CINXE.COM

Continuum mechanics - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Continuum mechanics - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"4539785f-128d-4db5-a247-967ccae44083","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Continuum_mechanics","wgTitle":"Continuum mechanics","wgCurRevisionId":1258178636,"wgRevisionId":1258178636,"wgArticleId":5918,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["All articles with unsourced statements","Articles with unsourced statements from December 2022","Articles with short description","Short description is different from Wikidata","Articles lacking in-text citations from October 2019","All articles lacking in-text citations","Use dmy dates from August 2020","Pages using sidebar with the child parameter","Wikipedia articles needing page number citations from August 2020","Commons category link from Wikidata", "All articles with dead external links","Articles with dead external links from December 2023","Articles with permanently dead external links","Pages that use a deprecated format of the math tags","Continuum mechanics","Classical mechanics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Continuum_mechanics","wgRelevantArticleId":5918,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000, "wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q193463","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready", "ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Continuum mechanics - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Continuum_mechanics"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Continuum_mechanics&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Continuum_mechanics"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Continuum_mechanics rootpage-Continuum_mechanics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Continuum+mechanics" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Continuum+mechanics" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Continuum+mechanics" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Continuum+mechanics" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Concept_of_a_continuum" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Concept_of_a_continuum"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Concept of a continuum</span> </div> </a> <ul id="toc-Concept_of_a_continuum-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Major_areas" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Major_areas"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Major areas</span> </div> </a> <ul id="toc-Major_areas-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formulation_of_models" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formulation_of_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Formulation of models</span> </div> </a> <ul id="toc-Formulation_of_models-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Forces_in_a_continuum" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Forces_in_a_continuum"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Forces in a continuum</span> </div> </a> <button aria-controls="toc-Forces_in_a_continuum-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Forces in a continuum subsection</span> </button> <ul id="toc-Forces_in_a_continuum-sublist" class="vector-toc-list"> <li id="toc-Surface_forces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Surface_forces"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Surface forces</span> </div> </a> <ul id="toc-Surface_forces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Body_forces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Body_forces"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Body forces</span> </div> </a> <ul id="toc-Body_forces-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Kinematics:_motion_and_deformation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Kinematics:_motion_and_deformation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Kinematics: motion and deformation</span> </div> </a> <button aria-controls="toc-Kinematics:_motion_and_deformation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Kinematics: motion and deformation subsection</span> </button> <ul id="toc-Kinematics:_motion_and_deformation-sublist" class="vector-toc-list"> <li id="toc-Lagrangian_description" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lagrangian_description"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Lagrangian description</span> </div> </a> <ul id="toc-Lagrangian_description-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eulerian_description" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Eulerian_description"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Eulerian description</span> </div> </a> <ul id="toc-Eulerian_description-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Displacement_field" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Displacement_field"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Displacement field</span> </div> </a> <ul id="toc-Displacement_field-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Governing_equations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Governing_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Governing equations</span> </div> </a> <button aria-controls="toc-Governing_equations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Governing equations subsection</span> </button> <ul id="toc-Governing_equations-sublist" class="vector-toc-list"> <li id="toc-Balance_laws" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Balance_laws"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Balance laws</span> </div> </a> <ul id="toc-Balance_laws-sublist" class="vector-toc-list"> <li id="toc-Operators" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Operators"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.1</span> <span>Operators</span> </div> </a> <ul id="toc-Operators-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Clausius–Duhem_inequality" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Clausius–Duhem_inequality"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Clausius–Duhem inequality</span> </div> </a> <ul id="toc-Clausius–Duhem_inequality-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Validity" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Validity"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Validity</span> </div> </a> <ul id="toc-Validity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Explanatory_notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Explanatory_notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Explanatory notes</span> </div> </a> <ul id="toc-Explanatory_notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.1</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Works_cited" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Works_cited"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.2</span> <span>Works cited</span> </div> </a> <ul id="toc-Works_cited-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-General_references" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#General_references"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.3</span> <span>General references</span> </div> </a> <ul id="toc-General_references-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Continuum mechanics</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 54 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-54" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">54 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D9%8A%D9%83%D8%A7%D9%86%D9%8A%D9%83%D8%A7_%D8%A7%D9%84%D8%A3%D9%88%D8%B3%D8%A7%D8%B7_%D8%A7%D9%84%D9%85%D8%AA%D8%B5%D9%84%D8%A9" title="ميكانيكا الأوساط المتصلة – Arabic" lang="ar" hreflang="ar" data-title="ميكانيكا الأوساط المتصلة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Mec%C3%A1nica_de_medios_continuos" title="Mecánica de medios continuos – Asturian" lang="ast" hreflang="ast" data-title="Mecánica de medios continuos" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/B%C3%BCt%C3%B6v_m%C3%BChit_mexanikas%C4%B1" title="Bütöv mühit mexanikası – Azerbaijani" lang="az" hreflang="az" data-title="Bütöv mühit mexanikası" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Li%C3%A2n-sio%CC%8Dk-th%C3%A9_le%CC%8Dk-ha%CC%8Dk" title="Liân-sio̍k-thé le̍k-ha̍k – Minnan" lang="nan" hreflang="nan" data-title="Liân-sio̍k-thé le̍k-ha̍k" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9C%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0_%D1%81%D1%83%D1%86%D1%8D%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D0%B0%D1%81%D1%8F%D1%80%D0%BE%D0%B4%D0%B4%D0%B7%D1%8F%D1%9E" title="Механіка суцэльных асяроддзяў – Belarusian" lang="be" hreflang="be" data-title="Механіка суцэльных асяроддзяў" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9C%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0_%D0%BD%D0%B0_%D0%BD%D0%B5%D0%BF%D1%80%D0%B5%D0%BA%D1%8A%D1%81%D0%BD%D0%B0%D1%82%D0%B8%D1%82%D0%B5_%D1%81%D1%80%D0%B5%D0%B4%D0%B8" title="Механика на непрекъснатите среди – Bulgarian" lang="bg" hreflang="bg" data-title="Механика на непрекъснатите среди" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Mehanika_kontinuuma" title="Mehanika kontinuuma – Bosnian" lang="bs" hreflang="bs" data-title="Mehanika kontinuuma" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Mec%C3%A0nica_dels_medis_continus" title="Mecànica dels medis continus – Catalan" lang="ca" hreflang="ca" data-title="Mecànica dels medis continus" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%D0%B0%D1%82%D1%82%D0%B8-%D1%81%D1%8B%D0%BF%D0%BF%D0%B8%D1%81%C4%95%D1%80_%D1%82%D0%B0%D0%BB%D0%BA%D0%BA%C4%83%D1%88%D1%81%D0%B5%D0%BD_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B8" title="Татти-сыпписĕр талккăшсен механики – Chuvash" lang="cv" hreflang="cv" data-title="Татти-сыпписĕр талккăшсен механики" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Kontinuummekanik" title="Kontinuummekanik – Danish" lang="da" hreflang="da" data-title="Kontinuummekanik" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Kontinuumsmechanik" title="Kontinuumsmechanik – German" lang="de" hreflang="de" data-title="Kontinuumsmechanik" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Pideva_keskkonna_mehaanika" title="Pideva keskkonna mehaanika – Estonian" lang="et" hreflang="et" data-title="Pideva keskkonna mehaanika" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CE%B7%CF%87%CE%B1%CE%BD%CE%B9%CE%BA%CE%AE_%CF%83%CF%85%CE%BD%CE%B5%CF%87%CE%BF%CF%8D%CF%82_%CE%BC%CE%AD%CF%83%CE%BF%CF%85" title="Μηχανική συνεχούς μέσου – Greek" lang="el" hreflang="el" data-title="Μηχανική συνεχούς μέσου" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Mec%C3%A1nica_de_medios_continuos" title="Mecánica de medios continuos – Spanish" lang="es" hreflang="es" data-title="Mecánica de medios continuos" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Kontinua%C4%B5a_mekaniko" title="Kontinuaĵa mekaniko – Esperanto" lang="eo" hreflang="eo" data-title="Kontinuaĵa mekaniko" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Medio_jarraituen_mekanika" title="Medio jarraituen mekanika – Basque" lang="eu" hreflang="eu" data-title="Medio jarraituen mekanika" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%DA%A9%D8%A7%D9%86%DB%8C%DA%A9_%D9%85%D8%AD%DB%8C%D8%B7%E2%80%8C%D9%87%D8%A7%DB%8C_%D9%BE%DB%8C%D9%88%D8%B3%D8%AA%D9%87" title="مکانیک محیط‌های پیوسته – Persian" lang="fa" hreflang="fa" data-title="مکانیک محیط‌های پیوسته" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/M%C3%A9canique_des_milieux_continus" title="Mécanique des milieux continus – French" lang="fr" hreflang="fr" data-title="Mécanique des milieux continus" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Mec%C3%A1nica_de_medios_continuos" title="Mecánica de medios continuos – Galician" lang="gl" hreflang="gl" data-title="Mecánica de medios continuos" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%97%B0%EC%86%8D%EC%B2%B4_%EC%97%AD%ED%95%99" title="연속체 역학 – Korean" lang="ko" hreflang="ko" data-title="연속체 역학" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%BE%E0%A4%A4%E0%A4%A4%E0%A5%8D%E0%A4%AF%E0%A4%95_%E0%A4%AF%E0%A4%BE%E0%A4%82%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%80" title="सातत्यक यांत्रिकी – Hindi" lang="hi" hreflang="hi" data-title="सातत्यक यांत्रिकी" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Mehanika_kontinuuma" title="Mehanika kontinuuma – Croatian" lang="hr" hreflang="hr" data-title="Mehanika kontinuuma" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Kontinuo_mekaniko" title="Kontinuo mekaniko – Ido" lang="io" hreflang="io" data-title="Kontinuo mekaniko" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Mekanika_kontinuum" title="Mekanika kontinuum – Indonesian" lang="id" hreflang="id" data-title="Mekanika kontinuum" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Meccanica_del_continuo" title="Meccanica del continuo – Italian" lang="it" hreflang="it" data-title="Meccanica del continuo" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%9B%D7%A0%D7%99%D7%A7%D7%AA_%D7%94%D7%A8%D7%A6%D7%A3" title="מכניקת הרצף – Hebrew" lang="he" hreflang="he" data-title="מכניקת הרצף" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A2%D2%B1%D1%82%D0%B0%D1%81_%D0%BE%D1%80%D1%82%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0%D1%81%D1%8B" title="Тұтас орта механикасы – Kazakh" lang="kk" hreflang="kk" data-title="Тұтас орта механикасы" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Nep%C4%81rtrauktas_vides_meh%C4%81nika" title="Nepārtrauktas vides mehānika – Latvian" lang="lv" hreflang="lv" data-title="Nepārtrauktas vides mehānika" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Kontinuum" title="Kontinuum – Hungarian" lang="hu" hreflang="hu" data-title="Kontinuum" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%A4%E0%B5%81%E0%B4%9F%E0%B5%BC%E0%B4%AE%E0%B4%BE%E0%B4%A8%E0%B4%AC%E0%B4%B2%E0%B4%A4%E0%B4%A8%E0%B5%8D%E0%B4%A4%E0%B5%8D%E0%B4%B0%E0%B4%82" title="തുടർമാനബലതന്ത്രം – Malayalam" lang="ml" hreflang="ml" data-title="തുടർമാനബലതന്ത്രം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Mekanik_kontinum" title="Mekanik kontinum – Malay" lang="ms" hreflang="ms" data-title="Mekanik kontinum" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A2%D0%B0%D1%81%D1%80%D0%B0%D0%BB%D1%82%D0%B3%D2%AF%D0%B9_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA" title="Тасралтгүй механик – Mongolian" lang="mn" hreflang="mn" data-title="Тасралтгүй механик" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Continu%C3%BCmmechanica" title="Continuümmechanica – Dutch" lang="nl" hreflang="nl" data-title="Continuümmechanica" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%80%A3%E7%B6%9A%E4%BD%93%E5%8A%9B%E5%AD%A6" title="連続体力学 – Japanese" lang="ja" hreflang="ja" data-title="連続体力学" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Kontinuumsmekanikk" title="Kontinuumsmekanikk – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Kontinuumsmekanikk" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Uzluksizlik_mexanikasi" title="Uzluksizlik mexanikasi – Uzbek" lang="uz" hreflang="uz" data-title="Uzluksizlik mexanikasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Mechanika_o%C5%9Brodk%C3%B3w_ci%C4%85g%C5%82ych" title="Mechanika ośrodków ciągłych – Polish" lang="pl" hreflang="pl" data-title="Mechanika ośrodków ciągłych" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Mec%C3%A2nica_de_meios_cont%C3%ADnuos" title="Mecânica de meios contínuos – Portuguese" lang="pt" hreflang="pt" data-title="Mecânica de meios contínuos" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Mecanica_mediilor_continue" title="Mecanica mediilor continue – Romanian" lang="ro" hreflang="ro" data-title="Mecanica mediilor continue" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0_%D1%81%D0%BF%D0%BB%D0%BE%D1%88%D0%BD%D1%8B%D1%85_%D1%81%D1%80%D0%B5%D0%B4" title="Механика сплошных сред – Russian" lang="ru" hreflang="ru" data-title="Механика сплошных сред" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%83%E0%B6%B1%E0%B7%8A%E0%B6%AD%E0%B6%AD%E0%B7%92_%E0%B6%BA%E0%B7%8F%E0%B6%B1%E0%B7%8A%E0%B6%AD%E0%B7%8A%E2%80%8D%E0%B6%BB_%E0%B7%80%E0%B7%92%E0%B6%AF%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F%E0%B7%80" title="සන්තති යාන්ත්‍ර විද්‍යාව – Sinhala" lang="si" hreflang="si" data-title="සන්තති යාන්ත්‍ර විද්‍යාව" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Mehanika_kontinuuma" title="Mehanika kontinuuma – Serbian" lang="sr" hreflang="sr" data-title="Mehanika kontinuuma" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Jatkuvan_aineen_mekaniikka" title="Jatkuvan aineen mekaniikka – Finnish" lang="fi" hreflang="fi" data-title="Jatkuvan aineen mekaniikka" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Kontinuummekanik" title="Kontinuummekanik – Swedish" lang="sv" hreflang="sv" data-title="Kontinuummekanik" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A4%E0%AF%8A%E0%AE%9F%E0%AE%B0%E0%AF%8D%E0%AE%AE_%E0%AE%B5%E0%AE%BF%E0%AE%9A%E0%AF%88%E0%AE%AF%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D" title="தொடர்ம விசையியல் – Tamil" lang="ta" hreflang="ta" data-title="தொடர்ம விசையியல்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A2%D0%BE%D1%82%D0%B0%D1%88_%D1%82%D0%B8%D1%80%D3%99%D0%BB%D0%B5%D0%BA%D0%BB%D3%99%D1%80_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0%D1%81%D1%8B" title="Тоташ тирәлекләр механикасы – Tatar" lang="tt" hreflang="tt" data-title="Тоташ тирәлекләр механикасы" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%A5%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C%E0%B8%A0%E0%B8%B2%E0%B8%A7%E0%B8%B0%E0%B8%95%E0%B9%88%E0%B8%AD%E0%B9%80%E0%B8%99%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%87" title="กลศาสตร์ภาวะต่อเนื่อง – Thai" lang="th" hreflang="th" data-title="กลศาสตร์ภาวะต่อเนื่อง" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/S%C3%BCrekli_ortamlar_mekani%C4%9Fi" title="Sürekli ortamlar mekaniği – Turkish" lang="tr" hreflang="tr" data-title="Sürekli ortamlar mekaniği" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0_%D1%81%D1%83%D1%86%D1%96%D0%BB%D1%8C%D0%BD%D0%B8%D1%85_%D1%81%D0%B5%D1%80%D0%B5%D0%B4%D0%BE%D0%B2%D0%B8%D1%89" title="Механіка суцільних середовищ – Ukrainian" lang="uk" hreflang="uk" data-title="Механіка суцільних середовищ" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%B3%D9%84%D8%B3%D9%84%DB%81_%D9%85%DB%8C%DA%A9%D8%A7%D9%86%DB%8C%D8%A7%D8%AA" title="مسلسلہ میکانیات – Urdu" lang="ur" hreflang="ur" data-title="مسلسلہ میکانیات" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/C%C6%A1_h%E1%BB%8Dc_m%C3%B4i_tr%C6%B0%E1%BB%9Dng_li%C3%AAn_t%E1%BB%A5c" title="Cơ học môi trường liên tục – Vietnamese" lang="vi" hreflang="vi" data-title="Cơ học môi trường liên tục" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E8%BF%9E%E7%BB%AD%E4%BB%8B%E8%B4%A8%E5%8A%9B%E5%AD%A6" title="连续介质力学 – Wu" lang="wuu" hreflang="wuu" data-title="连续介质力学" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%80%A3%E7%BA%8C%E4%BB%8B%E8%B3%AA%E5%8A%9B%E5%AD%B8" title="連續介質力學 – Cantonese" lang="yue" hreflang="yue" data-title="連續介質力學" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%BF%9E%E7%BB%AD%E4%BB%8B%E8%B4%A8%E5%8A%9B%E5%AD%A6" title="连续介质力学 – Chinese" lang="zh" hreflang="zh" data-title="连续介质力学" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q193463#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Continuum_mechanics" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Continuum_mechanics" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Continuum_mechanics"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Continuum_mechanics&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Continuum_mechanics"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Continuum_mechanics&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Continuum_mechanics" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Continuum_mechanics" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Continuum_mechanics&amp;oldid=1258178636" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Continuum_mechanics&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Continuum_mechanics&amp;id=1258178636&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FContinuum_mechanics"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FContinuum_mechanics"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Continuum_mechanics&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Continuum_mechanics&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Continuum_mechanics" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Continuum_mechanics" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q193463" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Branch of physics which studies the behavior of materials modeled as continuous media</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_footnotes_needed plainlinks metadata ambox ambox-style ambox-More_footnotes_needed" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/40px-Text_document_with_red_question_mark.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/60px-Text_document_with_red_question_mark.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/80px-Text_document_with_red_question_mark.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article includes a list of <a href="/wiki/Wikipedia:Citing_sources#General_references" title="Wikipedia:Citing sources">general references</a>, but <b>it lacks sufficient corresponding <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a></b>.<span class="hide-when-compact"> Please help to <a href="/wiki/Wikipedia:WikiProject_Reliability" title="Wikipedia:WikiProject Reliability">improve</a> this article by <a href="/wiki/Wikipedia:When_to_cite" title="Wikipedia:When to cite">introducing</a> more precise citations.