyode Ojumoola Ajimo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Measurement of entrance dose and dose at different depths is essential to avoid overdose and underdose of patients. The aim of this study is to verify the variation in the absorbed dose using a water-equivalent material. Materials and Methods: The plastic phantom was arranged on the couch of the halcyon linear accelerator by Varian, with the farmer ionization chamber inserted and connected to the electrometer. The image of the setup was taken using the High-Quality Single 1280x1280x16 higher on the service mode to check the alignment with the isocenter. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was done to check the beam quality of the machine at a field size of 10 cm x 10 cm. The calibration was done using SAD type set-up at a depth of 5 cm. This process was repeated for ten consecutive weeks, and the values were recorded. Results: The results of the beam output for the teletherapy machine were satisfactory and accepted in comparison with the commissioned measurement of 0.62. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was reasonable with respect to the beam quality of the machine at a field size of 10 cm x 10 cm. Conclusion: The results of the beam quality and the absorbed dose rate showed a good consistency over the period of ten weeks with the commissioned measurement value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20accelerator" title="linear accelerator">linear accelerator</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose%20rate" title=" absorbed dose rate"> absorbed dose rate</a>, <a href="https://publications.waset.org/abstracts/search?q=isocenter" title=" isocenter"> isocenter</a>, <a href="https://publications.waset.org/abstracts/search?q=phantom" title=" phantom"> phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=ionization%20chamber" title=" ionization chamber"> ionization chamber</a> </p> <a href="https://publications.waset.org/abstracts/183165/absorbed-dose-measurements-for-teletherapy-prediction-of-superficial-dose-using-halcyon-linear-accelerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">284</span> Preliminary Dosimetric Evaluation of Two New 153Sm Bone Pain Palliative Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Amraee"> N. Amraee</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Naseri"> Z. Naseri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ar.%20Jalilian"> Ar. Jalilian </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to calculate the absorbed dose to each human organ for two new Sm-153 bone-seeking agents in order to evaluate their effectiveness in bone pain palliation therapy. In this work, the absorbed dose of 153Sm-TTHMP and 153Sm-PDTMP to each human organ was evaluated based on biodistribution studies in rats by radiation dose assessment resource (RADAR) method. The highest absorbed dose for 153Sm-TTHMP and 153Sm-PDTMP is observed in trabecular bone with 1.844 and 3.167 mGy/MBq, respectively. Bone/red marrow dose ratio, as the target/critical organ dose ratio, for 153Sm-PDTMP is greater than 153Sm-TTHMP and is compatible with 153Sm-EDTMP. The results showed that these bone-seeking agents, specially 153Sm-PDTMP, have considerable characteristics compared to the most clinically used bone pain palliative radiopharmaceutical, and therefore, can be good candidates for bone pain palliation in patients with bone metastasis; however, further biological studies in other mammals are still needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20dosimetry" title="internal dosimetry">internal dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=PDTMP" title=" PDTMP"> PDTMP</a>, <a href="https://publications.waset.org/abstracts/search?q=153Sm" title=" 153Sm"> 153Sm</a>, <a href="https://publications.waset.org/abstracts/search?q=TTHMP" title=" TTHMP"> TTHMP</a> </p> <a href="https://publications.waset.org/abstracts/18061/preliminary-dosimetric-evaluation-of-two-new-153sm-bone-pain-palliative-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">283</span> Optical Properties of N-(Hydroxymethyl) Acrylamide Polymer Gel Dosimeters for Radiation Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20A.%20Rabaeh">Khalid A. Rabaeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Belal%20Moftah"> Belal Moftah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Basfar"> Ahmed A. Basfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20A.