CINXE.COM

Search results for: cytogenetic

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cytogenetic</title> <meta name="description" content="Search results for: cytogenetic"> <meta name="keywords" content="cytogenetic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cytogenetic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cytogenetic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 26</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cytogenetic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Mathematical modeling of the calculation of the absorbed dose in uranium production workers with the genetic effects.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Kazymbet">P. Kazymbet</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20%20Abildinova"> G. Abildinova</a>, <a href="https://publications.waset.org/abstracts/search?q=K.Makhambetov"> K.Makhambetov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bakhtin"> M. Bakhtin</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rybalkina"> D. Rybalkina</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Zhumadilov"> K. Zhumadilov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conducted cytogenetic research in workers Stepnogorsk Mining-Chemical Combine (Akmola region) with the study of 26341 chromosomal metaphase. Using a regression analysis with program DataFit, version 5.0, dependence between exposure dose and the following cytogenetic exponents has been studied: frequency of aberrant cells, frequency of chromosomal aberrations, frequency of the amounts of dicentric chromosomes, and centric rings. Experimental data on calibration curves "dose-effect" enabled the development of a mathematical model, allowing on data of the frequency of aberrant cells, chromosome aberrations, the amounts of dicentric chromosomes and centric rings calculate the absorbed dose at the time of the study. In the dose range of 0.1 Gy to 5.0 Gy dependence cytogenetic parameters on the dose had the following equation: Y = 0,0067е^0,3307х (R2 = 0,8206) – for frequency of chromosomal aberrations; Y = 0,0057е^0,3161х (R2 = 0,8832) –for frequency of cells with chromosomal aberrations; Y =5 Е-0,5е^0,6383 (R2 = 0,6321) – or frequency of the amounts of dicentric chromosomes and centric rings on cells. On the basis of cytogenetic parameters and regression equations calculated absorbed dose in workers of uranium production at the time of the study did not exceed 0.3 Gy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stepnogorsk" title="Stepnogorsk">Stepnogorsk</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=cytogenetic" title=" cytogenetic"> cytogenetic</a>, <a href="https://publications.waset.org/abstracts/search?q=dicentric%20chromosomes" title=" dicentric chromosomes"> dicentric chromosomes</a> </p> <a href="https://publications.waset.org/abstracts/2356/mathematical-modeling-of-the-calculation-of-the-absorbed-dose-in-uranium-production-workers-with-the-genetic-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Qf-Pcr as a Rapid Technique for Routine Prenatal Diagnosis of Fetal Aneuploidies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Atef">S. H. Atef </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The most common chromosomal abnormalities identified at birth are aneuploidies of chromosome 21, 18, 13, X and Y. Prenatal diagnosis of fetal aneuploidies is routinely done by traditional cytogenetic culture, a major drawback of this technique is the long period of time required to reach a diagnosis. In this study, we evaluated the QF-PCR as a rapid technique for prenatal diagnosis of common aneuploidies. Method:This work was carried out on Sixty amniotic fluid samples taken from patients with one or more of the following indications: Advanced maternal age (3 case), abnormal biochemical markers (6 cases), abnormal ultrasound (12 cases) or previous history of abnormal child (39 cases).Each sample was tested by QF-PCR and traditional cytogenetic. Aneuploidy screenings were performed amplifying four STRs on chromosomes 21, 18, 13, two pseudoautosomal,one X linked, as well as the AMXY and SRY; markers were distributed in two multiplex QFPCR assays (S1 and S2) in order to reduce the risk of sample mishandling. Results: All the QF-PCR results were successful, while there was two culture failures, only one of them was repeated. No discrepancy was seen between the results of both techniques. Fifty six samples showed normal patterns, three sample showed trisomy 21, successfully detected by both techniques and one sample showed normal pattern by QF-PCR but could not be compared to the cytogenetics due to culture failure, the pregnancy outcome of this case was a normal baby. Conclusion: Our study concluded that QF-PCR is a reliable technique for prenatal diagnosis of the common chromosomal aneuploidies. It has the advantages over the cytogenetic culture of being faster with the results appearing within 24-48 hours, simpler, doesn't need a highly qualified staff, less prone to failure and more cost effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=QF-PCR" title="QF-PCR">QF-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20cytogenetic%20fetal%20aneuploidies" title=" traditional cytogenetic fetal aneuploidies"> traditional cytogenetic fetal aneuploidies</a>, <a href="https://publications.waset.org/abstracts/search?q=trisomy%2021" title=" trisomy 21"> trisomy 21</a>, <a href="https://publications.waset.org/abstracts/search?q=prenatal%20diagnosis" title=" prenatal diagnosis "> prenatal diagnosis </a> </p> <a href="https://publications.waset.org/abstracts/36049/qf-pcr-as-a-rapid-technique-for-routine-prenatal-diagnosis-of-fetal-aneuploidies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Cytogenetic Characterization of the VERO Cell Line Based on Comparisons with the Subline; Implication for Authorization and Quality Control of Animal Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fumio%20Kasai">Fumio Kasai</a>, <a href="https://publications.waset.org/abstracts/search?q=Noriko%20Hirayama"> Noriko Hirayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Pereira"> Jorge Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Azusa%20Ohtani"> Azusa Ohtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Masashi%20Iemura"> Masashi Iemura</a>, <a href="https://publications.waset.org/abstracts/search?q=Malcolm%20A.%20Ferguson%20Smith"> Malcolm A. Ferguson Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Arihiro%20Kohara"> Arihiro Kohara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The VERO cell line was established in 1962 from normal tissue of an African green monkey, Chlorocebus aethiops (2n=60), and has been commonly used worldwide for screening for toxins or as a cell substrate for the production of viral vaccines. The VERO genome was sequenced in 2014; however, its cytogenetic features have not been fully characterized as it contains several chromosome abnormalities and different karyotypes coexist in the cell line. In this study, the VERO cell line (JCRB0111) was compared with one of the sublines. In contrast to 59 chromosomes as the modal chromosome number in the VERO cell line, the subline had two peaks of 56 and 58 chromosomes. M-FISH analysis using human probes revealed that the VERO cell line was characterized by a translocation t(2;25) found in all metaphases, which was absent in the subline. Different abnormalities detected only in the subline show that the cell line is heterogeneous, indicating that the subline has the potential to change its genomic characteristics during cell culture. The various alterations in the two independent lineages suggest that genomic changes in both VERO cells can be accounted for by progressive rearrangements during their evolution in culture. Both t(5;X) and t(8;14) observed in all metaphases of the two cell lines might have a key role in VERO cells and could be used as genetic markers to identify VERO cells. The flow karyotype shows distinct differences from normal. Further analysis of sorted abnormal chromosomes may uncover other characteristics of VERO cells. Because of the absence of STR data, cytogenetic data are important in characterizing animal cell lines and can be an indicator of their quality control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VERO" title="VERO">VERO</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20culture%20passage" title=" cell culture passage"> cell culture passage</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%20rearrangement" title=" chromosome rearrangement"> chromosome rearrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20cells" title=" heterogeneous cells"> heterogeneous cells</a> </p> <a href="https://publications.waset.org/abstracts/32913/cytogenetic-characterization-of-the-vero-cell-line-based-on-comparisons-with-the-subline-implication-for-authorization-and-quality-control-of-animal-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> The Genotoxic Effect of Coal Fly Ash of Thermal Power Plant on Raphanus sativus L. (Radish) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patel%20Kailash%20P">Patel Kailash P</a>, <a href="https://publications.waset.org/abstracts/search?q=Patel%20Parimal%20M">Patel Parimal M</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of coal fly ash treatment on the chromosomes of Raphanus sativus L. was investigated. The seeds of Raphanus sativusL. were placed in petri dishes in three replicates and allowed to germinate for five days in different concentration of coal fly ash solution. The root was treated with the diluted, semidiluted, and concentrated solution of fly ash while the control group had distilled water.The total aberration were examined. The mitotic index was calculated and the results were statically evaluated by the analysis of variance 5% significant level. The mitotic index decreased as the concentration increased. The highest mitotic index value was diluted fly ash solution while the least was concentrated fly ash treatment. The results show the most frequent chromosomal abnormalities observed included: chromatid bridge, c-mitosis, and stickiness. Concentrated fly ash solution is much more genotoxic than semidiluted fly ash solution, as it induced more aberrations having percentage abnormalities for the highest concentration tested. Increased fly ash pollution can lead to some irreversible cytogenetic effect in plants. The study is an attempt to corroborate the toxic effect of coal fly ash of thermal power plant on the chromosome of plants. These results will be useful in environmental monitoring of the cytotoxicity of coal fly ash. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20fly-ash" title="coal fly-ash">coal fly-ash</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxic" title=" genotoxic"> genotoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=cytogenetic" title=" cytogenetic"> cytogenetic</a>, <a href="https://publications.waset.org/abstracts/search?q=mitotic%20index" title=" mitotic index"> mitotic index</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphanus%20sativus%20L." title=" Raphanus sativus L."> Raphanus sativus L.