</span> <span class="date-container"><i>(<span class="date">October 2019</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle"><a class="mw-selflink selflink">Continuum mechanics</a></th></tr><tr><td class="sidebar-image"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J=-D{\frac {d\varphi }{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J=-D{\frac {d\varphi }{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1856f88def2056f28ed27c7d31180a6240820ea6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.874ex; height:5.509ex;" alt="{\displaystyle J=-D{\frac {d\varphi }{dx}}}"></span><div class="sidebar-caption"><a href="/wiki/Fick%27s_laws_of_diffusion" title="Fick&#39;s laws of diffusion">Fick's laws of diffusion</a></div></td></tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Laws</div><div class="sidebar-list-content mw-collapsible-content"><table class="sidebar-subgroup"><tbody><tr><th class="sidebar-heading" style="font-style:italic;font-weight:normal;"> Conservations</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Conservation_of_mass" title="Conservation of mass">Mass</a></li> <li><a href="/wiki/Conservation_of_momentum" class="mw-redirect" title="Conservation of momentum">Momentum</a></li> <li><a href="/wiki/Conservation_of_energy" title="Conservation of energy">Energy</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="font-style:italic;font-weight:normal;"> Inequalities</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Clausius%E2%80%93Duhem_inequality" title="Clausius–Duhem inequality">Clausius–Duhem (entropy)</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Solid_mechanics" title="Solid mechanics">Solid mechanics</a></div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Deformation_(physics)" title="Deformation (physics)">Deformation</a></li> <li><a href="/wiki/Elasticity_(physics)" title="Elasticity (physics)">Elasticity</a> <ul><li><a href="/wiki/Linear_elasticity" title="Linear elasticity">linear</a></li></ul></li> <li><a href="/wiki/Plasticity_(physics)" title="Plasticity (physics)">Plasticity</a></li> <li><a href="/wiki/Hooke%27s_law" title="Hooke&#39;s law">Hooke's law</a></li> <li><a href="/wiki/Stress_(mechanics)" title="Stress (mechanics)">Stress</a></li> <li><a href="/wiki/Strain_(mechanics)" title="Strain (mechanics)">Strain</a> <ul><li><a href="/wiki/Finite_strain_theory" title="Finite strain theory">Finite strain</a></li> <li><a href="/wiki/Infinitesimal_strain_theory" title="Infinitesimal strain theory">Infinitesimal strain</a></li></ul></li> <li><a href="/wiki/Compatibility_(mechanics)" title="Compatibility (mechanics)">Compatibility</a></li> <li><a href="/wiki/Bending" title="Bending">Bending</a></li> <li><a href="/wiki/Contact_mechanics" title="Contact mechanics">Contact mechanics</a> <ul><li><a href="/wiki/Frictional_contact_mechanics" title="Frictional contact mechanics">frictional</a></li></ul></li> <li><a href="/wiki/Material_failure_theory" title="Material failure theory">Material failure theory</a></li> <li><a href="/wiki/Fracture_mechanics" title="Fracture mechanics">Fracture mechanics</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Fluid_mechanics" title="Fluid mechanics">Fluid mechanics</a></div><div class="sidebar-list-content mw-collapsible-content"><table class="sidebar-subgroup"><tbody><tr><th class="sidebar-heading" style="font-style:italic;"> <a href="/wiki/Fluid" title="Fluid">Fluids</a></th></tr><tr><td class="sidebar-content"> <div class="wraplinks"> <ul><li><a href="/wiki/Hydrostatics" title="Hydrostatics">Statics</a>&#160;<b>·</b> <a href="/wiki/Fluid_dynamics" title="Fluid dynamics">Dynamics</a></li> <li><a href="/wiki/Archimedes%27_principle" title="Archimedes&#39; principle">Archimedes' principle</a>&#160;<b>·</b> <a href="/wiki/Bernoulli%27s_principle" title="Bernoulli&#39;s principle">Bernoulli's principle</a></li> <li><a href="/wiki/Navier%E2%80%93Stokes_equations" title="Navier–Stokes equations">Navier–Stokes equations</a></li> <li><a href="/wiki/Hagen%E2%80%93Poiseuille_equation" title="Hagen–Poiseuille equation">Poiseuille equation</a>&#160;<b>·</b> <a href="/wiki/Pascal%27s_law" title="Pascal&#39;s law">Pascal's law</a></li> <li><a href="/wiki/Viscosity" title="Viscosity">Viscosity</a> <ul><li>(<a href="/wiki/Newtonian_fluid" title="Newtonian fluid">Newtonian</a>&#160;<b>·</b> <a href="/wiki/Non-Newtonian_fluid" title="Non-Newtonian fluid">non-Newtonian</a>)</li></ul></li> <li><a href="/wiki/Buoyancy" title="Buoyancy">Buoyancy</a>&#160;<b>·</b> <a href="/wiki/Mixing_(process_engineering)" title="Mixing (process engineering)">Mixing</a>&#160;<b>·</b> <a href="/wiki/Pressure" title="Pressure">Pressure</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading" style="font-style:italic;"> <a href="/wiki/Liquid" title="Liquid">Liquids</a></th></tr><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Adhesion" title="Adhesion">Adhesion</a></li> <li><a href="/wiki/Capillary_action" title="Capillary action">Capillary action</a></li> <li><a href="/wiki/Chromatography" title="Chromatography">Chromatography</a></li> <li><a href="/wiki/Cohesion_(chemistry)" title="Cohesion (chemistry)">Cohesion (chemistry)</a></li> <li><a href="/wiki/Surface_tension" title="Surface tension">Surface tension</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading" style="font-style:italic;"> <a href="/wiki/Gas" title="Gas">Gases</a></th></tr><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Atmosphere" title="Atmosphere">Atmosphere</a></li> <li><a href="/wiki/Boyle%27s_law" title="Boyle&#39;s law">Boyle's law</a></li> <li><a href="/wiki/Charles%27s_law" title="Charles&#39;s law">Charles's law</a></li> <li><a href="/wiki/Combined_gas_law" class="mw-redirect" title="Combined gas law">Combined gas law</a></li> <li><a href="/wiki/Fick%27s_law" class="mw-redirect" title="Fick&#39;s law">Fick's law</a></li> <li><a href="/wiki/Gay-Lussac%27s_law" title="Gay-Lussac&#39;s law">Gay-Lussac's law</a></li> <li><a href="/wiki/Graham%27s_law" title="Graham&#39;s law">Graham's law</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading" style="font-style:italic;"> <a href="/wiki/Plasma_(physics)" title="Plasma (physics)">Plasma</a></th></tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Rheology" title="Rheology">Rheology</a></div><div class="sidebar-list-content mw-collapsible-content"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Viscoelasticity" title="Viscoelasticity">Viscoelasticity</a></li> <li><a href="/wiki/Rheometry" title="Rheometry">Rheometry</a></li> <li><a href="/wiki/Rheometer" title="Rheometer">Rheometer</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="font-style:italic;"> <a href="/wiki/Smart_fluid" title="Smart fluid">Smart fluids</a></th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Electrorheological_fluid" title="Electrorheological fluid">Electrorheological</a></li> <li><a href="/wiki/Magnetorheological_fluid" title="Magnetorheological fluid">Magnetorheological</a></li> <li><a href="/wiki/Ferrofluid" title="Ferrofluid">Ferrofluids</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Scientists</div><div class="sidebar-list-content mw-collapsible-content"><div class="hlist"> <ul><li><a href="/wiki/Daniel_Bernoulli" title="Daniel Bernoulli">Bernoulli</a></li> <li><a href="/wiki/Robert_Boyle" title="Robert Boyle">Boyle</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Cauchy</a></li> <li><a href="/wiki/Jacques_Charles" title="Jacques Charles">Charles</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a></li> <li><a href="/wiki/Adolf_Eugen_Fick" title="Adolf Eugen Fick">Fick</a></li> <li><a href="/wiki/Joseph_Louis_Gay-Lussac" title="Joseph Louis Gay-Lussac">Gay-Lussac</a></li> <li><a href="/wiki/Thomas_Graham_(chemist)" title="Thomas Graham (chemist)">Graham</a></li> <li><a href="/wiki/Robert_Hooke" title="Robert Hooke">Hooke</a></li> <li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Newton</a></li> <li><a href="/wiki/Claude-Louis_Navier" title="Claude-Louis Navier">Navier</a></li> <li><a href="/wiki/Walter_Noll" title="Walter Noll">Noll</a></li> <li><a href="/wiki/Blaise_Pascal" title="Blaise Pascal">Pascal</a></li> <li><a href="/wiki/Sir_George_Stokes,_1st_Baronet" title="Sir George Stokes, 1st Baronet">Stokes</a></li> <li><a href="/wiki/Clifford_Truesdell" title="Clifford Truesdell">Truesdell</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Continuum_mechanics" title="Template:Continuum mechanics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Continuum_mechanics" title="Template talk:Continuum mechanics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Continuum_mechanics" title="Special:EditPage/Template:Continuum mechanics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p><b>Continuum mechanics</b> is a branch of <a href="/wiki/Mechanics" title="Mechanics">mechanics</a> that deals with the <a href="/wiki/Deformation_(physics)" title="Deformation (physics)">deformation</a> of and transmission of <a href="/wiki/Force" title="Force">forces</a> through <a href="/wiki/Material" title="Material">materials</a> modeled as a <i><b>continuous medium</b></i> (also called a <i><b>continuum</b></i>) rather than as <a href="/wiki/Point_particle" title="Point particle">discrete particles</a>. </p><p>Continuum mechanics deals with <i>deformable bodies</i>, as opposed to <a href="/wiki/Rigid_bodies" class="mw-redirect" title="Rigid bodies">rigid bodies</a>. A continuum model assumes that the substance of the object completely fills the space it occupies. While ignoring the fact that matter is made of <a href="/wiki/Atom" title="Atom">atoms</a>, this provides a sufficiently accurate description of matter on length scales much greater than that of inter-atomic distances. The concept of a continuous medium allows for intuitive analysis of bulk matter by using differential equations that describe the behavior of such matter according to <a href="/wiki/Conservation_laws" class="mw-redirect" title="Conservation laws">physical laws</a>, such as <a href="/wiki/Mass" title="Mass">mass</a> conservation, momentum conservation, and energy conservation. Information about the specific material is expressed in <a href="/wiki/Constitutive_equation" title="Constitutive equation">constitutive relationships</a>. </p><p>Continuum mechanics treats the physical properties of solids and fluids independently of any particular <a href="/wiki/Coordinate_system" title="Coordinate system">coordinate system</a> in which they are observed. These properties are represented by <a href="/wiki/Tensor" title="Tensor">tensors</a>, which are mathematical objects with the salient property of being independent of coordinate systems. This permits definition of physical properties at any point in the continuum, according to mathematically convenient <a href="/wiki/Continuous_function" title="Continuous function">continuous functions</a>. The theories of <a href="/wiki/Elasticity_(physics)" title="Elasticity (physics)">elasticity</a>, <a href="/wiki/Plasticity_(physics)" title="Plasticity (physics)">plasticity</a> and <a href="/wiki/Fluid_mechanics" title="Fluid mechanics">fluid mechanics</a> are based on the concepts of continuum mechanics. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Concept_of_a_continuum">Concept of a continuum</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=1" title="Edit section: Concept of a continuum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The concept of a continuum underlies the mathematical framework for studying large-scale forces and deformations in materials. Although materials are composed of discrete atoms and molecules, separated by empty space or microscopic cracks and <a href="/wiki/Crystallographic_defects" class="mw-redirect" title="Crystallographic defects">crystallographic defects</a>, physical phenomena can often be modeled by considering a substance distributed throughout some region of space. A continuum is a body that can be continually sub-divided into <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> elements with local material properties defined at any particular point. Properties of the bulk material can therefore be described by continuous functions, and their evolution can be studied using the mathematics of <a href="/wiki/Calculus" title="Calculus">calculus</a>. </p><p>Apart from the assumption of continuity, two other independent assumptions are often employed in the study of continuum mechanics. These are <a href="/wiki/Homogeneity_(physics)" title="Homogeneity (physics)">homogeneity</a> (assumption of identical properties at all locations) and <a href="/wiki/Isotropy" title="Isotropy">isotropy</a> (assumption of directionally invariant vector properties).<sup id="cite_ref-FOOTNOTEMalvern19692_1-0" class="reference"><a href="#cite_note-FOOTNOTEMalvern19692-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> If these auxiliary assumptions are not globally applicable, the material may be segregated into sections where they are applicable in order to simplify the analysis. For more complex cases, one or both of these assumptions can be dropped. In these cases, computational methods are often used to solve the <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a> describing the evolution of material properties. </p> <div class="mw-heading mw-heading2"><h2 id="Major_areas">Major areas</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=2" title="Edit section: Major areas"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <td rowspan="4"><b>Continuum mechanics</b><br /><small>The study of the physics of continuous materials</small> </td> <td rowspan="2"><a href="/wiki/Solid_mechanics" title="Solid mechanics">Solid mechanics</a><br /><small>The study of the physics of continuous materials with a defined rest shape.</small> </td> <td colspan="2"><a href="/wiki/Elasticity_(physics)" title="Elasticity (physics)">Elasticity</a><br /><small>Describes materials that return to their rest shape after applied <a href="/wiki/Stress_(physics)" class="mw-redirect" title="Stress (physics)">stresses</a> are removed.</small> </td></tr> <tr> <td><a href="/wiki/Plasticity_(physics)" title="Plasticity (physics)">Plasticity</a><br /><small>Describes materials that permanently deform after a sufficient applied stress.</small> </td> <td rowspan="2"><a href="/wiki/Rheology" title="Rheology">Rheology</a><br /><small>The study of materials with both solid and fluid characteristics.</small> </td></tr> <tr> <td rowspan="2"><a href="/wiki/Fluid_mechanics" title="Fluid mechanics">Fluid mechanics</a><br /><small>The study of the physics of continuous materials which deform when subjected to a force.</small> </td> <td><a href="/wiki/Non-Newtonian_fluid" title="Non-Newtonian fluid">Non-Newtonian fluid</a><br /><small>Do not undergo strain rates proportional to the applied shear stress.</small> </td></tr> <tr> <td colspan="2"><a href="/wiki/Newtonian_fluid" title="Newtonian fluid">Newtonian fluids</a> undergo strain rates proportional to the applied shear stress. </td></tr></tbody></table> <p><span class="anchor" id="elastomeric2016-01-29"></span>An additional area of continuum mechanics comprises <a href="/wiki/Elastomeric_foam" class="mw-redirect" title="Elastomeric foam">elastomeric foams</a>, which exhibit a curious hyperbolic stress-strain relationship. The elastomer is a true continuum, but a homogeneous distribution of voids gives it unusual properties.<sup id="cite_ref-FOOTNOTEDienesSolem1999155–162_2-0" class="reference"><a href="#cite_note-FOOTNOTEDienesSolem1999155–162-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Formulation_of_models">Formulation of models</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=3" title="Edit section: Formulation of models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Continuum_body.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Continuum_body.svg/200px-Continuum_body.svg.png" decoding="async" width="200" height="168" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Continuum_body.svg/300px-Continuum_body.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/23/Continuum_body.svg/400px-Continuum_body.svg.png 2x" data-file-width="542" data-file-height="455" /></a><figcaption>Figure 1. Configuration of a continuum body</figcaption></figure> <p>Continuum mechanics models begin by assigning a region in three-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> to the material body <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5622de88a69f68340f8dcb43d0b8bd443ba9e13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.543ex; height:2.176ex;" alt="{\displaystyle {\mathcal {B}}}"></span> being modeled. The points within this region are called particles or material points. Different <i>configurations</i> or states of the body correspond to different regions in Euclidean space. The region corresponding to the body's configuration at time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> is labeled <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{t}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{t}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab55799debd650ba2af18cea74f18f1b962eec53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.518ex; height:2.843ex;" alt="{\displaystyle \kappa _{t}({\mathcal {B}})}"></span>. </p><p>A particular particle within the body in a particular configuration is characterized by a position <a href="/wiki/Vector_space" title="Vector space">vector</a> <br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =\sum _{i=1}^{3}x_{i}\mathbf {e} _{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} =\sum _{i=1}^{3}x_{i}\mathbf {e} _{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05779d237cd7fb4437be505abdfbd27902c90d0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.053ex; height:7.176ex;" alt="{\displaystyle \mathbf {x} =\sum _{i=1}^{3}x_{i}\mathbf {e} _{i},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {e} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba77c5a75ef9e230d1a36183785477a2eb3c5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.025ex; height:2.009ex;" alt="{\displaystyle \mathbf {e} _{i}}"></span> are the <a href="/wiki/Coordinate_vector" title="Coordinate vector">coordinate vectors</a> in some <a href="/wiki/Frame_of_reference" title="Frame of reference">frame of reference</a> chosen for the problem (See figure 1). This vector can be expressed as a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> of the particle position <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f75966a2f9d5672136fa9401ee1e75008f95ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {X} }"></span> in some <i>reference configuration</i>, for example the configuration at the initial time, so that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =\kappa _{t}(\mathbf {X} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} =\kappa _{t}(\mathbf {X} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adf6ebc64beebcb055cf9a56857112e0c4eff364" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.15ex; height:2.843ex;" alt="{\displaystyle \mathbf {x} =\kappa _{t}(\mathbf {X} ).}"></span></dd></dl> <p>This function needs to have various properties so that the model makes physical sense. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{t}(\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{t}(\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a80070c78b03bd1cb536034da6383302c9e05d6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.621ex; height:2.843ex;" alt="{\displaystyle \kappa _{t}(\cdot )}"></span> needs to be: </p> <ul><li><a href="/wiki/Continuity_(mathematics)" class="mw-redirect" title="Continuity (mathematics)">continuous</a> in time, so that the body changes in a way which is realistic,</li> <li>globally <a href="/wiki/Inverse_function" title="Inverse function">invertible</a> at all times, so that the body cannot intersect itself,</li> <li><a href="/wiki/Orientation-preserving" class="mw-redirect" title="Orientation-preserving">orientation-preserving</a>, as transformations which produce mirror reflections are not possible in nature.</li></ul> <p>For the mathematical formulation of the model, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{t}(\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{t}(\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a80070c78b03bd1cb536034da6383302c9e05d6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.621ex; height:2.843ex;" alt="{\displaystyle \kappa _{t}(\cdot )}"></span> is also assumed to be <a href="/wiki/Continuously_differentiable" class="mw-redirect" title="Continuously differentiable">twice continuously differentiable</a>, so that differential equations describing the motion may be formulated. </p> <div class="mw-heading mw-heading2"><h2 id="Forces_in_a_continuum">Forces in a continuum</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=4" title="Edit section: Forces in a continuum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Stress_(mechanics)" title="Stress (mechanics)">Stress (mechanics)</a> and <a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Cauchy stress tensor</a></div> <p>A solid is a deformable body that possesses shear strength, <i>sc.</i> a solid can support shear forces (forces parallel to the material surface on which they act). Fluids, on the other hand, do not sustain shear forces. </p><p>Following the classical dynamics of <a href="/wiki/Isaac_Newton" title="Isaac Newton">Newton</a> and <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a>, the motion of a material body is produced by the action of externally applied forces which are assumed to be of two kinds: surface forces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{C}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{C}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec02d4c7038179f042e482dc50edbab84666d0ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.164ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{C}}"></span> and body forces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/057973853da16f517f9b497242f106e1bdbdc6bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.162ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{B}}"></span>.<sup id="cite_ref-FOOTNOTESmith199397_3-0" class="reference"><a href="#cite_note-FOOTNOTESmith199397-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Thus, the total force <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span> applied to a body or to a portion of the body can be expressed as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}=\mathbf {F} _{C}+\mathbf {F} _{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}=\mathbf {F} _{C}+\mathbf {F} _{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c57c22d05519626f12c9d0db2c77d2ca2713f66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.192ex; height:2.509ex;" alt="{\displaystyle {\mathcal {F}}=\mathbf {F} _{C}+\mathbf {F} _{B}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Surface_forces">Surface forces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=5" title="Edit section: Surface forces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i><a href="/wiki/Surface_forces" class="mw-redirect" title="Surface forces">Surface forces</a></i> or <i>contact forces</i>, expressed as force per unit area, can act either on the bounding surface of the body, as a result of mechanical contact with other bodies, or on imaginary internal surfaces that bound portions of the body, as a result of the mechanical interaction between the parts of the body to either side of the surface (<a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Euler-Cauchy's stress principle</a>). When a body is acted upon by external contact forces, internal contact forces are then transmitted from point to point inside the body to balance their action, according to <a href="/wiki/Newton%27s_laws_of_motion" title="Newton&#39;s laws of motion">Newton's third law of motion</a> of conservation of <a href="/wiki/Linear_momentum" class="mw-redirect" title="Linear momentum">linear momentum</a> and <a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a> (for continuous bodies these laws are called the <a href="/wiki/Euler%27s_laws" class="mw-redirect" title="Euler&#39;s laws">Euler's equations of motion</a>). The internal contact forces are related to the body's <a href="/wiki/Deformation_(mechanics)" class="mw-redirect" title="Deformation (mechanics)">deformation</a> through <a href="/wiki/Constitutive_equations" class="mw-redirect" title="Constitutive equations">constitutive equations</a>. The internal contact forces may be mathematically described by how they relate to the motion of the body, independent of the body's material makeup.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2022)">citation needed</span></a></i>&#93;</sup> </p><p>The distribution of internal contact forces throughout the volume of the body is assumed to be continuous. Therefore, there exists a <i>contact force density</i> or <i>Cauchy traction field</i><sup id="cite_ref-FOOTNOTESmith1993_4-0" class="reference"><a href="#cite_note-FOOTNOTESmith1993-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {T} (\mathbf {n} ,\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {T} (\mathbf {n} ,\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad4ccbabe43d0ddc50adf7e5b1b5dbcb541741c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.472ex; height:2.843ex;" alt="{\displaystyle \mathbf {T} (\mathbf {n} ,\mathbf {x} ,t)}"></span> that represents this distribution in a particular configuration of the body at a given time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60ca0e6d5640c7a6280feeaa20db96e2c00adf94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.227ex; height:2.009ex;" alt="{\displaystyle t\,\!}"></span>. It is not a vector field because it depends not only on the position <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> of a particular material point, but also on the local orientation of the surface element as defined by its normal vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {n} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {n} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a720c341f39f52fd96028dab83edd34d400be46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {n} }"></span>.<sup id="cite_ref-FOOTNOTELubliner2008_5-0" class="reference"><a href="#cite_note-FOOTNOTELubliner2008-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (August 2020)">page&#160;needed</span></a></i>&#93;</sup> </p><p>Any differential area <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dS\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>S</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dS\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24028ff3f6b922fa1a55bbf848ca0002107565da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:3.102ex; height:2.176ex;" alt="{\displaystyle dS\,\!}"></span> with normal vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {n} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {n} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a720c341f39f52fd96028dab83edd34d400be46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {n} }"></span> of a given internal surface area <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/669ffe6a8a216bba6f72c39796067a4bbe4db003" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.886ex; height:2.176ex;" alt="{\displaystyle S\,\!