CINXE.COM

Kaluza–Klein theory - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Kaluza–Klein theory - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"84312f93-c6a5-48c2-94eb-8f909f25b8f2","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Kaluza–Klein_theory","wgTitle":"Kaluza–Klein theory","wgCurRevisionId":1251527061,"wgRevisionId":1251527061,"wgArticleId":17070,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 German-language sources (de)","CS1 French-language sources (fr)","CS1: long volume value","Webarchive template wayback links","Articles with short description","Short description is different from Wikidata","Articles lacking reliable references from January 2023","All articles lacking reliable references","Wikipedia articles needing clarification from September 2023","Articles to be expanded from February 2015","All articles to be expanded", "Articles with empty sections from February 2015","All articles with empty sections","All articles with unsourced statements","Articles with unsourced statements from February 2017","Articles with unsourced statements from June 2024","Theories of gravity","Particle physics","Physical cosmology","String theory","Physics beyond the Standard Model"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Kaluza–Klein_theory","wgRelevantArticleId":17070,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline": false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q944095","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready", "jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/1/1c/CMS_Higgs-event.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1107"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/CMS_Higgs-event.jpg/800px-CMS_Higgs-event.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="738"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/CMS_Higgs-event.jpg/640px-CMS_Higgs-event.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="590"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Kaluza–Klein theory - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Kaluza%E2%80%93Klein_theory"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Kaluza%E2%80%93Klein_theory"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Kaluza–Klein_theory rootpage-Kaluza–Klein_theory skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Kaluza%E2%80%93Klein+theory" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Kaluza%E2%80%93Klein+theory" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Kaluza%E2%80%93Klein+theory" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Kaluza%E2%80%93Klein+theory" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Kaluza_hypothesis" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Kaluza_hypothesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Kaluza hypothesis</span> </div> </a> <ul id="toc-Kaluza_hypothesis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Field_equations_from_the_Kaluza_hypothesis" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Field_equations_from_the_Kaluza_hypothesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Field equations from the Kaluza hypothesis</span> </div> </a> <ul id="toc-Field_equations_from_the_Kaluza_hypothesis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Equations_of_motion_from_the_Kaluza_hypothesis" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Equations_of_motion_from_the_Kaluza_hypothesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Equations of motion from the Kaluza hypothesis</span> </div> </a> <ul id="toc-Equations_of_motion_from_the_Kaluza_hypothesis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kaluza&#039;s_hypothesis_for_the_matter_stress–energy_tensor" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Kaluza&#039;s_hypothesis_for_the_matter_stress–energy_tensor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Kaluza's hypothesis for the matter stress–energy tensor</span> </div> </a> <ul id="toc-Kaluza&#039;s_hypothesis_for_the_matter_stress–energy_tensor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_interpretation_of_Klein" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Quantum_interpretation_of_Klein"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Quantum interpretation of Klein</span> </div> </a> <ul id="toc-Quantum_interpretation_of_Klein-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_field_theory_interpretation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Quantum_field_theory_interpretation"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Quantum field theory interpretation</span> </div> </a> <ul id="toc-Quantum_field_theory_interpretation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Group_theory_interpretation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Group_theory_interpretation"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Group theory interpretation</span> </div> </a> <ul id="toc-Group_theory_interpretation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Space–time–matter_theory" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Space–time–matter_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Space–time–matter theory</span> </div> </a> <ul id="toc-Space–time–matter_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometric_interpretation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Geometric_interpretation"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Geometric interpretation</span> </div> </a> <button aria-controls="toc-Geometric_interpretation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Geometric interpretation subsection</span> </button> <ul id="toc-Geometric_interpretation-sublist" class="vector-toc-list"> <li id="toc-Einstein_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Einstein_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Einstein equations</span> </div> </a> <ul id="toc-Einstein_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Maxwell_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Maxwell_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Maxwell equations</span> </div> </a> <ul id="toc-Maxwell_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kaluza–Klein_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kaluza–Klein_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3</span> <span>Kaluza–Klein geometry</span> </div> </a> <ul id="toc-Kaluza–Klein_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.4</span> <span>Generalizations</span> </div> </a> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Empirical_tests" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Empirical_tests"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Empirical tests</span> </div> </a> <ul id="toc-Empirical_tests-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Kaluza–Klein theory</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 27 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-27" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">27 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%86%D8%B8%D8%B1%D9%8A%D8%A9_%D9%83%D9%84%D9%88%D8%B2%D8%A7-%D9%83%D9%84%D8%A7%D9%8A%D9%86" title="نظرية كلوزا-كلاين – Arabic" lang="ar" hreflang="ar" data-title="نظرية كلوزا-كلاين" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A2%D1%8D%D0%BE%D1%80%D1%8B%D1%8F_%D0%9A%D0%B0%D0%BB%D1%83%D1%86%D1%8B_%E2%80%94_%D0%9A%D0%BB%D0%B5%D0%B9%D0%BD%D0%B0" title="Тэорыя Калуцы — Клейна – Belarusian" lang="be" hreflang="be" data-title="Тэорыя Калуцы — Клейна" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Teoria_Kaluza-Klein" title="Teoria Kaluza-Klein – Catalan" lang="ca" hreflang="ca" data-title="Teoria Kaluza-Klein" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Kaluza-Klein-Theorie" title="Kaluza-Klein-Theorie – German" lang="de" hreflang="de" data-title="Kaluza-Klein-Theorie" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Teor%C3%ADa_de_Kaluza-Klein" title="Teoría de Kaluza-Klein – Spanish" lang="es" hreflang="es" data-title="Teoría de Kaluza-Klein" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%86%D8%B8%D8%B1%DB%8C%D9%87_%DA%A9%D8%A7%D9%84%D9%88%D8%B2%D8%A7%E2%80%93%DA%A9%D9%84%DB%8C%D9%86" title="نظریه کالوزا–کلین – Persian" lang="fa" hreflang="fa" data-title="نظریه کالوزا–کلین" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Th%C3%A9orie_de_Kaluza-Klein" title="Théorie de Kaluza-Klein – French" lang="fr" hreflang="fr" data-title="Théorie de Kaluza-Klein" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Teoiric_Kaluza-Klein" title="Teoiric Kaluza-Klein – Irish" lang="ga" hreflang="ga" data-title="Teoiric Kaluza-Klein" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%B9%BC%EB%A3%A8%EC%B0%A8%E2%80%93%ED%81%B4%EB%A0%88%EC%9D%B8_%EC%9D%B4%EB%A1%A0" title="칼루차–클레인 이론 – Korean" lang="ko" hreflang="ko" data-title="칼루차–클레인 이론" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Teori_Kaluza%E2%80%93Klein" title="Teori Kaluza–Klein – Indonesian" lang="id" hreflang="id" data-title="Teori Kaluza–Klein" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Teoria_di_Kaluza-Klein" title="Teoria di Kaluza-Klein – Italian" lang="it" hreflang="it" data-title="Teoria di Kaluza-Klein" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%AA%D7%90%D7%95%D7%A8%D7%99%D7%99%D7%AA_%D7%A7%D7%9C%D7%95%D7%A6%D7%94-%D7%A7%D7%9C%D7%99%D7%99%D7%9F" title="תאוריית קלוצה-קליין – Hebrew" lang="he" hreflang="he" data-title="תאוריית קלוצה-קליין" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Kaluza%E2%80%93Klein-elm%C3%A9let" title="Kaluza–Klein-elmélet – Hungarian" lang="hu" hreflang="hu" data-title="Kaluza–Klein-elmélet" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Kaluza-klein-theorie" title="Kaluza-klein-theorie – Dutch" lang="nl" hreflang="nl" data-title="Kaluza-klein-theorie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%AB%E3%83%AB%E3%83%84%E3%82%A1%EF%BC%9D%E3%82%AF%E3%83%A9%E3%82%A4%E3%83%B3%E7%90%86%E8%AB%96" title="カルツァ=クライン理論 – Japanese" lang="ja" hreflang="ja" data-title="カルツァ=クライン理論" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Kaluza%E2%80%93Klein-teori" title="Kaluza–Klein-teori – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Kaluza–Klein-teori" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%95%E0%A8%BE%E0%A8%B2%E0%A9%81%E0%A8%9C%E0%A8%BC%E0%A8%BE-%E0%A8%95%E0%A8%B2%E0%A9%87%E0%A8%87%E0%A8%A8_%E0%A8%A5%E0%A8%BF%E0%A8%8A%E0%A8%B0%E0%A9%80" title="ਕਾਲੁਜ਼ਾ-ਕਲੇਇਨ ਥਿਊਰੀ – Punjabi" lang="pa" hreflang="pa" data-title="ਕਾਲੁਜ਼ਾ-ਕਲੇਇਨ ਥਿਊਰੀ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Teoria_Kaluzy-Kleina" title="Teoria Kaluzy-Kleina – Polish" lang="pl" hreflang="pl" data-title="Teoria Kaluzy-Kleina" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Teoria_de_Kaluza%E2%80%93Klein" title="Teoria de Kaluza–Klein – Portuguese" lang="pt" hreflang="pt" data-title="Teoria de Kaluza–Klein" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Teoria_Kaluza%E2%80%93Klein" title="Teoria Kaluza–Klein – Romanian" lang="ro" hreflang="ro" data-title="Teoria Kaluza–Klein" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%9A%D0%B0%D0%BB%D1%83%D1%86%D1%8B_%E2%80%94_%D0%9A%D0%BB%D0%B5%D0%B9%D0%BD%D0%B0" title="Теория Калуцы — Клейна – Russian" lang="ru" hreflang="ru" data-title="Теория Калуцы — Клейна" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Kaluzova-Kleinova_te%C3%B3ria" title="Kaluzova-Kleinova teória – Slovak" lang="sk" hreflang="sk" data-title="Kaluzova-Kleinova teória" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Kaluza-Kleinova_teorija" title="Kaluza-Kleinova teorija – Slovenian" lang="sl" hreflang="sl" data-title="Kaluza-Kleinova teorija" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kaluzan-Kleinin_teoria" title="Kaluzan-Kleinin teoria – Finnish" lang="fi" hreflang="fi" data-title="Kaluzan-Kleinin teoria" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Kaluza%E2%80%93Klein-teorin" title="Kaluza–Klein-teorin – Swedish" lang="sv" hreflang="sv" data-title="Kaluza–Klein-teorin" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D1%96%D1%8F_%D0%9A%D0%B0%D0%BB%D1%83%D1%86%D0%B8_%E2%80%94_%D0%9A%D0%BB%D0%B5%D0%B9%D0%BD%D0%B0" title="Теорія Калуци — Клейна – Ukrainian" lang="uk" hreflang="uk" data-title="Теорія Калуци — Клейна" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8D%A1%E9%AD%AF%E6%89%8E-%E5%85%8B%E8%90%8A%E5%9B%A0%E7%90%86%E8%AB%96" title="卡魯扎-克萊因理論 – Chinese" lang="zh" hreflang="zh" data-title="卡魯扎-克萊因理論" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q944095#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Kaluza%E2%80%93Klein_theory" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Kaluza%E2%80%93Klein_theory" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Kaluza%E2%80%93Klein_theory"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Kaluza%E2%80%93Klein_theory"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Kaluza%E2%80%93Klein_theory" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Kaluza%E2%80%93Klein_theory" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;oldid=1251527061" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Kaluza%E2%80%93Klein_theory&amp;id=1251527061&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKaluza%25E2%2580%2593Klein_theory"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKaluza%25E2%2580%2593Klein_theory"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Kaluza%E2%80%93Klein_theory&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q944095" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Unified field theory</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about gravitation and electromagnetism. For the mathematical generalization of <a href="/wiki/K_theory" class="mw-redirect" title="K theory">K theory</a>, see <a href="/wiki/KK-theory" title="KK-theory">KK-theory</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Primary_sources plainlinks metadata ambox ambox-content ambox-Primary_sources" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>relies excessively on <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">references</a> to <a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research">primary sources</a></b>.<span class="hide-when-compact"> Please improve this article by adding <a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research">secondary or tertiary sources</a>. <br /><small><span class="plainlinks"><i>Find sources:</i>&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&amp;q=%22Kaluza%E2%80%93Klein+theory%22">"Kaluza–Klein theory"</a>&#160;–&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&amp;q=%22Kaluza%E2%80%93Klein+theory%22+-wikipedia&amp;tbs=ar:1">news</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&amp;q=%22Kaluza%E2%80%93Klein+theory%22&amp;tbs=bkt:s&amp;tbm=bks">newspapers</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&amp;q=%22Kaluza%E2%80%93Klein+theory%22+-wikipedia">books</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Kaluza%E2%80%93Klein+theory%22">scholar</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Kaluza%E2%80%93Klein+theory%22&amp;acc=on&amp;wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">January 2023</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><th class="sidebar-title"><a href="/wiki/Physics_beyond_the_Standard_Model" title="Physics beyond the Standard Model">Beyond the Standard Model</a></th></tr><tr><td class="sidebar-image"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:CMS_Higgs-event.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/CMS_Higgs-event.jpg/220px-CMS_Higgs-event.jpg" decoding="async" width="220" height="203" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/CMS_Higgs-event.jpg/330px-CMS_Higgs-event.