CINXE.COM
Search results for: thermoplastic elastomer
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermoplastic elastomer</title> <meta name="description" content="Search results for: thermoplastic elastomer"> <meta name="keywords" content="thermoplastic elastomer"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermoplastic elastomer" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermoplastic elastomer"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 198</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermoplastic elastomer</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20V.%20W.%20H.%20Wickramaarachchi">W. V. W. H. Wickramaarachchi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Walpalage"> S. Walpalage</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Egodage"> S. M. Egodage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20elastomer" title="thermoplastic elastomer">thermoplastic elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber" title=" natural rubber"> natural rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20polyethylene" title=" high density polyethylene"> high density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=roofing%20material" title=" roofing material"> roofing material</a> </p> <a href="https://publications.waset.org/abstracts/106178/identification-of-the-best-blend-composition-of-natural-rubber-high-density-polyethylene-blends-for-roofing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> Numerical Study on the Static Characteristics of Novel Aerostatic Thrust Bearings Possessing Elastomer Capillary Restrictor and Bearing Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Lo">S. W. Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.-H.%20Lu"> S.-H. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Guo"> Y. H. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20Hsu"> L. C. Hsu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a novel design of aerostatic thrust bearing is proposed and is analyzed numerically. The capillary restrictor and bearing disk are made of elastomer like silicone and PU. The viscoelasticity of elastomer helps the capillary expand for more air flux and at the same time, allows conicity of the bearing surface to form when the air pressure is enhanced. Therefore, the bearing has the better ability of passive compensation. In the present example, as compared with the typical model, the new designs can nearly double the load capability and offer four times static stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerostatic" title="aerostatic">aerostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing" title=" bearing"> bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=elastomer" title=" elastomer"> elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20stiffness" title=" static stiffness"> static stiffness</a> </p> <a href="https://publications.waset.org/abstracts/7954/numerical-study-on-the-static-characteristics-of-novel-aerostatic-thrust-bearings-possessing-elastomer-capillary-restrictor-and-bearing-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Normally Closed Thermoplastic Microfluidic Valves with Microstructured Valve Seats: A Strategy to Avoid Permanently Bonded Valves during Channel Sealing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kebin%20Li">Kebin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Morton"> Keith Morton</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Shiu"> Matthew Shiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Karine%20Turcotte"> Karine Turcotte</a>, <a href="https://publications.waset.org/abstracts/search?q=Luke%20Lukic"> Luke Lukic</a>, <a href="https://publications.waset.org/abstracts/search?q=Teodor%20Veres"> Teodor Veres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a normally closed thermoplastic microfluidic valve design that uses microstructured valve seats to locally prevent the membrane from bonding to the valve seat during microfluidic channel sealing. The microstructured valve seat reduces the adhesion force between the contact surfaces of the valve seat and the membrane locally, allowing valve open and close operations while simultaneously providing a permanent and robust bond elsewhere to cover and seal the microfluidic channel network. Dynamic valve operation including opening and closing times can be tuned by changing the valve seat diameter as well as the density of the microstructures on the valve seats. The influence of the microstructured valve seat on the general flow behavior through the microfluidic devices was also studied. A design window for the fabrication of valve structure is identified and discussed to minimize the fabrication complexity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot-embossing" title="hot-embossing">hot-embossing</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title=" injection molding"> injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=microfabrication" title=" microfabrication"> microfabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=microvalves" title=" microvalves"> microvalves</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20elastomer" title=" thermoplastic elastomer"> thermoplastic elastomer</a> </p> <a href="https://publications.waset.org/abstracts/104819/normally-closed-thermoplastic-microfluidic-valves-with-microstructured-valve-seats-a-strategy-to-avoid-permanently-bonded-valves-during-channel-sealing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> Bending Test Characteristics for Splicing of Thermoplastic Polymer Using Hot Gas Welding </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prantasi%20Harmi%20%20Tjahjanti">Prantasi Harmi Tjahjanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Iswanto%20Iswanto"> Iswanto Iswanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Edi%20%20Widodo"> Edi Widodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sholeh%20%20Pamuji"> Sholeh Pamuji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Materials of the thermoplastic polymer when they break is usually thrown away, or is recycled which requires a long process. The purpose of this study is to splice the broken thermoplastic polymer using hot gas welding with different variations of welding wire/electrodes. Materials of thermoplastic polymer used are Polyethylene (PE), Polypropylene (PP), and Polyvinyl chloride (PVC) by using welding wire like the three materials. The method is carried out by using hot gas welding; there are two materials that cannot be connected, namely PE with PVC welding wire, and PP with PVC welding wire. The permeable liquid penetrant test is PP with PE welding wire, and PVC with PE welding wire. The best bending test result with the longest elongation is PE with PE welding wire with a bending test value of 179.03 kgf/mm². The microstructure was all described in Scanning Electron Microscopy (SEM) observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers" title="thermoplastic polymers">thermoplastic polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title=" bending test"> bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20%28PE%29" title=" polyethylene (PE)"> polyethylene (PE)</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20%28PP%29" title=" polypropylene (PP)"> polypropylene (PP)</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20chloride%20%28PVC%29" title=" polyvinyl chloride (PVC)"> polyvinyl chloride (PVC)</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20gas%20welding" title=" hot gas welding"> hot gas welding</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title=" bending test"> bending test</a> </p> <a