}"></span>, bounding a portion of the body, experiences a contact force <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\mathbf {F} _{C}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\mathbf {F} _{C}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4292d9e9269506caa51e25facef35167dc254208" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:4.767ex; height:2.509ex;" alt="{\displaystyle d\mathbf {F} _{C}\,\!}"></span> arising from the contact between both portions of the body on each side of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/669ffe6a8a216bba6f72c39796067a4bbe4db003" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.886ex; height:2.176ex;" alt="{\displaystyle S\,\!}"></span>, and it is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\mathbf {F} _{C}=\mathbf {T} ^{(\mathbf {n} )}\,dS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\mathbf {F} _{C}=\mathbf {T} ^{(\mathbf {n} )}\,dS}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f0df954d5f4288fe79491fb48ad6e9c7768a98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.002ex; height:3.176ex;" alt="{\displaystyle d\mathbf {F} _{C}=\mathbf {T} ^{(\mathbf {n} )}\,dS}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {T} ^{(\mathbf {n} )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {T} ^{(\mathbf {n} )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0523584e28619d7f874568f449828fdc4686a2d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.421ex; height:2.843ex;" alt="{\displaystyle \mathbf {T} ^{(\mathbf {n} )}}"></span> is the <i>surface traction</i>,<sup id="cite_ref-FOOTNOTELiu2002_6-0" class="reference"><a href="#cite_note-FOOTNOTELiu2002-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> also called <i>stress vector</i>,<sup id="cite_ref-FOOTNOTEWu2004_7-0" class="reference"><a href="#cite_note-FOOTNOTEWu2004-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <i>traction</i>,<sup id="cite_ref-FOOTNOTEFung1977_8-0" class="reference"><a href="#cite_note-FOOTNOTEFung1977-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (August 2020)">page&#160;needed</span></a></i>&#93;</sup> or <i>traction vector</i>.<sup id="cite_ref-FOOTNOTEMase1970_9-0" class="reference"><a href="#cite_note-FOOTNOTEMase1970-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> The stress vector is a frame-indifferent vector (see <a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Euler-Cauchy's stress principle</a>). </p><p>The total contact force on the particular internal surface <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/669ffe6a8a216bba6f72c39796067a4bbe4db003" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.886ex; height:2.176ex;" alt="{\displaystyle S\,\!}"></span> is then expressed as the sum (<a href="/wiki/Surface_integral" title="Surface integral">surface integral</a>) of the contact forces on all differential surfaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dS\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>S</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dS\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24028ff3f6b922fa1a55bbf848ca0002107565da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:3.102ex; height:2.176ex;" alt="{\displaystyle dS\,\!}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{C}=\int _{S}\mathbf {T} ^{(\mathbf {n} )}\,dS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{C}=\int _{S}\mathbf {T} ^{(\mathbf {n} )}\,dS}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfcff74d7e57636f4b3d527ea702158e2044bd64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:16.758ex; height:5.676ex;" alt="{\displaystyle \mathbf {F} _{C}=\int _{S}\mathbf {T} ^{(\mathbf {n} )}\,dS}"></span></dd></dl> <p>In continuum mechanics a body is considered stress-free if the only forces present are those inter-atomic forces (<a href="/wiki/Ionic_bond" class="mw-redirect" title="Ionic bond">ionic</a>, <a href="/wiki/Metallic_bond" class="mw-redirect" title="Metallic bond">metallic</a>, and <a href="/wiki/Van_der_Waals_force" title="Van der Waals force">van der Waals forces</a>) required to hold the body together and to keep its shape in the absence of all external influences, including gravitational attraction.<sup id="cite_ref-FOOTNOTEMase1970_9-1" class="reference"><a href="#cite_note-FOOTNOTEMase1970-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEAtanackovicGuran2000_10-0" class="reference"><a href="#cite_note-FOOTNOTEAtanackovicGuran2000-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Stresses generated during manufacture of the body to a specific configuration are also excluded when considering stresses in a body. Therefore, the stresses considered in continuum mechanics are only those produced by deformation of the body, <i>sc.</i> only relative changes in stress are considered, not the absolute values of stress. </p> <div class="mw-heading mw-heading3"><h3 id="Body_forces">Body forces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=6" title="Edit section: Body forces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i><a href="/wiki/Body_forces" class="mw-redirect" title="Body forces">Body forces</a></i> are forces originating from sources outside of the body<sup id="cite_ref-FOOTNOTEIrgens2008_11-0" class="reference"><a href="#cite_note-FOOTNOTEIrgens2008-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> that act on the volume (or mass) of the body. Saying that body forces are due to outside sources implies that the interaction between different parts of the body (internal forces) are manifested through the contact forces alone.<sup id="cite_ref-FOOTNOTELiu2002_6-1" class="reference"><a href="#cite_note-FOOTNOTELiu2002-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> These forces arise from the presence of the body in force fields, <i>e.g.</i> <a href="/wiki/Gravitational_field" title="Gravitational field">gravitational field</a> (<a href="/wiki/Gravitational_force" class="mw-redirect" title="Gravitational force">gravitational forces</a>) or electromagnetic field (<a href="/wiki/Electromagnetic_force" class="mw-redirect" title="Electromagnetic force">electromagnetic forces</a>), or from <a href="/wiki/Fictitious_force" title="Fictitious force">inertial forces</a> when bodies are in motion. As the mass of a continuous body is assumed to be continuously distributed, any force originating from the mass is also continuously distributed. Thus, body forces are specified by vector fields which are assumed to be continuous over the entire volume of the body,<sup id="cite_ref-FOOTNOTEChadwick1999_12-0" class="reference"><a href="#cite_note-FOOTNOTEChadwick1999-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> <i>i.e.</i> acting on every point in it. Body forces are represented by a body force density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} (\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} (\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a085d88549a7878b87420a7ec47ddd3949576276" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.579ex; height:2.843ex;" alt="{\displaystyle \mathbf {b} (\mathbf {x} ,t)}"></span> (per unit of mass), which is a frame-indifferent vector field. </p><p>In the case of gravitational forces, the intensity of the force depends on, or is proportional to, the mass density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\rho } (\mathbf {x} ,t)\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\rho } (\mathbf {x} ,t)\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7fb6f6f9b3962e1d4d2df30f51548937498c150" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:6.683ex; height:2.843ex;" alt="{\displaystyle \mathbf {\rho } (\mathbf {x} ,t)\,\!}"></span> of the material, and it is specified in terms of force per unit mass (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{i}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{i}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2ac363cf7ec73b3a7d5d963e26aeea6b40bfd7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:2.184ex; height:2.509ex;" alt="{\displaystyle b_{i}\,\!}"></span>) or per unit volume (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{i}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{i}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9244e1fdd5dbac42cd1b427614f3986c87fbe3b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; margin-right: -0.387ex; width:2.446ex; height:2.009ex;" alt="{\displaystyle p_{i}\,\!}"></span>). These two specifications are related through the material density by the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho b_{i}=p_{i}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho b_{i}=p_{i}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a124f098c0faff85ad4c6562f2c6ef43054ebab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:8.454ex; height:2.676ex;" alt="{\displaystyle \rho b_{i}=p_{i}\,\!}"></span>. Similarly, the intensity of electromagnetic forces depends upon the strength (<a href="/wiki/Electric_charge" title="Electric charge">electric charge</a>) of the electromagnetic field. </p><p>The total body force applied to a continuous body is expressed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{B}=\int _{V}\mathbf {b} \,dm=\int _{V}\rho \mathbf {b} \,dV}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>m</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{B}=\int _{V}\mathbf {b} \,dm=\int _{V}\rho \mathbf {b} \,dV}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2d10adc522056c9dd220cd9112227e49641c5e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.917ex; height:5.676ex;" alt="{\displaystyle \mathbf {F} _{B}=\int _{V}\mathbf {b} \,dm=\int _{V}\rho \mathbf {b} \,dV}"></span></dd></dl> <p>Body forces and contact forces acting on the body lead to corresponding moments of force (<a href="/wiki/Torque" title="Torque">torques</a>) relative to a given point. Thus, the total applied torque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cc2abebd45ec020509a0ec548b67c9a2cb7cecd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.791ex; height:2.176ex;" alt="{\displaystyle {\mathcal {M}}}"></span> about the origin is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}=\mathbf {M} _{C}+\mathbf {M} _{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}=\mathbf {M} _{C}+\mathbf {M} _{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83d4ff4d88b8465ddb57950e40cf7c76a6944ff5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.765ex; height:2.509ex;" alt="{\displaystyle {\mathcal {M}}=\mathbf {M} _{C}+\mathbf {M} _{B}}"></span></dd></dl> <p>In certain situations, not commonly considered in the analysis of the mechanical behavior of materials, it becomes necessary to include two other types of forces: these are <i>couple stresses</i><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>note 1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>note 2<span class="cite-bracket">&#93;</span></a></sup> (surface couples,<sup id="cite_ref-FOOTNOTEIrgens2008_11-1" class="reference"><a href="#cite_note-FOOTNOTEIrgens2008-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> contact torques)<sup id="cite_ref-FOOTNOTEChadwick1999_12-1" class="reference"><a href="#cite_note-FOOTNOTEChadwick1999-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> and <i>body moments</i>. Couple stresses are moments per unit area applied on a surface. Body moments, or body couples, are moments per unit volume or per unit mass applied to the volume of the body. Both are important in the analysis of stress for a polarized dielectric solid under the action of an electric field, materials where the molecular structure is taken into consideration (<i>e.g.</i> bones), solids under the action of an external magnetic field, and the dislocation theory of metals.<sup id="cite_ref-FOOTNOTEWu2004_7-1" class="reference"><a href="#cite_note-FOOTNOTEWu2004-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEFung1977_8-1" class="reference"><a href="#cite_note-FOOTNOTEFung1977-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (August 2020)">page&#160;needed</span></a></i>&#93;</sup><sup id="cite_ref-FOOTNOTEIrgens2008_11-2" class="reference"><a href="#cite_note-FOOTNOTEIrgens2008-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>Materials that exhibit body couples and couple stresses in addition to moments produced exclusively by forces are called <i>polar materials</i>.<sup id="cite_ref-FOOTNOTEFung1977_8-2" class="reference"><a href="#cite_note-FOOTNOTEFung1977-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (August 2020)">page&#160;needed</span></a></i>&#93;</sup><sup id="cite_ref-FOOTNOTEChadwick1999_12-2" class="reference"><a href="#cite_note-FOOTNOTEChadwick1999-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> <i>Non-polar materials</i> are then those materials with only moments of forces. In the classical branches of continuum mechanics the development of the theory of stresses is based on non-polar materials. </p><p>Thus, the sum of all applied forces and torques (with respect to the origin of the coordinate system) in the body can be given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}=\int _{V}\mathbf {a} \,dm=\int _{S}\mathbf {T} \,dS+\int _{V}\rho \mathbf {b} \,dV}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>m</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>S</mi> <mo>+</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}=\int _{V}\mathbf {a} \,dm=\int _{S}\mathbf {T} \,dS+\int _{V}\rho \mathbf {b} \,dV}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ece9449d9cbaeb50e5c9accd950c1556a17d37b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:36.269ex; height:5.676ex;" alt="{\displaystyle {\mathcal {F}}=\int _{V}\mathbf {a} \,dm=\int _{S}\mathbf {T} \,dS+\int _{V}\rho \mathbf {b} \,dV}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}=\int _{S}\mathbf {r} \times \mathbf {T} \,dS+\int _{V}\mathbf {r} \times \rho \mathbf {b} \,dV}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>S</mi> <mo>+</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}=\int _{S}\mathbf {r} \times \mathbf {T} \,dS+\int _{V}\mathbf {r} \times \rho \mathbf {b} \,dV}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/863b74e8b60fff168bc39c4478895778b417bf25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.801ex; height:5.676ex;" alt="{\displaystyle {\mathcal {M}}=\int _{S}\mathbf {r} \times \mathbf {T} \,dS+\int _{V}\mathbf {r} \times \rho \mathbf {b} \,dV}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Kinematics:_motion_and_deformation">Kinematics: motion and deformation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=7" title="Edit section: Kinematics: motion and deformation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Displacement_of_a_continuum.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Displacement_of_a_continuum.svg/400px-Displacement_of_a_continuum.svg.png" decoding="async" width="400" height="289" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Displacement_of_a_continuum.svg/600px-Displacement_of_a_continuum.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Displacement_of_a_continuum.svg/800px-Displacement_of_a_continuum.svg.png 2x" data-file-width="960" data-file-height="693" /></a><figcaption>Figure 2. Motion of a continuum body.</figcaption></figure> <p>A change in the configuration of a continuum body results in a <a href="/wiki/Displacement_field_(mechanics)" title="Displacement field (mechanics)">displacement</a>. The displacement of a body has two components: a rigid-body displacement and a <a href="/wiki/Deformation_(mechanics)" class="mw-redirect" title="Deformation (mechanics)">deformation</a>. A rigid-body displacement consists of a simultaneous translation and rotation of the body without changing its shape or size. Deformation implies the change in shape and/or size of the body from an initial or undeformed configuration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{0}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{0}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/001187fb472c2535da5d3fde2b64b5e82e305c50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.746ex; height:2.843ex;" alt="{\displaystyle \kappa _{0}({\mathcal {B}})}"></span> to a current or deformed configuration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{t}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{t}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab55799debd650ba2af18cea74f18f1b962eec53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.518ex; height:2.843ex;" alt="{\displaystyle \kappa _{t}({\mathcal {B}})}"></span> (Figure 2). </p><p>The motion of a continuum body is a continuous time sequence of displacements. Thus, the material body will occupy different configurations at different times so that a particle occupies a series of points in space which describe a path line. </p><p>There is continuity during motion or deformation of a continuum body in the sense that: </p> <ul><li>The material points forming a closed curve at any instant will always form a closed curve at any subsequent time.</li> <li>The material points forming a closed surface at any instant will always form a closed surface at any subsequent time and the matter within the closed surface will always remain within.</li></ul> <p>It is convenient to identify a reference configuration or initial condition which all subsequent configurations are referenced from. The reference configuration need not be one that the body will ever occupy. Often, the configuration at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43469ec032d858feae5aa87029e22eaaf0109e9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.101ex; height:2.176ex;" alt="{\displaystyle t=0}"></span> is considered the reference configuration, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{0}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{0}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/001187fb472c2535da5d3fde2b64b5e82e305c50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.746ex; height:2.843ex;" alt="{\displaystyle \kappa _{0}({\mathcal {B}})}"></span>. The components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af4a0955af42beb5f85aa05fb8c07abedc13990d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.724ex; height:2.509ex;" alt="{\displaystyle X_{i}}"></span> of the position vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f75966a2f9d5672136fa9401ee1e75008f95ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {X} }"></span> of a particle, taken with respect to the reference configuration, are called the material or reference coordinates. </p><p>When analyzing the motion or <a href="/wiki/Deformation_(mechanics)" class="mw-redirect" title="Deformation (mechanics)">deformation</a> of solids, or the <a href="/wiki/Fluid_mechanics" title="Fluid mechanics">flow</a> of fluids, it is necessary to describe the sequence or evolution of configurations throughout time. One description for motion is made in terms of the material or referential coordinates, called material description or Lagrangian description. </p> <div class="mw-heading mw-heading3"><h3 id="Lagrangian_description">Lagrangian description</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=8" title="Edit section: Lagrangian description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the Lagrangian description the position and physical properties of the particles are described in terms of the material or referential coordinates and time. In this case <b>the reference configuration is the configuration at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43469ec032d858feae5aa87029e22eaaf0109e9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.101ex; height:2.176ex;" alt="{\displaystyle t=0}"></span></b>. An observer standing in the frame of reference observes the changes in the position and physical properties as the material body moves in space as time progresses. The results obtained are independent of the choice of initial time and reference configuration, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{0}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{0}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/001187fb472c2535da5d3fde2b64b5e82e305c50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.746ex; height:2.843ex;" alt="{\displaystyle \kappa _{0}({\mathcal {B}})}"></span>. This description is normally used in <a href="/wiki/Solid_mechanics" title="Solid mechanics">solid mechanics</a>. </p><p>In the Lagrangian description, the motion of a continuum body is expressed by the mapping function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi (\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi (\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd43bf5c5fc4d0e541636765f3118c79e3be0b57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.911ex; height:2.843ex;" alt="{\displaystyle \chi (\cdot )}"></span> (Figure 2), </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =\chi (\mathbf {X} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} =\chi (\mathbf {X} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9808bd9c87f93c558da291714fdd50fe82984e10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.667ex; height:2.843ex;" alt="{\displaystyle \mathbf {x} =\chi (\mathbf {X} ,t)}"></span></dd></dl> <p>which is a mapping of the initial configuration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{0}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{0}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/001187fb472c2535da5d3fde2b64b5e82e305c50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.746ex; height:2.843ex;" alt="{\displaystyle \kappa _{0}({\mathcal {B}})}"></span> onto the current configuration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{t}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{t}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab55799debd650ba2af18cea74f18f1b962eec53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.518ex; height:2.843ex;" alt="{\displaystyle \kappa _{t}({\mathcal {B}})}"></span>, giving a geometrical correspondence between them, i.e. giving the position vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =x_{i}\mathbf {e} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} =x_{i}\mathbf {e} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0141632f990f463206b9ca793785195eea6b8fc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.664ex; height:2.009ex;" alt="{\displaystyle \mathbf {x} =x_{i}\mathbf {e} _{i}}"></span> that a particle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, with a position vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f75966a2f9d5672136fa9401ee1e75008f95ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {X} }"></span> in the undeformed or reference configuration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{0}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{0}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/001187fb472c2535da5d3fde2b64b5e82e305c50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.746ex; height:2.843ex;" alt="{\displaystyle \kappa _{0}({\mathcal {B}})}"></span>, will occupy in the current or deformed configuration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{t}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{t}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab55799debd650ba2af18cea74f18f1b962eec53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.518ex; height:2.843ex;" alt="{\displaystyle \kappa _{t}({\mathcal {B}})}"></span> at time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>. The components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}"></span> are called the spatial coordinates. </p><p>Physical and kinematic properties <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{ij\ldots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{ij\ldots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89dc778749aab3fef99766b136f3e1c801723225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.895ex; height:2.843ex;" alt="{\displaystyle P_{ij\ldots }}"></span>, i.e. thermodynamic properties and flow velocity, which describe or characterize features of the material body, are expressed as continuous functions of position and time, i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{ij\ldots }=P_{ij\ldots }(\mathbf {X} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{ij\ldots }=P_{ij\ldots }(\mathbf {X} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47107919e8793bd2691a3390fc32f3392e9ba486" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.591ex; height:3.009ex;" alt="{\displaystyle P_{ij\ldots }=P_{ij\ldots }(\mathbf {X} ,t)}"></span>. </p><p>The material derivative of any property <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{ij\ldots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{ij\ldots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89dc778749aab3fef99766b136f3e1c801723225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.895ex; height:2.843ex;" alt="{\displaystyle P_{ij\ldots }}"></span> of a continuum, which may be a scalar, vector, or tensor, is the time rate of change of that property for a specific group of particles of the moving continuum body. The material derivative is also known as the <i>substantial derivative</i>, or <i>comoving derivative</i>, or <i>convective derivative</i>. It can be thought as the rate at which the property changes when measured by an observer traveling with that group of particles. </p><p>In the Lagrangian description, the material derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{ij\ldots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{ij\ldots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89dc778749aab3fef99766b136f3e1c801723225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.895ex; height:2.843ex;" alt="{\displaystyle P_{ij\ldots }}"></span> is simply the partial derivative with respect to time, and the position vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f75966a2f9d5672136fa9401ee1e75008f95ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {X} }"></span> is held constant as it does not change with time. Thus, we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dt}}[P_{ij\ldots }(\mathbf {X} ,t)]={\frac {\partial }{\partial t}}[P_{ij\ldots }(\mathbf {X} ,t)]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">[</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">[</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dt}}[P_{ij\ldots }(\mathbf {X} ,t)]={\frac {\partial }{\partial t}}[P_{ij\ldots }(\mathbf {X} ,t)]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d57c030f01fac469178b29d8f47a3774b6759949" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:32.766ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dt}}[P_{ij\ldots }(\mathbf {X} ,t)]={\frac {\partial }{\partial t}}[P_{ij\ldots }(\mathbf {X} ,t)]}"></span></dd></dl> <p>The instantaneous position <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> is a property of a particle, and its material derivative is the <i>instantaneous flow velocity</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> of the particle. Therefore, the flow velocity field of the continuum is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} ={\dot {\mathbf {x} }}={\frac {d\mathbf {x} }{dt}}={\frac {\partial \chi (\mathbf {X} ,t)}{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} ={\dot {\mathbf {x} }}={\frac {d\mathbf {x} }{dt}}={\frac {\partial \chi (\mathbf {X} ,t)}{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2391611226b74b9b0e341dbfc21e084718f5d60f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:24.892ex; height:5.843ex;" alt="{\displaystyle \mathbf {v} ={\dot {\mathbf {x} }}={\frac {d\mathbf {x} }{dt}}={\frac {\partial \chi (\mathbf {X} ,t)}{\partial t}}}"></span></dd></dl> <p>Similarly, the acceleration field is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ={\dot {\mathbf {v} }}={\ddot {\mathbf {x} }}={\frac {d^{2}\mathbf {x} }{dt^{2}}}={\frac {\partial ^{2}\chi (\mathbf {X} ,t)}{\partial t^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ={\dot {\mathbf {v} }}={\ddot {\mathbf {x} }}={\frac {d^{2}\mathbf {x} }{dt^{2}}}={\frac {\partial ^{2}\chi (\mathbf {X} ,t)}{\partial t^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b833646a9dab612561bd53db845522f65e9b2043" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:31.426ex; height:6.176ex;" alt="{\displaystyle \mathbf {a} ={\dot {\mathbf {v} }}={\ddot {\mathbf {x} }}={\frac {d^{2}\mathbf {x} }{dt^{2}}}={\frac {\partial ^{2}\chi (\mathbf {X} ,t)}{\partial t^{2}}}}"></span></dd></dl> <p>Continuity in the Lagrangian description is expressed by the spatial and temporal continuity of the mapping from the reference configuration to the current configuration of the material points. All physical quantities characterizing the continuum are described this way. In this sense, the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi (\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi (\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd43bf5c5fc4d0e541636765f3118c79e3be0b57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.911ex; height:2.843ex;" alt="{\displaystyle \chi (\cdot )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{ij\ldots }(\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{ij\ldots }(\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ded0f0d9078c3fcc25aa6a8f7cb001c3c56131b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.351ex; height:3.009ex;" alt="{\displaystyle P_{ij\ldots }(\cdot )}"></span> are single-valued and continuous, with continuous derivatives with respect to space and time to whatever order is required, usually to the second or third. </p> <div class="mw-heading mw-heading3"><h3 id="Eulerian_description">Eulerian description</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=9" title="Edit section: Eulerian description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Continuity allows for the inverse of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi (\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi (\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd43bf5c5fc4d0e541636765f3118c79e3be0b57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.911ex; height:2.843ex;" alt="{\displaystyle \chi (\cdot )}"></span> to trace backwards where the particle currently located at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> was located in the initial or referenced configuration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{0}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{0}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/001187fb472c2535da5d3fde2b64b5e82e305c50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.746ex; height:2.843ex;" alt="{\displaystyle \kappa _{0}({\mathcal {B}})}"></span>. In this case the description of motion is made in terms of the spatial coordinates, in which case is called the spatial description or Eulerian description, i.e. <b>the current configuration is taken as the reference configuration</b>. </p><p>The Eulerian description, introduced by <a href="/wiki/D%27Alembert" class="mw-redirect" title="D&#39;Alembert">d'Alembert</a>, focuses on the current configuration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{t}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{t}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab55799debd650ba2af18cea74f18f1b962eec53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.518ex; height:2.843ex;" alt="{\displaystyle \kappa _{t}({\mathcal {B}})}"></span>, giving attention to what is occurring at a fixed point in space as time progresses, instead of giving attention to individual particles as they move through space and time. This approach is conveniently applied in the study of <a href="/wiki/Fluid_mechanics" title="Fluid mechanics">fluid flow</a> where the kinematic property of greatest interest is the rate at which change is taking place rather than the shape of the body of fluid at a reference time.<sup id="cite_ref-FOOTNOTESpencer198083_16-0" class="reference"><a href="#cite_note-FOOTNOTESpencer198083-16"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>Mathematically, the motion of a continuum using the Eulerian description is expressed by the mapping function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} =\chi ^{-1}(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>=</mo> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} =\chi ^{-1}(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e286b2ddb237bb5db5f07caadc00918a8d3f6b59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14ex; height:3.176ex;" alt="{\displaystyle \mathbf {X} =\chi ^{-1}(\mathbf {x} ,t)}"></span></dd></dl> <p>which provides a tracing of the particle which now occupies the position <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> in the current configuration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{t}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{t}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab55799debd650ba2af18cea74f18f1b962eec53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.518ex; height:2.843ex;" alt="{\displaystyle \kappa _{t}({\mathcal {B}})}"></span> to its original position <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f75966a2f9d5672136fa9401ee1e75008f95ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {X} }"></span> in the initial configuration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{0}({\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{0}({\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/001187fb472c2535da5d3fde2b64b5e82e305c50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.746ex; height:2.843ex;" alt="{\displaystyle \kappa _{0}({\mathcal {B}})}"></span>. </p><p>A necessary and sufficient condition for this inverse function to exist is that the determinant of the <a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian matrix</a>, often referred to simply as the Jacobian, should be different from zero. Thus, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J=\left|{\frac {\partial \chi _{i}}{\partial X_{J}}}\right|=\left|{\frac {\partial x_{i}}{\partial X_{J}}}\right|\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>=</mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J=\left|{\frac {\partial \chi _{i}}{\partial X_{J}}}\right|=\left|{\frac {\partial x_{i}}{\partial X_{J}}}\right|\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb79b4c66637f8aa2991d6b2a64c888cf45da582" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.219ex; height:6.176ex;" alt="{\displaystyle J=\left|{\frac {\partial \chi _{i}}{\partial X_{J}}}\right|=\left|{\frac {\partial x_{i}}{\partial X_{J}}}\right|\neq 0}"></span></dd></dl> <p>In the Eulerian description, the physical properties <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{ij\ldots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{ij\ldots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89dc778749aab3fef99766b136f3e1c801723225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.895ex; height:2.843ex;" alt="{\displaystyle P_{ij\ldots }}"></span> are expressed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{ij\ldots }=P_{ij\ldots }(\mathbf {X} ,t)=P_{ij\ldots }[\chi ^{-1}(\mathbf {x} ,t),t]=p_{ij\ldots }(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo stretchy="false">[</mo> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{ij\ldots }=P_{ij\ldots }(\mathbf {X} ,t)=P_{ij\ldots }[\chi ^{-1}(\mathbf {x} ,t),t]=p_{ij\ldots }(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8285f8b8ab3d209b5b91d73a3b79e2bc66dcb2cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:51.398ex; height:3.343ex;" alt="{\displaystyle P_{ij\ldots }=P_{ij\ldots }(\mathbf {X} ,t)=P_{ij\ldots }[\chi ^{-1}(\mathbf {x} ,t),t]=p_{ij\ldots }(\mathbf {x} ,t)}"></span></dd></dl> <p>where the functional form of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{ij\ldots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{ij\ldots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89dc778749aab3fef99766b136f3e1c801723225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.895ex; height:2.843ex;" alt="{\displaystyle P_{ij\ldots }}"></span> in the Lagrangian description is not the same as the form of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{ij\ldots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{ij\ldots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4878d1eb685943828e7c842b0bc765f5454bf428" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:4.662ex; height:2.343ex;" alt="{\displaystyle p_{ij\ldots }}"></span> in the Eulerian description. </p><p>The material derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{ij\ldots }(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{ij\ldots }(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cadafd3385e252ff02f6be5a8c67fca2ad369bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:9.755ex; height:3.009ex;" alt="{\displaystyle p_{ij\ldots }(\mathbf {x} ,t)}"></span>, using the chain rule, is then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dt}}[p_{ij\ldots }(\mathbf {x} ,t)]={\frac {\partial }{\partial t}}[p_{ij\ldots }(\mathbf {x} ,t)]+{\frac {\partial }{\partial x_{k}}}[p_{ij\ldots }(\mathbf {x} ,t)]{\frac {dx_{k}}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">[</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">[</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo stretchy="false">[</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dt}}[p_{ij\ldots }(\mathbf {x} ,t)]={\frac {\partial }{\partial t}}[p_{ij\ldots }(\mathbf {x} ,t)]+{\frac {\partial }{\partial x_{k}}}[p_{ij\ldots }(\mathbf {x} ,t)]{\frac {dx_{k}}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbdd352ed75c49c13c7f4b3f4b978ed1a26567a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:53.746ex; height:5.843ex;" alt="{\displaystyle {\frac {d}{dt}}[p_{ij\ldots }(\mathbf {x} ,t)]={\frac {\partial }{\partial t}}[p_{ij\ldots }(\mathbf {x} ,t)]+{\frac {\partial }{\partial x_{k}}}[p_{ij\ldots }(\mathbf {x} ,t)]{\frac {dx_{k}}{dt}}}"></span></dd></dl> <p>The first term on the right-hand side of this equation gives the <i>local rate of change</i> of the property <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{ij\ldots }(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>&#x2026;<!-- … --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{ij\ldots }(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cadafd3385e252ff02f6be5a8c67fca2ad369bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:9.755ex; height:3.009ex;" alt="{\displaystyle p_{ij\ldots }(\mathbf {x} ,t)}"></span> occurring at position <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span>. The second term of the right-hand side is the <i>convective rate of change</i> and expresses the contribution of the particle changing position in space (motion). </p><p>Continuity in the Eulerian description is expressed by the spatial and temporal continuity and continuous differentiability of the flow velocity field. All physical quantities are defined this way at each instant of time, in the current configuration, as a function of the vector position <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Displacement_field">Displacement field</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=10" title="Edit section: Displacement field"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Displacement_field_(mechanics)" title="Displacement field (mechanics)">Displacement field (mechanics)</a></div> <p>The vector joining the positions of a particle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> in the undeformed configuration and deformed configuration is called the <a href="/wiki/Displacement_(vector)" class="mw-redirect" title="Displacement (vector)">displacement vector</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} (\mathbf {X} ,t)=u_{i}\mathbf {e} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} (\mathbf {X} ,t)=u_{i}\mathbf {e} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/065e3aab840f4bf2cb51deee47a9e65e60f8ac42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.44ex; height:2.843ex;" alt="{\displaystyle \mathbf {u} (\mathbf {X} ,t)=u_{i}\mathbf {e} _{i}}"></span>, in the Lagrangian description, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {U} (\mathbf {x} ,t)=U_{J}\mathbf {E} _{J}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">U</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {U} (\mathbf {x} ,t)=U_{J}\mathbf {E} _{J}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deb1b44973ae7acb7386f205c6c88be9d724098d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.139ex; height:2.843ex;" alt="{\displaystyle \mathbf {U} (\mathbf {x} ,t)=U_{J}\mathbf {E} _{J}}"></span>, in the Eulerian description. </p><p>A <i>displacement field</i> is a vector field of all displacement vectors for all particles in the body, which relates the deformed configuration with the undeformed configuration. It is convenient to do the analysis of deformation or motion of a continuum body in terms of the displacement field, In general, the displacement field is expressed in terms of the material coordinates as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} (\mathbf {X} ,t)=\mathbf {b} +\mathbf {x} (\mathbf {X} ,t)-\mathbf {X} \qquad {\text{or}}\qquad u_{i}=\alpha _{iJ}b_{J}+x_{i}-\alpha _{iJ}X_{J}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>or</mtext> </mrow> <mspace width="2em" /> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>J</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>J</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} (\mathbf {X} ,t)=\mathbf {b} +\mathbf {x} (\mathbf {X} ,t)-\mathbf {X} \qquad {\text{or}}\qquad u_{i}=\alpha _{iJ}b_{J}+x_{i}-\alpha _{iJ}X_{J}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c0e87625f51bc68d03265dc75c0b550a10f4226" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:63.11ex; height:2.843ex;" alt="{\displaystyle \mathbf {u} (\mathbf {X} ,t)=\mathbf {b} +\mathbf {x} (\mathbf {X} ,t)-\mathbf {X} \qquad {\text{or}}\qquad u_{i}=\alpha _{iJ}b_{J}+x_{i}-\alpha _{iJ}X_{J}}"></span></dd></dl> <p>or in terms of the spatial coordinates as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {U} (\mathbf {x} ,t)=\mathbf {b} +\mathbf {x} -\mathbf {X} (\mathbf {x} ,t)\qquad {\text{or}}\qquad U_{J}=b_{J}+\alpha _{Ji}x_{i}-X_{J}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">U</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>or</mtext> </mrow> <mspace width="2em" /> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {U} (\mathbf {x} ,t)=\mathbf {b} +\mathbf {x} -\mathbf {X} (\mathbf {x} ,t)\qquad {\text{or}}\qquad U_{J}=b_{J}+\alpha _{Ji}x_{i}-X_{J}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c963f5cf5dfc5cc2b0f7fb56f346dbeb6dc8c068" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:60.254ex; height:2.843ex;" alt="{\displaystyle \mathbf {U} (\mathbf {x} ,t)=\mathbf {b} +\mathbf {x} -\mathbf {X} (\mathbf {x} ,t)\qquad {\text{or}}\qquad U_{J}=b_{J}+\alpha _{Ji}x_{i}-X_{J}\,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{Ji}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{Ji}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68820a33eaa00b3d4ae8cff632dbfc35fba06e4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.328ex; height:2.009ex;" alt="{\displaystyle \alpha _{Ji}}"></span> are the direction cosines between the material and spatial coordinate systems with unit vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} _{J}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} _{J}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e97f46155d8064322a8ff459f5f6c5f9bed5f0b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.03ex; height:2.509ex;" alt="{\displaystyle \mathbf {E} _{J}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {e} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba77c5a75ef9e230d1a36183785477a2eb3c5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.025ex; height:2.009ex;" alt="{\displaystyle \mathbf {e} _{i}}"></span>, respectively. Thus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} _{J}\cdot \mathbf {e} _{i}=\alpha _{Ji}=\alpha _{iJ}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>J</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} _{J}\cdot \mathbf {e} _{i}=\alpha _{Ji}=\alpha _{iJ}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21bf27f3f0e771333ad8fa40f0e7f73222a22be6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.586ex; height:2.509ex;" alt="{\displaystyle \mathbf {E} _{J}\cdot \mathbf {e} _{i}=\alpha _{Ji}=\alpha _{iJ}}"></span></dd></dl> <p>and the relationship between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14f13cb025ff2e136dcbd2fc81ddf965b728e3d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle u_{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{J}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{J}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c672aec8baf29ad068d1041e4c4e806e8d8085e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.86ex; height:2.509ex;" alt="{\displaystyle U_{J}}"></span> is then given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{i}=\alpha _{iJ}U_{J}\qquad {\text{or}}\qquad U_{J}=\alpha _{Ji}u_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>J</mi> </mrow> </msub> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>or</mtext> </mrow> <mspace width="2em" /> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{i}=\alpha _{iJ}U_{J}\qquad {\text{or}}\qquad U_{J}=\alpha _{Ji}u_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce47ae3250ea0c7a0e3cd54373bdae149a7096b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:34.196ex; height:2.509ex;" alt="{\displaystyle u_{i}=\alpha _{iJ}U_{J}\qquad {\text{or}}\qquad U_{J}=\alpha _{Ji}u_{i}}"></span></dd></dl> <p>Knowing that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{i}=\alpha _{iJ}\mathbf {E} _{J}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>J</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {e} _{i}=\alpha _{iJ}\mathbf {E} _{J}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b6d908d8588673af724f4e152036dc8f3c4ab69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.481ex; height:2.509ex;" alt="{\displaystyle \mathbf {e} _{i}=\alpha _{iJ}\mathbf {E} _{J}}"></span></dd></dl> <p>then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} (\mathbf {X} ,t)=u_{i}\mathbf {e} _{i}=u_{i}(\alpha _{iJ}\mathbf {E} _{J})=U_{J}\mathbf {E} _{J}=\mathbf {U} (\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>J</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">U</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} (\mathbf {X} ,t)=u_{i}\mathbf {e} _{i}=u_{i}(\alpha _{iJ}\mathbf {E} _{J})=U_{J}\mathbf {E} _{J}=\mathbf {U} (\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a26e841524564c69515d995b973914a44282f014" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.072ex; height:2.843ex;" alt="{\displaystyle \mathbf {u} (\mathbf {X} ,t)=u_{i}\mathbf {e} _{i}=u_{i}(\alpha _{iJ}\mathbf {E} _{J})=U_{J}\mathbf {E} _{J}=\mathbf {U} (\mathbf {x} ,t)}"></span></dd></dl> <p>It is common to superimpose the coordinate systems for the undeformed and deformed configurations, which results in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/657160321dd1acfbbbebb2e578ecfa0c2b9a4ec6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.746ex; height:2.176ex;" alt="{\displaystyle \mathbf {b} =0}"></span>, and the direction cosines become <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker deltas</a>, i.e. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} _{J}\cdot \mathbf {e} _{i}=\delta _{Ji}=\delta _{iJ}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>J</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} _{J}\cdot \mathbf {e} _{i}=\delta _{Ji}=\delta _{iJ}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b970b18a13095bbb9294be514b2876ef86b664cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.676ex; height:2.676ex;" alt="{\displaystyle \mathbf {E} _{J}\cdot \mathbf {e} _{i}=\delta _{Ji}=\delta _{iJ}}"></span></dd></dl> <p>Thus, we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} (\mathbf {X} ,t)=\mathbf {x} (\mathbf {X} ,t)-\mathbf {X} \qquad {\text{or}}\qquad u_{i}=x_{i}-\delta _{iJ}X_{J}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>or</mtext> </mrow> <mspace width="2em" /> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>J</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} (\mathbf {X} ,t)=\mathbf {x} (\mathbf {X} ,t)-\mathbf {X} \qquad {\text{or}}\qquad u_{i}=x_{i}-\delta _{iJ}X_{J}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11ac9e9b5e6e3e49e9eb73df760685ea3991edba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.891ex; height:2.843ex;" alt="{\displaystyle \mathbf {u} (\mathbf {X} ,t)=\mathbf {x} (\mathbf {X} ,t)-\mathbf {X} \qquad {\text{or}}\qquad u_{i}=x_{i}-\delta _{iJ}X_{J}}"></span></dd></dl> <p>or in terms of the spatial coordinates as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {U} (\mathbf {x} ,t)=\mathbf {x} -\mathbf {X} (\mathbf {x} ,t)\qquad {\text{or}}\qquad U_{J}=\delta _{Ji}x_{i}-X_{J}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">U</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>or</mtext> </mrow> <mspace width="2em" /> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {U} (\mathbf {x} ,t)=\mathbf {x} -\mathbf {X} (\mathbf {x} ,t)\qquad {\text{or}}\qquad U_{J}=\delta _{Ji}x_{i}-X_{J}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de28c180e4d36746ed4eaa4b42b9a8a675217096" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.976ex; height:2.843ex;" alt="{\displaystyle \mathbf {U} (\mathbf {x} ,t)=\mathbf {x} -\mathbf {X} (\mathbf {x} ,t)\qquad {\text{or}}\qquad U_{J}=\delta _{Ji}x_{i}-X_{J}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Governing_equations">Governing equations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=11" title="Edit section: Governing equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Continuum mechanics deals with the behavior of materials that can be approximated as continuous for certain length and time scales. The equations that govern the mechanics of such materials include the balance laws for <a href="/wiki/Conservation_of_mass" title="Conservation of mass">mass</a>, <a href="/wiki/Conservation_of_momentum" class="mw-redirect" title="Conservation of momentum">momentum</a>, and <a href="/wiki/Conservation_of_energy" title="Conservation of energy">energy</a>. <a href="/wiki/Kinematics" title="Kinematics">Kinematic</a> relations and <a href="/wiki/Constitutive_equations" class="mw-redirect" title="Constitutive equations">constitutive equations</a> are needed to complete the system of governing equations. Physical restrictions on the form of the constitutive relations can be applied by requiring that the <a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">second law of thermodynamics</a> be satisfied under all conditions. In the continuum mechanics of solids, the second law of thermodynamics is satisfied if the <a href="/wiki/Clausius%E2%80%93Duhem_inequality" title="Clausius–Duhem inequality">Clausius–Duhem</a> form of the entropy inequality is satisfied. </p><p>The balance laws express the idea that the rate of change of a quantity (mass, momentum, energy) in a volume must arise from three causes: </p> <ol><li>the physical quantity itself flows through the surface that bounds the volume,</li> <li>there is a source of the physical quantity on the surface of the volume, or/and,</li> <li>there is a source of the physical quantity inside the volume.</li></ol> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> be the body (an open subset of Euclidean space) and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16feddaad462c2a1c9efdaeee062a0484a023fde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.996ex; height:2.176ex;" alt="{\displaystyle \partial \Omega }"></span> be its surface (the boundary of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>). </p><p>Let the motion of material points in the body be described by the map </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ={\boldsymbol {\chi }}(\mathbf {X} )=\mathbf {x} (\mathbf {X} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C7;<!-- χ --></mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} ={\boldsymbol {\chi }}(\mathbf {X} )=\mathbf {x} (\mathbf {X} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2892e28acef02587d9b7ac8c1b18c4036305120" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.345ex; height:2.843ex;" alt="{\displaystyle \mathbf {x} ={\boldsymbol {\chi }}(\mathbf {X} )=\mathbf {x} (\mathbf {X} )}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f75966a2f9d5672136fa9401ee1e75008f95ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {X} }"></span> is the position of a point in the initial configuration and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> is the location of the same point in the deformed configuration. </p><p>The deformation gradient is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {F}}={\frac {\partial \mathbf {x} }{\partial \mathbf {X} }}=\nabla \mathbf {x} ~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">F</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {F}}={\frac {\partial \mathbf {x} }{\partial \mathbf {X} }}=\nabla \mathbf {x} ~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3c7913254309d3bbcfeb25893b36adf83bdffd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.825ex; height:5.509ex;" alt="{\displaystyle {\boldsymbol {F}}={\frac {\partial \mathbf {x} }{\partial \mathbf {X} }}=\nabla \mathbf {x} ~.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Balance_laws">Balance laws</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=12" title="Edit section: Balance laws"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7fb61c28e8f713491ca4fec225b57689311a186" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.372ex; height:2.843ex;" alt="{\displaystyle f(\mathbf {x} ,t)}"></span> be a physical quantity that is flowing through the body. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b113af7ed5ef9aae0d8fe62ba86bfdd965f3a076" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.21ex; height:2.843ex;" alt="{\displaystyle g(\mathbf {x} ,t)}"></span> be sources on the surface of the body and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8565f8127de47a8f3537566e28184a029481ca7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.433ex; height:2.843ex;" alt="{\displaystyle h(\mathbf {x} ,t)}"></span> be sources inside the body. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {n} (\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {n} (\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaf967426443cf578d274c500b67efca3adf9e4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.579ex; height:2.843ex;" alt="{\displaystyle \mathbf {n} (\mathbf {x} ,t)}"></span> be the outward unit normal to the surface <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16feddaad462c2a1c9efdaeee062a0484a023fde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.996ex; height:2.176ex;" alt="{\displaystyle \partial \Omega }"></span>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} (\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} (\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b9c5ae6b8c41d39658de387807109d572b6dfb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.505ex; height:2.843ex;" alt="{\displaystyle \mathbf {v} (\mathbf {x} ,t)}"></span> be the flow velocity of the physical particles that carry the physical quantity that is flowing. Also, let the speed at which the bounding surface <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16feddaad462c2a1c9efdaeee062a0484a023fde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.996ex; height:2.176ex;" alt="{\displaystyle \partial \Omega }"></span> is moving be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c7339b0b08d3045d72ddbacf4a3e50d24640c2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.548ex; height:2.009ex;" alt="{\displaystyle u_{n}}"></span> (in the direction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {n} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {n} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a720c341f39f52fd96028dab83edd34d400be46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {n} }"></span>). </p><p>Then, balance laws can be expressed in the general form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {d}{dt}}\left[\int _{\Omega }f(\mathbf {x} ,t)~{\text{dV}}\right]=\int _{\partial \Omega }f(\mathbf {x} ,t)[u_{n}(\mathbf {x} ,t)-\mathbf {v} (\mathbf {x} ,t)\cdot \mathbf {n} (\mathbf {x} ,t)]~{\text{dA}}+\int _{\partial \Omega }g(\mathbf {x} ,t)~{\text{dA}}+\int _{\Omega }h(\mathbf {x} ,t)~{\text{dV}}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>dV</mtext> </mrow> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>dA</mtext> </mrow> <mo>+</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>dA</mtext> </mrow> <mo>+</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>h</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>dV</mtext> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {d}{dt}}\left[\int _{\Omega }f(\mathbf {x} ,t)~{\text{dV}}\right]=\int _{\partial \Omega }f(\mathbf {x} ,t)[u_{n}(\mathbf {x} ,t)-\mathbf {v} (\mathbf {x} ,t)\cdot \mathbf {n} (\mathbf {x} ,t)]~{\text{dA}}+\int _{\partial \Omega }g(\mathbf {x} ,t)~{\text{dA}}+\int _{\Omega }h(\mathbf {x} ,t)~{\text{dV}}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80f2a1116281a5feb923a41f01ad7f153f68b64d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:96.39ex; height:7.176ex;" alt="{\displaystyle {\cfrac {d}{dt}}\left[\int _{\Omega }f(\mathbf {x} ,t)~{\text{dV}}\right]=\int _{\partial \Omega }f(\mathbf {x} ,t)[u_{n}(\mathbf {x} ,t)-\mathbf {v} (\mathbf {x} ,t)\cdot \mathbf {n} (\mathbf {x} ,t)]~{\text{dA}}+\int _{\partial \Omega }g(\mathbf {x} ,t)~{\text{dA}}+\int _{\Omega }h(\mathbf {x} ,t)~{\text{dV}}~.}"></span></dd></dl> <p>The functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7fb61c28e8f713491ca4fec225b57689311a186" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.372ex; height:2.843ex;" alt="{\displaystyle f(\mathbf {x} ,t)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b113af7ed5ef9aae0d8fe62ba86bfdd965f3a076" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.21ex; height:2.843ex;" alt="{\displaystyle g(\mathbf {x} ,t)}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8565f8127de47a8f3537566e28184a029481ca7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.433ex; height:2.843ex;" alt="{\displaystyle h(\mathbf {x} ,t)}"></span> can be scalar valued, vector valued, or tensor valued - depending on the physical quantity that the balance equation deals with. If there are internal boundaries in the body, jump discontinuities also need to be specified in the balance laws. </p><p>If we take the <a href="/wiki/Lagrangian_and_Eulerian_specification_of_the_flow_field" title="Lagrangian and Eulerian specification of the flow field">Eulerian</a> point of view, it can be shown that the balance laws of mass, momentum, and energy for a solid can be written as (assuming the source term is zero for the mass and angular momentum equations) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\dot {\rho }}+\rho ({\boldsymbol {\nabla }}\cdot \mathbf {v} )&amp;=0&amp;&amp;\qquad {\text{Balance of Mass}}\\\rho ~{\dot {\mathbf {v} }}-{\boldsymbol {\nabla }}\cdot {\boldsymbol {\sigma }}-\rho ~\mathbf {b} &amp;=0&amp;&amp;\qquad {\text{Balance of Linear Momentum (Cauchy's first law of motion)}}\\{\boldsymbol {\sigma }}&amp;={\boldsymbol {\sigma }}^{T}&amp;&amp;\qquad {\text{Balance of Angular Momentum (Cauchy's second law of motion)}}\\\rho ~{\dot {e}}-{\boldsymbol {\sigma }}:({\boldsymbol {\nabla }}\mathbf {v} )+{\boldsymbol {\nabla }}\cdot \mathbf {q} -\rho ~s&amp;=0&amp;&amp;\qquad {\text{Balance of Energy.}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>Balance of Mass</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>Balance of Linear Momentum (Cauchy's first law of motion)</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mtd> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>Balance of Angular Momentum (Cauchy's second law of motion)</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mo>:</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mi>s</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>Balance of Energy.</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\dot {\rho }}+\rho ({\boldsymbol {\nabla }}\cdot \mathbf {v} )&amp;=0&amp;&amp;\qquad {\text{Balance of Mass}}\\\rho ~{\dot {\mathbf {v} }}-{\boldsymbol {\nabla }}\cdot {\boldsymbol {\sigma }}-\rho ~\mathbf {b} &amp;=0&amp;&amp;\qquad {\text{Balance of Linear Momentum (Cauchy's first law of motion)}}\\{\boldsymbol {\sigma }}&amp;={\boldsymbol {\sigma }}^{T}&amp;&amp;\qquad {\text{Balance of Angular Momentum (Cauchy's second law of motion)}}\\\rho ~{\dot {e}}-{\boldsymbol {\sigma }}:({\boldsymbol {\nabla }}\mathbf {v} )+{\boldsymbol {\nabla }}\cdot \mathbf {q} -\rho ~s&amp;=0&amp;&amp;\qquad {\text{Balance of Energy.}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05c11058a82635acfc6c94f2a8bab235d7e7c186" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.454ex; margin-bottom: -0.218ex; width:109.537ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}{\dot {\rho }}+\rho ({\boldsymbol {\nabla }}\cdot \mathbf {v} )&amp;=0&amp;&amp;\qquad {\text{Balance of Mass}}\\\rho ~{\dot {\mathbf {v} }}-{\boldsymbol {\nabla }}\cdot {\boldsymbol {\sigma }}-\rho ~\mathbf {b} &amp;=0&amp;&amp;\qquad {\text{Balance of Linear Momentum (Cauchy&#039;s first law of motion)}}\\{\boldsymbol {\sigma }}&amp;={\boldsymbol {\sigma }}^{T}&amp;&amp;\qquad {\text{Balance of Angular Momentum (Cauchy&#039;s second law of motion)}}\\\rho ~{\dot {e}}-{\boldsymbol {\sigma }}:({\boldsymbol {\nabla }}\mathbf {v} )+{\boldsymbol {\nabla }}\cdot \mathbf {q} -\rho ~s&amp;=0&amp;&amp;\qquad {\text{Balance of Energy.}}\end{aligned}}}"></span></dd></dl> <p>In the above equations <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho (\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho (\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1d439aa2bce46ee391a6b495d772aeec11eebe1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.296ex; height:2.843ex;" alt="{\displaystyle \rho (\mathbf {x} ,t)}"></span> is the mass density (current), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\rho }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\rho }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/940e27dec410e50e565bab2326d160c73c5e03a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.376ex; height:2.676ex;" alt="{\displaystyle {\dot {\rho }}}"></span> is the material time derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} (\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} (\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b9c5ae6b8c41d39658de387807109d572b6dfb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.505ex; height:2.843ex;" alt="{\displaystyle \mathbf {v} (\mathbf {x} ,t)}"></span> is the particle velocity, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\mathbf {v} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\mathbf {v} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/151ab5eaf7ec6c13d04ed456f49c608586953e84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.176ex;" alt="{\displaystyle {\dot {\mathbf {v} }}}"></span> is the material time derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\sigma }}(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\sigma }}(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9385b3b6efc84698cd8139400e09e1333a8ae9a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.688ex; height:2.843ex;" alt="{\displaystyle {\boldsymbol {\sigma }}(\mathbf {x} ,t)}"></span> is the <a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Cauchy stress tensor</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} (\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} (\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a085d88549a7878b87420a7ec47ddd3949576276" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.579ex; height:2.843ex;" alt="{\displaystyle \mathbf {b} (\mathbf {x} ,t)}"></span> is the body force density, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a87f7f3a835ff9d3b3c5d5dca33a73bccb23772d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.177ex; height:2.843ex;" alt="{\displaystyle e(\mathbf {x} ,t)}"></span> is the internal energy per unit mass, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {e}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {e}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc7be5ff6c22d2bbd824fc8d38722bb4f59ed76f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.292ex; height:2.176ex;" alt="{\displaystyle {\dot {e}}}"></span> is the material time derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {q} (\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {q} (\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecfdb9242cf72629cef84bb38fd7be8a4f9e45e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.509ex; height:2.843ex;" alt="{\displaystyle \mathbf {q} (\mathbf {x} ,t)}"></span> is the heat flux vector, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/436ca3d443be6287d789710b7c4d3a82cbcfad48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.184ex; height:2.843ex;" alt="{\displaystyle s(\mathbf {x} ,t)}"></span> is an energy source per unit mass. The operators used are defined <a href="#Operators">below</a>. </p><p>With respect to the reference configuration (the Lagrangian point of view), the balance laws can be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\rho ~\det({\boldsymbol {F}})-\rho _{0}&amp;=0&amp;&amp;\qquad {\text{Balance of Mass}}\\\rho _{0}~{\ddot {\mathbf {x} }}-{\boldsymbol {\nabla }}_{\circ }\cdot {\boldsymbol {P}}-\rho _{0}~\mathbf {b} &amp;=0&amp;&amp;\qquad {\text{Balance of Linear Momentum}}\\{\boldsymbol {F}}\cdot {\boldsymbol {P}}^{T}&amp;={\boldsymbol {P}}\cdot {\boldsymbol {F}}^{T}&amp;&amp;\qquad {\text{Balance of Angular Momentum}}\\\rho _{0}~{\dot {e}}-{\boldsymbol {P}}^{T}:{\dot {\boldsymbol {F}}}+{\boldsymbol {\nabla }}_{\circ }\cdot \mathbf {q} -\rho _{0}~s&amp;=0&amp;&amp;\qquad {\text{Balance of Energy.}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">F</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>Balance of Mass</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">P</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>Balance of Linear Momentum</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">F</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">P</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mtd> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>Balance of Angular Momentum</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">F</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mi>s</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>Balance of Energy.</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\rho ~\det({\boldsymbol {F}})-\rho _{0}&amp;=0&amp;&amp;\qquad {\text{Balance of Mass}}\\\rho _{0}~{\ddot {\mathbf {x} }}-{\boldsymbol {\nabla }}_{\circ }\cdot {\boldsymbol {P}}-\rho _{0}~\mathbf {b} &amp;=0&amp;&amp;\qquad {\text{Balance of Linear Momentum}}\\{\boldsymbol {F}}\cdot {\boldsymbol {P}}^{T}&amp;={\boldsymbol {P}}\cdot {\boldsymbol {F}}^{T}&amp;&amp;\qquad {\text{Balance of Angular Momentum}}\\\rho _{0}~{\dot {e}}-{\boldsymbol {P}}^{T}:{\dot {\boldsymbol {F}}}+{\boldsymbol {\nabla }}_{\circ }\cdot \mathbf {q} -\rho _{0}~s&amp;=0&amp;&amp;\qquad {\text{Balance of Energy.}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33780830ceb7d9e223fc9d099b40e0e5395d11a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.453ex; margin-bottom: -0.218ex; width:81.889ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}\rho ~\det({\boldsymbol {F}})-\rho _{0}&amp;=0&amp;&amp;\qquad {\text{Balance of Mass}}\\\rho _{0}~{\ddot {\mathbf {x} }}-{\boldsymbol {\nabla }}_{\circ }\cdot {\boldsymbol {P}}-\rho _{0}~\mathbf {b} &amp;=0&amp;&amp;\qquad {\text{Balance of Linear Momentum}}\\{\boldsymbol {F}}\cdot {\boldsymbol {P}}^{T}&amp;={\boldsymbol {P}}\cdot {\boldsymbol {F}}^{T}&amp;&amp;\qquad {\text{Balance of Angular Momentum}}\\\rho _{0}~{\dot {e}}-{\boldsymbol {P}}^{T}:{\dot {\boldsymbol {F}}}+{\boldsymbol {\nabla }}_{\circ }\cdot \mathbf {q} -\rho _{0}~s&amp;=0&amp;&amp;\qquad {\text{Balance of Energy.}}\end{aligned}}}"></span></dd></dl> <p>In the above, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">P</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d6351e321b7d5cb9e071bb996fd1838060725b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.968ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {P}}}"></span> is the first <a href="/wiki/Piola-Kirchhoff_stress_tensor" class="mw-redirect" title="Piola-Kirchhoff stress tensor">Piola-Kirchhoff stress tensor</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9c04a9d26b86af8c6205ba2a6287fd655b6b714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.256ex; height:2.176ex;" alt="{\displaystyle \rho _{0}}"></span> is the mass density in the reference configuration. The first Piola-Kirchhoff stress tensor is related to the Cauchy stress tensor by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {P}}=J~{\boldsymbol {\sigma }}\cdot {\boldsymbol {F}}^{-T}~{\text{where}}~J=\det({\boldsymbol {F}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">P</mi> </mrow> <mo>=</mo> <mi>J</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> </mrow> </msup> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>where</mtext> </mrow> <mtext>&#xA0;</mtext> <mi>J</mi> <mo>=</mo> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">F</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {P}}=J~{\boldsymbol {\sigma }}\cdot {\boldsymbol {F}}^{-T}~{\text{where}}~J=\det({\boldsymbol {F}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abf8bfbb446294ee9ac9334d59d3bb5393594f95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.621ex; height:3.176ex;" alt="{\displaystyle {\boldsymbol {P}}=J~{\boldsymbol {\sigma }}\cdot {\boldsymbol {F}}^{-T}~{\text{where}}~J=\det({\boldsymbol {F}})}"></span></dd></dl> <p>We can alternatively define the nominal stress tensor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {N}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {N}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf7f3857090174fb00b8fab35a9d324627e571de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.386ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {N}}}"></span> which is the transpose of the first Piola-Kirchhoff stress tensor such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {N}}={\boldsymbol {P}}^{T}=J~{\boldsymbol {F}}^{-1}\cdot {\boldsymbol {\sigma }}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">N</mi> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>=</mo> <mi>J</mi> <mtext>&#xA0;</mtext> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {N}}={\boldsymbol {P}}^{T}=J~{\boldsymbol {F}}^{-1}\cdot {\boldsymbol {\sigma }}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99365111b1dca7be954bc1abcc463a643993f130" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:22.877ex; height:2.676ex;" alt="{\displaystyle {\boldsymbol {N}}={\boldsymbol {P}}^{T}=J~{\boldsymbol {F}}^{-1}\cdot {\boldsymbol {\sigma }}~.}"></span></dd></dl> <p>Then the balance laws become </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\rho ~\det({\boldsymbol {F}})-\rho _{0}&amp;=0&amp;&amp;\qquad {\text{Balance of Mass}}\\\rho _{0}~{\ddot {\mathbf {x} }}-{\boldsymbol {\nabla }}_{\circ }\cdot {\boldsymbol {N}}^{T}-\rho _{0}~\mathbf {b} &amp;=0&amp;&amp;\qquad {\text{Balance of Linear Momentum}}\\{\boldsymbol {F}}\cdot {\boldsymbol {N}}&amp;={\boldsymbol {N}}^{T}\cdot {\boldsymbol {F}}^{T}&amp;&amp;\qquad {\text{Balance of Angular Momentum}}\\\rho _{0}~{\dot {e}}-{\boldsymbol {N}}:{\dot {\boldsymbol {F}}}+{\boldsymbol {\nabla }}_{\circ }\cdot \mathbf {q} -\rho _{0}~s&amp;=0&amp;&amp;\qquad {\text{Balance of Energy.}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">F</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>Balance of Mass</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>Balance of Linear Momentum</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">F</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">N</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mtd> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>Balance of Angular Momentum</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">N</mi> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">F</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mi>s</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>Balance of Energy.</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\rho ~\det({\boldsymbol {F}})-\rho _{0}&amp;=0&amp;&amp;\qquad {\text{Balance of Mass}}\\\rho _{0}~{\ddot {\mathbf {x} }}-{\boldsymbol {\nabla }}_{\circ }\cdot {\boldsymbol {N}}^{T}-\rho _{0}~\mathbf {b} &amp;=0&amp;&amp;\qquad {\text{Balance of Linear Momentum}}\\{\boldsymbol {F}}\cdot {\boldsymbol {N}}&amp;={\boldsymbol {N}}^{T}\cdot {\boldsymbol {F}}^{T}&amp;&amp;\qquad {\text{Balance of Angular Momentum}}\\\rho _{0}~{\dot {e}}-{\boldsymbol {N}}:{\dot {\boldsymbol {F}}}+{\boldsymbol {\nabla }}_{\circ }\cdot \mathbf {q} -\rho _{0}~s&amp;=0&amp;&amp;\qquad {\text{Balance of Energy.}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fff64060cf3e02a4520894a52bcde7b3051b597b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.562ex; margin-bottom: -0.276ex; width:82.692ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}\rho ~\det({\boldsymbol {F}})-\rho _{0}&amp;=0&amp;&amp;\qquad {\text{Balance of Mass}}\\\rho _{0}~{\ddot {\mathbf {x} }}-{\boldsymbol {\nabla }}_{\circ }\cdot {\boldsymbol {N}}^{T}-\rho _{0}~\mathbf {b} &amp;=0&amp;&amp;\qquad {\text{Balance of Linear Momentum}}\\{\boldsymbol {F}}\cdot {\boldsymbol {N}}&amp;={\boldsymbol {N}}^{T}\cdot {\boldsymbol {F}}^{T}&amp;&amp;\qquad {\text{Balance of Angular Momentum}}\\\rho _{0}~{\dot {e}}-{\boldsymbol {N}}:{\dot {\boldsymbol {F}}}+{\boldsymbol {\nabla }}_{\circ }\cdot \mathbf {q} -\rho _{0}~s&amp;=0&amp;&amp;\qquad {\text{Balance of Energy.