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/CMS_Higgs-event.jpg/440px-CMS_Higgs-event.jpg 2x" data-file-width="1104" data-file-height="1018" /></a></span><div class="sidebar-caption">Simulated <a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">Large Hadron Collider</a> <a href="/wiki/Compact_Muon_Solenoid" title="Compact Muon Solenoid">CMS</a> particle detector data depicting a <a href="/wiki/Higgs_boson" title="Higgs boson">Higgs boson</a> produced by colliding protons decaying into hadron jets and electrons</div></td></tr><tr><th class="sidebar-heading"> <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed hlist"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;color: var(--color-base)">Evidence</div><div class="sidebar-list-content mw-collapsible-content plainlist"> <ul><li><a href="/wiki/Hierarchy_problem" title="Hierarchy problem">Hierarchy problem</a></li> <li><a href="/wiki/Dark_matter" title="Dark matter">Dark matter</a></li> <li><a href="/wiki/Dark_energy" title="Dark energy">Dark energy</a></li> <li><a href="/wiki/Quintessence_(physics)" title="Quintessence (physics)">Quintessence</a></li> <li><a href="/wiki/Phantom_energy" title="Phantom energy">Phantom energy</a></li> <li><a href="/wiki/Dark_radiation" title="Dark radiation">Dark radiation</a></li> <li><a href="/wiki/Dark_photon" title="Dark photon">Dark photon</a></li> <li><a href="/wiki/Cosmological_constant_problem" title="Cosmological constant problem">Cosmological constant problem</a></li> <li><a href="/wiki/CP_violation" title="CP violation">Strong CP problem</a></li> <li><a href="/wiki/Neutrino_oscillation" title="Neutrino oscillation">Neutrino oscillation</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible hlist"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;color: var(--color-base)">Theories</div><div class="sidebar-list-content mw-collapsible-content plainlist"> <ul><li><a href="/wiki/Brans%E2%80%93Dicke_theory" title="Brans–Dicke theory">Brans–Dicke theory</a></li> <li><a href="/wiki/Cosmic_censorship_hypothesis" title="Cosmic censorship hypothesis">Cosmic censorship hypothesis</a></li> <li><a href="/wiki/Fifth_force" title="Fifth force">Fifth force</a></li> <li><a href="/wiki/F-theory" title="F-theory">F-theory</a></li> <li><a href="/wiki/Theory_of_everything" title="Theory of everything">Theory of everything</a></li> <li><a href="/wiki/Unified_field_theory" title="Unified field theory">Unified field theory</a></li> <li><a href="/wiki/Grand_Unified_Theory" title="Grand Unified Theory">Grand Unified Theory</a></li> <li><a href="/wiki/Technicolor_(physics)" title="Technicolor (physics)">Technicolor</a></li> <li><a class="mw-selflink selflink">Kaluza–Klein theory</a></li> <li><a href="/wiki/6D_(2,0)_superconformal_field_theory" title="6D (2,0) superconformal field theory">6D (2,0) superconformal field theory</a></li> <li><a href="/wiki/Noncommutative_quantum_field_theory" title="Noncommutative quantum field theory">Noncommutative quantum field theory</a></li> <li><a href="/wiki/Quantum_cosmology" title="Quantum cosmology">Quantum cosmology</a></li> <li><a href="/wiki/Brane_cosmology" title="Brane cosmology">Brane cosmology</a></li> <li><a href="/wiki/String_theory" title="String theory">String theory</a></li> <li><a href="/wiki/Superstring_theory" title="Superstring theory">Superstring theory</a></li> <li><a href="/wiki/M-theory" title="M-theory">M-theory</a></li> <li><a href="/wiki/Mathematical_universe_hypothesis" title="Mathematical universe hypothesis">Mathematical universe hypothesis</a></li> <li><a href="/wiki/Mirror_matter" title="Mirror matter">Mirror matter</a></li> <li><a href="/wiki/Randall%E2%80%93Sundrum_model" title="Randall–Sundrum model">Randall–Sundrum model</a></li> <li><a href="/wiki/N_%3D_4_supersymmetric_Yang%E2%80%93Mills_theory" title="N = 4 supersymmetric Yang–Mills theory">N = 4 supersymmetric Yang–Mills theory</a></li> <li><a href="/wiki/Twistor_string_theory" title="Twistor string theory">Twistor string theory</a></li> <li><a href="/wiki/Dark_fluid" title="Dark fluid">Dark fluid</a></li> <li><a href="/wiki/Doubly_special_relativity" title="Doubly special relativity">Doubly special relativity</a></li> <li><a href="/wiki/De_Sitter_invariant_special_relativity" title="De Sitter invariant special relativity">de Sitter invariant special relativity</a></li> <li><a href="/wiki/Causal_fermion_system" class="mw-redirect" title="Causal fermion system">Causal fermion systems</a></li> <li><a href="/wiki/Black_hole_thermodynamics" title="Black hole thermodynamics">Black hole thermodynamics</a></li> <li><a href="/wiki/Unparticle_physics" title="Unparticle physics">Unparticle physics</a></li> <li><a href="/wiki/Graviphoton" title="Graviphoton">Graviphoton</a></li> <li><a href="/wiki/Graviscalar" title="Graviscalar">Graviscalar</a></li> <li><a href="/wiki/Graviton" title="Graviton">Graviton</a></li> <li><a href="/wiki/Gravitino" title="Gravitino">Gravitino</a></li> <li><a href="/wiki/Massive_gravity" title="Massive gravity">Massive gravity</a></li> <li><a href="/wiki/Gauge_gravitation_theory" title="Gauge gravitation theory">Gauge gravitation theory</a></li> <li><a href="/wiki/Gauge_theory_gravity" title="Gauge theory gravity">Gauge theory gravity</a></li> <li><a href="/wiki/CPT_symmetry" title="CPT symmetry">CPT symmetry</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed hlist"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;color: var(--color-base)"><a href="/wiki/Supersymmetry" title="Supersymmetry">Supersymmetry</a></div><div class="sidebar-list-content mw-collapsible-content plainlist"> <ul><li><a href="/wiki/Minimal_Supersymmetric_Standard_Model" title="Minimal Supersymmetric Standard Model">MSSM</a></li> <li><a href="/wiki/Next-to-Minimal_Supersymmetric_Standard_Model" title="Next-to-Minimal Supersymmetric Standard Model">NMSSM</a></li> <li><a href="/wiki/Superstring_theory" title="Superstring theory">Superstring theory</a></li> <li><a href="/wiki/M-theory" title="M-theory">M-theory</a></li> <li><a href="/wiki/Supergravity" title="Supergravity">Supergravity</a></li> <li><a href="/wiki/Supersymmetry_breaking" title="Supersymmetry breaking">Supersymmetry breaking</a></li> <li><a href="/wiki/Extra_dimensions" title="Extra dimensions">Extra dimensions</a></li> <li><a href="/wiki/Large_extra_dimensions" title="Large extra dimensions">Large extra dimensions</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed hlist"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;color: var(--color-base)"><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></div><div class="sidebar-list-content mw-collapsible-content plainlist"> <ul><li><a href="/wiki/False_vacuum" title="False vacuum">False vacuum</a></li> <li><a href="/wiki/String_theory" title="String theory">String theory</a></li> <li><a href="/wiki/Spin_foam" title="Spin foam">Spin foam</a></li> <li><a href="/wiki/Quantum_foam" title="Quantum foam">Quantum foam</a></li> <li><a href="/wiki/Quantum_geometry" title="Quantum geometry">Quantum geometry</a></li> <li><a href="/wiki/Loop_quantum_gravity" title="Loop quantum gravity">Loop quantum gravity</a></li> <li><a href="/wiki/Quantum_cosmology" title="Quantum cosmology">Quantum cosmology</a></li> <li><a href="/wiki/Loop_quantum_cosmology" title="Loop quantum cosmology">Loop quantum cosmology</a></li> <li><a href="/wiki/Causal_dynamical_triangulation" title="Causal dynamical triangulation">Causal dynamical triangulation</a></li> <li><a href="/wiki/Causal_fermion_systems" title="Causal fermion systems">Causal fermion systems</a></li> <li><a href="/wiki/Causal_sets" title="Causal sets">Causal sets</a></li> <li><a href="/wiki/Canonical_quantum_gravity" title="Canonical quantum gravity">Canonical quantum gravity</a></li> <li><a href="/wiki/Semiclassical_gravity" title="Semiclassical gravity">Semiclassical gravity</a></li> <li><a href="/wiki/Superfluid_vacuum_theory" title="Superfluid vacuum theory">Superfluid vacuum theory</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed hlist"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;color: var(--color-base)">Experiments</div><div class="sidebar-list-content mw-collapsible-content plainlist"> <ul><li><a href="/wiki/Accelerator_Neutrino_Neutron_Interaction_Experiment" title="Accelerator Neutrino Neutron Interaction Experiment">ANNIE</a></li> <li><a href="/wiki/Laboratori_Nazionali_del_Gran_Sasso" title="Laboratori Nazionali del Gran Sasso">Gran Sasso</a></li> <li><a href="/wiki/India-based_Neutrino_Observatory" title="India-based Neutrino Observatory">INO</a></li> <li><a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">LHC</a></li> <li><a href="/wiki/Sudbury_Neutrino_Observatory" title="Sudbury Neutrino Observatory">SNO</a></li> <li><a href="/wiki/Super-Kamiokande" title="Super-Kamiokande">Super-K</a></li> <li><a href="/wiki/Tevatron" title="Tevatron">Tevatron</a></li> <li><a href="/wiki/NOvA" title="NOvA">NOvA</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Beyond_the_Standard_Model" title="Template:Beyond the Standard Model"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Beyond_the_Standard_Model" title="Template talk:Beyond the Standard Model"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Beyond_the_Standard_Model" title="Special:EditPage/Template:Beyond the Standard Model"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Physics" title="Physics">physics</a>, <b>Kaluza–Klein theory</b> (<b>KK theory</b>) is a classical <a href="/wiki/Unified_field_theory" title="Unified field theory">unified field theory</a> of <a href="/wiki/Gravitation" class="mw-redirect" title="Gravitation">gravitation</a> and <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a> built around the idea of a <a href="/wiki/Five-dimensional_space#Physics" title="Five-dimensional space">fifth dimension</a> beyond the common 4D of <a href="/wiki/Spacetime" title="Spacetime">space and time</a> and considered an important precursor to <a href="/wiki/String_theory" title="String theory">string theory</a>. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. <a href="/wiki/Gunnar_Nordstr%C3%B6m" title="Gunnar Nordström">Gunnar Nordström</a> had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.<sup id="cite_ref-nrd_1-0" class="reference"><a href="#cite_note-nrd-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>The five-dimensional (5D) theory developed in three steps. The original hypothesis came from <a href="/wiki/Theodor_Kaluza" title="Theodor Kaluza">Theodor Kaluza</a>, who sent his results to <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> in 1919<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> and published them in 1921.<sup id="cite_ref-kal_3-0" class="reference"><a href="#cite_note-kal-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Kaluza presented a purely classical extension of <a href="/wiki/General_relativity" title="General relativity">general relativity</a> to 5D, with a metric tensor of 15 components. Ten components are identified with the 4D spacetime metric, four components with the electromagnetic vector potential, and one component with an unidentified <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a> sometimes called the "<a href="/wiki/Radion_(physics)" class="mw-redirect" title="Radion (physics)">radion</a>" or the "dilaton". Correspondingly, the 5D Einstein equations yield the 4D <a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a>, the <a href="/wiki/Maxwell_equations" class="mw-redirect" title="Maxwell equations">Maxwell equations</a> for the <a href="/wiki/Electromagnetic_field" title="Electromagnetic field">electromagnetic field</a>, and an equation for the scalar field. Kaluza also introduced the "cylinder condition" hypothesis, that no component of the five-dimensional metric depends on the fifth dimension. Without this restriction, terms are introduced that involve derivatives of the fields with respect to the fifth coordinate, and this extra degree of freedom makes the mathematics of the fully variable 5D relativity enormously complex. Standard 4D physics seems to manifest this "cylinder condition" and, along with it, simpler mathematics. </p><p>In 1926, <a href="/wiki/Oskar_Klein" title="Oskar Klein">Oskar Klein</a> gave Kaluza's classical five-dimensional theory a quantum interpretation,<sup id="cite_ref-KZ_4-0" class="reference"><a href="#cite_note-KZ-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KN_5-0" class="reference"><a href="#cite_note-KN-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> to accord with the then-recent discoveries of <a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Werner Heisenberg</a> and <a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Erwin Schrödinger</a>. Klein introduced the hypothesis that the fifth dimension was curled up and microscopic, to explain the cylinder condition. Klein suggested that the geometry of the extra fifth dimension could take the form of a circle, with the radius of <span class="nowrap"><span data-sort-value="6968100000000000000♠"></span>10<sup>−30</sup>&#160;cm</span>. More precisely, the radius of the circular dimension is 23 times the <a href="/wiki/Planck_units" title="Planck units">Planck length</a>, which in turn is of the order of <span class="nowrap"><span data-sort-value="6965100000000000000♠"></span>10<sup>−33</sup>&#160;cm</span>.<sup id="cite_ref-KN_5-1" class="reference"><a href="#cite_note-KN-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> Klein also made a contribution to the classical theory by providing a properly normalized 5D metric.<sup id="cite_ref-KZ_4-1" class="reference"><a href="#cite_note-KZ-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Work continued on the Kaluza field theory during the 1930s by Einstein and colleagues at <a href="/wiki/Princeton_University" title="Princeton University">Princeton University</a>. </p><p>In the 1940s, the classical theory was completed, and the full field equations including the scalar field were obtained by three independent research groups:<sup id="cite_ref-gon_6-0" class="reference"><a href="#cite_note-gon-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Yves Thiry,<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-thry_8-0" class="reference"><a href="#cite_note-thry-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> working in France on his dissertation under <a href="/wiki/Andr%C3%A9_Lichnerowicz" title="André Lichnerowicz">André Lichnerowicz</a>; <a href="/wiki/Pascual_Jordan" title="Pascual Jordan">Pascual Jordan</a>, Günther Ludwig, and Claus Müller in Germany,<sup id="cite_ref-jor1_10-0" class="reference"><a href="#cite_note-jor1-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-jor2_11-0" class="reference"><a href="#cite_note-jor2-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-jor3_13-0" class="reference"><a href="#cite_note-jor3-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> with critical input from <a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Wolfgang Pauli</a> and <a href="/wiki/Markus_Fierz" title="Markus Fierz">Markus Fierz</a>; and <a href="/wiki/Paul_Scherrer" title="Paul Scherrer">Paul Scherrer</a><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> working alone in Switzerland. Jordan's work led to the scalar–tensor theory of <a href="/wiki/Brans%E2%80%93Dicke_theory" title="Brans–Dicke theory">Brans–Dicke</a>;<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Carl_H._Brans" title="Carl H. Brans">Carl H. Brans</a> and <a href="/wiki/Robert_H._Dicke" title="Robert H. Dicke">Robert H. Dicke</a> were apparently unaware of Thiry or Scherrer. The full Kaluza equations under the cylinder condition are quite complex, and most English-language reviews, as well as the English translations of Thiry, contain some errors. The curvature tensors for the complete Kaluza equations were evaluated using <a href="/wiki/Tensor_software" title="Tensor software">tensor-algebra software</a> in 2015,<sup id="cite_ref-LLW_19-0" class="reference"><a href="#cite_note-LLW-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> verifying results of J. A. Ferrari<sup id="cite_ref-fri_20-0" class="reference"><a href="#cite_note-fri-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> and R. Coquereaux &amp; G. Esposito-Farese.