%20Almousa"> Akram A. Almousa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer gel dosimeters are tissue equivalent martial that fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of absorbed radiation dose. Polymer gel dosimeters can uniquely record the radiation dose distribution in three-dimensions (3D). A novel composition of normoxic polymer gel dosimeters based on radiation-induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) is introduced in this study for radiotherapy treatment planning. The dosimeters were irradiated by 10 MV photon beam of a medical linear accelerator at a constant dose rate of 600 cGy/min with doses up to 30 Gy. The polymerization degree is directly proportional to absorbed dose received by the polymer gel. UV/Vis spectrophotometer was used to investigate the degree of white color of irradiated NHMA gel which is associated to the degree of polymerization of polymer gel dosimeters. The absorbance increases with absorbed dose for all gel dosimeters in the dose range between 0 and 30 Gy. Dose rate , energy of radiation and the stability of the polymerization after irradiation were investigated. No appreciable effects of these parameters on the performance of the novel gel dosimeters were observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dosimeter" title="dosimeter">dosimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=gel" title=" gel"> gel</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometer" title=" spectrophotometer"> spectrophotometer</a>, <a href="https://publications.waset.org/abstracts/search?q=N-%28Hydroxymethyl%29acrylamide" title=" N-(Hydroxymethyl)acrylamide "> N-(Hydroxymethyl)acrylamide </a> </p> <a href="https://publications.waset.org/abstracts/34646/optical-properties-of-n-hydroxymethyl-acrylamide-polymer-gel-dosimeters-for-radiation-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">282</span> Enhancement of Solar Energy Storage by Nanofluid-Glass Impurities Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhan%20Lafta%20Rashid">Farhan Lafta Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Khudhair%20Abass%20Dawood"> Khudhair Abass Dawood</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hashim"> Ahmed Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent advancements in nanotechnology have originated the new emerging heat transfer fluids called nanofluids. Nanofluids are prepared by dispersing and stably suspending nanometer sized solid particles in conventional heat transfer fluids. Past researches have shown that a very small amount of suspending nano-particles have the potential to enhance the thermo physical, transport, and radiative properties of the base fluid. At this research adding very small quantities of nano particle (TiO2) to pure water with different weights percent ranged 0.1, 0.2, 0.3, and 0.4 wt.%, we found that the best weight percent is 0.2 that gave more heat absorbed. Then adding glass impurities ranged 10, 20, and 30 wt. Percentage to the nano-fluid in order to enhance the absorbed heat so energy storage. The best glass weights percent is 0.3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat" title=" enhancement absorbed heat"> enhancement absorbed heat</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20impurities" title=" glass impurities"> glass impurities</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/2555/enhancement-of-solar-energy-storage-by-nanofluid-glass-impurities-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">281</span> Pretherapy Initial Dosimetry Results in Prostat Cancer Radionuclide Therapy with Lu-177-PSMA-DOTA-617</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abuqebitah">M. Abuqebitah</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Tanyildizi"> H. Tanyildizi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Yeyin"> N. Yeyin</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Cavdar"> I. Cavdar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Demir"> M. Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kabasakal"> L. Kabasakal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Targeted radionuclide therapy (TRT) is an increasingly used treatment modality for wide range of cancers. Presently dosimetry is highly required either to plan treatment or to ascertain the absorbed dose delivered to critical organs during treatment. Methods and Materials: The study comprised 7 patients suffered from prostate cancer with progressive disease and candidate to undergo Lu-177-DOTA-617 therapy following to PSMA- PET/CT imaging for all patients. (5.2±0.3 mCi) was intravenously injected. To evaluate bone marrow absorbed dose 2 cc blood samples were withdrawn in short variable times (3, 15, 30, 60, 180 minutes) after injection. Furthermore, whole body scans were performed using scintillation gama camera in 4, 24, 48, and 120 hours after injection and in order to quantify the activity taken up in the body, kidneys , liver, right parotid, and left parotid the geometric mean of anterior and posterior counts were determined through ROI analysis, after that background subtraction and attenuation correction were applied using patients PSMA- PET/CT images taking in a consideration: organ thickness, body thickness, and Hounsfield unites from CT scan. OLINDA/EXM dosimetry program was used for curve fitting, residence time calculation, and absorbed dose calculations. Findings: Absorbed doses of bone marrow, left kidney, right kidney, liver, left parotid, right parotid, total body were 1.28±0.52, 32.36±16.36, 32.7±13.68, 10.35±3.45, 38.67±21.29, 37.55±19.77, 2.25±0.95 (mGy/mCi), respectively. Conclusion: Our first results clarify that Lu-177-DOTA-617 is safe and reliable therapy as there were no complications seen. In the other hand, the observable variation in the absorbed dose of the critical organs among the patients necessitate patient-specific dosimetry approach to save body organs and particularly highly exposed kidneys and parotid gland. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu-177-PSMA" title="Lu-177-PSMA">Lu-177-PSMA</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclide%20therapy" title=" radionuclide therapy"> radionuclide therapy</a> </p> <a href="https://publications.waset.org/abstracts/29336/pretherapy-initial-dosimetry-results-in-prostat-cancer-radionuclide-therapy-with-lu-177-psma-dota-617" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">280</span> Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiwei%20Li">Yiwei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Boyu%20Tian"> Boyu Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingyu%20Gao"> Mingyu Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid main memory systems combine both performance and capacity advantages from heterogeneous memory technologies. With larger capacities, higher associativities, and finer granularities, hybrid memory systems currently exhibit significant metadata storage and lookup overheads for flexibly remapping data blocks between the two memory tiers. To alleviate the inefficiencies of existing designs, we propose Trimma, the combination of a multi-level metadata structure and an efficient metadata cache design. Trimma uses a multilevel metadata table to only track truly necessary address remap entries. The saved memory space is effectively utilized as extra DRAM cache capacity to improve performance. Trimma also uses separate formats to store the entries with non-identity and identity mappings. This improves the overall remap cache hit rate, further boosting the performance. Trimma is transparent to software and compatible with various types of hybrid memory systems. When evaluated on a representative DDR4 + NVM hybrid memory system, Trimma achieves up to 2.4× and on average 58.1% speedup benefits, compared with a state-of-the-art design that only leverages the unallocated fast memory space for caching. Trimma addresses metadata management overheads and targets future scalable large-scale hybrid memory architectures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=memory%20system" title="memory system">memory system</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20cache" title=" data cache"> data cache</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20memory" title=" hybrid memory"> hybrid memory</a>, <a href="https://publications.waset.org/abstracts/search?q=non-volatile%20memory" title=" non-volatile memory"> non-volatile memory</a> </p> <a href="https://publications.waset.org/abstracts/183183/trimma-trimming-metadata-storage-and-latency-for-hybrid-memory-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">279</span> CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Moslemi">Amir Moslemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20movafeghi"> Amir movafeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Moradi"> Shahab Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important challenging factors in medical images is nominated as noise.Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjected to low quality due to the noise. The quality of CT images is dependent on the absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on the purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete wavelet transform(DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result in good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography%20%28CT%29" title="computed tomography (CT)">computed tomography (CT)</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20reduction" title=" noise reduction"> noise reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=curve-let" title=" curve-let"> curve-let</a>, <a href="https://publications.waset.org/abstracts/search?q=contour-let" title=" contour-let"> contour-let</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20to%20noise%20peak-peak%20ratio%20%28PSNR%29" title=" signal to noise peak-peak ratio (PSNR)"> signal to noise peak-peak ratio (PSNR)</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20similarity%20%28Ssim%29" title=" structure similarity (Ssim)"> structure similarity (Ssim)</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose%20to%20patient%20%28ADP%29" title=" absorbed dose to patient (ADP)"> absorbed dose to patient (ADP)</a> </p> <a href="https://publications.waset.org/abstracts/37368/ct-medical-images-denoising-based-on-new-wavelet-thresholding-compared-with-curvelet-and-contourlet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">278</span> Comparison of Low Velocity Impact Test on Coir Fiber Reinforced Polyester Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Mendoza">Ricardo Mendoza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Brice%C3%B1o"> Jason Briceño</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20F.