}}\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Operators">Operators</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=13" title="Edit section: Operators"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The operators in the above equations are defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\nabla }}\mathbf {v} =\sum _{i,j=1}^{3}{\frac {\partial v_{i}}{\partial x_{j}}}\mathbf {e} _{i}\otimes \mathbf {e} _{j}=v_{i,j}\mathbf {e} _{i}\otimes \mathbf {e} _{j}~;~~{\boldsymbol {\nabla }}\cdot \mathbf {v} =\sum _{i=1}^{3}{\frac {\partial v_{i}}{\partial x_{i}}}=v_{i,i}~;~~{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}=\sum _{i,j=1}^{3}{\frac {\partial S_{ij}}{\partial x_{j}}}~\mathbf {e} _{i}=\sigma _{ij,j}~\mathbf {e} _{i}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>;</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>;</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">S</mi> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\nabla }}\mathbf {v} =\sum _{i,j=1}^{3}{\frac {\partial v_{i}}{\partial x_{j}}}\mathbf {e} _{i}\otimes \mathbf {e} _{j}=v_{i,j}\mathbf {e} _{i}\otimes \mathbf {e} _{j}~;~~{\boldsymbol {\nabla }}\cdot \mathbf {v} =\sum _{i=1}^{3}{\frac {\partial v_{i}}{\partial x_{i}}}=v_{i,i}~;~~{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}=\sum _{i,j=1}^{3}{\frac {\partial S_{ij}}{\partial x_{j}}}~\mathbf {e} _{i}=\sigma _{ij,j}~\mathbf {e} _{i}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa495b1f4e01be908737d404e0dd46d6efa0a568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:94.908ex; height:7.509ex;" alt="{\displaystyle {\boldsymbol {\nabla }}\mathbf {v} =\sum _{i,j=1}^{3}{\frac {\partial v_{i}}{\partial x_{j}}}\mathbf {e} _{i}\otimes \mathbf {e} _{j}=v_{i,j}\mathbf {e} _{i}\otimes \mathbf {e} _{j}~;~~{\boldsymbol {\nabla }}\cdot \mathbf {v} =\sum _{i=1}^{3}{\frac {\partial v_{i}}{\partial x_{i}}}=v_{i,i}~;~~{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}=\sum _{i,j=1}^{3}{\frac {\partial S_{ij}}{\partial x_{j}}}~\mathbf {e} _{i}=\sigma _{ij,j}~\mathbf {e} _{i}~.}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> is a vector field, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {S}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {S}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/134076533a0bf2ed63f945d6703989c3e8feef2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.659ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {S}}}"></span> is a second-order tensor field, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {e} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba77c5a75ef9e230d1a36183785477a2eb3c5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.025ex; height:2.009ex;" alt="{\displaystyle \mathbf {e} _{i}}"></span> are the components of an orthonormal basis in the current configuration. Also, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\nabla }}_{\circ }\mathbf {v} =\sum _{i,j=1}^{3}{\frac {\partial v_{i}}{\partial X_{j}}}\mathbf {E} _{i}\otimes \mathbf {E} _{j}=v_{i,j}\mathbf {E} _{i}\otimes \mathbf {E} _{j}~;~~{\boldsymbol {\nabla }}_{\circ }\cdot \mathbf {v} =\sum _{i=1}^{3}{\frac {\partial v_{i}}{\partial X_{i}}}=v_{i,i}~;~~{\boldsymbol {\nabla }}_{\circ }\cdot {\boldsymbol {S}}=\sum _{i,j=1}^{3}{\frac {\partial S_{ij}}{\partial X_{j}}}~\mathbf {E} _{i}=S_{ij,j}~\mathbf {E} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>;</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>;</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">S</mi> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\nabla }}_{\circ }\mathbf {v} =\sum _{i,j=1}^{3}{\frac {\partial v_{i}}{\partial X_{j}}}\mathbf {E} _{i}\otimes \mathbf {E} _{j}=v_{i,j}\mathbf {E} _{i}\otimes \mathbf {E} _{j}~;~~{\boldsymbol {\nabla }}_{\circ }\cdot \mathbf {v} =\sum _{i=1}^{3}{\frac {\partial v_{i}}{\partial X_{i}}}=v_{i,i}~;~~{\boldsymbol {\nabla }}_{\circ }\cdot {\boldsymbol {S}}=\sum _{i,j=1}^{3}{\frac {\partial S_{ij}}{\partial X_{j}}}~\mathbf {E} _{i}=S_{ij,j}~\mathbf {E} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02a9862c27655cb4d2d3e04441c7a922ae36e295" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:101.322ex; height:7.509ex;" alt="{\displaystyle {\boldsymbol {\nabla }}_{\circ }\mathbf {v} =\sum _{i,j=1}^{3}{\frac {\partial v_{i}}{\partial X_{j}}}\mathbf {E} _{i}\otimes \mathbf {E} _{j}=v_{i,j}\mathbf {E} _{i}\otimes \mathbf {E} _{j}~;~~{\boldsymbol {\nabla }}_{\circ }\cdot \mathbf {v} =\sum _{i=1}^{3}{\frac {\partial v_{i}}{\partial X_{i}}}=v_{i,i}~;~~{\boldsymbol {\nabla }}_{\circ }\cdot {\boldsymbol {S}}=\sum _{i,j=1}^{3}{\frac {\partial S_{ij}}{\partial X_{j}}}~\mathbf {E} _{i}=S_{ij,j}~\mathbf {E} _{i}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> is a vector field, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {S}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {S}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/134076533a0bf2ed63f945d6703989c3e8feef2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.659ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {S}}}"></span> is a second-order tensor field, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5116d69b4bfd174ac4794a293b5247cb50998da2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.557ex; height:2.509ex;" alt="{\displaystyle \mathbf {E} _{i}}"></span> are the components of an orthonormal basis in the reference configuration. </p><p>The inner product is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {A}}:{\boldsymbol {B}}=\sum _{i,j=1}^{3}A_{ij}~B_{ij}=\operatorname {trace} ({\boldsymbol {A}}{\boldsymbol {B}}^{T})~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">A</mi> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">B</mi> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>trace</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">A</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {A}}:{\boldsymbol {B}}=\sum _{i,j=1}^{3}A_{ij}~B_{ij}=\operatorname {trace} ({\boldsymbol {A}}{\boldsymbol {B}}^{T})~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b12cdac59fed83184fc9ab4b0bfe7ae84d0dcd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:36.9ex; height:7.509ex;" alt="{\displaystyle {\boldsymbol {A}}:{\boldsymbol {B}}=\sum _{i,j=1}^{3}A_{ij}~B_{ij}=\operatorname {trace} ({\boldsymbol {A}}{\boldsymbol {B}}^{T})~.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Clausius–Duhem_inequality"><span id="Clausius.E2.80.93Duhem_inequality"></span>Clausius–Duhem inequality</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=14" title="Edit section: Clausius–Duhem inequality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Clausius%E2%80%93Duhem_inequality" title="Clausius–Duhem inequality">Clausius–Duhem inequality</a> can be used to express the second law of thermodynamics for elastic-plastic materials. This inequality is a statement concerning the irreversibility of natural processes, especially when energy dissipation is involved. </p><p>Just like in the balance laws in the previous section, we assume that there is a flux of a quantity, a source of the quantity, and an internal density of the quantity per unit mass. The quantity of interest in this case is the entropy. Thus, we assume that there is an entropy flux, an entropy source, an internal mass density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> and an internal specific entropy (i.e. entropy per unit mass) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }"></span> in the region of interest. </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> be such a region and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16feddaad462c2a1c9efdaeee062a0484a023fde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.996ex; height:2.176ex;" alt="{\displaystyle \partial \Omega }"></span> be its boundary. Then the second law of thermodynamics states that the rate of increase of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }"></span> in this region is greater than or equal to the sum of that supplied to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> (as a flux or from internal sources) and the change of the internal entropy density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03B7;<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfd1cdcf94869d2e9ea6bfd39c59ae9dfde6b96b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.371ex; height:2.176ex;" alt="{\displaystyle \rho \eta }"></span> due to material flowing in and out of the region. </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16feddaad462c2a1c9efdaeee062a0484a023fde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.996ex; height:2.176ex;" alt="{\displaystyle \partial \Omega }"></span> move with a flow velocity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c7339b0b08d3045d72ddbacf4a3e50d24640c2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.548ex; height:2.009ex;" alt="{\displaystyle u_{n}}"></span> and let particles inside <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> have velocities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {n} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {n} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a720c341f39f52fd96028dab83edd34d400be46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {n} }"></span> be the unit outward normal to the surface <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16feddaad462c2a1c9efdaeee062a0484a023fde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.996ex; height:2.176ex;" alt="{\displaystyle \partial \Omega }"></span>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> be the density of matter in the region, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df40aaaa5f6213d6e896be45f87eabeb7bfd4806" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.377ex; height:2.343ex;" alt="{\displaystyle {\bar {q}}}"></span> be the entropy flux at the surface, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> be the entropy source per unit mass. Then the entropy inequality may be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {d}{dt}}\left(\int _{\Omega }\rho ~\eta ~{\text{dV}}\right)\geq \int _{\partial \Omega }\rho ~\eta ~(u_{n}-\mathbf {v} \cdot \mathbf {n} )~{\text{dA}}+\int _{\partial \Omega }{\bar {q}}~{\text{dA}}+\int _{\Omega }\rho ~r~{\text{dV}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mi>&#x03B7;<!-- η --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>dV</mtext> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mi>&#x03B7;<!-- η --></mi> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>dA</mtext> </mrow> <mo>+</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>dA</mtext> </mrow> <mo>+</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mi>r</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>dV</mtext> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {d}{dt}}\left(\int _{\Omega }\rho ~\eta ~{\text{dV}}\right)\geq \int _{\partial \Omega }\rho ~\eta ~(u_{n}-\mathbf {v} \cdot \mathbf {n} )~{\text{dA}}+\int _{\partial \Omega }{\bar {q}}~{\text{dA}}+\int _{\Omega }\rho ~r~{\text{dV}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e716427753c5e9aa236683709ef1d49875395426" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:67.315ex; height:7.176ex;" alt="{\displaystyle {\cfrac {d}{dt}}\left(\int _{\Omega }\rho ~\eta ~{\text{dV}}\right)\geq \int _{\partial \Omega }\rho ~\eta ~(u_{n}-\mathbf {v} \cdot \mathbf {n} )~{\text{dA}}+\int _{\partial \Omega }{\bar {q}}~{\text{dA}}+\int _{\Omega }\rho ~r~{\text{dV}}.}"></span></dd></dl> <p>The scalar entropy flux can be related to the vector flux at the surface by the relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {q}}=-{\boldsymbol {\psi }}(\mathbf {x} )\cdot \mathbf {n} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C8;<!-- ψ --></mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {q}}=-{\boldsymbol {\psi }}(\mathbf {x} )\cdot \mathbf {n} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c1566120ea6c5a7add7be80dd8d5ac44e631826" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.43ex; height:2.843ex;" alt="{\displaystyle {\bar {q}}=-{\boldsymbol {\psi }}(\mathbf {x} )\cdot \mathbf {n} }"></span>. Under the assumption of incrementally isothermal conditions, we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\psi }}(\mathbf {x} )={\cfrac {\mathbf {q} (\mathbf {x} )}{T}}~;~~r={\cfrac {s}{T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C8;<!-- ψ --></mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>;</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\psi }}(\mathbf {x} )={\cfrac {\mathbf {q} (\mathbf {x} )}{T}}~;~~r={\cfrac {s}{T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3d3d008fce4cee089bb53381ecc3c2ea47acdbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.948ex; height:7.176ex;" alt="{\displaystyle {\boldsymbol {\psi }}(\mathbf {x} )={\cfrac {\mathbf {q} (\mathbf {x} )}{T}}~;~~r={\cfrac {s}{T}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7be005a326b7ac3fe4c24bca391369f44c4c2876" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.416ex; height:2.009ex;" alt="{\displaystyle \mathbf {q} }"></span> is the heat flux vector, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> is an energy source per unit mass, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is the absolute temperature of a material point at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> at time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>. </p><p>We then have the Clausius–Duhem inequality in integral form: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{\cfrac {d}{dt}}\left(\int _{\Omega }\rho ~\eta ~{\text{dV}}\right)\geq \int _{\partial \Omega }\rho ~\eta ~(u_{n}-\mathbf {v} \cdot \mathbf {n} )~{\text{dA}}-\int _{\partial \Omega }{\cfrac {\mathbf {q} \cdot \mathbf {n} }{T}}~{\text{dA}}+\int _{\Omega }{\cfrac {\rho ~s}{T}}~{\text{dV}}.}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mi>&#x03B7;<!-- η --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>dV</mtext> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mi>&#x03B7;<!-- η --></mi> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>dA</mtext> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>dA</mtext> </mrow> <mo>+</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mi>s</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>dV</mtext> </mrow> <mo>.</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{\cfrac {d}{dt}}\left(\int _{\Omega }\rho ~\eta ~{\text{dV}}\right)\geq \int _{\partial \Omega }\rho ~\eta ~(u_{n}-\mathbf {v} \cdot \mathbf {n} )~{\text{dA}}-\int _{\partial \Omega }{\cfrac {\mathbf {q} \cdot \mathbf {n} }{T}}~{\text{dA}}+\int _{\Omega }{\cfrac {\rho ~s}{T}}~{\text{dV}}.}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/915e081a74c4e66f27c0648c2b5554be7b90a769" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:72.232ex; height:7.176ex;" alt="{\displaystyle {{\cfrac {d}{dt}}\left(\int _{\Omega }\rho ~\eta ~{\text{dV}}\right)\geq \int _{\partial \Omega }\rho ~\eta ~(u_{n}-\mathbf {v} \cdot \mathbf {n} )~{\text{dA}}-\int _{\partial \Omega }{\cfrac {\mathbf {q} \cdot \mathbf {n} }{T}}~{\text{dA}}+\int _{\Omega }{\cfrac {\rho ~s}{T}}~{\text{dV}}.}}"></span></dd></dl> <p>We can show that the entropy inequality may be written in differential form as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rho ~{\dot {\eta }}\geq -{\boldsymbol {\nabla }}\cdot \left({\cfrac {\mathbf {q} }{T}}\right)+{\cfrac {\rho ~s}{T}}.}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B7;<!-- η --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>&#x2265;<!-- ≥ --></mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mi>s</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>.</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\rho ~{\dot {\eta }}\geq -{\boldsymbol {\nabla }}\cdot \left({\cfrac {\mathbf {q} }{T}}\right)+{\cfrac {\rho ~s}{T}}.}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a25347e77891f46a0ccfef248b7ee3793cf8557" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:25.249ex; height:7.509ex;" alt="{\displaystyle {\rho ~{\dot {\eta }}\geq -{\boldsymbol {\nabla }}\cdot \left({\cfrac {\mathbf {q} }{T}}\right)+{\cfrac {\rho ~s}{T}}.}}"></span></dd></dl> <p>In terms of the Cauchy stress and the internal energy, the Clausius–Duhem inequality may be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rho ~({\dot {e}}-T~{\dot {\eta }})-{\boldsymbol {\sigma }}:{\boldsymbol {\nabla }}\mathbf {v} \leq -{\cfrac {\mathbf {q} \cdot {\boldsymbol {\nabla }}T}{T}}.}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B7;<!-- η --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x2207;<!-- ∇ --></mi> </mrow> <mi>T</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>.</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\rho ~({\dot {e}}-T~{\dot {\eta }})-{\boldsymbol {\sigma }}:{\boldsymbol {\nabla }}\mathbf {v} \leq -{\cfrac {\mathbf {q} \cdot {\boldsymbol {\nabla }}T}{T}}.}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/282645ebed72b90150d5b1af72754fcf7d65ed32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.601ex; height:7.176ex;" alt="{\displaystyle {\rho ~({\dot {e}}-T~{\dot {\eta }})-{\boldsymbol {\sigma }}:{\boldsymbol {\nabla }}\mathbf {v} \leq -{\cfrac {\mathbf {q} \cdot {\boldsymbol {\nabla }}T}{T}}.}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Validity">Validity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=15" title="Edit section: Validity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The validity of the continuum assumption may be verified by a theoretical analysis, in which either some clear periodicity is identified or statistical <a href="/wiki/Homogeneity_(physics)" title="Homogeneity (physics)">homogeneity</a> and <a href="/wiki/Ergodicity" title="Ergodicity">ergodicity</a> of the <a href="/wiki/Microstructure" title="Microstructure">microstructure</a> exist. More specifically, the continuum hypothesis hinges on the concepts of a representative elementary volume and separation of scales based on the Hill–Mandel condition. This condition provides a link between an experimentalist's and a theoretician's viewpoint on <a href="/wiki/Constitutive_equation" title="Constitutive equation">constitutive equations</a> (linear and nonlinear elastic/inelastic or coupled fields) as well as a way of spatial and statistical averaging of the microstructure. When the separation of scales does not hold, or when one wants to establish a continuum of a finer resolution than the size of the representative volume element (RVE), a statistical volume element (SVE) is employed, which results in random continuum fields. The latter then provide a micromechanics basis for stochastic finite elements (SFE). The levels of SVE and RVE link continuum mechanics to <a href="/wiki/Statistical_physics#Statistical_mechanics" class="mw-redirect" title="Statistical physics">statistical mechanics</a>. Experimentally, the RVE can only be evaluated when the constitutive response is spatially homogenous. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=16" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Continuum mechanics <ul><li><a href="/wiki/Solid_mechanics" title="Solid mechanics">Solid mechanics</a></li> <li><a href="/wiki/Fluid_mechanics" title="Fluid mechanics">Fluid mechanics</a></li></ul></li> <li><a href="/wiki/Engineering" title="Engineering">Engineering</a> <ul><li><a href="/wiki/Civil_engineering" title="Civil engineering">Civil engineering</a></li> <li><a href="/wiki/Mechanical_engineering" title="Mechanical engineering">Mechanical engineering</a></li> <li><a href="/wiki/Aerospace_engineering" title="Aerospace engineering">Aerospace engineering</a></li> <li><a href="/wiki/Biomedical_engineering" title="Biomedical engineering">Biomedical engineering</a></li> <li><a href="/wiki/Chemical_engineering" title="Chemical engineering">Chemical engineering</a></li></ul></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=17" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 20em;"> <ul><li><a href="/wiki/Transport_phenomena" title="Transport phenomena">Transport phenomena</a></li> <li><a href="/wiki/Bernoulli%27s_principle" title="Bernoulli&#39;s principle">Bernoulli's principle</a></li> <li><a href="/wiki/Cauchy_elastic_material" title="Cauchy elastic material">Cauchy elastic material</a></li> <li><a href="/wiki/Configurational_mechanics" title="Configurational mechanics">Configurational mechanics</a></li> <li><a href="/wiki/Curvilinear_coordinates" title="Curvilinear coordinates">Curvilinear coordinates</a></li> <li><a href="/wiki/Equation_of_state" title="Equation of state">Equation of state</a></li> <li><a href="/wiki/Finite_deformation_tensors" class="mw-redirect" title="Finite deformation tensors">Finite deformation tensors</a></li> <li><a href="/wiki/Finite_strain_theory" title="Finite strain theory">Finite strain theory</a></li> <li><a href="/wiki/Hyperelastic_material" title="Hyperelastic material">Hyperelastic material</a></li> <li><a href="/wiki/Lagrangian_and_Eulerian_specification_of_the_flow_field" title="Lagrangian and Eulerian specification of the flow field">Lagrangian and Eulerian specification of the flow field</a></li> <li><a href="/wiki/Movable_cellular_automaton" title="Movable cellular automaton">Movable cellular automaton</a></li> <li><a href="/wiki/Peridynamics" title="Peridynamics">Peridynamics</a> (a non-local continuum theory leading to integral equations)</li> <li><a href="/wiki/Stress_(physics)" class="mw-redirect" title="Stress (physics)">Stress (physics)</a></li> <li><a href="/wiki/Stress_measures" class="mw-redirect" title="Stress measures">Stress measures</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li> <li><a href="/wiki/Tensor_derivative_(continuum_mechanics)" title="Tensor derivative (continuum mechanics)">Tensor derivative (continuum mechanics)</a></li> <li><a href="/wiki/Theory_of_elasticity" class="mw-redirect" title="Theory of elasticity">Theory of elasticity</a></li> <li><a href="/wiki/Knudsen_number" title="Knudsen number">Knudsen number</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Explanatory_notes">Explanatory notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=18" title="Edit section: Explanatory notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Maxwell pointed out that nonvanishing body moments exist in a magnet in a magnetic field and in a dielectric material in an electric field with different planes of polarization.<sup id="cite_ref-FOOTNOTEFung197776_13-0" class="reference"><a href="#cite_note-FOOTNOTEFung197776-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">Couple stresses and body couples were first explored by Voigt and Cosserat, and later reintroduced by Mindlin in 1960 on his work for Bell Labs on pure quartz crystals.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2022)">citation needed</span></a></i>&#93;</sup></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=19" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Citations">Citations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=20" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-FOOTNOTEMalvern19692-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMalvern19692_1-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMalvern1969">Malvern 1969</a>, p.&#160;2.</span> </li> <li id="cite_note-FOOTNOTEDienesSolem1999155–162-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDienesSolem1999155–162_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDienesSolem1999">Dienes &amp; Solem 1999</a>, pp.&#160;155–162.</span> </li> <li id="cite_note-FOOTNOTESmith199397-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESmith199397_3-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSmith1993">Smith 1993</a>, p.&#160;97.</span> </li> <li id="cite_note-FOOTNOTESmith1993-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESmith1993_4-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSmith1993">Smith 1993</a>.</span> </li> <li id="cite_note-FOOTNOTELubliner2008-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELubliner2008_5-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLubliner2008">Lubliner 2008</a>.</span> </li> <li id="cite_note-FOOTNOTELiu2002-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTELiu2002_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTELiu2002_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFLiu2002">Liu 2002</a>.