</a> </p> <a href="https://publications.waset.org/abstracts/33350/the-genotoxic-effect-of-coal-fly-ash-of-thermal-power-plant-on-raphanus-sativus-l-radish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Genotoxicity of 4-Nonylphenol (4NP) on Oreochromus spilurs Fish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Alsharif">M. M. Alsharif </a> </p> <p class="card-text"><strong>Abstract:</strong></p> 4-Nonylphenol Compound is widely used as an element of detergents, paints, insecticides and many others products. It is known that the existence of this compound may lead to the emission of estrogenic responses in mammals, birds and fish. It is described as pollutant since it causes disorder of endocrine glands. In previous studies, it was proven that this compound exists in water and in the materials precipitated in Red Sea coast in Jeddah near the drains of processed drainage water and near the drainage site of the residuals of paper factories. Therefore, this study aimed to evaluate the cytogenetic aberrations caused by 4-nonylphenol through exposing Talapia Fishes to aquatic solution of the compound with 0, 15, 30 microgram/liter for one month. Samples of gills and liver were collected for micronuclei, nuclear abnormalities and measuring DNA and RNA amount in the treated fish. The results pointed out that there is a significant increase in the numbers of micronuclei in the fish exposed to the former concentrations as compared to the control group. Exposing fishes to 4-nonylphenol resulted in an increased amount of both DNA and RNA, compared to the control group. There is a positive correlation between the amount of the compound (i.e. dosage dependent effect) and the inspiring for cytogenetic effect on Talapia fishes in Jeddah. Therefore, micronucleus test, DNA and RNA contents can be considered as an index of cumulative exposure, which appear to be a sensitive model to evaluate genotoxic effects of 4-Nonylphenol compound on fish. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genotoxic" title="genotoxic">genotoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=4-nonylphenol" title=" 4-nonylphenol"> 4-nonylphenol</a>, <a href="https://publications.waset.org/abstracts/search?q=micronuclei" title=" micronuclei"> micronuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA" title=" RNA"> RNA</a> </p> <a href="https://publications.waset.org/abstracts/6220/genotoxicity-of-4-nonylphenol-4np-on-oreochromus-spilurs-fish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Cytogenetic Investigation of Patients with Disorder of Sexual Development Using G-Banding Karyotype and Fluorescence In situ Hybridization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riksa%20Parikrama">Riksa Parikrama</a>, <a href="https://publications.waset.org/abstracts/search?q=Bremmy%20Laksono"> Bremmy Laksono</a>, <a href="https://publications.waset.org/abstracts/search?q=Dadang%20S.%20H.%20Effendi"> Dadang S. H. Effendi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disorder of sexual development (DSD) covers various conditions with a specific term such as Klinefelter syndrome, Turner syndrome, androgen insensitivity syndrome, and many more. The techniques to accurately diagnose those conditions has developed extensively. However, conventional karyotype and fluorescence in situ hybridization (FISH) are still widely used in many genetic laboratories as the basic method to determine chromosomal condition of DSD patients. Cytogenetic study was conducted on 36 DSD patients in Cell Culture and Cytogenetics Laboratory, Faculty of Medicine Universitas Padjadjaran, Indonesia. Most of the patients referred to the laboratory diagnosed with primary amenorrhea, hypospadias, micropenis, genitalia ambiguity, or congenital adrenal hyperplasia. The study used G-banding technique to acquire complete karyotype and followed by FISH as either confirmation or comparison method. Among 36 patients, G-banding karyotype and FISH results showed that two were diagnosed with 45, X (Turner syndrome); three with 47, XXY (Klinefelter syndrome); five with 46, XX DSD; 22 with 46, XY DSD; and four with 46,XY complete androgen insensitivity syndrome. G-banding karyotype analysis were paired with FISH using X and Y chromosome probe produced similar results. The present analysis showed that FISH is a reliable method to attain a rapid and accurate chromosome analysis result of DSD patients. Nevertheless, conventional karyotype technique is still vital if other condition appeared in DSD patients in order to get more detailed karyotype result which FISH method cannot achieve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromosome" title="chromosome">chromosome</a>, <a href="https://publications.waset.org/abstracts/search?q=DSD" title=" DSD"> DSD</a>, <a href="https://publications.waset.org/abstracts/search?q=FISH" title=" FISH"> FISH</a>, <a href="https://publications.waset.org/abstracts/search?q=karyotype" title=" karyotype"> karyotype</a> </p> <a href="https://publications.waset.org/abstracts/59548/cytogenetic-investigation-of-patients-with-disorder-of-sexual-development-using-g-banding-karyotype-and-fluorescence-in-situ-hybridization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Assessment of Cytogenetic Damage as a Function of Radiofrequency Electromagnetic Radiations Exposure Measured by Electric Field Strength: A Gender Based Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramanpreet">Ramanpreet</a>, <a href="https://publications.waset.org/abstracts/search?q=Gursatej%20Gandhi"> Gursatej Gandhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Dependence on electromagnetic radiations involved in communication and information technologies has incredibly increased in the personal and professional world. Among the numerous radiations, sources are fixed site transmitters, mobile phone base stations, and power lines beside indoor devices like cordless phones, WiFi, Bluetooth, TV, radio, microwave ovens, etc. Rather there is the continuous emittance of radiofrequency radiations (RFR) even to those not using the devices from mobile phone base stations. The consistent and widespread usage of wireless devices has build-up electromagnetic fields everywhere. In fact, the radiofrequency electromagnetic field (RF-EMF) has insidiously become a part of the environment and like any contaminant may pose to be health-hazardous requiring assessment. Materials and Methods: In the present study, cytogenetic damage was assessed using the Buccal Micronucleus Cytome (BMCyt) assay as a function of radiation exposure after Institutional Ethics Committee clearance of the study and written voluntary informed consent from the participants. On a pre-designed questionnaire, general information lifestyle patterns (diet, physical activity, smoking, drinking, use of mobile phones, internet, Wi-Fi usage, etc.) genetic, reproductive (pedigrees) and medical histories were recorded. For this, 24 hour-personal exposimeter measurements (PEM) were recorded for unrelated 60 healthy adults (40 cases residing in the vicinity of mobile phone base stations since their installation and 20 controls residing in areas with no base stations). The personal exposimeter collects information from all the sources generating EMF (TETRA, GSM, UMTS, DECT, and WLAN) as total RF-EMF uplink and downlink. Findings: The cases (n=40; 23-90 years) and the controls (n=20; 19-65 years) matched for alcohol drinking, smoking habits, and mobile and cordless phone usage. The PEM in cases (149.28 ± 8.98 mV/m) revealed significantly higher (p=0.000) electric field strength compared to the recorded value (80.40 ± 0.30 mV/m) in controls. The GSM 900 uplink (p=0.000), GSM 1800 downlink (p=0.000),UMTS (both uplink; p=0.013 and downlink; p=0.001) and DECT (p=0.000) electric field strength were significantly elevated in the cases as compared to controls. The electric field strength in the cases was significantly from GSM1800 (52.26 ± 4.49mV/m) followed by GSM900 (45.69 ± 4.98mV/m), UMTS (25.03 ± 3.33mV/m), DECT (18.02 ± 2.14mV/m) and was least from WLAN (8.26 ± 2.35mV/m). The higher significantly (p=0.000) increased exposure to the cases was from GSM (97.96 ± 6.97mV/m) in comparison to UMTS, DECT, and WLAN. The frequencies of micronuclei (1.86X, p=0.007), nuclear buds (2.95X, p=0.002) and cell death parameter (condensed chromatin cells) were significantly (1.75X, p=0.007) elevated in cases compared to that in controls probably as a function of radiofrequency radiation exposure. Conclusion: In the absence of other exposure(s), any cytogenetic damage if unrepaired is a cause of concern as it can cause malignancy. Larger sample size with the clinical assessment will prove more insightful of such an effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buccal%20micronucleus%20cytome%20assay" title="Buccal micronucleus cytome assay">Buccal micronucleus cytome assay</a>, <a href="https://publications.waset.org/abstracts/search?q=cytogenetic%20damage" title=" cytogenetic damage"> cytogenetic damage</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20strength" title=" electric field strength"> electric field strength</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20exposimeter" title=" personal exposimeter"> personal exposimeter</a> </p> <a href="https://publications.waset.org/abstracts/109071/assessment-of-cytogenetic-damage-as-a-function-of-radiofrequency-electromagnetic-radiations-exposure-measured-by-electric-field-strength-a-gender-based-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> High Expression Levels and Amplification of rRNA Genes in a Mentally Retarded Child with 13p+: A Familial Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20S.%20Kolesnikova">Irina S. Kolesnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.%20Dolskiy"> Alexander A. Dolskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalya%20A.%20Lemskaya"> Natalya A. Lemskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Yulia%20V.%20Maksimova"> Yulia V. Maksimova</a>, <a href="https://publications.waset.org/abstracts/search?q=Asia%20R.%20Shorina"> Asia R. Shorina</a>, <a href="https://publications.waset.org/abstracts/search?q=Alena%20S.%20Telepova"> Alena S. Telepova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20S.%20Graphodatsky"> Alexander S. Graphodatsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20V.%20Yudkin"> Dmitry V. Yudkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cytogenetic and molecular genetic study of the family with a male child who had mental retardation and autistic features revealed an abnormal chromosome 13 bearing an enlarged p-arm with amplified ribosomal DNA (rDNA) in a boy and his father. Cytogenetic analysis using standard G-banding and FISH with labeled rDNA probes revealed an abnormal chromosome 13 with an enlarged p-arms due to rDNA amplification in a male child, who had clinically confirmed mental retardation and an autistic behavior. This chromosome is evidently inherited from the father, who has morphologically the same chromosome, but is healthy. The karyotype of the mother was normal. Ag-NOR staining showed brightly stained large whole-p-arm nucleolus organizer regions (NORs) in a child and normal-sized NORs in his father with 13p+-NOR-amount mosaicism. qRT-PCR with specific primers showed highly increased levels of 18S, 28S and 5,8 S ribosomal RNA (rRNA) in the patient’s blood samples compared to a normal healthy control donor. Both patient’s father and mother had no elevated levels of rRNAs expression. Thus, in this case, rRNA level seems to correlate with mental retardation in familial individuals with 13p+. Our findings of rRNA overexpression in a patient with mental retardation and his parents may show a possible link between the karyotype (p-arm enlargement due to rDNA amplification), rDNA functionality (rRNA overexpression), functional changes in the brain and mental retardation. The study is supported by Russian Science Foundation Grant 15-15-10001. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mental%20retardation" title="mental retardation">mental retardation</a>, <a href="https://publications.waset.org/abstracts/search?q=ribosomal%20DNA%E2%80%93rDNA" title=" ribosomal DNA–rDNA"> ribosomal DNA–rDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=ribosomal%20RNA%E2%80%93rRNA" title=" ribosomal RNA–rRNA"> ribosomal RNA–rRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleolus%20organizer%20region%E2%80%93NOR" title=" nucleolus organizer region–NOR"> nucleolus organizer region–NOR</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%2013" title=" chromosome 13"> chromosome 13</a> </p> <a href="https://publications.waset.org/abstracts/60315/high-expression-levels-and-amplification-of-rrna-genes-in-a-mentally-retarded-child-with-13p-a-familial-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Assessment of Occupational Exposure and Individual Radio-Sensitivity in People Subjected to Ionizing Radiation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oksana%20G.%20Cherednichenko">Oksana G. Cherednichenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20L.%20Pilyugina"> Anastasia L. Pilyugina</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20N.Lukashenko"> Sergey N.Lukashenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20G.%20Gubitskaya"> Elena G. Gubitskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The estimation of accumulated radiation doses in people professionally exposed to ionizing radiation was performed using methods of biological (chromosomal aberrations frequency in lymphocytes) and physical (radionuclides analysis in urine, whole-body radiation meter, individual thermoluminescent dosimeters) dosimetry. A group of 84 &quot;A&quot; category employees after their work in the territory of former Semipalatinsk test site (Kazakhstan) was investigated. The dose rate in some funnels exceeds 40 &mu;Sv/h. After radionuclides determination in urine using radiochemical and WBC methods, it was shown that the total effective dose of personnel internal exposure did not exceed 0.2 mSv/year, while an acceptable dose limit for staff is 20 mSv/year. The range of external radiation doses measured with individual thermo-luminescent dosimeters was 0.3-1.406 &micro;Sv. The cytogenetic examination showed that chromosomal aberrations frequency in staff was 4.27&plusmn;0.22%, which is significantly higher than at the people from non-polluting settlement Tausugur (0.87&plusmn;0.1%) (р &le; 0.01) and citizens of Almaty (1.6&plusmn;0.12%) (р&le; 0.01). Chromosomal type aberrations accounted for 2.32&plusmn;0.16%, 0.27&plusmn;0.06% of which were dicentrics and centric rings. The cytogenetic analysis of different types group radiosensitivity among &laquo;professionals&raquo; (age, sex, ethnic group, epidemiological data) revealed no significant differences between the compared values. Using various techniques by frequency of dicentrics and centric rings, the average cumulative radiation dose for group was calculated, and that was 0.084-0.143 Gy. To perform comparative individual dosimetry using physical and biological methods of dose assessment, calibration curves (including own ones) and regression equations based on general frequency of chromosomal aberrations obtained after irradiation of blood samples by gamma-radiation with the dose rate of 0,1 Gy/min were used. Herewith, on the assumption of individual variation of chromosomal aberrations frequency (1&ndash;10%), the accumulated dose of radiation varied 0-0.3 Gy. The main problem in the interpretation of individual dosimetry results is reduced to different reaction of the objects to irradiation - radiosensitivity, which dictates the need of quantitative definition of this individual reaction and its consideration in the calculation of the received radiation dose. The entire examined contingent was assigned to a group based on the received dose and detected cytogenetic aberrations. Radiosensitive individuals, at the lowest received dose in a year, showed the highest frequency of chromosomal aberrations (5.72%). In opposite, radioresistant individuals showed the lowest frequency of chromosomal aberrations (2.8%). The cohort correlation according to the criterion of radio-sensitivity in our research was distributed as follows: radio-sensitive (26.2%) &mdash; medium radio-sensitivity (57.1%), radioresistant (16.7%). Herewith, the dispersion for radioresistant individuals is 2.3; for the group with medium radio-sensitivity &mdash; 3.3; and for radio-sensitive group &mdash; 9. These data indicate the highest variation of characteristic (reactions to radiation effect) in the group of radio-sensitive individuals. People with medium radio-sensitivity show significant long-term correlation (0.66; n=48, &beta; &ge; 0.999) between the values of doses defined according to the results of cytogenetic analysis and dose of external radiation obtained with the help of thermoluminescent dosimeters. Mathematical models based on the type of violation of the radiation dose according to the professionals radiosensitivity level were offered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodosimetry" title="biodosimetry">biodosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosomal%20aberrations" title=" chromosomal aberrations"> chromosomal aberrations</a>, <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title=" ionizing radiation"> ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=radiosensitivity" title=" radiosensitivity"> radiosensitivity</a> </p> <a href="https://publications.waset.org/abstracts/74455/assessment-of-occupational-exposure-and-individual-radio-sensitivity-in-people-subjected-to-ionizing-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Understanding Different Facets of Chromosome Abnormalities: A 17-year Cytogenetic Study and Indian Perspectives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Rao%20Kandukuri">Lakshmi Rao Kandukuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamata%20Deenadayal"> Mamata Deenadayal</a>, <a href="https://publications.waset.org/abstracts/search?q=Suma%20Prasad"> Suma Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Bipin%20Sethi"> Bipin Sethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinadh%20Buragadda"> Srinadh Buragadda</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalji%20Singh">Lalji Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Worldwide; at least 7.6 million children are born annually with severe genetic or congenital malformations and among them 90% of these are born in mid and low-income countries. Precise prevalence data are difficult to collect, especially in developing countries, owing to the great diversity of conditions and also because many cases remain undiagnosed. The genetic and congenital disorder is the second most common cause of infant and childhood mortality and occurs with a prevalence of 25-60 per 1000 births. The higher prevalence of genetic diseases in a particular community may, however, be due to some social or cultural factors. Such factors include the tradition of consanguineous marriage, which results in a higher rate of autosomal recessive conditions including congenital malformations, stillbirths, or mental retardation. Genetic diseases can vary in severity, from being fatal before birth to requiring continuous management; their onset covers all life stages from infancy to old age. Those presenting at birth are particularly burdensome and may cause early death or life-long chronic morbidity. Genetic testing for several genetic diseases identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Several hundred genetic tests are currently in use and more are being developed. Chromosomal abnormalities are the major cause of human suffering, which are implicated in mental retardation, congenital malformations, dysmorphic features, primary and secondary amenorrhea, reproductive wastage, infertility neoplastic diseases. Cytogenetic evaluation of patients is helpful in the counselling and management of affected individuals and families. We present here especially chromosomal abnormalities which form a major part of genetic disease burden in India. Different programmes on chromosome research and human reproductive genetics primarily relate to infertility since this is a major public health problem in our country, affecting 10-15 percent of couples. Prenatal diagnosis of chromosomal abnormalities in high-risk pregnancies helps in detecting chromosomally abnormal foetuses. Such couples are counselled regarding the continuation of pregnancy. In addition to the basic research, the team is providing chromosome diagnostic services that include conventional and advanced techniques for identifying various genetic defects. Other than routine chromosome diagnosis for infertility, also include patients with short stature, hypogonadism, undescended testis, microcephaly, delayed developmental milestones, familial, and isolated mental retardation, and cerebral palsy. Thus, chromosome diagnostics has found its applicability not only in disease prevention and management but also in guiding the clinicians in certain aspects of treatment. It would be appropriate to affirm that chromosomes are the images of life and they unequivocally mirror the states of human health. The importance of genetic counseling is increasing with the advancement in the field of genetics. The genetic counseling can help families to cope with emotional, psychological, and medical consequences of genetic diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=India" title="India">India</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%20abnormalities" title=" chromosome abnormalities"> chromosome abnormalities</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20disorders" title=" genetic disorders"> genetic disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=cytogenetic%20study" title=" cytogenetic study"> cytogenetic study</a> </p> <a href="https://publications.waset.org/abstracts/34464/understanding-different-facets-of-chromosome-abnormalities-a-17-year-cytogenetic-study-and-indian-perspectives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> A Report of 5-Months-Old Baby with Balanced Chromosomal Rearrangements along with Phenotypic Abnormalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohit%20Kumar">Mohit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Beklashwar%20Salona"> Beklashwar Salona</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiv%20Murti"> Shiv Murti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Singh"> Mukesh Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report here