CINXE.COM
An Overview of Complex Differentiation and Integration
<!DOCTYPE html><html lang="en-US" class="html_stretched responsive av-preloader-disabled html_header_top html_logo_left html_main_nav_header html_menu_right html_custom html_header_sticky html_header_shrinking_disabled html_mobile_menu_phone html_header_searchicon html_content_align_center html_header_unstick_top_disabled html_header_stretch_disabled html_av-submenu-hidden html_av-submenu-display-click html_av-overlay-side html_av-overlay-side-classic html_av-submenu-noclone html_entry_id_42892 av-cookies-no-cookie-consent av-no-preview av-default-lightbox html_text_menu_active av-mobile-menu-switch-default"><head><meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"><meta charset="UTF-8" /> <script async src="https://www.googletagmanager.com/gtag/js?id=UA-2209856-4"></script> <script>window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-2209856-4');</script> <script data-optimized="1" src="https://www.physicsforums.com/insights/wp-content/litespeed/js/2592eef92248026c6738059400d0d827.js?ver=0d827" defer type="text/javascript"></script> <meta name="viewport" content="width=device-width, initial-scale=1"><meta name='robots' content='index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1' /><style>img:is([sizes="auto" i], [sizes^="auto," i]) { contain-intrinsic-size: 3000px 1500px }</style><title>An Overview of Complex Differentiation and Integration</title><meta name="description" content="I want to shed some light on complex analysis without getting all the technical details in the way which are necessary for the precise treatments that can be found in many excellent standard textbooks." /><link rel="canonical" href="https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/" /><meta property="og:locale" content="en_US" /><meta property="og:type" content="article" /><meta property="og:title" content="An Overview of Complex Differentiation and Integration" /><meta property="og:description" content="I want to shed some light on complex analysis without getting all the technical details in the way which are necessary for the precise treatments that can be found in many excellent standard textbooks." /><meta property="og:url" content="https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/" /><meta property="og:site_name" content="Physics Forums Insights" /><meta property="article:publisher" content="https://www.facebook.com/physicsforums" /><meta property="article:published_time" content="2023-03-14T13:24:25+00:00" /><meta property="article:modified_time" content="2024-06-02T20:46:27+00:00" /><meta property="og:image" content="https://www.physicsforums.com/insights/wp-content/uploads/2023/03/integration_differentiation.png" /><meta property="og:image:width" content="240" /><meta property="og:image:height" content="135" /><meta property="og:image:type" content="image/png" /><meta name="author" content="fresh_42" /><meta name="twitter:card" content="summary_large_image" /><meta name="twitter:creator" content="@physicsforums" /><meta name="twitter:site" content="@physicsforums" /><meta name="twitter:label1" content="Written by" /><meta name="twitter:data1" content="fresh_42" /><meta name="twitter:label2" content="Est. reading time" /><meta name="twitter:data2" content="23 minutes" /> <script type="application/ld+json" class="yoast-schema-graph">{"@context":"https://schema.org","@graph":[{"@type":"ScholarlyArticle","@id":"https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/#article","isPartOf":{"@id":"https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/"},"author":{"name":"fresh_42","@id":"https://www.physicsforums.com/insights/#/schema/person/1caaf8ae366dfa0597afbb52ed09bd76"},"headline":"An Overview of Complex Differentiation and Integration","datePublished":"2023-03-14T13:24:25+00:00","dateModified":"2024-06-02T20:46:27+00:00","mainEntityOfPage":{"@id":"https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/"},"wordCount":4671,"commentCount":0,"publisher":{"@id":"https://www.physicsforums.com/insights/#organization"},"image":{"@id":"https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/#primaryimage"},"thumbnailUrl":"https://www.physicsforums.com/insights/wp-content/uploads/2023/03/integration_differentiation.png","keywords":["complex calculus","differentiation","Integration"],"articleSection":["Mathematics Articles"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/#respond"]}]},{"@type":"WebPage","@id":"https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/","url":"https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/","name":"An Overview of Complex Differentiation and Integration","isPartOf":{"@id":"https://www.physicsforums.com/insights/#website"},"primaryImageOfPage":{"@id":"https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/#primaryimage"},"image":{"@id":"https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/#primaryimage"},"thumbnailUrl":"https://www.physicsforums.com/insights/wp-content/uploads/2023/03/integration_differentiation.png","datePublished":"2023-03-14T13:24:25+00:00","dateModified":"2024-06-02T20:46:27+00:00","description":"I want to shed some light on complex analysis without getting all the technical details in the way which are necessary for the precise treatments that can be found in many excellent standard textbooks.","breadcrumb":{"@id":"https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/"]}]},{"@type":"ImageObject","inLanguage":"en-US","@id":"https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/#primaryimage","url":"https://www.physicsforums.com/insights/wp-content/uploads/2023/03/integration_differentiation.png","contentUrl":"https://www.physicsforums.com/insights/wp-content/uploads/2023/03/integration_differentiation.png","width":240,"height":135,"caption":"integration and complex differentiation"},{"@type":"BreadcrumbList","@id":"https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https://www.physicsforums.com/insights/"},{"@type":"ListItem","position":2,"name":"An Overview of Complex Differentiation and Integration"}]},{"@type":"WebSite","@id":"https://www.physicsforums.com/insights/#website","url":"https://www.physicsforums.com/insights/","name":"Physics Forums Insights","description":"Science and Math Articles, Tutorials and Guides","publisher":{"@id":"https://www.physicsforums.com/insights/#organization"},"alternateName":"PF Insights","potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https://www.physicsforums.com/insights/?s={search_term_string}"},"query-input":{"@type":"PropertyValueSpecification","valueRequired":true,"valueName":"search_term_string"}}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https://www.physicsforums.com/insights/#organization","name":"Physics Forums","url":"https://www.physicsforums.com/insights/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https://www.physicsforums.com/insights/#/schema/logo/image/","url":"https://www.physicsforums.com/insights/wp-content/uploads/2018/05/facebook_image-1.png","contentUrl":"https://www.physicsforums.com/insights/wp-content/uploads/2018/05/facebook_image-1.png","width":205,"height":200,"caption":"Physics Forums"},"image":{"@id":"https://www.physicsforums.com/insights/#/schema/logo/image/"},"sameAs":["https://www.facebook.com/physicsforums","https://x.com/physicsforums","https://www.linkedin.com/company/physics-forums","https://www.pinterest.com/physicsforums"]},{"@type":"Person","@id":"https://www.physicsforums.com/insights/#/schema/person/1caaf8ae366dfa0597afbb52ed09bd76","name":"fresh_42","url":"https://www.physicsforums.com/insights/author/fresh_42/"}]}</script> <link rel="alternate" type="application/rss+xml" title="Physics Forums Insights » Feed" href="https://www.physicsforums.com/insights/feed/" /> <script type="text/javascript" id="wpp-js" src="https://www.physicsforums.com/insights/wp-content/plugins/wordpress-popular-posts/assets/js/wpp.js?ver=7.2.0" data-sampling="0" data-sampling-rate="100" data-api-url="https://www.physicsforums.com/insights/wp-json/wordpress-popular-posts" data-post-id="42892" data-token="5534ff0b56" data-lang="0" data-debug="1"></script> <link data-optimized="1" rel='stylesheet' id='xpress_wp_admin_style-css' href='https://www.physicsforums.com/insights/wp-content/litespeed/css/59568f3369115d72ade0de8186a4674e.css?ver=4674e' type='text/css' media='all' /><link data-optimized="1" rel='stylesheet' id='wp-block-library-css' href='https://www.physicsforums.com/insights/wp-content/litespeed/css/ad10b27e06583ae315af8368433fa1f7.css?ver=b9180' type='text/css' media='all' /><style id='global-styles-inline-css' type='text/css'>:root{--wp--preset--aspect-ratio--square: 1;--wp--preset--aspect-ratio--4-3: 4/3;--wp--preset--aspect-ratio--3-4: 3/4;--wp--preset--aspect-ratio--3-2: 3/2;--wp--preset--aspect-ratio--2-3: 2/3;--wp--preset--aspect-ratio--16-9: 16/9;--wp--preset--aspect-ratio--9-16: 9/16;--wp--preset--color--black: #000000;--wp--preset--color--cyan-bluish-gray: #abb8c3;--wp--preset--color--white: #ffffff;--wp--preset--color--pale-pink: #f78da7;--wp--preset--color--vivid-red: #cf2e2e;--wp--preset--color--luminous-vivid-orange: #ff6900;--wp--preset--color--luminous-vivid-amber: #fcb900;--wp--preset--color--light-green-cyan: #7bdcb5;--wp--preset--color--vivid-green-cyan: #00d084;--wp--preset--color--pale-cyan-blue: #8ed1fc;--wp--preset--color--vivid-cyan-blue: #0693e3;--wp--preset--color--vivid-purple: #9b51e0;--wp--preset--color--metallic-red: #b02b2c;--wp--preset--color--maximum-yellow-red: #edae44;--wp--preset--color--yellow-sun: #eeee22;--wp--preset--color--palm-leaf: #83a846;--wp--preset--color--aero: #7bb0e7;--wp--preset--color--old-lavender: #745f7e;--wp--preset--color--steel-teal: #5f8789;--wp--preset--color--raspberry-pink: #d65799;--wp--preset--color--medium-turquoise: #4ecac2;--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple: linear-gradient(135deg,rgba(6,147,227,1) 0%,rgb(155,81,224) 100%);--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan: linear-gradient(135deg,rgb(122,220,180) 0%,rgb(0,208,130) 100%);--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange: linear-gradient(135deg,rgba(252,185,0,1) 0%,rgba(255,105,0,1) 100%);--wp--preset--gradient--luminous-vivid-orange-to-vivid-red: linear-gradient(135deg,rgba(255,105,0,1) 0%,rgb(207,46,46) 100%);--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray: linear-gradient(135deg,rgb(238,238,238) 0%,rgb(169,184,195) 100%);--wp--preset--gradient--cool-to-warm-spectrum: linear-gradient(135deg,rgb(74,234,220) 0%,rgb(151,120,209) 20%,rgb(207,42,186) 40%,rgb(238,44,130) 60%,rgb(251,105,98) 80%,rgb(254,248,76) 100%);--wp--preset--gradient--blush-light-purple: linear-gradient(135deg,rgb(255,206,236) 0%,rgb(152,150,240) 100%);--wp--preset--gradient--blush-bordeaux: linear-gradient(135deg,rgb(254,205,165) 0%,rgb(254,45,45) 50%,rgb(107,0,62) 100%);--wp--preset--gradient--luminous-dusk: linear-gradient(135deg,rgb(255,203,112) 0%,rgb(199,81,192) 50%,rgb(65,88,208) 100%);--wp--preset--gradient--pale-ocean: linear-gradient(135deg,rgb(255,245,203) 0%,rgb(182,227,212) 50%,rgb(51,167,181) 100%);--wp--preset--gradient--electric-grass: linear-gradient(135deg,rgb(202,248,128) 0%,rgb(113,206,126) 100%);--wp--preset--gradient--midnight: linear-gradient(135deg,rgb(2,3,129) 0%,rgb(40,116,252) 100%);--wp--preset--font-size--small: 1rem;--wp--preset--font-size--medium: 1.125rem;--wp--preset--font-size--large: 1.75rem;--wp--preset--font-size--x-large: clamp(1.75rem, 3vw, 2.25rem);--wp--preset--spacing--20: 0.44rem;--wp--preset--spacing--30: 0.67rem;--wp--preset--spacing--40: 1rem;--wp--preset--spacing--50: 1.5rem;--wp--preset--spacing--60: 2.25rem;--wp--preset--spacing--70: 3.38rem;--wp--preset--spacing--80: 5.06rem;--wp--preset--shadow--natural: 6px 6px 9px rgba(0, 0, 0, 0.2);--wp--preset--shadow--deep: 12px 12px 50px rgba(0, 0, 0, 0.4);--wp--preset--shadow--sharp: 6px 6px 0px rgba(0, 0, 0, 0.2);--wp--preset--shadow--outlined: 6px 6px 0px -3px rgba(255, 255, 255, 1), 6px 6px rgba(0, 0, 0, 1);--wp--preset--shadow--crisp: 6px 6px 0px rgba(0, 0, 0, 1);}:root { --wp--style--global--content-size: 800px;--wp--style--global--wide-size: 1130px; }:where(body) { margin: 0; }.wp-site-blocks > .alignleft { float: left; margin-right: 2em; }.wp-site-blocks > .alignright { float: right; margin-left: 2em; }.wp-site-blocks > .aligncenter { justify-content: center; margin-left: auto; margin-right: auto; }:where(.is-layout-flex){gap: 0.5em;}:where(.is-layout-grid){gap: 0.5em;}.is-layout-flow > .alignleft{float: left;margin-inline-start: 0;margin-inline-end: 2em;}.is-layout-flow > .alignright{float: right;margin-inline-start: 2em;margin-inline-end: 0;}.is-layout-flow > .aligncenter{margin-left: auto !important;margin-right: auto !important;}.is-layout-constrained > .alignleft{float: left;margin-inline-start: 0;margin-inline-end: 2em;}.is-layout-constrained > .alignright{float: right;margin-inline-start: 2em;margin-inline-end: 0;}.is-layout-constrained > .aligncenter{margin-left: auto !important;margin-right: auto !important;}.is-layout-constrained > :where(:not(.alignleft):not(.alignright):not(.alignfull)){max-width: var(--wp--style--global--content-size);margin-left: auto !important;margin-right: auto !important;}.is-layout-constrained > .alignwide{max-width: var(--wp--style--global--wide-size);}body .is-layout-flex{display: flex;}.is-layout-flex{flex-wrap: wrap;align-items: center;}.is-layout-flex > :is(*, div){margin: 0;}body .is-layout-grid{display: grid;}.is-layout-grid > :is(*, div){margin: 0;}body{padding-top: 0px;padding-right: 0px;padding-bottom: 0px;padding-left: 0px;}a:where(:not(.wp-element-button)){text-decoration: underline;}:root :where(.wp-element-button, .wp-block-button__link){background-color: #32373c;border-width: 0;color: #fff;font-family: inherit;font-size: inherit;line-height: inherit;padding: calc(0.667em + 2px) calc(1.333em + 2px);text-decoration: none;}.has-black-color{color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-color{color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-color{color: var(--wp--preset--color--white) !important;}.has-pale-pink-color{color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-color{color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-color{color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-color{color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-color{color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-color{color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-color{color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-color{color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-color{color: var(--wp--preset--color--vivid-purple) !important;}.has-metallic-red-color{color: var(--wp--preset--color--metallic-red) !important;}.has-maximum-yellow-red-color{color: var(--wp--preset--color--maximum-yellow-red) !important;}.has-yellow-sun-color{color: var(--wp--preset--color--yellow-sun) !important;}.has-palm-leaf-color{color: var(--wp--preset--color--palm-leaf) !important;}.has-aero-color{color: var(--wp--preset--color--aero) !important;}.has-old-lavender-color{color: var(--wp--preset--color--old-lavender) !important;}.has-steel-teal-color{color: var(--wp--preset--color--steel-teal) !important;}.has-raspberry-pink-color{color: var(--wp--preset--color--raspberry-pink) !important;}.has-medium-turquoise-color{color: var(--wp--preset--color--medium-turquoise) !important;}.has-black-background-color{background-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-background-color{background-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-background-color{background-color: var(--wp--preset--color--white) !important;}.has-pale-pink-background-color{background-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-background-color{background-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-background-color{background-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-background-color{background-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-background-color{background-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-background-color{background-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-background-color{background-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-background-color{background-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-background-color{background-color: var(--wp--preset--color--vivid-purple) !important;}.has-metallic-red-background-color{background-color: var(--wp--preset--color--metallic-red) !important;}.has-maximum-yellow-red-background-color{background-color: var(--wp--preset--color--maximum-yellow-red) !important;}.has-yellow-sun-background-color{background-color: var(--wp--preset--color--yellow-sun) !important;}.has-palm-leaf-background-color{background-color: var(--wp--preset--color--palm-leaf) !important;}.has-aero-background-color{background-color: var(--wp--preset--color--aero) !important;}.has-old-lavender-background-color{background-color: var(--wp--preset--color--old-lavender) !important;}.has-steel-teal-background-color{background-color: var(--wp--preset--color--steel-teal) !important;}.has-raspberry-pink-background-color{background-color: var(--wp--preset--color--raspberry-pink) !important;}.has-medium-turquoise-background-color{background-color: var(--wp--preset--color--medium-turquoise) !important;}.has-black-border-color{border-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-border-color{border-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-border-color{border-color: var(--wp--preset--color--white) !important;}.has-pale-pink-border-color{border-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-border-color{border-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-border-color{border-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-border-color{border-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-border-color{border-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-border-color{border-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-border-color{border-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-border-color{border-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-border-color{border-color: var(--wp--preset--color--vivid-purple) !important;}.has-metallic-red-border-color{border-color: var(--wp--preset--color--metallic-red) !important;}.has-maximum-yellow-red-border-color{border-color: var(--wp--preset--color--maximum-yellow-red) !important;}.has-yellow-sun-border-color{border-color: var(--wp--preset--color--yellow-sun) !important;}.has-palm-leaf-border-color{border-color: var(--wp--preset--color--palm-leaf) !important;}.has-aero-border-color{border-color: var(--wp--preset--color--aero) !important;}.has-old-lavender-border-color{border-color: var(--wp--preset--color--old-lavender) !important;}.has-steel-teal-border-color{border-color: var(--wp--preset--color--steel-teal) !important;}.has-raspberry-pink-border-color{border-color: var(--wp--preset--color--raspberry-pink) !important;}.has-medium-turquoise-border-color{border-color: var(--wp--preset--color--medium-turquoise) !important;}.has-vivid-cyan-blue-to-vivid-purple-gradient-background{background: var(--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple) !important;}.has-light-green-cyan-to-vivid-green-cyan-gradient-background{background: var(--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan) !important;}.has-luminous-vivid-amber-to-luminous-vivid-orange-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange) !important;}.has-luminous-vivid-orange-to-vivid-red-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-orange-to-vivid-red) !important;}.has-very-light-gray-to-cyan-bluish-gray-gradient-background{background: var(--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray) !important;}.has-cool-to-warm-spectrum-gradient-background{background: var(--wp--preset--gradient--cool-to-warm-spectrum) !important;}.has-blush-light-purple-gradient-background{background: var(--wp--preset--gradient--blush-light-purple) !important;}.has-blush-bordeaux-gradient-background{background: var(--wp--preset--gradient--blush-bordeaux) !important;}.has-luminous-dusk-gradient-background{background: var(--wp--preset--gradient--luminous-dusk) !important;}.has-pale-ocean-gradient-background{background: var(--wp--preset--gradient--pale-ocean) !important;}.has-electric-grass-gradient-background{background: var(--wp--preset--gradient--electric-grass) !important;}.has-midnight-gradient-background{background: var(--wp--preset--gradient--midnight) !important;}.has-small-font-size{font-size: var(--wp--preset--font-size--small) !important;}.has-medium-font-size{font-size: var(--wp--preset--font-size--medium) !important;}.has-large-font-size{font-size: var(--wp--preset--font-size--large) !important;}.has-x-large-font-size{font-size: var(--wp--preset--font-size--x-large) !important;} :where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;} :where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;} :root :where(.wp-block-pullquote){font-size: 1.5em;line-height: 1.6;}</style><link data-optimized="1" rel='stylesheet' id='ez-toc-css' href='https://www.physicsforums.com/insights/wp-content/litespeed/css/008d509d4fec340652d0312244582360.css?ver=d7f24' type='text/css' media='all' /><style id='ez-toc-inline-css' type='text/css'>div#ez-toc-container .ez-toc-title {font-size: 120%;}div#ez-toc-container .ez-toc-title {font-weight: 500;}div#ez-toc-container ul li {font-size: 95%;}div#ez-toc-container ul li {font-weight: 500;}div#ez-toc-container nav ul ul li {font-size: 90%;}div#ez-toc-container {background: #fff;border: 1px solid #ddd;}div#ez-toc-container p.ez-toc-title , #ez-toc-container .ez_toc_custom_title_icon , #ez-toc-container .ez_toc_custom_toc_icon {color: #4c4c4c;}div#ez-toc-container ul.ez-toc-list a {color: #066fac;}div#ez-toc-container ul.ez-toc-list a:hover {color: #235887;}div#ez-toc-container ul.ez-toc-list a:visited {color: #4594d1;} .ez-toc-container-direction {direction: ltr;}.ez-toc-counter ul{counter-reset: item ;}.ez-toc-counter nav ul li a::before {content: counters(item, '.', decimal) '. ';display: inline-block;counter-increment: item;flex-grow: 0;flex-shrink: 0;margin-right: .2em; float: left; }.ez-toc-widget-direction {direction: ltr;}.ez-toc-widget-container ul{counter-reset: item ;}.ez-toc-widget-container nav ul li a::before {content: counters(item, '.', decimal) '. ';display: inline-block;counter-increment: item;flex-grow: 0;flex-shrink: 0;margin-right: .2em; float: left; }</style><link data-optimized="1" rel='stylesheet' id='wordpress-popular-posts-css-css' href='https://www.physicsforums.com/insights/wp-content/litespeed/css/f37de7c74c7905b881abee3714c59450.css?ver=b2ec6' type='text/css' media='all' /><link data-optimized="1" rel='stylesheet' id='avia-merged-styles-css' href='https://www.physicsforums.com/insights/wp-content/litespeed/css/26482a11dcb0aabea248feffff00cc05.css?ver=0cc05' type='text/css' media='all' /> <script data-optimized="1" type="text/javascript" async='async' src="https://www.physicsforums.com/insights/wp-content/litespeed/js/dddbaf834171fed716d265a90aea73b5.js?ver=a73b5" id="avia-head-scripts-js"></script> <style id="wpp-loading-animation-styles">@-webkit-keyframes bgslide{from{background-position-x:0}to{background-position-x:-200%}}@keyframes bgslide{from{background-position-x:0}to{background-position-x:-200%}}.wpp-widget-block-placeholder,.wpp-shortcode-placeholder{margin:0 auto;width:60px;height:3px;background:#dd3737;background:linear-gradient(90deg,#dd3737 0%,#571313 10%,#dd3737 100%);background-size:200% auto;border-radius:3px;-webkit-animation:bgslide 1s infinite linear;animation:bgslide 1s infinite linear}</style><link rel="profile" href="https://gmpg.org/xfn/11" /><link rel="alternate" type="application/rss+xml" title="Physics Forums Insights RSS2 Feed" href="https://www.physicsforums.com/insights/feed/" /><link rel="pingback" href="https://www.physicsforums.com/insights/xmlrpc.php" /><style type='text/css' media='screen'>#top #header_main > .container, #top #header_main > .container .main_menu .av-main-nav > li > a, #top #header_main #menu-item-shop .cart_dropdown_link{ height:70px; line-height: 70px; } .html_top_nav_header .av-logo-container{ height:70px; } .html_header_top.html_header_sticky #top #wrap_all #main{ padding-top:70px; }</style><!--[if lt IE 9]><script src="https://www.physicsforums.com/insights/wp-content/themes/enfold/js/html5shiv.js"></script><![endif]--><link rel="icon" href="https://www.physicsforums.com/insights/wp-content/uploads/2016/08/favicon.ico" type="image/x-icon"><style type="text/css">.saboxplugin-wrap{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;-ms-box-sizing:border-box;box-sizing:border-box;border:1px solid #eee;width:100%;clear:both;display:block;overflow:hidden;word-wrap:break-word;position:relative}.saboxplugin-wrap .saboxplugin-gravatar{float:left;padding:0 20px 20px 20px}.saboxplugin-wrap .saboxplugin-gravatar img{max-width:100px;height:auto;border-radius:0;}.saboxplugin-wrap .saboxplugin-authorname{font-size:18px;line-height:1;margin:20px 0 0 20px;display:block}.saboxplugin-wrap .saboxplugin-authorname a{text-decoration:none}.saboxplugin-wrap .saboxplugin-authorname a:focus{outline:0}.saboxplugin-wrap .saboxplugin-desc{display:block;margin:5px 20px}.saboxplugin-wrap .saboxplugin-desc a{text-decoration:underline}.saboxplugin-wrap .saboxplugin-desc p{margin:5px 0 12px}.saboxplugin-wrap .saboxplugin-web{margin:0 20px 15px;text-align:left}.saboxplugin-wrap .sab-web-position{text-align:right}.saboxplugin-wrap .saboxplugin-web a{color:#ccc;text-decoration:none}.saboxplugin-wrap .saboxplugin-socials{position:relative;display:block;background:#fcfcfc;padding:5px;border-top:1px solid #eee}.saboxplugin-wrap .saboxplugin-socials a svg{width:20px;height:20px}.saboxplugin-wrap .saboxplugin-socials a svg .st2{fill:#fff; transform-origin:center center;}.saboxplugin-wrap .saboxplugin-socials a svg .st1{fill:rgba(0,0,0,.3)}.saboxplugin-wrap .saboxplugin-socials a:hover{opacity:.8;-webkit-transition:opacity .4s;-moz-transition:opacity .4s;-o-transition:opacity .4s;transition:opacity .4s;box-shadow:none!important;-webkit-box-shadow:none!important}.saboxplugin-wrap .saboxplugin-socials .saboxplugin-icon-color{box-shadow:none;padding:0;border:0;-webkit-transition:opacity .4s;-moz-transition:opacity .4s;-o-transition:opacity .4s;transition:opacity .4s;display:inline-block;color:#fff;font-size:0;text-decoration:inherit;margin:5px;-webkit-border-radius:0;-moz-border-radius:0;-ms-border-radius:0;-o-border-radius:0;border-radius:0;overflow:hidden}.saboxplugin-wrap .saboxplugin-socials .saboxplugin-icon-grey{text-decoration:inherit;box-shadow:none;position:relative;display:-moz-inline-stack;display:inline-block;vertical-align:middle;zoom:1;margin:10px 5px;color:#444;fill:#444}.clearfix:after,.clearfix:before{content:' ';display:table;line-height:0;clear:both}.ie7 .clearfix{zoom:1}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-twitch{border-color:#38245c}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-addthis{border-color:#e91c00}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-behance{border-color:#003eb0}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-delicious{border-color:#06c}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-deviantart{border-color:#036824}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-digg{border-color:#00327c}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-dribbble{border-color:#ba1655}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-facebook{border-color:#1e2e4f}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-flickr{border-color:#003576}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-github{border-color:#264874}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-google{border-color:#0b51c5}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-googleplus{border-color:#96271a}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-html5{border-color:#902e13}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-instagram{border-color:#1630aa}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-linkedin{border-color:#00344f}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-pinterest{border-color:#5b040e}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-reddit{border-color:#992900}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-rss{border-color:#a43b0a}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-sharethis{border-color:#5d8420}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-skype{border-color:#00658a}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-soundcloud{border-color:#995200}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-spotify{border-color:#0f612c}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-stackoverflow{border-color:#a95009}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-steam{border-color:#006388}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-user_email{border-color:#b84e05}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-stumbleUpon{border-color:#9b280e}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-tumblr{border-color:#10151b}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-twitter{border-color:#0967a0}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-vimeo{border-color:#0d7091}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-windows{border-color:#003f71}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-whatsapp{border-color:#003f71}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-wordpress{border-color:#0f3647}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-yahoo{border-color:#14002d}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-youtube{border-color:#900}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-xing{border-color:#000202}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-mixcloud{border-color:#2475a0}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-vk{border-color:#243549}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-medium{border-color:#00452c}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-quora{border-color:#420e00}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-meetup{border-color:#9b181c}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-goodreads{border-color:#000}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-snapchat{border-color:#999700}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-500px{border-color:#00557f}.saboxplugin-socials.sabox-colored .saboxplugin-icon-color .sab-mastodont{border-color:#185886}.sabox-plus-item{margin-bottom:20px}@media screen and (max-width:480px){.saboxplugin-wrap{text-align:center}.saboxplugin-wrap .saboxplugin-gravatar{float:none;padding:20px 0;text-align:center;margin:0 auto;display:block}.saboxplugin-wrap .saboxplugin-gravatar img{float:none;display:inline-block;display:-moz-inline-stack;vertical-align:middle;zoom:1}.saboxplugin-wrap .saboxplugin-desc{margin:0 10px 20px;text-align:center}.saboxplugin-wrap .saboxplugin-authorname{text-align:center;margin:10px 0 20px}}body .saboxplugin-authorname a,body .saboxplugin-authorname a:hover{box-shadow:none;-webkit-box-shadow:none}a.sab-profile-edit{font-size:16px!important;line-height:1!important}.sab-edit-settings