</span> </li> <li id="cite_note-FOOTNOTEWu2004-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEWu2004_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEWu2004_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFWu2004">Wu 2004</a>.</span> </li> <li id="cite_note-FOOTNOTEFung1977-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEFung1977_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEFung1977_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEFung1977_8-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFFung1977">Fung 1977</a>.</span> </li> <li id="cite_note-FOOTNOTEMase1970-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEMase1970_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEMase1970_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFMase1970">Mase 1970</a>.</span> </li> <li id="cite_note-FOOTNOTEAtanackovicGuran2000-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAtanackovicGuran2000_10-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAtanackovicGuran2000">Atanackovic &amp; Guran 2000</a>.</span> </li> <li id="cite_note-FOOTNOTEIrgens2008-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEIrgens2008_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEIrgens2008_11-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEIrgens2008_11-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFIrgens2008">Irgens 2008</a>.</span> </li> <li id="cite_note-FOOTNOTEChadwick1999-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEChadwick1999_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEChadwick1999_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEChadwick1999_12-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFChadwick1999">Chadwick 1999</a>.</span> </li> <li id="cite_note-FOOTNOTEFung197776-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFung197776_13-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFung1977">Fung 1977</a>, p.&#160;76.</span> </li> <li id="cite_note-FOOTNOTESpencer198083-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESpencer198083_16-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSpencer1980">Spencer 1980</a>, p.&#160;83.</span> </li> </ol></div></div> <div class="mw-heading mw-heading3"><h3 id="Works_cited">Works cited</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=21" title="Edit section: Works cited"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFAtanackovicGuran2000" class="citation book cs1">Atanackovic, Teodor M.; Guran, Ardeshir (16 June 2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=uQrBWdcGmjUC"><i>Theory of Elasticity for Scientists and Engineers</i></a>. Dover books on physics. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8176-4072-9" title="Special:BookSources/978-0-8176-4072-9"><bdi>978-0-8176-4072-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Elasticity+for+Scientists+and+Engineers&amp;rft.series=Dover+books+on+physics&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2000-06-16&amp;rft.isbn=978-0-8176-4072-9&amp;rft.aulast=Atanackovic&amp;rft.aufirst=Teodor+M.&amp;rft.au=Guran%2C+Ardeshir&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DuQrBWdcGmjUC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChadwick1999" class="citation book cs1">Chadwick, Peter (1 January 1999). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QSXIHQsus6UC"><i>Continuum Mechanics: Concise Theory and Problems</i></a>. Courier Corporation. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-40180-5" title="Special:BookSources/978-0-486-40180-5"><bdi>978-0-486-40180-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuum+Mechanics%3A+Concise+Theory+and+Problems&amp;rft.pub=Courier+Corporation&amp;rft.date=1999-01-01&amp;rft.isbn=978-0-486-40180-5&amp;rft.aulast=Chadwick&amp;rft.aufirst=Peter&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQSXIHQsus6UC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDienesSolem1999" class="citation journal cs1">Dienes, J. K.; Solem, J. C. (1999). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1232490">"Nonlinear behavior of some hydrostatically stressed isotropic elastomeric foams"</a>. <i>Acta Mechanica</i>. <b>138</b> (3–4): 155–162. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01291841">10.1007/BF01291841</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120320672">120320672</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Mechanica&amp;rft.atitle=Nonlinear+behavior+of+some+hydrostatically+stressed+isotropic+elastomeric+foams&amp;rft.volume=138&amp;rft.issue=3%E2%80%934&amp;rft.pages=155-162&amp;rft.date=1999&amp;rft_id=info%3Adoi%2F10.1007%2FBF01291841&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120320672%23id-name%3DS2CID&amp;rft.aulast=Dienes&amp;rft.aufirst=J.+K.&amp;rft.au=Solem%2C+J.+C.&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1232490&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFung1977" class="citation book cs1">Fung, Y. C. (1977). <i>A First Course in Continuum Mechanics</i> (2nd&#160;ed.). Prentice-Hall, Inc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-13-318311-5" title="Special:BookSources/978-0-13-318311-5"><bdi>978-0-13-318311-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Continuum+Mechanics&amp;rft.edition=2nd&amp;rft.pub=Prentice-Hall%2C+Inc.&amp;rft.date=1977&amp;rft.isbn=978-0-13-318311-5&amp;rft.aulast=Fung&amp;rft.aufirst=Y.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIrgens2008" class="citation book cs1">Irgens, Fridtjov (10 January 2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=q5dB7Gf4bIoC"><i>Continuum Mechanics</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-74298-2" title="Special:BookSources/978-3-540-74298-2"><bdi>978-3-540-74298-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuum+Mechanics&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2008-01-10&amp;rft.isbn=978-3-540-74298-2&amp;rft.aulast=Irgens&amp;rft.aufirst=Fridtjov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dq5dB7Gf4bIoC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiu2002" class="citation book cs1">Liu, I-Shih (28 May 2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-gWqM4uMV6wC"><i>Continuum Mechanics</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-43019-3" title="Special:BookSources/978-3-540-43019-3"><bdi>978-3-540-43019-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuum+Mechanics&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2002-05-28&amp;rft.isbn=978-3-540-43019-3&amp;rft.aulast=Liu&amp;rft.aufirst=I-Shih&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-gWqM4uMV6wC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLubliner2008" class="citation book cs1">Lubliner, Jacob (2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100331022415/http://www.ce.berkeley.edu/~coby/plas/pdf/book.pdf"><i>Plasticity Theory</i></a> <span class="cs1-format">(PDF)</span> (Revised&#160;ed.). Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-46290-5" title="Special:BookSources/978-0-486-46290-5"><bdi>978-0-486-46290-5</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.ce.berkeley.edu/~coby/plas/pdf/book.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 31 March 2010.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Plasticity+Theory&amp;rft.edition=Revised&amp;rft.pub=Dover+Publications&amp;rft.date=2008&amp;rft.isbn=978-0-486-46290-5&amp;rft.aulast=Lubliner&amp;rft.aufirst=Jacob&amp;rft_id=http%3A%2F%2Fwww.ce.berkeley.edu%2F~coby%2Fplas%2Fpdf%2Fbook.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOstoja-Starzewski2008" class="citation book cs1">Ostoja-Starzewski, M. (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_Qyf1woZPNgC">"7-10"</a>. <i>Microstructural randomness and scaling in mechanics of materials</i>. CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-58488-417-0" title="Special:BookSources/978-1-58488-417-0"><bdi>978-1-58488-417-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=7-10&amp;rft.btitle=Microstructural+randomness+and+scaling+in+mechanics+of+materials&amp;rft.pub=CRC+Press&amp;rft.date=2008&amp;rft.isbn=978-1-58488-417-0&amp;rft.aulast=Ostoja-Starzewski&amp;rft.aufirst=M.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_Qyf1woZPNgC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpencer1980" class="citation book cs1">Spencer, A. J. M. (1980). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=AJdfQL0rgrgC"><i>Continuum Mechanics</i></a>. Longman Group Limited (London). p.&#160;83. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-582-44282-5" title="Special:BookSources/978-0-582-44282-5"><bdi>978-0-582-44282-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuum+Mechanics&amp;rft.pages=83&amp;rft.pub=Longman+Group+Limited+%28London%29&amp;rft.date=1980&amp;rft.isbn=978-0-582-44282-5&amp;rft.aulast=Spencer&amp;rft.aufirst=A.+J.+M.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DAJdfQL0rgrgC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoberts1994" class="citation book cs1">Roberts, A. J. (1994). <i>A One-Dimensional Introduction to Continuum Mechanics</i>. World Scientific.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+One-Dimensional+Introduction+to+Continuum+Mechanics&amp;rft.pub=World+Scientific&amp;rft.date=1994&amp;rft.aulast=Roberts&amp;rft.aufirst=A.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith1993" class="citation book cs1">Smith, Donald R. (1993). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=GqzzCAAAQBAJ&amp;pg=PA97">"2"</a>. <i>An introduction to continuum mechanics-after Truesdell and Noll</i>. Solids mechanics and its applications. Vol.&#160;22. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-90-481-4314-6" title="Special:BookSources/978-90-481-4314-6"><bdi>978-90-481-4314-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=2&amp;rft.btitle=An+introduction+to+continuum+mechanics-after+Truesdell+and+Noll&amp;rft.series=Solids+mechanics+and+its+applications&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=1993&amp;rft.isbn=978-90-481-4314-6&amp;rft.aulast=Smith&amp;rft.aufirst=Donald+R.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DGqzzCAAAQBAJ%26pg%3DPA97&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWu2004" class="citation book cs1">Wu, Han-Chin (20 December 2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OS4mICsHG3sC"><i>Continuum Mechanics and Plasticity</i></a>. Taylor &amp; Francis. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-58488-363-0" title="Special:BookSources/978-1-58488-363-0"><bdi>978-1-58488-363-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuum+Mechanics+and+Plasticity&amp;rft.pub=Taylor+%26+Francis&amp;rft.date=2004-12-20&amp;rft.isbn=978-1-58488-363-0&amp;rft.aulast=Wu&amp;rft.aufirst=Han-Chin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOS4mICsHG3sC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="General_references">General references</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=22" title="Edit section: General references"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBatra2006" class="citation book cs1">Batra, R. C. (2006). <i>Elements of Continuum Mechanics</i>. Reston, VA: AIAA.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Continuum+Mechanics&amp;rft.place=Reston%2C+VA&amp;rft.pub=AIAA&amp;rft.date=2006&amp;rft.aulast=Batra&amp;rft.aufirst=R.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBertram2012" class="citation book cs1">Bertram, Albrecht (2012). <i>Elasticity and Plasticity of Large Deformations - An Introduction</i> (Third&#160;ed.). Springer. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-24615-9">10.1007/978-3-642-24615-9</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-24615-9" title="Special:BookSources/978-3-642-24615-9"><bdi>978-3-642-24615-9</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:116496103">116496103</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elasticity+and+Plasticity+of+Large+Deformations+-+An+Introduction&amp;rft.edition=Third&amp;rft.pub=Springer&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A116496103%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-642-24615-9&amp;rft.isbn=978-3-642-24615-9&amp;rft.aulast=Bertram&amp;rft.aufirst=Albrecht&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChandramouli,_P.N2014" class="citation book cs1">Chandramouli, P.N (2014). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180804105939/http://www.yesdee.com/ysdbook.php?ysde=408&amp;ys=0-64-56"><i>Continuum Mechanics</i></a>. Yes Dee Publishing Pvt Ltd. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9789380381398" title="Special:BookSources/9789380381398"><bdi>9789380381398</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.yesdee.com/ysdbook.php?ysde=408&amp;ys=0-64-56">the original</a> on 4 August 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">24 March</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuum+Mechanics&amp;rft.pub=Yes+Dee+Publishing+Pvt+Ltd&amp;rft.date=2014&amp;rft.isbn=9789380381398&amp;rft.au=Chandramouli%2C+P.N&amp;rft_id=http%3A%2F%2Fwww.yesdee.com%2Fysdbook.php%3Fysde%3D408%26ys%3D0-64-56&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEringen1980" class="citation book cs1">Eringen, A. Cemal (1980). <i>Mechanics of Continua</i> (2nd&#160;ed.). Krieger Pub Co. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-88275-663-9" title="Special:BookSources/978-0-88275-663-9"><bdi>978-0-88275-663-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mechanics+of+Continua&amp;rft.edition=2nd&amp;rft.pub=Krieger+Pub+Co&amp;rft.date=1980&amp;rft.isbn=978-0-88275-663-9&amp;rft.aulast=Eringen&amp;rft.aufirst=A.+Cemal&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenJames_D._LeeAzim_Eskandarian2009" class="citation book cs1">Chen, Youping; James D. Lee; Azim Eskandarian (2009). <i>Meshless Methods in Solid Mechanics</i> (First&#160;ed.). Springer New York. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4419-2148-2" title="Special:BookSources/978-1-4419-2148-2"><bdi>978-1-4419-2148-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Meshless+Methods+in+Solid+Mechanics&amp;rft.edition=First&amp;rft.pub=Springer+New+York&amp;rft.date=2009&amp;rft.isbn=978-1-4419-2148-2&amp;rft.aulast=Chen&amp;rft.aufirst=Youping&amp;rft.au=James+D.+Lee&amp;rft.au=Azim+Eskandarian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDill2006" class="citation book cs1">Dill, Ellis Harold (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Nn4kztfbR3AC"><i>Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity</i></a>. Germany: CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8493-9779-0" title="Special:BookSources/978-0-8493-9779-0"><bdi>978-0-8493-9779-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuum+Mechanics%3A+Elasticity%2C+Plasticity%2C+Viscoelasticity&amp;rft.place=Germany&amp;rft.pub=CRC+Press&amp;rft.date=2006&amp;rft.isbn=978-0-8493-9779-0&amp;rft.aulast=Dill&amp;rft.aufirst=Ellis+Harold&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNn4kztfbR3AC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDimitrienko2011" class="citation book cs1">Dimitrienko, Yuriy (2011). <i>Nonlinear Continuum Mechanics and Large Inelastic Deformations</i>. Germany: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-94-007-0033-8" title="Special:BookSources/978-94-007-0033-8"><bdi>978-94-007-0033-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Nonlinear+Continuum+Mechanics+and+Large+Inelastic+Deformations&amp;rft.place=Germany&amp;rft.pub=Springer&amp;rft.date=2011&amp;rft.isbn=978-94-007-0033-8&amp;rft.aulast=Dimitrienko&amp;rft.aufirst=Yuriy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHutterKlaus_Jöhnk2004" class="citation book cs1">Hutter, Kolumban; Klaus Jöhnk (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=B-dxx724YD4C"><i>Continuum Methods of Physical Modeling</i></a>. Germany: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-20619-4" title="Special:BookSources/978-3-540-20619-4"><bdi>978-3-540-20619-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuum+Methods+of+Physical+Modeling&amp;rft.place=Germany&amp;rft.pub=Springer&amp;rft.date=2004&amp;rft.isbn=978-3-540-20619-4&amp;rft.aulast=Hutter&amp;rft.aufirst=Kolumban&amp;rft.au=Klaus+J%C3%B6hnk&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DB-dxx724YD4C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGurtin1981" class="citation book cs1">Gurtin, M. E. (1981). <i>An Introduction to Continuum Mechanics</i>. New York: Academic Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Continuum+Mechanics&amp;rft.place=New+York&amp;rft.pub=Academic+Press&amp;rft.date=1981&amp;rft.aulast=Gurtin&amp;rft.aufirst=M.+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaiDavid_RubinErhard_Krempl1996" class="citation book cs1">Lai, W. Michael; David Rubin; Erhard Krempl (1996). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090206214423/http://www.elsevierdirect.com/product.jsp?isbn=9780750628945"><i>Introduction to Continuum Mechanics</i></a> (3rd&#160;ed.). Elsevier, Inc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7506-2894-5" title="Special:BookSources/978-0-7506-2894-5"><bdi>978-0-7506-2894-5</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.elsevierdirect.com/product.jsp?isbn=9780750628945">the original</a> on 6 February 2009.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Continuum+Mechanics&amp;rft.edition=3rd&amp;rft.pub=Elsevier%2C+Inc.&amp;rft.date=1996&amp;rft.isbn=978-0-7506-2894-5&amp;rft.aulast=Lai&amp;rft.aufirst=W.+Michael&amp;rft.au=David+Rubin&amp;rft.au=Erhard+Krempl&amp;rft_id=http%3A%2F%2Fwww.elsevierdirect.com%2Fproduct.jsp%3Fisbn%3D9780750628945&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLubarda2001" class="citation book cs1">Lubarda, Vlado A. (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1P0LybL4oAgC"><i>Elastoplasticity Theory</i></a>. CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8493-1138-3" title="Special:BookSources/978-0-8493-1138-3"><bdi>978-0-8493-1138-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elastoplasticity+Theory&amp;rft.pub=CRC+Press&amp;rft.date=2001&amp;rft.isbn=978-0-8493-1138-3&amp;rft.aulast=Lubarda&amp;rft.aufirst=Vlado+A.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1P0LybL4oAgC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalvern1969" class="citation book cs1">Malvern, Lawrence E. (1969). <i>Introduction to the mechanics of a continuous medium</i>. New Jersey: Prentice-Hall, Inc.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+mechanics+of+a+continuous+medium&amp;rft.place=New+Jersey&amp;rft.pub=Prentice-Hall%2C+Inc.&amp;rft.date=1969&amp;rft.aulast=Malvern&amp;rft.aufirst=Lawrence+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMase1970" class="citation book cs1">Mase, George E. (1970). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bAdg6yxC0xUC"><i>Continuum Mechanics</i></a>. McGraw-Hill Professional. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-040663-6" title="Special:BookSources/978-0-07-040663-6"><bdi>978-0-07-040663-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuum+Mechanics&amp;rft.pub=McGraw-Hill+Professional&amp;rft.date=1970&amp;rft.isbn=978-0-07-040663-6&amp;rft.aulast=Mase&amp;rft.aufirst=George+E.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DbAdg6yxC0xUC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaseGeorge_E._Mase1999" class="citation book cs1">Mase, G. Thomas; George E. Mase (1999). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=uI1ll0A8B_UC"><i>Continuum Mechanics for Engineers</i></a> (Second&#160;ed.). CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8493-1855-9" title="Special:BookSources/978-0-8493-1855-9"><bdi>978-0-8493-1855-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuum+Mechanics+for+Engineers&amp;rft.edition=Second&amp;rft.pub=CRC+Press&amp;rft.date=1999&amp;rft.isbn=978-0-8493-1855-9&amp;rft.aulast=Mase&amp;rft.aufirst=G.+Thomas&amp;rft.au=George+E.+Mase&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DuI1ll0A8B_UC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaugin1999" class="citation book cs1">Maugin, G. A. (1999). <i>The Thermomechanics of Nonlinear Irreversible Behaviors: An Introduction</i>. Singapore: World Scientific.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Thermomechanics+of+Nonlinear+Irreversible+Behaviors%3A+An+Introduction&amp;rft.place=Singapore&amp;rft.pub=World+Scientific&amp;rft.date=1999&amp;rft.aulast=Maugin&amp;rft.aufirst=G.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNemat-Nasser2006" class="citation book cs1">Nemat-Nasser, Sia (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5nO78Rt0BtMC"><i>Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials</i></a>. Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-83979-2" title="Special:BookSources/978-0-521-83979-2"><bdi>978-0-521-83979-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Plasticity%3A+A+Treatise+on+Finite+Deformation+of+Heterogeneous+Inelastic+Materials&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2006&amp;rft.isbn=978-0-521-83979-2&amp;rft.aulast=Nemat-Nasser&amp;rft.aufirst=Sia&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D5nO78Rt0BtMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a href="/wiki/Martin_Ostoja-Starzewski" title="Martin Ostoja-Starzewski">Ostoja-Starzewski, Martin</a> (2008). <a rel="nofollow" class="external text" href="http://www.crcpress.com/product/isbn/9781584884170"><i>Microstructural Randomness and Scaling in Mechanics of Materials</i></a>. Boca Raton, FL: Chapman &amp; Hall/CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-58488-417-0" title="Special:BookSources/978-1-58488-417-0"><bdi>978-1-58488-417-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Microstructural+Randomness+and+Scaling+in+Mechanics+of+Materials&amp;rft.place=Boca+Raton%2C+FL&amp;rft.pub=Chapman+%26+Hall%2FCRC+Press&amp;rft.date=2008&amp;rft.isbn=978-1-58488-417-0&amp;rft.aulast=Ostoja-Starzewski&amp;rft.aufirst=Martin&amp;rft_id=http%3A%2F%2Fwww.crcpress.com%2Fproduct%2Fisbn%2F9781584884170&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRees2006" class="citation book cs1">Rees, David (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4KWbmn_1hcYC"><i>Basic Engineering Plasticity - An Introduction with Engineering and Manufacturing Applications</i></a>. Butterworth-Heinemann. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7506-8025-7" title="Special:BookSources/978-0-7506-8025-7"><bdi>978-0-7506-8025-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Basic+Engineering+Plasticity+-+An+Introduction+with+Engineering+and+Manufacturing+Applications&amp;rft.pub=Butterworth-Heinemann&amp;rft.date=2006&amp;rft.isbn=978-0-7506-8025-7&amp;rft.aulast=Rees&amp;rft.aufirst=David&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4KWbmn_1hcYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWright2002" class="citation book cs1">Wright, T. W. (2002). <i>The Physics and Mathematics of Adiabatic Shear Bands</i>. Cambridge, UK: Cambridge University Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Physics+and+Mathematics+of+Adiabatic+Shear+Bands&amp;rft.place=Cambridge%2C+UK&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2002&amp;rft.aulast=Wright&amp;rft.aufirst=T.