%20Santa"> Juan F. Santa</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Peluffo"> Gabriel Peluffo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20M%C3%A1rquez"> Mauricio Márquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Cardozo"> Beatriz Cardozo</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Guti%C3%A9rrez"> Carlos Gutiérrez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common controlled method to obtain impact strength of composites materials is performing a Charpy Impact Test which consists of a pendulum with calibrated mass and length released from a known height. In fact, composites components experience impact events in normal operations such as when a tool drops or a foreign object strikes it. These events are categorized into low velocity impact (LVI) which typically occurs at velocities below 10m/s. In this study, the major aim was to calculate the absorbed energy during the impact. Tests were performed on three types of composite panels: fiberglass laminated panels, coir fiber reinforced polyester and coir fiber reinforced polyester subjected to water immersion for 48 hours. Coir fibers were obtained in local plantations of the Caribbean coast of Colombia. They were alkali treated in 5% aqueous NaOH solution for 2h periods. Three type of shape impactors were used on drop-weight impact test including hemispherical, ogive and pointed. Failure mechanisms and failure modes of specimens were examined using an optical microscope. Results demonstrate a reduction in absorbed energy correlated with the increment of water absorption of the panels. For each level of absorbed energy, it was possible to associate a different fracture state. This study compares results of energy absorbed obtained from two impact test methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coir%20fiber" title="coir fiber">coir fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester%20composites" title=" polyester composites"> polyester composites</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20velocity%20impact" title=" low velocity impact"> low velocity impact</a>, <a href="https://publications.waset.org/abstracts/search?q=Charpy%20impact%20test" title=" Charpy impact test"> Charpy impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=drop-weight%20impact%20test" title=" drop-weight impact test"> drop-weight impact test</a> </p> <a href="https://publications.waset.org/abstracts/55674/comparison-of-low-velocity-impact-test-on-coir-fiber-reinforced-polyester-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> Researches Concerning Photons as Corpuscles with Mass and Negative Electrostatic Charge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioan%20Rusu">Ioan Rusu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let us consider that the entire universe is composed of a single hydrogen atom within which the electron is moving around the proton. In this case, according to classical theories of physics, radiation and photons, respectively, should be absorbed by the electron. Depending on the number of photons absorbed, the electron radius of rotation around the proton is established. Until now, the principle of photon absorption by electrons and the electron transition to a new energy level, namely to a higher radius of rotation around the proton, is not clarified in physics. This paper aims to demonstrate that photons have mass and negative electrostatic charge similar to electrons but infinitely smaller. The experiments which demonstrate this theory are simple: thermal expansion, photoelectric effect and thermonuclear reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatic" title="electrostatic">electrostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=electron" title=" electron"> electron</a>, <a href="https://publications.waset.org/abstracts/search?q=photon" title=" photon"> photon</a>, <a href="https://publications.waset.org/abstracts/search?q=proton" title=" proton"> proton</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation "> radiation </a> </p> <a href="https://publications.waset.org/abstracts/24883/researches-concerning-photons-as-corpuscles-with-mass-and-negative-electrostatic-charge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> Improve B-Tree Index’s Performance Using Lock-Free Hash Table</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhanfeng%20Ma">Zhanfeng Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiping%20Xiong"> Zhiping Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Yin"> Hu Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengwei%20She"> Zhengwei She</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20P.