<sup id="cite_ref-coq_21-0" class="reference"><a href="#cite_note-coq-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> The 5D covariant form of the energy–momentum source terms is treated by L. L. Williams.<sup id="cite_ref-LLW2_22-0" class="reference"><a href="#cite_note-LLW2-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Kaluza_hypothesis">Kaluza hypothesis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=1" title="Edit section: Kaluza hypothesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In his 1921 article,<sup id="cite_ref-kal_3-1" class="reference"><a href="#cite_note-kal-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Kaluza established all the elements of the classical five-dimensional theory: the metric, the field equations, the equations of motion, the stress–energy tensor, and the cylinder condition. With no <a href="/wiki/Free_parameter" title="Free parameter">free parameters</a>, it merely extends general relativity to five dimensions. One starts by hypothesizing a form of the five-dimensional metric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {g}}_{ab}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {g}}_{ab}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6385a8c6c8614189b81d4dc61a317a23356b78cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.039ex; height:2.676ex;" alt="{\displaystyle {\widetilde {g}}_{ab}}"></span>, where Latin indices span five dimensions. Let one also introduce the four-dimensional spacetime metric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {g}_{\mu \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {g}_{\mu \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/736bbb3255629f109526646853257532f083c744" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.204ex; height:2.509ex;" alt="{\displaystyle {g}_{\mu \nu }}"></span>, where Greek indices span the usual four dimensions of space and time; a 4-vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1da55ba40017c25d210f7e269efb2d6d539a1b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.967ex; height:2.343ex;" alt="{\displaystyle A^{\mu }}"></span> identified with the electromagnetic vector potential; and a scalar field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span>. Then decompose the 5D metric so that the 4D metric is framed by the electromagnetic vector potential, with the scalar field at the fifth diagonal. This can be visualized as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {g}}_{ab}\equiv {\begin{bmatrix}g_{\mu \nu }+\phi ^{2}A_{\mu }A_{\nu }&amp;\phi ^{2}A_{\mu }\\\phi ^{2}A_{\nu }&amp;\phi ^{2}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> </mtd> <mtd> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> </mtd> <mtd> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {g}}_{ab}\equiv {\begin{bmatrix}g_{\mu \nu }+\phi ^{2}A_{\mu }A_{\nu }&amp;\phi ^{2}A_{\mu }\\\phi ^{2}A_{\nu }&amp;\phi ^{2}\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feb94ce3447d4bb9bf2d8d5615e2fa37ec5cbe9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:32.016ex; height:6.509ex;" alt="{\displaystyle {\widetilde {g}}_{ab}\equiv {\begin{bmatrix}g_{\mu \nu }+\phi ^{2}A_{\mu }A_{\nu }&amp;\phi ^{2}A_{\mu }\\\phi ^{2}A_{\nu }&amp;\phi ^{2}\end{bmatrix}}.}"></span></dd></dl> <p>One can write more precisely </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {g}}_{\mu \nu }\equiv g_{\mu \nu }+\phi ^{2}A_{\mu }A_{\nu },\qquad {\widetilde {g}}_{5\nu }\equiv {\widetilde {g}}_{\nu 5}\equiv \phi ^{2}A_{\nu },\qquad {\widetilde {g}}_{55}\equiv \phi ^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>,</mo> <mspace width="2em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mn>5</mn> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>,</mo> <mspace width="2em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>55</mn> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {g}}_{\mu \nu }\equiv g_{\mu \nu }+\phi ^{2}A_{\mu }A_{\nu },\qquad {\widetilde {g}}_{5\nu }\equiv {\widetilde {g}}_{\nu 5}\equiv \phi ^{2}A_{\nu },\qquad {\widetilde {g}}_{55}\equiv \phi ^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a605f6d3f184b1cba8aa363a62f7effde49b54ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:59.17ex; height:3.509ex;" alt="{\displaystyle {\widetilde {g}}_{\mu \nu }\equiv g_{\mu \nu }+\phi ^{2}A_{\mu }A_{\nu },\qquad {\widetilde {g}}_{5\nu }\equiv {\widetilde {g}}_{\nu 5}\equiv \phi ^{2}A_{\nu },\qquad {\widetilde {g}}_{55}\equiv \phi ^{2},}"></span></dd></dl> <p>where the index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span> indicates the fifth coordinate by convention, even though the first four coordinates are indexed with 0, 1, 2, and 3. The associated inverse metric is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {g}}^{ab}\equiv {\begin{bmatrix}g^{\mu \nu }&amp;-A^{\mu }\\-A^{\nu }&amp;g_{\alpha \beta }A^{\alpha }A^{\beta }+{\frac {1}{\phi ^{2}}}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msup> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> </mtd> <mtd> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {g}}^{ab}\equiv {\begin{bmatrix}g^{\mu \nu }&amp;-A^{\mu }\\-A^{\nu }&amp;g_{\alpha \beta }A^{\alpha }A^{\beta }+{\frac {1}{\phi ^{2}}}\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c753a3b3fa7f09805c3c177938a1a85756ff1ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.98ex; margin-bottom: -0.192ex; width:31.991ex; height:7.509ex;" alt="{\displaystyle {\widetilde {g}}^{ab}\equiv {\begin{bmatrix}g^{\mu \nu }&amp;-A^{\mu }\\-A^{\nu }&amp;g_{\alpha \beta }A^{\alpha }A^{\beta }+{\frac {1}{\phi ^{2}}}\end{bmatrix}}.}"></span></dd></dl> <p>This decomposition is quite general, and all terms are dimensionless. Kaluza then applies the machinery of standard <a href="/wiki/General_relativity" title="General relativity">general relativity</a> to this metric. The field equations are obtained from five-dimensional <a href="/wiki/Einstein_equations" class="mw-redirect" title="Einstein equations">Einstein equations</a>, and the equations of motion from the five-dimensional geodesic hypothesis. The resulting field equations provide both the equations of general relativity and of electrodynamics; the equations of motion provide the four-dimensional <a href="/wiki/Geodesic_equation" class="mw-redirect" title="Geodesic equation">geodesic equation</a> and the <a href="/wiki/Lorentz_force_law" class="mw-redirect" title="Lorentz force law">Lorentz force law</a>, and one finds that electric charge is identified with motion in the fifth dimension. </p><p>The hypothesis for the metric implies an invariant five-dimensional length element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f0fb36e4308227d3e4a1f809c2571ec02527100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.306ex; height:2.176ex;" alt="{\displaystyle ds}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds^{2}\equiv {\widetilde {g}}_{ab}\,dx^{a}\,dx^{b}=g_{\mu \nu }\,dx^{\mu }\,dx^{\nu }+\phi ^{2}(A_{\nu }\,dx^{\nu }+dx^{5})^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <mo>+</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds^{2}\equiv {\widetilde {g}}_{ab}\,dx^{a}\,dx^{b}=g_{\mu \nu }\,dx^{\mu }\,dx^{\nu }+\phi ^{2}(A_{\nu }\,dx^{\nu }+dx^{5})^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66fe7d4879a3224e183522c6dfe689e1b6f4d75b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:54.01ex; height:3.343ex;" alt="{\displaystyle ds^{2}\equiv {\widetilde {g}}_{ab}\,dx^{a}\,dx^{b}=g_{\mu \nu }\,dx^{\mu }\,dx^{\nu }+\phi ^{2}(A_{\nu }\,dx^{\nu }+dx^{5})^{2}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Field_equations_from_the_Kaluza_hypothesis">Field equations from the Kaluza hypothesis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=2" title="Edit section: Field equations from the Kaluza hypothesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Field_equation" title="Field equation">field equations</a> of the five-dimensional theory were never adequately provided by Kaluza or Klein because they ignored the <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a>. The full Kaluza field equations are generally attributed to Thiry,<sup id="cite_ref-thry_8-1" class="reference"><a href="#cite_note-thry-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> who obtained vacuum field equations, although Kaluza<sup id="cite_ref-kal_3-2" class="reference"><a href="#cite_note-kal-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> originally provided a stress–energy tensor for his theory, and Thiry included a stress–energy tensor in his thesis. But as described by Gonner,<sup id="cite_ref-gon_6-1" class="reference"><a href="#cite_note-gon-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> several independent groups worked on the field equations in the 1940s and earlier. Thiry is perhaps best known only because an English translation was provided by Applequist, Chodos, &amp; Freund in their review book.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Applequist et al. also provided an English translation of Kaluza's article. Translations of the three (1946, 1947, 1948) Jordan articles can be found on the <a href="/wiki/ResearchGate" title="ResearchGate">ResearchGate</a> and <a href="/wiki/Academia.edu" title="Academia.edu">Academia.edu</a> archives.<sup id="cite_ref-jor1_10-1" class="reference"><a href="#cite_note-jor1-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-jor2_11-1" class="reference"><a href="#cite_note-jor2-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-jor3_13-1" class="reference"><a href="#cite_note-jor3-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> The first correct English-language Kaluza field equations, including the scalar field, were provided by Williams.<sup id="cite_ref-LLW_19-1" class="reference"><a href="#cite_note-LLW-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p><p>To obtain the 5D field equations, the 5D connections <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {\Gamma }}_{bc}^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {\Gamma }}_{bc}^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397e7bce431189d6cbf35febfadb6ad9653faadb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.102ex; height:3.343ex;" alt="{\displaystyle {\widetilde {\Gamma }}_{bc}^{a}}"></span> are calculated from the 5D metric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {g}}_{ab}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {g}}_{ab}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6385a8c6c8614189b81d4dc61a317a23356b78cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.039ex; height:2.676ex;" alt="{\displaystyle {\widetilde {g}}_{ab}}"></span>, and the 5D <a href="/wiki/Ricci_tensor" class="mw-redirect" title="Ricci tensor">Ricci tensor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {R}}_{ab}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {R}}_{ab}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7135160330a3cc9274407baec584720429d88d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.571ex; height:3.009ex;" alt="{\displaystyle {\widetilde {R}}_{ab}}"></span> is calculated from the 5D <a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">connections</a>. </p><p>The classic results of Thiry and other authors presume the cylinder condition: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial {\widetilde {g}}_{ab}}{\partial x^{5}}}=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial {\widetilde {g}}_{ab}}{\partial x^{5}}}=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0b8915a8464a57ca1446e9a32210fb196ed4767" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:10.101ex; height:5.843ex;" alt="{\displaystyle {\frac {\partial {\widetilde {g}}_{ab}}{\partial x^{5}}}=0.}"></span></dd></dl> <p>Without this assumption, the field equations become much more complex, providing many more degrees of freedom that can be identified with various new fields. Paul Wesson and colleagues have pursued relaxation of the cylinder condition to gain extra terms that can be identified with the matter fields,<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> for which Kaluza<sup id="cite_ref-kal_3-3" class="reference"><a href="#cite_note-kal-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> otherwise inserted a stress–energy tensor by hand. </p><p>It has been an objection to the original Kaluza hypothesis to invoke the fifth dimension only to negate its dynamics. But Thiry argued<sup id="cite_ref-gon_6-2" class="reference"><a href="#cite_note-gon-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> that the interpretation of the Lorentz force law in terms of a five-dimensional <a href="/wiki/Geodesic" title="Geodesic">geodesic</a> militates strongly for a fifth dimension irrespective of the cylinder condition. Most authors have therefore employed the cylinder condition in deriving the field equations. Furthermore, vacuum equations are typically assumed for which </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {R}}_{ab}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {R}}_{ab}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef7d5ad7118081fb1385ff70f960ae76f1d88762" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.479ex; height:3.009ex;" alt="{\displaystyle {\widetilde {R}}_{ab}=0,}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {R}}_{ab}\equiv \partial _{c}{\widetilde {\Gamma }}_{ab}^{c}-\partial _{b}{\widetilde {\Gamma }}_{ca}^{c}+{\widetilde {\Gamma }}_{cd}^{c}{\widetilde {\Gamma }}_{ab}^{d}-{\widetilde {\Gamma }}_{bd}^{c}{\widetilde {\Gamma }}_{ac}^{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {R}}_{ab}\equiv \partial _{c}{\widetilde {\Gamma }}_{ab}^{c}-\partial _{b}{\widetilde {\Gamma }}_{ca}^{c}+{\widetilde {\Gamma }}_{cd}^{c}{\widetilde {\Gamma }}_{ab}^{d}-{\widetilde {\Gamma }}_{bd}^{c}{\widetilde {\Gamma }}_{ac}^{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbfb1f094fa874c26b2ad07f308f7f3bd97ebb25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.102ex; height:3.676ex;" alt="{\displaystyle {\widetilde {R}}_{ab}\equiv \partial _{c}{\widetilde {\Gamma }}_{ab}^{c}-\partial _{b}{\widetilde {\Gamma }}_{ca}^{c}+{\widetilde {\Gamma }}_{cd}^{c}{\widetilde {\Gamma }}_{ab}^{d}-{\widetilde {\Gamma }}_{bd}^{c}{\widetilde {\Gamma }}_{ac}^{d}}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {\Gamma }}_{bc}^{a}\equiv {\frac {1}{2}}{\widetilde {g}}^{ad}(\partial _{b}{\widetilde {g}}_{dc}+\partial _{c}{\widetilde {g}}_{db}-\partial _{d}{\widetilde {g}}_{bc}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>d</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>c</mi> </mrow> </msub> <mo>+</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>b</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>c</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {\Gamma }}_{bc}^{a}\equiv {\frac {1}{2}}{\widetilde {g}}^{ad}(\partial _{b}{\widetilde {g}}_{dc}+\partial _{c}{\widetilde {g}}_{db}-\partial _{d}{\widetilde {g}}_{bc}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cb03fc24e8fa8a264fca4fe64a45bf587b59fbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:35.153ex; height:5.176ex;" alt="{\displaystyle {\widetilde {\Gamma }}_{bc}^{a}\equiv {\frac {1}{2}}{\widetilde {g}}^{ad}(\partial _{b}{\widetilde {g}}_{dc}+\partial _{c}{\widetilde {g}}_{db}-\partial _{d}{\widetilde {g}}_{bc}).