a case of five-months old male baby, born as second child of non-consanguineous parents with no considerable history of genetic abnormality which was referred to our cytogenetic laboratory for chromosomal analysis. Physical dysmorphic facial features including mongoloid face, cleft palate, simian crease, and developmental delay were observed. We present this case with unique balanced autosomal translocation of t(3;10)(p21;p13). The risk of phenotypic abnormalities based on de novo balanced translocation was estimated to be 7%. The association of balanced chromosomal rearrangement with Down syndrome features such as multiple congenital anomalies, facial dysmorphism and congenital heart anomalies are very rare in a 5-months old male child. Trisomy-21 is not uncommon in chromosomal abnormality with the birth defect and balanced translocations are frequently observed in patients with secondary infertility or recurrent spontaneous abortion (RSA). Two ml heparinized peripheral blood cells cultured in RPMI-1640 for 72 hours supplemented with 20% fetal bovine serum, phytohemagglutinin (PHA), and antibiotics were used for chromosomal analysis. A total 30 metaphases images were captured using Olympus-BX51 microscope and analyzed using Bio-view karyotyping software through GTG-banding (G bands by trypsin and Giemsa) according to International System for Human Cytogenetic Nomenclature 2016. The results showed balanced translocation between short arm of chromosome # 3 and short arm of chromosome # 10. The karyotype of the child was found to be 46,XY,t(3;10)(p21; p13). Chromosomal abnormalities are one of the major causes of birth defect in new born babies. Also, balanced translocations are frequently observed in patients with secondary infertility or recurrent spontaneous abortion. The index case presented with dysmorphic facial features and had a balanced translocation 46,XY,t(3;10)(p21;p13). This translocation with break points at (p21; p13) has not been reported in the literature in a child with facial dysmorphism. To the best of our knowledge, this is the first report of novel balanced translocation t(3;10) with break points in a child with dysmorphic features. We found balanced chromosomal translocation instead of any trisomy or unbalanced aberrations along with some phenotypic abnormalities. Therefore, we suggest that such novel balanced translocation with abnormal phenotype should be reported in order to enable the pathologist, pediatrician, and gynecologist to have a better insight into the intricacies of chromosomal abnormalities and their associated phenotypic features. We hypothesized that dysmorphic features as seen in this case may be the result of change in the pattern of genes located at the breakpoint area in balanced translocations or may be due to deletion or mutation of genes located on the p-arm of chromosome # 3 and p-arm of chromosome # 10. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balanced%20translocation" title="balanced translocation">balanced translocation</a>, <a href="https://publications.waset.org/abstracts/search?q=karyotyping" title=" karyotyping"> karyotyping</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotypic%20abnormalities" title=" phenotypic abnormalities"> phenotypic abnormalities</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20dimorphisms" title=" facial dimorphisms"> facial dimorphisms</a> </p> <a href="https://publications.waset.org/abstracts/77373/a-report-of-5-months-old-baby-with-balanced-chromosomal-rearrangements-along-with-phenotypic-abnormalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> In vivo Protective Effects of Ginger Extract on Cyclophosphamide Induced Chromosomal Aberrations in Bone Marrow Cells of Swiss Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Yadamma">K. Yadamma</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Rudrama%20Devi"> K. Rudrama Devi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The protective effect of Ginger Extract against cyclophosphamide induced cytotoxicity was evaluated in in vivo animal model using analysis of chromosomal aberrations in somatic cells of mice. Three doses of Ginger Extract (150mg/kg, 200mg/kg, and 250mg/kg body weight) were selected for modulation and given to animals after priming. The animals were sacrificed 24, 48, 72 hrs after the treatment and slides were prepared for the incidence of chromosomal aberrations in bone marrow cells of mice. When animals were treated with cyclophosphamide 50mg/kg, showed cytogenetic damage in somatic cells. However, a significant decrease was observed in the percentage of chromosomal aberrations when animals were primed with various doses of Ginger Extract. The present results clearly indicate the protective nature of Ginger Extract against cyclophosphamide induced genetic damage in mouse bone marrow cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ginger%20extract" title="ginger extract">ginger extract</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20marrow%20cells" title=" bone marrow cells"> bone marrow cells</a>, <a href="https://publications.waset.org/abstracts/search?q=swiss%20albino%20mice" title=" swiss albino mice"> swiss albino mice</a> </p> <a href="https://publications.waset.org/abstracts/11921/in-vivo-protective-effects-of-ginger-extract-on-cyclophosphamide-induced-chromosomal-aberrations-in-bone-marrow-cells-of-swiss-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> In vitro Cytotoxic and Genotoxic Effects of Arsenic Trioxide on Human Keratinocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Bouaziz">H. Bouaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sefi"> M. Sefi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20de%20Lapuente"> J. de Lapuente</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Borras"> M. Borras</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zeghal"> N. Zeghal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although arsenic trioxide has been the subject of toxicological research, in vitro cytotoxicity and genotoxicity studies using relevant cell models and uniform methodology are not well elucidated. Hence, the aim of the present study was to evaluate the cytotoxicity and genotoxicity induced by arsenic trioxide in human keratinocytes (HaCaT) using the MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and alkaline single cell gel electrophoresis (Comet) assays, respectively. Human keratinocytes were treated with different doses of arsenic trioxide for 4 h prior to cytogenetic assessment. Data obtained from the MTT assay indicated that arsenic trioxide significantly reduced the viability of HaCaT cells in a dose-dependent manner, showing a IC50 value of 34.18 ± 0.6 µM. Data generated from the comet assay also indicated a significant dose-dependent increase in DNA damage in HaCaT cells associated with arsenic trioxide exposure. We observed a significant increase in comet tail length and tail moment, showing an evidence of arsenic trioxide -induced genotoxic damage in HaCaT cells. This study confirms that the comet assay is a sensitive and effective method to detect DNA damage caused by arsenic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic%20trioxide" title="arsenic trioxide">arsenic trioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxixity" title=" cytotoxixity"> cytotoxixity</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title=" genotoxicity"> genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=HaCaT" title=" HaCaT"> HaCaT</a> </p> <a href="https://publications.waset.org/abstracts/27537/in-vitro-cytotoxic-and-genotoxic-effects-of-arsenic-trioxide-on-human-keratinocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Analysis of Saudi Breast Cancer Patients’ Primary Tumors using Array Comparative Genomic Hybridization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Al-Harbi">L. M. Al-Harbi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Shokry"> A. M. Shokry</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20M.%20Sabir"> J. S. M. Sabir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chaudhary"> A. Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Manikandan"> J. Manikandan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Saini"> K. S. Saini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer is the second most common cause of cancer death worldwide and is the most common malignancy among Saudi females. During breast carcinogenesis, a wide-array of cytogenetic changes involving deletions, or amplification, or translocations, of part or whole of chromosome regions have been observed. Because of the limitations of various earlier technologies, newer tools are developed to scan for changes at the genomic level. Recently, Array Comparative Genomic Hybridization (aCGH) technique has been applied for detecting segmental genomic alterations at molecular level. In this study, aCGH was performed on twenty breast cancer tumors and their matching non-tumor (normal) counterparts using the Agilent 2x400K. Several regions were identified to be either amplified or deleted in a tumor-specific manner. Most frequent alterations were amplification of chromosome 1q, chromosome 8q, 20q, and deletions at 16q were also detected. The amplification of genetic events at 1q and 8q were further validated using FISH analysis using probes targeting 1q25 and 8q (MYC gene). The copy number changes at these loci can potentially cause a significant change in the tumor behavior, as deletions in the E-Cadherin (CDH1)-tumor suppressor gene as well as amplification of the oncogenes-Aurora Kinase A. (AURKA) and MYC could make these tumors highly metastatic. This study validates the use of aCGH in Saudi breast cancer patients and sets the foundations necessary for performing larger cohort studies searching for ethnicity-specific biomarkers and gene copy number variations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biology" title=" molecular biology"> molecular biology</a>, <a href="https://publications.waset.org/abstracts/search?q=ecology" title=" ecology"> ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/5124/analysis-of-saudi-breast-cancer-patients-primary-tumors-using-array-comparative-genomic-hybridization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Study of Demographic, Hematological Profile and Risk Stratification in Chronic Myeloid Leukemia Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajandeep%20Kaur">Rajandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Gupta"> Rajeev Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Chronic myeloid leukemia (CML) is the most common leukaemia in India. The annual incidence of chronic myeloid leukemia in India was originally reported to be 0.8 to 2.2 per 1,00,000 population. CML is a clonal disorder that is usually easily diagnosed because the leukemic cells of more than 95% of patients have a distinctive cytogenetic abnormality, the Philadelphia chromosome (Ph1). The approval of tyrosine kinase inhibitors (TKIs), which target BCR-ABL1 kinase activity, has significantly reduced the mortality rate associated with chronic myeloid leukemia (CML) and revolutionized treatment. Material and Methods: 80 diagnosed cases of CML were taken. Investigations were done. Bone marrow and