a,a.sab-profile-edit{color:#0073aa!important;box-shadow:none!important;-webkit-box-shadow:none!important}.sab-edit-settings{margin-right:15px;position:absolute;right:0;z-index:2;bottom:10px;line-height:20px}.sab-edit-settings i{margin-left:5px}.saboxplugin-socials{line-height:1!important}.rtl .saboxplugin-wrap .saboxplugin-gravatar{float:right}.rtl .saboxplugin-wrap .saboxplugin-authorname{display:flex;align-items:center}.rtl .saboxplugin-wrap .saboxplugin-authorname .sab-profile-edit{margin-right:10px}.rtl .sab-edit-settings{right:auto;left:0}img.sab-custom-avatar{max-width:75px;}.saboxplugin-wrap .saboxplugin-gravatar img {-webkit-border-radius:50%;-moz-border-radius:50%;-ms-border-radius:50%;-o-border-radius:50%;border-radius:50%;}.saboxplugin-wrap .saboxplugin-gravatar img {-webkit-border-radius:50%;-moz-border-radius:50%;-ms-border-radius:50%;-o-border-radius:50%;border-radius:50%;}.saboxplugin-wrap .saboxplugin-gravatar img {-webkit-transition:all .5s ease;-moz-transition:all .5s ease;-o-transition:all .5s ease;transition:all .5s ease;}.saboxplugin-wrap .saboxplugin-gravatar img:hover {-webkit-transform:rotate(45deg);-moz-transform:rotate(45deg);-o-transform:rotate(45deg);-ms-transform:rotate(45deg);transform:rotate(45deg);}.saboxplugin-wrap {margin-top:0px; margin-bottom:0px; padding: 0px 0px }.saboxplugin-wrap .saboxplugin-authorname {font-size:18px; line-height:25px;}.saboxplugin-wrap .saboxplugin-desc p, .saboxplugin-wrap .saboxplugin-desc {font-size:14px !important; line-height:21px !important;}.saboxplugin-wrap .saboxplugin-web {font-size:14px;}.saboxplugin-wrap .saboxplugin-socials a svg {width:18px;height:18px;}</style> <script type="text/javascript">'use strict';var avia_is_mobile=!1;if(/Android|webOS|iPhone|iPad|iPod|BlackBerry|IEMobile|Opera Mini/i.test(navigator.userAgent)&&'ontouchstart' in document.documentElement){avia_is_mobile=!0;document.documentElement.className+=' avia_mobile '} else{document.documentElement.className+=' avia_desktop '};document.documentElement.className+=' js_active ';(function(){var e=['-webkit-','-moz-','-ms-',''],n='',o=!1,a=!1;for(var t in e){if(e[t]+'transform' in document.documentElement.style){o=!0;n=e[t]+'transform'};if(e[t]+'perspective' in document.documentElement.style){a=!0}};if(o){document.documentElement.className+=' avia_transform '};if(a){document.documentElement.className+=' avia_transform3d '};if(typeof document.getElementsByClassName=='function'&&typeof document.documentElement.getBoundingClientRect=='function'&&avia_is_mobile==!1){if(n&&window.innerHeight>0){setTimeout(function(){var e=0,o={},a=0,t=document.getElementsByClassName('av-parallax'),i=window.pageYOffset||document.documentElement.scrollTop;for(e=0;e<t.length;e++){t[e].style.top='0px';o=t[e].getBoundingClientRect();a=Math.ceil((window.innerHeight+i-o.top)*0.3);t[e].style[n]='translate(0px, '+a+'px)';t[e].style.top='auto';t[e].className+=' enabled-parallax '}},50)}}})();</script><style type="text/css">@font-face {font-family: 'entypo-fontello'; font-weight: normal; font-style: normal; font-display: swap; src: url('https://www.physicsforums.com/insights/wp-content/themes/enfold/config-templatebuilder/avia-template-builder/assets/fonts/entypo-fontello.woff2') format('woff2'), url('https://www.physicsforums.com/insights/wp-content/themes/enfold/config-templatebuilder/avia-template-builder/assets/fonts/entypo-fontello.woff') format('woff'), url('https://www.physicsforums.com/insights/wp-content/themes/enfold/config-templatebuilder/avia-template-builder/assets/fonts/entypo-fontello.ttf') format('truetype'), url('https://www.physicsforums.com/insights/wp-content/themes/enfold/config-templatebuilder/avia-template-builder/assets/fonts/entypo-fontello.svg#entypo-fontello') format('svg'), url('https://www.physicsforums.com/insights/wp-content/themes/enfold/config-templatebuilder/avia-template-builder/assets/fonts/entypo-fontello.eot'), url('https://www.physicsforums.com/insights/wp-content/themes/enfold/config-templatebuilder/avia-template-builder/assets/fonts/entypo-fontello.eot?#iefix') format('embedded-opentype'); } #top .avia-font-entypo-fontello, body .avia-font-entypo-fontello, html body [data-av_iconfont='entypo-fontello']:before{ font-family: 'entypo-fontello'; }</style></head><body id="top" class="post-template-default single single-post postid-42892 single-format-standard stretched avia-mobile-no-animations rtl_columns av-curtain-numeric arial-websave arial avia-responsive-images-support" itemscope="itemscope" itemtype="https://schema.org/WebPage" ><div id='wrap_all'><header id='header' class='all_colors header_color light_bg_color av_header_top av_logo_left av_main_nav_header av_menu_right av_custom av_header_sticky av_header_shrinking_disabled av_header_stretch_disabled av_mobile_menu_phone av_header_searchicon av_header_unstick_top_disabled av_bottom_nav_disabled av_header_border_disabled' aria-label="Header" data-av_shrink_factor='50' role="banner" itemscope="itemscope" itemtype="https://schema.org/WPHeader" ><div id='header_main' class='container_wrap container_wrap_logo'><div class='container av-logo-container'><div class='inner-container'><span class='logo avia-standard-logo'><a href='https://www.physicsforums.com/insights/' class='' aria-label='Physics_Forums_Insights_logo' title='Physics_Forums_Insights_logo'><img data-lazyloaded="1" src="" data-src="https://www.physicsforums.com/insights/wp-content/uploads/2019/02/Physics_Forums_Insights_logo.png" height="100" width="300" alt='Physics Forums Insights' title='Physics_Forums_Insights_logo' /><noscript><img src="https://www.physicsforums.com/insights/wp-content/uploads/2019/02/Physics_Forums_Insights_logo.png" height="100" width="300" alt='Physics Forums Insights' title='Physics_Forums_Insights_logo' /></noscript></a></span><nav class='main_menu' data-selectname='Select a page' role="navigation" itemscope="itemscope" itemtype="https://schema.org/SiteNavigationElement" ><div class="avia-menu av-main-nav-wrap"><ul role="menu" class="menu av-main-nav" id="avia-menu"><li role="menuitem" id="menu-item-27276" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-has-children menu-item-top-level menu-item-top-level-1"><a href="https://www.physicsforums.com/insights/trending-physics-articles/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Physics</span><span class="avia-menu-fx"><span class="avia-arrow-wrap"><span class="avia-arrow"></span></span></span></a><ul class="sub-menu"><li role="menuitem" id="menu-item-26559" class="menu-item menu-item-type-taxonomy menu-item-object-category"><a href="https://www.physicsforums.com/insights/science-math-articles/physics-articles/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Physics Articles</span></a></li><li role="menuitem" id="menu-item-26568" class="menu-item menu-item-type-taxonomy menu-item-object-category"><a href="https://www.physicsforums.com/insights/science-math-tutorials/physics-tutorials/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Physics Tutorials</span></a></li><li role="menuitem" id="menu-item-26564" class="menu-item menu-item-type-taxonomy menu-item-object-category"><a href="https://www.physicsforums.com/insights/science-math-guides/physics-guides/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Physics Guides</span></a></li><li role="menuitem" id="menu-item-26561" class="menu-item menu-item-type-taxonomy menu-item-object-category"><a href="https://www.physicsforums.com/insights/science-math-faqs/physics-faqs/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Physics FAQs</span></a></li></ul></li><li role="menuitem" id="menu-item-27288" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-has-children menu-item-top-level menu-item-top-level-2"><a href="https://www.physicsforums.com/insights/trending-math-articles/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Math</span><span class="avia-menu-fx"><span class="avia-arrow-wrap"><span class="avia-arrow"></span></span></span></a><ul class="sub-menu"><li role="menuitem" id="menu-item-26558" class="menu-item menu-item-type-taxonomy menu-item-object-category current-post-ancestor current-menu-parent current-post-parent"><a href="https://www.physicsforums.com/insights/science-math-articles/math-articles/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Math Articles</span></a></li><li role="menuitem" id="menu-item-26567" class="menu-item menu-item-type-taxonomy menu-item-object-category"><a href="https://www.physicsforums.com/insights/science-math-tutorials/math-tutorials/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Math Tutorials</span></a></li><li role="menuitem" id="menu-item-26563" class="menu-item menu-item-type-taxonomy menu-item-object-category"><a href="https://www.physicsforums.com/insights/science-math-guides/math-guides/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Math Guides</span></a></li><li role="menuitem" id="menu-item-26560" class="menu-item menu-item-type-taxonomy menu-item-object-category"><a href="https://www.physicsforums.com/insights/science-math-faqs/math-faqs/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Math FAQs</span></a></li></ul></li><li role="menuitem" id="menu-item-27287" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-has-children menu-item-top-level menu-item-top-level-3"><a href="https://www.physicsforums.com/insights/trending-bio-chem-tech-articles/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Bio/Chem/Tech</span><span class="avia-menu-fx"><span class="avia-arrow-wrap"><span class="avia-arrow"></span></span></span></a><ul class="sub-menu"><li role="menuitem" id="menu-item-26556" class="menu-item menu-item-type-taxonomy menu-item-object-category"><a href="https://www.physicsforums.com/insights/science-math-articles/biology-chemistry-articles/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Bio/Chem Articles</span></a></li><li role="menuitem" id="menu-item-26566" class="menu-item menu-item-type-taxonomy menu-item-object-category"><a href="https://www.physicsforums.com/insights/science-math-tutorials/computer-science-tutorials/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Computer Science Tutorials</span></a></li><li role="menuitem" id="menu-item-26565" class="menu-item menu-item-type-taxonomy menu-item-object-category"><a href="https://www.physicsforums.com/insights/science-math-guides/technology-guides/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Technology Guides</span></a></li></ul></li><li role="menuitem" id="menu-item-27286" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-has-children menu-item-top-level menu-item-top-level-4"><a href="https://www.physicsforums.com/insights/trending-education-articles/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Education</span><span class="avia-menu-fx"><span class="avia-arrow-wrap"><span class="avia-arrow"></span></span></span></a><ul class="sub-menu"><li role="menuitem" id="menu-item-26557" class="menu-item menu-item-type-taxonomy menu-item-object-category"><a href="https://www.physicsforums.com/insights/science-math-articles/education-articles/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Education Articles</span></a></li><li role="menuitem" id="menu-item-26562" class="menu-item menu-item-type-taxonomy menu-item-object-category"><a href="https://www.physicsforums.com/insights/science-math-guides/education-guides/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Education Guides</span></a></li></ul></li><li role="menuitem" id="menu-item-26569" class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-top-level menu-item-top-level-5"><a href="https://www.physicsforums.com/insights/scientist-interviews/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Interviews</span><span class="avia-menu-fx"><span class="avia-arrow-wrap"><span class="avia-arrow"></span></span></span></a></li><li role="menuitem" id="menu-item-26570" class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-top-level menu-item-top-level-6"><a href="https://www.physicsforums.com/insights/science-math-quizzes/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Quizzes</span><span class="avia-menu-fx"><span class="avia-arrow-wrap"><span class="avia-arrow"></span></span></span></a></li><li role="menuitem" id="menu-item-26571" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-top-level menu-item-top-level-7"><a href="https://www.physicsforums.com/" itemprop="url" tabindex="0"><span class="avia-bullet"></span><span class="avia-menu-text">Forums</span><span class="avia-menu-fx"><span class="avia-arrow-wrap"><span class="avia-arrow"></span></span></span></a></li><li id="menu-item-search" class="noMobile menu-item menu-item-search-dropdown menu-item-avia-special" role="menuitem"><a aria-label="Search" href="?s=" rel="nofollow" data-avia-search-tooltip=" <search> <form role="search" action="https://www.physicsforums.com/insights/" id="searchform" method="get" class=""> <div> <input type="submit" value="" id="searchsubmit" class="button avia-font-entypo-fontello" title="Enter at least 3 characters to show search results in a dropdown or click to route to search result page to show all results" /> <input type="search" id="s" name="s" value="" aria-label='Search' placeholder='Search' required /> </div> </form> </search> " aria-hidden='false' data-av_icon='' data-av_iconfont='entypo-fontello'><span class="avia_hidden_link_text">Search</span></a></li><li class="av-burger-menu-main menu-item-avia-special " role="menuitem"> <a href="#" aria-label="Menu" aria-hidden="false"> <span class="av-hamburger av-hamburger--spin av-js-hamburger"> <span class="av-hamburger-box"> <span class="av-hamburger-inner"></span> <strong>Menu</strong> </span> </span> <span class="avia_hidden_link_text">Menu</span> </a></li></ul></div></nav></div></div></div><div class="header_bg"></div></header><div id='main' class='all_colors' data-scroll-offset='70'><div class='container_wrap container_wrap_first main_color sidebar_right'><div class='container template-blog template-single-blog '><main class='content units av-content-small alpha av-blog-meta-html-info-disabled av-main-single' role="main" itemscope="itemscope" itemtype="https://schema.org/Blog" ><article class="post-entry post-entry-type-standard post-entry-42892 post-loop-1 post-parity-odd post-entry-last single-big with-slider post-42892 post type-post status-publish format-standard has-post-thumbnail hentry category-math-articles tag-complex-calculus tag-differentiation tag-integration" itemscope="itemscope" itemtype="https://schema.org/BlogPosting" itemprop="blogPost" ><div class="big-preview single-big" itemprop="image" itemscope="itemscope" itemtype="https://schema.org/ImageObject" ><a href="https://www.physicsforums.com/insights/wp-content/uploads/2023/03/integration_differentiation.png" title="integration_differentiation" ><img data-lazyloaded="1" src="" loading="lazy" width="240" height="135" data-src="https://www.physicsforums.com/insights/wp-content/uploads/2023/03/integration_differentiation.png" class="wp-image-42943 avia-img-lazy-loading-42943 attachment-entry_with_sidebar size-entry_with_sidebar wp-post-image" alt="integration and complex differentiation" decoding="async" /><noscript><img loading="lazy" width="240" height="135" src="https://www.physicsforums.com/insights/wp-content/uploads/2023/03/integration_differentiation.png" class="wp-image-42943 avia-img-lazy-loading-42943 attachment-entry_with_sidebar size-entry_with_sidebar wp-post-image" alt="integration and complex differentiation" decoding="async" /></noscript></a></div><div class="blog-meta"></div><div class='entry-content-wrapper