%20Gurajada"> Aditya P. Gurajada</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianlun%20Chen"> Tianlun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Li"> Ying Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many RDBMS vendors use B-tree index to achieve high performance for point queries and range queries, and some of them also employ hash index to further enhance the performance as hash table is more efficient for point queries. However, there are extra overheads to maintain a separate hash index, for example, hash mapping for all data records must always be maintained, which results in more memory space consumption; locking, logging and other mechanisms are needed to guarantee ACID, which affects the concurrency and scalability of the system. To relieve the overheads, Hash Cached B-tree (HCB) index is proposed in this paper, which consists of a standard disk-based B-tree index and an additional in-memory lock-free hash table. Initially, only the B-tree index is constructed for all data records, the hash table is built on the fly based on runtime workload, only data records accessed by point queries are indexed using hash table, this helps reduce the memory footprint. Changes to hash table are done using compare-and-swap (CAS) without performing locking and logging, this helps improve the concurrency and avoid contention. The hash table is also optimized to be cache conscious. HCB index is implemented in SAP ASE database, compared with the standard B-tree index, early experiments and customer adoptions show significant performance improvement. This paper provides an overview of the design of HCB index and reports the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B-tree" title="B-tree">B-tree</a>, <a href="https://publications.waset.org/abstracts/search?q=compare-and-swap" title=" compare-and-swap"> compare-and-swap</a>, <a href="https://publications.waset.org/abstracts/search?q=lock-free%20hash%20table" title=" lock-free hash table"> lock-free hash table</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20queries" title=" point queries"> point queries</a>, <a href="https://publications.waset.org/abstracts/search?q=range%20queries" title=" range queries"> range queries</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP%20ASE%20database" title=" SAP ASE database"> SAP ASE database</a> </p> <a href="https://publications.waset.org/abstracts/72665/improve-b-tree-indexs-performance-using-lock-free-hash-table" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> Mathematical modeling of the calculation of the absorbed dose in uranium production workers with the genetic effects.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Kazymbet">P. Kazymbet</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20%20Abildinova"> G. Abildinova</a>, <a href="https://publications.waset.org/abstracts/search?q=K.Makhambetov"> K.Makhambetov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bakhtin"> M. Bakhtin</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rybalkina"> D. Rybalkina</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Zhumadilov"> K. Zhumadilov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conducted cytogenetic research in workers Stepnogorsk Mining-Chemical Combine (Akmola region) with the study of 26341 chromosomal metaphase. Using a regression analysis with program DataFit, version 5.0, dependence between exposure dose and the following cytogenetic exponents has been studied: frequency of aberrant cells, frequency of chromosomal aberrations, frequency of the amounts of dicentric chromosomes, and centric rings. Experimental data on calibration curves "dose-effect" enabled the development of a mathematical model, allowing on data of the frequency of aberrant cells, chromosome aberrations, the amounts of dicentric chromosomes and centric rings calculate the absorbed dose at the time of the study. In the dose range of 0.1 Gy to 5.0 Gy dependence cytogenetic parameters on the dose had the following equation: Y = 0,0067е^0,3307х (R2 = 0,8206) – for frequency of chromosomal aberrations; Y = 0,0057е^0,3161х (R2 = 0,8832) –for frequency of cells with chromosomal aberrations; Y =5 Е-0,5е^0,6383 (R2 = 0,6321) – or frequency of the amounts of dicentric chromosomes and centric rings on cells. On the basis of cytogenetic parameters and regression equations calculated absorbed dose in workers of uranium production at the time of the study did not exceed 0.3 Gy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stepnogorsk" title="Stepnogorsk">Stepnogorsk</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=cytogenetic" title=" cytogenetic"> cytogenetic</a>, <a href="https://publications.waset.org/abstracts/search?q=dicentric%20chromosomes" title=" dicentric chromosomes"> dicentric chromosomes</a> </p> <a href="https://publications.waset.org/abstracts/2356/mathematical-modeling-of-the-calculation-of-the-absorbed-dose-in-uranium-production-workers-with-the-genetic-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> Absorption of Ultrashort Electromagnetic Pulses on Gold Nanospheres in Various Dielectric Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Svita">Sergey Svita</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeriy%20Astapenko"> Valeriy Astapenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is devoted to theoretical analysis of ultrashort electromagnetic pulses (USP) absorption on gold nanospheres. Dependencies of USP energy absorption on nanospheres placed in various matrix are compared. The results of calculation of absorbed energy on gold nanospheres as a function of ultrashort electromagnetic pulse carrier frequency and number of pulse cycles of carrier frequency show strong non-linear dependence of absorbed energy on number of cycles of carrier frequency, but for relatively large number of cycles on USP carrier frequency it goes to linear