CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 132 results for author: <span class="mathjax">Chartas, G</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Chartas%2C+G">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chartas, G"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chartas%2C+G&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chartas, G"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chartas%2C+G&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chartas%2C+G&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chartas%2C+G&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Chartas%2C+G&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12449">arXiv:2501.12449</a> <span> [<a href="https://arxiv.org/pdf/2501.12449">pdf</a>, <a href="https://arxiv.org/format/2501.12449">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202453618">10.1051/0004-6361/202453618 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intervening nuclear obscuration changing the X-ray look of the $z\approx6$ QSO CFHQS J164121+375520 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Vito%2C+F">Fabio Vito</a>, <a href="/search/astro-ph?searchtype=author&query=Brandt%2C+W+N">William Nielsen Brandt</a>, <a href="/search/astro-ph?searchtype=author&query=Comastri%2C+A">Andrea Comastri</a>, <a href="/search/astro-ph?searchtype=author&query=Gilli%2C+R">Roberto Gilli</a>, <a href="/search/astro-ph?searchtype=author&query=Bauer%2C+F">Franz Bauer</a>, <a href="/search/astro-ph?searchtype=author&query=Belladitta%2C+S">Silvia Belladitta</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Iwasawa%2C+K">Kazushi Iwasawa</a>, <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">Giorgio Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Luo%2C+B">Bin Luo</a>, <a href="/search/astro-ph?searchtype=author&query=Marchesi%2C+S">Stefano Marchesi</a>, <a href="/search/astro-ph?searchtype=author&query=Mignoli%2C+M">Marco Mignoli</a>, <a href="/search/astro-ph?searchtype=author&query=Ricci%2C+F">Federica Ricci</a>, <a href="/search/astro-ph?searchtype=author&query=Shemmer%2C+O">Ohad Shemmer</a>, <a href="/search/astro-ph?searchtype=author&query=Spingola%2C+C">Cristiana Spingola</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">Cristian Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Boschin%2C+W">Walter Boschin</a>, <a href="/search/astro-ph?searchtype=author&query=Cusano%2C+F">Felice Cusano</a>, <a href="/search/astro-ph?searchtype=author&query=Paris%2C+D">Diego Paris</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12449v2-abstract-short" style="display: inline;"> X-ray observations of the optically selected $z=6.025$ QSO CFHQS J164121+375520 (hereafter J1641) revealed that its flux dropped by a factor $\gtrsim7$ from 2018, when it was a bright and soft X-ray source, to 2021. Such a strong variability amplitude has not been observed before among $z>6$ QSOs, and the underlying physical mechanism was unclear. We carried out a new X-ray and rest-frame UV monit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12449v2-abstract-full').style.display = 'inline'; document.getElementById('2501.12449v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12449v2-abstract-full" style="display: none;"> X-ray observations of the optically selected $z=6.025$ QSO CFHQS J164121+375520 (hereafter J1641) revealed that its flux dropped by a factor $\gtrsim7$ from 2018, when it was a bright and soft X-ray source, to 2021. Such a strong variability amplitude has not been observed before among $z>6$ QSOs, and the underlying physical mechanism was unclear. We carried out a new X-ray and rest-frame UV monitoring campaign of J1641 over 2022-2024. We detected J1641 with Chandra in the 2-7 keV band, while no significant emission is detected at softer X-ray energies, making J1641 an X-ray changing look QSO at $z>6$. Comparing with the 2018 epoch, the 0.5-2 keV flux dropped dramatically by a factor $>20$. We ascribe this behaviour to intervening, and still ongoing, obscuration by Compton-thick gas intercepting our line of sight between 2018 and 2021. The screening material could be an inner disk or a failed nuclear wind that increased their thickness. Another possibility is that we have witnessed an occultation event due to dust-free clouds located at sub-pc/pc scales, similar to those recently invoked to explain the remarkable X-ray weakness of AGN discovered by JWST. These interpretations are also consistent with the lack of strong variations of the QSO rest-frame UV lightcurve over the same period. Future monitoring of J1641 and the possible discovery of other X-ray changing look QSOs at $z>6$ will provide us with precious information about the physics of rapid supermassive black-hole growth at high redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12449v2-abstract-full').style.display = 'none'; document.getElementById('2501.12449v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication on A&A Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 694, L16 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12057">arXiv:2406.12057</a> <span> [<a href="https://arxiv.org/pdf/2406.12057">pdf</a>, <a href="https://arxiv.org/format/2406.12057">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449194">10.1051/0004-6361/202449194 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The XMM-Newton and NuSTAR view of IRASF11119+3257. I Detection of multiple UFO components and a very cold corona </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">G. Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Matzeu%2C+G">G. Matzeu</a>, <a href="/search/astro-ph?searchtype=author&query=Baldini%2C+P">P. Baldini</a>, <a href="/search/astro-ph?searchtype=author&query=Bertola%2C+E">E. Bertola</a>, <a href="/search/astro-ph?searchtype=author&query=Comastri%2C+A">A. Comastri</a>, <a href="/search/astro-ph?searchtype=author&query=Tombesi%2C+F">F. Tombesi</a>, <a href="/search/astro-ph?searchtype=author&query=Luminari%2C+A">A. Luminari</a>, <a href="/search/astro-ph?searchtype=author&query=Braito%2C+V">V. Braito</a>, <a href="/search/astro-ph?searchtype=author&query=Reeves%2C+J">J. Reeves</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchi%2C+S">S. Bianchi</a>, <a href="/search/astro-ph?searchtype=author&query=Brusa%2C+M">M. Brusa</a>, <a href="/search/astro-ph?searchtype=author&query=Cresci%2C+G">G. Cresci</a>, <a href="/search/astro-ph?searchtype=author&query=Nardini%2C+E">E. Nardini</a>, <a href="/search/astro-ph?searchtype=author&query=Piconcelli%2C+E">E. Piconcelli</a>, <a href="/search/astro-ph?searchtype=author&query=Zappacosta%2C+L">L. Zappacosta</a>, <a href="/search/astro-ph?searchtype=author&query=Serafinelli%2C+R">R. Serafinelli</a>, <a href="/search/astro-ph?searchtype=author&query=Gaspari%2C+M">M. Gaspari</a>, <a href="/search/astro-ph?searchtype=author&query=Gilli%2C+R">R. Gilli</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">M. Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">M. Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Perna%2C+M">M. Perna</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Veilleux%2C+S">S. Veilleux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12057v1-abstract-short" style="display: inline;"> IRASF11119 is an ultra-luminous IR galaxy with post-merger morphology, hosting a type-1 QSO at z=0.189. Its 2013 Suzaku spectrum shows a prominent Ultra Fast Outflow (UFO) absorption feature (v_out~0.25c). In 2021, we obtained the first XMM-Newton long look of the target, coordinated with a simultaneous NuSTAR observation. The new high-quality data allow us to detect at P>99.8% c.l. multiple absor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12057v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12057v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12057v1-abstract-full" style="display: none;"> IRASF11119 is an ultra-luminous IR galaxy with post-merger morphology, hosting a type-1 QSO at z=0.189. Its 2013 Suzaku spectrum shows a prominent Ultra Fast Outflow (UFO) absorption feature (v_out~0.25c). In 2021, we obtained the first XMM-Newton long look of the target, coordinated with a simultaneous NuSTAR observation. The new high-quality data allow us to detect at P>99.8% c.l. multiple absorption features associated with the known UFO. Furthermore, an emission plus absorption feature at 1.1-1.3 keV reveals the presence of a blueshifted P-Cygni profile in the soft band. We associate the hard band features with blends of FeXXV and FeXXVI He$伪$-Ly$伪$ and He$尾$-Ly$尾$ line pairs and infer a large column (N$_H$~$10^{24}$ cm$^{-2}$) of highly ionized (log$尉$~5) gas outflowing at v_out=0.27c. The 1 keV feature can be associated with a blend of Fe and Ne transitions, produced by a lower column (N$_H$~$10^{21}$ cm$^{-2}$) and ionization (log$尉$~2.6) gas component outflowing at the same speed. Using a radiative-transfer disk wind model to fit the highly ionized UFO, we derive a large mass outflow rate, comparable with the mass accretion rate (M$_{out}$=4.25 M$_{Sun}$/yr, ~1.6 M$_{acc}$), and kinetic energy and momentum flux among the highest reported in the literature. We measure an extremely low high-energy cut-off (E$_c$~25 keV). Several other cases in the literature suggest that a steep X-ray continuum may be related to the formation of powerful winds. The lack of a significant momentum boost between the nuclear UFO and the different phases of the large-scale outflow, observed in IRASF11119 and in a growing number of sources with powerful UFOs, can be explained by (i) a momentum-driven expansion, (ii) an inefficient coupling of the UFO with the host ISM, or (iii) by repeated energy-driven expansion episodes with low duty-cycle, that average out on long time-scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12057v1-abstract-full').style.display = 'none'; document.getElementById('2406.12057v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 13 figures, accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 689, A247 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09538">arXiv:2403.09538</a> <span> [<a href="https://arxiv.org/pdf/2403.09538">pdf</a>, <a href="https://arxiv.org/format/2403.09538">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348908">10.1051/0004-6361/202348908 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supermassive Black Hole Winds in X-rays -- SUBWAYS. III. A population study on ultra-fast outflows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gianolli%2C+V+E">V. E. Gianolli</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchi%2C+S">S. Bianchi</a>, <a href="/search/astro-ph?searchtype=author&query=Petrucci%2C+P">P-O Petrucci</a>, <a href="/search/astro-ph?searchtype=author&query=Brusa%2C+M">M. Brusa</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">G. Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Matzeu%2C+G+A">G. A. Matzeu</a>, <a href="/search/astro-ph?searchtype=author&query=Parra%2C+M">M. Parra</a>, <a href="/search/astro-ph?searchtype=author&query=Ursini%2C+F">F. Ursini</a>, <a href="/search/astro-ph?searchtype=author&query=Behar%2C+E">E. Behar</a>, <a href="/search/astro-ph?searchtype=author&query=Bischetti%2C+M">M. Bischetti</a>, <a href="/search/astro-ph?searchtype=author&query=Comastri%2C+A">A. Comastri</a>, <a href="/search/astro-ph?searchtype=author&query=Costantini%2C+E">E. Costantini</a>, <a href="/search/astro-ph?searchtype=author&query=Cresci%2C+G">G. Cresci</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">M. Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=De+Marco%2C+B">B. De Marco</a>, <a href="/search/astro-ph?searchtype=author&query=De+Rosa%2C+A">A. De Rosa</a>, <a href="/search/astro-ph?searchtype=author&query=Fiore%2C+F">F. Fiore</a>, <a href="/search/astro-ph?searchtype=author&query=Gaspari%2C+M">M. Gaspari</a>, <a href="/search/astro-ph?searchtype=author&query=Gilli%2C+R">R. Gilli</a>, <a href="/search/astro-ph?searchtype=author&query=Giustini%2C+M">M. Giustini</a>, <a href="/search/astro-ph?searchtype=author&query=Guainazzi%2C+M">M. Guainazzi</a>, <a href="/search/astro-ph?searchtype=author&query=King%2C+A+R">A. R. King</a>, <a href="/search/astro-ph?searchtype=author&query=Kraemer%2C+S">S. Kraemer</a>, <a href="/search/astro-ph?searchtype=author&query=Kriss%2C+G">G. Kriss</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09538v2-abstract-short" style="display: inline;"> The detection of blue-shifted absorption lines likely associated with ionized Iron K-shell transitions in the X-ray spectra of many Active Galactic Nuclei (AGN) suggests the presence of a highly ionized gas outflowing with mildly relativistic velocities (0.03c-0.6c), named Ultra-Fast Outflow (UFO). Within the SUBWAYS project we characterized these winds starting from a sample of 22 radio-quiet qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09538v2-abstract-full').style.display = 'inline'; document.getElementById('2403.09538v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09538v2-abstract-full" style="display: none;"> The detection of blue-shifted absorption lines likely associated with ionized Iron K-shell transitions in the X-ray spectra of many Active Galactic Nuclei (AGN) suggests the presence of a highly ionized gas outflowing with mildly relativistic velocities (0.03c-0.6c), named Ultra-Fast Outflow (UFO). Within the SUBWAYS project we characterized these winds starting from a sample of 22 radio-quiet quasars at 0.1 < z < 0.4, and compared the results with similar studies in the literature on samples of 42 local radio-quiet Seyfert galaxies and 14 high redshift radio-quiet quasars. The scope of our work is a statistical study of UFO parameters and incidence, considering key physical properties of the sources, e.g. supermassive black hole (SMBH) mass, bolometric luminosity, accretion rates and Spectral Energy Distribution, with the aim of gaining new insights into the UFO launching mechanisms. We find indications that highly luminous AGN with steeper X-ray/UV ratio, are more likely to host UFO. The presence of UFO is not significantly related to any other AGN property in our sample. These findings suggest that the UFO phenomenon may be transient. Focusing on AGN with UFO, other important results are: (1) faster UFO have larger ionization parameters and column densities; (2) X-ray radiation plays a more crucial role in driving highly ionized winds compared to UV; (3) the correlation between outflow velocity and luminosity is significantly flatter than what expected for radiatively driven winds; (4) more massive BH experience higher wind mass-losses, suppressing accretion of matter onto the BH; (5) the UFO launching radius is positively correlated with the Eddington ratio. Furthermore, our analysis suggest the involvement of multiple launching mechanisms, including radiation pressure and magneto-hydrodynamic processes, rather than pointing to a single, universally applicable mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09538v2-abstract-full').style.display = 'none'; document.getElementById('2403.09538v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 154 figures and 7 tables. Accepted in Astronomy & Astrophysics, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 687, A235 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07661">arXiv:2311.07661</a> <span> [<a href="https://arxiv.org/pdf/2311.07661">pdf</a>, <a href="https://arxiv.org/format/2311.07661">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The evolution of galaxies and clusters at high spatial resolution with AXIS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Russell%2C+H+R">H. R. Russell</a>, <a href="/search/astro-ph?searchtype=author&query=Lopez%2C+L+A">L. A. Lopez</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+S+W">S. W. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Choudhury%2C+P+P">P. P. Choudhury</a>, <a href="/search/astro-ph?searchtype=author&query=Dupke%2C+R+A">R. A. Dupke</a>, <a href="/search/astro-ph?searchtype=author&query=Fabian%2C+A+C">A. C. Fabian</a>, <a href="/search/astro-ph?searchtype=author&query=Flores%2C+A+M">A. M. Flores</a>, <a href="/search/astro-ph?searchtype=author&query=Garofali%2C+K">K. Garofali</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges-Kluck%2C+E">E. Hodges-Kluck</a>, <a href="/search/astro-ph?searchtype=author&query=Koss%2C+M+J">M. J. Koss</a>, <a href="/search/astro-ph?searchtype=author&query=Lanz%2C+L">L. Lanz</a>, <a href="/search/astro-ph?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+J+-">J. -T. Li</a>, <a href="/search/astro-ph?searchtype=author&query=Maksym%2C+W+P">W. P. Maksym</a>, <a href="/search/astro-ph?searchtype=author&query=Mantz%2C+A+B">A. B. Mantz</a>, <a href="/search/astro-ph?searchtype=author&query=McDonald%2C+M">M. McDonald</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+E+D">E. D. Miller</a>, <a href="/search/astro-ph?searchtype=author&query=Mushotzky%2C+R+F">R. F. Mushotzky</a>, <a href="/search/astro-ph?searchtype=author&query=Qiu%2C+Y">Y. Qiu</a>, <a href="/search/astro-ph?searchtype=author&query=Reynolds%2C+C+S">C. S. Reynolds</a>, <a href="/search/astro-ph?searchtype=author&query=Tombesi%2C+F">F. Tombesi</a>, <a href="/search/astro-ph?searchtype=author&query=Tozzi%2C+P">P. Tozzi</a>, <a href="/search/astro-ph?searchtype=author&query=Trindade-Falcao%2C+A">A. Trindade-Falcao</a>, <a href="/search/astro-ph?searchtype=author&query=Walker%2C+S+A">S. A. Walker</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07661v1-abstract-short" style="display: inline;"> Stellar and black hole feedback heat and disperse surrounding cold gas clouds, launching gas flows off circumnuclear and galactic disks and producing a dynamic interstellar medium. On large scales bordering the cosmic web, feedback drives enriched gas out of galaxies and groups, seeding the intergalactic medium with heavy elements. In this way, feedback shapes galaxy evolution by shutting down sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07661v1-abstract-full').style.display = 'inline'; document.getElementById('2311.07661v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07661v1-abstract-full" style="display: none;"> Stellar and black hole feedback heat and disperse surrounding cold gas clouds, launching gas flows off circumnuclear and galactic disks and producing a dynamic interstellar medium. On large scales bordering the cosmic web, feedback drives enriched gas out of galaxies and groups, seeding the intergalactic medium with heavy elements. In this way, feedback shapes galaxy evolution by shutting down star formation and ultimately curtailing the growth of structure after the peak at redshift 2-3. To understand the complex interplay between gravity and feedback, we must resolve both the key physics within galaxies and map the impact of these processes over large scales, out into the cosmic web. The Advanced X-ray Imaging Satellite (AXIS) is a proposed X-ray probe mission for the 2030s with arcsecond spatial resolution, large effective area, and low background. AXIS will untangle the interactions of winds, radiation, jets, and supernovae with the surrounding ISM across the wide range of mass scales and large volumes driving galaxy evolution and trace the establishment of feedback back to the main event at cosmic noon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07661v1-abstract-full').style.display = 'none'; document.getElementById('2311.07661v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 18 figures; this white paper is part of a series commissioned for the AXIS Probe mission concept</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00780">arXiv:2311.00780</a> <span> [<a href="https://arxiv.org/pdf/2311.00780">pdf</a>, <a href="https://arxiv.org/format/2311.00780">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2677468">10.1117/12.2677468 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Overview of the Advanced X-ray Imaging Satellite (AXIS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Reynolds%2C+C+S">Christopher S. Reynolds</a>, <a href="/search/astro-ph?searchtype=author&query=Kara%2C+E+A">Erin A. Kara</a>, <a href="/search/astro-ph?searchtype=author&query=Mushotzky%2C+R+F">Richard F. Mushotzky</a>, <a href="/search/astro-ph?searchtype=author&query=Ptak%2C+A">Andrew Ptak</a>, <a href="/search/astro-ph?searchtype=author&query=Koss%2C+M+J">Michael J. Koss</a>, <a href="/search/astro-ph?searchtype=author&query=Williams%2C+B+J">Brian J. Williams</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+S+W">Steven W. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Bauer%2C+F+E">Franz E. Bauer</a>, <a href="/search/astro-ph?searchtype=author&query=Bautz%2C+M">Marshall Bautz</a>, <a href="/search/astro-ph?searchtype=author&query=Bodaghee%2C+A">Arash Bodaghee</a>, <a href="/search/astro-ph?searchtype=author&query=Burdge%2C+K+B">Kevin B. Burdge</a>, <a href="/search/astro-ph?searchtype=author&query=Cappelluti%2C+N">Nico Cappelluti</a>, <a href="/search/astro-ph?searchtype=author&query=Cenko%2C+B">Brad Cenko</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Chan%2C+K">Kai-Wing Chan</a>, <a href="/search/astro-ph?searchtype=author&query=Corrales%2C+L">L铆a Corrales</a>, <a href="/search/astro-ph?searchtype=author&query=Daylan%2C+T">Tansu Daylan</a>, <a href="/search/astro-ph?searchtype=author&query=Falcone%2C+A+D">Abraham D. Falcone</a>, <a href="/search/astro-ph?searchtype=author&query=Foord%2C+A">Adi Foord</a>, <a href="/search/astro-ph?searchtype=author&query=Grant%2C+C+E">Catherine E. Grant</a>, <a href="/search/astro-ph?searchtype=author&query=Habouzit%2C+M">M茅lanie Habouzit</a>, <a href="/search/astro-ph?searchtype=author&query=Haggard%2C+D">Daryl Haggard</a>, <a href="/search/astro-ph?searchtype=author&query=Herrmann%2C+S">Sven Herrmann</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges-Kluck%2C+E">Edmund Hodges-Kluck</a>, <a href="/search/astro-ph?searchtype=author&query=Kargaltsev%2C+O">Oleg Kargaltsev</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00780v1-abstract-short" style="display: inline;"> The Advanced X-ray Imaging Satellite (AXIS) is a Probe-class concept that will build on the legacy of the Chandra X-ray Observatory by providing low-background, arcsecond-resolution imaging in the 0.3-10 keV band across a 450 arcminute$^2$ field of view, with an order of magnitude improvement in sensitivity. AXIS utilizes breakthroughs in the construction of lightweight segmented X-ray optics usin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00780v1-abstract-full').style.display = 'inline'; document.getElementById('2311.00780v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00780v1-abstract-full" style="display: none;"> The Advanced X-ray Imaging Satellite (AXIS) is a Probe-class concept that will build on the legacy of the Chandra X-ray Observatory by providing low-background, arcsecond-resolution imaging in the 0.3-10 keV band across a 450 arcminute$^2$ field of view, with an order of magnitude improvement in sensitivity. AXIS utilizes breakthroughs in the construction of lightweight segmented X-ray optics using single-crystal silicon, and developments in the fabrication of large-format, small-pixel, high readout rate CCD detectors with good spectral resolution, allowing a robust and cost-effective design. Further, AXIS will be responsive to target-of-opportunity alerts and, with onboard transient detection, will be a powerful facility for studying the time-varying X-ray universe, following on from the legacy of the Neil Gehrels (Swift) X-ray observatory that revolutionized studies of the transient X-ray Universe. In this paper, we present an overview of AXIS, highlighting the prime science objectives driving the AXIS concept and how the observatory design will achieve these objectives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00780v1-abstract-full').style.display = 'none'; document.getElementById('2311.00780v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Proceedings of SPIE Optics & Photonics 2023, San Diego</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05469">arXiv:2306.05469</a> <span> [<a href="https://arxiv.org/pdf/2306.05469">pdf</a>, <a href="https://arxiv.org/format/2306.05469">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244270">10.1051/0004-6361/202244270 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coordinated X-ray and UV absorption within the accretion disk wind of the active galactic nucleus PG 1126-041 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Giustini%2C+M">M. Giustini</a>, <a href="/search/astro-ph?searchtype=author&query=Hidalgo%2C+P+R">P. Rodr铆guez Hidalgo</a>, <a href="/search/astro-ph?searchtype=author&query=Reeves%2C+J+N">J. N. Reeves</a>, <a href="/search/astro-ph?searchtype=author&query=Matzeu%2C+G">G. Matzeu</a>, <a href="/search/astro-ph?searchtype=author&query=Braito%2C+V">V. Braito</a>, <a href="/search/astro-ph?searchtype=author&query=Eracleous%2C+M">M. Eracleous</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Schartel%2C+N">N. Schartel</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+P+B">P. B. Hall</a>, <a href="/search/astro-ph?searchtype=author&query=Waters%2C+T">T. Waters</a>, <a href="/search/astro-ph?searchtype=author&query=Ponti%2C+G">G. Ponti</a>, <a href="/search/astro-ph?searchtype=author&query=Proga%2C+D">D. Proga</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">M. Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">M. Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Miniutti%2C+G">G. Miniutti</a>, <a href="/search/astro-ph?searchtype=author&query=de+Vries%2C+L">L. de Vries</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05469v1-abstract-short" style="display: inline;"> Accretion disk winds launched close to supermassive black holes (SMBHs) are a viable mechanism to provide feedback between the SMBH and the host galaxy. We aim to characterize the X-ray properties of the inner accretion disk wind of the nearby active galactic nucleus (AGN) PG 1126-041, and to study its connection with the ultraviolet (UV)-absorbing wind. We perform spectroscopic analysis of eight… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05469v1-abstract-full').style.display = 'inline'; document.getElementById('2306.05469v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05469v1-abstract-full" style="display: none;"> Accretion disk winds launched close to supermassive black holes (SMBHs) are a viable mechanism to provide feedback between the SMBH and the host galaxy. We aim to characterize the X-ray properties of the inner accretion disk wind of the nearby active galactic nucleus (AGN) PG 1126-041, and to study its connection with the ultraviolet (UV)-absorbing wind. We perform spectroscopic analysis of eight XMM-Newton observations of PG 1126-041 taken between 2004 and 2015, using both phenomenological models and the most advanced accretion disk wind models available. For half of the dataset, we can compare the X-ray analysis results with the results of quasi-simultaneous, high-resolution spectroscopic UV observations taken with the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope. The X-ray spectra of PG 1126-041 are complex and absorbed by ionized material which is highly variable on multiple time scales, sometimes as short as 11 days. Accretion disk wind models can account for most of the X-ray spectral complexity of PG 1126-041, with the addition of massive clumps, represented by a partially covering absorber. Variations in column density ($N_H \sim 5-20 \times 10^{22}$ cm$^{-2}$) of the partially covering absorber drive the observed X-ray spectral variability of PG 1126-041. The absorption from the X-ray partially covering gas and from the blueshifted C IV troughs appear to vary in a coordinated way. The line of sight toward PG 1126-041 offers a privileged view through a highly dynamic nuclear wind originating on inner accretion disk scales, making the source a very promising candidate for future detailed studies of the physics of accretion disk winds around SMBHs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05469v1-abstract-full').style.display = 'none'; document.getElementById('2306.05469v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 13 figures, accepted for publication in Astronomy & Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 679, A73 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02961">arXiv:2212.02961</a> <span> [<a href="https://arxiv.org/pdf/2212.02961">pdf</a>, <a href="https://arxiv.org/format/2212.02961">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245047">10.1051/0004-6361/202245047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supermassive Black Hole Winds in X-rays: SUBWAYS. II. HST UV spectroscopy of winds at intermediate redshifts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Mehdipour%2C+M">M. Mehdipour</a>, <a href="/search/astro-ph?searchtype=author&query=Kriss%2C+G+A">G. A. Kriss</a>, <a href="/search/astro-ph?searchtype=author&query=Brusa%2C+M">M. Brusa</a>, <a href="/search/astro-ph?searchtype=author&query=Matzeu%2C+G+A">G. A. Matzeu</a>, <a href="/search/astro-ph?searchtype=author&query=Gaspari%2C+M">M. Gaspari</a>, <a href="/search/astro-ph?searchtype=author&query=Kraemer%2C+S+B">S. B. Kraemer</a>, <a href="/search/astro-ph?searchtype=author&query=Mathur%2C+S">S. Mathur</a>, <a href="/search/astro-ph?searchtype=author&query=Behar%2C+E">E. Behar</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchi%2C+S">S. Bianchi</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">M. Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Costantini%2C+E">E. Costantini</a>, <a href="/search/astro-ph?searchtype=author&query=Cresci%2C+G">G. Cresci</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">M. Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=De+Marco%2C+B">B. De Marco</a>, <a href="/search/astro-ph?searchtype=author&query=De+Rosa%2C+A">A. De Rosa</a>, <a href="/search/astro-ph?searchtype=author&query=Dunn%2C+J+P">J. P. Dunn</a>, <a href="/search/astro-ph?searchtype=author&query=Gianolli%2C+V+E">V. E. Gianolli</a>, <a href="/search/astro-ph?searchtype=author&query=Giustini%2C+M">M. Giustini</a>, <a href="/search/astro-ph?searchtype=author&query=Kaastra%2C+J+S">J. S. Kaastra</a>, <a href="/search/astro-ph?searchtype=author&query=King%2C+A+R">A. R. King</a>, <a href="/search/astro-ph?searchtype=author&query=Krongold%2C+Y">Y. Krongold</a>, <a href="/search/astro-ph?searchtype=author&query=La+Franca%2C+F">F. La Franca</a>, <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">G. Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Longinotti%2C+A+L">A. L. Longinotti</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02961v1-abstract-short" style="display: inline;"> We present a UV spectroscopic study of ionized outflows in 21 active galactic nuclei (AGN), observed with the HST. The targets of the SUBWAYS sample were selected with the aim to probe the parameter space of the underexplored AGN between the local Seyfert galaxies and the luminous quasars at high redshifts. Our targets, spanning redshifts of 0.1-0.4 and bolometric luminosities (L_bol) of 10^45-10^… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02961v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02961v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02961v1-abstract-full" style="display: none;"> We present a UV spectroscopic study of ionized outflows in 21 active galactic nuclei (AGN), observed with the HST. The targets of the SUBWAYS sample were selected with the aim to probe the parameter space of the underexplored AGN between the local Seyfert galaxies and the luminous quasars at high redshifts. Our targets, spanning redshifts of 0.1-0.4 and bolometric luminosities (L_bol) of 10^45-10^46 erg/s, have been observed with a large multi-wavelength campaign. Here, we model the UV spectra and look for different types of AGN outflows. We find that 60% of our targets show a presence of outflowing H I absorption, while 40% exhibit ionized outflows seen as absorption by either C IV, N V, or O VI. This is comparable to the occurrence of ionized outflows seen in the local Seyfert galaxies. All UV absorption lines in the sample are relatively narrow, with outflow velocities reaching up to -3300 km/s. We did not detect any UV counterparts to the X-ray ultra-fast outflows (UFOs), most likely due to their being too highly ionized. However, all SUBWAYS targets with an X-ray UFO demonstrate the presence of UV outflows at lower velocities. We find significant correlations between the column density (N) of the UV ions and L_bol of the AGN, with N of H I decreasing with L_bol, while N of O VI is increasing with L_bol. This is likely to be a photoionization effect, where toward higher AGN luminosities, the wind becomes more ionized, resulting in less absorption by neutral or low-ionization ions and more absorption by high-ionization ions. In addition, we find that N of the UV ions decreases as their outflow velocity increases. This may be explained by a mechanical power that is evacuating the UV-absorbing medium. Our observed relations are consistent with multiphase AGN feeding and feedback simulations indicating that a combination of both radiative and mechanical processes are in play. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02961v1-abstract-full').style.display = 'none'; document.getElementById('2212.02961v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astronomy & Astrophysics (A&A), 22 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02960">arXiv:2212.02960</a> <span> [<a href="https://arxiv.org/pdf/2212.02960">pdf</a>, <a href="https://arxiv.org/format/2212.02960">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245036">10.1051/0004-6361/202245036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supermassive Black Hole Winds in X-rays -- SUBWAYS. I. Ultra-fast outflows in QSOs beyond the local Universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Matzeu%2C+G+A">G. A. Matzeu</a>, <a href="/search/astro-ph?searchtype=author&query=Brusa%2C+M">M. Brusa</a>, <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">G. Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">M. Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchi%2C+S">S. Bianchi</a>, <a href="/search/astro-ph?searchtype=author&query=Kriss%2C+G">G. Kriss</a>, <a href="/search/astro-ph?searchtype=author&query=Mehdipour%2C+M">M. Mehdipour</a>, <a href="/search/astro-ph?searchtype=author&query=Nardini%2C+E">E. Nardini</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Middei%2C+R">R. Middei</a>, <a href="/search/astro-ph?searchtype=author&query=Piconcelli%2C+E">E. Piconcelli</a>, <a href="/search/astro-ph?searchtype=author&query=Gianolli%2C+V">V. Gianolli</a>, <a href="/search/astro-ph?searchtype=author&query=Comastri%2C+A">A. Comastri</a>, <a href="/search/astro-ph?searchtype=author&query=Longinotti%2C+A+L">A. L. Longinotti</a>, <a href="/search/astro-ph?searchtype=author&query=Krongold%2C+Y">Y. Krongold</a>, <a href="/search/astro-ph?searchtype=author&query=Ricci%2C+F">F. Ricci</a>, <a href="/search/astro-ph?searchtype=author&query=Petrucci%2C+P+O">P. O. Petrucci</a>, <a href="/search/astro-ph?searchtype=author&query=Tombesi%2C+F">F. Tombesi</a>, <a href="/search/astro-ph?searchtype=author&query=Luminari%2C+A">A. Luminari</a>, <a href="/search/astro-ph?searchtype=author&query=Zappacosta%2C+L">L. Zappacosta</a>, <a href="/search/astro-ph?searchtype=author&query=Miniutti%2C+G">G. Miniutti</a>, <a href="/search/astro-ph?searchtype=author&query=Gaspari%2C+M">M. Gaspari</a>, <a href="/search/astro-ph?searchtype=author&query=Behar%2C+E">E. Behar</a>, <a href="/search/astro-ph?searchtype=author&query=Bischetti%2C+M">M. Bischetti</a>, <a href="/search/astro-ph?searchtype=author&query=Mathur%2C+S">S. Mathur</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02960v1-abstract-short" style="display: inline;"> We present a new X-ray spectroscopic study of $22$ luminous ($2\times10^{45}\lesssim L_{\rm bol}\rm /erg\,s^{-1} \lesssim 2\times10^{46}$) active galactic nuclei (AGNs) at intermediate-redshift ($0.1 \lesssim z \lesssim 0.4$), as part of the SUpermassive Black hole Winds in the x-rAYS (SUBWAYS) sample, mostly composed of quasars (QSOs) and type\,1 AGN. Here, 17 targets were observed with \textit{X… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02960v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02960v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02960v1-abstract-full" style="display: none;"> We present a new X-ray spectroscopic study of $22$ luminous ($2\times10^{45}\lesssim L_{\rm bol}\rm /erg\,s^{-1} \lesssim 2\times10^{46}$) active galactic nuclei (AGNs) at intermediate-redshift ($0.1 \lesssim z \lesssim 0.4$), as part of the SUpermassive Black hole Winds in the x-rAYS (SUBWAYS) sample, mostly composed of quasars (QSOs) and type\,1 AGN. Here, 17 targets were observed with \textit{XMM-Newton} between 2019--2020 and the remaining 5 are from previous observations. The aim of this large campaign ($1.45\,\rm Ms$ duration) is to characterise the various manifestations of winds in the X-rays driven from supermassive black holes in AGN. In this paper we focus on the search and characterization of ultra-fast outflows (UFOs), which are typically detected through blueshifted absorption troughs in the Fe\,K band ($E>7\,\rm keV$). By following Monte Carlo procedures, we confirm the detection of absorption lines corresponding to highly ionised iron (e.g., Fe\,\textsc{xxv}\,H$伪$, Fe\,\textsc{xxvi}\,Ly$伪$) in 7/22 sources at the $\gtrsim95\%$ confidence level (for each individual line). The global combined probability of such absorption features in the sample is $>99.9\%$. The SUBWAYS campaign extends at higher luminosity and redshifts than previous local studies on Seyferts, obtained using \xmm and \suzaku observations. We find a UFO detection fraction of $\sim30\%$ on the total sample that is in agreement with the previous findings. This work independently provides further support for the existence of highly-ionised matter propagating at mildly relativistic speed ($\gtrsim0.1c$) in a considerable fraction of AGN over a broad range of luminosities, which is expected to play a key role in the self-regulated AGN feeding-feedback cycle, as also supported by hydrodynamical multiphase simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02960v1-abstract-full').style.display = 'none'; document.getElementById('2212.02960v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 10 figures, accepted for publication in A&A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01113">arXiv:2205.01113</a> <span> [<a href="https://arxiv.org/pdf/2205.01113">pdf</a>, <a href="https://arxiv.org/format/2205.01113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202142642">10.1051/0004-6361/202142642 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The properties of the X-ray corona in the distant ($z=3.91$) quasar APM 08279+5255 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bertola%2C+E">E. Bertola</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">G. Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">M. Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">M. Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Gilli%2C+R">R. Gilli</a>, <a href="/search/astro-ph?searchtype=author&query=Matzeu%2C+G+A">G. A. Matzeu</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Piconcelli%2C+E">E. Piconcelli</a>, <a href="/search/astro-ph?searchtype=author&query=Comastri%2C+A">A. Comastri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01113v1-abstract-short" style="display: inline;"> We present new joint XMM-Newton and NuSTAR observations of APM 08279+5255, a gravitationally-lensed, broad-absorption line quasar ($z=3.91$). After showing a fairly stable flux ($f_{\rm2-10}\simeq4-5.5\times10^{-13}\rm~erg~s^{-1}$) from 2000 to 2008, APM 08279+5255 was found in a fainter state in the latest X-ray exposures ($f_{\rm2-10}\simeq2.7\times10^{-13}\rm~erg~s^{-1}$), which can likely be a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01113v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01113v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01113v1-abstract-full" style="display: none;"> We present new joint XMM-Newton and NuSTAR observations of APM 08279+5255, a gravitationally-lensed, broad-absorption line quasar ($z=3.91$). After showing a fairly stable flux ($f_{\rm2-10}\simeq4-5.5\times10^{-13}\rm~erg~s^{-1}$) from 2000 to 2008, APM 08279+5255 was found in a fainter state in the latest X-ray exposures ($f_{\rm2-10}\simeq2.7\times10^{-13}\rm~erg~s^{-1}$), which can likely be ascribed to a lower X-ray activity. Moreover, the 2019 data present a prominent Fe K$伪$ emission line and do not show any significant absorption line. This fainter state, coupled to the first hard X-ray sampling of APM 08279+5255, allowed us to measure X-ray reflection and the high-energy cutoff in this source for the first time. From the analysis of previous XMM-Newton and Chandra observations, X-ray reflection is demonstrated to be a long-lasting feature of this source, but less prominent prior to 2008, possibly due to a stronger primary emission. The estimated high-energy cutoff ($E_{\rm cut}=99_{-35}^{+91}$ keV) sets a new redshift record for the farthest ever measured and places APM 08279+5255 in the allowed region of the compactness-temperature diagram of X-ray coronae, in agreement with previous results on high-$z$ quasars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01113v1-abstract-full').style.display = 'none'; document.getElementById('2205.01113v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&A. 14 pages, 4 figures, 6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 662, A98 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10785">arXiv:2112.10785</a> <span> [<a href="https://arxiv.org/pdf/2112.10785">pdf</a>, <a href="https://arxiv.org/format/2112.10785">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac45f2">10.3847/2041-8213/ac45f2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep XMM-Newton Observations of an X-ray Weak, Broad Absorption Line Quasar at $z=6.5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Yang%2C+J">Jinyi Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Fan%2C+X">Xiaohui Fan</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+F">Feige Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">Giorgio Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Nanni%2C+R">Riccardo Nanni</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">Massimo Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">Mauro Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Decarli%2C+R">Roberto Decarli</a>, <a href="/search/astro-ph?searchtype=author&query=Jin%2C+X">Xiangyu Jin</a>, <a href="/search/astro-ph?searchtype=author&query=Keeton%2C+C+R">Charles R. Keeton</a>, <a href="/search/astro-ph?searchtype=author&query=Venemans%2C+B+P">Bram P. Venemans</a>, <a href="/search/astro-ph?searchtype=author&query=Walter%2C+F">Fabian Walter</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+R">Ran Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Wu%2C+X">Xue-Bing Wu</a>, <a href="/search/astro-ph?searchtype=author&query=Yue%2C+M">Minghao Yue</a>, <a href="/search/astro-ph?searchtype=author&query=Zabludoff%2C+A">Ann Zabludoff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10785v1-abstract-short" style="display: inline;"> We report X-ray observations of the most distant known gravitationally lensed quasar, J0439+1634 at $z=6.52$, which is also a broad absorption line (BAL) quasar, using the XMM-Newton Observatory. With a 130 ks exposure, the quasar is significantly detected as a point source at the optical position with a total of 358$^{+19}_{-19}$ net counts using the EPIC instrument. By fitting a power-law plus G… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10785v1-abstract-full').style.display = 'inline'; document.getElementById('2112.10785v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10785v1-abstract-full" style="display: none;"> We report X-ray observations of the most distant known gravitationally lensed quasar, J0439+1634 at $z=6.52$, which is also a broad absorption line (BAL) quasar, using the XMM-Newton Observatory. With a 130 ks exposure, the quasar is significantly detected as a point source at the optical position with a total of 358$^{+19}_{-19}$ net counts using the EPIC instrument. By fitting a power-law plus Galactic absorption model to the observed spectra, we obtain a spectral slope of $螕=1.45^{+0.10}_{-0.09}$. The derived optical-to-X-ray spectral slope $伪_{\rm{ox}}$ is $-2.07^{+0.01}_{-0.01}$, suggesting that the X-ray emission of J0439+1634 is weaker by a factor of 18 than the expectation based on its 2500 Angstrom luminosity and the average $伪_{\rm{ox}}$ vs. luminosity relationship. This is the first time that an X-ray weak BAL quasar at $z>6$ has been observed spectroscopically. Its X-ray weakness is consistent with the properties of BAL quasars at lower redshift. By fitting a model including an intrinsic absorption component, we obtain intrinsic column densities of $N_{\rm{H}}=2.8^{+0.7}_{-0.6}\times10^{23}\,\rm{cm}^{-2}$ and $N_{\rm{H}}= 4.3^{+1.8}_{-1.5}\times10^{23}\,\rm{cm}^{-2}$, assuming