clearfix standard-content'><header class="entry-content-header" aria-label="Post: An Overview of Complex Differentiation and Integration"><h1 class='post-title entry-title ' itemprop="headline" >An Overview of Complex Differentiation and Integration<span class="post-format-icon minor-meta"></span></h1><span class="post-meta-infos"><time class="date-container minor-meta updated" itemprop="datePublished" datetime="2023-03-14T08:24:25-05:00" >March 14, 2023</time><span class="text-sep">/</span><span class="comment-container minor-meta"><a href="https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/#respond" class="comments-link" >0 Comments</a></span><span class="text-sep">/</span><span class="blog-categories minor-meta">in <a href="https://www.physicsforums.com/insights/science-math-articles/math-articles/" rel="tag">Mathematics Articles</a></span><span class="text-sep">/</span><span class="blog-author minor-meta">by <span class="entry-author-link" itemprop="author" ><span class="author"><span class="fn"><a href="https://www.physicsforums.com/insights/author/fresh_42/" title="Posts by fresh_42" rel="author">fresh_42</a></span></span></span></span></span></header><div class="entry-content" itemprop="text" ><div><strong>Estimated Read Time:</strong> 19 minute(s)</div><div><strong>Common Topics:</strong> function, complex, holomorphic, path, integration</div><div><div id="ez-toc-container" class="ez-toc-v2_0_72 counter-hierarchy ez-toc-counter ez-toc-custom ez-toc-container-direction"><p class="ez-toc-title" style="cursor:inherit">Table of Contents</p> <label for="ez-toc-cssicon-toggle-item-67b57f4401d67" class="ez-toc-cssicon-toggle-label"><span class="ez-toc-cssicon"><span class="eztoc-hide" style="display:none;">Toggle</span><span class="ez-toc-icon-toggle-span"><svg style="fill: #4c4c4c;color:#4c4c4c" xmlns="http://www.w3.org/2000/svg" class="list-377408" width="20px" height="20px" viewBox="0 0 24 24" fill="none"><path d="M6 6H4v2h2V6zm14 0H8v2h12V6zM4 11h2v2H4v-2zm16 0H8v2h12v-2zM4 16h2v2H4v-2zm16 0H8v2h12v-2z" fill="currentColor"></path></svg><svg style="fill: #4c4c4c;color:#4c4c4c" class="arrow-unsorted-368013" xmlns="http://www.w3.org/2000/svg" width="10px" height="10px" viewBox="0 0 24 24" version="1.2" baseProfile="tiny"><path d="M18.2 9.3l-6.2-6.3-6.2 6.3c-.2.2-.3.4-.3.7s.1.5.3.7c.2.2.4.3.7.3h11c.3 0 .5-.1.7-.3.2-.2.3-.5.3-.7s-.1-.5-.3-.7zM5.8 14.7l6.2 6.3 6.2-6.3c.2-.2.3-.5.3-.7s-.1-.5-.3-.7c-.2-.2-.4-.3-.7-.3h-11c-.3 0-.5.1-.7.3-.2.2-.3.5-.3.7s.1.5.3.7z"/></svg></span></span></label><input type="checkbox" id="ez-toc-cssicon-toggle-item-67b57f4401d67" aria-label="Toggle" /><nav><ul class='ez-toc-list ez-toc-list-level-1 ' ><li class='ez-toc-page-1 ez-toc-heading-level-3'><a class="ez-toc-link ez-toc-heading-1" href="#Abstract" title="Abstract">Abstract</a></li><li class='ez-toc-page-1 ez-toc-heading-level-3'><a class="ez-toc-link ez-toc-heading-2" href="#Complex-Differentiation" title="Complex Differentiation">Complex Differentiation</a></li><li class='ez-toc-page-1 ez-toc-heading-level-3'><a class="ez-toc-link ez-toc-heading-3" href="#Holomorphic-Functions" title="Holomorphic Functions">Holomorphic Functions</a></li><li class='ez-toc-page-1 ez-toc-heading-level-3'><a class="ez-toc-link ez-toc-heading-4" href="#Complex-Line-Integrals" title="Complex Line Integrals">Complex Line Integrals</a></li><li class='ez-toc-page-1 ez-toc-heading-level-3'><a class="ez-toc-link ez-toc-heading-5" href="#Complex-Integration" title="Complex Integration">Complex Integration</a></li><li class='ez-toc-page-1 ez-toc-heading-level-3'><a class="ez-toc-link ez-toc-heading-6" href="#Residue-Theorem" title="Residue Theorem">Residue Theorem</a></li><li class='ez-toc-page-1 ez-toc-heading-level-3'><a class="ez-toc-link ez-toc-heading-7" href="#Properties-of-Residues" title="Properties of Residues">Properties of Residues</a></li><li class='ez-toc-page-1 ez-toc-heading-level-3'><a class="ez-toc-link ez-toc-heading-8" href="#Real-Integration-with-Residues" title="Real Integration with Residues">Real Integration with Residues</a></li><li class='ez-toc-page-1 ez-toc-heading-level-3'><a class="ez-toc-link ez-toc-heading-9" href="#Sources" title="Sources">Sources</a></li><li class='ez-toc-page-1 ez-toc-heading-level-3'><a class="ez-toc-link ez-toc-heading-10" href="#More-Related-Articles" title="More Related Articles">More Related Articles</a></li></ul></nav></div><h3><span class="ez-toc-section" id="Abstract"></span>Abstract<span class="ez-toc-section-end"></span></h3><p>I want to shed some light on complex analysis without getting all the technical details in the way which are necessary for the precise treatments that can be found in many excellent standard textbooks.</p><p>Analysis is about differentiation. Hence, complex differentiation will be my starting point. It is simultaneously my finish line because its inverse, the complex integration, is closely interwoven with complex differentiation. By the lack of details, I mean that I will sometimes assume a disc if a star-shaped region or a simply connected open set would be sufficient; or assume a differentiable function if differentiability up to finitely many points would already be sufficient. Also, the sometimes necessary techniques of gluing triangles for an integration path, or the epsilontic within a region will be omitted.</p><p>The statements listed as theorems, however, will be precise. Some of them might sometimes allow a wider range of validity, i.e. more generality. Nevertheless, the reader will find the basic ideas, definitions, tricks, and theorems of the residue calculus; and if nothing else, see where all the ##\pi##’s in integral formulas come from.</p><h3><span class="ez-toc-section" id="Complex-Differentiation"></span>Complex Differentiation<span class="ez-toc-section-end"></span></h3><p>A function ##f:U\rightarrow V## is differentiable at ##x_0## if there is a linear approximation ##D_{x_0}f=(Df)_{x_0}##, such that (Karl T.W. Weierstraß)<br /> \begin{equation*}<br /> f(x_0+v)=f(x_{0})+(D_{x_0}f)\cdot v+r(v)<br /> \end{equation*}<br /> where the error function ##r## has the property, that it converges faster to zero than linear in any direction ##v##, which means<br /> $$\lim_{v \rightarrow 0}\frac{r(v)}{v}=0.$$<br /> If we rearrange this formula, then<br /> \begin{align*}<br /> D_{x_0}f&= \lim_{v\to 0}D_{x_0}f = \lim_{v\to 0}\left( \dfrac{f(x_0+v)-f(x_0)}{v}-\dfrac{r(v)}{v}\right)=\lim_{v\to 0} \dfrac{f(x_0+v)-f(x_0)}{v}<br /> \end{align*}<br /> reveals the formula that is commonly used to define a derivative. It also shows that<br /> $$<br /> D_{x_0}f=(Df)_{x_0}=\left. \dfrac{df}{dx}\right|_{x_0}=f'(x_0)<br /> $$<br /> If ##f## is a function of a one-dimensional range, then the direction ##v## can only be a one-dimensional vector and we assume ##v=1## when we write<br /> $$f'(x_0)=f'(x_0)\cdot 1= D_{x_0}f\cdot v.$$<br /> The beauty of Weierstraß’s formula lies in the fact that it carries all the important properties of a derivative:</p><ul><li><strong>locality:<br /> </strong>Weierstraß’s formula requires validity in a region of ##x_0.##</li><li><strong>linear operator and Leibniz rule:<br /> </strong>##D_{x_0}## is a derivation, i.e. ##D_{x_0}(\alpha\cdot f+\beta\cdot g)=\alpha\cdot D_{x_0}(f) +\beta\cdot D_{x_0}(g)## and ##D_{x_0}(f\cdot g)=D_{x_0}(f)g(x_0)+f(x_0)D_{x_0}(g).##</li><li><strong>linearity:<br /> </strong>##D_{x_0}f## is a linear function, i.e. ##D_{x_0}f(\alpha v+\beta w)=\alpha D_{x_0}f(v)+\beta D_{x_0}f(w).##</li><li><strong>directionality, slope:</strong><br /> A derivative ##(D_{x_0}f) v ## is directional, namely the slope in direction ##v.##</li><li><strong>approximation:<br /> </strong>##r(v)=o(v).##</li></ul><p>By allowing all parts ##x_0,f,v,r,D,D_{x_0},D_{x_0}f, D_{*}f## in Weierstraß’s formula to be variables of an operator in its most general meaning, we immediately open the door to fiber bundles, global and local sections, differential forms and tangent- as well as cotangent bundles. Also note that we did not distinguish between real and complex functions, yet. This generality shall be our starting point.</p><p>Every complex linear function ##\varphi : \mathbb{C}\rightarrow \mathbb{C}## is a real linear function, too, and can be written as<br /> \begin{align*}<br /> \varphi(x+iy)&=\underbrace{\begin{pmatrix}\varphi_{11}&\varphi_{12}\\\varphi_{21}&\varphi_{22}\end{pmatrix}}_{\in \mathbb{M}(2,\mathbb{R})}(x+iy)=(\varphi_{11}(x)+\varphi_{12}(y))+i(\varphi_{21}(x)+\varphi_{22}(y))<br /> \end{align*}<br /> ##\mathbb{C}##-linearity means that<br /> $$<br /> (a+ib)\varphi(x+iy)=\varphi((ax-by)+i(bx+ay))<br /> $$<br /> and thus<br /> \begin{align*}<br /> (a+ib)&\cdot (\varphi_{11}(x)+\varphi_{12}(y))+i(\varphi_{21}(x)+\varphi_{22}(y))\\<br /> &=(\varphi_{11}(ax)+\varphi_{12}(ay)-\varphi_{21}(bx)-\varphi_{22}(by))\\<br /> &\phantom{=}+i(\varphi_{11}(bx)+\varphi_{12}(by)+\varphi_{21}(ax)+\varphi_{22}(ay))\\<br /> &=(\varphi_{11}(ax)-\varphi_{11}(by)+\varphi_{12}(bx)+\varphi_{12}(ay))\\<br /> &\phantom{=}+i(\varphi_{21}(ax)-\varphi_{21}(by)+\varphi_{22}(bx)+\varphi_{22}(ay))<br /> \end{align*}<br /> Comparing both sides results in<br /> \begin{align*}<br /> \varphi_{11}=\varphi_{22}\, &\text{ and } \,\varphi_{21}+\varphi_{12}=0\quad (*)<br /> \end{align*}<br /> We know that ##D_{z_0}## is a ##\mathbb{C}##-linear operator, and ##D_{z_0}f## is a ##\mathbb{C}##-linear function. If we write ##f=u+iv## then<br /> $$<br /> D_{z_0}f=D_{z_0}u+iD_{z_0}v=\left( \left.\dfrac{\partial u}{\partial x}\right|_{z_0}dx+\left.\dfrac{\partial u}{\partial y}\right|_{z_0}dy\right)+i\left(\left.\dfrac{\partial v}{\partial x}\right|_{z_0}dx+\left.\dfrac{\partial v}{\partial y}\right|_{z_0}dy\right)<br /> $$<br /> and our condition ##(*)## of ##\mathbb{C}##-linearity becomes<br /> $$<br /> \left. \dfrac{\partial u}{\partial x }\right|_{z_0} = \left. \dfrac{\partial v}{\partial y}\right|_{z_0}\text{ and }\left. \dfrac{\partial u}{\partial y}\right|_{z_0}+\left. \dfrac{\partial v}{\partial x}\right|_{z_0}=0\,,<br /> $$<br /> <strong>the Cauchy-Riemann equations</strong>. This means that complex differentiability is real differentiability plus the Cauchy-Riemann equations. This is the main difference why complex analysis is more than ##\mathbb{R}^2## analysis, complex linearity.</p><h3><span class="ez-toc-section" id="Holomorphic-Functions"></span>Holomorphic Functions<span class="ez-toc-section-end"></span></h3><p>We see by induction that skew-symmetric matrices with a constant diagonal (spiral symmetry) keep their structure if we multiply them by themselves<br /> \begin{align*}<br /> \begin{pmatrix}a&b\\-b&a\end{pmatrix}^{n+1}&=\begin{pmatrix}c&d\\-d&c\end{pmatrix}\cdot \begin{pmatrix}a&b\\-b&a\end{pmatrix}=\begin{pmatrix}ca-db&cb+da\\-da-cb&-db+ca\end{pmatrix}<br /> \end{align*}<br /> That means the Cauchy-Riemann property is invariant under exponentiation<br /> $$<br /> \begin{pmatrix}\dfrac{\partial u}{\partial x}&\dfrac{\partial u}{\partial y}\\[16pt] \dfrac{\partial v}{\partial x}&\dfrac{\partial v}{\partial y}\end{pmatrix}^n=\begin{pmatrix}\dfrac{\partial u}{\partial x}&\dfrac{\partial u}{\partial y}\\[16pt] -\dfrac{\partial u}{\partial y}&\dfrac{\partial u}{\partial x}\end{pmatrix}^n=<br /> \begin{pmatrix}<br /> p\left(\dfrac{\partial u}{\partial x}\, , \,\dfrac{\partial u}{\partial y}\right) & q\left(\dfrac{\partial u}{\partial x}\, , \,\dfrac{\partial u}{\partial y}\right) \\[16pt]<br /> -q\left(\dfrac{\partial u}{\partial x}\, , \,\dfrac{\partial u}{\partial y}\right) & p\left(\dfrac{\partial u}{\partial x}\, , \,\dfrac{\partial u}{\partial y}\right)<br /> \end{pmatrix}<br /> $$<br /> for some real polynomials ##p(X,Y,n),q(X,Y,n)\in \mathbb{R}[X,Y].##</p><p><strong>Definition:</strong> A complex function ##f:U\rightarrow V## is <strong>holomorphic</strong> if it is complex differentiable in a non-empty, open, and connected set ##U##, i.e. in a <strong>region</strong>. ##f## is called <strong>meromorphic</strong> if it is holomorphic up to a set of isolated points, its <strong>poles</strong>. If ##f## is holomorphic on the entire complex plane, then it is called an <strong>entire</strong> function. A real, or complex function is <strong>analytic</strong> at a point ##z_0\in U##, if there is a power series that converges to the function value in an open neighborhood of ##z_0##<br /> $$<br /> f(z)=\sum_{n=0}^\infty a_n(z-z_0)^n.<br /> $$</p><p><strong>Theorem:</strong> The following statements for ##f=u+iv\, : \,U\rightarrow V## are equivalent:</p><ol><li>##f## is complex differentiable in a region ##U,## ##f\in C^1(U).##</li><li>##f## is arbitrary often complex differentiable in a region ##U,## ##f\in C^\infty (U).##</li><li>##f## is holomorphic on ##U,## ##f\in \mathcal{O}(U).##</li><li>The real and imaginary parts of ##f## are continuously real differentiable and fulfill the Cauchy-Riemann partial <a href="https://www.physicsforums.com/insights/differential-equation-systems-and-nature/">differential equations</a> (CR).</li><li>##f## is analytic on ##U.##</li><li>##f## is real differentiable and ##{\displaystyle {\tfrac{\partial f}{\partial {\bar {z}}}}:={\tfrac{1}{2}} \left({\tfrac{\partial }{\partial x}} + i {\tfrac{\partial }{\partial y}}\right)}(f) =0.##</li></ol><h3><span class="ez-toc-section" id="Complex-Line-Integrals"></span>Complex Line Integrals<span class="ez-toc-section-end"></span></h3><p>We have seen that the definition of complex differentiation doesn’t require a change of real differentiation, just the reminder that <em>the field</em> ##\mathbb{C}## which replaces <em>the field</em> ##\mathbb{R}## may not be confused with <em>the real vector space</em> ##\mathbb{R}^2.## We are used to imagining complex numbers as points in the complex plane, but the complex numbers are not a real plane, they are a one-dimensional complex vector space over themselves.</p><p>The inverse operation is integration. And real integration is the calculation of an oriented volume, an area (volume of the area under the function graph) in the case of a function ##g:\mathbb{R}\rightarrow \mathbb{R}.## Oriented means that we distinguish the areas above the ##x##-axis from the areas below the ##x##-axis, as well as the integration path from ##x=a## to ##x=b## from the integration path from ##x=b## to ##x=a.## If the function itself is a straight, say ##g(x)=r,## then the area is that of a single rectangle<br /> $$<br /> \int_a^b g(x)\,dx=\int_a^b r\,dx=[rx]_a^b=rb-ra=r\cdot (b-a).<br /> $$<br /> If we proceed as above and only substitute the real numbers with complex numbers, then we get<br /> \begin{align*}<br /> \int_{a+ic}^{b+id} g(x)\,dx&=\int_{a+ic}^{b+id} (r+is)\,dz=[(r+is)z]_{a+ic}^{b+id}\\<br /> &=(r(b-a)-s(d-c))+i(r(d-c)+s(b-a))\\<br /> &=\int_a^b r\,dz +\int_{ic}^{id}(is)\,dz+ \int_{ic}^{id}r\,dz+\int_{a}^b (is)\,dz \,.<br /> \end{align*}<br /> Only the number of distinguishable orientations increases because ##i \cdot i = -1## creates another negative area and imaginary volumes are allowed. This means we have to investigate the integration path more carefully than just from left to right or from right to left as we did in real integration if we want to understand a complex volume built by complex lengths. Fortunately, the integral itself cares about all orientations as long as we don’t make a sign error, and as long as we are not interested in an actual geometric volume, that had to be positive and real.</p><p>To begin with, we define the obvious integral<br /> $$<br /> \int_a^b f(t)\,dt := \int_a^b u(t)\,dt +i\int_a^b v(t)\,dt<br /> $$<br /> for (piecewise) continuous functions ##f=u+iv : \mathbb{R}\supset [a,b] \rightarrow \mathbb{C}.