dependence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrashort%20electromagnetic%20pulses" title="ultrashort electromagnetic pulses">ultrashort electromagnetic pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption" title=" absorption"> absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=nanospheres" title=" nanospheres"> nanospheres</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20research" title=" theoretical research"> theoretical research</a> </p> <a href="https://publications.waset.org/abstracts/53141/absorption-of-ultrashort-electromagnetic-pulses-on-gold-nanospheres-in-various-dielectric-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Assessment of Gamma Radiation Exposure of Soils Associated with Granitic Rocks in Kapıdağ Peninsula, Turkey </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buket%20Canbaz%20%C3%96zt%C3%BCrk">Buket Canbaz Öztürk</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20F%C3%BCsun%20%C3%87am"> N. Füsun Çam</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCnseli%20Yaprak"> Günseli Yaprak</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Candan"> Osman Candan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The external terrestrial radiation exposure is related to the types of rock from which the soils originate. Higher radiation levels are associated with igneous rocks, such as granite, and lower levels with sedimentary rocks. Therefore, this study aims to assess the gamma radiation exposure of soils associated with granitic rocks in Kapıdağ Peninsula, Turkey. In the ongoing study, a comprehensive survey carried out systematically as a part of the environmental monitoring program on radiologic impact of the granitoid areas in Western Anatolia. The activity measurements of the gamma emitters (238U, 232Th and 40K) in the surface soil samples and the granitic rocks carried out by means of NaI(Tl) gamma-ray spectrometry system. To evaluate the radiological hazard of the natural radioactivity, the absorbed dose rate (D), the annual effective dose rate (AED), the radium equivalent activity (Raeq) and the external (Hex) hazard index were calculated according to the UNSCEAR 2000 report. The corresponding absorbed dose rates in air from all natural radionuclides were always much lower than 200 nGy h-1 and did not exceed the typical range of worldwide average values noticed in the UNSCEAR (2000) report. Furthermore, the correlation between soil and granitic rock samples were utilized, and external gamma radiation exposure distribution was mapped in Kapıdağ Peninsula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=external%20absorbed%20dose" title="external absorbed dose">external absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=granitic%20rocks" title=" granitic rocks"> granitic rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=Kap%C4%B1da%C4%9F%20Peninsula" title=" Kapıdağ Peninsula"> Kapıdağ Peninsula</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/60866/assessment-of-gamma-radiation-exposure-of-soils-associated-with-granitic-rocks-in-kapidag-peninsula-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> A Failure Criterion for Unsupported Boreholes in Poorly Cemented Granular Formations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sam%20S.%20Hashemi">Sam S. Hashemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The breakage of bonding between sand particles and their dislodgment from the borehole wall are among the main factors resulting in a borehole failure in poorly cemented granular formations. The grain debonding usually precedes the borehole failure and it can be considered as a sign that the onset of the borehole collapse is imminent. Detecting the bonding breakage point and introducing an appropriate failure criterion will play an important role in borehole stability analysis. To study the influence of different factors on the initiation of sand bonding breakage at the borehole wall, a series of laboratory tests was designed and conducted on poorly cemented sand samples. The total absorbed strain energy per volume of material up to the point of the observed particle debonding was computed. The results indicated that the particle bonding breakage point at the borehole wall was reached both before and after the peak strength of the thick-walled hollow cylinder specimens depending on the stress path and cement content. Three different cement contents and two borehole sizes were investigated to study the influence of the bonding strength and scale on the particle dislodgment. Test results showed that the stress path has a significant influence on the onset of the sand bonding breakage. It was shown that for various stress paths, there is a near linear relationship between the absorbed energy and the normal effective mean stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=borehole%20stability" title="borehole stability">borehole stability</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20studies" title=" experimental studies"> experimental studies</a>, <a href="https://publications.waset.org/abstracts/search?q=poorly%20cemented%20sands" title=" poorly cemented sands"> poorly cemented