a fixed $螕$ of 1.9 and a free $螕$, respectively. The intrinsic rest-frame 2--10 keV luminosity is derived as $(9.4-15.1)\times10^{43}\,\rm{erg\,s}^{-1}$, after correcting for lensing magnification ($渭=51.3$). The absorbed power-law model fitting indicates that J0439+1634 is the highest redshift obscured quasar with a direct measurement of the absorbing column density. The intrinsic high column density absorption can reduce the X-ray luminosity by a factor of $3-7$, which also indicates that this quasar could be a candidate of intrinsically X-ray weak quasar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10785v1-abstract-full').style.display = 'none'; document.getElementById('2112.10785v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, 1 table; Accepted for publication in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14907">arXiv:2106.14907</a> <span> [<a href="https://arxiv.org/pdf/2106.14907">pdf</a>, <a href="https://arxiv.org/ps/2106.14907">ps</a>, <a href="https://arxiv.org/format/2106.14907">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac0ef2">10.3847/1538-4357/ac0ef2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiphase Powerful Outflows Detected in High-z Quasars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">Massimo Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">Cristian Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">Mauro Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=James%2C+V">Vincent James</a>, <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">Giorgio Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Giustini%2C+M">Margherita Giustini</a>, <a href="/search/astro-ph?searchtype=author&query=Gaspari%2C+M">Massimo Gaspari</a>, <a href="/search/astro-ph?searchtype=author&query=Strickland%2C+S">Sarah Strickland</a>, <a href="/search/astro-ph?searchtype=author&query=Bertola%2C+E">Elena Bertola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14907v1-abstract-short" style="display: inline;"> We present results from a comprehensive study of ultrafast outflows (UFOs) detected in a sample of fourteen quasars, twelve of which are gravitationally lensed, in a redshift range of 1.41-3.91, near the peak of the AGN and star formation activity. New XMM-Newton observations are presented for six of them which were selected to be lensed and contain a narrow absorption line (NAL) in their UV spect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14907v1-abstract-full').style.display = 'inline'; document.getElementById('2106.14907v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14907v1-abstract-full" style="display: none;"> We present results from a comprehensive study of ultrafast outflows (UFOs) detected in a sample of fourteen quasars, twelve of which are gravitationally lensed, in a redshift range of 1.41-3.91, near the peak of the AGN and star formation activity. New XMM-Newton observations are presented for six of them which were selected to be lensed and contain a narrow absorption line (NAL) in their UV spectra. Another lensed quasar was added to the sample, albeit already studied, because it was not searched for UFOs. The remaining seven quasars of our sample are known to contain UFOs. The main goals of our study are to infer the outflow properties of high-z quasars, constrain their outflow induced feedback, study the relationship between the outflow properties and the properties of the ionizing source, and compare these results to those of nearby AGN. Our study adds six new detections ( > 99% confidence) of UFOs at z > 1.4, almost doubling the current number of cases. Based on our survey of six quasars selected to contain a NAL and observed with XMM-Newton, the coexistence of intrinsic UV NALs and UFOs is found to be significant in > 83% of these quasars suggesting a link between multiphase AGN feedback properties of the meso- and micro-scale. The kinematic luminosities of the UFOs of our high-z sample are large compared to their bolometric luminosities (median of L_K/L_Bol ~ 50%). This suggests they provide efficient feedback to influence the evolution of their host galaxies and that magnetic driving may be a significant contributor to their acceleration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14907v1-abstract-full').style.display = 'none'; document.getElementById('2106.14907v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, includes 11 figures, accepted for publication in The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.06567">arXiv:2106.06567</a> <span> [<a href="https://arxiv.org/pdf/2106.06567">pdf</a>, <a href="https://arxiv.org/ps/2106.06567">ps</a>, <a href="https://arxiv.org/format/2106.06567">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1706">10.1093/mnras/stab1706 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The X-Rays wind connection in PG 2112+059 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Saez%2C+C">C. Saez</a>, <a href="/search/astro-ph?searchtype=author&query=Brandt%2C+W+N">W. N. Brandt</a>, <a href="/search/astro-ph?searchtype=author&query=Bauer%2C+F">F. Bauer</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Misawa%2C+T">T. Misawa</a>, <a href="/search/astro-ph?searchtype=author&query=Hamann%2C+F">F. Hamann</a>, <a href="/search/astro-ph?searchtype=author&query=Gallagher%2C+S">S. Gallagher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.06567v2-abstract-short" style="display: inline;"> We study the connection between the X-ray and UV properties of the broad absorption line (BAL) wind in the highly X-ray variable quasar PG 2112+059 by comparing Chandra-ACIS data with contemporaneous UV HST/STIS spectra in three different epochs. We observe a correlation whereby an increase in the equivalent-widths (EWs) of the BALs is accompanied by a redder UV spectrum. The growth in the BALs EW… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06567v2-abstract-full').style.display = 'inline'; document.getElementById('2106.06567v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.06567v2-abstract-full" style="display: none;"> We study the connection between the X-ray and UV properties of the broad absorption line (BAL) wind in the highly X-ray variable quasar PG 2112+059 by comparing Chandra-ACIS data with contemporaneous UV HST/STIS spectra in three different epochs. We observe a correlation whereby an increase in the equivalent-widths (EWs) of the BALs is accompanied by a redder UV spectrum. The growth in the BALs EWs is also accompanied by a significant dimming in soft X-ray emission (<2 keV), consistent with increased absorption. Variations in the hard X-ray emission (>2 keV) are only accompanied by minor spectral variations of the UV-BALs and do not show significant changes in the EW of BALs. These trends suggest a wind-shield scenario where the outflow inclination with respect to the line of sight is decreasing and/or the wind mass is increasing. These changes elevate the covering fraction and/or column densities of the BALs and are likely accompanied by a nearly contemporaneous increase in the column density of the shield. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06567v2-abstract-full').style.display = 'none'; document.getElementById('2106.06567v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures, accepted in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07789">arXiv:2102.07789</a> <span> [<a href="https://arxiv.org/pdf/2102.07789">pdf</a>, <a href="https://arxiv.org/format/2102.07789">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202040190">10.1051/0004-6361/202040190 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Connecting X-ray nuclear winds with galaxy-scale ionised outflows in two $z\sim1.5$ lensed quasars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Tozzi%2C+G">G. Tozzi</a>, <a href="/search/astro-ph?searchtype=author&query=Cresci%2C+G">G. Cresci</a>, <a href="/search/astro-ph?searchtype=author&query=Marasco%2C+A">A. Marasco</a>, <a href="/search/astro-ph?searchtype=author&query=Nardini%2C+E">E. Nardini</a>, <a href="/search/astro-ph?searchtype=author&query=Marconi%2C+A">A. Marconi</a>, <a href="/search/astro-ph?searchtype=author&query=Mannucci%2C+F">F. Mannucci</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Rizzo%2C+F">F. Rizzo</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+A">A. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Brusa%2C+M">M. Brusa</a>, <a href="/search/astro-ph?searchtype=author&query=Comastri%2C+A">A. Comastri</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">M. Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">G. Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Mainieri%2C+V">V. Mainieri</a>, <a href="/search/astro-ph?searchtype=author&query=Mingozzi%2C+M">M. Mingozzi</a>, <a href="/search/astro-ph?searchtype=author&query=Perna%2C+M">M. Perna</a>, <a href="/search/astro-ph?searchtype=author&query=Venturi%2C+G">G. Venturi</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">C. Vignali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07789v2-abstract-short" style="display: inline;"> Outflows driven by active galactic nuclei (AGN) are expected to have a significant impact on the host galaxy evolution, but it is still debated how they are accelerated and propagate on galaxy-wide scales. This work addresses these questions by studying the link between X-ray, nuclear ultra-fast outflows (UFOs) and extended ionised outflows, for the first time in two quasars close to the peak of A… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07789v2-abstract-full').style.display = 'inline'; document.getElementById('2102.07789v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07789v2-abstract-full" style="display: none;"> Outflows driven by active galactic nuclei (AGN) are expected to have a significant impact on the host galaxy evolution, but it is still debated how they are accelerated and propagate on galaxy-wide scales. This work addresses these questions by studying the link between X-ray, nuclear ultra-fast outflows (UFOs) and extended ionised outflows, for the first time in two quasars close to the peak of AGN activity ($z\sim2$), where AGN feedback is expected to be more effective. As targets, we selected two multiple-lensed quasars at $z\sim1.5$, HS 0810+2554 and SDSS J1353+1138, known to host UFOs and observed with the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematical analysis of the [O III]$位$5007 optical emission line, in order to trace the presence of ionised outflows. We detected spatially resolved ionised outflows in both galaxies, extended more than 8 kpc and moving up to $v>2000$ km/s. We derived mass outflow rates of $\sim$12 M$_{sun}$/yr and $\sim$2 M$_{sun}$/yr for HS 0810+2554 and SDSS J1353+1138. Comparing with the co-hosted UFO energetics, the ionised outflow energetics in HS 0810+2554 is broadly consistent with a momentum-driven regime of wind propagation, while in SDSS J1353+1138 it differs by a factor of $\sim$100 from theoretical predictions, requiring either a massive molecular outflow or a high variability of the AGN activity to account for such a discrepancy. By additionally considering our results with those from the small sample of well-studied objects (all local but one), with both UFO and extended (ionised/atomic/molecular) outflow detections, we found that in 10 out of 12 galaxies the large-scale outflow energetics is consistent with the theoretical predictions of either a momentum- or an energy-driven scenario. This suggests that such models explain relatively well the acceleration mechanism of AGN-driven winds on large scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07789v2-abstract-full').style.display = 'none'; document.getElementById('2102.07789v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures. Accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 648, A99 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.13967">arXiv:2005.13967</a> <span> [<a href="https://arxiv.org/pdf/2005.13967">pdf</a>, <a href="https://arxiv.org/format/2005.13967">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa1534">10.1093/mnras/staa1534 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linking the small scale relativistic winds and the large scale molecular outflows in the z = 1.51 lensed quasar HS 0810+2554 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Davidson%2C+E">Eric Davidson</a>, <a href="/search/astro-ph?searchtype=author&query=Brusa%2C+M">Marcella Brusa</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">Cristian Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">Massimo Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">Mauro Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Cresci%2C+G">Giovanni Cresci</a>, <a href="/search/astro-ph?searchtype=author&query=Paladino%2C+R">Rosita Paladino</a>, <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">Giorgio Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Comastri%2C+A">Andrea Comastri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.13967v1-abstract-short" style="display: inline;"> We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the quadruply lensed z=1.51 quasar HS 0810+2554 which provide useful insight on the kinematics and morphology of the CO molecular gas and the ~2 mm continuum emission in the quasar host galaxy. Lens modeling of the mm-continuum and the spectrally integrated CO(3-2) images indicates that the source of the mm-continuum ha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13967v1-abstract-full').style.display = 'inline'; document.getElementById('2005.13967v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.13967v1-abstract-full" style="display: none;"> We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the quadruply lensed z=1.51 quasar HS 0810+2554 which provide useful insight on the kinematics and morphology of the CO molecular gas and the ~2 mm continuum emission in the quasar host galaxy. Lens modeling of the mm-continuum and the spectrally integrated CO(3-2) images indicates that the source of the mm-continuum has an eccentricity of e~0.9 with a size of ~1.6 kpc and the source of line emission has an eccentricity of e~0.7 with a size of ~1 kpc. The spatially integrated emission of the CO(2-1) and CO(3-2) lines shows a triple peak structure with the outer peaks separated by Dv_21 = 220 +\- 19 km s^-1 and Dv_32 = 245 +/- 28 km s^-1, respectively, suggesting the presence of rotating molecular CO line emitting gas. Lensing inversion of the high spatial resolution images confirms the presence of rotation of the line emitting gas. Assuming a conversion factor of alpha_CO = 0.8 M_solar (K km s^-1 pc^2)^-1 we find the molecular gas mass of HS 0810+2554 to be M _ Mol = [(5.2 +/- 1.5)/mu_32] x10^10 M_solar, where mu_32 is the magnification of the CO(3-2) emission. We report the possible detection, at the 3.0 - 4.7 sigma confidence level, of shifted CO(3-2) emission lines of high-velocity clumps of CO emission with velocities up to 1702 km s^-1. We find that the momentum boost of the large scale molecular wind is below the value predicted for an energy-conserving outflow given the momentum flux observed in the small scale ultrafast outflow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13967v1-abstract-full').style.display = 'none'; document.getElementById('2005.13967v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, includes 15 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.13054">arXiv:2004.13054</a> <span> [<a href="https://arxiv.org/pdf/2004.13054">pdf</a>, <a href="https://arxiv.org/format/2004.13054">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202037742">10.1051/0004-6361/202037742 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-raying winds in distant quasars: the first high-redshift wind duty cycle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bertola%2C+E">E. Bertola</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">M. Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">M. Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=De+Marco%2C+B">B. De Marco</a>, <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">G. Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Giustini%2C+M">M. Giustini</a>, <a href="/search/astro-ph?searchtype=author&query=Torresi%2C+E">E. Torresi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.13054v1-abstract-short" style="display: inline;"> Theoretical models of wind-driven feedback from Active Galactic Nuclei (AGN) often identify Ultra-fast outflows (UFOs) as being the main cause for generating galaxy-size outflows, possibly the main actors in establishing the so-called AGN-galaxy co-evolution. UFOs are well characterized in local AGN but much less is known in quasars at the cosmic time when SF and AGN activity peaked ($z\simeq1-3$)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13054v1-abstract-full').style.display = 'inline'; document.getElementById('2004.13054v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.13054v1-abstract-full" style="display: none;"> Theoretical models of wind-driven feedback from Active Galactic Nuclei (AGN) often identify Ultra-fast outflows (UFOs) as being the main cause for generating galaxy-size outflows, possibly the main actors in establishing the so-called AGN-galaxy co-evolution. UFOs are well characterized in local AGN but much less is known in quasars at the cosmic time when SF and AGN activity peaked ($z\simeq1-3$). It is therefore mandatory to search for evidences of UFOs in high-$z$ sources to test the wind-driven AGN feedback models. Here we present a study of Q2237+030, the Einstein Cross, a quadruply-imaged radio-quiet lensed quasar located at $z=1.695$. We performed a systematic and comprehensive temporally and spatially resolved X-ray spectral analysis of all the available Chandra and XMM-Newton data (as of September 2019). We find clear evidence for spectral variability, possibly due to absorption column density (or covering fraction) variability intrinsic to the source. We detect, for the first time in this quasar, a fast X-ray wind outflowing at $v_{\rm out}\simeq0.1c$ that would be powerful enough ($\dot{E}_{\rm kin}\simeq0.1 L_{\rm bol}$) to significantly affect the host galaxy evolution. We report also on the possible presence of an even faster component of the wind ($v_{\rm out}\sim0.5c$). Given the large sample and long time interval spanned by the analyzed X-ray data, we are able to roughly estimate, for the first time in a high-$z$ quasar, the wind duty cycle as $\approx0.46\,(0.31)$ at $90\%\,(95\%)$ confidence level. Finally, we also confirm the presence of a Fe K$伪$ emission line with variable energy, which we discuss in the light of microlensing effects as well as considering our findings on the source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13054v1-abstract-full').style.display = 'none'; document.getElementById('2004.13054v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, 7 tables, Accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 638, A136 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.12439">arXiv:2004.12439</a> <span> [<a href="https://arxiv.org/pdf/2004.12439">pdf</a>, <a href="https://arxiv.org/ps/2004.12439">ps</a>, <a href="https://arxiv.org/format/2004.12439">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab8cc4">10.3847/1538-4357/ab8cc4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resolving the soft X-ray ultra fast outflow in PDS 456 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Reeves%2C+J">James Reeves</a>, <a href="/search/astro-ph?searchtype=author&query=Braito%2C+V">Valentina Braito</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Hamann%2C+F">Fred Hamann</a>, <a href="/search/astro-ph?searchtype=author&query=Laha%2C+S">Sibasish Laha</a>, <a href="/search/astro-ph?searchtype=author&query=Nardini%2C+E">Emanuele Nardini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.12439v1-abstract-short" style="display: inline;"> Past X-ray observations of the nearby luminous quasar PDS 456 (at $z=0.184$) have revealed a wide angle accretion disk wind (Nardini et al. 2015), with an outflow velocity of $\sim-0.25c$, as observed through observations of its blue-shifted iron K-shell absorption line profile. Here we present three new XMM-Newton observations of PDS 456; one in September 2018 where the quasar was bright and feat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.12439v1-abstract-full').style.display = 'inline'; document.getElementById('2004.12439v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.12439v1-abstract-full" style="display: none;"> Past X-ray observations of the nearby luminous quasar PDS 456 (at $z=0.184$) have revealed a wide angle accretion disk wind (Nardini et al. 2015), with an outflow velocity of $\sim-0.25c$, as observed through observations of its blue-shifted iron K-shell absorption line profile. Here we present three new XMM-Newton observations of PDS 456; one in September 2018 where the quasar was bright and featureless, and two in September 2019, 22 days apart, occurring when the quasar was five times fainter and where strong blue-shifted lines from the wind were present. During the second September 2019 observation, three broad ($蟽=3000$ km s$^{-1}$) absorption lines were resolved in the high resolution RGS spectrum, which are identified with blue-shifted OVIII Ly$伪$, NeIX He$伪$ and NeX Ly$伪$. The outflow velocity of this soft X-ray absorber was found to be $v/c=-0.258\pm0.003$, fully consistent with iron K absorber with $v/c=-0.261\pm0.007$. The ionization parameter and column density of the soft X-ray component ($\log尉=3.4$, $N_{\rm H}=2\times10^{21}$ cm$^{-2}$) outflow was lower by about two orders of magnitude, when compared to the high ionization wind at iron K ($\log尉=5$, $N_{\rm H}=7\times10^{23}$ cm$^{-2}$). Substantial variability was seen in the soft X-ray absorber between the 2019 observations, declining from $N_{\rm H}=10^{23}$ cm$^{-2}$ to $N_{\rm H}=10^{21}$ cm$^{-2}$ over 20 days, while the iron K component was remarkably stable. We conclude that the soft X-ray wind may originate from an inhomogeneous wind streamline passing across the line of sight and which due to its lower ionization, is located further from the black hole, on parsec scales, than the innermost disk wind. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.12439v1-abstract-full').style.display = 'none'; document.getElementById('2004.12439v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, accepted for publication in the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.12968">arXiv:1904.12968</a> <span> [<a href="https://arxiv.org/pdf/1904.12968">pdf</a>, <a href="https://arxiv.org/format/1904.12968">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The Most Powerful Lenses in the Universe: Quasar Microlensing as a Probe of the Lensing Galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pooley%2C+D">David Pooley</a>, <a href="/search/astro-ph?searchtype=author&query=Anguita%2C+T">Timo Anguita</a>, <a href="/search/astro-ph?searchtype=author&query=Bhatiani%2C+S">Saloni Bhatiani</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Cornachione%2C+M">Matthew Cornachione</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">Xinyu Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Fian%2C+C">Carina Fian</a>, <a href="/search/astro-ph?searchtype=author&query=Mediavilla%2C+E">Evencio Mediavilla</a>, <a href="/search/astro-ph?searchtype=author&query=Morgan%2C+C">Christopher Morgan</a>, <a href="/search/astro-ph?searchtype=author&query=Motta%2C+V">Ver贸nica Motta</a>, <a href="/search/astro-ph?searchtype=author&query=Moustakas%2C+L+A">Leonidas A. Moustakas</a>, <a href="/search/astro-ph?searchtype=author&query=Mukherjee%2C+S">Sampath Mukherjee</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Dowd%2C+M+J">Matthew J. O'Dowd</a>, <a href="/search/astro-ph?searchtype=author&query=Rojas%2C+K">Karina Rojas</a>, <a href="/search/astro-ph?searchtype=author&query=Sluse%2C+D">Dominique Sluse</a>, <a href="/search/astro-ph?searchtype=author&query=Vernardos%2C+G">Georgios Vernardos</a>, <a href="/search/astro-ph?searchtype=author&query=Webster%2C+R">Rachel Webster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.12968v1-abstract-short" style="display: inline;"> Optical and X-ray observations of strongly gravitationally lensed quasars (especially when four separate images of the quasar are produced) determine not only the amount of matter in the lensing galaxy but also how much is in a smooth component and how much is composed of compact masses (e.g., stars, stellar remnants, primordial black holes, CDM sub-halos, and planets). Future optical surveys will… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12968v1-abstract-full').style.display = 'inline'; document.getElementById('1904.12968v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.12968v1-abstract-full" style="display: none;"> Optical and X-ray observations of strongly gravitationally lensed quasars (especially when four separate images of the quasar are produced) determine not only the amount of matter in the lensing galaxy but also how much is in a smooth component and how much is composed of compact masses (e.g., stars, stellar remnants, primordial black holes, CDM sub-halos, and planets). Future optical surveys will discover hundreds to thousands of quadruply lensed quasars, and sensitive X-ray observations will unambiguously determine the ratio of smooth to clumpy matter at specific locations in the lensing galaxies and calibrate the stellar mass fundamental plane, providing a determination of the stellar $M/L$. A modest observing program with a sensitive, sub-arcsecond X-ray imager, combined with the planned optical observations, can make those determinations for a large number (hundreds) of the lensing galaxies, which will span a redshift range of $\sim$$0.25<z<1.5$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12968v1-abstract-full').style.display = 'none'; document.getElementById('1904.12968v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Astro2020 Science White Paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.12967">arXiv:1904.12967</a> <span> [<a href="https://arxiv.org/pdf/1904.12967">pdf</a>, <a href="https://arxiv.org/ps/1904.12967">ps</a>, <a href="https://arxiv.org/format/1904.12967">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Astro2020 Science White Paper - Quasar Microlensing: Revolutionizing our Understanding of Quasar Structure and Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Moustakas%2C+L">Leonidas Moustakas</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Dowd%2C+M">Matthew O'Dowd</a>, <a href="/search/astro-ph?searchtype=author&query=Anguita%2C+T">Timo Anguita</a>, <a href="/search/astro-ph?searchtype=author&query=Webster%2C+R">Rachel Webster</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Cornachione%2C+M">Matthew Cornachione</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">Xinyu Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Fian%2C+C">Carina Fian</a>, <a href="/search/astro-ph?searchtype=author&query=Hutsemekers%2C+D">Damien Hutsemekers</a>, <a href="/search/astro-ph?searchtype=author&query=Jimenez-Vicente%2C+J">Jorge Jimenez-Vicente</a>, <a href="/search/astro-ph?searchtype=author&query=Labrie%2C+K">Kathleen Labrie</a>, <a href="/search/astro-ph?searchtype=author&query=Lewis%2C+G">Geraint Lewis</a>, <a href="/search/astro-ph?searchtype=author&query=Macleod%2C+C">Chelsea Macleod</a>, <a href="/search/astro-ph?searchtype=author&query=Mediavilla%2C+E">Evencio Mediavilla</a>, <a href="/search/astro-ph?searchtype=author&query=Morgan%2C+C+W">Christopher W Morgan</a>, <a href="/search/astro-ph?searchtype=author&query=Motta%2C+V">Veronica Motta</a>, <a href="/search/astro-ph?searchtype=author&query=Nierenberg%2C+A">Anna Nierenberg</a>, <a href="/search/astro-ph?searchtype=author&query=Pooley%2C+D">David Pooley</a>, <a href="/search/astro-ph?searchtype=author&query=Rojas%2C+K">Karina Rojas</a>, <a href="/search/astro-ph?searchtype=author&query=Sluse%2C+D">Dominique Sluse</a>, <a href="/search/astro-ph?searchtype=author&query=Vernardos%2C+G">Georgios Vernardos</a>, <a href="/search/astro-ph?searchtype=author&query=Wambsganss%2C+J">Joachim Wambsganss</a>, <a href="/search/astro-ph?searchtype=author&query=Yong%2C+S+Y">Suk Yee Yong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.12967v1-abstract-short" style="display: inline;"> Microlensing by stars within distant galaxies acting as strong gravitational lenses of multiply-imaged quasars, provides a unique and direct measurement of the internal structure of the lensed quasar on nano-arcsecond scales. The measurement relies on the temporal variation of high-magnification caustic crossings which vary on timescales of days to years. Multiwavelength observations provide infor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12967v1-abstract-full').style.display = 'inline'; document.getElementById('1904.12967v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.12967v1-abstract-full" style="display: none;"> Microlensing by stars within distant galaxies acting as strong gravitational lenses of multiply-imaged quasars, provides a unique and direct measurement of the internal structure of the lensed quasar on nano-arcsecond scales. The measurement relies on the temporal variation of high-magnification caustic crossings which vary on timescales of days to years. Multiwavelength observations provide information from distinct emission regions in the quasar. Through monitoring of these strong gravitational lenses, a full tomographic view can emerge with Astronomical-Unit scale resolution. Work to date has demonstrated the potential of this technique in about a dozen systems. In the 2020s there will be orders of magnitude more systems to work with. Monitoring of lens systems for caustic-crossing events to enable triggering of multi-platform, multi-wavelength observations in the 2020s will fulfill the potential of quasar microlensing as a unique and comprehensive probe of active black hole structure and dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12967v1-abstract-full').style.display = 'none'; document.getElementById('1904.12967v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">White paper submitted to Astro2020 decadal survey; 7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.04784">arXiv:1904.04784</a> <span> [<a href="https://arxiv.org/pdf/1904.04784">pdf</a>, <a href="https://arxiv.org/format/1904.04784">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ab15dc">10.3847/2041-8213/ab15dc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nustar Measurement Of Coronal Temperature In Two Luminous, High Redshift Qsos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">G. Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Gilli%2C+R">R. Gilli</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">M. Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">M. Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchi%2C+S">S. Bianchi</a>, <a href="/search/astro-ph?searchtype=author&query=Brusa%2C+M">M. Brusa</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Civano%2C+F">F. Civano</a>, <a href="/search/astro-ph?searchtype=author&query=Comastri%2C+A">A. Comastri</a>, <a href="/search/astro-ph?searchtype=author&query=Marinucci%2C+A">A. Marinucci</a>, <a href="/search/astro-ph?searchtype=author&query=Middei%2C+R">R. Middei</a>, <a href="/search/astro-ph?searchtype=author&query=Piconcelli%2C+E">E. Piconcelli</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Brandt%2C+W+N">W. N. Brandt</a>, <a href="/search/astro-ph?searchtype=author&query=Tombesi%2C+F">F. Tombesi</a>, <a href="/search/astro-ph?searchtype=author&query=Gaspari%2C+M">M. Gaspari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.04784v1-abstract-short" style="display: inline;"> X-ray emission from AGN is believed to be produced via Comptonization of optical/UV seed photons emitted by the accretion disk, up-scattered by hot electrons in a corona surrounding the black hole. A critical compactness vs. temperature threshold is predicted above which any increase in the source luminosity, for a fixed size, would then generate positron-electron pairs rather than continue heatin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.04784v1-abstract-full').style.display = 'inline'; document.getElementById('1904.04784v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.04784v1-abstract-full" style="display: none;"> X-ray emission from AGN is believed to be produced via Comptonization of optical/UV seed photons emitted by the accretion disk, up-scattered by hot electrons in a corona surrounding the black hole. A critical compactness vs. temperature threshold is predicted above which any increase in the source luminosity, for a fixed size, would then generate positron-electron pairs rather than continue heating the coronal plasma. Current observations seem to confirm that all AGN populate the region below this critical line. These models, however, have never been probed by observations in the high-luminosity regime, where the critical line is expected to reach low temperatures. To fill this observational gap, we selected two luminous ($log(L_{bol})>47.5$ erg/s) quasars, 2MASSJ1614346+470420 ($z=1.86$) and B1422+231 ($z=3.62$), and obtained XMM-Newton and NuSTAR deep observations for them. We performed detailed spectral analysis of their quasi-simultaneous soft and hard X-ray data, in order to constrain the parameters of their coronae. Using a phenomenological cut-off power-law model, with the inclusion of a reflection component, we derived rest-frame values of the high energy cut-off of $E_{cut}=106^{+102}_{-37}$ keV and $E_{cut}=66^{+17}_{-12}$ keV, respectively. Comptonization models consistently give as best-fit parameters electron temperatures of $\sim45$ keV and $\sim28$ keV, respectively, and optically thick coronae ($蟿>1$). These low coronal temperatures fall in the limited region allowed at these luminosities to avoid runaway pair production. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.04784v1-abstract-full').style.display = 'none'; document.getElementById('1904.04784v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures, accepted for publication in ApJ Letter</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.02018">arXiv:1904.02018</a> <span> [<a href="https://arxiv.org/pdf/1904.02018">pdf</a>, <a href="https://arxiv.org/ps/1904.02018">ps</a>, <a href="https://arxiv.org/format/1904.02018">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Astro2020 Science White Paper: A New Era for X-ray Lensing Studies of Quasars and Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Krawczynski%2C+H">Henric Krawczynski</a>, <a href="/search/astro-ph?searchtype=author&query=Pooley%2C+D">David Pooley</a>, <a href="/search/astro-ph?searchtype=author&query=Mushotzky%2C+R+F">Richard F. Mushotzky</a>, <a href="/search/astro-ph?searchtype=author&query=Ptak%2C+A+J">Andrew J. Ptak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.02018v1-abstract-short" style="display: inline;"> Current X-ray observations and simulations show that gravitational lensing can be used to infer the structure near the event horizons of black holes, constrain the dynamics and evolution of black-hole accretion and outflows, test general relativity in the strong-gravity regime and place constraints on the evolution of dark matter in the lensing galaxies. These science goals currently cannot be ach… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02018v1-abstract-full').style.display = 'inline'; document.getElementById('1904.02018v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.02018v1-abstract-full" style="display: none;"> Current X-ray observations and simulations show that gravitational lensing can be used to infer the structure near the event horizons of black holes, constrain the dynamics and evolution of black-hole accretion and outflows, test general relativity in the strong-gravity regime and place constraints on the evolution of dark matter in the lensing galaxies. These science goals currently cannot be achieved in a statistically large sample of z = 0.5 - 5 lensed quasars due to the limited capabilities of current X-ray telescopes and the relatively low number (~200) of known lensed quasars. The latter limitation will be resolved with the multi-band and wide-field photometric optical survey of LSST that is expected to lead to the discovery of > 4,000 additional gravitationally lensed systems. As we show in this white paper, these science goals can be reached with an X-ray telescope having a spatial resolution of <0.5arcsec to resolve the lensed images and a collecting area of >0.5 m^2 at 1 keV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02018v1-abstract-full').style.display = 'none'; document.getElementById('1904.02018v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the Astro2020 Decadal Survey call for science white papers on Astronomy and Astrophysics, 7 pages, includes 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.07664">arXiv:1903.07664</a> <span> [<a href="https://arxiv.org/pdf/1903.07664">pdf</a>, <a href="https://arxiv.org/ps/1903.07664">ps</a>, <a href="https://arxiv.org/format/1903.07664">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Astro2020 Science White Paper: Do Supermassive Black Hole Winds Impact Galaxy Evolution? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Tombesi%2C+F">F. Tombesi</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">M. Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Carrera%2C+F">F. Carrera</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Fukumura%2C+K">K. Fukumura</a>, <a href="/search/astro-ph?searchtype=author&query=Guainazzi%2C+M">M. Guainazzi</a>, <a href="/search/astro-ph?searchtype=author&query=Kazanas%2C+D">D. Kazanas</a>, <a href="/search/astro-ph?searchtype=author&query=Kriss%2C+G">G. Kriss</a>, <a href="/search/astro-ph?searchtype=author&query=Proga%2C+D">D. Proga</a>, <a href="/search/astro-ph?searchtype=author&query=Turner%2C+T+J">T. J. Turner</a>, <a href="/search/astro-ph?searchtype=author&query=Ueda%2C+Y">Y. Ueda</a>, <a href="/search/astro-ph?searchtype=author&query=Veilleux%2C+S">S. Veilleux</a>, <a href="/search/astro-ph?searchtype=author&query=Brusa%2C+M">M. Brusa</a>, <a href="/search/astro-ph?searchtype=author&query=Gaspari%2C+M">M. Gaspari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.07664v1-abstract-short" style="display: inline;"> Powerful winds driven by supermassive black holes (SMBHs) are likely the main mechanism through which SMBHs regulate their own growth and influence the host galaxy evolution. However, their origin and their capability to impact the large-scale environment are still highly debated. Fundamental results will come from high-energy and spatial resolution X-ray observatories. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.07664v1-abstract-full" style="display: none;"> Powerful winds driven by supermassive black holes (SMBHs) are likely the main mechanism through which SMBHs regulate their own growth and influence the host galaxy evolution. However, their origin and their capability to impact the large-scale environment are still highly debated. Fundamental results will come from high-energy and spatial resolution X-ray observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.07664v1-abstract-full').style.display = 'none'; document.getElementById('1903.07664v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Science White Paper Submitted for the Astro2020 Decadal Survey on Astronomy and Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.04083">arXiv:1903.04083</a> <span> [<a href="https://arxiv.org/pdf/1903.04083">pdf</a>, <a href="https://arxiv.org/format/1903.04083">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Advanced X-ray Imaging Satellite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Mushotzky%2C+R+F">Richard F. Mushotzky</a>, <a href="/search/astro-ph?searchtype=author&query=Aird%2C+J">James Aird</a>, <a href="/search/astro-ph?searchtype=author&query=Barger%2C+A+J">Amy J. Barger</a>, <a href="/search/astro-ph?searchtype=author&query=Cappelluti%2C+N">Nico Cappelluti</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Corrales%2C+L">Lia Corrales</a>, <a href="/search/astro-ph?searchtype=author&query=Eufrasio%2C+R">Rafael Eufrasio</a>, <a href="/search/astro-ph?searchtype=author&query=Fabian%2C+A+C">Andrew C. Fabian</a>, <a href="/search/astro-ph?searchtype=author&query=Falcone%2C+A+D">Abraham D. Falcone</a>, <a href="/search/astro-ph?searchtype=author&query=Gallo%2C+E">Elena Gallo</a>, <a href="/search/astro-ph?searchtype=author&query=Gilli%2C+R">Roberto Gilli</a>, <a href="/search/astro-ph?searchtype=author&query=Grant%2C+C+E">Catherine E. Grant</a>, <a href="/search/astro-ph?searchtype=author&query=Hardcastle%2C+M">Martin Hardcastle</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges-Kluck%2C+E">Edmund Hodges-Kluck</a>, <a href="/search/astro-ph?searchtype=author&query=Kara%2C+E">Erin Kara</a>, <a href="/search/astro-ph?searchtype=author&query=Koss%2C+M">Michael Koss</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+H">Hui Li</a>, <a href="/search/astro-ph?searchtype=author&query=Lisse%2C+C+M">Carey M. Lisse</a>, <a href="/search/astro-ph?searchtype=author&query=Loewenstein%2C+M">Michael Loewenstein</a>, <a href="/search/astro-ph?searchtype=author&query=Markevitch%2C+M">Maxim Markevitch</a>, <a href="/search/astro-ph?searchtype=author&query=Meyer%2C+E+T">Eileen T. Meyer</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+E+D">Eric D. Miller</a>, <a href="/search/astro-ph?searchtype=author&query=Mulchaey%2C+J">John Mulchaey</a>, <a href="/search/astro-ph?searchtype=author&query=Petre%2C+R">Robert Petre</a>, <a href="/search/astro-ph?searchtype=author&query=Ptak%2C+A+J">Andrew J. Ptak</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.04083v2-abstract-short" style="display: inline;"> Much of the baryonic matter in the Universe, including the most active and luminous sources, are best studied in the X-ray band. Key advances in X-ray optics and detectors have paved the way for the Advanced X-ray Imaging Satellite (AXIS), a Probe-class mission that is a major improvement over Chandra, which has generated a steady stream of important discoveries for the past 2 decades. AXIS can be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04083v2-abstract-full').style.display = 'inline'; document.getElementById('1903.04083v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.04083v2-abstract-full" style="display: none;"> Much of the baryonic matter in the Universe, including the most active and luminous sources, are best studied in the X-ray band. Key advances in X-ray optics and detectors have paved the way for the Advanced X-ray Imaging Satellite (AXIS), a Probe-class mission that is a major improvement over Chandra, which has generated a steady stream of important discoveries for the past 2 decades. AXIS can be launched in the late 2020s and will transform our understanding in several major areas of astrophysics, including the growth and fueling of supermassive black holes, galaxy formation and evolution, the microphysics of cosmic plasmas, the time-variable universe, and a wide variety of cutting-edge studies. Relative to Chandra, the AXIS PSF is nearly twice as sharp on-axis; its field of view for subarcsecond imaging 70 times larger by area; its effective area at 1 keV is 10 times larger. The low-Earth orbit ensures a low and stable detector background, resulting in 50 times greater sensitivity than Chandra for extended sources. AXIS has a rapid repointing response with operations similar to Swift, but is 100 times more sensitive for time-domain science. These capabilities open up a vast discovery space and complement the next generation of astronomical observatories. A high-spectral-resolution mission (Athena) operating at the same time as a high-angular-resolution mission (AXIS) greatly increases the range of scientific discovery. AXIS will use lightweight X-ray optics made of thin single-crystal silicon mirrors developed at NASA Goddard. The detector array builds on a long legacy of X-ray CCD and provides improved photon localization, much faster readout time, and broader energy band. The estimated mission costs are consistent with the $1B Probe mission cost guideline. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04083v2-abstract-full').style.display = 'none'; document.getElementById('1903.04083v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A Probe-class mission study commissioned by NASA for the NAS Astro2020 Decadal Survey. Cost section redacted. 