##</p><p>We also use this for the definition of the complex line integral ##\displaystyle{\int_{z_1}^{z_2}f(z) \,dz}## where we integrate along a (real) parameterized path ##\gamma: [a,b] \longrightarrow G\subseteq \mathbb{C}## from ##\gamma (a)=z_1\in G,\gamma (b)=z_2\in G## for a complex function ##f: G\longrightarrow \mathbb{C}## defined on a region ##G\subseteq \mathbb{C}##<br /> \begin{align*}<br /> \int_\gamma f(z)\,dz &=…\text{ (substitution }z=\gamma(t)\, , \,dz=\gamma’\,dt) \\<br /> …&=\int_a^b (f\circ \gamma )(t)\cdot \gamma’\,dt =\int_a^b f(\gamma (t))\cdot \gamma'(t)\,dt<br /> \end{align*}<br /> The complex line integral depends on a priori on the integration path! This can easily be shown for ##f(z)=\bar{z}.## However, if ##f## is holomorphic, then its line integrals are path independent.</p><p> </p><p><strong>Cauchy’s Integral Theorem:</strong> If ##f:G\longrightarrow \mathbb{C}## is a continuous complex function then ##f## has an anti-derivative on ##G## if and only if ##\displaystyle{\oint_\gamma f(z)\,dz=0}## for any closed integration path ##\gamma## in ##G##, ##\gamma(a)=z_0=\gamma(b).##</p><p>Both is true for a star-shaped region ##G,## e.g. a convex region, and a holomorphic function ##f.##</p><p> </p><p><strong>Example:</strong> Consider the border ##\gamma(t)=z_0+re^{i t}\, , \,0\leq t\leq 2\pi## of the disc ##G=D_r(z_0)## around a central point ##z_0.## Then<br /> \begin{align*}<br /> \oint_\gamma \dfrac{1}{z-z_0}\,dz&=\int_0^{2\pi}\dfrac{1}{re^{it}} \cdot ire^{it} \,dt=i\cdot \int_0^{2\pi}dt=2\pi i\\<br /> \oint_\gamma \left(z-z_0\right)^p\,dz&\stackrel{(p\neq -1)}{=}\int_0^{2\pi} r^p e^{i p t} \cdot ire^{it}\,dt=ir^{p+1}\int_0^{2\pi} e^{i(p+1)t}\,dt\\<br /> &=ir^{p+1}\left[\dfrac{e^{i(p+1)t}}{i(p+1)}\right]_0^{2\pi}=\dfrac{r^{p+1}}{p+1}(e^{2(p+1)\pi i t}-e^0)=0\,.<br /> \end{align*}<br /> Hence, we get the important formula<br /> $$<br /> \oint_\gamma \left(z-z_0\right)^p\,dz=\begin{cases}<br /> 2\pi i & \text{ if } p = -1 \\<br /> 0 & \text{ if } p\neq -1 \,.<br /> \end{cases}<br /> $$</p><p><strong>Corollary:</strong> If ##D\subset \mathbb{C}## is a disc, and ##z\in \mathbb{C} \backslash \partial D## then<br /> $$<br /> \oint_{\partial D} \,\dfrac{d\zeta}{\zeta -z}=\begin{cases}<br /> 2\pi i & \text{ if } z\in D \\<br /> 0 & \text{ else } \,.<br /> \end{cases}<br /> $$</p><h3><span class="ez-toc-section" id="Complex-Integration"></span>Complex Integration<span class="ez-toc-section-end"></span></h3><p>If ##f:G\rightarrow \mathbb{C}## is holomorphic, then<br /> $$<br /> f(\zeta)=f(z)+\underbrace{\left( (D_{z}f)+\underbrace{\dfrac{r(\zeta-z)}{\zeta-z}}_{\stackrel{\zeta \to z}{\longrightarrow }\;\;0} \right)}_{=:\Delta_z(\zeta)}\cdot (\zeta-z)<br /> $$<br /> with an everywhere continuous and besides ##z## even holomorphic function ##\Delta_z.## Thus<br /> \begin{align*}<br /> 0&=\oint_{\partial D}\Delta(\zeta)\,d\zeta =\oint_{\partial D}\dfrac{f(\zeta)-f(z)}{\zeta -z}\,d\zeta \\<br /> &=\oint_{\partial D}\dfrac{f(\zeta)}{\zeta -z}\,d\zeta – f(z) \oint_{\partial D}\dfrac{1}{\zeta -z}\,d\zeta =\oint_{\partial D}\dfrac{f(\zeta)}{\zeta -z}\,d\zeta – f(z)\cdot 2\pi i<br /> \end{align*}<br /> and<br /> $$<br /> f(z)=\dfrac{1}{2\pi i}\oint_{\partial D}\dfrac{f(\zeta)}{\zeta -z}\,d\zeta<br /> $$<br /> We even have</p><p><strong>Theorem:</strong> The following statements for ##f=u+iv\, : \,U\rightarrow V## are equivalent:</p><ol><li>##f## is holomorphic on ##U.##</li><li>##f## is continuous and its path integral over any closed, contractible path vanishes.</li><li>The function values of ##f## on the interior of a disc ##D\subseteq U## can be determined by the function values on the border of this disc by <strong>Cauchy’s integral formula<br /> </strong>$$ f(z)=\dfrac{1}{2\pi i} \oint_{\partial D} \dfrac{f(\zeta)}{\zeta – z}\,d\zeta\,.$$</li></ol><p>Let us now introduce <em><strong>the trick with the geometric series</strong></em>. ##f:D\rightarrow \mathbb{C}## be a continuous function an a compact set ##D\, , \, z_0\not\in D ## and ##R=\operatorname{dist}(z_0,D).## Then<br /> \begin{align*}<br /> \dfrac{1}{\zeta – z}&=\dfrac{1}{(\zeta -z_0)-(z-z_0)}=\dfrac{1}{\zeta -z_0}\cdot \dfrac{1}{1-\dfrac{z-z_0}{\zeta-z_0}}=\dfrac{1}{\zeta -z_0}\cdot \sum_{n=0}^\infty \left(\dfrac{z-z_0}{\zeta-z_0}\right)^n<br /> \end{align*}<br /> for ##|z-z_0|<R\leq |\zeta-z_0|## and ##z\in D_R(z_0)\, , \,\zeta \in D.## Since ##f## is bounded on the compact set ##D,## say ##0<|f(\zeta)|<C,## we have<br /> $$<br /> \left| \dfrac{f(\zeta)}{(\zeta-z_0)^{n+1}}\cdot(z-z_0)^n \right|\leq \dfrac{C}{R}\cdot \left(\dfrac{z-z_0}{R}\right)^n<br /> $$<br /> and the series on the right converges for any fixed ##z\in D_R(z_0).## Thus<br /> $$<br /> \dfrac{f(\zeta)}{\zeta – z}=\dfrac{f(\zeta)}{\zeta -z_0}\cdot \sum_{n=0}^\infty \left(\dfrac{z-z_0}{\zeta-z_0}\right)^n=\sum_{n=0}^\infty \dfrac{f(\zeta)}{(\zeta-z_0)^{n+1}}\cdot (z-z_0)^n<br /> $$<br /> converges absolutely and uniformly for a fixed ##z## for ##\zeta \in D## by Weierstraß’s criterion. Finally,<br /> \begin{align*}<br /> f(z)=\dfrac{1}{2\pi i}\oint_\gamma \dfrac{f(\zeta)}{\zeta – z}\,d\zeta= \sum_{n=0}^\infty \underbrace{\left(\dfrac{1}{2\pi i} \oint_\gamma \dfrac{f(\zeta)}{(\zeta-z_0)^{n+1}}\,d\zeta \right)}_{=:a_n}\cdot (z-z_0)^n<br /> \end{align*}<br /> converges absolute and uniformly on the interior of ##D_R(z_0)## versus the everywhere holomorphic, and by construction analytic function<br /> $$<br /> f(z)=\sum_{n=0}^\infty a_n(z-z_0)^n\,.<br /> $$<br /> If we apply this to the border of a disc ##\gamma(t)=z_0+re^{it}## with ##0<r<R## and ##0\leq t\leq 2\pi ,## we get</p><p><strong>Cauchy’s Expansion Theorem:</strong> Let ##f:G\rightarrow \mathbb{C}## be a complex, holomorphic function on a region ##G## and ##z_0\in G.## Let further be ##R## the maximal radius of an open disc around ##z_0## that fits into ##G.## Then there is a power series<br /> $$<br /> f(z)=\sum_{n=0}^\infty a_n(z-z_0)^n,<br /> $$<br /> that converges for all ##0<r<R## on the disc ##D_r(z_0)## absolutely and uniformly versus ##f(z).## For every such ##r## is<br /> $$<br /> \displaystyle{a_n=\dfrac{1}{2\pi i} \oint_{\partial D_r(z_0)} \dfrac{f(\zeta)}{(\zeta-z_0)^{n+1}}\,d\zeta}<br /> $$<br /> and ##f## is on ##G## arbitrary often complex differentiable.</p><h3><span class="ez-toc-section" id="Residue-Theorem"></span>Residue Theorem<span class="ez-toc-section-end"></span></h3><p>Let us start with <em><strong>Laurent’s decomposition trick</strong></em> for a holomorphic function ##f:\mathcal{R}\rightarrow \mathbb{C}## on a ring ##\mathcal{R}=\{z\in \mathbb{C}\,|\,0<r<|z|<R\}.## There exists a decomposition<br /> $$<br /> f(z)=g(z)+h\left(\dfrac{1}{z}\right)<br /> $$<br /> into holomorphic functions on discs<br /> $$<br /> g:D_R(0)\rightarrow \mathbb{C}\; , \;h:D_{1/r}(0)\rightarrow \mathbb{C}<br /> $$<br /> The decomposition becomes unique if we require ##h(0)=0.## Since holomorphic functions are analytic, we have an expansion into power series<br /> $$<br /> f(z)= \sum_{n=0}^\infty a_nz^n+\sum_{n=0}^\infty b_n\left(\dfrac{1}{z}\right)^n=\sum_{n=-\infty }^\infty c_nz^n<br /> $$<br /> For an expansion at ##z_0## we receive a Laurent series ##(r<\rho<R)##<br /> $$<br /> f(z)=\sum_{n=-\infty }^\infty a_n (z-z_0)^n\; , \;a_n=\displaystyle{\dfrac{1}{2\pi i} \oint_{\partial D_\rho(z_0)} \dfrac{f(\zeta)}{(\zeta-z_0)^{n+1}}\,d\zeta}<br /> $$<br /> Note that ##r=0,R=\infty ,## and ##r=R## are possible settings. Those radii can be calculated by <strong>the formula of Cauchy-Hadamard</strong><br /> $$<br /> r=\limsup_{n\to \infty } \sqrt[n]{|a_{-n}|}\; , \;R=\dfrac{1}{\displaystyle{\limsup_{n\to \infty } \sqrt[n]{|a_{n}|}}}<br /> $$<br /> <strong>Definition:</strong> Let ##f:G\rightarrow \mathbb{C}## be a holomorphic function that does not completely vanish on the region ##G\subseteq \mathbb{C}.## The coefficient at ##-1##<br /> $$<br /> \operatorname{Res}_{z_0}(f)=a_{-1}=\dfrac{1}{2\pi i} \oint_{\partial D_\rho(z_0)} f(\zeta) \,d\zeta<br /> $$<br /> is called <strong>the residue of</strong> ##f## <strong>at</strong> ##z_0.## It is the only coefficient without a ##\zeta -z_0## term in the integral definition of the coefficients of the Laurent series of ##f.##</p><p>A point ##z_0## is called <strong>a zero of order</strong> ##m## if there is a holomorphic function ##g:D_r(z_0)\rightarrow \mathbb{C}## such that<br /> $$<br /> f(z)=(z-z_0)^m g(z)\; , \;g(z_0)\neq 0 .<br /> $$<br /> A point ##z_0## is called <strong>a pole (isolated singularity) of order</strong> ##m## if there is a holomorphic function ##g:D_r(z_0)\rightarrow \mathbb{C}## such that<br /> $$<br /> f(z)=(z-z_0)^{-m}g(z)\; , \;g(z_0)\neq 0 .<br /> $$<br /> A pole is a zero of ##1/f.## The residue of a pole of order ##m## is<br /> $$<br /> \operatorname{Res}_{z_0}(f)= \dfrac{1}{(m-1)!} \lim_{z\to z_0}{\dfrac{d^{m-1}}{dz^{m-1}}} \left((z-z_0)^{m}f(z)\right)<br /> $$<br /> We have seen that surrounding a disc once means ##\;\dfrac{1}{2\pi i}\displaystyle{\oint_{\partial D} \,\dfrac{d\zeta}{\zeta -z}}=1.##</p><p>If we instead have any closed curve ##\gamma ## around ##z_0,## then we define <strong>the winding number of</strong> ##\gamma ## <strong>around</strong> ##z_0## as<br /> $$<br /> \operatorname{Ind}_\gamma (z_0):=\dfrac{1}{2\pi i}\oint_{\gamma} \,\dfrac{d\zeta}{\zeta -z}.<br /> $$</p><p><strong>Residue Theorem:</strong> Let ##f:G\rightarrow \mathbb{C}## be a holomorphic function up to finitely many isolated singularities ##z_1,\ldots,z_q,## i.e. ##f## is meromorphic, and ##\gamma ## a closed, piecewise smooth curve in the region ##G,## then<br /> $$<br /> \oint_\gamma f(z)\,dz=2\pi i \sum_{k=1}^q \operatorname{Ind}_\gamma (z_k) \operatorname{Res}_{z_k}(f)<br /> $$<br /> Let’s call the set of zeros ##Z## and the set of poles ##P## of a meromorphic function ##f,## and require that our integration path ##\gamma ## doesn’t contain any of them. We already have seen that we can write ##f(z) =(z-z_0)^{m}g(z) = (z-z_0)^{\operatorname{ord}_{z_0}(f)}## for any ##z_0\in Z\cup P## of order ##|m|.## Then<br /> $$<br /> \dfrac{f'(z)}{f(z)}=\dfrac{m}{z-z_0}+\dfrac{g'(z)}{g(z)}.<br /> $$<br /> ##\dfrac{g'(z)}{g(z)}## is holomorphic at ##z_0## since ##g(z_0)\neq 0.## The residue of ##f’/f## at ##z_0## equals therefore exactly the order ##m## of the zero or pole ##z_0## of ##f## and<br /> $$<br /> \dfrac{1}{2\pi i}\oint_\gamma \dfrac{f'(z)}{f(z)}\,dz=\sum_{z_0\in Z\cup P} \operatorname{Ind}_\gamma (z_0)\cdot \operatorname{Res}_{z_0}\left(\dfrac{f’}{f}\right) =\sum_{z_0\in Z\cup P} \operatorname{Ind}_\gamma (z_0)\cdot \operatorname{ord}_{z_0}(f)<br /> $$<br /> where<br /> $$<br /> \operatorname{Res}_{z_0}\left(\dfrac{f’}{f}\right) = \operatorname{ord}_{z_0}(f)=<br /> \begin{cases}<br /> k & \text{if } z_0 \in Z \text{ of order k }\\<br /> -k & \text{if } z_0 \in P \text{ of order k }\\<br /> 0 & \text{ else }<br /> \end{cases}<br /> $$</p><h3><span class="ez-toc-section" id="Properties-of-Residues"></span><strong>Properties of Residues</strong><span class="ez-toc-section-end"></span></h3><p>Cauchy’s integral theorem says that ##\operatorname{Res}_{z_0}(f)=0## for a holomorphic function ##f:G\rightarrow \mathbb{C}## and ##z_0\in G.## Let’s see how residues can be calculated in other cases. Say ##z_m## is a zero of order ##m## and ##p_m## a pole of order ##m## of a meromorphic function ##f:G\rightarrow \mathbb{C}.## Let further be ##h:G\rightarrow \mathbb{C}## holomorphic at those points, and ##g## another meromorphic function. Then ##\operatorname{Res}_{z_0}## is ##\mathbb{C}##-linear and</p><p>$$<br /> \begin{array}{ll}<br /> \operatorname{Res}_{z_0}(\alpha f+\beta g)=\alpha\operatorname{Res}_{z_0}(f)+\beta\operatorname{Res}_{z_0}(g) &(z_0\in G \, , \,\alpha, \beta \in \mathbb{C}) \\[16pt]<br /> \operatorname{Res}_{z_1}\left(\dfrac{h}{f}\right)=\dfrac{h(z_1)}{f'(z_1)}&<br /> \operatorname{Res}_{z_1}\left(\dfrac{1}{f}\right)=\dfrac{1}{f'(z_1)}\\[16pt]<br /> \operatorname{Res}_{z_m}\left(h\dfrac{f’}{f}\right)=h(z_m)\cdot m&\operatorname{Res}_{z_m}\left(\dfrac{f’}{f}\right)=m\\[16pt]<br /> \operatorname{Res}_{p_1}(h\cdot f)=h(p_1)\cdot \operatorname{Res}_{p_1}(f)&\operatorname{Res}_{p_1}(f)=\displaystyle{\lim_{z \to p_1}((z-p_1)f(z))}\\[16pt]<br /> \operatorname{Res}_{p_m}(f)=\dfrac{1}{(m-1)!}\displaystyle{\lim_{z \to p_m}\dfrac{\partial^{m-1} }{\partial z^{m-1}}\left( (z-p_m)^m f(z) \right)}&\operatorname{Res}_{p_m}\left(\dfrac{f’}{f}\right)=-m\\[16pt]<br /> \operatorname{Res}_{\infty }(f)=\operatorname{Res}_0\left(-\dfrac{1}{z^2}f\left(\dfrac{1}{z}\right)\right)&\operatorname{Res}_{p_m}\left(h\dfrac{f’}{f}\right)=-h(p_m)\cdot m\\[16pt]<br /> \operatorname{Res}_{z_0}(h)=0 & \operatorname{Res}_0\left(\dfrac{1}{z}\right)=1\\[16pt]<br /> \operatorname{Res}_1\left(\dfrac{z}{z^2-1}\right)=\operatorname{Res}_{-1}\left(\dfrac{z}{z^2-1}\right)=\dfrac{1}{2}&\operatorname{Res}_0\left(\dfrac{e^z}{z^m}\right)=\dfrac{1}{(m-1)!}<br /> \end{array}<br /> $$</p><h3 style="text-align: left"><span class="ez-toc-section" id="Real-Integration-with-Residues"></span>Real Integration with Residues<span class="ez-toc-section-end"></span></h3><p style="text-align: left">Consider a real rational function ##f:\mathbb{R}\rightarrow \mathbb{R}## with ##\deg(f)\leq -2## that has no poles on the real axis.<img data-lazyloaded="1" src="" decoding="async" class="alignnone size-full wp-image-42925 aligncenter" data-src="https://www.physicsforums.com/insights/wp-content/uploads/2023/03/Poles.png" alt="" width="296" height="195" /><noscript><img decoding="async" class="alignnone size-full wp-image-42925 aligncenter" src="https://www.physicsforums.com/insights/wp-content/uploads/2023/03/Poles.png" alt="" width="296" height="195" /></noscript></p><p style="text-align: left">We want to integrate ##f## along the real axis, but take this as a part of the complex plane. Our primary integration path is a composite of the real path ##\gamma :[-r,r]\rightarrow [-r,r]\subseteq \mathbb{C}\, , \,\gamma(t)=t## and the complex path ##\tilde{\gamma }:[0,\pi]\rightarrow \mathbb{C}\, , \,\tilde{\gamma }(t)=re^{it}## in the upper half of the plane where ##\mathfrak{Im}(z)\geq 0.## The residue theorem says</p><p style="text-align: left">$$<br /> \displaystyle{\oint_{\gamma \oplus \tilde{\gamma }}f(z)\,dz =\int_\gamma f(z)\,dz +\int_{\tilde{\gamma }}f(z)\,dz= 2\pi i\sum_{k=1}^q\operatorname{Res}_{z_k}(f). }<br /> $$<br /> and all poles of ##f## lie within our closed integration path as long as the radius ##r## is large enough. Moreover, for any normed, i.e. the leading coefficient equals ##1##, complex polynomial ##P(z)## of degree ##n## there is an ##R\in \mathbb{R}^+## such that for all ##z\in \mathbb{C}## with ##|z|\geq R##<br /> $$<br /> \dfrac{1}{2}|z|^n\leq |P(z)|\leq \dfrac{3}{2}|z|^n<br /> $$<br /> which can be proven with the triangle inequalities. We get for our rational function that there is a positive real constant ##c\in \mathbb{R}^+## such that (##L##= length)<br /> $$<br /> \displaystyle{\left|\int_{\tilde{\gamma }}f(z)\,dz\right|\leq L(\gamma )\cdot \max_{|z|=r}|f(z)|\leq \pi r \cdot cr^{-2}=\pi\dfrac{c}{r}\;\stackrel{r\to \infty }{\longrightarrow }\;0}<br /> $$<br /> Hence<br /> \begin{align*}<br /> \int_{-\infty }^\infty f(x)\,dx&= \displaystyle{\lim_{r \to \infty} \int_{-r}^rf(x)\,dx}=\displaystyle{\lim_{r \to \infty} \int_\gamma f(z)\,dz +0}\\<br /> &=\displaystyle{\lim_{r \to \infty} \int_\gamma f(z)\,dz + \lim_{r \to \infty}\int_{\tilde{\gamma }}f(z)\,dz }= 2\pi i\sum_{k=1}^q\operatorname{Res}_{z_k}(f).