href="https://publications.waset.org/abstracts/136833/bending-test-characteristics-for-splicing-of-thermoplastic-polymer-using-hot-gas-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Korsacilar">D. Korsacilar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Atas"> C. Atas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, first thermoplastic composite materials/plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber configuration effect on mechanical properties, unidirectional and biaxial prepregs were used. Then the microstructural properties of the composites were investigated with scanning electron microscopy (SEM) analysis. Impact properties of the composites were examined by Charpy impact test and tensile mechanical tests and then the effects of ultraviolet irradiation were investigated on mechanical performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistic" title="ballistic">ballistic</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic" title=" thermoplastic"> thermoplastic</a>, <a href="https://publications.waset.org/abstracts/search?q=prepreg" title=" prepreg"> prepreg</a> </p> <a href="https://publications.waset.org/abstracts/13953/production-and-mechanical-characterization-of-ballistic-thermoplastic-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Glass and Polypropylene Combinations for Thermoplastic Preforms </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hireni%20Mankodi">Hireni Mankodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The textile preforms for thermoplastic composite play a key role in providing the mechanical properties and gives the idea about preparing combination of yarn from Glass, Basalt, Carbon as reinforcement and PP, PET, Nylon as thermoplastic matrix at yarn stage for preforms to improve the quality and performance of laminates. The main objectives of this work are to develop the hybrid yarn using different yarn manufacturing process and prepare different performs using hybrid yarns. It has been observed that the glass/pp combination give homogeneous distribution in yarn. The proportion varied to optimize the glass/pp composition. The different preform has been prepared with combination of hybrid yarn, PP, glass combination. Further studies will investigate the effect of glass content in fabric, effect of weave, warps and filling density, number of layer plays significant role in deciding mechanical properties of thermoplastic laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic" title="thermoplastic">thermoplastic</a>, <a href="https://publications.waset.org/abstracts/search?q=preform" title=" preform"> preform</a>, <a href="https://publications.waset.org/abstracts/search?q=laminates" title=" laminates"> laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20yarn" title=" hybrid yarn"> hybrid yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=glass" title=" glass"> glass</a> </p> <a href="https://publications.waset.org/abstracts/27376/glass-and-polypropylene-combinations-for-thermoplastic-preforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">581</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Thermoplastic Composites with Reduced Discoloration and Enhanced Fire-Retardant Property</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Cheng">Peng Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Liqing%20Wei"> Liqing Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyu%20Chen"> Hongyu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruomiao%20Wang"> Ruomiao Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a light-weight reinforced thermoplastic (LWRT) composite with superior fire retardancy. This porous LWRT composite is manufactured using polyolefin, fiberglass, and fire retardant additives via a wet-lay process. However, discoloration of the LWRT can be induced by various mechanisms, which may be a concern in the building and construction industry. It is commonly understood that discoloration is strongly associated with the presence of phenolic antioxidant(s) and NO<sub>x</sub>. The over-oxidation of phenolic antioxidant(s) is probably the root-cause of the discoloration (pinking/yellowing). Hanwha Azdel, Inc. developed a LWRT with fire-retardant property of ASTM E84-Class A specification, as well as negligible discoloration even under harsh conditions. In addition, this thermoplastic material is suitable for secondary processing (e.g. compression molding) if necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discoloration" title="discoloration">discoloration</a>, <a href="https://publications.waset.org/abstracts/search?q=fire-retardant" title=" fire-retardant"> fire-retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20composites" title=" thermoplastic composites"> thermoplastic composites</a>, <a href="https://publications.waset.org/abstracts/search?q=wet-lay%20process" title=" wet-lay process"> wet-lay process</a> </p> <a href="https://publications.waset.org/abstracts/111655/thermoplastic-composites-with-reduced-discoloration-and-enhanced-fire-retardant-property" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masato%20Nishi">Masato Nishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsushi%20Kaburagi"> Tetsushi Kaburagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masashi%20Kurose"> Masashi Kurose</a>, <a href="https://publications.waset.org/abstracts/search?q=Tei%20Hirashima"> Tei Hirashima</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsusei%20Kurasiki"> Tetsusei Kurasiki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20thermoplastic" title="carbon fiber reinforced thermoplastic">carbon fiber reinforced thermoplastic</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-impregnated%20textile%20composite" title=" pre-impregnated textile composite"> pre-impregnated textile composite</a>, <a href="https://publications.waset.org/abstracts/search?q=non-isothermal%20forming" title=" non-isothermal forming"> non-isothermal forming</a> </p> <a href="https://publications.waset.org/abstracts/12983/forming-simulation-of-thermoplastic-pre-impregnated-textile-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> Soft Exoskeleton Elastomer Pre-Tension Drive Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Yatsun">Andrey Yatsun</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Malchikov"> Andrei Malchikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exoskeletons are used to support and compensate for the load on the human musculoskeletal system. Elastomers are an important component of exoskeletons, providing additional support and compensating for the load. The algorithm of the active elastomer tension system provides the required auxiliary force depending on the angle of rotation and the tilt speed of the operator's torso. Feedback for the drive is provided by a force sensor integrated into the attachment of the exoskeleton vest. The use of direct force measurement ensures the required accuracy in all settings of the man-machine system. Non-adjustable elastic elements make it difficult to move without load, tilt forward and walk. A strategy for the organization of the auxiliary forces management system is proposed based on the allocation of 4 operating modes of the human-machine system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20exoskeleton" title="soft exoskeleton">soft exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-tension%20elastomer" title=" pre-tension elastomer"> pre-tension elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=human-machine%20interaction" title=" human-machine interaction"> human-machine interaction</a> </p> <a href="https://publications.waset.org/abstracts/183948/soft-exoskeleton-elastomer-pre-tension-drive-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> Enhancement of Interface Properties of Thermoplastic Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhan%20Ozbask">Reyhan Ozbask</a>, <a