molecular studies were also done and with EUTOS, patients were stratified into low and high-risk groups and then treatment with Imatinib was given to all patients and the molecular response was evaluated at 6 months and 12 months follow up with BCR-ABL by RT-PCR quantitative assay. Results: In the study population, out of 80 patients in the study population, 40 were females and 40 were males, with M: F is 1:1. Out of total 80 patients’ maximum patients (54) were in 31-60 years age group. Our study showed a most common symptom of presentation is abdominal discomfort followed by fever. Out of the total 80 patients, 25 (31.3%) patients had high EUTOS scores and 55 (68.8%) patients had low EUTOS scores. On 6 months follow up 36.3% of patients had Complete Molecular Response, 16.3% of patients had Major Molecular Response and 47.5% of patients had No Molecular Response but on 12 months follow up 71.3% of patients had Complete Molecular Response, 16.25% of patients had Major Molecular Response and 12.5% patients had No Molecular Response. Conclusion: In this study, we found a significant correlation between EUTOS score and Molecular response at 6 months and 12 months follow up after Imatinib therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20myeloid%20leukemia" title="chronic myeloid leukemia">chronic myeloid leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20treatment%20and%20outcome%20study%20score" title=" European treatment and outcome study score"> European treatment and outcome study score</a>, <a href="https://publications.waset.org/abstracts/search?q=hematological%20response" title=" hematological response"> hematological response</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20response" title=" molecular response"> molecular response</a>, <a href="https://publications.waset.org/abstracts/search?q=tyrosine%20kinase%20inhibitor" title=" tyrosine kinase inhibitor"> tyrosine kinase inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/147756/study-of-demographic-hematological-profile-and-risk-stratification-in-chronic-myeloid-leukemia-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Institutional Capacity of Health Care Institutes for Diagnosis and Management of Common Genetic Diseases-a Study from a North Coastal District of Andhra Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koteswara%20Rao%20Pagolu">Koteswara Rao Pagolu</a>, <a href="https://publications.waset.org/abstracts/search?q=Raghava%20Rao%20Tamanam"> Raghava Rao Tamanam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In India, genetic disease is a disregarded service element in the community health- protection system. This study aims to gauge the accessibility of services for treating genetic disorders and also to evaluate the practices on deterrence and management services in the district health system. A cross-sectional survey of selected health amenities in the government health sector was conducted from 15 primary health centers (PHC’s), 4 community health centers (CHC’s), 1 district government hospital (DGH) and 3 referral hospitals (RH’s). From these, the existing manpower like 130 medical officers (MO’s), 254 supporting staff, 409 nursing staff (NS) and 45 lab technicians (LT’s) was examined. From the side of private health institutions, 25 corporate hospitals (CH’s), 3 medical colleges (MC’s) and 25 diagnostic laboratories (DL’s) were selected for the survey and from these, 316 MO’s, 995 NS and 254 LT’s were also reviewed. The findings show that adequate staff was in place at more than 70% of health centers, but none of the staff have obtained any operative training on genetic disease management. The largest part of the DH’s had rudimentary infrastructural and diagnostic facilities. However, the greater part of the CHC’s and PHC’s had inadequate diagnostic facilities related to genetic disease management. Biochemical, molecular, and cytogenetic services were not available at PHC’s and CHC’s. DH’s, RH’s, and all selected medical colleges were found to have offered the basic Biochemical genetics units during the survey. The district health care infrastructure in India has a shortage of basic services to be provided for the genetic disorder. With some policy resolutions and facility strengthening, it is possible to provide advanced services for a genetic disorder in the district health system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=district%20health%20system" title="district health system">district health system</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20disorder" title=" genetic disorder"> genetic disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructural%20amenities" title=" infrastructural amenities"> infrastructural amenities</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20practices" title=" management practices"> management practices</a> </p> <a href="https://publications.waset.org/abstracts/139234/institutional-capacity-of-health-care-institutes-for-diagnosis-and-management-of-common-genetic-diseases-a-study-from-a-north-coastal-district-of-andhra-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Obtaining Triploid Plants of Sprekelia formosissima by Artificial Hybridization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Manuel%20Rodriguez-Dominguez">Jose Manuel Rodriguez-Dominguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Barba-Gonzalez"> Rodrigo Barba-Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Tapia-Campos"> Ernesto Tapia-Campos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sprekelia formosissima (L.) Herbert is a bulbous ornamental species of the monocotyledonous Amaryllidaceae family, and it is a perennial, herbaceous monotypic plant commonly known as ‘Aztec Lily’ or ‘Jacobean Lily’; it is distributed through Mexico and Guatemala. Its scarlet flowers with curved petals have made it an exceptional ornamental pot plant. Cytogenetic studies in this species have shown differences in chromosome number (2n=60, 120, 150, 180) with a basic number x=30. Different reports have shown a variable ploidy level (diploid, tetraploid, pentaploid and hexaploid); however, triploid plants have not been reported. In this work, triploid plants of S. formosissima were obtained by crossing tetraploid (2n=4x=120) with diploid (2n=2x=60) genotypes of this species; the seeds obtained from the crosses were placed in pots with a moist substrate made of Peat Moss: Vermiculite (7:3) for germination. Root tips were collected, and metaphasic chromosome preparations were performed. For chromosome counting, the best five metaphases obtained were photographed with a Leica DMRA2 microscope (Leica Microsystems, Germany) microscopy coupled to an Evolution QEI camera under phase contrast (Media-Cybernetics). Chromosomes counting in root-tip cells showed that 100% of the plants were triploid (2n=3x=90). Although tetraploid or pentaploid plants of S. formosissima are highly appreciated, they usually have lower growth rates than related diploid ones. For this reason, it is important to obtain triploid plants, which have advantages such as higher growth rates than tetraploid and pentaploid, larger flowers than those of the diploid plants and they are expected to not be able to produce seeds because their gametes are aneuploids. Furthermore, triploids may become very important for genomic research in the future, creating opportunities for discovering and monitoring genomic and transcriptomic changes in unbalanced genomes, hence the importance of this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amaryllidaceae" title="Amaryllidaceae">Amaryllidaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=cytogenetics" title=" cytogenetics"> cytogenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental" title=" ornamental"> ornamental</a>, <a href="https://publications.waset.org/abstracts/search?q=ploidy%20level" title=" ploidy level"> ploidy level</a> </p> <a href="https://publications.waset.org/abstracts/137085/obtaining-triploid-plants-of-sprekelia-formosissima-by-artificial-hybridization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Brachypodium: A Model Genus to Study Grass Genome Organisation at the Cytomolecular Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Hasterok">R. Hasterok</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Betekhtin"> A. Betekhtin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Borowska"> N. Borowska</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Braszewska-Zalewska"> A. Braszewska-Zalewska</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Breda"> E. Breda</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Chwialkowska"> K. Chwialkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Gorkiewicz"> R. Gorkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Idziak"> D. Idziak</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kwasniewska"> J. Kwasniewska</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kwasniewski"> M. Kwasniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Siwinska"> D. Siwinska</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Wiszynska"> A. Wiszynska</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Wolny"> E. Wolny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In contrast to animals, the organisation of plant genomes at the cytomolecular level is still relatively poorly studied and understood. However, the Brachypodium genus in general and B. distachyon in particular represent exceptionally good model systems for such study. This is due not only to their highly desirable ‘model’ biological features, such as small nuclear genome, low chromosome number and complex phylogenetic relations, but also to the rapidly and continuously growing repertoire of experimental tools, such as large collections of accessions, WGS information, large insert (BAC) libraries of genomic DNA, etc. Advanced cytomolecular techniques, such as fluorescence in situ hybridisation (FISH) with evermore sophisticated probes, empowered by cutting-edge microscope and digital image acquisition and processing systems, offer unprecedented insight into chromatin organisation at various phases of the cell cycle. A good example is chromosome painting which uses pools of chromosome-specific BAC clones, and enables the tracking of individual chromosomes not only during cell division but also during interphase. This presentation outlines the present status of molecular cytogenetic analyses of plant genome structure, dynamics and evolution using B. distachyon and some of its relatives. The current projects focus on important scientific questions, such as: What mechanisms shape the karyotypes? Is the distribution of individual chromosomes within an interphase nucleus determined? Are there hot spots of structural rearrangement in Brachypodium chromosomes? Which epigenetic processes play a crucial role in B. distachyon embryo development and selective silencing of rRNA genes in Brachypodium allopolyploids? The authors acknowledge financial support from the Polish National Science Centre (grants no. 2012/04/A/NZ3/00572 and 2011/01/B/NZ3/00177) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brachypodium" title="Brachypodium">Brachypodium</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20distachyon" title=" B. distachyon"> B. distachyon</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome" title=" chromosome"> chromosome</a>, <a