sands</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20absorbed%20strain%20energy" title=" total absorbed strain energy"> total absorbed strain energy</a> </p> <a href="https://publications.waset.org/abstracts/59146/a-failure-criterion-for-unsupported-boreholes-in-poorly-cemented-granular-formations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> The Effect of Size, Thickness, and Type of the Bonding Interlayer on Bullet Proof Glass as per EN 1063</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabinder%20Singh%20Bharj">Rabinder Singh Bharj</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation presents preparation of sample and analysis of results of ballistic impact test as per EN 1063 on the size, thickness, number, position, and type of the bonding interlayer Polyvinyl Butyral, Poly Carbonate and Poly Urethane on bullet proof glass. It was observed that impact energy absorbed by bullet proof glass increases with the increase of the total thickness from 33mm to 42mm to 51mm for all the three samples respectively. Absorption impact energy is greater for samples with more number of bonding interlayers than with the number of glass layers for uniform increase in total sample thickness. There is no effect on the absorption impact energy with the change in position of the bonding interlayer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20energy" title="absorbed energy">absorbed energy</a>, <a href="https://publications.waset.org/abstracts/search?q=bullet%20proof%20glass" title=" bullet proof glass"> bullet proof glass</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20glass" title=" laminated glass"> laminated glass</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20glass" title=" safety glass"> safety glass</a> </p> <a href="https://publications.waset.org/abstracts/6184/the-effect-of-size-thickness-and-type-of-the-bonding-interlayer-on-bullet-proof-glass-as-per-en-1063" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> The Spherical Geometric Model of Absorbed Particles: Application to the Electron Transport Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bentabet">A. Bentabet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aydin"> A. Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Fenineche"> N. Fenineche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mean penetration depth has a most important in the absorption transport phenomena. Analytical model of light ion backscattering coefficients from solid targets have been made by Vicanek and Urbassek. In the present work, we showed a mathematical expression (deterministic model) for Z1/2. In advantage, in the best of our knowledge, relatively only one analytical model exit for electron or positron mean penetration depth in solid targets. In this work, we have presented a simple geometric spherical model of absorbed particles based on CSDA scheme. In advantage, we have showed an analytical expression of the mean penetration depth by combination between our model and the Vicanek and Urbassek theory. For this, we have used the Relativistic Partial Wave Expansion Method (RPWEM) and the optical dielectric model to calculate the elastic cross sections and the ranges respectively. Good agreement was found with the experimental and theoretical data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bentabet%20spherical%20geometric%20model" title="Bentabet spherical geometric model">Bentabet spherical geometric model</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20slowing%20down%20approximation" title=" continuous slowing down approximation"> continuous slowing down approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=stopping%20powers" title=" stopping powers"> stopping powers</a>, <a href="https://publications.waset.org/abstracts/search?q=ranges" title=" ranges"> ranges</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20penetration%20depth" title=" mean penetration depth"> mean penetration depth</a> </p> <a href="https://publications.waset.org/abstracts/21045/the-spherical-geometric-model-of-absorbed-particles-application-to-the-electron-transport-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">641</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=absorbed%20and%20unabsorbed%20overheads&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=absorbed%20and%20unabsorbed%20overheads&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=absorbed%20and%20unabsorbed%20overheads&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=absorbed%20and%20unabsorbed%20overheads&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=absorbed%20and%20unabsorbed%20overheads&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=absorbed%20and%20unabsorbed%20overheads&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=absorbed%20and%20unabsorbed%20overheads&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=absorbed%20and%20unabsorbed%20overheads&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=absorbed%20and%20unabsorbed%20overheads&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=absorbed%20and%20unabsorbed%20overheads&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10