href="https://publications.waset.org/abstracts/search?q=Emek%20Moroydor%20Derin"> Emek Moroydor Derin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dogu"> Mustafa Dogu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are a limited number of global companies in the world that manufacture and commercially offer thermoplastic composite prepregs in accordance with aerospace requirements. High-performance thermoplastic materials supplied for aerospace structural applications are PEEK (polyetheretherketone), PPS (polyphenylsulfite), PEI (polyetherimide), and PEKK (polyetherketoneketone). Among these, PEEK is the raw material used in the first applications and has started to become widespread. However, the use of these thermoplastic raw materials in composite production is very difficult due to their high processing temperatures and impregnation difficulties. This study, it is aimed to develop carbon fiber-reinforced thermoplastic PEEK composites that comply with the requirements of the aviation industry that are superior mechanical properties as well as being lightweight. Therefore, it is aimed to obtain high-performance thermoplastic composite materials with improved interface properties by using the sizing method (suspension development through chemical synthesis and functionalization), to optimize the production process. The use of boron nitride nanotube as a bonding agent by modifying its surface constitutes the original aspect of the study as it has not been used in composite production with high-performance thermoplastic materials yet. For this purpose, laboratory-scale studies on the application of thermoplastic compatible sizing will be carried out in order to increase the fiber-matrix interfacial adhesion. The method respectively consists of the selection of appropriate sizing type, laboratory-scale carbon fiber (CF) / poly ether ether ketone (PEEK) polymer interface enhancement studies, manufacturing of laboratory-scale BNNT coated CF/PEEK woven prepreg composites and their tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20composite" title="carbon fiber reinforced composite">carbon fiber reinforced composite</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20enhancement" title=" interface enhancement"> interface enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20nitride%20nanotube" title=" boron nitride nanotube"> boron nitride nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20composite" title=" thermoplastic composite"> thermoplastic composite</a> </p> <a href="https://publications.waset.org/abstracts/141518/enhancement-of-interface-properties-of-thermoplastic-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Dielectric, Electrical and Magnetic Properties of Elastomer Filled with in situ Thermally Reduced Graphene Oxide and Spinel Ferrite NiFe₂O₄ Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghvendra%20Singh%20Yadav">Raghvendra Singh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Kuritka"> Ivo Kuritka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarmila%20Vilcakova"> Jarmila Vilcakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Urbanek"> Pavel Urbanek</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Machovsky"> Michal Machovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Skoda"> David Skoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Masar"> Milan Masar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The elastomer nanocomposites were synthesized by solution mixing method with an elastomer as a matrix and in situ thermally reduced graphene oxide (RGO) and spinel ferrite NiFe₂O₄ nanoparticles as filler. Spinel ferrite NiFe₂O₄ nanoparticles were prepared by the starch-assisted sol-gel auto-combustion method. The influence of filler on the microstructure, morphology, dielectric, electrical and magnetic properties of Reduced Graphene Oxide-Nickel Ferrite-Elastomer nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, the Dielectric Impedance analyzer, and vibrating sample magnetometer. Scanning electron microscopy study revealed that the fillers were incorporated in elastomer matrix homogeneously. The dielectric constant and dielectric tangent loss of nanocomposites was decreased with the increase of frequency, whereas, the dielectric constant increases with the addition of filler. Further, AC conductivity was increased with the increase of frequency and addition of fillers. Furthermore, the prepared nanocomposites exhibited ferromagnetic behavior. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer-matrix%20composites" title="polymer-matrix composites">polymer-matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles%20as%20filler" title=" nanoparticles as filler"> nanoparticles as filler</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20property" title=" dielectric property"> dielectric property</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20property" title=" magnetic property"> magnetic property</a> </p> <a href="https://publications.waset.org/abstracts/99277/dielectric-electrical-and-magnetic-properties-of-elastomer-filled-with-in-situ-thermally-reduced-graphene-oxide-and-spinel-ferrite-nife2o4-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Modeling and Simulation of Vibratory Behavior of Hybrid Smart Composite Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Aguib">Salah Aguib</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Chikh"> Noureddine Chikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmalek%20Khabli"> Abdelmalek Khabli</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Nour"> Abdelkader Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Djedid"> Toufik Djedid</a>, <a href="https://publications.waset.org/abstracts/search?q=Lallia%20Kobzili"> Lallia Kobzili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the behavior of a hybrid smart sandwich plate with a magnetorheological elastomer core. In order to improve the vibrational behavior of the plate, the pseudo‐fibers formed by the effect of the magnetic field on the elastomer charged by the ferromagnetic particles are oriented at 45° with respect to the direction of the magnetic field at 0°. Ritz's approach is taken to solve the physical problem. In order to verify and compare the results obtained by the Ritz approach, an analysis using the finite element method was carried out. The rheological property of the MRE material at 0° and at 45° are determined experimentally, The studied elastomer is prepared by a mixture of silicone oil, RTV141A polymer, and 30% of iron particles of total mixture, the mixture obtained is mixed for about 15 minutes to obtain an elastomer paste with good homogenization. In order to develop a magnetorheological elastomer (MRE), this paste is injected into an aluminum mold and subjected to a magnetic field. In our work, we have chosen an ideal percentage of filling of 30%, to obtain the best characteristics of the MRE. The mechanical characteristics obtained by dynamic mechanical viscoanalyzer (DMA) are used in the two numerical approaches. The natural frequencies and the modal damping of the sandwich plate are calculated and discussed for various magnetic field intensities. The results obtained by the two methods are compared. These off‐axis anisotropic MRE structures could open up new opportunities in various fields of aeronautics, aerospace, mechanical engineering and civil engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20smart%20sandwich%20plate" title="hybrid smart sandwich plate">hybrid smart sandwich plate</a>, <a href="https://publications.waset.org/abstracts/search?q=vibratory%20behavior" title=" vibratory behavior"> vibratory behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritz%20approach" title=" Ritz approach"> Ritz approach</a>, <a href="https://publications.waset.org/abstracts/search?q=MRE" title=" MRE"> MRE</a> </p> <a href="https://publications.waset.org/abstracts/177269/modeling-and-simulation-of-vibratory-behavior-of-hybrid-smart-composite-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> Magnetorheological Silicone Composites Filled with Micro- and Nano-Sized Magnetites with the Addition of Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mas%C5%82owski">M. Masłowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zaborski"> M. Zaborski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetorheological elastomer composites based on micro- and nano-sized Fe3O4 magnetoactive fillers in silicone rubber are reported and studied. To improve the dispersion of applied fillers in polymer matrix, ionic liquids such as 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium trifluoromethanesulfonate,1-butyl-3-methylimidazolium tetrafluoroborate, trihexyltetradecylphosphonium chloride were added during the process of composites preparation. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy), similarly to ferromagnetic particles content and theirs quantity. Micro and non-sized magnetites were active fillers improving the mechanical properties of elastomers. They also changed magnetic properties and reinforced the magnetorheological effect of composites. Application of ionic liquids as dispersing agents influenced the dispersion of magnetic fillers in the elastomer matrix. Scanning electron microscopy images used to observe magnetorheological elastomer microstructures proved that the dispersion improvement had a significant effect on the composites properties. Moreover, the particles orientation and their arrangement in the elastomer investigated by vibration sample magnetometer showed the correlation between MRE microstructure and their magnetic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20elastomers" title="magnetorheological elastomers">magnetorheological elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxides" title=" iron oxides"> iron oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a> </p> <a href="https://publications.waset.org/abstracts/9033/magnetorheological-silicone-composites-filled-with-micro-and-nano-sized-magnetites-with-the-addition-of-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Pultrusion of Side by Side Glass/Polypropylene Fibers: Study of Flexural and Shear Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Ataee">Behrooz Ataee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Golzar"> Mohammad Golzar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of using side by side (SBS) hybrid yarn in pultrusion thermoplastic method is reprisal the effect of high viscosity in melted thermoplastic and reduction of distance between reinforced fiber and melted thermoplastic. SBS hybrid fiber yarn composed of thermoplastic fibers and fiber reinforcement should be produced in the preparation of pultruded thermoplastic composites prepreg to reach better impregnation. An experimental set-up was designed and built to pultrude continues polypropylene and glass fiber to get obtain a suitable impregnated round prepregs. In final stage, the round prepregs come together to produce rectangular profile. Higher fiber volume fraction produces higher void volume fraction, however the second stage of the production process of rectangular profile and the cold die decrease 50% of the void volume fraction. Results show that whit increasing void volume fraction, flexural and shear strength decrease. Also, under certain conditions of parameters the pultruded profiles exhibit better flexural and shear strength. The pulling speed seems to have the greatest influence on the profile quality. In addition, adding cold die strongly increases the surface quality of rectangular profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20pultrusion" title="thermoplastic pultrusion">thermoplastic pultrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20pultrusion" title=" hybrid pultrusion"> hybrid pultrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=side-by-side%20fibers" title=" side-by-side fibers"> side-by-side fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=impregnation" title=" impregnation"> impregnation</a> </p> <a href="https://publications.waset.org/abstracts/57363/pultrusion-of-side-by-side-glasspolypropylene-fibers-study-of-flexural-and-shear-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Reactive Blending of Thermoplastic Starch, Ethylene-1-Butene Rubber, and Chitosan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittisak%20Jantanasakulwong">Kittisak Jantanasakulwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiaki%20Ougizawa"> Toshiaki Ougizawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoplastic starch (TPS) was prepared by melt-blending of cassava starch with glycerol (70/30 wt%/wt%) at 130 ◦C for 10 min. Chitosan (CTS) was used as a compatibilizer. TPS/CTS blend was melt-blended with maleic anhydride grafted ethylene-1-butene rubber (EB-MAH) in the composition of 80/20 respectively. Addition of CTS in TPS/EB-MAH blend decreased particles size of EB-MAH rubber to 1µm in TPS matrix. Mechanical properties, solubility, swelling property, morphology, and water contact angle of TPS/EB-MAH blend were improved by CTS incorporation. FTIR confirmed a reaction had occurred between amino groups (-NH2) of CTS and the MAH groups of EB-MAH. This reaction and the enhanced miscibility between TPS and CTS improved morphology and properties of the TPS/EB-MAH/CTS blend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20starch" title="thermoplastic starch">thermoplastic starch</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber" title=" rubber"> rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20blending" title=" reactive blending"> reactive blending</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a> </p> <a href="https://publications.waset.org/abstracts/79632/reactive-blending-of-thermoplastic-starch-ethylene-1-butene-rubber-and-chitosan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Study on the Voltage Induced Wrinkling of Elastomer with Different Electrode Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhende%20Hou">Zhende Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20Yang"> Fan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoli%20Zhang"> Guoli Zhang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dielectric elastomer is a promising class of Electroactive polymers which can deform in response to an applied electric field. Comparing general smart material, the Dielectric elastomer is more compliance and can achieve higher energy density, which can be for diverse applications such as actuators, artificial muscles, soft robotics, and energy harvesters. The coupling of the Electroactive polymers and the electric field is that the elastomer is sandwiched between two compliant electrodes and when the electrodes are subjected to a voltage, the positive and negative charges on the two electrodes compress the polymer, so that the polymer reduces in thickness and expands in area. However, the pre-stretched dielectric elastomer film not only can achieve large electric-field induced deformation but also is prone to wrinkling, under the interaction of its own strain energy and the applied electric field energy. For a uniaxially pre-stretched dielectric elastomer film, the electrode area is an important parameter to the electric-field induced deformation and may also be a key factor affecting the film wrinkling. To determine and quantify the effect experimentally, VHB 9473 tapes were employed and compliant electrodes with different areas were pant on each of them. The tape was first tensed to a uniaxial stretch of 8. Then a DC voltage