}"></span></dd></dl> <p>The vacuum field equations obtained in this way by Thiry<sup id="cite_ref-thry_8-2" class="reference"><a href="#cite_note-thry-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> and Jordan's group<sup id="cite_ref-jor1_10-2" class="reference"><a href="#cite_note-jor1-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-jor2_11-2" class="reference"><a href="#cite_note-jor2-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-jor3_13-2" class="reference"><a href="#cite_note-jor3-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> are as follows. </p><p>The field equation for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> is obtained from </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {R}}_{55}=0\Rightarrow \Box \phi ={\frac {1}{4}}\phi ^{3}F^{\alpha \beta }F_{\alpha \beta },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>55</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>&#x25FB;<!-- ◻ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {R}}_{55}=0\Rightarrow \Box \phi ={\frac {1}{4}}\phi ^{3}F^{\alpha \beta }F_{\alpha \beta },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed2b6692639801796a99e3c272ea48d715388355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:30.654ex; height:5.176ex;" alt="{\displaystyle {\widetilde {R}}_{55}=0\Rightarrow \Box \phi ={\frac {1}{4}}\phi ^{3}F^{\alpha \beta }F_{\alpha \beta },}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{\alpha \beta }\equiv \partial _{\alpha }A_{\beta }-\partial _{\beta }A_{\alpha },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{\alpha \beta }\equiv \partial _{\alpha }A_{\beta }-\partial _{\beta }A_{\alpha },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c8fb188124c462605c486377058c9901e9453df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.178ex; height:2.843ex;" alt="{\displaystyle F_{\alpha \beta }\equiv \partial _{\alpha }A_{\beta }-\partial _{\beta }A_{\alpha },}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Box \equiv g^{\mu \nu }\nabla _{\mu }\nabla _{\nu },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x25FB;<!-- ◻ --></mi> <mo>&#x2261;<!-- ≡ --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Box \equiv g^{\mu \nu }\nabla _{\mu }\nabla _{\nu },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/342cf8deef51bcf72dc6da26ef101d2e5a2f27bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.965ex; height:3.009ex;" alt="{\displaystyle \Box \equiv g^{\mu \nu }\nabla _{\mu }\nabla _{\nu },}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla _{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla _{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce7b8d45eb6e24772c91595f15db13a5e3c7991d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.159ex; height:2.843ex;" alt="{\displaystyle \nabla _{\mu }}"></span> is a standard, 4D <a href="/wiki/Covariant_derivative" title="Covariant derivative">covariant derivative</a>. It shows that the electromagnetic field is a source for the <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a>. Note that the scalar field cannot be set to a constant without constraining the electromagnetic field. The earlier treatments by Kaluza and Klein did not have an adequate description of the scalar field and did not realize the implied constraint on the electromagnetic field by assuming the scalar field to be constant. </p><p>The field equation for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/723213348d681d164c76c7245099fae4f22a5fdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.847ex; height:2.343ex;" alt="{\displaystyle A^{\nu }}"></span> is obtained from </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {R}}_{5\alpha }=0={\frac {1}{2}}g^{\beta \mu }\nabla _{\mu }(\phi ^{3}F_{\alpha \beta }).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {R}}_{5\alpha }=0={\frac {1}{2}}g^{\beta \mu }\nabla _{\mu }(\phi ^{3}F_{\alpha \beta }).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fec3e4fc7824325d7f6dd5968f5c0299e9f51d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.287ex; height:5.176ex;" alt="{\displaystyle {\widetilde {R}}_{5\alpha }=0={\frac {1}{2}}g^{\beta \mu }\nabla _{\mu }(\phi ^{3}F_{\alpha \beta }).}"></span></dd></dl> <p>It has the form of the vacuum Maxwell equations if the scalar field is constant. </p><p>The field equation for the 4D Ricci tensor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{\mu \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{\mu \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5ee22d1a052bee0115efb8b5ffdaf10b04e42aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.859ex; height:2.843ex;" alt="{\displaystyle R_{\mu \nu }}"></span> is obtained from </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\widetilde {R}}_{\mu \nu }-{\frac {1}{2}}{\widetilde {g}}_{\mu \nu }{\widetilde {R}}&amp;=0\Rightarrow \\R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R&amp;={\frac {1}{2}}\phi ^{2}\left(g^{\alpha \beta }F_{\mu \alpha }F_{\nu \beta }-{\frac {1}{4}}g_{\mu \nu }F_{\alpha \beta }F^{\alpha \beta }\right)+{\frac {1}{\phi }}(\nabla _{\mu }\nabla _{\nu }\phi -g_{\mu \nu }\Box \phi ),\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mi>R</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03D5;<!-- ϕ --></mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mi>&#x25FB;<!-- ◻ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\widetilde {R}}_{\mu \nu }-{\frac {1}{2}}{\widetilde {g}}_{\mu \nu }{\widetilde {R}}&amp;=0\Rightarrow \\R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R&amp;={\frac {1}{2}}\phi ^{2}\left(g^{\alpha \beta }F_{\mu \alpha }F_{\nu \beta }-{\frac {1}{4}}g_{\mu \nu }F_{\alpha \beta }F^{\alpha \beta }\right)+{\frac {1}{\phi }}(\nabla _{\mu }\nabla _{\nu }\phi -g_{\mu \nu }\Box \phi ),\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b196783ed870814839e8fe074cc614225d4b211" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.914ex; margin-bottom: -0.257ex; width:76.682ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}{\widetilde {R}}_{\mu \nu }-{\frac {1}{2}}{\widetilde {g}}_{\mu \nu }{\widetilde {R}}&amp;=0\Rightarrow \\R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R&amp;={\frac {1}{2}}\phi ^{2}\left(g^{\alpha \beta }F_{\mu \alpha }F_{\nu \beta }-{\frac {1}{4}}g_{\mu \nu }F_{\alpha \beta }F^{\alpha \beta }\right)+{\frac {1}{\phi }}(\nabla _{\mu }\nabla _{\nu }\phi -g_{\mu \nu }\Box \phi ),\end{aligned}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is the standard 4D Ricci scalar. </p><p>This equation shows the remarkable result, called the "Kaluza miracle", that the precise form for the <a href="/wiki/Electromagnetic_stress%E2%80%93energy_tensor" title="Electromagnetic stress–energy tensor">electromagnetic stress–energy tensor</a> emerges from the 5D vacuum equations as a source in the 4D equations: field from the vacuum. This relation allows the definitive identification of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1da55ba40017c25d210f7e269efb2d6d539a1b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.967ex; height:2.343ex;" alt="{\displaystyle A^{\mu }}"></span> with the electromagnetic vector potential. Therefore, the field needs to be rescaled with a conversion constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\mu }\to kA^{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>k</mi> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\mu }\to kA^{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ee7d1c697751d9411388d9086627aefa37779d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.758ex; height:2.343ex;" alt="{\displaystyle A^{\mu }\to kA^{\mu }}"></span>. </p><p>The relation above shows that we must have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {k^{2}}{2}}={\frac {8\pi G}{c^{4}}}{\frac {1}{\mu _{0}}}={\frac {2G}{c^{2}}}4\pi \epsilon _{0},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> <mi>G</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>G</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {k^{2}}{2}}={\frac {8\pi G}{c^{4}}}{\frac {1}{\mu _{0}}}={\frac {2G}{c^{2}}}4\pi \epsilon _{0},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5211e66c56cf949e87384ad8320d3b7c6c1738cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.713ex; height:6.176ex;" alt="{\displaystyle {\frac {k^{2}}{2}}={\frac {8\pi G}{c^{4}}}{\frac {1}{\mu _{0}}}={\frac {2G}{c^{2}}}4\pi \epsilon _{0},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> is the <a href="/wiki/Gravitational_constant" title="Gravitational constant">gravitational constant</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe2fd9b8decb38a3cd158e7b6c0c6e2d987fefcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.456ex; height:2.176ex;" alt="{\displaystyle \mu _{0}}"></span> is the <a href="/wiki/Permeability_of_free_space" class="mw-redirect" title="Permeability of free space">permeability of free space</a>. In the Kaluza theory, the gravitational constant can be understood as an electromagnetic coupling constant in the metric. There is also a stress–energy tensor for the scalar field. The scalar field behaves like a variable gravitational constant, in terms of modulating the coupling of electromagnetic stress–energy to spacetime curvature. The sign of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b9ddce0bebf1f6ab02aecb833a96e05fd73cbe9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.44ex; height:3.009ex;" alt="{\displaystyle \phi ^{2}}"></span> in the metric is fixed by correspondence with 4D theory so that electromagnetic energy densities are positive. It is often assumed that the fifth coordinate is spacelike in its signature in the metric. </p><p>In the presence of matter, the 5D vacuum condition cannot be assumed. Indeed, Kaluza did not assume it. The full field equations require evaluation of the 5D Einstein tensor </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {G}}_{ab}\equiv {\widetilde {R}}_{ab}-{\frac {1}{2}}{\widetilde {g}}_{ab}{\widetilde {R}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>G</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {G}}_{ab}\equiv {\widetilde {R}}_{ab}-{\frac {1}{2}}{\widetilde {g}}_{ab}{\widetilde {R}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1adc1f8bb4ed865af493daa181a737450ef8e73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.592ex; height:5.176ex;" alt="{\displaystyle {\widetilde {G}}_{ab}\equiv {\widetilde {R}}_{ab}-{\frac {1}{2}}{\widetilde {g}}_{ab}{\widetilde {R}},}"></span></dd></dl> <p>as seen in the recovery of the electromagnetic stress–energy tensor above. The 5D curvature tensors are complex, and most English-language reviews contain errors in either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {G}}_{ab}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>G</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {G}}_{ab}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97614eb5209040527937fca3dd57f23169d0b100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.634ex; height:3.176ex;" alt="{\displaystyle {\widetilde {G}}_{ab}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {R}}_{ab}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {R}}_{ab}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7135160330a3cc9274407baec584720429d88d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.571ex; height:3.009ex;" alt="{\displaystyle {\widetilde {R}}_{ab}}"></span>, as does the English translation of Thiry.<sup id="cite_ref-thry_8-3" class="reference"><a href="#cite_note-thry-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> See Williams<sup id="cite_ref-LLW_19-2" class="reference"><a href="#cite_note-LLW-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> for a complete set of 5D curvature tensors under the cylinder condition, evaluated using tensor-algebra software. </p> <div class="mw-heading mw-heading2"><h2 id="Equations_of_motion_from_the_Kaluza_hypothesis">Equations of motion from the Kaluza hypothesis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=3" title="Edit section: Equations of motion from the Kaluza hypothesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The equations of motion are obtained from the five-dimensional geodesic hypothesis<sup id="cite_ref-kal_3-4" class="reference"><a href="#cite_note-kal-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> in terms of a 5-velocity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {U}}^{a}\equiv dx^{a}/ds}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>&#x2261;<!-- ≡ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {U}}^{a}\equiv dx^{a}/ds}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba16a00f67238b265881ddf18389f5f7253886fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.099ex; height:3.343ex;" alt="{\displaystyle {\widetilde {U}}^{a}\equiv dx^{a}/ds}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {U}}^{b}{\widetilde {\nabla }}_{b}{\widetilde {U}}^{a}={\frac {d{\widetilde {U}}^{a}}{ds}}+{\widetilde {\Gamma }}_{bc}^{a}{\widetilde {U}}^{b}{\widetilde {U}}^{c}=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {U}}^{b}{\widetilde {\nabla }}_{b}{\widetilde {U}}^{a}={\frac {d{\widetilde {U}}^{a}}{ds}}+{\widetilde {\Gamma }}_{bc}^{a}{\widetilde {U}}^{b}{\widetilde {U}}^{c}=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac220d551ce68f3010db868a86f62cc311f94902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:33.199ex; height:6.009ex;" alt="{\displaystyle {\widetilde {U}}^{b}{\widetilde {\nabla }}_{b}{\widetilde {U}}^{a}={\frac {d{\widetilde {U}}^{a}}{ds}}+{\widetilde {\Gamma }}_{bc}^{a}{\widetilde {U}}^{b}{\widetilde {U}}^{c}=0.}"></span></dd></dl> <p>This equation can be recast in several ways, and it has been studied in various forms by authors including Kaluza,<sup id="cite_ref-kal_3-5" class="reference"><a href="#cite_note-kal-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Pauli,<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> Gross &amp; Perry,<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> Gegenberg &amp; Kunstatter,<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> and Wesson &amp; Ponce de Leon,<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> but it is instructive to convert it back to the usual 4-dimensional length element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}\,d\tau ^{2}\equiv g_{\mu \nu }\,dx^{\mu }\,dx^{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}\,d\tau ^{2}\equiv g_{\mu \nu }\,dx^{\mu }\,dx^{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51d49c78775d005eb6fd010f10672124b4905121" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.47ex; height:3.343ex;" alt="{\displaystyle c^{2}\,d\tau ^{2}\equiv g_{\mu \nu }\,dx^{\mu }\,dx^{\nu }}"></span>, which is related to the 5-dimensional length element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f0fb36e4308227d3e4a1f809c2571ec02527100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.306ex; height:2.176ex;" alt="{\displaystyle ds}"></span> as given above: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds^{2}=c^{2}\,d\tau ^{2}+\phi ^{2}(kA_{\nu }\,dx^{\nu }+dx^{5})^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>k</mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <mo>+</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds^{2}=c^{2}\,d\tau ^{2}+\phi ^{2}(kA_{\nu }\,dx^{\nu }+dx^{5})^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42e3a6834a8c11c9b9bb585cb1dad8f442c9f430" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.76ex; height:3.176ex;" alt="{\displaystyle ds^{2}=c^{2}\,d\tau ^{2}+\phi ^{2}(kA_{\nu }\,dx^{\nu }+dx^{5})^{2}.