<br /> \end{align*}</p><p style="text-align: left"><strong>Example:</strong> We want to find ##\displaystyle{\int_{-\infty }^\infty \dfrac{dx}{(1+x^2)^n}}## for a positive integer ##n\in \mathbb{N}## which equals ##2\pi i \operatorname{Res}_{i}(f)## for the meromorphic function $$f(x)=\dfrac{1}{(z^2+1)^n}=\dfrac{1}{(z+i)^n(z-i)^n}$$ that has ##z=i## as only pole of order ##n## in the upper half of the complex plane.<br /> \begin{align*}<br /> \operatorname{Res}_{i}\left(\dfrac{1}{(1+z^2)^n}\right)&=\dfrac{1}{(n-1)!}\displaystyle{\;\lim_{z \to i}}\;\dfrac{\partial^{n-1}}{\partial z^{n-1}}\left((z-i)^n\dfrac{1}{(1+z^2)^n}\right)\\<br /> &=\dfrac{1}{(n-1)!}\displaystyle{\;\lim_{z \to i}}\;\dfrac{\partial^{n-1}}{\partial z^{n-1}}(z+i)^{-n}\\<br /> &=\dfrac{1}{(n-1)!}\displaystyle{\;\lim_{z \to i}<br /> (-n)(-n-1)\cdots (-2n+2)(z+i)^{-2n+1}}\\<br /> &=\dfrac{1}{(n-1)!}(-1)^{n-1}\dfrac{(2n-2)!}{(n-1)!}(2i)^{-2n+1}=-\dfrac{i}{2^{-2n+1}}\binom{2n-2}{n-1}<br /> \end{align*}<br /> and<br /> $$<br /> \displaystyle{\int_{-\infty }^\infty \dfrac{dx}{(1+x^2)^n}= \dfrac{\pi}{2^{2n-2}}}\binom{2n-2}{n-1}.<br /> $$<br /> It can be proven by similar methods as above that (cp. Fourier transform)<br /> $$<br /> \int_{-\infty }^\infty f(x)e^{ix}\,dx=2\pi i \sum_{k=1}^q\operatorname{Res}_{z_k}\left(f(z)e^{iz}\right)<br /> $$<br /> for a real rational function ##f## with ##\deg(f)\leq -2## and poles ##z_1,\ldots,z_q## on the strict upper half of the complex plane, i.e. ##\mathfrak{Im}(z_k)>0.##</p><p><strong>Example:</strong></p><p style="text-align: left">\begin{align*}<br /> \int_{-\infty }^\infty \dfrac{\cos x}{1+x^2}\,dx&=\mathfrak{Re}\left(\int_{-\infty }^\infty \dfrac{\frac{1}{2}(e^{ix}+e^{-ix})}{1+x^2}\,dx \right)=\mathfrak{Re}\left(\int_{-\infty }^\infty \dfrac{e^{ix}}{1+x^2}\,dx\right)\\<br /> &=\mathfrak{Re}\left(2\pi i \operatorname{Res}_{i}\left(\dfrac{e^{iz}}{1+z^2}\right)\right)=\mathfrak{Re}\left(2\pi i \displaystyle{\;\lim_{z \to i}}(z-i)\dfrac{e^{iz}}{1+z^2} \right)\\<br /> &=\mathfrak{Re}\left(2\pi i \cdot \dfrac{e^{-1}}{(i+i)}\right)=\dfrac{\pi}{e}<br /> \end{align*}<br /> These techniques are used to prove the slightly more general</p><p style="text-align: left"><strong>Jordan’s Lemma:</strong> Let ##f(z)=e^{i\alpha z}g(z):\mathbb{C}\longrightarrow \mathbb{C}## be a complex-valued, continuous function with ##\alpha\in \mathbb{R}^+## and ##\gamma :[0,\pi]\rightarrow \mathbb{C}\, , \,\gamma(t)=re^{it}\, , \,r\in \mathbb{R}^+.## Then<br /> $$<br /> \left| \int_{\gamma } f(z) \, dz \right| =\left| \int_{\gamma } e^{i\alpha z}g(z) \, dz \right|\le \frac{\pi}{\alpha} M_r \quad \text{where} \quad M_r := \max_{t \in [0,\pi]} \left| g \left(r e^{i t}\right) \right|.<br /> $$<br /> We get especially for functions ##g## with a uniform convergence ##\displaystyle{\lim_{|z| \to \infty}g(z)=0}## for ##z\in \{z\in \mathbb{C\,|\,}\mathfrak{Im}(z)>0\}## that<br /> $$<br /> \displaystyle{\lim_{r \to \infty}\int_\gamma f(z)\,dz =\lim_{r \to \infty}\int_\gamma e^{i\alpha z}g(z)\,dz=0}<br /> $$<br /> This is also true for ##\alpha=0## if ##\displaystyle{\lim_{|z| \to \infty}z\cdot g(z)=0}.##</p><p> </p><p style="text-align: left">Some more examples that can be calculated by these methods are</p><p style="text-align: left">\begin{align*}<br /> \int_{-\infty }^\infty \dfrac{\cos (\alpha x)}{1+x^2}\,dx=\dfrac{\pi}{e^\alpha}\; &, \; \int_{-\infty }^\infty \dfrac{x\sin (\alpha x)}{1+x^2}\,dx=\dfrac{\pi}{e^\alpha} \\[6pt]<br /> \int_0^\infty \dfrac{1}{1+x^3}\,dx = \dfrac{2\pi}{3\sqrt{3}}\; &, \;\int_0^\infty \dfrac{1}{4+x^4}\,dx = \dfrac{\pi}{8}\\[6pt]<br /> \int_{-\infty }^\infty \dfrac{1}{e^x+e^{-x}}\,dx =\dfrac{\pi }{2}\; &, \;\int_{-\infty }^\infty \dfrac{x}{e^x-e^{-x}}\,dx =\dfrac{\pi^2 }{4}<br /> \end{align*}</p><h3 style="text-align: left"><span class="ez-toc-section" id="Sources"></span>Sources<span class="ez-toc-section-end"></span></h3><p style="text-align: left"><div class='togglecontainer av-z56gl9-f28a73313137d960a6cd8285a4a349e7 avia-builder-el-0 avia-builder-el-no-sibling toggle_close_all' ><section class='av_toggle_section av-kw33gd-6587f220b622a69a7c6c0f4a0643e05b' itemscope="itemscope" itemtype="https://schema.org/BlogPosting" itemprop="blogPost" ><div role="tablist" class="single_toggle" data-tags="{All} " ><p id='toggle-toggle-id-1' data-fake-id='#toggle-id-1' class='toggler av-title-above ' itemprop="headline" role='tab' tabindex='0' aria-controls='toggle-id-1' data-slide-speed="200" data-title="Sources" data-title-open="" data-aria_collapsed="Click to expand: Sources" data-aria_expanded="Click to collapse: Sources">Sources<span class="toggle_icon"><span class="vert_icon"></span><span class="hor_icon"></span></span></p><div id='toggle-id-1' aria-labelledby='toggle-toggle-id-1' role='region' class='toggle_wrap av-title-above' ><div class='toggle_content invers-color ' itemprop="text" ><p style="text-align: left">[1] Reference to the picture and its license<br /> <a href="https://de.wikipedia.org/wiki/Datei:Cauchy_Augustin_Louis_dibner_coll_SIL14-C2-03a.jpg" target="_blank" rel="noopener">https://de.wikipedia.org/wiki/Datei:Cauchy_Augustin_Louis_dibner_coll_SIL14-C2-03a.jpg</a></p><p style="text-align: left">[2] Lecture Notes on Analysis by Prof. Fritzsch, Wuppertal, 2013<br /> <a href="https://www2.math.uni-wuppertal.de/~fritzsch/lectures/ana/" target="_blank" rel="noopener">https://www2.math.uni-wuppertal.de/~fritzsch/lectures/ana/</a></p><p style="text-align: left">[3] Lecture Notes on Function Theory by Prof. Gathman, Kaiserslautern, 2021<br /> <a href="https://www.mathematik.uni-kl.de/~gathmann/de/futheo.php" target="_blank" rel="noopener">https://www.mathematik.uni-kl.de/~gathmann/de/futheo.php</a></p><p style="text-align: left"></div></div></div></section></div></p></div><style>.lwrp.link-whisper-related-posts{ margin-top: 25px; margin-bottom: 25px; } .lwrp .lwrp-title{ }.lwrp .lwrp-description{ } .lwrp .lwrp-list-container{ } .lwrp .lwrp-list-multi-container{ display: flex; } .lwrp .lwrp-list-double{ width: 48%; } .lwrp .lwrp-list-triple{ width: 32%; } .lwrp .lwrp-list-row-container{ display: flex; justify-content: space-between; } .lwrp .lwrp-list-row-container .lwrp-list-item{ width: calc(33% - 20px); } .lwrp .lwrp-list-item:not(.lwrp-no-posts-message-item){ margin-bottom: 25px; } .lwrp .lwrp-list-item img{ max-width: 100%; height: auto; object-fit: cover; aspect-ratio: 1 / 1; } .lwrp .lwrp-list-item.lwrp-empty-list-item{ background: initial !important; } .lwrp .lwrp-list-item .lwrp-list-link .lwrp-list-link-title-text, .lwrp .lwrp-list-item .lwrp-list-no-posts-message{ }@media screen and (max-width: 480px) { .lwrp.link-whisper-related-posts{ } .lwrp .lwrp-title{ }.lwrp .lwrp-description{ } .lwrp .lwrp-list-multi-container{ flex-direction: column; } .lwrp .lwrp-list-multi-container ul.lwrp-list{ margin-top: 0px; margin-bottom: 0px; padding-top: 0px; padding-bottom: 0px; } .lwrp .lwrp-list-double, .lwrp .lwrp-list-triple{ width: 100%; } .lwrp .lwrp-list-row-container{ justify-content: initial; flex-direction: column; } .lwrp .lwrp-list-row-container .lwrp-list-item{ width: 100%; } .lwrp .lwrp-list-item:not(.lwrp-no-posts-message-item){ } .lwrp .lwrp-list-item .lwrp-list-link .lwrp-list-link-title-text, .lwrp .lwrp-list-item .lwrp-list-no-posts-message{ }; }</style><div id="link-whisper-related-posts-widget" class="link-whisper-related-posts lwrp"><h3 class="lwrp-title">More Related Articles</h3><div class="lwrp-list-container"><div class="lwrp-list-multi-container"><ul class="lwrp-list lwrp-list-double lwrp-list-left"><li class="lwrp-list-item"><a href="https://www.physicsforums.com/insights/the-art-of-integration/" class="lwrp-list-link"><span class="lwrp-list-link-title-text">The Art of Integration</span></a></li><li class="lwrp-list-item"><a href="https://www.physicsforums.com/insights/precalculus-calculus-and-infinitesimals/" class="lwrp-list-link"><span class="lwrp-list-link-title-text">Beginners Guide to Precalculus, Calculus and Infinitesimals</span></a></li><li class="lwrp-list-item"><a href="https://www.physicsforums.com/insights/the-extended-riemann-hypothesis-and-ramanujans-sum/" class="lwrp-list-link"><span class="lwrp-list-link-title-text">The Extended Riemann Hypothesis and Ramanujan’s Sum</span></a></li></ul><ul class="lwrp-list lwrp-list-double lwrp-list-right"><li class="lwrp-list-item"><a href="https://www.physicsforums.com/insights/series-in-mathematics-from-zeno-to-quantum-theory/" class="lwrp-list-link"><span class="lwrp-list-link-title-text">Series in Mathematics: From Zeno to Quantum Theory</span></a></li><li class="lwrp-list-item"><a href="https://www.physicsforums.com/insights/fourier-series-and-the-riemann-zeta-function/" class="lwrp-list-link"><span class="lwrp-list-link-title-text">Computing the Riemann Zeta Function Using Fourier Series</span></a></li><li class="lwrp-list-item"><a href="https://www.physicsforums.com/insights/views-on-complex-numbers/" class="lwrp-list-link"><span class="lwrp-list-link-title-text">Views On Complex Numbers</span></a></li></ul></div></div></div></div><footer class="entry-footer"><span class="blog-tags minor-meta"><strong>Tags:</strong><span> <a href="https://www.physicsforums.com/insights/tag/complex-calculus/" rel="tag">complex calculus</a>, <a href="https://www.physicsforums.com/insights/tag/differentiation/" rel="tag">differentiation</a>, <a href="https://www.physicsforums.com/insights/tag/integration/" rel="tag">Integration</a></span></span><div class='av-social-sharing-box av-social-sharing-box-default av-social-sharing-box-fullwidth'><div class="av-share-box"><h5 class='av-share-link-description av-no-toc '>Share this entry</h5><ul class="av-share-box-list noLightbox"><li class='av-share-link av-social-link-facebook' ><a target="_blank" aria-label="Share on Facebook" href='https://www.facebook.com/sharer.php?u=https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/&t=An%20Overview%20of%20Complex%20Differentiation%20and%20Integration' aria-hidden='false' data-av_icon='' data-av_iconfont='entypo-fontello' title='' data-avia-related-tooltip='Share on Facebook' rel="noopener"><span class='avia_hidden_link_text'>Share on Facebook</span></a></li><li class='av-share-link av-social-link-twitter' ><a target="_blank" aria-label="Share on X" href='https://twitter.com/share?text=An%20Overview%20of%20Complex%20Differentiation%20and%20Integration&url=https://www.physicsforums.com/insights/?p=42892' aria-hidden='false' data-av_icon='' data-av_iconfont='entypo-fontello' title='' data-avia-related-tooltip='Share on X' rel="noopener"><span class='avia_hidden_link_text'>Share on X</span></a></li><li class='av-share-link av-social-link-whatsapp' ><a target="_blank" aria-label="Share on WhatsApp" href='https://api.whatsapp.com/send?text=https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/' aria-hidden='false' data-av_icon='' data-av_iconfont='entypo-fontello' title='' data-avia-related-tooltip='Share on WhatsApp' rel="noopener"><span class='avia_hidden_link_text'>Share on WhatsApp</span></a></li><li class='av-share-link av-social-link-linkedin' ><a target="_blank" aria-label="Share on LinkedIn" href='https://linkedin.com/shareArticle?mini=true&title=An%20Overview%20of%20Complex%20Differentiation%20and%20Integration&url=https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/' aria-hidden='false' data-av_icon='' data-av_iconfont='entypo-fontello' title='' data-avia-related-tooltip='Share on LinkedIn' rel="noopener"><span class='avia_hidden_link_text'>Share on LinkedIn</span></a></li><li class='av-share-link av-social-link-reddit' ><a target="_blank" aria-label="Share on Reddit" href='https://reddit.com/submit?url=https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/&title=An%20Overview%20of%20Complex%20Differentiation%20and%20Integration' aria-hidden='false' data-av_icon='' data-av_iconfont='entypo-fontello' title='' data-avia-related-tooltip='Share on Reddit' rel="noopener"><span class='avia_hidden_link_text'>Share on Reddit</span></a></li><li class='av-share-link av-social-link-mail' ><a aria-label="Share by Mail" href='mailto:?subject=An%20Overview%20of%20Complex%20Differentiation%20and%20Integration&body=https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/' aria-hidden='false' data-av_icon='' data-av_iconfont='entypo-fontello' title='' data-avia-related-tooltip='Share by Mail'><span class='avia_hidden_link_text'>Share by Mail</span></a></li></ul></div></div></footer><div class='post_delimiter'></div></div><div class="post_author_timeline"></div><span class='hidden'> <span class='av-structured-data' itemprop="image" itemscope="itemscope" itemtype="https://schema.org/ImageObject" > <span itemprop='url'>https://www.physicsforums.com/insights/wp-content/uploads/2023/03/integration_differentiation.png</span> <span itemprop='height'>135</span> <span itemprop='width'>240</span> </span> <span class='av-structured-data' itemprop="publisher" itemtype="https://schema.org/Organization" itemscope="itemscope" > <span itemprop='name'>fresh_42</span> <span itemprop='logo' itemscope itemtype='https://schema.org/ImageObject'> <span itemprop='url'>https://www.physicsforums.com/insights/wp-content/uploads/2019/02/Physics_Forums_Insights_logo.png</span> </span> </span><span class='av-structured-data' itemprop="author" itemscope="itemscope" itemtype="https://schema.org/Person" ><span itemprop='name'>fresh_42</span></span><span class='av-structured-data' itemprop="datePublished" datetime="2023-03-14T08:24:25-05:00" >2023-03-14 08:24:25</span><span class='av-structured-data' itemprop="dateModified" itemtype="https://schema.org/dateModified" >2024-06-02 15:46:27</span><span class='av-structured-data' itemprop="mainEntityOfPage" itemtype="https://schema.org/mainEntityOfPage" ><span itemprop='name'>An Overview of Complex Differentiation and Integration</span></span></span></article><div class='single-big'></div><div class='related_posts clearfix av-related-style-full'><h5 class="related_title">You might also like</h5><div class="related_entries_container"><div class='av_one_half no_margin alpha relThumb relThumb1 relThumbOdd post-format-standard related_column'><a href='https://www.physicsforums.com/insights/counting-to-p-adic-calculus-all-number-systems-that-we-have/' class='relThumWrap noLightbox' title='Counting to p-adic Calculus: All Number Systems That We Have'><span class='related_image_wrap' ><img data-lazyloaded="1" src="" loading="lazy" width="180" height="135" data-src="https://www.physicsforums.com/insights/wp-content/uploads/2022/09/history-of-numbers-180x135.png" class="wp-image-42106 avia-img-lazy-loading-42106 attachment-square size-square wp-post-image" alt="history of numbers" title="history-of-numbers" decoding="async" /><noscript><img loading="lazy" width="180" height="135" src="https://www.physicsforums.com/insights/wp-content/uploads/2022/09/history-of-numbers-180x135.png" class="wp-image-42106 avia-img-lazy-loading-42106 attachment-square size-square wp-post-image" alt="history of numbers" title="history-of-numbers" decoding="async" /></noscript><span class='related-format-icon '><span class='related-format-icon-inner' aria-hidden='true' data-av_icon='' data-av_iconfont='entypo-fontello'></span></span></span><strong class="av-related-title">Counting to p-adic Calculus: All Number Systems That We Have</strong></a></div><div class='av_one_half no_margin relThumb relThumb2 relThumbEven post-format-standard related_column'><a href='https://www.physicsforums.com/insights/the-art-of-integration/' class='relThumWrap noLightbox' title='The Art of Integration'><span class='related_image_wrap' ><img data-lazyloaded="1" src="" loading="lazy" width="180" height="135" data-src="https://www.physicsforums.com/insights/wp-content/uploads/2023/04/art-of-integration-180x135.png" class="wp-image-43017 