was applied to the electrodes and increased gradually until wrinkling occurred in the film. Then, the critical wrinkling voltages of the film with different electrode areas were obtained, and the wrinkle wavelengths were obtained simultaneously for analyzing the wrinkling characteristics. Experimental results indicate when the electrode area is smaller the wrinkling voltage is higher, and with the increases of electrode area, the wrinkling voltage decreases rapidly until a specific area. Beyond that, the wrinkling voltage becomes larger gradually with the increases of the area. While the wrinkle wavelength decreases gradually with the increase of voltage monotonically. That is, the relation between the critical wrinkling voltage and the electrode areas is U-shaped. Analysis believes that the film wrinkling is a kind of local effect, the interaction and the energy transfer between electrode region and non-electrode region have great influence on wrinkling. In the experiment, very thin copper wires are used as the electrode leads that just contact with the electrodes, which can avoid the stiffness of the leads affecting the wrinkling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastomers" title="elastomers">elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20stretch" title=" uniaxial stretch"> uniaxial stretch</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20area" title=" electrode area"> electrode area</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkling" title=" wrinkling"> wrinkling</a> </p> <a href="https://publications.waset.org/abstracts/93758/study-on-the-voltage-induced-wrinkling-of-elastomer-with-different-electrode-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merve%20Tunay%20%C3%87etin">Merve Tunay Çetin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kur%C5%9Fun"> Ali Kurşun</a>, <a href="https://publications.waset.org/abstracts/search?q=Erhan%20%C3%87etin"> Erhan Çetin</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Aykul"> Halil Aykul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene is put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3 min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cantilever%20beam" title="cantilever beam">cantilever beam</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20stress%20analysis" title=" elastic stress analysis"> elastic stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation%20angle" title=" orientation angle"> orientation angle</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic" title=" thermoplastic "> thermoplastic </a> </p> <a href="https://publications.waset.org/abstracts/2632/elastic-stress-analysis-of-composite-cantilever-beam-loaded-uniformly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Elastomer Composites Containing Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Maciejewska">M. Maciejewska</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Walkiewicz"> F. Walkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to study the activity of several novel benzalkonium and alkylammonium and alkylimidazolium ionic liquids with 2-mercaptobenzothiazolate for use as accelerators in the sulphur vulcanisation of butadiene-styrene elastomer (SBR). The application of novel ionic liquids allowed for the elimination of N-cyclohexyl-2-benzothiazolesulfenamide from SBR compounds and for the considerable reduction of the amount of 2-mercaptobenzothiazole present in rubber products, which is favourable because, it is an allergenic agent. Synthesised salts could be used alternatively to standard accelerators in the vulcanisation of SBR, without any detrimental effects on the vulcanisation process, the physical properties or the thermal stability of the obtained vulcanisates. Ionic liquids increased the crosslink density of the vulcanisates and improved their thermal stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title="ionic liquids">ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=styrene-butadiene%20rubber" title=" styrene-butadiene rubber"> styrene-butadiene rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=vulcanisation" title=" vulcanisation"> vulcanisation</a> </p> <a href="https://publications.waset.org/abstracts/16799/elastomer-composites-containing-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> The Study of the Physical, Chemical and Mechanical Properties of Recycled Thermoplastic Polypropylene and Polyamide Materials Used in the Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sevim%20Gecici">Sevim Gecici</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdinc%20Doganci"> Erdinc Doganci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoplastic materials are widely used in the automotive industry due to their lightweight nature, durability, recyclability and versatility in shaping. They serve various purposes in the automotive sector, including interior and exterior components, vehicle body parts and insulation. The recycling of thermoplastic polymer materials used in the automotive industry helps reduce waste and mitigate environmental impacts. The aim of this study is to facilitate the recycling of thermoplastic materials used in the automotive industry. Recycled materials, such as sprues and defective parts, are generated from thermoplastic polymer materials used in the automotive sector after the injection process. In this study, the physical, chemical and mechanical properties of the recycled parts obtained from the reprocessing of these materials were determined through various tests. Thermoplastic products (PP and PA) that were recycled after the injection process were processed through a grinding unit and then subjected to a second injection process with physical, chemical and mechanical tests applied to the resulting products. This is a result of the initial grinding process. The same procedures were applied to each thermoplastic material through a series of steps first injection, first grinding, second injection, second grinding, third injection, third grinding, fourth injection and fourth grinding, followed by product testing. Subsequently, the test results of the original raw material's Technical Data Sheet (TDS) were compared with the results obtained from the products after the injection process to determine the raw material based on physical, chemical and mechanical changes. The study included tests for Density, Melt Flow Rate, Tensile Modulus, Tensile Stress, Flexural Modulus (Injection Molded), Charpy Notched Impact Strength, Notched Izod Impact Strength, Shore Hardness, Heat Deflection Temperature, Vicat Softening Temperature and UV tests. Additionally, more specific tests such as Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Heat Aging, FTIR, SEM and TEM analyses were conducted to examine structural changes in thermoplastic materials subjected to multiple recycling processes. In the later stages of the study, injection molding process trials will be conducted with raw materials such as ABS, PC, PC-ABS and PE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title="injection molding">injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic" title=" thermoplastic"> thermoplastic</a> </p> <a href="https://publications.waset.org/abstracts/193126/the-study-of-the-physical-chemical-and-mechanical-properties-of-recycled-thermoplastic-polypropylene-and-polyamide-materials-used-in-the-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> Filler Elastomers Abrasion at Steady State: Optimal Use Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djeridi%20Rachid">Djeridi Rachid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ould%20Ouali%20Mohand"> Ould Ouali Mohand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The search of a mechanism for the elastomer abrasive wear study is an open