}"></span></dd></dl> <p>Then the 5D geodesic equation can be written<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> for the spacetime components of the 4-velocity: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{\nu }\equiv {\frac {dx^{\nu }}{d\tau }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{\nu }\equiv {\frac {dx^{\nu }}{d\tau }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66dc214464ab1bfce58e5f41b27c50982a2e6d4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.175ex; height:5.509ex;" alt="{\displaystyle U^{\nu }\equiv {\frac {dx^{\nu }}{d\tau }},}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dU^{\nu }}{d\tau }}+{\widetilde {\Gamma }}_{\alpha \beta }^{\mu }U^{\alpha }U^{\beta }+2{\widetilde {\Gamma }}_{5\alpha }^{\mu }U^{\alpha }U^{5}+{\widetilde {\Gamma }}_{55}^{\mu }(U^{5})^{2}+U^{\mu }{\frac {d}{d\tau }}\ln {\frac {c\,d\tau }{ds}}=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msubsup> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> <mi>&#x03B1;<!-- α --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msubsup> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>55</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dU^{\nu }}{d\tau }}+{\widetilde {\Gamma }}_{\alpha \beta }^{\mu }U^{\alpha }U^{\beta }+2{\widetilde {\Gamma }}_{5\alpha }^{\mu }U^{\alpha }U^{5}+{\widetilde {\Gamma }}_{55}^{\mu }(U^{5})^{2}+U^{\mu }{\frac {d}{d\tau }}\ln {\frac {c\,d\tau }{ds}}=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4c76a7fd0e2e195fbe1db60d3bd7c5d02f7dbf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:64.596ex; height:5.509ex;" alt="{\displaystyle {\frac {dU^{\nu }}{d\tau }}+{\widetilde {\Gamma }}_{\alpha \beta }^{\mu }U^{\alpha }U^{\beta }+2{\widetilde {\Gamma }}_{5\alpha }^{\mu }U^{\alpha }U^{5}+{\widetilde {\Gamma }}_{55}^{\mu }(U^{5})^{2}+U^{\mu }{\frac {d}{d\tau }}\ln {\frac {c\,d\tau }{ds}}=0.}"></span></dd></dl> <p>The term quadratic in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e0ff9dd6e361b13dec70c16c19fec46fad49a55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.945ex; height:2.343ex;" alt="{\displaystyle U^{\nu }}"></span> provides the 4D <a href="/wiki/Geodesics_in_general_relativity" title="Geodesics in general relativity">geodesic equation</a> plus some electromagnetic terms: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {\Gamma }}_{\alpha \beta }^{\mu }=\Gamma _{\alpha \beta }^{\mu }+{\frac {1}{2}}g^{\mu \nu }k^{2}\phi ^{2}(A_{\alpha }F_{\beta \nu }+A_{\beta }F_{\alpha \nu }-A_{\alpha }A_{\beta }\partial _{\nu }\ln \phi ^{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msubsup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {\Gamma }}_{\alpha \beta }^{\mu }=\Gamma _{\alpha \beta }^{\mu }+{\frac {1}{2}}g^{\mu \nu }k^{2}\phi ^{2}(A_{\alpha }F_{\beta \nu }+A_{\beta }F_{\alpha \nu }-A_{\alpha }A_{\beta }\partial _{\nu }\ln \phi ^{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52b2a52ba811310560e0bd03917e58421941395a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:57.92ex; height:5.176ex;" alt="{\displaystyle {\widetilde {\Gamma }}_{\alpha \beta }^{\mu }=\Gamma _{\alpha \beta }^{\mu }+{\frac {1}{2}}g^{\mu \nu }k^{2}\phi ^{2}(A_{\alpha }F_{\beta \nu }+A_{\beta }F_{\alpha \nu }-A_{\alpha }A_{\beta }\partial _{\nu }\ln \phi ^{2}).}"></span></dd></dl> <p>The term linear in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e0ff9dd6e361b13dec70c16c19fec46fad49a55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.945ex; height:2.343ex;" alt="{\displaystyle U^{\nu }}"></span> provides the <a href="/wiki/Lorentz_force_law" class="mw-redirect" title="Lorentz force law">Lorentz force law</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {\Gamma }}_{5\alpha }^{\mu }={\frac {1}{2}}g^{\mu \nu }k\phi ^{2}(F_{\alpha \nu }-A_{\alpha }\partial _{\nu }\ln \phi ^{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> <mi>&#x03B1;<!-- α --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <mi>k</mi> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {\Gamma }}_{5\alpha }^{\mu }={\frac {1}{2}}g^{\mu \nu }k\phi ^{2}(F_{\alpha \nu }-A_{\alpha }\partial _{\nu }\ln \phi ^{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82a7354e8e361324c18756b22e01d6f107b1bf35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.985ex; height:5.176ex;" alt="{\displaystyle {\widetilde {\Gamma }}_{5\alpha }^{\mu }={\frac {1}{2}}g^{\mu \nu }k\phi ^{2}(F_{\alpha \nu }-A_{\alpha }\partial _{\nu }\ln \phi ^{2}).}"></span></dd></dl> <p>This is another expression of the "Kaluza miracle". The same hypothesis for the 5D metric that provides electromagnetic stress–energy in the Einstein equations, also provides the Lorentz force law in the equation of motions along with the 4D geodesic equation. Yet correspondence with the Lorentz force law requires that we identify the component of 5-velocity along the fifth dimension with electric charge: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle kU^{5}=k{\frac {dx^{5}}{d\tau }}\to {\frac {q}{mc}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>=</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> </mfrac> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>q</mi> <mrow> <mi>m</mi> <mi>c</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle kU^{5}=k{\frac {dx^{5}}{d\tau }}\to {\frac {q}{mc}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e41127a7465a97ed7a4ae192c748f38e85c5530f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.997ex; height:5.843ex;" alt="{\displaystyle kU^{5}=k{\frac {dx^{5}}{d\tau }}\to {\frac {q}{mc}},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> is particle mass, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> is particle electric charge. Thus electric charge is understood as motion along the fifth dimension. The fact that the Lorentz force law could be understood as a geodesic in five dimensions was to Kaluza a primary motivation for considering the five-dimensional hypothesis, even in the presence of the aesthetically unpleasing cylinder condition. </p><p>Yet there is a problem: the term quadratic in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea7ab7383e4d1d4d76befb8cb2771c736b10e5e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.895ex; height:2.676ex;" alt="{\displaystyle U^{5}}"></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {\Gamma }}_{55}^{\mu }=-{\frac {1}{2}}g^{\mu \alpha }\partial _{\alpha }\phi ^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>55</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msubsup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {\Gamma }}_{55}^{\mu }=-{\frac {1}{2}}g^{\mu \alpha }\partial _{\alpha }\phi ^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/825bc6d522fa0cc39bca12bbccd9283aa3d395a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.233ex; height:5.176ex;" alt="{\displaystyle {\widetilde {\Gamma }}_{55}^{\mu }=-{\frac {1}{2}}g^{\mu \alpha }\partial _{\alpha }\phi ^{2}.}"></span></dd></dl> <p>If there is no gradient in the scalar field, the term quadratic in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea7ab7383e4d1d4d76befb8cb2771c736b10e5e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.895ex; height:2.676ex;" alt="{\displaystyle U^{5}}"></span> vanishes. But otherwise the expression above implies </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{5}\sim c{\frac {q/m}{G^{1/2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>&#x223C;<!-- ∼ --></mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> </mrow> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{5}\sim c{\frac {q/m}{G^{1/2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a37b09f999ef744256cd6350eaf0931b698f4762" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.009ex; height:6.176ex;" alt="{\displaystyle U^{5}\sim c{\frac {q/m}{G^{1/2}}}.}"></span></dd></dl> <p>For elementary particles, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{5}&gt;10^{20}c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>&gt;</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msup> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{5}&gt;10^{20}c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55028d334268cb06b01acb608b7eeb4cccf02363" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.202ex; height:2.676ex;" alt="{\displaystyle U^{5}&gt;10^{20}c}"></span>. The term quadratic in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea7ab7383e4d1d4d76befb8cb2771c736b10e5e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.895ex; height:2.676ex;" alt="{\displaystyle U^{5}}"></span> should dominate the equation, perhaps in contradiction to experience. This was the main shortfall of the five-dimensional theory as Kaluza saw it,<sup id="cite_ref-kal_3-6" class="reference"><a href="#cite_note-kal-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> and he gives it some discussion in his original article.<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (September 2023)">clarification needed</span></a></i>&#93;</sup> </p><p>The equation of motion for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea7ab7383e4d1d4d76befb8cb2771c736b10e5e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.895ex; height:2.676ex;" alt="{\displaystyle U^{5}}"></span> is particularly simple under the cylinder condition. Start with the alternate form of the geodesic equation, written for the covariant 5-velocity: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d{\widetilde {U}}_{a}}{ds}}={\frac {1}{2}}{\widetilde {U}}^{b}{\widetilde {U}}^{c}{\frac {\partial {\widetilde {g}}_{bc}}{\partial x^{a}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>c</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d{\widetilde {U}}_{a}}{ds}}={\frac {1}{2}}{\widetilde {U}}^{b}{\widetilde {U}}^{c}{\frac {\partial {\widetilde {g}}_{bc}}{\partial x^{a}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35b40ac62111446767f43cf285686cfa11c6f55e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.163ex; height:6.009ex;" alt="{\displaystyle {\frac {d{\widetilde {U}}_{a}}{ds}}={\frac {1}{2}}{\widetilde {U}}^{b}{\widetilde {U}}^{c}{\frac {\partial {\widetilde {g}}_{bc}}{\partial x^{a}}}.}"></span></dd></dl> <p>This means that under the cylinder condition, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {U}}_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {U}}_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11c8d69b55eadfe5a45bbacc3e9cb5dcc6d873ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.837ex; height:3.009ex;" alt="{\displaystyle {\widetilde {U}}_{5}}"></span> is a constant of the five-dimensional motion: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {U}}_{5}={\widetilde {g}}_{5a}{\widetilde {U}}^{a}=\phi ^{2}{\frac {c\,d\tau }{ds}}(kA_{\nu }U^{\nu }+U^{5})={\text{constant}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> <mi>a</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <mo>+</mo> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>constant</mtext> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {U}}_{5}={\widetilde {g}}_{5a}{\widetilde {U}}^{a}=\phi ^{2}{\frac {c\,d\tau }{ds}}(kA_{\nu }U^{\nu }+U^{5})={\text{constant}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91df747f0423a208716f759761ece5f62b2cae54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:49.122ex; height:5.509ex;" alt="{\displaystyle {\widetilde {U}}_{5}={\widetilde {g}}_{5a}{\widetilde {U}}^{a}=\phi ^{2}{\frac {c\,d\tau }{ds}}(kA_{\nu }U^{\nu }+U^{5})={\text{constant}}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Kaluza's_hypothesis_for_the_matter_stress–energy_tensor"><span id="Kaluza.27s_hypothesis_for_the_matter_stress.E2.80.93energy_tensor"></span>Kaluza's hypothesis for the matter stress–energy tensor</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=4" title="Edit section: Kaluza&#039;s hypothesis for the matter stress–energy tensor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kaluza proposed<sup id="cite_ref-kal_3-7" class="reference"><a href="#cite_note-kal-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> a five-dimensional matter <a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">stress tensor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {T}}_{M}^{ab}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {T}}_{M}^{ab}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c0dedf2a3bd847c862f780ae191aaa3f9777a7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.798ex; height:3.676ex;" alt="{\displaystyle {\widetilde {T}}_{M}^{ab}}"></span> of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {T}}_{M}^{ab}=\rho {\frac {dx^{a}}{ds}}{\frac {dx^{b}}{ds}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msubsup> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {T}}_{M}^{ab}=\rho {\frac {dx^{a}}{ds}}{\frac {dx^{b}}{ds}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76df335f9dc29d4042bfc9cdbaf83e45d3d5b142" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.548ex; height:5.843ex;" alt="{\displaystyle {\widetilde {T}}_{M}^{ab}=\rho {\frac {dx^{a}}{ds}}{\frac {dx^{b}}{ds}},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> is a density, and the length element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f0fb36e4308227d3e4a1f809c2571ec02527100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.306ex; height:2.176ex;" alt="{\displaystyle ds}"></span> is as defined above. </p><p>Then the spacetime component gives a typical <a href="/wiki/Dust_solution" title="Dust solution">"dust"</a> stress–energy tensor: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {T}}_{M}^{\mu \nu }=\rho {\frac {dx^{\mu }}{ds}}{\frac {dx^{\nu }}{ds}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msubsup> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {T}}_{M}^{\mu \nu }=\rho {\frac {dx^{\mu }}{ds}}{\frac {dx^{\nu }}{ds}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953f0c6d8f346faf35da3c97ab9658ab5d5074c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.971ex; height:5.509ex;" alt="{\displaystyle {\widetilde {T}}_{M}^{\mu \nu }=\rho {\frac {dx^{\mu }}{ds}}{\frac {dx^{\nu }}{ds}}.}"></span></dd></dl> <p>The mixed component provides a 4-current source for the Maxwell equations: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {T}}_{M}^{5\mu }=\rho {\frac {dx^{\mu }}{ds}}{\frac {dx^{5}}{ds}}=\rho U^{\mu }{\frac {q}{kmc}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msubsup> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>q</mi> <mrow> <mi>k</mi> <mi>m</mi> <mi>c</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {T}}_{M}^{5\mu }=\rho {\frac {dx^{\mu }}{ds}}{\frac {dx^{5}}{ds}}=\rho U^{\mu }{\frac {q}{kmc}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27cb065c8cb1b9bd1b8d9e79436ad808e72e922d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:30.332ex; height:5.843ex;" alt="{\displaystyle {\widetilde {T}}_{M}^{5\mu }=\rho {\frac {dx^{\mu }}{ds}}{\frac {dx^{5}}{ds}}=\rho U^{\mu }{\frac {q}{kmc}}.