href="https://publications.waset.org/abstracts/search?q=FISH" title=" FISH"> FISH</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20cytogenetics" title=" molecular cytogenetics"> molecular cytogenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleus" title=" nucleus"> nucleus</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20genome%20organisation" title=" plant genome organisation"> plant genome organisation</a> </p> <a href="https://publications.waset.org/abstracts/12066/brachypodium-a-model-genus-to-study-grass-genome-organisation-at-the-cytomolecular-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Evaluation of Occupational Exposure to Chromium for Welders of Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Musak">L. Musak</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Valachova"> J. Valachova</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Vasicko"> T. Vasicko</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Osina"> O. Osina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stainless steel is resistant to electrochemical corrosion by passivation. Welders are greatly exposed to welding fumes of toxic metals, which added to this steel. The content of chromium (Cr) is above 11.5%, Ni and Mo from 2 to 6.5%. The aim of the study was the evaluation of occupational exposure to Cr, chromosome analysis and valuation of individual susceptibility polymorphism of gene CCND1 c.870 G>A. The exposed group was consisted from 117 welders of stainless steels. The average age was 38.43 years and average exposure time 7.14 years. Smokers represented 40.17%. The control group consisted of 123 non-exposed workers with an average age of 39.74 years and time employment 16.67 years. Smokers accounted for 22.76%. Analysis of Cr in blood and urine was performed by atomic absorption spectrophotometry (AAS Varian SpectraAA 30P) with electrothermal decomposition of the sample in the graphite furnace. For the evaluation of chromosomal aberrations (CA) cytogenetic analysis of peripheral blood lymphocytes was used. Gene polymorphism was determined by PCR-RFLP reaction using appropriate primers and restriction enzymes. For statistic analysis the Mann-Whitney U-test was used. The mean Cr level in blood of exposed group was 0.095 µmol/l (0.019 min - max 0.504). No value exceeds the average normal value. The mean value Cr in urine was 7.9 µmol/mol creatinine (min 0.026 to max 19.26). The total number of CA was 1.86% in compared to 1.70% controls. (CTA-type 0.90% vs. 0.80% and CSA-type 0.96% vs. 0.90%). In the number of total CA statistical difference was observed between smokers and non-smokers of exposed group (S-1.57% vs. NS-2.04%, P<0.05). In CCND1 gene polymorphisms was observed the increasing of the total CA with wild-type allele (WT) via heterozygous to the VAR genotype (1.44% <1.82% <2.13%). A statistically higher incidence of CTA-type aberrations in variant genotypes between exposed and control groups was observed (1.22% vs. 0.59%, P <0.05). The work place is usually higher source of exposure to harmful factors. Workers need consistent and frequent health control. In assessing the risk of adverse effects of metals it is important to consider their persistence, behavior and bioavailability. Prolonged exposure to carcinogens may not manifest symptoms of poisoning, but delayed effects may occur, which resulted in a higher incidence of malignant tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CCND1" title="CCND1">CCND1</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title=" genotoxicity"> genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=welders" title=" welders"> welders</a> </p> <a href="https://publications.waset.org/abstracts/14370/evaluation-of-occupational-exposure-to-chromium-for-welders-of-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Evaluation of Occupational Exposure of Chrome in Welders of Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Musak">L. Musak</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Valachova"> J. Valachova</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Vasicko"> T. Vasicko</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Osina"> O. Osina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Stainless steel is resistant to electrochemical corrosion by passivation. Welders are greatly exposed to welding fumes of toxic metals, which added to this steel. The content of chromium (Cr) in steel was above 11.5%, Ni and Mo from 2 to 6.5%. The aim of the study was the evaluation of occupational exposure to Cr, chromosome analysis and valuation of individual susceptibility polymorphism of gene CCND1 c.870 G>A. Materials and Methods: The exposed group was consisted from 117 welders of stainless steels. The average age was 38.43 years and average exposure time 7.14 years. Smokers represented 40.17%. The control group consisted of 123 non-exposed workers with an average age of 39.74 years and time employment 16.67 years. Smokers accounted for 22.76%. Analysis of Cr in blood and urine was performed by atomic absorption spectrophotometry (AAS Varian SpectraAA 30P) with electrothermal decomposition of the sample in the graphite furnace. For the evaluation of chromosomal aberrations (CA) was used cytogenetic analysis of peripheral blood lymphocytes, gene polymorphism was determined by PCR-RFLP reaction using appropriate primers and restriction enzymes. For statistical analysis was used the Mann-Whitney U-test. Results: The mean Cr level in exposed group was 0.095 mmol/l (0.019 min-max 0.504). No value does exceed the average normal value. The average value Cr in urine was 7.9 mmol/mol creatinine (min 0.026 to max 19.26). The total number of CA was 1.86% in compared to 1.70% controls. (CTA-type 0.90% vs 0.80% and CSA-type 0.96% vs 0.90%). In the number of total CA was observed statistical difference between smokers and non-smokers of exposed group (S-1.57% vs. NS-2.04%, P<0.05). In CCND1 gene polymorphisms was observed the increasing of the total CA with wild-type allele (WT) via heterozygous to the VAR genotype (1.44%<1.82%<2.13%). There was observed a statistically higher incidence of CTA-type aberrations in variant genotypes between exposed and control groups (1.22% vs. 0.59%, P<0.05). Discussion and conclusions: The work place is usually higher source of exposure to harmful factors. Workers need consistently and checked frequently health control. In assessing the risk of adverse effects of metals is important to consider their persistence, behavior and bioavailability. Prolonged exposure to carcinogens may not manifest symptoms of poisoning, but delayed effects may occur, which resulted in a higher incidence of malignant tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title="genotoxicity">genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steels" title=" stainless steels"> stainless steels</a>, <a href="https://publications.waset.org/abstracts/search?q=welders" title=" welders"> welders</a> </p> <a href="https://publications.waset.org/abstracts/14341/the-evaluation-of-occupational-exposure-of-chrome-in-welders-of-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Evaluation of Radio Protective Potential of Indian Bamboo Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansi%20Patel">Mansi Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Priti%20Mehta"> Priti Mehta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Ionizing radiations have detrimental effects on humans, and the growing technological encroachment has increased human exposure to it enormously. So, the safety issues have emphasized researchers to develop radioprotector from natural resources having minimal toxicity. A substance having anti-inflammatory, antioxidant, and immunomodulatory activity can be a potential candidate for radioprotection. One such plant with immense potential i.e. Bamboo was selected for the present study. Purpose: The study aims to evaluate the potential of Indian bamboo leaves for protection against the clastogenic effect of gamma radiation. Methods: The protective effect of bamboo leaf extract against gamma radiation-induced genetic damage in human peripheral blood lymphocytes (HPBLs) was evaluated in vitro using Cytokinesis blocked micronuclei assay (CBMN). The blood samples were pretreated with varying concentration of extract 30 min before the radiation exposure (4Gy & 6Gy). The reduction in the frequency of micronuclei was observed for the irradiated and control groups. The effect of various concentration of bamboo leaf extract (400,600,800 mg/kg) on the development of radiation induced sickness and altered mortality in mice exposed to 8 Gy of whole-body gamma radiation was studied. The developed symptoms were clinically scored by multiple endpoints for 30 days. Results: Treatment of HPBLs with varying concentration of extract before exposure to a different dose of γ- radiation resulted in significant (P < 0.0001) decline of radiation induced micronuclei. It showed dose dependent and concentration driven activity. The maximum protection ~ 70% was achieved at nine µg/ml concentration. Extract treated whole body irradiated mice showed 50%, 83.3% and 100% survival for 400, 600, and 800mg/kg with 1.05, 0.43 and 0 clinical score respectively when compared to Irradiated mice having 6.03 clinical score and 0% survival. Conclusion: Our findings indicate bamboo leaf extract reduced the radiation induced cytogenetic damage. It has also increased the survival ratio and reduced the radiation induced sickness and mortality when exposed to a lethal dose of gamma radiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20leaf%20extract" title="bamboo leaf extract">bamboo leaf extract</a>, <a href="https://publications.waset.org/abstracts/search?q=Cytokinesis%20blocked%20micronuclei%20%28CBMN%29%20assay" title=" Cytokinesis blocked micronuclei (CBMN) assay"> Cytokinesis blocked micronuclei (CBMN) assay</a>, <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title=" ionizing radiation"> ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20protector" title=" radio protector"> radio protector</a> </p> <a href="https://publications.waset.org/abstracts/99802/evaluation-of-radio-protective-potential-of-indian-bamboo-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> The Usefulness of Premature Chromosome Condensation Scoring Module in Cell Response to Ionizing Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Rawoj%C4%87">K. Rawojć</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Miszczyk"> J. Miszczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mo%C5%BCd%C5%BCe%C5%84"> A. Możdżeń</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Panek"> A. Panek</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Swako%C5%84"> J. Swakoń</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rydygier"> M. Rydygier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the mitotic delay, poor mitotic index and disappearance of lymphocytes from peripheral blood circulation, assessing the DNA damage after high dose exposure is less effective. Conventional chromosome aberration analysis or cytokinesis-blocked