issue. The practice difficulties are complex due to the complexity of deformation mechanism, to the complex mechanism of the material tearing and to the marked interactions between the tribological parameters. In this work, we present an experimental technique to study the elastomers abrasive wear. The interaction 'elastomer/indenter' implicate dependant ant temporary of different tribological parameters. Consequently, the phenomenon that governs this interaction is not easy to explain. An optimal elastomers compounding and an adequate utilization conditions of these materials that define its resistance at the abrasion is discussed. The results are confronted to theoretical models: the weight loss variation in function of blade angle or in function of cycle number is in agreement with rupture models and with the mechanism of fissures propagation during the material tearing in abrasive wear of filler elastomers. The weight loss in function of the sliding velocity shows the existence of a critical velocity that corresponds to the maximal wear. The adding of silica or black carbon influences in a different manner on wear abrasive behavior of filler elastomers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrasion%20wear" title="abrasion wear">abrasion wear</a>, <a href="https://publications.waset.org/abstracts/search?q=filler%20elastomer" title=" filler elastomer"> filler elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperelastic" title=" hyperelastic"> hyperelastic</a> </p> <a href="https://publications.waset.org/abstracts/25969/filler-elastomers-abrasion-at-steady-state-optimal-use-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> Horse Chestnut Starch: A Noble Inedible Feedstock Source for Producing Thermoplastic Starch (TPS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Casta%C3%B1o">J. Castaño</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rodriguez"> S. Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20L.%20Franco"> C. M. L. Franco </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starch isolated from non-edible A. hippocastanum seeds was characterized and used for preparing starch-based materials. The apparent amylose content of the isolated starch was 33.1%. The size of starch granules ranged from 0.7 to 35µm, and correlated with the shape of granules (spherical, oval and irregular). The chain length distribution profile of amylopectin showed two peaks, at polymerization degree (DP) of 12 and 41-43. Around 53% of branch unit chains had DP in the range of 11-20. A. hippocastanum starch displayed a typical C-type pattern and the maximum decomposition temperature was 317°C. Thermoplastic starch (TPS) prepared from A. hippocastanum with glycerol and processed by melt blending exhibited adequate mechanical and thermal properties. In contrast, plasticized TPS with glycerol:malic acid (1:1) showed lower thermal stability and a pasty and sticky behavior, indicating that malic acid accelerates degradation of starch during processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aesculus%20hippocastanum%20L." title="Aesculus hippocastanum L.">Aesculus hippocastanum L.</a>, <a href="https://publications.waset.org/abstracts/search?q=amylopectin%20structure" title=" amylopectin structure"> amylopectin structure</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20starch" title=" thermoplastic starch"> thermoplastic starch</a>, <a href="https://publications.waset.org/abstracts/search?q=non-edible%20source" title=" non-edible source"> non-edible source</a> </p> <a href="https://publications.waset.org/abstracts/19741/horse-chestnut-starch-a-noble-inedible-feedstock-source-for-producing-thermoplastic-starch-tps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Heating Behavior of Ni-Embedded Thermoplastic Polyurethane Adhesive Film by Induction Heating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=DuckHwan%20Bae">DuckHwan Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=YongSung%20Kwon"> YongSung Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Young%20Shon"> Min Young Shon</a>, <a href="https://publications.waset.org/abstracts/search?q=SanTaek%20Oh"> SanTaek Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=GuNi%20Kim"> GuNi Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heating behavior of nanometer and micrometer sized Nickel particle-imbedded thermoplastic polyurethane adhesive (TPU) under induction heating is examined in present study. The effects of particle size and content, TPU film thickness on heating behaviors were examined. The correlation between heating behavior and magnetic properties of Nickel particles were also studied. From the results, heat generation increased with increase of Nickel content and film thickness. However, in terms of particle sizes, heat generation of Nickel-imbedded TPU film were in order of 70nm>1µm>20 µm>70 µm and this results can explain by increasing ration of eddy heating to hysteresis heating with increase of particle size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20heating" title="induction heating">induction heating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polyurethane" title=" thermoplastic polyurethane"> thermoplastic polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20loss" title=" hysteresis loss"> hysteresis loss</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current%20loss" title=" eddy current loss"> eddy current loss</a>, <a href="https://publications.waset.org/abstracts/search?q=curie%20temperature" title=" curie temperature"> curie temperature</a> </p> <a href="https://publications.waset.org/abstracts/46412/heating-behavior-of-ni-embedded-thermoplastic-polyurethane-adhesive-film-by-induction-heating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> Ultrasonic Studies of Polyurea Elastomer Composites with Inorganic Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Samulionis">V. Samulionis</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Banys"> J. Banys</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S%C3%A1nchez-Ferrer"> A. Sánchez-Ferrer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inorganic nanoparticles are used for fabrication of various composites based on polymer materials because they exhibit a good homogeneity and solubility of the composite material. Multifunctional materials based on composites of a polymer containing inorganic nanotubes are expected to have a great impact on industrial applications in the future. An emerging family of such composites are polyurea elastomers with inorganic MoS2 nanotubes or MoSI nanowires. Polyurea elastomers are a new kind of materials with higher performance than polyurethanes. The improvement of mechanical, chemical and thermal properties is due to the presence of hydrogen bonds between the urea motives which can be erased at high temperature softening the elastomeric network. Such materials are the combination of amorphous polymers above glass transition and crosslinkers which keep the chains into a single macromolecule. Polyurea exhibits a phase separated structure with rigid urea domains (hard domains) embedded in a matrix of flexible polymer chains (soft domains). The elastic properties of polyurea can be tuned over a broad range by varying the molecular weight of the components, the relative amount of hard and soft domains, and concentration of nanoparticles. Ultrasonic methods as non-destructive techniques can be used for elastomer composites characterization. In this manner, we have studied the temperature dependencies of the longitudinal ultrasonic velocity and ultrasonic attenuation of these new polyurea elastomers and composites with inorganic nanoparticles. It was shown that in these polyurea elastomers large ultrasonic attenuation peak and corresponding