avia-img-lazy-loading-43017 attachment-square size-square wp-post-image" alt="art of integration" title="art-of-integration" decoding="async" /><noscript><img loading="lazy" width="180" height="135" src="https://www.physicsforums.com/insights/wp-content/uploads/2023/04/art-of-integration-180x135.png" class="wp-image-43017 avia-img-lazy-loading-43017 attachment-square size-square wp-post-image" alt="art of integration" title="art-of-integration" decoding="async" /></noscript><span class='related-format-icon '><span class='related-format-icon-inner' aria-hidden='true' data-av_icon='' data-av_iconfont='entypo-fontello'></span></span></span><strong class="av-related-title">The Art of Integration</strong></a></div><div class='av_one_half no_margin omega relThumb relThumb3 relThumbOdd post-format-standard related_column'><a href='https://www.physicsforums.com/insights/reduction-of-order-for-recursions/' class='relThumWrap noLightbox' title='Reduction of Order For Recursions'><span class='related_image_wrap' ><img data-lazyloaded="1" src="" loading="lazy" width="180" height="135" data-src="https://www.physicsforums.com/insights/wp-content/uploads/2022/10/recursion-math-180x135.png" class="wp-image-42187 avia-img-lazy-loading-42187 attachment-square size-square wp-post-image" alt="recursion" title="recursion-math" decoding="async" /><noscript><img loading="lazy" width="180" height="135" src="https://www.physicsforums.com/insights/wp-content/uploads/2022/10/recursion-math-180x135.png" class="wp-image-42187 avia-img-lazy-loading-42187 attachment-square size-square wp-post-image" alt="recursion" title="recursion-math" decoding="async" /></noscript><span class='related-format-icon '><span class='related-format-icon-inner' aria-hidden='true' data-av_icon='' data-av_iconfont='entypo-fontello'></span></span></span><strong class="av-related-title">Reduction of Order For Recursions</strong></a></div></div></div><div class='comment-entry post-entry'><div class='comment_meta_container'><div class='side-container-comment'><div class='side-container-comment-inner'> <span class='comment-count'>0</span> <span class='comment-text'>replies</span> <span class='center-border center-border-left'></span> <span class='center-border center-border-right'></span></div></div></div><div class="comment_container"><h3 class='miniheading '>Leave a Reply</h3><span class="minitext">Want to join the discussion?<br />Feel free to contribute!</span><div id="respond" class="comment-respond"><h3 id="reply-title" class="comment-reply-title">Leave a Reply <small><a rel="nofollow" id="cancel-comment-reply-link" href="/insights/an-overview-of-complex-differentiation-and-integration/#respond" style="display:none;">Cancel reply</a></small></h3><p class="must-log-in">You must be <a href="https://www.physicsforums.com/insights/wp-login.php?redirect_to=https%3A%2F%2Fwww.physicsforums.com%2Finsights%2Fan-overview-of-complex-differentiation-and-integration%2F">logged in</a> to post a comment.</p></div></div></div></main><aside class='sidebar sidebar_right smartphones_sidebar_active alpha units' aria-label="Sidebar" role="complementary" itemscope="itemscope" itemtype="https://schema.org/WPSideBar" ><div class="inner_sidebar extralight-border"><section id="custom_html-2" class="widget_text widget clearfix widget_custom_html"><div class="textwidget custom-html-widget"><h2 class="widgettitle">Trending Articles</h2><ul class="wpp-list wpp-sunset"><li class="" style="--item-position: 1;--total-items: 10"><div class="item-position"></div><div class="item-data"><a href="https://www.physicsforums.com/insights/what-is-a-tensor/" class="wpp-post-title" target="_self">What Is a Tensor? The mathematical point of view.</a></div></li><li class="" style="--item-position: 2;--total-items: 10"><div class="item-position"></div><div class="item-data"><a href="https://www.physicsforums.com/insights/an-accurate-hookes-law-laboratory/" class="wpp-post-title" target="_self">An Example of An Accurate Hooke’s Law Laboratory</a></div></li><li class="" style="--item-position: 3;--total-items: 10"><div class="item-position"></div><div class="item-data"><a href="https://www.physicsforums.com/insights/can-see-atom/" class="wpp-post-title" target="_self">Can We See an Atom?</a></div></li><li class="" style="--item-position: 4;--total-items: 10"><div class="item-position"></div><div class="item-data"><a href="https://www.physicsforums.com/insights/hand-wavy-discussion-planck-length/" class="wpp-post-title" target="_self">What Planck Length Is and It’s Common Misconceptions</a></div></li><li class="" style="--item-position: 5;--total-items: 10"><div class="item-position"></div><div class="item-data"><a href="https://www.physicsforums.com/insights/ac-power-analysis-part-1-basics/" class="wpp-post-title" target="_self">Intro to AC Power Analysis: Learn System Basics</a></div></li><li class="" style="--item-position: 6;--total-items: 10"><div class="item-position"></div><div class="item-data"><a href="https://www.physicsforums.com/insights/demystifying-chain-rule-calculus/" class="wpp-post-title" target="_self">Demystifying the Chain Rule in Calculus</a></div></li><li class="" style="--item-position: 7;--total-items: 10"><div class="item-position"></div><div class="item-data"><a href="https://www.physicsforums.com/insights/quantum-mechanics-and-the-famous-double-slit-experiment/" class="wpp-post-title" target="_self">Quantum Mechanics and the Famous Double-slit Experiment</a></div></li><li class="" style="--item-position: 8;--total-items: 10"><div class="item-position"></div><div class="item-data"><a href="https://www.physicsforums.com/insights/grandpa-chets-entropy-recipe-2/" class="wpp-post-title" target="_self">How to Determine the Change in Entropy</a></div></li><li class="" style="--item-position: 9;--total-items: 10"><div class="item-position"></div><div class="item-data"><a href="https://www.physicsforums.com/insights/valentines-reflections-mathematical-matters-of-the-heart/" class="wpp-post-title" target="_self">Valentine’s Reflections: Mathematical Matters of the Heart</a></div></li><li class="" style="--item-position: 10;--total-items: 10"><div class="item-position"></div><div class="item-data"><a href="https://www.physicsforums.com/insights/direct-echo-based-measurement-of-the-speed-of-sound/" class="wpp-post-title" target="_self">Direct Echo-Based Measurement of the Speed of Sound</a></div></li></ul></div><span class="seperator extralight-border"></span></section><section id="nav_menu-3" class="widget clearfix widget_nav_menu"><h3 class="widgettitle">Physics Forums</h3><div class="menu-sidebar-forums-container"><ul id="menu-sidebar-forums" class="menu"><li id="menu-item-26724" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-26724"><a href="https://www.physicsforums.com/forums/classical-physics.61/">Classical Physics</a></li><li id="menu-item-26725" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-26725"><a href="https://www.physicsforums.com/forums/atomic-and-condensed-matter.64/">Atomic and Condensed Matter</a></li><li id="menu-item-26726" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-26726"><a href="https://www.physicsforums.com/forums/quantum-physics.62/">Quantum Physics</a></li><li id="menu-item-26727" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-26727"><a href="https://www.physicsforums.com/forums/special-and-general-relativity.70/">Special and General Relativity</a></li><li id="menu-item-26728" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-26728"><a href="https://www.physicsforums.com/forums/beyond-the-standard-model.66/">Beyond the Standard Model</a></li><li id="menu-item-26729" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-26729"><a href="https://www.physicsforums.com/forums/high-energy-nuclear-particle-physics.65/">High Energy, Nuclear, Particle Physics</a></li><li id="menu-item-26731" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-26731"><a href="https://www.physicsforums.com/forums/astronomy-and-astrophysics.71/">Astronomy and Astrophysics</a></li><li id="menu-item-26732" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-26732"><a href="https://www.physicsforums.com/forums/cosmology.69/">Cosmology</a></li><li id="menu-item-26730" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-26730"><a href="https://www.physicsforums.com/forums/other-physics-topics.111/">Other Physics Topics</a></li></ul></div><span class="seperator extralight-border"></span></section><section id="text-4" class="widget clearfix widget_text"><h3 class="widgettitle">Receive Insights Articles to Your Inbox</h3><div class="textwidget"><form style="border:0px solid #ccc;text-align:left;" action="https://feedburner.google.com/fb/a/mailverify" method="post" target="popupwindow" onsubmit="window.open('https://feedburner.google.com/fb/a/mailverify?uri=PhysicsForumsInsights', 'popupwindow', 'scrollbars=yes,width=550,height=520');return true"><p>Enter your email address:</p><p><input type="text" style="width:200px;border:2px solid #ccc;" name="email"/></p><input type="hidden" value="PhysicsForumsInsights" name="uri"/><input type="hidden" name="loc" value="en_US"/><input type="submit" value="Subscribe" /></p></form></div> <span class="seperator extralight-border"></span></section><section id="nav_menu-2" class="widget clearfix widget_nav_menu"><h3 class="widgettitle">Blog Information</h3><div class="menu-sidebar-container"><ul id="menu-sidebar" class="menu"><li id="menu-item-14015" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-14015"><a href="https://www.physicsforums.com/register">Become a Member!</a></li><li id="menu-item-14012" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-14012"><a href="https://www.physicsforums.com/insights/application/">Write for Us!</a></li><li id="menu-item-18348" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-18348"><a href="https://www.physicsforums.com/insights/postindex/">Table of Contents</a></li><li id="menu-item-18353" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-18353"><a href="https://www.physicsforums.com/insights/authors/">Blog Author List</a></li></ul></div><span class="seperator extralight-border"></span></section><section id="tag_cloud-3" class="widget clearfix widget_tag_cloud"><h3 class="widgettitle">Popular Topics</h3><div class="tagcloud"><a href="https://www.physicsforums.com/insights/tag/astronomy/" class="tag-cloud-link tag-link-307 tag-link-position-1" style="font-size: 9.1666666666667pt;" aria-label="astronomy (17 items)">astronomy<span class="tag-link-count"> (17)</span></a> <a href="https://www.physicsforums.com/insights/tag/black-holes/" class="tag-cloud-link tag-link-28 tag-link-position-2" style="font-size: 9.1666666666667pt;" aria-label="black holes (17 items)">black holes<span class="tag-link-count"> (17)</span></a> <a href="https://www.physicsforums.com/insights/tag/classical-physics/" class="tag-cloud-link tag-link-852 tag-link-position-3" style="font-size: 20.833333333333pt;" aria-label="classical physics (35 items)">classical physics<span class="tag-link-count"> (35)</span></a> <a href="https://www.physicsforums.com/insights/tag/cosmology/" class="tag-cloud-link tag-link-224 tag-link-position-4" style="font-size: 8pt;" aria-label="cosmology (16 items)">cosmology<span class="tag-link-count"> (16)</span></a> <a href="https://www.physicsforums.com/insights/tag/education/" class="tag-cloud-link tag-link-104 tag-link-position-5" style="font-size: 13.833333333333pt;" aria-label="education (23 items)">education<span class="tag-link-count"> (23)</span></a> <a href="https://www.physicsforums.com/insights/tag/electromagnetism/" class="tag-cloud-link tag-link-21 tag-link-position-6" style="font-size: 10.722222222222pt;" aria-label="electromagnetism (19 items)">electromagnetism<span class="tag-link-count"> (19)</span></a> <a href="https://www.physicsforums.com/insights/tag/general-relativity/" class="tag-cloud-link tag-link-333 tag-link-position-7" style="font-size: 10.722222222222pt;" aria-label="general relativity (19 items)">general relativity<span class="tag-link-count"> (19)</span></a> <a href="https://www.physicsforums.com/insights/tag/gravity/" class="tag-cloud-link tag-link-40 tag-link-position-8" style="font-size: 14.611111111111pt;" aria-label="gravity (24 items)">gravity<span class="tag-link-count"> (24)</span></a> <a href="https://www.physicsforums.com/insights/tag/interview/" class="tag-cloud-link tag-link-858 tag-link-position-9" style="font-size: 13.055555555556pt;" aria-label="interview (22 items)">interview<span class="tag-link-count"> (22)</span></a> <a href="https://www.physicsforums.com/insights/tag/mathematics/" class="tag-cloud-link tag-link-69 tag-link-position-10" style="font-size: 22pt;" aria-label="mathematics (38 items)">mathematics<span class="tag-link-count"> (38)</span></a> <a href="https://www.physicsforums.com/insights/tag/mathematics-self-study/" class="tag-cloud-link tag-link-484 tag-link-position-11" style="font-size: 11.5pt;" aria-label="mathematics self-study (20 items)">mathematics self-study<span class="tag-link-count"> (20)</span></a> <a href="https://www.physicsforums.com/insights/tag/physicist/" class="tag-cloud-link tag-link-11 tag-link-position-12" style="font-size: 15.777777777778pt;" aria-label="Physicist (26 items)">Physicist<span class="tag-link-count"> (26)</span></a> <a href="https://www.physicsforums.com/insights/tag/programming/" class="tag-cloud-link tag-link-42 tag-link-position-13" style="font-size: 9.9444444444444pt;" aria-label="programming (18 items)">programming<span class="tag-link-count"> (18)</span></a> <a href="https://www.physicsforums.com/insights/tag/quantum-field-theory/" class="tag-cloud-link tag-link-87 tag-link-position-14" style="font-size: 18.888888888889pt;" aria-label="Quantum Field Theory (31 items)">Quantum Field Theory<span class="tag-link-count"> (31)</span></a> <a href="https://www.physicsforums.com/insights/tag/quantum-mechanics/" class="tag-cloud-link tag-link-62 tag-link-position-15" style="font-size: 21.222222222222pt;" aria-label="quantum mechanics (36 items)">quantum mechanics<span class="tag-link-count"> (36)</span></a> <a href="https://www.physicsforums.com/insights/tag/quantum-physics/" class="tag-cloud-link tag-link-314 tag-link-position-16" style="font-size: 13.055555555556pt;" aria-label="quantum physics (22 items)">quantum physics<span class="tag-link-count"> (22)</span></a> <a href="https://www.physicsforums.com/insights/tag/relativity/" class="tag-cloud-link tag-link-114 tag-link-position-17" style="font-size: 22pt;" aria-label="relativity (38 items)">relativity<span class="tag-link-count"> (38)</span></a> <a href="https://www.physicsforums.com/insights/tag/special-relativity/" class="tag-cloud-link tag-link-89 tag-link-position-18" style="font-size: 8pt;" aria-label="Special Relativity (16 items)">Special Relativity<span class="tag-link-count"> (16)</span></a> <a href="https://www.physicsforums.com/insights/tag/technology/" class="tag-cloud-link tag-link-861 tag-link-position-19" style="font-size: 10.722222222222pt;" aria-label="technology (19 items)">technology<span class="tag-link-count"> (19)</span></a> <a href="https://www.physicsforums.com/insights/tag/universe/" class="tag-cloud-link tag-link-265 tag-link-position-20" style="font-size: 12.277777777778pt;" aria-label="universe (21 items)">universe<span class="tag-link-count"> (21)</span></a></div> <span class="seperator extralight-border"></span></section></div></aside></div></div><footer class='container_wrap socket_color' id='socket' role="contentinfo" itemscope="itemscope" itemtype="https://schema.org/WPFooter" aria-label="Copyright