}"></span></dd></dl> <p>Just as the five-dimensional metric comprises the four-dimensional metric framed by the electromagnetic vector potential, the five-dimensional stress–energy tensor comprises the four-dimensional stress–energy tensor framed by the vector 4-current. </p> <div class="mw-heading mw-heading2"><h2 id="Quantum_interpretation_of_Klein">Quantum interpretation of Klein</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=5" title="Edit section: Quantum interpretation of Klein"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kaluza's original hypothesis was purely classical and extended discoveries of general relativity. By the time of Klein's contribution, the discoveries of Heisenberg, Schrödinger, and <a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">Louis de Broglie</a> were receiving a lot of attention. Klein's <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i> article<sup id="cite_ref-KN_5-2" class="reference"><a href="#cite_note-KN-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> suggested that the fifth dimension is closed and periodic, and that the identification of electric charge with motion in the fifth dimension can be interpreted as standing waves of wavelength <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f5f793c459aab62ee2a4434b7e99a5f892aa89e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.409ex; height:2.676ex;" alt="{\displaystyle \lambda ^{5}}"></span>, much like the electrons around a nucleus in the <a href="/wiki/Bohr_model" title="Bohr model">Bohr model</a> of the atom. The quantization of electric charge could then be nicely understood in terms of integer multiples of fifth-dimensional momentum. Combining the previous Kaluza result for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea7ab7383e4d1d4d76befb8cb2771c736b10e5e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.895ex; height:2.676ex;" alt="{\displaystyle U^{5}}"></span> in terms of electric charge, and a <a href="/wiki/De_Broglie_relation" class="mw-redirect" title="De Broglie relation">de Broglie relation</a> for momentum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{5}=h/\lambda ^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>=</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{5}=h/\lambda ^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93da4d1e2c5fd8263fffdd8767e63a59bb6afafe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:10.322ex; height:3.176ex;" alt="{\displaystyle p^{5}=h/\lambda ^{5}}"></span>, Klein obtained<sup id="cite_ref-KN_5-3" class="reference"><a href="#cite_note-KN-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> an expression for the 0th mode of such waves: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mU^{5}={\frac {cq}{G^{1/2}}}={\frac {h}{\lambda ^{5}}}\quad \Rightarrow \quad \lambda ^{5}\sim {\frac {hG^{1/2}}{cq}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>q</mi> </mrow> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>h</mi> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="1em" /> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mspace width="1em" /> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>h</mi> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi>c</mi> <mi>q</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mU^{5}={\frac {cq}{G^{1/2}}}={\frac {h}{\lambda ^{5}}}\quad \Rightarrow \quad \lambda ^{5}\sim {\frac {hG^{1/2}}{cq}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953b906da19007c4d71940ccbc218b6ce1307797" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:40.853ex; height:6.176ex;" alt="{\displaystyle mU^{5}={\frac {cq}{G^{1/2}}}={\frac {h}{\lambda ^{5}}}\quad \Rightarrow \quad \lambda ^{5}\sim {\frac {hG^{1/2}}{cq}},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> is the <a href="/wiki/Planck_constant" title="Planck constant">Planck constant</a>. Klein found that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ^{5}\sim 10^{-30}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>&#x223C;<!-- ∼ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>30</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ^{5}\sim 10^{-30}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e211e32b3b1865418a45d2c78960bb106f8e5f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.988ex; height:2.676ex;" alt="{\displaystyle \lambda ^{5}\sim 10^{-30}}"></span>&#160;cm, and thereby an explanation for the cylinder condition in this small value. </p><p>Klein's <a href="/wiki/Zeitschrift_f%C3%BCr_Physik" title="Zeitschrift für Physik"><i>Zeitschrift für Physik</i></a> article of the same year,<sup id="cite_ref-KZ_4-2" class="reference"><a href="#cite_note-KZ-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> gave a more detailed treatment that explicitly invoked the techniques of Schrödinger and de Broglie. It recapitulated much of the classical theory of Kaluza described above, and then departed into Klein's quantum interpretation. Klein solved a Schrödinger-like wave equation using an expansion in terms of fifth-dimensional waves resonating in the closed, compact fifth dimension. </p> <div class="mw-heading mw-heading2"><h2 id="Quantum_field_theory_interpretation">Quantum field theory interpretation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=6" title="Edit section: Quantum field theory interpretation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Empty_section plainlinks metadata ambox mbox-small-left ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><span typeof="mw:File"><a href="/wiki/File:Wiki_letter_w_cropped.svg" class="mw-file-description"><img alt="[icon]" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/20px-Wiki_letter_w_cropped.svg.png" decoding="async" width="20" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/30px-Wiki_letter_w_cropped.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/40px-Wiki_letter_w_cropped.svg.png 2x" data-file-width="44" data-file-height="31" /></a></span></td><td class="mbox-text"><div class="mbox-text-span"><b>This section is empty.</b> You can help by <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=">adding to it</a>. <span class="date-container"><i>(<span class="date">February 2015</span>)</i></span></div></td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Group_theory_interpretation">Group theory interpretation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=7" title="Edit section: Group theory interpretation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-left" typeof="mw:File/Frame"><a href="/wiki/File:Kaluza_Klein_compactification.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Kaluza_Klein_compactification.svg/253px-Kaluza_Klein_compactification.svg.png" decoding="async" width="253" height="178" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Kaluza_Klein_compactification.svg/380px-Kaluza_Klein_compactification.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Kaluza_Klein_compactification.svg/506px-Kaluza_Klein_compactification.svg.png 2x" data-file-width="253" data-file-height="178" /></a><figcaption>The space <span class="nowrap"><i>M</i> × <i>C</i></span> is compactified over the compact set <i>C</i>, and after Kaluza–Klein decomposition one has an <a href="/wiki/Effective_field_theory" title="Effective field theory">effective field theory</a> over <i>M</i>.</figcaption></figure> <p>In 1926, Oskar Klein proposed that the fourth spatial dimension is curled up in a circle of a very small <a href="/wiki/Radius" title="Radius">radius</a>, so that a <a href="/wiki/Elementary_particle" title="Elementary particle">particle</a> moving a short distance along that axis would return to where it began. The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This extra dimension is a <a href="/wiki/Compact_set" class="mw-redirect" title="Compact set">compact set</a>, and construction of this compact dimension is referred to as <a href="/wiki/Compactification_(physics)" title="Compactification (physics)">compactification</a>. </p><p>In modern geometry, the extra fifth dimension can be understood to be the <a href="/wiki/Circle_group" title="Circle group">circle group</a> <a href="/wiki/U(1)" class="mw-redirect" title="U(1)">U(1)</a>, as <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a> can essentially be formulated as a <a href="/wiki/Gauge_theory" title="Gauge theory">gauge theory</a> on a <a href="/wiki/Fiber_bundle" title="Fiber bundle">fiber bundle</a>, the <a href="/wiki/Circle_bundle" title="Circle bundle">circle bundle</a>, with <a href="/wiki/Gauge_group" class="mw-redirect" title="Gauge group">gauge group</a> U(1). In Kaluza–Klein theory this group suggests that gauge symmetry is the symmetry of circular compact dimensions. Once this geometrical interpretation is understood, it is relatively straightforward to replace U(1) by a general <a href="/wiki/Lie_group" title="Lie group">Lie group</a>. Such generalizations are often called <a href="/wiki/Yang%E2%80%93Mills_theory" title="Yang–Mills theory">Yang–Mills theories</a>. If a distinction is drawn, then it is that Yang–Mills theories occur on a flat spacetime, whereas Kaluza–Klein treats the more general case of curved spacetime. The base space of Kaluza–Klein theory need not be four-dimensional spacetime; it can be any (<a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">pseudo-</a>)<a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a>, or even a <a href="/wiki/Supersymmetry" title="Supersymmetry">supersymmetric</a> manifold or <a href="/wiki/Orbifold" title="Orbifold">orbifold</a> or even a <a href="/wiki/Noncommutative_space" class="mw-redirect" title="Noncommutative space">noncommutative space</a>. </p><p>The construction can be outlined, roughly, as follows.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> One starts by considering a <a href="/wiki/Principal_fiber_bundle" class="mw-redirect" title="Principal fiber bundle">principal fiber bundle</a> <i>P</i> with <a href="/wiki/Gauge_group" class="mw-redirect" title="Gauge group">gauge group</a> <i>G</i> over a <a href="/wiki/Manifold" title="Manifold">manifold</a> M. Given a <a href="/wiki/Connection_(fibred_manifold)" title="Connection (fibred manifold)">connection</a> on the bundle, and a <a href="/wiki/Metric_tensor" title="Metric tensor">metric</a> on the base manifold, and a gauge invariant metric on the tangent of each fiber, one can construct a <a href="/wiki/Metric_(vector_bundle)" class="mw-redirect" title="Metric (vector bundle)">bundle metric</a> defined on the entire bundle. Computing the <a href="/wiki/Scalar_curvature" title="Scalar curvature">scalar curvature</a> of this bundle metric, one finds that it is constant on each fiber: this is the "Kaluza miracle". One did not have to explicitly impose a cylinder condition, or to compactify: by assumption, the gauge group is already compact. Next, one takes this scalar curvature as the <a href="/wiki/Lagrangian_density" class="mw-redirect" title="Lagrangian density">Lagrangian density</a>, and, from this, constructs the <a href="/wiki/Einstein%E2%80%93Hilbert_action" title="Einstein–Hilbert action">Einstein–Hilbert action</a> for the bundle, as a whole. The equations of motion, the <a href="/wiki/Euler%E2%80%93Lagrange_equations" class="mw-redirect" title="Euler–Lagrange equations">Euler–Lagrange equations</a>, can be then obtained by considering where the action is <a href="/wiki/Stationary_state" title="Stationary state">stationary</a> with respect to variations of either the metric on the base manifold, or of the gauge connection. Variations with respect to the base metric gives the <a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a> on the base manifold, with the <a href="/wiki/Energy%E2%80%93momentum_tensor" class="mw-redirect" title="Energy–momentum tensor">energy–momentum tensor</a> given by the <a href="/wiki/Curvature_form" title="Curvature form">curvature</a> (<a href="/wiki/Field_strength" title="Field strength">field strength</a>) of the gauge connection. On the flip side, the action is stationary against variations of the gauge connection precisely when the gauge connection solves the <a href="/wiki/Yang%E2%80%93Mills_theory" title="Yang–Mills theory">Yang–Mills equations</a>. Thus, by applying a single idea: the <a href="/wiki/Principle_of_least_action" class="mw-redirect" title="Principle of least action">principle of least action</a>, to a single quantity: the scalar curvature on the bundle (as a whole), one obtains simultaneously all of the needed field equations, for both the spacetime and the gauge field. </p><p>As an approach to the unification of the forces, it is straightforward to apply the Kaluza–Klein theory in an attempt to unify gravity with the <a href="/wiki/Strong_force" class="mw-redirect" title="Strong force">strong</a> and <a href="/wiki/Electroweak" class="mw-redirect" title="Electroweak">electroweak</a> forces by using the symmetry group of the <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a>, <a href="/wiki/SU(3)" class="mw-redirect" title="SU(3)">SU(3)</a> × <a href="/wiki/SU(2)" class="mw-redirect" title="SU(2)">SU(2)</a> × <a href="/wiki/U(1)" class="mw-redirect" title="U(1)">U(1)</a>. However, an attempt to convert this interesting geometrical construction into a bona-fide model of reality flounders on a number of issues, including the fact that the <a href="/wiki/Fermion" title="Fermion">fermions</a> must be introduced in an artificial way (in nonsupersymmetric models). Nonetheless, KK remains an important <a href="/wiki/Touchstone_(metaphor)" title="Touchstone (metaphor)">touchstone</a> in theoretical physics and is often embedded in more sophisticated theories. It is studied in its own right as an object of geometric interest in <a href="/wiki/K-theory" title="K-theory">K-theory</a>. </p><p>Even in the absence of a completely satisfying theoretical physics framework, the idea of exploring extra, compactified, dimensions is of considerable interest in the <a href="/wiki/Experimental_physics" title="Experimental physics">experimental physics</a> and <a href="/wiki/Astrophysics" title="Astrophysics">astrophysics</a> communities. A variety of predictions, with real experimental consequences, can be made (in the case of <a href="/wiki/Large_extra_dimension" class="mw-redirect" title="Large extra dimension">large extra dimensions</a> and <a href="/wiki/Warped_model" class="mw-redirect" title="Warped model">warped models</a>). For example, on the simplest of principles, one might expect to have <a href="/wiki/Standing_wave" title="Standing wave">standing waves</a> in the extra compactified dimension(s). If a spatial extra dimension is of radius <i>R</i>, the invariant <a href="/wiki/Mass" title="Mass">mass</a> of such standing waves would be <i>M</i><sub><i>n</i></sub> = <i>nh</i>/<i>Rc</i> with <i>n</i> an <a href="/wiki/Integer" title="Integer">integer</a>, <i>h</i> being the <a href="/wiki/Planck_constant" title="Planck constant">Planck constant</a> and <i>c</i> the <a href="/wiki/Speed_of_light" title="Speed of light">speed of light</a>. This set of possible mass values is often called the <b>Kaluza–Klein tower</b>. Similarly, in <a href="/wiki/Thermal_quantum_field_theory" title="Thermal quantum field theory">Thermal quantum field theory</a> a compactification of the euclidean time dimension leads to the <a href="/wiki/Matsubara_frequency" title="Matsubara frequency">Matsubara frequencies</a> and thus to a discretized thermal energy spectrum. </p><p>However, Klein's approach to a quantum theory is flawed<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2017)">citation needed</span></a></i>&#93;</sup> and, for example, leads to a calculated electron mass in the order of magnitude of the <a href="/wiki/Planck_mass" class="mw-redirect" title="Planck mass">Planck mass</a>.