micronucleus assay do not provide an accurate dose estimation or radiosensitivity prediction in doses higher than 6.0 Gy. For this reason, there is a need to establish reliable methods allowing analysis of biological effects after exposure in high dose range i.e., during particle radiotherapy. Lately, Premature Chromosome Condensation (PCC) has become an important method in high dose biodosimetry and a promising treatment modality to cancer patients. The aim of the study was to evaluate the usefulness of drug-induced PCC scoring procedure in an experimental mode, where 100 G2/M cells were analyzed in different dose ranges. To test the consistency of obtained results, scoring was performed by 3 independent persons in the same mode and following identical scoring criteria. Whole-body exposure was simulated in an in vitro experiment by irradiating whole blood collected from healthy donors with 60 MeV protons and 250 keV X-rays, in the range of 4.0 – 20.0 Gy. Drug-induced PCC assay was performed on human peripheral blood lymphocytes (HPBL) isolated after in vitro exposure. Cells were cultured for 48 hours with PHA. Then to achieve premature condensation, calyculin A was added. After Giemsa staining, chromosome spreads were photographed and manually analyzed by scorers. The dose-effect curves were derived by counting the excess chromosome fragments. The results indicated adequate dose estimates for the whole-body exposure scenario in the high dose range for both studied types of radiation. Moreover, compared results revealed no significant differences between scores, which has an important meaning in reducing the analysis time. These investigations were conducted as a part of an extended examination of 60 MeV protons from AIC-144 isochronous cyclotron, at the Institute of Nuclear Physics in Kraków, Poland (IFJ PAN) by cytogenetic and molecular methods and were partially supported by grant DEC-2013/09/D/NZ7/00324 from the National Science Centre, Poland. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20response%20to%20radiation%20exposure" title="cell response to radiation exposure">cell response to radiation exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20induced%20premature%20chromosome%20condensation" title=" drug induced premature chromosome condensation"> drug induced premature chromosome condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=premature%20chromosome%20condensation%20procedure" title=" premature chromosome condensation procedure"> premature chromosome condensation procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20therapy" title=" proton therapy"> proton therapy</a> </p> <a href="https://publications.waset.org/abstracts/45763/the-usefulness-of-premature-chromosome-condensation-scoring-module-in-cell-response-to-ionizing-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> A Novel Chicken W Chromosome Specific Tandem Repeat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alsu%20F.%20Saifitdinova">Alsu F. Saifitdinova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20S.%20Komissarov"> Alexey S. Komissarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20A.%20Galkina"> Svetlana A. Galkina</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20I.%20Koshel"> Elena I. Koshel</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20M.%20Kulak"> Maria M. Kulak</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20J.%20O%27Brien"> Stephen J. O&#039;Brien</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20R.%20Gaginskaya"> Elena R. Gaginskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mystery of sex determination is one of the most ancient and still not solved until the end so far. In many species, sex determination is genetic and often accompanied by the presence of dimorphic sex chromosomes in the karyotype. Genomic sequencing gave the information about the gene content of sex chromosomes which allowed to reveal their origin from ordinary autosomes and to trace their evolutionary history. Female-specific W chromosome in birds as well as mammalian male-specific Y chromosome is characterized by the degeneration of gene content and the accumulation of repetitive DNA. Tandem repeats complicate the analysis of genomic data. Despite the best efforts chicken W chromosome assembly includes only 1.2 Mb from expected 55 Mb. Supplementing the information on the sex chromosome composition not only helps to complete the assembly of genomes but also moves us in the direction of understanding of the sex-determination systems evolution. A whole-genome survey to the assembly Gallus_gallus WASHUC 2.60 was applied for repeats search in assembled genome and performed search and assembly of high copy number repeats in unassembled reads of SRR867748 short reads datasets. For cytogenetic analysis conventional methods of fluorescent in situ hybridization was used for previously cloned W specific satellites and specifically designed directly labeled synthetic oligonucleotide DNA probe was used for bioinformatically identified repetitive sequence. Hybridization was performed with mitotic chicken chromosomes and manually isolated giant meiotic lampbrush chromosomes from growing oocytes. A novel chicken W specific satellite (GGAAA)n which is not co-localizes with any previously described classes of W specific repeats was identified and mapped with high resolution. In the composition of autosomes this repeat units was found as a part of upstream regions of gonad specific protein coding sequences. These findings may contribute to the understanding of the role of tandem repeats in sex specific differentiation regulation in birds and sex chromosome evolution. This work was supported by the postdoctoral fellowships from St. Petersburg State University (#1.50.1623.2013 and #1.50.1043.2014), the grant for Leading Scientific Schools (#3553.2014.4) and the grant from Russian foundation for basic researches (#15-04-05684). The equipment and software of Research Resource Center “Chromas” and Theodosius Dobzhansky Center for Genome Bioinformatics of Saint Petersburg State University were used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=birds" title="birds">birds</a>, <a href="https://publications.waset.org/abstracts/search?q=lampbrush%20chromosomes" title=" lampbrush chromosomes"> lampbrush chromosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=sex%20chromosomes" title=" sex chromosomes"> sex chromosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20repeats" title=" tandem repeats"> tandem repeats</a> </p> <a href="https://publications.waset.org/abstracts/34218/a-novel-chicken-w-chromosome-specific-tandem-repeat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Detection, Analysis and Determination of the Origin of Copy Number Variants (CNVs) in Intellectual Disability/Developmental Delay (ID/DD) Patients and Autistic Spectrum Disorders (ASD) Patients by Molecular and Cytogenetic Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavlina%20Capkova">Pavlina Capkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Srovnal"> Josef Srovnal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Becvarova"> Vera Becvarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Trkova"> Marie Trkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuzana%20Capkova"> Zuzana Capkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Stefekova"> Andrea Stefekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaclava%20Curtisova"> Vaclava Curtisova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alena%20Santava"> Alena Santava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarka%20Vejvalkova"> Sarka Vejvalkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Katerina%20Adamova"> Katerina Adamova</a>, <a href="https://publications.waset.org/abstracts/search?q=Radek%20Vodicka"> Radek Vodicka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ASDs are heterogeneous and complex developmental diseases with a significant genetic background. Recurrent CNVs are known to be a frequent cause of ASD. These CNVs can have, however, a variable expressivity which results in a spectrum of phenotypes from asymptomatic to ID/DD/ASD. ASD is associated with ID in ~75% individuals. Various platforms are used to detect pathogenic mutations in the genome of these patients. The performed study is focused on a determination of the frequency of pathogenic mutations in a group of ASD patients and a group of ID/DD patients using various strategies along with a comparison of their detection rate. The possible role of the origin of these mutations in aetiology of ASD was assessed. The study included 35 individuals with ASD and 68 individuals with ID/DD (64 males and 39 females in total), who underwent rigorous genetic, neurological and psychological examinations. Screening for pathogenic mutations involved karyotyping, screening for FMR1 mutations and for metabolic disorders, a targeted MLPA test with probe mixes Telomeres 3 and 5, Microdeletion 1 and 2, Autism 1, MRX and a chromosomal microarray analysis (CMA) (Illumina or Affymetrix). Chromosomal aberrations were revealed in 7 (1 in the ASD group) individuals by karyotyping. FMR1 mutations were discovered in 3 (1 in the ASD group) individuals. The detection rate of pathogenic mutations in ASD patients with a normal karyotype was 15.15% by MLPA and CMA. The frequencies of the pathogenic mutations were 25.0% by MLPA and 35.0% by CMA in ID/DD patients with a normal karyotype. CNVs inherited from asymptomatic parents were more abundant than de novo changes in ASD patients (11.43% vs. 5.71%) in contrast to the ID/DD group where de novo mutations prevailed over inherited ones (26.47% vs. 16.18%). ASD patients shared more frequently their mutations with their fathers than patients from ID/DD group (8.57% vs. 1.47%). Maternally inherited mutations predominated in the ID/DD group in comparison with the ASD group (14.7% vs. 2.86 %). CNVs of an unknown significance were found in 10 patients by CMA and in 3 patients by MLPA. Although the detection rate is the highest when using CMA, recurrent CNVs can be easily detected by MLPA. CMA proved to be more efficient in the ID/DD group where a larger spectrum of rare pathogenic CNVs was revealed. This study determined that maternally inherited highly penetrant mutations and de novo mutations more often resulted in ID/DD without ASD in patients. The paternally inherited mutations could be, however, a source of the greater variability in the genome of the ASD patients and contribute to the polygenic character of the inheritance of ASD. As the number of the subjects in the group is limited, a larger cohort is needed to confirm this conclusion. Inherited CNVs have a role in aetiology of ASD possibly in combination with additional genetic factors - the mutations elsewhere in the genome. The identification of these interactions constitutes a challenge for the future. Supported by MH CZ – DRO (FNOl, 00098892), IGA UP LF_2016_010, TACR TE02000058 and NPU LO1304. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autistic%20spectrum%20disorders" title="autistic spectrum disorders">autistic spectrum disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=copy%20number%20variant" title=" copy number variant"> copy number variant</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosomal%20microarray" title=" chromosomal microarray"> chromosomal microarray</a>, <a href="https://publications.waset.org/abstracts/search?q=intellectual%20disability" title=" intellectual disability"> intellectual disability</a>, <a href="https://publications.waset.org/abstracts/search?q=karyotyping" title=" karyotyping"> karyotyping</a>, <a href="https://publications.waset.org/abstracts/search?q=MLPA" title=" MLPA"> MLPA</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20ligation-dependent%20probe%20amplification" title=" multiplex ligation-dependent probe amplification"> multiplex ligation-dependent probe amplification</a> </p> <a href="https://publications.waset.org/abstracts/56691/detection-analysis-and-determination-of-the-origin-of-copy-number-variants-cnvs-in-intellectual-disabilitydevelopmental-delay-iddd-patients-and-autistic-spectrum-disorders-asd-patients-by-molecular-and-cytogenetic-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Genotoxic Effect of Tricyclieandidepressant Drug “Clomipramine Hydrochloride’ on Somatic and Germ Cells of Male Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samia%20A.%20El-Fiky">Samia A. El-Fiky</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Abou-Zaid"> F. A. Abou-Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Farag"> Ibrahim M. Farag</a>, <a href="https://publications.waset.org/abstracts/search?q=Naira%20M.%20Efiky"> Naira M. Efiky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clomipramine hydrochloride is one of the most used tricyclic antidepressant drug in Egypt. This drug contains in its chemical structure on two benzene rings. Benzene is considered to be toxic and clastogenic agent. So, the present study was designed to assess the genotoxic effect of Clomipramine hydrochloride on somatic and germ cells in mice. Three dose levels 0.195 (Low), 0.26 (Medium), and 0.65 (High) mg/kg.b.wt. were used. Seven groups of male mice were utilized in this work. The first group was employed as a control. In the remaining six groups, each of the above doses was orally administrated for two groups, one of them was treated for 5 days and the other group was given the same dose for 30 days. At the end of experiments, the animals were sacrificed for cytogenetic and sperm examination as well as histopathological investigations by using hematoxylin and eosin stains (H and E stains) and electron microscope. Concerning the sperm studies, these studies were confined to 5 days treatment with different dose levels. Moreover, the ultrastructural investigation by electron microscope was restricted to 30 days treatment with drug doses. The results of the dose dependent effect of Clomipramine showed that the treatment with three different doses induced increases of frequencies of chromosome aberrations in bone marrow and spermatocyte cells as compared to control. In addition, mitotic and meiotic activities of somatic and germ cells were declined. The treatments with medium or high doses were more effective for inducing significant increases of chromosome aberrations and significant decreases of cell divisions than treatment with low dose. The effect of high dose was more pronounced for causing such genetic deleterious in respect to effect of medium dose. Moreover, the results of the time dependent effect of Clomipramine observed that the treatment with different dose levels for 30 days led to significant increases of genetic aberrations than treatment for 5 days. Sperm examinations revealed that the treatment with Clomipramine at different dose levels caused significant increase of sperm shape abnormalities and significant decrease in sperm count as compared to control. The adverse effects on sperm shape and count were more obviousness by using the treatments with medium or high doses than those found in treatment with low dose. The group of mice treated with high dose had the highest rate of sperm shape abnormalities and the lowest proportion of sperm count as compared to mice received medium dose. In histopathological investigation, hematoxylin and eosin stains showed that, the using of low dose of Clomipramine for 5 or 30 days caused a little pathological changes in liver tissue. However, using medium and high doses for 5 or 30 days induced severe damages than that observed in mice treated with low dose. The treatment with high dose for 30 days gave the worst results of pathological changes in hepatic cells. Moreover, ultrastructure examination revealed, the mice treated with low dose of Clomipramine had little differences in liver histological architecture as compared to control group. These differences were confined to cytoplasmic inclusions. Whereas, prominent pathological changes in nuclei as well as dilated of rough Endoplasmic Reticulum (rER) were observed in mice treated with medium or high doses of Clomipramine drug. In conclusion, the present study adds evidence that treatments with medium or high doses of Clomipramine have genotoxic effects on somatic and germ cells of mice, as unwanted side effects. However, the using of low dose (especially for short time, 5 days) can be utilized as a therapeutic dose, where it caused relatively similar proportions of genetic, sperm, and histopathological changes as those found in normal control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clomipramine" title="clomipramine">clomipramine</a>, <a href="https://publications.waset.org/abstracts/search?q=mice" title=" mice"> mice</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%20aberrations" title=" chromosome aberrations"> chromosome aberrations</a>, <a href="https://publications.waset.org/abstracts/search?q=sperm%20abnormalities" title=" sperm abnormalities"> sperm abnormalities</a>, <a href="https://publications.waset.org/abstracts/search?q=histopathology" title=" histopathology"> histopathology</a> </p> <a href="https://publications.waset.org/abstracts/32192/genotoxic-effect-of-tricyclieandidepressant-drug-clomipramine-hydrochloride-on-somatic-and-germ-cells-of-male-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Genotoxic Effect of Tricyclic Antidepressant Drug “Clomipramine Hydrochloride’ on Somatic and Germ Cells of Male Mice </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samia%20A.%20El-Fiky">Samia A. El-Fiky</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouad%20A.%20Abou-Zaid"> Fouad A. Abou-Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Farag"> Ibrahim M. Farag</a>, <a href="https://publications.waset.org/abstracts/search?q=Naira%20M.%20El-Fiky"> Naira M. El-Fiky </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clomipramine hydrochloride is one of the most used tricyclic antidepressant drug in Egypt. This drug contains in its chemical structure on two benzene rings. Benzene is considered to be toxic and clastogenic agent. So, the present study was designed to assess the genotoxic effect of Clomipramine hydrochloride on somatic and germ cells in mice. Three dose levels 0.195 (Low), 0.26 (Medium), and 0.65 (High) mg/kg.b.wt. were used. Seven groups of male mice were utilized in this work. The first group was employed as a control. In the remaining six groups, each of the above doses was orally administrated for two groups, one of them was treated for 5 days and the other group was given the same dose for 30 days. At the end of experiments, the animals were sacrificed for cytogenetic and sperm examination as well as histopathological investigations by using hematoxylin and eosin stains (H and E stains) and electron microscope. Concerning the sperm studies, these studies were confined to 5 days treatment with different dose levels. Moreover, the ultrastructural investigation by electron microscope was restricted to 30 days treatment with drug doses. The results of the dose dependent effect of Clomipramine showed that the treatment with three different doses induced increases of frequencies of chromosome aberrations in bone marrow and spermatocyte cells as compared to control. In addition, mitotic and meiotic activities of somatic and germ cells were declined. The treatments with medium or high doses were more effective for inducing significant increases of chromosome aberrations and significant decreases of cell divisions than treatment with low dose. The effect of high dose was more pronounced for causing such genetic deleterious in respect to effect of medium dose. Moreover, the results of the time dependent effect of Clomipramine observed that the treatment with different dose levels for 30 days led to significant increases of genetic aberrations than treatment for 5 days. Sperm examinations revealed that the treatment with Clomipramine at different dose levels caused significant increase of sperm shape abnormalities and significant decrease in sperm count as compared to control. The adverse effects on sperm shape and count were more obviousness by using the treatments with medium or high doses than those found in treatment with low dose. The group of mice treated with high dose had the highest rate of sperm shape abnormalities and the lowest proportion of sperm count as compared to mice received medium dose. In histopathological investigation, hematoxylin and eosin stains showed that, the using of low dose of Clomipramine for 5 or 30 days caused a little pathological changes in liver tissue. However, using medium and high doses for 5 or 30 days induced severe damages than that observed in mice treated with low dose. The treatment with high dose for 30 days gave the worst results of pathological changes in hepatic cells. Moreover, ultrastructure examination revealed, the mice treated with low dose of Clomipramine had little differences in liver histological architecture as compared to control group. These differences were confined to cytoplasmic inclusions. Whereas, prominent pathological changes in nuclei as well as dilated of rough Endoplasmic Reticulum (rER) were observed in mice treated with medium or high doses of Clomipramine drug. In conclusion, the present study adds evidence that treatments with medium or high doses of Clomipramine have genotoxic effects on somatic and germ cells of mice, as unwanted side effects. However, the using of low dose (especially for short time, 5 days) can be utilized as a therapeutic dose, where it caused relatively similar proportions of genetic, sperm, and histopathological changes as those found in normal control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromosome%20aberrations" title="chromosome aberrations">chromosome aberrations</a>, <a href="https://publications.waset.org/abstracts/search?q=clomipramine" title=" clomipramine"> clomipramine</a>, <a href="https://publications.waset.org/abstracts/search?q=mice" title=" mice"> mice</a>, <a href="https://publications.waset.org/abstracts/search?q=histopathology" title=" histopathology"> histopathology</a>, <a href="https://publications.waset.org/abstracts/search?q=sperm%20abnormalities" title=" sperm abnormalities"> sperm abnormalities</a> </p> <a href="https://publications.waset.org/abstracts/31974/genotoxic-effect-of-tricyclic-antidepressant-drug-clomipramine-hydrochloride-on-somatic-and-germ-cells-of-male-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10