+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AContinuum+mechanics" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Continuum_mechanics&amp;action=edit&amp;section=23" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Continuum_mechanics" class="extiw" title="commons:Category:Continuum mechanics">Continuum mechanics</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://perso.isima.fr/~gileborg/IsimathMeca/Lageul.pdf">"Objectivity in classical continuum mechanics: Motions, Eulerian and Lagrangian functions; Deformation gradient; Lie derivatives; Velocity-addition formula, Coriolis; Objectivity"</a> by Gilles Leborgne, April 7, 2021: <a rel="nofollow" class="external text" href="http://www.isima.fr/~leborgne/IsimathMeca/LageulLoidcdv.pdf">"Part IV Velocity-addition formula and Objectivity"</a><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged December 2023">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Major_branches_of_physics" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Branches_of_physics" title="Template:Branches of physics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Branches_of_physics" title="Template talk:Branches of physics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Branches_of_physics" title="Special:EditPage/Template:Branches of physics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Major_branches_of_physics" style="font-size:114%;margin:0 4em">Major <a href="/wiki/Branches_of_physics" title="Branches of physics">branches of physics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Divisions</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Basic_research" title="Basic research">Pure</a></li> <li><a href="/wiki/Applied_physics" title="Applied physics">Applied</a> <ul><li><a href="/wiki/Engineering_physics" title="Engineering physics">Engineering</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Approaches</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Experimental_physics" title="Experimental physics">Experimental</a></li> <li><a href="/wiki/Theoretical_physics" title="Theoretical physics">Theoretical</a> <ul><li><a href="/wiki/Computational_physics" title="Computational physics">Computational</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Classical_physics" title="Classical physics">Classical</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a> <ul><li><a href="/wiki/Newton%27s_laws_of_motion" title="Newton&#39;s laws of motion">Newtonian</a></li> <li><a href="/wiki/Analytical_mechanics" title="Analytical mechanics">Analytical</a></li> <li><a href="/wiki/Celestial_mechanics" title="Celestial mechanics">Celestial</a></li> <li><a class="mw-selflink selflink">Continuum</a></li></ul></li> <li><a href="/wiki/Acoustics" title="Acoustics">Acoustics</a></li> <li><a href="/wiki/Classical_electromagnetism" title="Classical electromagnetism">Classical electromagnetism</a></li> <li><a href="/wiki/Classical_optics" class="mw-redirect" title="Classical optics">Classical optics</a> <ul><li><a href="/wiki/Geometrical_optics" title="Geometrical optics">Ray</a></li> <li><a href="/wiki/Physical_optics" title="Physical optics">Wave</a></li></ul></li> <li><a href="/wiki/Thermodynamics" title="Thermodynamics">Thermodynamics</a> <ul><li><a href="/wiki/Statistical_mechanics" title="Statistical mechanics">Statistical</a></li> <li><a href="/wiki/Non-equilibrium_thermodynamics" title="Non-equilibrium thermodynamics">Non-equilibrium</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Modern_physics" title="Modern physics">Modern</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Relativistic_mechanics" title="Relativistic mechanics">Relativistic mechanics</a> <ul><li><a href="/wiki/Special_relativity" title="Special relativity">Special</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General</a></li></ul></li> <li><a href="/wiki/Nuclear_physics" title="Nuclear physics">Nuclear physics</a></li> <li><a href="/wiki/Particle_physics" title="Particle physics">Particle physics</a></li> <li><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a></li> <li><a href="/wiki/Atomic,_molecular,_and_optical_physics" title="Atomic, molecular, and optical physics">Atomic, molecular, and optical physics</a> <ul><li><a href="/wiki/Atomic_physics" title="Atomic physics">Atomic</a></li> <li><a href="/wiki/Molecular_physics" title="Molecular physics">Molecular</a></li> <li><a href="/wiki/Optics#Modern_optics" title="Optics">Modern optics</a></li></ul></li> <li><a href="/wiki/Condensed_matter_physics" title="Condensed matter physics">Condensed matter physics</a> <ul><li><a href="/wiki/Solid-state_physics" title="Solid-state physics">Solid-state physics</a></li> <li><a href="/wiki/Crystallography" title="Crystallography">Crystallography</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Applied_and_interdisciplinary_physics" title="Category:Applied and interdisciplinary physics">Interdisciplinary</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Astrophysics" title="Astrophysics">Astrophysics</a></li> <li><a href="/wiki/Atmospheric_physics" title="Atmospheric physics">Atmospheric physics</a></li> <li><a href="/wiki/Biophysics" title="Biophysics">Biophysics</a></li> <li><a href="/wiki/Chemical_physics" title="Chemical physics">Chemical physics</a></li> <li><a href="/wiki/Geophysics" title="Geophysics">Geophysics</a></li> <li><a href="/wiki/Materials_science" title="Materials science">Materials science</a></li> <li><a href="/wiki/Mathematical_physics" title="Mathematical physics">Mathematical physics</a></li> <li><a href="/wiki/Medical_physics" title="Medical physics">Medical physics</a></li> <li><a href="/wiki/Physical_oceanography" title="Physical oceanography">Ocean physics</a></li> <li><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_physics" title="History of physics">History of physics</a></li> <li><a href="/wiki/Nobel_Prize_in_Physics" title="Nobel Prize in Physics">Nobel Prize in Physics</a></li> <li><a href="/wiki/Philosophy_of_physics" title="Philosophy of physics">Philosophy of physics</a></li> <li><a href="/wiki/Physics_education" title="Physics education">Physics education</a></li> <li><a href="/wiki/Timeline_of_fundamental_physics_discoveries" title="Timeline of fundamental physics discoveries">Timeline of physics discoveries</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Solid_objects" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Solid_objects" title="Template:Solid objects"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Solid_objects" title="Template talk:Solid objects"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Solid_objects" title="Special:EditPage/Template:Solid objects"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Solid_objects" style="font-size:114%;margin:0 4em">Solid objects</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Objects</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solids" class="mw-redirect" title="Solids">Solids</a></li> <li><a href="/wiki/Physical_object" title="Physical object">Physical object</a></li> <li><a href="/wiki/Deformable_bodies" class="mw-redirect" title="Deformable bodies">Deformable bodies</a></li> <li><a href="/wiki/Materials" class="mw-redirect" title="Materials">Materials</a></li> <li><a href="/wiki/Raw_materials" class="mw-redirect" title="Raw materials">Raw materials</a></li> <li><a href="/wiki/Matter" title="Matter">Matter</a></li> <li><a href="/wiki/Rigid_body" title="Rigid body">Rigid body</a></li> <li><a href="/wiki/Particular" title="Particular">Particular</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Concepts</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/State_of_matter" title="State of matter">State of matter</a></li> <li><a href="/wiki/Phase_(matter)" title="Phase (matter)">Phase (matter)</a></li> <li><a href="/wiki/Amorphous_solid" title="Amorphous solid">Amorphous solid</a></li> <li><a href="/wiki/Bonding_in_solids" title="Bonding in solids">Bonding in solids</a></li> <li><a href="/wiki/Miscibility" title="Miscibility">Miscibility</a></li> <li><a href="/wiki/Phase_diagram" title="Phase diagram">Phase diagram</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Main classes</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Metallurgy" title="Metallurgy">Metallurgy</a></li> <li><a href="/wiki/Minerals" class="mw-redirect" title="Minerals">Minerals</a></li> <li><a href="/wiki/Ceramic_engineering" title="Ceramic engineering">Ceramic engineering</a></li> <li><a href="/wiki/Glass_ceramics" class="mw-redirect" title="Glass ceramics">Glass ceramics</a></li> <li><a href="/wiki/Polymer_science" title="Polymer science">Polymer science</a> and <a href="/wiki/Polymer_engineering" title="Polymer engineering">Polymer engineering</a></li> <li><a href="/wiki/Composite_materials" class="mw-redirect" title="Composite materials">Composite materials</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Materials_science" title="Materials science">Materials science</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Characterization_(materials_science)" title="Characterization (materials science)">Characterization</a></li> <li><a href="/wiki/Computational_materials_science" title="Computational materials science">Computational</a></li> <li><a href="/wiki/Template:Fundamental_aspects_of_materials_science" title="Template:Fundamental aspects of materials science">Fundamental aspects</a></li> <li><a href="/wiki/Materials_informatics" title="Materials informatics">Informatics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Domains</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Condensed-matter_physics" class="mw-redirect" title="Condensed-matter physics">Condensed-matter physics</a></li> <li><a href="/wiki/Polymer_physics" title="Polymer physics">Polymer physics</a></li> <li><a href="/wiki/Soft_matter" title="Soft matter">Soft-matter physics</a></li> <li><a href="/wiki/Solid-state_physics" title="Solid-state physics">Solid-state physics</a></li> <li><a href="/wiki/Crystallography" title="Crystallography">Crystallography</a></li> <li><a href="/wiki/Surface_science" title="Surface science">Surface science</a></li> <li><a href="/wiki/Tribology" title="Tribology">Tribology</a></li> <li><a href="/wiki/Microelectronics" title="Microelectronics">Microelectronics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Interdisciplinarity" title="Interdisciplinarity">Interdisciplinary</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solid-state_chemistry" title="Solid-state chemistry">Solid-state chemistry</a></li> <li><a href="/wiki/Polymer_chemistry" title="Polymer chemistry">Polymer chemistry</a></li> <li><a href="/wiki/Mineralogy" title="Mineralogy">Mineralogy</a></li> <li><a href="/wiki/Mining_engineering" title="Mining engineering">Mining engineering</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Materials_science" title="Category:Materials science">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <b><a href="https://commons.wikimedia.org/wiki/Category:Materials_science" class="extiw" title="commons:Category:Materials science">Common</a></b></li> <li><a href="/wiki/Material" title="Material">Material</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Tensors" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Tensors" title="Template:Tensors"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Tensors" title="Template talk:Tensors"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Tensors" title="Special:EditPage/Template:Tensors"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Tensors" style="font-size:114%;margin:0 4em"><a href="/wiki/Tensor" title="Tensor">Tensors</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i><a href="/wiki/Glossary_of_tensor_theory" title="Glossary of tensor theory">Glossary of tensor theory</a></i></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scope</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Mathematics" title="Mathematics">Mathematics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coordinate_system" title="Coordinate system">Coordinate system</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a></li> <li><a href="/wiki/Dyadics" title="Dyadics">Dyadic algebra</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></li> <li><a href="/wiki/Exterior_calculus" class="mw-redirect" title="Exterior calculus">Exterior calculus</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></li> <li><a href="/wiki/Tensor_algebra" title="Tensor algebra">Tensor algebra</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><div class="hlist"><ul><li><a href="/wiki/Physics" title="Physics">Physics</a></li><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_vision" title="Computer vision">Computer vision</a></li> <li><a class="mw-selflink selflink">Continuum mechanics</a></li> <li><a href="/wiki/Electromagnetism" title="Electromagnetism">Electromagnetism</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Transport_phenomena" title="Transport phenomena">Transport phenomena</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_index_notation" title="Abstract index notation">Abstract index notation</a></li> <li><a href="/wiki/Einstein_notation" title="Einstein notation">Einstein notation</a></li> <li><a href="/wiki/Index_notation" title="Index notation">Index notation</a></li> <li><a href="/wiki/Multi-index_notation" title="Multi-index notation">Multi-index notation</a></li> <li><a href="/wiki/Penrose_graphical_notation" title="Penrose graphical notation">Penrose graphical notation</a></li> <li><a href="/wiki/Ricci_calculus" title="Ricci calculus">Ricci calculus</a></li> <li><a href="/wiki/Tetrad_(index_notation)" class="mw-redirect" title="Tetrad (index notation)">Tetrad (index notation)</a></li> <li><a href="/wiki/Van_der_Waerden_notation" title="Van der Waerden notation">Van der Waerden notation</a></li> <li><a href="/wiki/Voigt_notation" title="Voigt notation">Voigt notation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tensor<br />definitions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tensor_(intrinsic_definition)" title="Tensor (intrinsic definition)">Tensor (intrinsic definition)</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a></li> <li><a href="/wiki/Tensor_density" title="Tensor density">Tensor density</a></li> <li><a href="/wiki/Tensors_in_curvilinear_coordinates" title="Tensors in curvilinear coordinates">Tensors in curvilinear coordinates</a></li> <li><a href="/wiki/Mixed_tensor" title="Mixed tensor">Mixed tensor</a></li> <li><a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">Antisymmetric tensor</a></li> <li><a href="/wiki/Symmetric_tensor" title="Symmetric tensor">Symmetric tensor</a></li> <li><a href="/wiki/Tensor_operator" title="Tensor operator">Tensor operator</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor bundle</a></li> <li><a href="/wiki/Two-point_tensor" title="Two-point tensor">Two-point tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Exterior_covariant_derivative" title="Exterior covariant derivative">Exterior covariant derivative</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">Exterior product</a></li> <li><a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a></li> <li><a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a></li> <li><a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">Raising and lowering indices</a></li> <li><a href="/wiki/Symmetrization" title="Symmetrization">Symmetrization</a></li> <li><a href="/wiki/Tensor_contraction" title="Tensor contraction">Tensor contraction</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a> (2nd-order tensors)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related<br />abstractions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine connection</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Cartan_formalism_(physics)" class="mw-redirect" title="Cartan formalism (physics)">Cartan formalism (physics)</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Connection form</a></li> <li><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Covariance and contravariance of vectors</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a></li> <li><a href="/wiki/Dimension" title="Dimension">Dimension</a></li> <li><a href="/wiki/Exterior_form" class="mw-redirect" title="Exterior form">Exterior form</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber bundle</a></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Pseudotensor" title="Pseudotensor">Pseudotensor</a></li> <li><a href="/wiki/Spinor" title="Spinor">Spinor</a></li> <li><a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notable tensors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Mathematics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a></li> <li><a href="/wiki/Levi-Civita_symbol" title="Levi-Civita symbol">Levi-Civita symbol</a></li> <li><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a></li> <li><a href="/wiki/Nonmetricity_tensor" title="Nonmetricity tensor">Nonmetricity tensor</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a></li> <li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion tensor</a></li> <li><a href="/wiki/Weyl_tensor" title="Weyl tensor">Weyl tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Physics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Moment_of_inertia#Inertia_tensor" title="Moment of inertia">Moment of inertia</a></li> <li><a href="/wiki/Angular_momentum#Angular_momentum_in_relativistic_mechanics" title="Angular momentum">Angular momentum tensor</a></li> <li><a href="/wiki/Spin_tensor" title="Spin tensor">Spin tensor</a></li> <li><a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Cauchy stress tensor</a></li> <li><a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">stress–energy tensor</a></li> <li><a href="/wiki/Einstein_tensor" title="Einstein tensor">Einstein tensor</a></li> <li><a href="/wiki/Electromagnetic_tensor" title="Electromagnetic tensor">EM tensor</a></li> <li><a href="/wiki/Gluon_field_strength_tensor" title="Gluon field strength tensor">Gluon field strength tensor</a></li> <li><a href="/wiki/Metric_tensor_(general_relativity)" title="Metric tensor (general relativity)">Metric tensor (GR)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematician" title="Mathematician">Mathematicians</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/Elwin_Bruno_Christoffel" title="Elwin Bruno Christoffel">Elwin Bruno Christoffel</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a></li> <li><a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a></li> <li><a href="/wiki/Tullio_Levi-Civita" title="Tullio Levi-Civita">Tullio Levi-Civita</a></li> <li><a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Gregorio Ricci-Curbastro</a></li> <li><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a></li> <li><a href="/wiki/Jan_Arnoldus_Schouten" title="Jan Arnoldus Schouten">Jan Arnoldus Schouten</a></li> <li><a href="/wiki/Woldemar_Voigt" title="Woldemar Voigt">Woldemar Voigt</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q193463#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4032296-8">Germany</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Continuum mechanics"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85031576">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Milieux continus, Mécanique des"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119428967">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Milieux continus, Mécanique des"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119428967">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00575759">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="mechanika kontinua"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph115248&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007557831705171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6b7f745dd4‐8s7zt Cached time: 20241125142257 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.944 seconds Real time usage: 1.242 seconds Preprocessor visited node count: 6805/1000000 Post‐expand include size: 154489/2097152 bytes Template argument size: 9618/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 9/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 179962/5000000 bytes Lua time usage: 0.520/10.000 seconds Lua memory usage: 8548631/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 812.534 1 -total 20.94% 170.107 30 Template:Cite_book 12.53% 101.837 23 Template:Sfn 11.27% 91.582 1 Template:Continuum_mechanics 10.11% 82.186 1 Template:Short_description 8.71% 70.793 7 Template:Fix 7.42% 60.310 2 Template:Pagetype 6.81% 55.295 3 Template:Sidebar 6.28% 51.057 10 Template:Delink 6.23% 50.657 5 Template:Navbox --> <!-- Saved in parser cache with key enwiki:pcache:idhash:5918-0!canonical and timestamp 20241125142257 and revision id 1258178636. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Continuum_mechanics&amp;oldid=1258178636">https://en.wikipedia.org/w/index.php?title=Continuum_mechanics&amp;oldid=1258178636</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Continuum_mechanics" title="Category:Continuum mechanics">Continuum mechanics</a></li><li><a href="/wiki/Category:Classical_mechanics" title="Category:Classical mechanics">Classical mechanics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_December_2022" title="Category:Articles with unsourced statements from December 2022">Articles with unsourced statements from December 2022</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_lacking_in-text_citations_from_October_2019" title="Category:Articles lacking in-text citations from October 2019">Articles lacking in-text citations from October 2019</a></li><li><a href="/wiki/Category:All_articles_lacking_in-text_citations" title="Category:All articles lacking in-text citations">All articles lacking in-text citations</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_August_2020" title="Category:Use dmy dates from August 2020">Use dmy dates from August 2020</a></li><li><a href="/wiki/Category:Pages_using_sidebar_with_the_child_parameter" title="Category:Pages using sidebar with the child parameter">Pages using sidebar with the child parameter</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_August_2020" title="Category:Wikipedia articles needing page number citations from August 2020">Wikipedia articles needing page number citations from August 2020</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_December_2023" title="Category:Articles with dead external links from December 2023">Articles with dead external links from December 2023</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:Pages_that_use_a_deprecated_format_of_the_math_tags" title="Category:Pages that use a deprecated format of the math tags">Pages that use a deprecated format of the math tags</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 18 November 2024, at 15:27<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Continuum_mechanics&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-565f7699fc-qthnh","wgBackendResponseTime":291,"wgPageParseReport":{"limitreport":{"cputime":"0.944","walltime":"1.242","ppvisitednodes":{"value":6805,"limit":1000000},"postexpandincludesize":{"value":154489,"limit":2097152},"templateargumentsize":{"value":9618,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":9,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":179962,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 812.534 1 -total"," 20.94% 170.107 30 Template:Cite_book"," 12.53% 101.837 23 Template:Sfn"," 11.27% 91.582 1 Template:Continuum_mechanics"," 10.11% 82.186 1 Template:Short_description"," 8.71% 70.793 7 Template:Fix"," 7.42% 60.310 2 Template:Pagetype"," 6.81% 55.295 3 Template:Sidebar"," 6.28% 51.057 10 Template:Delink"," 6.23% 50.657 5 Template:Navbox"]},"scribunto":{"limitreport-timeusage":{"value":"0.520","limit":"10.000"},"limitreport-memusage":{"value":8548631,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAtanackovicGuran2000\"] = 1,\n [\"CITEREFBatra2006\"] = 1,\n [\"CITEREFBertram2012\"] = 1,\n [\"CITEREFChadwick1999\"] = 1,\n [\"CITEREFChandramouli,_P.N2014\"] = 1,\n [\"CITEREFChenJames_D._LeeAzim_Eskandarian2009\"] = 1,\n [\"CITEREFDienesSolem1999\"] = 1,\n [\"CITEREFDill2006\"] = 1,\n [\"CITEREFDimitrienko2011\"] = 1,\n [\"CITEREFEringen1980\"] = 1,\n [\"CITEREFFung1977\"] = 1,\n [\"CITEREFGurtin1981\"] = 1,\n [\"CITEREFHutterKlaus_Jöhnk2004\"] = 1,\n [\"CITEREFIrgens2008\"] = 1,\n [\"CITEREFLaiDavid_RubinErhard_Krempl1996\"] = 1,\n [\"CITEREFLiu2002\"] = 1,\n [\"CITEREFLubarda2001\"] = 1,\n [\"CITEREFLubliner2008\"] = 1,\n [\"CITEREFMalvern1969\"] = 1,\n [\"CITEREFMase1970\"] = 1,\n [\"CITEREFMaseGeorge_E._Mase1999\"] = 1,\n [\"CITEREFMaugin1999\"] = 1,\n [\"CITEREFNemat-Nasser2006\"] = 1,\n [\"CITEREFOstoja-Starzewski2008\"] = 1,\n [\"CITEREFRees2006\"] = 1,\n [\"CITEREFRoberts1994\"] = 1,\n [\"CITEREFSmith1993\"] = 1,\n [\"CITEREFSpencer1980\"] = 1,\n [\"CITEREFWright2002\"] = 1,\n [\"CITEREFWu2004\"] = 1,\n [\"elastomeric2016-01-29\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Anchor\"] = 1,\n [\"Authority control\"] = 1,\n [\"Citation needed\"] = 2,\n [\"Cite book\"] = 30,\n [\"Cite journal\"] = 1,\n [\"Commons category\"] = 1,\n [\"Continuum mechanics\"] = 1,\n [\"Continuum mechanics context\"] = 1,\n [\"DEFAULTSORT:Continuum Mechanics\"] = 1,\n [\"Dead link\"] = 1,\n [\"Div col\"] = 1,\n [\"Div col end\"] = 1,\n [\"Main\"] = 1,\n [\"More footnotes needed\"] = 1,\n [\"Page needed\"] = 4,\n [\"Physics-footer\"] = 1,\n [\"Reflist\"] = 2,\n [\"Refn\"] = 2,\n [\"See also\"] = 1,\n [\"Sfn\"] = 23,\n [\"Short description\"] = 1,\n [\"Solid objects\"] = 1,\n [\"Tensors\"] = 1,\n [\"Use dmy dates\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-6b7f745dd4-8s7zt","timestamp":"20241125142257","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Continuum mechanics","url":"https:\/\/en.wikipedia.org\/wiki\/Continuum_mechanics","sameAs":"http:\/\/www.wikidata.org\/entity\/Q193463","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q193463","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-07-29T05:48:28Z","dateModified":"2024-11-18T15:27:59Z","headline":"branch of mechanics that deals with the analysis of the kinematics and the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10