66 pages, 41 figures. v2: minor fixes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.09138">arXiv:1809.09138</a> <span> [<a href="https://arxiv.org/pdf/1809.09138">pdf</a>, <a href="https://arxiv.org/ps/1809.09138">ps</a>, <a href="https://arxiv.org/format/1809.09138">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aae438">10.3847/1538-4357/aae438 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Variable Relativistic Outflow of IRAS 13224-3809 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Canas%2C+M+H">Manuel H. Canas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.09138v1-abstract-short" style="display: inline;"> The discovery of an ultrafast outflow has been reported in the z=0.0658 narrow line Seyfert galaxy IRAS 13224-3809 (Parker et al. 2017a). The ultrafast outflow was first inferred through the detection of highly blueshifted absorption lines (Parker et al. 2017a) and then confirmed with a principal component analysis (PCA) (Parker et al. 2017b). Two of the reported properties of this outflow differe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09138v1-abstract-full').style.display = 'inline'; document.getElementById('1809.09138v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.09138v1-abstract-full" style="display: none;"> The discovery of an ultrafast outflow has been reported in the z=0.0658 narrow line Seyfert galaxy IRAS 13224-3809 (Parker et al. 2017a). The ultrafast outflow was first inferred through the detection of highly blueshifted absorption lines (Parker et al. 2017a) and then confirmed with a principal component analysis (PCA) (Parker et al. 2017b). Two of the reported properties of this outflow differed from those typically detected in other AGN with ultrafast outflows. First, the outflow velocity was found not to vary with v=0.236c +/- 0.006c. Second, the equivalent width of the highly blueshifted absorption line was reported to be anti-correlated with the 3-10 keV flux of this source. We present a re-analysis of the XMM-Newton observations of IRAS 13224-3809 considering the influence of background. We also undertook a different analysis approach in combining the spectra and investigated the change of the properties of the outflow as a function of 3-10 keV flux and time. We confirm the presence of an ultrafast outflow in IRAS 13224-3809, however, we find that the background spectra used in the Parker et al. analyses dominate the source spectra for energies near the blueshifted iron lines. By reducing the source extraction regions to improve the signal-to-noise ratio we discover larger than previously reported outflow velocities and find that the outflow velocity varies from ~0.2c to ~0.3c and increases with 3-10~keV flux. The previously reported anti-correlation between equivalent width of the iron line and 3-10 keV flux disappears when the background spectra are reduced by optimizing the source extraction regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09138v1-abstract-full').style.display = 'none'; document.getElementById('1809.09138v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, includes 15 figures, accepted for publication in The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07164">arXiv:1809.07164</a> <span> [<a href="https://arxiv.org/pdf/1809.07164">pdf</a>, <a href="https://arxiv.org/ps/1809.07164">ps</a>, <a href="https://arxiv.org/format/1809.07164">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aae30c">10.3847/1538-4357/aae30c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resolving the X-ray obscuration in a low flux observation of the quasar PDS 456 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Reeves%2C+J">James Reeves</a>, <a href="/search/astro-ph?searchtype=author&query=Braito%2C+V">Valentina Braito</a>, <a href="/search/astro-ph?searchtype=author&query=Nardini%2C+E">Emanuele Nardini</a>, <a href="/search/astro-ph?searchtype=author&query=Hamann%2C+F">Fred Hamann</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Lobban%2C+A">Andrew Lobban</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Brien%2C+P">Paul O'Brien</a>, <a href="/search/astro-ph?searchtype=author&query=Turner%2C+J">Jane Turner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07164v1-abstract-short" style="display: inline;"> Simultaneous XMM-Newton, NuSTAR and HST observations, performed in March 2017, of the nearby ($z=0.184$) luminous quasar PDS 456 are presented. PDS 456 had a low X-ray flux compared to past observations, where the first of the two new XMM-Newton observations occurred during a pronounced dip in the X-ray lightcurve. The broad-band X-ray spectrum is highly absorbed, attenuated by a soft X-ray absorb… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07164v1-abstract-full').style.display = 'inline'; document.getElementById('1809.07164v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07164v1-abstract-full" style="display: none;"> Simultaneous XMM-Newton, NuSTAR and HST observations, performed in March 2017, of the nearby ($z=0.184$) luminous quasar PDS 456 are presented. PDS 456 had a low X-ray flux compared to past observations, where the first of the two new XMM-Newton observations occurred during a pronounced dip in the X-ray lightcurve. The broad-band X-ray spectrum is highly absorbed, attenuated by a soft X-ray absorber of column density $N_{\rm H}=6\times10^{22}$ cm$^{-2}$. An increase in obscuration occurs during the dip, which may be due to an X-ray eclipse. In addition, the persistent, fast Fe K outflow is present, with velocity components of $-0.25c$ and $-0.4c$. The soft absorber is less ionized ($\log尉=3$) compared to the iron K outflow ($\log尉=5$) and is outflowing with a velocity of approximately $-0.2c$. A soft X-ray excess is present below 1 keV against the highly absorbed continuum and can be attributed to the re-emission from a wide angle wind. The complex X-ray absorption present in PDS 456 suggests that the wind is inhomogeneous, whereby the soft X-ray absorber originates from denser clumps or filaments which may form further out along the outflow. In contrast to the X-ray observations, the simultaneous UV spectrum of PDS 456 is largely unabsorbed, where only a very weak broad absorption trough is present bluewards of Ly$伪$, compared to a past observation in 2000 when the trough was significantly stronger. The relative weakness of the UV absorption may be due to the soft X-ray absorber being too highly ionized and almost transparent in the UV band. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07164v1-abstract-full').style.display = 'none'; document.getElementById('1809.07164v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, accepted for publication in the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.01057">arXiv:1809.01057</a> <span> [<a href="https://arxiv.org/pdf/1809.01057">pdf</a>, <a href="https://arxiv.org/format/1809.01057">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aaf39c">10.3847/1538-4357/aaf39c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Effect of Microlensing On the Observed X-ray Energy Spectra of Gravitationally Lensed Quasars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Krawczynski%2C+H">H. Krawczynski</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Kislat%2C+F">F. Kislat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.01057v1-abstract-short" style="display: inline;"> The Chandra observations of several gravitationally lensed quasars show evidence for flux and spectral variability of the X-ray emission that is uncorrelated between images and is thought to result from the microlensing by stars in the lensing galaxy. We report here on the most detailed modeling of such systems to date, including simulations of the emission of the Fe K-alpha fluorescent radiation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01057v1-abstract-full').style.display = 'inline'; document.getElementById('1809.01057v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.01057v1-abstract-full" style="display: none;"> The Chandra observations of several gravitationally lensed quasars show evidence for flux and spectral variability of the X-ray emission that is uncorrelated between images and is thought to result from the microlensing by stars in the lensing galaxy. We report here on the most detailed modeling of such systems to date, including simulations of the emission of the Fe K-alpha fluorescent radiation from the accretion disk with a general relativistic ray tracing code, the use of realistic microlensing magnification maps derived from inverse ray shooting calculations, and the simulation of the line detection biases. We use lensing and black hole parameters appropriate for the quadruply lensed quasar RX J1131-1231, and compare the simulated results with the observational results. The simulations cannot fully reproduce the distribution of the detected line energies indicating that some of the assumptions underlying the simulations are not correct, or that the simulations are missing some important physics. We conclude by discussing several possible explanations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01057v1-abstract-full').style.display = 'none'; document.getElementById('1809.01057v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures, submitted to the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.09839">arXiv:1801.09839</a> <span> [<a href="https://arxiv.org/pdf/1801.09839">pdf</a>, <a href="https://arxiv.org/ps/1801.09839">ps</a>, <a href="https://arxiv.org/format/1801.09839">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201732406">10.1051/0004-6361/201732406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Yet another UFO in the X-ray spectrum of a high-z lensed QSO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">M. Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">M. Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">G. Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Ponti%2C+G">G. Ponti</a>, <a href="/search/astro-ph?searchtype=author&query=Torresi%2C+E">E. Torresi</a>, <a href="/search/astro-ph?searchtype=author&query=De+Marco%2C+B">B. De Marco</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Giustini%2C+M">M. Giustini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.09839v1-abstract-short" style="display: inline;"> Ultra-fast outflows (UFO) appear to be common in local active galactic nuclei (AGN) and may be powerful enough ($\dot{E}_{kin}$$\geq$1\% of L$_{bol}$) to effectively quench the star formation in their host galaxies. To test feedback models based on AGN outflows, it is mandatory to investigate UFOs near the peak of AGN activity, that is, at high-z where only a few studies are available to date. U… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09839v1-abstract-full').style.display = 'inline'; document.getElementById('1801.09839v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.09839v1-abstract-full" style="display: none;"> Ultra-fast outflows (UFO) appear to be common in local active galactic nuclei (AGN) and may be powerful enough ($\dot{E}_{kin}$$\geq$1\% of L$_{bol}$) to effectively quench the star formation in their host galaxies. To test feedback models based on AGN outflows, it is mandatory to investigate UFOs near the peak of AGN activity, that is, at high-z where only a few studies are available to date. UFOs produce Fe resonant absorption lines measured above $\approx$7 keV. The most critical problem in detecting such features in distant objects is the difficulty in obtaining X-ray data with sufficient signal-to-noise. We therefore selected a distant QSO that gravitational lensing made bright enough for these purposes, the z=2.64 QSO MG J0414+0534, and observed it with XMM-Newton for $\approx$78 ks.} The X-ray spectrum of MG J0414+0534 is complex and shows signatures of cold absorption (N$_{H}\approx$4$\times$10$^{22}$ cm$^{-2}$) and of the presence of an iron emission line (E$\approx$6.4 keV, EW$=$95$\pm$53 eV) consistent with it originating in the cold absorber. Our main result, however, is the robust detection (more than 5$蟽$) of an absorption line at E$_{int}\approx$9.2 keV (E$_{obs}\approx$2.5 keV observer frame). If interpreted as due to FeXXVI, it implies gas outflowing at $v_{out}\approx$0.3c. To our knowledge, this is the first detection of an UFO in a radio-loud quasar at z$\geq$1.5. We estimated that the UFO mechanical output is $\dot{E}_{kin}$$\approx$2.5$L_{bol}$ with $\dot{p}_{out}/\dot{p}_{rad}\approx$17 indicating that it is capable of installing significant feedback between the super-massive black hole (SMBH) and the bulge of the host galaxy. We argue that this also suggests a magnetic driving origin of the UFO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09839v1-abstract-full').style.display = 'none'; document.getElementById('1801.09839v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication on A&A Letter</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.04302">arXiv:1801.04302</a> <span> [<a href="https://arxiv.org/pdf/1801.04302">pdf</a>, <a href="https://arxiv.org/format/1801.04302">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty043">10.1093/mnras/sty043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Does the X-ray outflow quasar PDS 456 have a UV outflow at 0.3c? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hamann%2C+F">Fred Hamann</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Reeves%2C+J">James Reeves</a>, <a href="/search/astro-ph?searchtype=author&query=Nardini%2C+E">Emanuele Nardini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.04302v2-abstract-short" style="display: inline;"> The quasar PDS 456 (at redshift ~0.184) has a prototype ultra-fast outflow (UFO) measured in X-rays. This outflow is highly ionized with relativistic speeds, large total column densities log N_H(cm^-2) > 23, and large kinetic energies that could be important for feedback to the host galaxy. A UV spectrum of PDS 456 obtained with the Hubble Space Telescope in 2000 contains one well-measured broad a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.04302v2-abstract-full').style.display = 'inline'; document.getElementById('1801.04302v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.04302v2-abstract-full" style="display: none;"> The quasar PDS 456 (at redshift ~0.184) has a prototype ultra-fast outflow (UFO) measured in X-rays. This outflow is highly ionized with relativistic speeds, large total column densities log N_H(cm^-2) > 23, and large kinetic energies that could be important for feedback to the host galaxy. A UV spectrum of PDS 456 obtained with the Hubble Space Telescope in 2000 contains one well-measured broad absorption line (BAL) at ~1346A (observed) that might be Ly-alpha at v ~ 0.06c or NV 1240 at v ~ 0.08c. However, we use photoionisation models and comparisons to other outflow quasars to show that these BAL identifications are problematic because other lines that should accompany them are not detected. We argue that the UV BAL is probably CIV 1549 at v ~ 0.30c. This would be the fastest UV outflow ever reported, but its speed is similar to the X-ray outflow and its appearance overall is similar to relativistic UV BALs observed in other quasars. The CIV BAL identification is also supported indirectly by the tentative detection of another broad CIV line at v ~ 0.19c. The high speeds suggest that the UV outflow originates with the X-ray UFO crudely 20 to 30 r_g from the central black hole. We speculate that the CIV BAL might form in dense clumps embedded in the X-ray UFO, requiring density enhancements of only >0.4 dex compared clumpy structures already inferred for the soft X-ray absorber in PDS 456. The CIV BAL might therefore be the first detection of low-ionisation clumps proposed previously to boost the opacities in UFOs for radiative driving. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.04302v2-abstract-full').style.display = 'none'; document.getElementById('1801.04302v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in press with MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.06190">arXiv:1610.06190</a> <span> [<a href="https://arxiv.org/pdf/1610.06190">pdf</a>, <a href="https://arxiv.org/ps/1610.06190">ps</a>, <a href="https://arxiv.org/format/1610.06190">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa7896">10.3847/1538-4357/aa7896 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulations of the Fe K-alpha Energy Spectra from Gravitationally Microlensed Quasars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Krawczynski%2C+H">Henric Krawczynski</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.06190v2-abstract-short" style="display: inline;"> The analysis of the Chandra X-ray observations of the gravitationally lensed quasar RX J1131-1231 revealed the detection of multiple and energy-variable spectral peaks. The spectral variability is thought to result from the microlensing of the Fe K-alpha emission, selectively amplifying the emission from certain regions of the accretion disk with certain effective frequency shifts of the Fe K-alph… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.06190v2-abstract-full').style.display = 'inline'; document.getElementById('1610.06190v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.06190v2-abstract-full" style="display: none;"> The analysis of the Chandra X-ray observations of the gravitationally lensed quasar RX J1131-1231 revealed the detection of multiple and energy-variable spectral peaks. The spectral variability is thought to result from the microlensing of the Fe K-alpha emission, selectively amplifying the emission from certain regions of the accretion disk with certain effective frequency shifts of the Fe K-alpha line emission. In this paper, we combine detailed simulations of the emission of Fe K-alpha photons from the accretion disk of a Kerr black hole with calculations of the effect of gravitational microlensing on the observed energy spectra. The simulations show that microlensing can indeed produce multiply peaked energy spectra. We explore the dependence of the spectral characteristics on black hole spin, accretion disk inclination, corona height, and microlensing amplification factor, and show that the measurements can be used to constrain these parameters. We find that the range of observed spectral peak energies of QSO RX J1131-1231 can only be reproduced for black hole inclinations exceeding 70 degree and for lamppost corona heights of less than 30 gravitational radii above the black hole. We conclude by emphasizing the scientific potential of studies of the microlensed Fe K$伪$ quasar emission and the need for more detailed modeling that explores how the results change for more realistic accretion disk and corona geometries and microlensing magnification patterns. A full analysis should furthermore model the signal-to-noise ratio of the observations and the resulting detection biases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.06190v2-abstract-full').style.display = 'none'; document.getElementById('1610.06190v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2017 ApJ 843 118 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.09490">arXiv:1609.09490</a> <span> [<a href="https://arxiv.org/pdf/1609.09490">pdf</a>, <a href="https://arxiv.org/ps/1609.09490">ps</a>, <a href="https://arxiv.org/format/1609.09490">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa5d50">10.3847/1538-4357/aa5d50 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring the Innermost Stable Circular Orbits of Supermassive Black Holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Krawczynski%2C+H">H. Krawczynski</a>, <a href="/search/astro-ph?searchtype=author&query=Zalesky%2C+L">L. Zalesky</a>, <a href="/search/astro-ph?searchtype=author&query=Kochanek%2C+C+S">C. S. Kochanek</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">X. Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Morgan%2C+C+W">C. W. Morgan</a>, <a href="/search/astro-ph?searchtype=author&query=Mosquera%2C+A">A. Mosquera</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.09490v2-abstract-short" style="display: inline;"> We present a promising new technique, the g-distribution method, for measuring the inclination angle (i), the innermost stable circular orbit (ISCO), and the spin of a supermassive black hole. The g-distribution method uses measurements of the energy shifts in the relativistic iron line emitted by the accretion disk of a supermassive black hole due to microlensing by stars in a foreground galaxy r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09490v2-abstract-full').style.display = 'inline'; document.getElementById('1609.09490v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.09490v2-abstract-full" style="display: none;"> We present a promising new technique, the g-distribution method, for measuring the inclination angle (i), the innermost stable circular orbit (ISCO), and the spin of a supermassive black hole. The g-distribution method uses measurements of the energy shifts in the relativistic iron line emitted by the accretion disk of a supermassive black hole due to microlensing by stars in a foreground galaxy relative to the g-distribution shifts predicted from microlensing caustic calculations. We apply the method to the gravitationally lensed quasars RX J1131-1231 (z_s=0.658, z_l=0.295), QJ 0158-4325 (z_s=1.294, z_l=0.317), and SDSS 1004+4112 (z_s=1.734, z_l=0.68). For RX J1131-1231 our initial results indicate that r_ISCO<8.5 gravitational radii (r_g) and i > 76 degrees. We detect two shifted Fe lines, in several observations, as predicted in our numerical simulations of caustic crossings. The current DeltaE-distribution of RX J1131-1231 is sparsely sampled but further X-ray monitoring of RX J1131-1231 and other lensed quasars will provide improved constraints on the inclination angles, ISCO radii and spins of the black holes of distant quasars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09490v2-abstract-full').style.display = 'none'; document.getElementById('1609.09490v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, includes 20 figures, Replaced with version accepted by The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.05192">arXiv:1609.05192</a> <span> [<a href="https://arxiv.org/pdf/1609.05192">pdf</a>, <a href="https://arxiv.org/ps/1609.05192">ps</a>, <a href="https://arxiv.org/format/1609.05192">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa5728">10.3847/1538-4357/aa5728 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extended X-ray Monitoring of Gravitational Lenses with Chandra and Joint Constraints on X-ray Emission Regions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Guerras%2C+E">Eduardo Guerras</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">Xinyu Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Steele%2C+S">Shaun Steele</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+A">Ang Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Kochanek%2C+C+S">Christopher S. Kochanek</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Morgan%2C+C+W">Christopher W. Morgan</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+B">Bin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.05192v2-abstract-short" style="display: inline;"> We present an X-ray photometric analysis of six gravitationally lensed quasars, with observation campaigns spanning from 5 to 14 years, measuring the total (0.83 - 21.8 keV restframe), soft (0.83 - 3.6 keV), and hard (3.6 - 21.8 keV) band image flux ratios or each epoch. Using the ratios of the model-predicted macro-magnifications as baselines, we build differential microlensing light curves and o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.05192v2-abstract-full').style.display = 'inline'; document.getElementById('1609.05192v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.05192v2-abstract-full" style="display: none;"> We present an X-ray photometric analysis of six gravitationally lensed quasars, with observation campaigns spanning from 5 to 14 years, measuring the total (0.83 - 21.8 keV restframe), soft (0.83 - 3.6 keV), and hard (3.6 - 21.8 keV) band image flux ratios or each epoch. Using the ratios of the model-predicted macro-magnifications as baselines, we build differential microlensing light curves and obtain joint likelihood functions for the average X-ray emission region sizes. Our analysis yields a Probability Distribution Function for the average half-light radius of the X-Ray emission region in the sample that peaks slightly above 1 gravitational radius and with nearly indistinguishable 68% confidence (one-sided) upper limits of 17.8 and 18.9 gravitational radii for the soft and hard X-ray emitting regions, assuming a mean stellar mass of 0.3 solar masses. We see hints of energy dependent microlensing between the soft and hard bands in two of the objects. In a separate analysis on the root-mean-square of the microlensing variability, we find significant differences between the soft and hard bands but the sign of the difference is not consistent across the sample. This suggests the existence of some kind of spatial structure to the X-ray emission in an otherwise extremely compact source. We also discover a correlation between the RMS microlensing variability and the average microlensing amplitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.05192v2-abstract-full').style.display = 'none'; document.getElementById('1609.05192v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.08549">arXiv:1605.08549</a> <span> [<a href="https://arxiv.org/pdf/1605.08549">pdf</a>, <a href="https://arxiv.org/ps/1605.08549">ps</a>, <a href="https://arxiv.org/format/1605.08549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201628467">10.1051/0004-6361/201628467 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> XMM-Newton reveals a Seyfert-like X-ray spectrum in the z=3.6 QSO B1422+231 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">M. Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">M. Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">G. Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Ponti%2C+G">G. Ponti</a>, <a href="/search/astro-ph?searchtype=author&query=De+Marco%2C+B">B. De Marco</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Giustini%2C+M">M. Giustini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.08549v1-abstract-short" style="display: inline;"> Matter flows in the central regions of quasars during their active phases are probably responsible for the properties of the super-massive black holes and that of the bulges of host galaxies. To understand how this mechanism works, we need to characterize the geometry and the physical state of the accreting matter at cosmological redshifts. The few high quality X-ray spectra of distant QSO have be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.08549v1-abstract-full').style.display = 'inline'; document.getElementById('1605.08549v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.08549v1-abstract-full" style="display: none;"> Matter flows in the central regions of quasars during their active phases are probably responsible for the properties of the super-massive black holes and that of the bulges of host galaxies. To understand how this mechanism works, we need to characterize the geometry and the physical state of the accreting matter at cosmological redshifts. The few high quality X-ray spectra of distant QSO have been collected by adding sparse pointings of single objects obtained during X-ray monitoring campaigns. This could have introduced spurious spectral features due to source variability. Here we present a single epoch, high-quality X-ray spectrum of the z=3.62 quasar B1422+231 whose flux is enhanced by gravitationally lensing (F$_{2-10 keV}\sim$10$^{-12}$erg s$^{-1}$ cm$^{-2}$). The X-ray spectrum of B1422+231 is found to be very similar to the one of a typical nearby Seyfert galaxy. Neutral absorption is detected (N$_{H}\sim$5$\times$10$^{21}$ cm$^{-2}$ at the redshift of the source) while a strong absorption edge is measured at E$\sim$7.5 keV with an optical depth of $蟿\sim$0.14. We also find hints of the FeK$伪$ line in emission at E$\sim$6.4 keV line (EW$\lesssim$70 eV) and a hump is detected in the E$\sim$15-20 keV energy band (rest-frame) suggesting the presence of a reflection component. In this scenario, the primary emission of B1422+231 is most probably dominated by the thermal Comptonization of UV seed photons in a corona with kT$\sim$40 keV and the reflection component has a relative direct-to-reflect normalization r$\sim$1. These findings confirm that gravitational lensing is effective to obtain good quality X-ray spectral information of quasar at high-z, moreover they support the idea that the same general picture characterizing active galactic nuclei in the nearby Universe is valid also at high redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.08549v1-abstract-full').style.display = 'none'; document.getElementById('1605.08549v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication on Astronomy and Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.04775">arXiv:1605.04775</a> <span> [<a href="https://arxiv.org/pdf/1605.04775">pdf</a>, <a href="https://arxiv.org/ps/1605.04775">ps</a>, <a href="https://arxiv.org/format/1605.04775">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/825/1/25">10.3847/0004-637X/825/1/25 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-Sightline Observation of Narrow Absorption Lines in Lensed Quasar SDSS J1029+2623 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Misawa%2C+T">Toru Misawa</a>, <a href="/search/astro-ph?searchtype=author&query=Saez%2C+C">Cristian Saez</a>, <a href="/search/astro-ph?searchtype=author&query=Charlton%2C+J+C">Jane C. Charlton</a>, <a href="/search/astro-ph?searchtype=author&query=Eracleous%2C+M">Michael Eracleous</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Bauer%2C+F+E">Franz E. Bauer</a>, <a href="/search/astro-ph?searchtype=author&query=Inada%2C+N">Naohisa Inada</a>, <a href="/search/astro-ph?searchtype=author&query=Uchiyama%2C+H">Hisakazu Uchiyama</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.04775v1-abstract-short" style="display: inline;"> We exploit the widely-separated images of the lensed quasar SDSS J1029+2623 ($z_{em}$=2.197, $胃=22^{\prime\prime}\!\!.5$) to observe its outflowing wind through two different sightlines. We present an analysis of three observations, including two with the Subaru telescope in 2010 February (Misawa et al. 2013) and 2014 April (Misawa et al. 2014), separated by 4 years, and one with the Very Large Te… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.04775v1-abstract-full').style.display = 'inline'; document.getElementById('1605.04775v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.04775v1-abstract-full" style="display: none;"> We exploit the widely-separated images of the lensed quasar SDSS J1029+2623 ($z_{em}$=2.197, $胃=22^{\prime\prime}\!\!.5$) to observe its outflowing wind through two different sightlines. We present an analysis of three observations, including two with the Subaru telescope in 2010 February (Misawa et al. 2013) and 2014 April (Misawa et al. 2014), separated by 4 years, and one with the Very Large Telescope, separated from the second Subaru observation by $\sim$2 months. We detect 66 narrow absorption lines (NALs), of which 24 are classified as intrinsic NALs that are physically associated with the quasar based on partial coverage analysis. The velocities of intrinsic NALs appear to cluster around values of $v_{ej}$ $\sim$ 59,000, 43,000, and 29,000 km/s, which is reminiscent of filamentary structures obtained by numerical simulations. There are no common intrinsic NALs at the same redshift along the two sightlines, implying that the transverse size of the NAL absorbers should be smaller than the sightline distance between two lensed images. In addition to the NALs with large ejection velocities of $v_{ej}$ > 1,000 km/s, we also detect broader proximity absorption lines (PALs) at $z_{abs}$ $\sim$ $z_{em}$. The PALs are likely to arise in outflowing gas at a distance of r $\leq$ 620 pc from the central black hole with an electron density of $n_e$ $\geq$ 8.7$\times$10$^{3}$ cm$^{-3}$. These limits are based on the assumption that the variability of the lines is due to recombination. We discuss the implications of these results on the three-dimensional structure of the outflow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.04775v1-abstract-full').style.display = 'none'; document.getElementById('1605.04775v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, including 13 figures; accepted for publication in the Astrophysical Journal. A complete version with all tables and figures is available at http://www.shinshu-u.ac.jp/faculty/general/chair/astro/arXiv/sdss1029.pdf</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.05555">arXiv:1603.05555</a> <span> [<a href="https://arxiv.org/pdf/1603.05555">pdf</a>, <a href="https://arxiv.org/ps/1603.05555">ps</a>, <a href="https://arxiv.org/format/1603.05555">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/824/1/53">10.3847/0004-637X/824/1/53 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Wide-Angle Outflow of the Lensed z = 1.51 AGN HS 0810+2554 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">M. Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Hamann%2C+F">F. Hamann</a>, <a href="/search/astro-ph?searchtype=author&query=Eracleous%2C+M">M. Eracleous</a>, <a href="/search/astro-ph?searchtype=author&query=Strickland%2C+S">S. Strickland</a>, <a href="/search/astro-ph?searchtype=author&query=Giustini%2C+M">M. Giustini</a>, <a href="/search/astro-ph?searchtype=author&query=Misawa%2C+T">T. Misawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.05555v1-abstract-short" style="display: inline;"> We present results from X-ray observations of the gravitationally lensed z = 1.51 AGN HS 0810+2554 performed with the Chandra X-ray Observatory and XMM-Newton. Blueshifted absorption lines are detected in both observations at rest-frame energies ranging between ~1-12 keV at > 99% confidence. The inferred velocities of the outflowing components range between ~0.1c and ~0.4c. A strong emission line… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05555v1-abstract-full').style.display = 'inline'; document.getElementById('1603.05555v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.05555v1-abstract-full" style="display: none;"> We present results from X-ray observations of the gravitationally lensed z = 1.51 AGN HS 0810+2554 performed with the Chandra X-ray Observatory and XMM-Newton. Blueshifted absorption lines are detected in both observations at rest-frame energies ranging between ~1-12 keV at > 99% confidence. The inferred velocities of the outflowing components range between ~0.1c and ~0.4c. A strong emission line at ~6.8 keV accompanied by a significant absorption line at ~7.8 keV is also detected in the Chandra observation. The presence of these lines is a characteristic feature of a P-Cygni profile supporting the presence of an expanding outflowing highly ionized iron absorber in this quasar. Modeling of the P-Cygni profile constrains the covering factor of the wind to be > 0.6, assuming disk shielding. A disk-reflection component is detected in the XMM-Newton observation accompanied by blueshifted absorption lines. The XMM-Newton observation constrains the inclination angle to be < 45 degrees at 90% confidence, assuming the hard excess is due to blurred reflection from the accretion disk. The detection of an ultrafast and wide-angle wind in an AGN with intrinsic narrow absorption lines (NALs) would suggest that quasar winds may couple efficiently with the intergalactic medium and provide significant feedback if ubiquitous in all NAL and BAL quasars. We estimate the mass-outflow rate of the absorbers to lie in the range of 1.5 and 3.4 Msolar/yr for the two observations. We find the fraction of kinetic to electromagnetic luminosity released by HS 0810+2554 is large (epsilon = 9 (-6,+8)) suggesting that magnetic driving is likely a significant contributor to the acceleration of this outflow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05555v1-abstract-full').style.display = 'none'; document.getElementById('1603.05555v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 13 figures, Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.05375">arXiv:1509.05375</a> <span> [<a href="https://arxiv.org/pdf/1509.05375">pdf</a>, <a href="https://arxiv.org/ps/1509.05375">ps</a>, <a href="https://arxiv.org/format/1509.05375">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/asna.201612313">10.1002/asna.201612313 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gravitational Lensing Size Scales for Quasars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Rhea%2C+C">C. Rhea</a>, <a href="/search/astro-ph?searchtype=author&query=Kochanek%2C+C">C. Kochanek</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">X. Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Morgan%2C+C">C. Morgan</a>, <a href="/search/astro-ph?searchtype=author&query=Blackburne%2C+J">J. Blackburne</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+B">B. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Mosquera%2C+A">A. Mosquera</a>, <a href="/search/astro-ph?searchtype=author&query=MacLeod%2C+C">C. MacLeod</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.05375v1-abstract-short" style="display: inline;"> We review results from our monitoring observations of several lensed quasars performed in the optical, UV, and X-ray bands. Modeling of the multi-wavelength light curves provides constraints on the extent of the optical, UV, and X-ray emission regions. One of the important results of our analysis is that the optical sizes as inferred from the microlensing analysis are significantly larger than tho… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.05375v1-abstract-full').style.display = 'inline'; document.getElementById('1509.05375v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.05375v1-abstract-full" style="display: none;"> We review results from our monitoring observations of several lensed quasars performed in the optical, UV, and X-ray bands. Modeling of the multi-wavelength light curves provides constraints on the extent of the optical, UV, and X-ray emission regions. One of the important results of our analysis is that the optical sizes as inferred from the microlensing analysis are significantly larger than those predicted by the theoretical-thin-disk estimate. In a few cases we also constrain the slope of the size-wavelength relation. Our size constraints of the soft and hard X-ray emission regions of quasars indicate that in some objects of our sample the hard X-ray emission region is more compact than the soft and in others the soft emission region is smaller. This difference may be the result of the relative strengths of the disk-reflected (harder and extended) versus corona-direct (softer and compact) components in the quasars of our sample. Finally, we present the analysis of several strong microlensing events where we detect an evolution of the relativistic Fe line profile as the magnification caustic traverses the accretion disk. These caustic crossings are used to provide constraints on the innermost stable circular orbit (ISCO) radius and the accretion disk inclination angle of the black hole in quasar RX J1131-1231. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.05375v1-abstract-full').style.display = 'none'; document.getElementById('1509.05375v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, To appear in Astronomische Nachrichten (Astronomical Notes)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.07533">arXiv:1501.07533</a> <span> [<a href="https://arxiv.org/pdf/1501.07533">pdf</a>, <a href="https://arxiv.org/ps/1501.07533">ps</a>, <a href="https://arxiv.org/format/1501.07533">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/806/2/258">10.1088/0004-637X/806/2/258 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Consistent Picture Emerges: A Compact X-ray Continuum Emission Region in the Gravitationally Lensed Quasar SDSS J0924+0219 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=MacLeod%2C+C+L">Chelsea L. MacLeod</a>, <a href="/search/astro-ph?searchtype=author&query=Morgan%2C+C">Christopher Morgan</a>, <a href="/search/astro-ph?searchtype=author&query=Mosquera%2C+A">A. Mosquera</a>, <a href="/search/astro-ph?searchtype=author&query=Kochanek%2C+C">C. Kochanek</a>, <a href="/search/astro-ph?searchtype=author&query=Tewes%2C+M">M. Tewes</a>, <a href="/search/astro-ph?searchtype=author&query=Courbin%2C+F">F. Courbin</a>, <a href="/search/astro-ph?searchtype=author&query=Meylan%2C+G">G. Meylan</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+B">B. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">X. Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.07533v2-abstract-short" style="display: inline;"> We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089A) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770A) monitoring spanning eleven years. Our joint analysis provides robust constr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.07533v2-abstract-full').style.display = 'inline'; document.getElementById('1501.07533v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.07533v2-abstract-full" style="display: none;"> We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089A) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770A) monitoring spanning eleven years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5x10^13 and 10^15 cm, and we find an upper limit of 10^15 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7 GM_BH/c^2 for a 2.8x10^8 M_sol black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 10^14 cm < r_1/2,UV < 3x10^15 cm. Finally, the optical size is significantly larger, by 1.5*sigma, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.07533v2-abstract-full').style.display = 'none'; document.getElementById('1501.07533v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Replaced with accepted version to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.4486">arXiv:1401.4486</a> <span> [<a href="https://arxiv.org/pdf/1401.4486">pdf</a>, <a href="https://arxiv.org/ps/1401.4486">ps</a>, <a href="https://arxiv.org/format/1401.4486">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/783/1/57">10.1088/0004-637X/783/1/57 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnified Views of the Ultrafast Outflow of the z = 1.51 AGN HS 0810+2554 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Hamann%2C+F">F. Hamann</a>, <a href="/search/astro-ph?searchtype=author&query=Eracleous%2C+M">M. Eracleous</a>, <a href="/search/astro-ph?searchtype=author&query=Misawa%2C+T">T. Misawa</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">M. Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Giustini%2C+M">M. Giustini</a>, <a href="/search/astro-ph?searchtype=author&query=Charlton%2C+J+C">J. C. Charlton</a>, <a href="/search/astro-ph?searchtype=author&query=Marvin%2C+M">M. Marvin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.4486v1-abstract-short" style="display: inline;"> We present results from an observation of the gravitationally lensed z=1.51 narrow absorption line AGN HS 0810+2554 performed with the Chandra X-ray Observatory. The factor of ~100 lensing magnification of HS 0810+2554 makes this source exceptionally bright. Absorption lines are detected at rest-frame energies of ~ 7.7 keV and ~11.0 keV at >97% significance. By interpreting these lines to arise fr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.4486v1-abstract-full').style.display = 'inline'; document.getElementById('1401.4486v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.4486v1-abstract-full" style="display: none;"> We present results from an observation of the gravitationally lensed z=1.51 narrow absorption line AGN HS 0810+2554 performed with the Chandra X-ray Observatory. The factor of ~100 lensing magnification of HS 0810+2554 makes this source exceptionally bright. Absorption lines are detected at rest-frame energies of ~ 7.7 keV and ~11.0 keV at >97% significance. By interpreting these lines to arise from highly ionized iron the implied outflow velocities of the X-ray absorbing gas corresponding to these lines are 0.13c and 0.41c, respectively. The presence of these relativistic outflows and the absence of any significant low-energy X-ray absorption suggest that a shielding gas is not required for the generation of the relativistic X-ray absorbing winds in HS 0810+2554. UV spectroscopic observations with VLT/UVES indicate that the UV absorbing material is outflowing at v_UV ~0.065c. Our analysis indicates that the fraction of the total bolometric energy released by HS 0810+2554 into the IGM in the form of kinetic energy is epsilon_k = 1.0(-0.6,+0.8). An efficiency of greater than unity implies that magnetic driving is likely a significant contributor to the acceleration of this X-ray absorbing wind. We also estimate the mass-outflow rate of the strongest absorption component to be Mdot_abs=1.1(-0.7,+0.9) M_solar yr^-1. Assuming that the energetic outflow detected in the NAL AGN HS 0810+2554 is a common property of most AGN it would suggest that the X-ray absorbing wind may have a larger opening angle than previously thought. This has important consequences for estimating the feedback contribution of X-ray absorbing winds to the surrounding IGM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.4486v1-abstract-full').style.display = 'none'; document.getElementById('1401.4486v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, includes 11 figures, Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.5562">arXiv:1307.5562</a> <span> [<a href="https://arxiv.org/pdf/1307.5562">pdf</a>, <a href="https://arxiv.org/ps/1307.5562">ps</a>, <a href="https://arxiv.org/format/1307.5562">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> A Mini X-Ray Survey of Sub-DLAs; Searching for AGNs Formed in Protogalaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Kulkarni%2C+V+P">V. P. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&query=Asper%2C+A">A. Asper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.5562v2-abstract-short" style="display: inline;"> A significant fraction of the sub-damped Lyman-alpha (sub-DLA) absorption systems in quasar spectra appear to be metal-rich, many with even super-solar element abundances. This raises the question whether some sub-DLAs may harbor active galactic nuclei (AGN) since supersolar metallicities are observed in AGN. Here we investigate this question based on a mini-survey of 21 quasars known to contain s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.5562v2-abstract-full').style.display = 'inline'; document.getElementById('1307.5562v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.5562v2-abstract-full" style="display: none;"> A significant fraction of the sub-damped Lyman-alpha (sub-DLA) absorption systems in quasar spectra appear to be metal-rich, many with even super-solar element abundances. This raises the question whether some sub-DLAs may harbor active galactic nuclei (AGN) since supersolar metallicities are observed in AGN. Here we investigate this question based on a mini-survey of 21 quasars known to contain sub-DLAs in their spectra. The X-ray observations were performed with the Chandra X-ray Observatory. In cases of no detection we estimated upper limits of the X-ray luminosities of possible AGNs at the redshifts of the sub-DLAs. In six cases we find possible X-ray emission within ~ 1 arcsec of the background quasar consistent with the presence of a nearby X-ray source. If these nearby X-ray sources are at the redshifts of the sub-DLAs, their estimated 0.2-10 keV luminosities range between 0.8 x 10^{44}h^{-2} and 4.2 x 10^{44}h^{-2} erg s^{-1}, thus ruling out a normal late-type galaxy origin, and suggesting that the emission originates in a galactic nucleus near the center of a protogalaxy. The projected distances of these possible nearby X-ray sources from the background quasars lie in the range of 3-7 h^{-1} kpc, consistent with our hypothesis that they represent AGNs centered on the sub-DLAs. Deeper follow-up X-ray and optical observations are required to confirm the marginal detections of X-rays from these sub-DLA galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.5562v2-abstract-full').style.display = 'none'; document.getElementById('1307.5562v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, includes 4 figures, Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.1173">arXiv:1307.1173</a> <span> [<a href="https://arxiv.org/pdf/1307.1173">pdf</a>, <a href="https://arxiv.org/format/1307.1173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stt1231">10.1093/mnras/stt1231 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extreme-Velocity Quasar Outflows and the Role of X-ray Shielding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hamann%2C+F">Fred Hamann</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=McGraw%2C+S">Sean McGraw</a>, <a href="/search/astro-ph?searchtype=author&query=Hidalgo%2C+P+R">Paola Rodriguez Hidalgo</a>, <a href="/search/astro-ph?searchtype=author&query=Shields%2C+J">Joseph Shields</a>, <a href="/search/astro-ph?searchtype=author&query=Capellupo%2C+D">Daniel Capellupo</a>, <a href="/search/astro-ph?searchtype=author&query=Charlton%2C+J">Jane Charlton</a>, <a href="/search/astro-ph?searchtype=author&query=Eracleous%2C+M">Michael Eracleous</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.1173v1-abstract-short" style="display: inline;"> Quasar accretion disk winds observed via broad absorption lines (BALs) in the UV produce strong continuous absorption in X-rays. The X-ray absorber is believed to serve critically as a radiative shield to enable radiative driving. However, "mini-BAL" and narrow absorption line outflows have dramatically less X-ray absorption than BALs. Here we examine X-ray and rest-frame UV spectra of 8 mini-BAL… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.1173v1-abstract-full').style.display = 'inline'; document.getElementById('1307.1173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.1173v1-abstract-full" style="display: none;"> Quasar accretion disk winds observed via broad absorption lines (BALs) in the UV produce strong continuous absorption in X-rays. The X-ray absorber is believed to serve critically as a radiative shield to enable radiative driving. However, "mini-BAL" and narrow absorption line outflows have dramatically less X-ray absorption than BALs. Here we examine X-ray and rest-frame UV spectra of 8 mini-BAL quasars with outflow speeds in the range 0.1c to 0.2c to test whether extreme speeds require a strong shield. We find that the X-ray absorption is weak or moderate, with neutral-equivalent column densities N_H < few times 10^22 cm^-2, consistent with mini-BALs at lower speeds. We use photoionization models to show that this amount of shielding is too weak to control the outflow ionizations and, therefore, it is not important for the acceleration. Shielding in complex geometries also seems unlikely because the alleged shield would need to extinguish the ionizing far-UV flux while avoiding detection in X-rays and the near-UV. We argue that the outflow ionizations are kept moderate, instead, by high gas densities in small clouds. If the mini-BALs form at radial distances of order R ~ 2 pc from the central quasar (broadly consistent with theoretical models and with the mini-BAL variabilities observed here and in previous work), and the total column densities in the mini-BAL gas are N_H ~< 10^21 cm^-2, then the total radial extent of outflow clouds is only Delta-R_clouds ~< 3 x 10^13 cm and the radial filling factor is Delta-R_clouds/R ~< 5 x 10^-6 for weak/negligible shielding. Compared to the transverse sizes >~ 8 x 10^15 cm (based on measured line depths), the outflows have shapes like thin "pancakes" viewed face-on, or they occupy larger volumes like a spray of many dense clouds with a small volume filling factor. These results favor models with magnetic confinement in magnetic disk winds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.1173v1-abstract-full').style.display = 'none'; document.getElementById('1307.1173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures, accepted for publication in the MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.0008">arXiv:1306.0008</a> <span> [<a href="https://arxiv.org/pdf/1306.0008">pdf</a>, <a href="https://arxiv.org/ps/1306.0008">ps</a>, <a href="https://arxiv.org/format/1306.0008">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Dust, Gas, and Metallicities of Cosmologically Distant Lens Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chen%2C+B">Bin Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">Xinyu Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Kochanek%2C+C+S">Christopher S. Kochanek</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.0008v1-abstract-short" style="display: inline;"> We homogeneously analyzed the \chandra\ X-ray observations of 10 gravitational lenses, HE 0047-1756, QJ 0158-4325, SDSS 0246-0805, HE 0435-1223, SDSS 0924+0219, SDSS 1004+4112, HE 1104-1805, PG 1115+080, Q 1355-2257, and Q 2237+0305, to measure the differential X-ray absorption between images, the metallicity, and the dust-to-gas ratio of the lens galaxies. We detected differential absorption in a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0008v1-abstract-full').style.display = 'inline'; document.getElementById('1306.0008v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.0008v1-abstract-full" style="display: none;"> We homogeneously analyzed the \chandra\ X-ray observations of 10 gravitational lenses, HE 0047-1756, QJ 0158-4325, SDSS 0246-0805, HE 0435-1223, SDSS 0924+0219, SDSS 1004+4112, HE 1104-1805, PG 1115+080, Q 1355-2257, and Q 2237+0305, to measure the differential X-ray absorption between images, the metallicity, and the dust-to-gas ratio of the lens galaxies. We detected differential absorption in all lenses except SDSS 0924+0219 and HE 1104-1805. This doubles the sample of dust-to-gas ratio measurements in cosmologically distant lens galaxies. We successfully measured the gas phase metallicity of three lenses, Q 2237+0305, SDSS 1004+4112, and B 1152+199 from the X-ray spectra. Our results suggest a linear correlation between metallicity and dust-to-gas ratio (i.e., a constant metal-to-dust ratio), consistent with what is found for nearby galaxies. We obtain an average dust-to-gas ratio $E(B-V)/N_H=1.17^{+0.41}_{-0.31} \times 10^{-22}\rm mag\,cm^2\,atom^{-1}$ in the lens galaxies, with an intrinsic scatter of $\rm0.3\,dex$. Combining these results with data from GRB afterglows and quasar foreground absorbers, we found a mean dust-to-gas ratio $\mdtg,$ now significantly lower than the average Galactic value, $1.7\,\times 10^{-22}\,\rm mag\, cm^{2}\, atoms^{-1}.$ This suggests evolution of dust-to-gas ratios with redshift and lower average metallicities for the higher redshift galaxies, consistent with current metal and dust evolution models of interstellar medium. The slow evolution in the metal-to-dust ratio with redshift implies very rapid dust formation in high redshift ($z>2$) galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0008v1-abstract-full').style.display = 'none'; document.getElementById('1306.0008v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 8 figures, ApJ Submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.1620">arXiv:1304.1620</a> <span> [<a href="https://arxiv.org/pdf/1304.1620">pdf</a>, <a href="https://arxiv.org/format/1304.1620">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/798/2/95">10.1088/0004-637X/798/2/95 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Structure of HE 1104-1805 from Infrared to X-Ray </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Blackburne%2C+J+A">Jeffrey A. Blackburne</a>, <a href="/search/astro-ph?searchtype=author&query=Kochanek%2C+C+S">Christopher S. Kochanek</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+B">Bin Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">Xinyu Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.1620v1-abstract-short" style="display: inline;"> The gravitationally lensed quasar HE 1104-1805 has been observed at a variety of wavelengths ranging from the mid-infrared to X-ray for nearly 20 years. We combine flux ratios from the literature, including recent Chandra data, with new observations from the SMARTS telescope and HST, and use them to investigate the spatial structure of the central regions using a Bayesian Monte Carlo analysis of t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.1620v1-abstract-full').style.display = 'inline'; document.getElementById('1304.1620v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.1620v1-abstract-full" style="display: none;"> The gravitationally lensed quasar HE 1104-1805 has been observed at a variety of wavelengths ranging from the mid-infrared to X-ray for nearly 20 years. We combine flux ratios from the literature, including recent Chandra data, with new observations from the SMARTS telescope and HST, and use them to investigate the spatial structure of the central regions using a Bayesian Monte Carlo analysis of the microlensing variability. The wide wavelength coverage allows us to constrain not only the accretion disk half-light radius r_1/2, but the power-law slope 尉 of the size-wavelength relation r_1/2 ~ 位^尉. With a logarithmic prior on the source size, the (observed-frame) R-band half-light radius log(r_1/2/cm) is 16.0+0.3-0.4, and the slope 尉 is 1.0+0.30-0.56. We put upper limits on the source size in soft (0.4-1.2 keV) and hard (1.2-8 keV) X-ray bands, finding 95% upper limits on log (r_1/2/cm) of 15.33 in both bands. A linear prior yields somewhat larger sizes, particularly in the X-ray bands. For comparison, the gravitational radius, using a black hole mass estimated using the H尾 line, is log(r_g/cm) = 13.94. We find that the accretion disk is probably close to face-on, with cos i = 1.0 being four times more likely than cos i = 0.5. We also find probability distributions for the mean mass of the stars in the foreground lensing galaxy, the direction of the transverse peculiar velocity of the lens, and the position angle of the projected accretion disk's major axis (if not face-on). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.1620v1-abstract-full').style.display = 'none'; document.getElementById('1304.1620v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures, 2 tables. Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.0201">arXiv:1302.0201</a> <span> [<a href="https://arxiv.org/pdf/1302.0201">pdf</a>, <a href="https://arxiv.org/format/1302.0201">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Physics and Physical Properties of Quasar Outflows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hamann%2C+F">Fred Hamann</a>, <a href="/search/astro-ph?searchtype=author&query=Capellupo%2C+D">Daniel Capellupo</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=McGraw%2C+S">Sean McGraw</a>, <a href="/search/astro-ph?searchtype=author&query=Hidalgo%2C+P+R">Paola Rodriguez Hidalgo</a>, <a href="/search/astro-ph?searchtype=author&query=Shields%2C+J">Joseph Shields</a>, <a href="/search/astro-ph?searchtype=author&query=Charlton%2C+J">Jane Charlton</a>, <a href="/search/astro-ph?searchtype=author&query=Eracleous%2C+M">Michael Eracleous</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.0201v1-abstract-short" style="display: inline;"> We describe two studies designed to characterize the total column densities, kinetic energies, and acceleration physics of broad absorption line (BAL) outflows in quasars. The first study uses new Chandra X-ray and ground-based rest-frame UV observations of 7 quasars with mini-BALs at extreme high speeds, in the range 0.1c to 0.2c, to test the idea that strong radiative shielding is needed to mode… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.0201v1-abstract-full').style.display = 'inline'; document.getElementById('1302.0201v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.0201v1-abstract-full" style="display: none;"> We describe two studies designed to characterize the total column densities, kinetic energies, and acceleration physics of broad absorption line (BAL) outflows in quasars. The first study uses new Chandra X-ray and ground-based rest-frame UV observations of 7 quasars with mini-BALs at extreme high speeds, in the range 0.1c to 0.2c, to test the idea that strong radiative shielding is needed to moderate the mini-BAL ionizations and facilitate their acceleration to extreme speeds. We find that the X-ray absorption is weak or absent, with generally N_H < few x 10^22 mc^-2, and that radiative shielding is not important. We argue that the mini-BAL ionizations are controlled, instead, by high gas densities of order n_H ~ 4 x 10^8 cm^-3 in small outflow substructures. If we conservatively assume that the total column density in the mini-BAL gas is N_H < 10^22 cm^-2, covering >15% of the UV continuum source along our lines of sight (based on measured line depths), then the radial thickness of these outflows is only Delta_R < 3 x 10^13 cm and their transverse size is > 8 x 10^15 cm. Thus the outflow regions have the shape of very thin "pancakes" viewed face-on, or they occupy larger volumes like a spray of dense cloudlets with a very small volume filling factor. We speculate that this situation (with ineffective shielding and small dense outflow substructures) applies to most quasar outflows, including BALs. Our second study focuses from BALs of low-abundance ions, mainly PV 1118,1128 A, whose significant strengths imply large column densities, N_H > 10^22 cm^-2, that can further challenge models of the outflow acceleration. In spite of the difficulties of finding this line in the Ly-alpha forest, a search through the SDSS DR9 quasar catalog reveals >50 BAL sources at redshifts z>2.3 with strong PV BALs, which we are now using to characterize the general properties of high-column outflows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.0201v1-abstract-full').style.display = 'none'; document.getElementById('1302.0201v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">proceedings article for Nuclei of Seyfert galaxies and QSOs - Central engine & conditions of star formation, Bonn, Germany, 2012</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.5009">arXiv:1301.5009</a> <span> [<a href="https://arxiv.org/pdf/1301.5009">pdf</a>, <a href="https://arxiv.org/ps/1301.5009">ps</a>, <a href="https://arxiv.org/format/1301.5009">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/769/1/53">10.1088/0004-637X/769/1/53 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Structure of the X-ray and Optical Emitting Regions of the Lensed Quasar Q 2237+0305 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Mosquera%2C+A+M">A. M. Mosquera</a>, <a href="/search/astro-ph?searchtype=author&query=Kochanek%2C+C+S">C. S. Kochanek</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+B">B. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">X. Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Blackburne%2C+J+A">J. A. Blackburne</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.5009v1-abstract-short" style="display: inline;"> We use gravitational microlensing to determine the size of the X-ray and optical emission regions of the quadruple lens system Q 2237+0305. The optical half-light radius, log(R_{1/2,V}/cm)=16.41\pm0.18 (at lambda_{rest}=2018 脜), is significantly larger than the observed soft, log(R_{1/2,soft}/cm)=15.76^{+0.41}_{-0.34} (1.1-3.5 keV in the rest frame), and hard, log(R_{1/2,hard}/cm)=15.46^{+0.34}_{-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.5009v1-abstract-full').style.display = 'inline'; document.getElementById('1301.5009v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.5009v1-abstract-full" style="display: none;"> We use gravitational microlensing to determine the size of the X-ray and optical emission regions of the quadruple lens system Q 2237+0305. The optical half-light radius, log(R_{1/2,V}/cm)=16.41\pm0.18 (at lambda_{rest}=2018 脜), is significantly larger than the observed soft, log(R_{1/2,soft}/cm)=15.76^{+0.41}_{-0.34} (1.1-3.5 keV in the rest frame), and hard, log(R_{1/2,hard}/cm)=15.46^{+0.34}_{-0.29} (3.5-21.5 keV in the rest frame), band X-ray emission. There is a weak evidence that the hard component is more compact than the soft, with log(R_{1/2,soft}/R_{1/2,hard}) \sim 0.30^{+0.53}_{-0.45}. This wavelength-dependent structure agrees with recent results found in other lens systems using microlensing techniques, and favors geometries in which the corona is concentrated near the inner edge of the accretion disk. While the available measurements are limited, the size of the X-ray emission region appears to be roughly proportional to the mass of the central black hole. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.5009v1-abstract-full').style.display = 'none'; document.getElementById('1301.5009v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.6587">arXiv:1205.6587</a> <span> [<a href="https://arxiv.org/pdf/1205.6587">pdf</a>, <a href="https://arxiv.org/ps/1205.6587">ps</a>, <a href="https://arxiv.org/format/1205.6587">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201219481">10.1051/0004-6361/201219481 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HS 1700+6416: the first high redshift non lensed NAL-QSO showing variable high velocity outflows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lanzuisi%2C+G">G. Lanzuisi</a>, <a href="/search/astro-ph?searchtype=author&query=Giustini%2C+M">M. Giustini</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">M. Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">M. Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Malaguti%2C+G">G. Malaguti</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.6587v1-abstract-short" style="display: inline;"> We present a detailed analysis of the X-ray emission of HS 1700+6416, a high redshift (z=2.7348), luminous quasar, classified as a Narrow Absorption Line (NAL) quasar on the basis of its SDSS spectrum. The source has been observed 9 times by Chandra and once by XMM from 2000 to 2007. Long term variability is clearly detected, between the observations, in the 2-10 keV flux varying by a factor of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.6587v1-abstract-full').style.display = 'inline'; document.getElementById('1205.6587v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.6587v1-abstract-full" style="display: none;"> We present a detailed analysis of the X-ray emission of HS 1700+6416, a high redshift (z=2.7348), luminous quasar, classified as a Narrow Absorption Line (NAL) quasar on the basis of its SDSS spectrum. The source has been observed 9 times by Chandra and once by XMM from 2000 to 2007. Long term variability is clearly detected, between the observations, in the 2-10 keV flux varying by a factor of three (~3-9x10^-14 erg s^-1 cm^-2) and in the amount of neutral absorption (Nh < 10^22 cm^-2 in 2000 and 2002 and Nh=4.4+-1.2x10^22 cm^-2 in 2007). Most interestingly, one broad absorption feature is clearly detected at 10.3+-0.7 keV (rest frame) in the 2000 Chandra observation, while two similar features, at 8.9+-0.4 and at 12.5+-0.7 keV, are visible when the 8 contiguous Chandra observations of 2007 are stacked together. In the XMM observation of 2002, strongly affected by background flares, there is a hint for a similar feature at 8.0+-0.3 keV. We interpreted these features as absorption lines from a high velocity, highly ionized (i.e. Fe XXV, FeXXVI) outflowing gas. In this scenario, the outflow velocities inferred are in the range v=0.12-0.59c. To reproduce the observed features, the gas must have high column density (Nh>3x10^23 cm^-2), high ionization parameter (log(xi)>3.3 erg cm s^-1) and a large range of velocities (Delta V~10^4 km s^-1). This Absorption Line QSO is the fourth high-z quasar displaying X-ray signatures of variable, high velocity outflows, and among these, is the only one non-lensed. A rough estimate of the minimum kinetic energy carried by the wind of up to 18% L(bol), based on a biconical geometry of the wind, implies that the amount of energy injected in the outflow environment is large enough to produce effective mechanical feedback. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.6587v1-abstract-full').style.display = 'none'; document.getElementById('1205.6587v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures. Accepted for publication in Astronomy and Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.4727">arXiv:1205.4727</a> <span> [<a href="https://arxiv.org/pdf/1205.4727">pdf</a>, <a href="https://arxiv.org/ps/1205.4727">ps</a>, <a href="https://arxiv.org/format/1205.4727">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/756/1/52">10.1088/0004-637X/756/1/52 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Further Evidence that Quasar X-Ray Emitting Regions Are Compact: X-Ray and Optical Microlensing in the Lensed Quasar Q J0158-4325 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Morgan%2C+C+W">Christopher W. Morgan</a>, <a href="/search/astro-ph?searchtype=author&query=Hainline%2C+L+J">Laura J. Hainline</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+B">Bin Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Tewes%2C+M">Malte Tewes</a>, <a href="/search/astro-ph?searchtype=author&query=Kochanek%2C+C+S">Christopher S. Kochanek</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">Xinyu Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Kozlowski%2C+S">Szymon Kozlowski</a>, <a href="/search/astro-ph?searchtype=author&query=Blackburne%2C+J+A">Jeffrey A. Blackburne</a>, <a href="/search/astro-ph?searchtype=author&query=Mosquera%2C+A+M">Ana M. Mosquera</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Courbin%2C+F">Frederic Courbin</a>, <a href="/search/astro-ph?searchtype=author&query=Meylan%2C+G">Georges Meylan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.4727v1-abstract-short" style="display: inline;"> We present four new seasons of optical monitoring data and six epochs of X-ray photometry for the doubly-imaged lensed quasar Q J0158-4325. The high-amplitude, short-period microlensing variability for which this system is known has historically precluded a time delay measurement by conventional methods. We attempt to circumvent this limitation by application of a Monte Carlo microlensing analysis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.4727v1-abstract-full').style.display = 'inline'; document.getElementById('1205.4727v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.4727v1-abstract-full" style="display: none;"> We present four new seasons of optical monitoring data and six epochs of X-ray photometry for the doubly-imaged lensed quasar Q J0158-4325. The high-amplitude, short-period microlensing variability for which this system is known has historically precluded a time delay measurement by conventional methods. We attempt to circumvent this limitation by application of a Monte Carlo microlensing analysis technique, but we are only able to prove that the delay must have the expected sign (image A leads image B). Despite our failure to robustly measure the time delay, we successfully model the microlensing at optical and X-ray wavelengths to find a half light radius for soft X-ray emission log(r_{1/2,X,soft}/cm) = 14.3^{+0.4}_{-0.5}, an upper limit on the half-light radius for hard X-ray emission log(r_{1/2,X,hard}/cm) <= 14.6 and a refined estimate of the inclination-corrected scale radius of the optical R-band (rest frame 3100 Angstrom) continuum emission region of log(r_s/cm) = 15.6+-0.3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.4727v1-abstract-full').style.display = 'none'; document.getElementById('1205.4727v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.4480">arXiv:1204.4480</a> <span> [<a href="https://arxiv.org/pdf/1204.4480">pdf</a>, <a href="https://arxiv.org/ps/1204.4480">ps</a>, <a href="https://arxiv.org/format/1204.4480">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/757/2/137">10.1088/0004-637X/757/2/137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing the Structure of an Accretion Disk Through Energy Dependent X-ray Microlensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Kochanek%2C+C+S">C. S. Kochanek</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">X. Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Moore%2C+D">D. Moore</a>, <a href="/search/astro-ph?searchtype=author&query=Mosquera%2C+A+M">A. M. Mosquera</a>, <a href="/search/astro-ph?searchtype=author&query=Blackburne%2C+J+A">J. A. Blackburne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.4480v1-abstract-short" style="display: inline;"> We present results from monitoring observations of the gravitationally lensed quasar RX J1131-1231 performed with the Chandra X-ray Observatory. The X-ray observations were planned with relatively long exposures that allowed a search for energy-dependent microlensing in the soft (0.2-2 keV) and hard (2-10 keV) light curves of the images of RX J1131-1231. We detect significant microlensing in the X… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.4480v1-abstract-full').style.display = 'inline'; document.getElementById('1204.4480v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.4480v1-abstract-full" style="display: none;"> We present results from monitoring observations of the gravitationally lensed quasar RX J1131-1231 performed with the Chandra X-ray Observatory. The X-ray observations were planned with relatively long exposures that allowed a search for energy-dependent microlensing in the soft (0.2-2 keV) and hard (2-10 keV) light curves of the images of RX J1131-1231. We detect significant microlensing in the X-ray light-curves of images A and D, and energy-dependent microlensing of image D. The magnification of the soft band appears to be larger than that in the hard band by a factor of ~ 1.3 when image D becomes more magnified. This can be explained by the difference between a compact, softer-spectrum corona that is producing a more extended, harder spectrum reflection component off the disk. This is supported by the evolution of the fluorescent iron line in image D over three consecutive time-averaged phases of the light curve. In the first period, a Fe line at E = 6.36(-0.16,+0.13) keV is detected (at > 99% confidence). In the second period, two Fe lines are detected, one at E = 5.47(-0.08,+0.06) keV (detected at > 99% confidence) and another at E = 6.02(-0.07,+0.09) keV (marginally detected at > 90% confidence), and in the third period, a broadened Fe line at 6.42(-0.15,+0.19) keV is detected (at > 99% confidence). This evolution of the Fe line profile during the microlensing event is consistent with the line distortion expected when a caustic passes over the inner disk where the shape of the fluorescent Fe line is distorted by General Relativistic and Doppler effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.4480v1-abstract-full').style.display = 'none'; document.getElementById('1204.4480v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, includes 10 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.5304">arXiv:1202.5304</a> <span> [<a href="https://arxiv.org/pdf/1202.5304">pdf</a>, <a href="https://arxiv.org/ps/1202.5304">ps</a>, <a href="https://arxiv.org/format/1202.5304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/755/1/24">10.1088/0004-637X/755/1/24 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray Monitoring of Gravitational Lenses With Chandra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chen%2C+B">Bin Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">Xinyu Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Kochanek%2C+C+S">Christopher S. Kochanek</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Blackburne%2C+J+A">Jeffery A. Blackburne</a>, <a href="/search/astro-ph?searchtype=author&query=Morgan%2C+C+W">Christopher W. Morgan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.5304v1-abstract-short" style="display: inline;"> We present \emph{Chandra} monitoring data for six gravitationally lensed quasars: QJ 0158$-$4325, HE 0435$-$1223, HE 1104$-$1805, SDSS 0924+0219, SDSS 1004+4112, and Q 2237+0305. We detect X-ray microlensing variability in all six lenses with high confidence. We detect energy dependent microlensing in HE 0435$-$1223, SDSS 1004+4112, SDSS 0924+0219 and Q 2237+0305. We present a detailed spectral an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.5304v1-abstract-full').style.display = 'inline'; document.getElementById('1202.5304v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.5304v1-abstract-full" style="display: none;"> We present \emph{Chandra} monitoring data for six gravitationally lensed quasars: QJ 0158$-$4325, HE 0435$-$1223, HE 1104$-$1805, SDSS 0924+0219, SDSS 1004+4112, and Q 2237+0305. We detect X-ray microlensing variability in all six lenses with high confidence. We detect energy dependent microlensing in HE 0435$-$1223, SDSS 1004+4112, SDSS 0924+0219 and Q 2237+0305. We present a detailed spectral analysis for each lens, and find that simple power-law models plus Gaussian emission lines give good fits to the spectra. We detect intrinsic spectral variability in two epochs of Q 2237+0305. We detect differential absorption between images in four lenses. We also detect the \feka\ emission line in all six lenses, and the Ni XXVII K$伪$ line in two images of Q 2237+0305. The rest frame equivalent widths of the \feka\ lines are measured to be 0.4--1.2 keV, significantly higher than those measured in typical active galactic nuclei of similar X-ray luminosities. This suggests that the \feka\ emission region is more compact or centrally concentrated than the continuum emission region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.5304v1-abstract-full').style.display = 'none'; document.getElementById('1202.5304v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">55 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.3750">arXiv:1112.3750</a> <span> [<a href="https://arxiv.org/pdf/1112.3750">pdf</a>, <a href="https://arxiv.org/ps/1112.3750">ps</a>, <a href="https://arxiv.org/format/1112.3750">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Variable X-ray absorption in the mini-broad absorption line quasar PG 1126-041 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Giustini%2C+M">Margherita Giustini</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">Massimo Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">Mauro Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Eracleous%2C+M">Mike Eracleous</a>, <a href="/search/astro-ph?searchtype=author&query=Ponti%2C+G">Gabriele Ponti</a>, <a href="/search/astro-ph?searchtype=author&query=Proga%2C+D">Daniel Proga</a>, <a href="/search/astro-ph?searchtype=author&query=Tombesi%2C+F">Francesco Tombesi</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">Cristian Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Palumbo%2C+G+G+C">Giorgio G. C. Palumbo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.3750v1-abstract-short" style="display: inline;"> We present the results of a multi-epoch observational campaign on the mini-broad absorption line quasar (mini-BAL QSO) PG 1126-041 performed with XMM-Newton from 2004 to 2009. Time-resolved X-ray spectroscopy and simultaneous UV and X-ray photometry were performed on the most complete set of observations and on the deepest X-ray exposure of a mini-BAL QSO to date. Complex X-ray spectral variabilit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.3750v1-abstract-full').style.display = 'inline'; document.getElementById('1112.3750v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.3750v1-abstract-full" style="display: none;"> We present the results of a multi-epoch observational campaign on the mini-broad absorption line quasar (mini-BAL QSO) PG 1126-041 performed with XMM-Newton from 2004 to 2009. Time-resolved X-ray spectroscopy and simultaneous UV and X-ray photometry were performed on the most complete set of observations and on the deepest X-ray exposure of a mini-BAL QSO to date. Complex X-ray spectral variability, found on time scales of both months and hours, is best reproduced by means of variable and massive ionized absorbers along the line of sight. In the highest signal-to-noise observation, highly-ionized X-ray absorbing material outflowing much faster than the UV absorbing one is detected. This highly-ionized absorber is found to be variable on very short time scales of a few hours. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.3750v1-abstract-full').style.display = 'none'; document.getElementById('1112.3750v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures. Proceedings for a talk given at the "AGN winds in Charleston" conference, Charleston (SC), October 2011. To be published by the Astronomical Society of the Pacific Conference Series</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.0027">arXiv:1112.0027</a> <span> [<a href="https://arxiv.org/pdf/1112.0027">pdf</a>, <a href="https://arxiv.org/format/1112.0027">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/789/2/125">10.1088/0004-637X/789/2/125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Optical, Ultraviolet, and X-ray Structure of the Quasar HE 0435-1223 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Blackburne%2C+J+A">Jeffrey A. Blackburne</a>, <a href="/search/astro-ph?searchtype=author&query=Kochanek%2C+C+S">Christopher S. Kochanek</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+B">Bin Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">Xinyu Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.0027v2-abstract-short" style="display: inline;"> Microlensing has proven an effective probe of the structure of the innermost regions of quasars, and an important test of accretion disk models. We present light curves of the lensed quasar HE 0435-1223 in the R band and in the ultraviolet, and consider them together with X-ray light curves in two energy bands that are presented in a companion paper. Using a Bayesian Monte Carlo method, we constra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.0027v2-abstract-full').style.display = 'inline'; document.getElementById('1112.0027v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.0027v2-abstract-full" style="display: none;"> Microlensing has proven an effective probe of the structure of the innermost regions of quasars, and an important test of accretion disk models. We present light curves of the lensed quasar HE 0435-1223 in the R band and in the ultraviolet, and consider them together with X-ray light curves in two energy bands that are presented in a companion paper. Using a Bayesian Monte Carlo method, we constrain the size of the accretion disk in the rest-frame near- and far-UV, and constrain for the first time the size of the X-ray emission regions in two X-ray energy bands. The R-band scale size of the accretion disk is about 10^15.23 cm (~23 r_g), slightly smaller than previous estimates, but larger than would be predicted from the quasar flux. In the UV, the source size is weakly constrained, with a strong prior dependence. The UV to R-band size ratio is consistent with the thin disk model prediction, with large error bars. In soft and hard X-rays, the source size is smaller than ~10^14.8 cm (~10 r_g) at 95% confidence. We do not find evidence of structure in the X-ray emission region, as the most likely value for the ratio of the hard X-ray size to the soft X-ray size is unity. Finally, we find that the most likely value for the mean mass of stars in the lens galaxy is ~0.3 M_sun, consistent with other studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.0027v2-abstract-full').style.display = 'none'; document.getElementById('1112.0027v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures. Replaced with version accepted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.6026">arXiv:1109.6026</a> <span> [<a href="https://arxiv.org/pdf/1109.6026">pdf</a>, <a href="https://arxiv.org/ps/1109.6026">ps</a>, <a href="https://arxiv.org/format/1109.6026">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201117732">10.1051/0004-6361/201117732 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Variable X-ray absorption in the mini-BAL QSO PG 1126-041 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Giustini%2C+M">Margherita Giustini</a>, <a href="/search/astro-ph?searchtype=author&query=Cappi%2C+M">Massimo Cappi</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Dadina%2C+M">Mauro Dadina</a>, <a href="/search/astro-ph?searchtype=author&query=Eracleous%2C+M">Mike Eracleous</a>, <a href="/search/astro-ph?searchtype=author&query=Ponti%2C+G">Gabriele Ponti</a>, <a href="/search/astro-ph?searchtype=author&query=Proga%2C+D">Daniel Proga</a>, <a href="/search/astro-ph?searchtype=author&query=Tombesi%2C+F">Francesco Tombesi</a>, <a href="/search/astro-ph?searchtype=author&query=Vignali%2C+C">Cristian Vignali</a>, <a href="/search/astro-ph?searchtype=author&query=Palumbo%2C+G+G+C">Giorgio G. C. Palumbo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.6026v2-abstract-short" style="display: inline;"> X-ray studies of active galactic nuclei (AGN) with powerful nuclear winds are important for constraining the physics of the inner accretion/ejection flow around supermassive black holes (SMBHs) and for understanding the impact of such winds on the AGN environment. Our main scientific goal is to constrain the properties of the circum-nuclear matter close to the SMBH in the mini-broad absorption lin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.6026v2-abstract-full').style.display = 'inline'; document.getElementById('1109.6026v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.6026v2-abstract-full" style="display: none;"> X-ray studies of active galactic nuclei (AGN) with powerful nuclear winds are important for constraining the physics of the inner accretion/ejection flow around supermassive black holes (SMBHs) and for understanding the impact of such winds on the AGN environment. Our main scientific goal is to constrain the properties of the circum-nuclear matter close to the SMBH in the mini-broad absorption line quasar (mini-BAL QSO) PG 1126-041 using a multi-epoch observational campaign with XMM-Newton. We performed temporally resolved X-ray spectroscopy and simultaneous UV and X-ray photometry on the most complete set of observations and on the deepest X-ray exposure of a mini-BAL QSO ever. We found complex X-ray spectral variability on time scales of both months and hours, which is best reproduced by means of variable massive ionized absorbers along the line of sight. As a consequence, the observed optical-to-X-ray spectral index is found to be variable with time. In the highest signal-to-noise observation we detected highly ionized X-ray absorbing material outflowing much faster (v ~ 16500 km/s) than the UV absorbing one (v ~ 5000 km/s). This highly ionized absorber is found to be variable on very short (a few kiloseconds) time scales. Our findings are qualitatively consistent with line-driven accretion disk winds scenarios. Our observations have opened the time-resolved X-ray spectral analysis field for mini-BAL QSOs. Only with future deep studies will we be able to map the dynamics of the inner flow and understand the physics of AGN winds and their impact on the environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.6026v2-abstract-full').style.display = 'none'; document.getElementById('1109.6026v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Replaced to match the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 536, A49, 2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1106.6052">arXiv:1106.6052</a> <span> [<a href="https://arxiv.org/pdf/1106.6052">pdf</a>, <a href="https://arxiv.org/ps/1106.6052">ps</a>, <a href="https://arxiv.org/format/1106.6052">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2041-8205/740/2/L34">10.1088/2041-8205/740/2/L34 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of Energy Dependent X-ray Microlensing in Q2237+0305 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chen%2C+B">Bin Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+X">Xinyu Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Kochanek%2C+C+S">Christopher S. Kochanek</a>, <a href="/search/astro-ph?searchtype=author&query=Chartas%2C+G">George Chartas</a>, <a href="/search/astro-ph?searchtype=author&query=Blackburne%2C+J+A">Jeffrey A. Blackburne</a>, <a href="/search/astro-ph?searchtype=author&query=Kozlowski%2C+S">Szymon Kozlowski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1106.6052v1-abstract-short" style="display: inline;"> We present our long term Chandra X-ray monitoring data for the gravitationally lensed quasar Q2237+0305 with 20 epochs spanning 10 years. We easily detect microlensing variability between the images in the full (0.2--8 keV), soft (0.2--2 keV), and hard (2--8 keV) bands at very high confidence. We also detect, for the first time, chromatic microlensing differences between the soft and hard X-ray ba… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.6052v1-abstract-full').style.display = 'inline'; document.getElementById('1106.6052v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1106.6052v1-abstract-full" style="display: none;"> We present our long term Chandra X-ray monitoring data for the gravitationally lensed quasar Q2237+0305 with 20 epochs spanning 10 years. We easily detect microlensing variability between the images in the full (0.2--8 keV), soft (0.2--2 keV), and hard (2--8 keV) bands at very high confidence. We also detect, for the first time, chromatic microlensing differences between the soft and hard X-ray bands. The hard X-ray band is more strongly microlensed than the soft band, suggesting that the corona above the accretion disk thought to generate the X-rays has a non-uniform electron distribution, in which the hotter and more energetic electrons occupy more compact regions surrounding the black holes. Both the hard and soft X-ray bands are more strongly microlensed than the optical (restframe UV) emission, indicating that the X-ray emission is more compact than the optical, confirming the microlensing results from other lenses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.6052v1-abstract-full').style.display = 'none'; document.getElementById('1106.6052v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, and 1 table</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chartas%2C+G&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chartas%2C+G&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chartas%2C+G&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Chartas%2C+G&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>