velocity dispersion exists at 10 MHz frequency below room temperature and this behaviour is related to glass transition Tg of the soft segments in the polymer matrix. The relaxation parameters and Tg depend on the segmental molecular weight of the polymer chains between crosslinking points, the nature of the crosslinkers in the network and content of MoS2 nanotubes or MoSI nanowires. The increase of ultrasonic velocity in composites modified by nanoparticles has been observed, showing the reinforcement of the elastomer. In semicrystalline polyurea elastomer matrices, above glass transition, the first order phase transition from quasi-crystalline to the amorphous state has been observed. In this case, the sharp ultrasonic velocity and attenuation anomalies were observed near the transition temperature TC. Ultrasonic attenuation maximum related to glass transition was reduced in quasicrystalline polyureas indicating less influence of soft domains below TC. The first order phase transition in semicrystalline polyurea elastomer samples has large temperature hysteresis (> 10 K). The impact of inorganic MoS2 nanotubes resulted in the decrease of the first order phase transition temperature in semicrystalline composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inorganic%20nanotubes" title="inorganic nanotubes">inorganic nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurea%20elastomer%20composites" title=" polyurea elastomer composites"> polyurea elastomer composites</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20velocity" title=" ultrasonic velocity"> ultrasonic velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20attenuation" title=" ultrasonic attenuation "> ultrasonic attenuation </a> </p> <a href="https://publications.waset.org/abstracts/44430/ultrasonic-studies-of-polyurea-elastomer-composites-with-inorganic-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Determination of Foaming Behavior in Thermoplastic Composite Nonwoven Structures for Automotive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfiye%20Ahan">Zulfiye Ahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dogu"> Mustafa Dogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Elcin%20Yilmaz"> Elcin Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of materials is gradually growing especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent and a thermal process was applied to obtain porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20nonwoven" title="composite nonwoven">composite nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20foams" title=" thermoplastic foams"> thermoplastic foams</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20agent" title=" foaming agent"> foaming agent</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20behavior" title=" foaming behavior"> foaming behavior</a> </p> <a href="https://publications.waset.org/abstracts/141516/determination-of-foaming-behavior-in-thermoplastic-composite-nonwoven-structures-for-automotive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> Determination of Foaming Behavior in thermoplastic Composite Nonwoven Structures for Automotive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfiye%20Ahan">Zulfiye Ahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dogu"> Mustafa Dogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Elcin%20Yilmaz"> Elcin Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world, with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of material is gradually growing, especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent, and a thermal process was applied to obtain a porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20nonwoven" title="composite nonwoven">composite nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20foams" title=" thermoplastic foams"> thermoplastic foams</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20agent" title=" foaming agent"> foaming agent</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20behavior" title=" foaming behavior"> foaming behavior</a> </p> <a href="https://publications.waset.org/abstracts/141519/determination-of-foaming-behavior-in-thermoplastic-composite-nonwoven-structures-for-automotive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Repair of Thermoplastic Composites for Structural Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Castaing">Philippe Castaing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Jollivet"> Thomas Jollivet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of their advantages, i.e. recyclability, weld-ability, environmental compatibility, long (continuous) fiber thermoplastic composites (LFTPC) are increasingly used in many industrial sectors (mainly automotive and aeronautic) for structural applications. Indeed, in the next ten years, the environmental rules will put the pressure on the use of new structural materials like composites. In aerospace, more than 50% of the damage are due to stress impact and 85% of damage are repaired on the fuselage (fuselage skin panels and around doors). With the arrival of airplanes mainly of composite materials, replacement of sections or panels seems difficult economically speaking and repair becomes essential. The objective of the present study is to propose a solution of repair to prevent the replacement the damaged part in thermoplastic composites in order to recover the initial mechanical properties. The classification of impact damage is not so not easy : talking about low energy impact (less than 35 J) can be totally wrong when high speed or weak thicknesses as well as thermoplastic resins are considered. Crash and perforation with higher energy create important damages and the structures are replaced without repairing, so we just consider here damages due to impacts at low energy that are as follows for laminates : − Transverse cracking; − Delamination; − Fiber rupture. At low energy, the damages are barely visible but can nevertheless reduce significantly the mechanical strength of the part due to resin cracks while few fiber rupture is observed. The patch repair solution remains the standard one but may lead to the rupture of fibers and consequently creates more damages. That is the reason why we investigate the repair of thermoplastic composites impacted at low energy. Indeed, thermoplastic resins are interesting as they absorb impact energy through plastic strain. The methodology is as follows: - impact tests at low energy on thermoplastic composites; - identification of the damage by micrographic observations; - evaluation of the harmfulness of the damage; - repair by reconsolidation according to the extent of the damage ; -validation of the repair by mechanical characterization (compression). In this study, the impacts tests are performed at various levels of energy on thermoplastic composites (PA/C, PEEK/C and PPS/C woven 50/50 and unidirectional) to determine the level of impact energy creating damages in the resin without fiber rupture. We identify the extent of the damage by US inspection and micrographic observations in the plane part thickness. The samples were in addition characterized in compression to evaluate the loss of mechanical properties. Then the strategy of repair consists in reconsolidating the damaged parts by thermoforming, and after reconsolidation the laminates are characterized in compression for validation. To conclude, the study demonstrates the feasibility of the repair for low energy impact on thermoplastic composites as the samples recover their properties. At a first step of the study, the “repair” is made by reconsolidation on a thermoforming press but we could imagine a process in situ to reconsolidate the damaged parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace" title="aerospace">aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=damages" title=" damages"> damages</a>, <a href="https://publications.waset.org/abstracts/search?q=repair" title=" repair"> repair</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20applications" title=" structural applications"> structural applications</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic" title=" thermoplastic"> thermoplastic</a> </p> <a href="https://publications.waset.org/abstracts/36988/repair-of-thermoplastic-composites-for-structural-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bonsoo%20Koo">Bonsoo Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Shin%20Hong"> Seong Shin Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Kwon%20Lee"> Byung Kwon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floor%20impact%20sound" title="floor impact sound">floor impact sound</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20poly%20urethane" title=" thermoplastic poly urethane"> thermoplastic poly urethane</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20vinyl%20acetate" title=" ethylene vinyl acetate"> ethylene vinyl acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=heavyweight%20impact%20sound" title=" heavyweight impact sound"> heavyweight impact sound</a> </p> <a href="https://publications.waset.org/abstracts/84146/the-effect-of-floor-impact-sound-insulation-performance-using-scrambled-thermoplastic-poly-urethane-and-ethylene-vinyl-acetate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> Coil-Over Shock Absorbers Compared to Inherent Material Damping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carina%20Emminger">Carina Emminger</a>, <a href="https://publications.waset.org/abstracts/search?q=Umut%20D.%20Cakmak"> Umut D. Cakmak</a>, <a href="https://publications.waset.org/abstracts/search?q=Evrim%20Burkut"> Evrim Burkut</a>, <a href="https://publications.waset.org/abstracts/search?q=Rene%20Preuer"> Rene Preuer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20Graz"> Ingrid Graz</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoltan%20Major"> Zoltan Major</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damper%20structures" title="damper structures">damper structures</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20damping" title=" material damping"> material damping</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS" title=" PDMS"> PDMS</a>, <a href="https://publications.waset.org/abstracts/search?q=TPU" title=" TPU"> TPU</a> </p> <a href="https://publications.waset.org/abstracts/153969/coil-over-shock-absorbers-compared-to-inherent-material-damping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Modification of Date Palm Leaflets Fibers Used as Thermoplastic Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Almi">K. Almi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.Lakel"> S.Lakel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benchabane"> A. Benchabane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kriker"> A. Kriker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. This paper is an investigation of effect of different treatment process on the mechanical proprieties and on the thermal stability of date palm leaflets fibers with a view to improve the date palm fiber proprieties used as reinforcement of thermoplastic materials which main processes require extrusion, hot press. To compare the effect of alkali and acid treatment on the date palm leaflets fiber properties, different treatment were used such as Sodium hydroxide NaOH solution, aluminium chloride AlCl3 and acid treatment with HCL solution. All treatments were performed at 70°C for 4h and 48 h. The mechanical performance (tensile strength and elongation) is affected by immersion time in alkaline and acid solutions. The reduction of the tensile strength and elongation of fibers at 48h was higher in acid treatment than in alkali treatment at high concentration. No significant differences were observed in mechanical and thermal proprieties of raw fibers and fibers submerged in AlCl3 at low concentration 1% for 48h. Fibers treated by NaOH at 6% for 4h showed significant increase in the mechanical proprieties and thermal stability of date palm leaflets fibers. Hence, soda treatment is necessary to improve the fibers proprieties and consequently optimize the composite performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=date%20palm%20fibers" title="date palm fibers">date palm fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatments" title=" surface treatments"> surface treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20composites" title=" thermoplastic composites"> thermoplastic composites</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/15299/modification-of-date-palm-leaflets-fibers-used-as-thermoplastic-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Chemical and Physical Modification of Carbon Fiber Reinforced Polymers Based on Thermoplastic Acrylic Resin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Dydek">Kamil Dydek</a>, <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Demski"> Szymon Demski</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Majchrowicz"> Kamil Majchrowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Kozera"> Paulina Kozera</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogna%20Sztorch"> Bogna Sztorch</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Brz%C4%85kalski"> Dariusz Brząkalski</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuzanna%20Krawczyk"> Zuzanna Krawczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Przekop"> Robert Przekop</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Boczkowska"> Anna Boczkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thanks to their excellent properties, i.e. high stiffness and strength in relation to their weight, corrosion resistance, and low thermal expansion, Carbon Fiber Reinforced Polymers (CFRPs) are a group of materials readily used in many industrial sectors, e.g. aviation, automotive, wind energy. Conventional CFRPs also have their disadvantages, namely, relatively low electrical conductivity and brittle cracking. To counteract this, a thermoplastic acrylic resin was proposed, which was further modified by the addition of organosilicon compounds and multi-walled carbon nanotubes (MWCNTs). The addition of the organosilicon compounds was aimed at improving the dispersion of the MWCNTs and obtaining good adhesion between the resin and the carbon fibre, where the MWCNTs were used as a conductive filler. In addition, during the fabrication of laminates using the infusion method, thermoplastic nonwovens doped with MWCNTs were placed between the carbon reinforcement layers to achieve a synergistic effect with an increase in electrical and mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=acrylic%20resin" title=" acrylic resin"> acrylic resin</a>, <a href="https://publications.waset.org/abstracts/search?q=organosilicon%20compounds" title=" organosilicon compounds"> organosilicon compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a> </p> <a href="https://publications.waset.org/abstracts/153127/chemical-and-physical-modification-of-carbon-fiber-reinforced-polymers-based-on-thermoplastic-acrylic-resin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20elastomer&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20elastomer&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20elastomer&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20elastomer&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20elastomer&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20elastomer&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20elastomer&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>