and company info" ><div class='container'><span class='copyright'> 2024 © Physics Forums, ALL RIGHTS RESERVED - <a href="https://www.physicsforums.com/misc/contact">Contact Us</a> - <a href="https://www.physicsforums.com/threads/physics-forums-privacy-policy.797829/">Privacy Policy</a> - <a href="https://www.physicsforums.com/insights/about-pf-insights/">About PF Insights</a></span><ul class='noLightbox social_bookmarks icon_count_4'><li class='social_bookmarks_twitter av-social-link-twitter social_icon_1'><a target="_blank" aria-label="Link to X" href="https://twitter.com/physicsforums" aria-hidden='false' data-av_icon='' data-av_iconfont='entypo-fontello' title='X' rel="noopener"><span class='avia_hidden_link_text'>X</span></a></li><li class='social_bookmarks_facebook av-social-link-facebook social_icon_2'><a target="_blank" aria-label="Link to Facebook" href='https://www.facebook.com/physicsforums' aria-hidden='false' data-av_icon='' data-av_iconfont='entypo-fontello' title='Facebook' rel="noopener"><span class='avia_hidden_link_text'>Facebook</span></a></li><li class='social_bookmarks_linkedin av-social-link-linkedin social_icon_3'><a target="_blank" aria-label="Link to LinkedIn" href='https://www.linkedin.com/company/physics-forums/' aria-hidden='false' data-av_icon='' data-av_iconfont='entypo-fontello' title='LinkedIn' rel="noopener"><span class='avia_hidden_link_text'>LinkedIn</span></a></li><li class='social_bookmarks_youtube av-social-link-youtube social_icon_4'><a target="_blank" aria-label="Link to Youtube" href='https://www.youtube.com/@physicsforum' aria-hidden='false' data-av_icon='' data-av_iconfont='entypo-fontello' title='Youtube' rel="noopener"><span class='avia_hidden_link_text'>Youtube</span></a></li></ul></div></footer></div><a class='avia-post-nav avia-post-prev with-image' href='https://www.physicsforums.com/insights/how-to-measure-internal-resistance-of-a-battery/' ><span class="label iconfont" aria-hidden='true' data-av_icon='' data-av_iconfont='entypo-fontello'></span><span class="entry-info-wrap"><span class="entry-info"><span class='entry-title'>How to Measure Internal Resistance of a Battery</span><span class='entry-image'><img data-lazyloaded="1" src="" loading="lazy" width="80" height="80" data-src="https://www.physicsforums.com/insights/wp-content/uploads/2023/02/Measure-Internal-Resistance-of-Battery-80x80.png" class="wp-image-42846 avia-img-lazy-loading-42846 attachment-thumbnail size-thumbnail wp-post-image" alt="Measure Internal Resistance of Battery" decoding="async" data-srcset="https://www.physicsforums.com/insights/wp-content/uploads/2023/02/Measure-Internal-Resistance-of-Battery-80x80.png 80w, https://www.physicsforums.com/insights/wp-content/uploads/2023/02/Measure-Internal-Resistance-of-Battery-36x36.png 36w" data-sizes="(max-width: 80px) 100vw, 80px" /><noscript><img loading="lazy" width="80" height="80" src="https://www.physicsforums.com/insights/wp-content/uploads/2023/02/Measure-Internal-Resistance-of-Battery-80x80.png" class="wp-image-42846 avia-img-lazy-loading-42846 attachment-thumbnail size-thumbnail wp-post-image" alt="Measure Internal Resistance of Battery" decoding="async" srcset="https://www.physicsforums.com/insights/wp-content/uploads/2023/02/Measure-Internal-Resistance-of-Battery-80x80.png 80w, https://www.physicsforums.com/insights/wp-content/uploads/2023/02/Measure-Internal-Resistance-of-Battery-36x36.png 36w" sizes="(max-width: 80px) 100vw, 80px" /></noscript></span></span></span></a><a class='avia-post-nav avia-post-next with-image' href='https://www.physicsforums.com/insights/a-lesson-in-teaching-physics-you-cant-give-it-away/' ><span class="label iconfont" aria-hidden='true' data-av_icon='' data-av_iconfont='entypo-fontello'></span><span class="entry-info-wrap"><span class="entry-info"><span class='entry-image'><img data-lazyloaded="1" src="" loading="lazy" width="80" height="80" data-src="https://www.physicsforums.com/insights/wp-content/uploads/2023/03/teaching-physics-80x80.png" class="wp-image-42957 avia-img-lazy-loading-42957 attachment-thumbnail size-thumbnail wp-post-image" alt="teaching physics" decoding="async" data-srcset="https://www.physicsforums.com/insights/wp-content/uploads/2023/03/teaching-physics-80x80.png 80w, https://www.physicsforums.com/insights/wp-content/uploads/2023/03/teaching-physics-36x36.png 36w" data-sizes="(max-width: 80px) 100vw, 80px" /><noscript><img loading="lazy" width="80" height="80" src="https://www.physicsforums.com/insights/wp-content/uploads/2023/03/teaching-physics-80x80.png" class="wp-image-42957 avia-img-lazy-loading-42957 attachment-thumbnail size-thumbnail wp-post-image" alt="teaching physics" decoding="async" srcset="https://www.physicsforums.com/insights/wp-content/uploads/2023/03/teaching-physics-80x80.png 80w, https://www.physicsforums.com/insights/wp-content/uploads/2023/03/teaching-physics-36x36.png 36w" sizes="(max-width: 80px) 100vw, 80px" /></noscript></span><span class='entry-title'>A Lesson In Teaching Physics: You Can’t Give It Away</span></span></span></a></div><a href='#top' title='Scroll to top' id='scroll-top-link' aria-hidden='true' data-av_icon='' data-av_iconfont='entypo-fontello' tabindex='-1'><span class="avia_hidden_link_text">Scroll to top</span></a><div id="fb-root"></div> <script data-optimized="1" type="text/javascript" src="https://www.physicsforums.com/insights/wp-content/litespeed/js/ffe2445567cebbe851874e864ab606aa.js?ver=606aa" defer></script> <script type='text/javascript'>/* */ var avia_framework_globals = avia_framework_globals || {}; avia_framework_globals.frameworkUrl = 'https://www.physicsforums.com/insights/wp-content/themes/enfold/framework/'; avia_framework_globals.installedAt = 'https://www.physicsforums.com/insights/wp-content/themes/enfold/'; avia_framework_globals.ajaxurl = 'https://www.physicsforums.com/insights/wp-admin/admin-ajax.php'; /* */</script> <script type="text/javascript" async='async' src="https://www.physicsforums.com/insights/wp-includes/js/jquery/jquery.min.js?ver=3.7.1" id="jquery-core-js"></script> <script type="text/javascript" id="wpil-frontend-script-js-extra">/* */ var wpilFrontend = {"ajaxUrl":"\/insights\/wp-admin\/admin-ajax.php","postId":"42892","postType":"post","openInternalInNewTab":"0","openExternalInNewTab":"1","disableClicks":"0","openLinksWithJS":"0","trackAllElementClicks":"0","clicksI18n":{"imageNoText":"Image in link: No Text","imageText":"Image Title: ","noText":"No Anchor Text Found"}}; /* */</script> <script data-optimized="1" type="text/javascript" async='async' src="https://www.physicsforums.com/insights/wp-content/litespeed/js/32fbbb44e22394d8c0f1ada21cfadab5.js?ver=ef02b" id="wpil-frontend-script-js"></script> <script data-optimized="1" type="text/javascript" async='async' src="https://www.physicsforums.com/insights/wp-content/litespeed/js/28eaaf920db7121b0c5763a98afd6217.js?ver=f2d22" id="comment-reply-js" async="async" data-wp-strategy="async"></script> <script data-optimized="1" type="text/javascript" async='async' src="https://www.physicsforums.com/insights/wp-content/litespeed/js/966b486962f7a18865706d52697208b2.js?ver=208b2" id="avia-footer-scripts-js"></script> <script data-no-optimize="1">!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?module.exports=e():"function"==typeof define&&define.amd?define(e):(t="undefined"!=typeof globalThis?globalThis:t||self).LazyLoad=e()}(this,function(){"use strict";function e(){return(e=Object.assign||function(t){for(var e=1;e<arguments.length;e++){var n,a=arguments[e];for(n in a)Object.prototype.hasOwnProperty.call(a,n)&&(t[n]=a[n])}return t}).apply(this,arguments)}function i(t){return e({},it,t)}function o(t,e){var n,a="LazyLoad::Initialized",i=new t(e);try{n=new CustomEvent(a,{detail:{instance:i}})}catch(t){(n=document.createEvent("CustomEvent")).initCustomEvent(a,!1,!1,{instance:i})}window.dispatchEvent(n)}function l(t,e){return t.getAttribute(gt+e)}function c(t){return l(t,bt)}function s(t,e){return function(t,e,n){e=gt+e;null!==n?t.setAttribute(e,n):t.removeAttribute(e)}(t,bt,e)}function r(t){return s(t,null),0}function u(t){return null===c(t)}function d(t){return c(t)===vt}function f(t,e,n,a){t&&(void 0===a?void 0===n?t(e):t(e,n):t(e,n,a))}function _(t,e){nt?t.classList.add(e):t.className+=(t.className?" ":"")+e}function v(t,e){nt?t.classList.remove(e):t.className=t.className.replace(new RegExp("(^|\\s+)"+e+"(\\s+|$)")," ").replace(/^\s+/,"").replace(/\s+$/,"")}function g(t){return t.llTempImage}function b(t,e){!e||(e=e._observer)&&e.unobserve(t)}function p(t,e){t&&(t.loadingCount+=e)}function h(t,e){t&&(t.toLoadCount=e)}function n(t){for(var e,n=[],a=0;e=t.children[a];a+=1)"SOURCE"===e.tagName&&n.push(e);return n}function m(t,e){(t=t.parentNode)&&"PICTURE"===t.tagName&&n(t).forEach(e)}function a(t,e){n(t).forEach(e)}function E(t){return!!t[st]}function I(t){return t[st]}function y(t){return delete t[st]}function A(e,t){var n;E(e)||(n={},t.forEach(function(t){n[t]=e.getAttribute(t)}),e[st]=n)}function k(a,t){var i;E(a)&&(i=I(a),t.forEach(function(t){var e,n;e=a,(t=i[n=t])?e.setAttribute(n,t):e.removeAttribute(n)}))}function L(t,e,n){_(t,e.class_loading),s(t,ut),n&&(p(n,1),f(e.callback_loading,t,n))}function w(t,e,n){n&&t.setAttribute(e,n)}function x(t,e){w(t,ct,l(t,e.data_sizes)),w(t,rt,l(t,e.data_srcset)),w(t,ot,l(t,e.data_src))}function O(t,e,n){var a=l(t,e.data_bg_multi),i=l(t,e.data_bg_multi_hidpi);(a=at&&i?i:a)&&(t.style.backgroundImage=a,n=n,_(t=t,(e=e).class_applied),s(t,ft),n&&(e.unobserve_completed&&b(t,e),f(e.callback_applied,t,n)))}function N(t,e){!e||0<e.loadingCount||0<e.toLoadCount||f(t.callback_finish,e)}function C(t,e,n){t.addEventListener(e,n),t.llEvLisnrs[e]=n}function M(t){return!!t.llEvLisnrs}function z(t){if(M(t)){var e,n,a=t.llEvLisnrs;for(e in a){var i=a[e];n=e,i=i,t.removeEventListener(n,i)}delete t.llEvLisnrs}}function R(t,e,n){var a;delete t.llTempImage,p(n,-1),(a=n)&&--a.toLoadCount,v(t,e.class_loading),e.unobserve_completed&&b(t,n)}function T(o,r,c){var l=g(o)||o;M(l)||function(t,e,n){M(t)||(t.llEvLisnrs={});var a="VIDEO"===t.tagName?"loadeddata":"load";C(t,a,e),C(t,"error",n)}(l,function(t){var e,n,a,i;n=r,a=c,i=d(e=o),R(e,n,a),_(e,n.class_loaded),s(e,dt),f(n.callback_loaded,e,a),i||N(n,a),z(l)},function(t){var e,n,a,i;n=r,a=c,i=d(e=o),R(e,n,a),_(e,n.class_error),s(e,_t),f(n.callback_error,e,a),i||N(n,a),z(l)})}function G(t,e,n){var a,i,o,r,c;t.llTempImage=document.createElement("IMG"),T(t,e,n),E(c=t)||(c[st]={backgroundImage:c.style.backgroundImage}),o=n,r=l(a=t,(i=e).data_bg),c=l(a,i.data_bg_hidpi),(r=at&&c?c:r)&&(a.style.backgroundImage='url("'.concat(r,'")'),g(a).setAttribute(ot,r),L(a,i,o)),O(t,e,n)}function D(t,e,n){var a;T(t,e,n),a=e,e=n,(t=It[(n=t).tagName])&&(t(n,a),L(n,a,e))}function V(t,e,n){var a;a=t,(-1<yt.indexOf(a.tagName)?D:G)(t,e,n)}function F(t,e,n){var a;t.setAttribute("loading","lazy"),T(t,e,n),a=e,(e=It[(n=t).tagName])&&e(n,a),s(t,vt)}function j(t){t.removeAttribute(ot),t.removeAttribute(rt),t.removeAttribute(ct)}function P(t){m(t,function(t){k(t,Et)}),k(t,Et)}function S(t){var e;(e=At[t.tagName])?e(t):E(e=t)&&(t=I(e),e.style.backgroundImage=t.backgroundImage)}function U(t,e){var n;S(t),n=e,u(e=t)||d(e)||(v(e,n.class_entered),v(e,n.class_exited),v(e,n.class_applied),v(e,n.class_loading),v(e,n.class_loaded),v(e,n.class_error)),r(t),y(t)}function $(t,e,n,a){var i;n.cancel_on_exit&&(c(t)!==ut||"IMG"===t.tagName&&(z(t),m(i=t,function(t){j(t)}),j(i),P(t),v(t,n.class_loading),p(a,-1),r(t),f(n.callback_cancel,t,e,a)))}function q(t,e,n,a){var i,o,r=(o=t,0<=pt.indexOf(c(o)));s(t,"entered"),_(t,n.class_entered),v(t,n.class_exited),i=t,o=a,n.unobserve_entered&&b(i,o),f(n.callback_enter,t,e,a),r||V(t,n,a)}function H(t){return t.use_native&&"loading"in HTMLImageElement.prototype}function B(t,i,o){t.forEach(function(t){return(a=t).isIntersecting||0<a.intersectionRatio?q(t.target,t,i,o):(e=t.target,n=t,a=i,t=o,void(u(e)||(_(e,a.class_exited),$(e,n,a,t),f(a.callback_exit,e,n,t))));var e,n,a})}function J(e,n){var t;et&&!H(e)&&(n._observer=new IntersectionObserver(function(t){B(t,e,n)},{root:(t=e).container===document?null:t.container,rootMargin:t.thresholds||t.threshold+"px"}))}function K(t){return Array.prototype.slice.call(t)}function Q(t){return t.container.querySelectorAll(t.elements_selector)}function W(t){return c(t)===_t}function X(t,e){return e=t||Q(e),K(e).filter(u)}function Y(e,t){var n;(n=Q(e),K(n).filter(W)).forEach(function(t){v(t,e.class_error),r(t)}),t.update()}function t(t,e){var n,a,t=i(t);this._settings=t,this.loadingCount=0,J(t,this),n=t,a=this,Z&&window.addEventListener("online",function(){Y(n,a)}),this.update(e)}var Z="undefined"!=typeof window,tt=Z&&!("onscroll"in window)||"undefined"!=typeof navigator&&/(gle|ing|ro)bot|crawl|spider/i.test(navigator.userAgent),et=Z&&"IntersectionObserver"in window,nt=Z&&"classList"in document.createElement("p"),at=Z&&1<window.devicePixelRatio,it={elements_selector:".lazy",container:tt||Z?document:null,threshold:300,thresholds:null,data_src:"src",data_srcset:"srcset",data_sizes:"sizes",data_bg:"bg",data_bg_hidpi:"bg-hidpi",data_bg_multi:"bg-multi",data_bg_multi_hidpi:"bg-multi-hidpi",data_poster:"poster",class_applied:"applied",class_loading:"litespeed-loading",class_loaded:"litespeed-loaded",class_error:"error",class_entered:"entered",class_exited:"exited",unobserve_completed:!0,unobserve_entered:!1,cancel_on_exit:!0,callback_enter:null,callback_exit:null,callback_applied:null,callback_loading:null,callback_loaded:null,callback_error:null,callback_finish:null,callback_cancel:null,use_native:!1},ot="src",rt="srcset",ct="sizes",lt="poster",st="llOriginalAttrs",ut="loading",dt="loaded",ft="applied",_t="error",vt="native",gt="data-",bt="ll-status",pt=[ut,dt,ft,_t],ht=[ot],mt=[ot,lt],Et=[ot,rt,ct],It={IMG:function(t,e){m(t,function(t){A(t,Et),x(t,e)}),A(t,Et),x(t,e)},IFRAME:function(t,e){A(t,ht),w(t,ot,l(t,e.data_src))},VIDEO:function(t,e){a(t,function(t){A(t,ht),w(t,ot,l(t,e.data_src))}),A(t,mt),w(t,lt,l(t,e.data_poster)),w(t,ot,l(t,e.data_src)),t.load()}},yt=["IMG","IFRAME","VIDEO"],At={IMG:P,IFRAME:function(t){k(t,ht)},VIDEO:function(t){a(t,function(t){k(t,ht)}),k(t,mt),t.load()}},kt=["IMG","IFRAME","VIDEO"];return t.prototype={update:function(t){var e,n,a,i=this._settings,o=X(t,i);{if(h(this,o.length),!tt&&et)return H(i)?(e=i,n=this,o.forEach(function(t){-1!==kt.indexOf(t.tagName)&&F(t,e,n)}),void h(n,0)):(t=this._observer,i=o,t.disconnect(),a=t,void i.forEach(function(t){a.observe(t)}));this.loadAll(o)}},destroy:function(){this._observer&&this._observer.disconnect(),Q(this._settings).forEach(function(t){y(t)}),delete this._observer,delete this._settings,delete this.loadingCount,delete this.toLoadCount},loadAll:function(t){var e=this,n=this._settings;X(t,n).forEach(function(t){b(t,e),V(t,n,e)})},restoreAll:function(){var e=this._settings;Q(e).forEach(function(t){U(t,e)})}},t.load=function(t,e){e=i(e);V(t,e)},t.resetStatus=function(t){r(t)},Z&&function(t,e){if(e)if(e.length)for(var n,a=0;n=e[a];a+=1)o(t,n);else o(t,e)}(t,window.lazyLoadOptions),t});!function(e,t){"use strict";function a(){t.body.classList.add("litespeed_lazyloaded")}function n(){console.log("[LiteSpeed] Start Lazy Load Images"),d=new LazyLoad({elements_selector:"[data-lazyloaded]",callback_finish:a}),o=function(){d.update()},e.MutationObserver&&new MutationObserver(o).observe(t.documentElement,{childList:!0,subtree:!0,attributes:!0})}var d,o;e.addEventListener?e.addEventListener("load",n,!1):e.attachEvent("onload",n)}(window,document);</script></body></html> <!-- Page optimized by LiteSpeed Cache @2025-02-19 00:50:44 --> <!-- Page cached by LiteSpeed Cache 6.5.4 on 2025-02-19 00:50:44 -->