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>Examples of experimental pursuits include work by the <a href="/wiki/Collider_Detector_at_Fermilab" title="Collider Detector at Fermilab">CDF</a> collaboration, which has re-analyzed <a href="/wiki/Particle_collider" class="mw-redirect" title="Particle collider">particle collider</a> data for the signature of effects associated with large extra dimensions/<a href="/wiki/Warped_model" class="mw-redirect" title="Warped model">warped models</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2024)">citation needed</span></a></i>&#93;</sup> </p><p><a href="/wiki/Robert_Brandenberger" title="Robert Brandenberger">Robert Brandenberger</a> and <a href="/wiki/Cumrun_Vafa" title="Cumrun Vafa">Cumrun Vafa</a> have speculated that in the early universe, <a href="/wiki/Cosmic_inflation" title="Cosmic inflation">cosmic inflation</a> causes three of the space dimensions to expand to cosmological size while the remaining dimensions of space remained microscopic.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2024)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading2"><h2 id="Space–time–matter_theory"><span id="Space.E2.80.93time.E2.80.93matter_theory"></span>Space–time–matter theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=8" title="Edit section: Space–time–matter theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One particular variant of Kaluza–Klein theory is <b>space–time–matter theory</b> or <b>induced matter theory</b>, chiefly promulgated by <a href="/wiki/Paul_S._Wesson" title="Paul S. Wesson">Paul Wesson</a> and other members of the Space–Time–Matter Consortium.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> In this version of the theory, it is noted that solutions to the equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {R}}_{ab}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {R}}_{ab}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b90a084bf71238eb96e6e068fa8479b362f3459" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.832ex; height:3.009ex;" alt="{\displaystyle {\widetilde {R}}_{ab}=0}"></span></dd></dl> <p>may be re-expressed so that in four dimensions, these solutions satisfy <a href="/wiki/Einstein%27s_equation" class="mw-redirect" title="Einstein&#39;s equation">Einstein's equations</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{\mu \nu }=8\pi T_{\mu \nu }\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{\mu \nu }=8\pi T_{\mu \nu }\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72115d9e9788d737de9ad926484ec54c5b516442" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.354ex; height:2.843ex;" alt="{\displaystyle G_{\mu \nu }=8\pi T_{\mu \nu }\,}"></span></dd></dl> <p>with the precise form of the <i>T</i><sub><i>μν</i></sub> following from the <a href="/wiki/Ricci-flat_condition" class="mw-redirect" title="Ricci-flat condition">Ricci-flat condition</a> on the five-dimensional space. In other words, the cylinder condition of the previous development is dropped, and the stress–energy now comes from the derivatives of the 5D metric with respect to the fifth coordinate. Because the <a href="/wiki/Energy%E2%80%93momentum_tensor" class="mw-redirect" title="Energy–momentum tensor">energy–momentum tensor</a> is normally understood to be due to concentrations of matter in four-dimensional space, the above result is interpreted as saying that four-dimensional matter is induced from geometry in five-dimensional space. </p><p>In particular, the <a href="/wiki/Soliton" title="Soliton">soliton</a> solutions of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {R}}_{ab}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {R}}_{ab}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b90a084bf71238eb96e6e068fa8479b362f3459" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.832ex; height:3.009ex;" alt="{\displaystyle {\widetilde {R}}_{ab}=0}"></span> can be shown to contain the <a href="/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metric" title="Friedmann–Lemaître–Robertson–Walker metric">Friedmann–Lemaître–Robertson–Walker metric</a> in both radiation-dominated (early universe) and matter-dominated (later universe) forms. The general equations can be shown to be sufficiently consistent with classical <a href="/wiki/Tests_of_general_relativity" title="Tests of general relativity">tests of general relativity</a> to be acceptable on physical principles, while still leaving considerable freedom to also provide interesting <a href="/wiki/Cosmological_model" class="mw-redirect" title="Cosmological model">cosmological models</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Geometric_interpretation">Geometric interpretation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=9" title="Edit section: Geometric interpretation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Kaluza–Klein theory has a particularly elegant presentation in terms of geometry. In a certain sense, it looks just like ordinary gravity in <a href="/wiki/Free_space" class="mw-redirect" title="Free space">free space</a>, except that it is phrased in five dimensions instead of four. </p> <div class="mw-heading mw-heading3"><h3 id="Einstein_equations">Einstein equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=10" title="Edit section: Einstein equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The equations governing ordinary gravity in free space can be obtained from an <a href="/wiki/Action_(physics)" title="Action (physics)">action</a>, by applying the <a href="/wiki/Variational_principle" title="Variational principle">variational principle</a> to a certain <a href="/wiki/Action_(physics)" title="Action (physics)">action</a>. Let <i>M</i> be a (<a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">pseudo-</a>)<a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a>, which may be taken as the <a href="/wiki/Spacetime" title="Spacetime">spacetime</a> of <a href="/wiki/General_relativity" title="General relativity">general relativity</a>. If <i>g</i> is the <a href="/wiki/Metric_(mathematics)" class="mw-redirect" title="Metric (mathematics)">metric</a> on this manifold, one defines the <a href="/wiki/Action_(physics)" title="Action (physics)">action</a> <i>S</i>(<i>g</i>) as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(g)=\int _{M}R(g)\operatorname {vol} (g),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mi>R</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mi>vol</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(g)=\int _{M}R(g)\operatorname {vol} (g),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f75968159c42d9c6f8faed5598069b20f8bb0f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.847ex; height:5.676ex;" alt="{\displaystyle S(g)=\int _{M}R(g)\operatorname {vol} (g),}"></span></dd></dl> <p>where <i>R</i>(<i>g</i>) is the <a href="/wiki/Scalar_curvature" title="Scalar curvature">scalar curvature</a>, and vol(<i>g</i>) is the <a href="/wiki/Volume_element" title="Volume element">volume element</a>. By applying the <a href="/wiki/Variational_principle" title="Variational principle">variational principle</a> to the action </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\delta S(g)}{\delta g}}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B4;<!-- δ --></mi> <mi>S</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03B4;<!-- δ --></mi> <mi>g</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\delta S(g)}{\delta g}}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/071ef8b50c8d510c8629327128e833ad0c0aeb3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:11.217ex; height:6.343ex;" alt="{\displaystyle {\frac {\delta S(g)}{\delta g}}=0,}"></span></dd></dl> <p>one obtains precisely the <a href="/wiki/Einstein_equation" class="mw-redirect" title="Einstein equation">Einstein equations</a> for free space: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{ij}-{\frac {1}{2}}g_{ij}R=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mi>R</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{ij}-{\frac {1}{2}}g_{ij}R=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1f851657b183b6e91c84b433376e8a014110c8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.338ex; height:5.176ex;" alt="{\displaystyle R_{ij}-{\frac {1}{2}}g_{ij}R=0,}"></span></dd></dl> <p>where <i>R</i><sub><i>ij</i></sub> is the <a href="/wiki/Ricci_tensor" class="mw-redirect" title="Ricci tensor">Ricci tensor</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Maxwell_equations">Maxwell equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=11" title="Edit section: Maxwell equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By contrast, the <a href="/wiki/Maxwell_equation" class="mw-redirect" title="Maxwell equation">Maxwell equations</a> describing <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a> can be understood to be the <a href="/wiki/De_Rham_cohomology" title="De Rham cohomology">Hodge equations</a> of a <a href="/wiki/Principal_bundle" title="Principal bundle">principal U(1)-bundle</a> or <a href="/wiki/Circle_bundle" title="Circle bundle">circle bundle</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi :P\to M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mo>:</mo> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi :P\to M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bc921dc155d2c06ba6ae891c0ae2c117b9ddbe9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.071ex; height:2.176ex;" alt="{\displaystyle \pi :P\to M}"></span> with fiber <a href="/wiki/U(1)" class="mw-redirect" title="U(1)">U(1)</a>. That is, the <a href="/wiki/Electromagnetic_field" title="Electromagnetic field">electromagnetic field</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> is a <a href="/wiki/Harmonic_form" class="mw-redirect" title="Harmonic form">harmonic 2-form</a> in the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega ^{2}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega ^{2}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d13fb94a8c7d243906c16c59d738f4e0636ff7fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.984ex; height:3.176ex;" alt="{\displaystyle \Omega ^{2}(M)}"></span> of differentiable <a href="/wiki/2-form" class="mw-redirect" title="2-form">2-forms</a> on the manifold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>. In the absence of charges and currents, the free-field Maxwell equations are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} F=0\quad {\text{and}}\quad \mathrm {d} {\star }F=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>F</mi> <mo>=</mo> <mn>0</mn> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22C6;<!-- ⋆ --></mo> </mrow> <mi>F</mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} F=0\quad {\text{and}}\quad \mathrm {d} {\star }F=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6e15c2573a0797c1a73a8f9c2b0831503345dd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:24.79ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} F=0\quad {\text{and}}\quad \mathrm {d} {\star }F=0.}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \star }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22C6;<!-- ⋆ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \star }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd316a21eeb5079a850f223b1d096a06bfa788c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.035ex; margin-bottom: -0.206ex; width:1.162ex; height:1.509ex;" alt="{\displaystyle \star }"></span> is the <a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Kaluza–Klein_geometry"><span id="Kaluza.E2.80.93Klein_geometry"></span>Kaluza–Klein geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=12" title="Edit section: Kaluza–Klein geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To build the Kaluza–Klein theory, one picks an invariant metric on the circle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60796c8d0c03cf575637d3202463b214d9635880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.576ex; height:2.676ex;" alt="{\displaystyle S^{1}}"></span> that is the fiber of the U(1)-bundle of electromagnetism. In this discussion, an <i>invariant metric</i> is simply one that is invariant under rotations of the circle. Suppose that this metric gives the circle a total length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac0a4a98a414e3480335f9ba652d12571ec6733" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.613ex; height:2.176ex;" alt="{\displaystyle \Lambda }"></span>. One then considers metrics <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f03ff4b434f75ad5db89ea97ae9f4336927e6d9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.232ex; height:2.509ex;" alt="{\displaystyle {\widehat {g}}}"></span> on the bundle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> that are consistent with both the fiber metric, and the metric on the underlying manifold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>. The consistency conditions are: </p> <ul><li>The projection of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f03ff4b434f75ad5db89ea97ae9f4336927e6d9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.232ex; height:2.509ex;" alt="{\displaystyle {\widehat {g}}}"></span> to the <a href="/wiki/Vertical_bundle" class="mw-redirect" title="Vertical bundle">vertical subspace</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Vert} _{p}P\subset T_{p}P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Vert</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>P</mi> <mo>&#x2282;<!-- ⊂ --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Vert} _{p}P\subset T_{p}P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/441b2ffd286f6c54c4954e9a8066ec685915efc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.044ex; height:2.843ex;" alt="{\displaystyle \operatorname {Vert} _{p}P\subset T_{p}P}"></span> needs to agree with metric on the fiber over a point in the manifold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>.</li> <li>The projection of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f03ff4b434f75ad5db89ea97ae9f4336927e6d9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.232ex; height:2.509ex;" alt="{\displaystyle {\widehat {g}}}"></span> to the <a href="/wiki/Horizontal_bundle" class="mw-redirect" title="Horizontal bundle">horizontal subspace</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Hor} _{p}P\subset T_{p}P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Hor</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>P</mi> <mo>&#x2282;<!-- ⊂ --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Hor} _{p}P\subset T_{p}P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93ce081e39598b6bb685c3e679b3baca11650760" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.269ex; height:2.843ex;" alt="{\displaystyle \operatorname {Hor} _{p}P\subset T_{p}P}"></span> of the <a href="/wiki/Tangent_space" title="Tangent space">tangent space</a> at point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4dc1da33d78a2bdae06c9edff726feb126dae34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.845ex; height:2.509ex;" alt="{\displaystyle p\in P}"></span> must be isomorphic to the metric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi (P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi (P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d62d005e6548967443d8bd98d1204c6ec683fd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.887ex; height:2.843ex;" alt="{\displaystyle \pi (P)}"></span>.</li></ul> <p>The Kaluza–Klein action for such a metric is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S({\widehat {g}})=\int _{P}R({\widehat {g}})\operatorname {vol} ({\widehat {g}}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mi>R</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mi>vol</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S({\widehat {g}})=\int _{P}R({\widehat {g}})\operatorname {vol} ({\widehat {g}}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42f1d0a76d6699623cefa8bb43dafd57646d33be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.701ex; height:5.676ex;" alt="{\displaystyle S({\widehat {g}})=\int _{P}R({\widehat {g}})\operatorname {vol} ({\widehat {g}}).}"></span></dd></dl> <p>The scalar curvature, written in components, then expands to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R({\widehat {g}})=\pi ^{*}\left(R(g)-{\frac {\Lambda ^{2}}{2}}|F|^{2}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>R</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>F</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R({\widehat {g}})=\pi ^{*}\left(R(g)-{\frac {\Lambda ^{2}}{2}}|F|^{2}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98eef8e59a548bc2d6f8e2b978ee39d1edee2a38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.256ex; height:6.343ex;" alt="{\displaystyle R({\widehat {g}})=\pi ^{*}\left(R(g)-{\frac {\Lambda ^{2}}{2}}|F|^{2}\right),}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi ^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi ^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f44ad69ec033a9a86437b2edaf620ea0b2c3f494" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.388ex; height:2.343ex;" alt="{\displaystyle \pi ^{*}}"></span> is the <a href="/wiki/Pullback_(differential_geometry)" title="Pullback (differential geometry)">pullback</a> of the fiber bundle projection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi :P\to M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mo>:</mo> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi :P\to M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bc921dc155d2c06ba6ae891c0ae2c117b9ddbe9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.071ex; height:2.176ex;" alt="{\displaystyle \pi :P\to M}"></span>. The connection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> on the fiber bundle is related to the electromagnetic field strength as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi ^{*}F=dA.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>F</mi> <mo>=</mo> <mi>d</mi> <mi>A</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi ^{*}F=dA.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4caaa7d177374a5e3ebdfa5e90bd0e38b34e16ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.834ex; height:2.343ex;" alt="{\displaystyle \pi ^{*}F=dA.}"></span></dd></dl> <p>That there always exists such a connection, even for fiber bundles of arbitrarily complex topology, is a result from <a href="/wiki/Homology_(mathematics)" title="Homology (mathematics)">homology</a> and specifically, <a href="/wiki/K-theory" title="K-theory">K-theory</a>. Applying <a href="/wiki/Fubini%27s_theorem" title="Fubini&#39;s theorem">Fubini's theorem</a> and integrating on the fiber, one gets </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S({\widehat {g}})=\Lambda \int _{M}\left(R(g)-{\frac {1}{\Lambda ^{2}}}|F|^{2}\right)\operatorname {vol} (g).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>R</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>F</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>vol</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S({\widehat {g}})=\Lambda \int _{M}\left(R(g)-{\frac {1}{\Lambda ^{2}}}|F|^{2}\right)\operatorname {vol} (g).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a51de203d3b4fa409b891d9762c3309b7a4b57f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.817ex; height:6.176ex;" alt="{\displaystyle S({\widehat {g}})=\Lambda \int _{M}\left(R(g)-{\frac {1}{\Lambda ^{2}}}|F|^{2}\right)\operatorname {vol} (g).}"></span></dd></dl> <p>Varying the action with respect to the component <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, one regains the Maxwell equations. Applying the variational principle to the base metric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>, one gets the Einstein equations </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{ij}-{\frac {1}{2}}g_{ij}R={\frac {1}{\Lambda ^{2}}}T_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mi>R</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{ij}-{\frac {1}{2}}g_{ij}R={\frac {1}{\Lambda ^{2}}}T_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ef911d401e8c81837de53b56160a94a112265a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.867ex; height:5.343ex;" alt="{\displaystyle R_{ij}-{\frac {1}{2}}g_{ij}R={\frac {1}{\Lambda ^{2}}}T_{ij}}"></span></dd></dl> <p>with the <a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">stress–energy tensor</a> being given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{ij}=F^{ik}F^{jl}g_{kl}-{\frac {1}{4}}g^{ij}|F|^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>k</mi> </mrow> </msup> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>l</mi> </mrow> </msup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>l</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>F</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{ij}=F^{ik}F^{jl}g_{kl}-{\frac {1}{4}}g^{ij}|F|^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f026a4b033faedec1149c3104c3f8baf36553e7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.839ex; height:5.176ex;" alt="{\displaystyle T^{ij}=F^{ik}F^{jl}g_{kl}-{\frac {1}{4}}g^{ij}|F|^{2},}"></span></dd></dl> <p>sometimes called the <a href="/wiki/Maxwell_stress_tensor" title="Maxwell stress tensor">Maxwell stress tensor</a>. </p><p>The original theory identifies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac0a4a98a414e3480335f9ba652d12571ec6733" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.613ex; height:2.176ex;" alt="{\displaystyle \Lambda }"></span> with the fiber metric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{55}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>55</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{55}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9301606a8c2b3641347b4acd022ee81cdf5aab8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.985ex; height:2.009ex;" alt="{\displaystyle g_{55}}"></span> and allows <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac0a4a98a414e3480335f9ba652d12571ec6733" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.613ex; height:2.176ex;" alt="{\displaystyle \Lambda }"></span> to vary from fiber to fiber. In this case, the coupling between gravity and the electromagnetic field is not constant, but has its own dynamical field, the <a href="/wiki/Radion_(physics)" class="mw-redirect" title="Radion (physics)">radion</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Generalizations">Generalizations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=13" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the above, the size of the loop <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac0a4a98a414e3480335f9ba652d12571ec6733" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.613ex; height:2.176ex;" alt="{\displaystyle \Lambda }"></span> acts as a coupling constant between the gravitational field and the electromagnetic field. If the base manifold is four-dimensional, the Kaluza–Klein manifold <i>P</i> is five-dimensional. The fifth dimension is a <a href="/wiki/Compact_space" title="Compact space">compact space</a> and is called the <b>compact dimension</b>. The technique of introducing compact dimensions to obtain a higher-dimensional manifold is referred to as <a href="/wiki/Compactification_(physics)" title="Compactification (physics)">compactification</a>. Compactification does not produce group actions on <a href="/wiki/Chirality_(physics)" title="Chirality (physics)">chiral</a> <a href="/wiki/Fermions" class="mw-redirect" title="Fermions">fermions</a> except in very specific cases: the dimension of the total space must be 2 mod 8, and the G-index of the Dirac operator of the compact space must be nonzero.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p><p>The above development generalizes in a more-or-less straightforward fashion to general <a href="/wiki/Principal_G-bundle" class="mw-redirect" title="Principal G-bundle">principal <i>G</i>-bundles</a> for some arbitrary <a href="/wiki/Lie_group" title="Lie group">Lie group</a> <i>G</i> taking the place of <a href="/wiki/U(1)" class="mw-redirect" title="U(1)">U(1)</a>. In such a case, the theory is often referred to as a <a href="/wiki/Yang%E2%80%93Mills_theory" title="Yang–Mills theory">Yang–Mills theory</a> and is sometimes taken to be synonymous. If the underlying manifold is <a href="/wiki/Supersymmetric" class="mw-redirect" title="Supersymmetric">supersymmetric</a>, the resulting theory is a super-symmetric Yang–Mills theory. </p> <div class="mw-heading mw-heading2"><h2 id="Empirical_tests">Empirical tests</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=14" title="Edit section: Empirical tests"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>No experimental or observational signs of extra dimensions have been officially reported. Many theoretical search techniques for detecting Kaluza–Klein resonances have been proposed using the mass couplings of such resonances with the <a href="/wiki/Top_quark" title="Top quark">top quark</a>. An analysis of results from the LHC in December 2010 severely constrains theories with <a href="/wiki/Large_extra_dimensions" title="Large extra dimensions">large extra dimensions</a>.<sup id="cite_ref-arxiv.org_1_34-0" class="reference"><a href="#cite_note-arxiv.org_1-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p><p>The observation of a <a href="/wiki/Higgs_boson" title="Higgs boson">Higgs</a>-like boson at the LHC establishes a new empirical test which can be applied to the search for Kaluza–Klein resonances and supersymmetric particles. The loop <a href="/wiki/Feynman_diagram" title="Feynman diagram">Feynman diagrams</a> that exist in the Higgs interactions allow any particle with electric charge and mass to run in such a loop. Standard Model particles besides the <a href="/wiki/Top_quark" title="Top quark">top quark</a> and <a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W boson</a> do not make big contributions to the cross-section observed in the <span class="nowrap">H → γγ</span> decay, but if there are new particles beyond the Standard Model, they could potentially change the ratio of the predicted Standard Model <span class="nowrap">H → γγ</span> cross-section to the experimentally observed cross-section. Hence a measurement of any dramatic change to the <span class="nowrap">H → γγ</span> cross-section predicted by the Standard Model is crucial in probing the physics beyond it. </p><p>An article from July 2018<sup id="cite_ref-arxiv.org_2_35-0" class="reference"><a href="#cite_note-arxiv.org_2-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> gives some hope for this theory; in the article they dispute that gravity is leaking into higher dimensions as in <a href="/wiki/Brane_theory" class="mw-redirect" title="Brane theory">brane theory</a>. However, the article does demonstrate that electromagnetism and gravity share the same number of dimensions, and this fact lends support to Kaluza–Klein theory; whether the number of dimensions is really 3&#160;+&#160;1 or in fact 4&#160;+&#160;1 is the subject of further debate. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=15" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Classical_theories_of_gravitation" class="mw-redirect" title="Classical theories of gravitation">Classical theories of gravitation</a></li> <li><a href="/wiki/Complex_spacetime" title="Complex spacetime">Complex spacetime</a></li> <li><a href="/wiki/DGP_model" title="DGP model">DGP model</a></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li> <li><a href="/wiki/Compactification_(physics)" title="Compactification (physics)">Compactification (physics)</a></li> <li><a href="/wiki/Randall%E2%80%93Sundrum_model" title="Randall–Sundrum model">Randall–Sundrum model</a></li> <li><a href="/wiki/Matej_Pav%C5%A1i%C4%8D" title="Matej Pavšič">Matej Pavšič</a></li> <li><a href="/wiki/String_theory" title="String theory">String theory</a></li> <li><a href="/wiki/Supergravity" title="Supergravity">Supergravity</a></li> <li><a href="/wiki/Superstring_theory" title="Superstring theory">Superstring theory</a></li> <li><a href="/wiki/Non-relativistic_gravitational_fields" title="Non-relativistic gravitational fields">Non-relativistic gravitational fields</a></li> <li><a href="/wiki/Teleparallelism" title="Teleparallelism">Teleparallelism</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=16" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-nrd-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-nrd_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFNordström1914" class="citation journal cs1 cs1-prop-foreign-lang-source">Nordström, Gunnar (1914). <a rel="nofollow" class="external text" href="https://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/17520">"Über die Möglichkeit, das elektromagnetische Feld und das Gravitationsfeld zu vereinigen"</a> &#91;On the possibility of unifying the gravitational and electromagnetic fields&#93;. <i>Physikalische Zeitschrift</i> (in German). <b>15</b>: 504.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physikalische+Zeitschrift&amp;rft.atitle=%C3%9Cber+die+M%C3%B6glichkeit%2C+das+elektromagnetische+Feld+und+das+Gravitationsfeld+zu+vereinigen&amp;rft.volume=15&amp;rft.pages=504&amp;rft.date=1914&amp;rft.aulast=Nordstr%C3%B6m&amp;rft.aufirst=Gunnar&amp;rft_id=https%3A%2F%2Fpublikationen.ub.uni-frankfurt.de%2Ffrontdoor%2Findex%2Findex%2FdocId%2F17520&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPais1982" class="citation book cs1">Pais, Abraham (1982). <i>Subtle is the Lord ...: The Science and the Life of Albert Einstein</i>. Oxford: Oxford University Press. pp.&#160;329–330.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Subtle+is+the+Lord+...%3A+The+Science+and+the+Life+of+Albert+Einstein&amp;rft.place=Oxford&amp;rft.pages=329-330&amp;rft.pub=Oxford+University+Press&amp;rft.date=1982&amp;rft.aulast=Pais&amp;rft.aufirst=Abraham&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-kal-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-kal_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-kal_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-kal_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-kal_3-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-kal_3-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-kal_3-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-kal_3-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-kal_3-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaluza1921" class="citation journal cs1 cs1-prop-foreign-lang-source">Kaluza, Theodor (1921). "Zum Unitätsproblem in der Physik". <i>Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.)</i> (in German): 966–972. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1921SPAW.......966K">1921SPAW.......966K</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sitzungsber.+Preuss.+Akad.+Wiss.+Berlin.+%28Math.+Phys.%29&amp;rft.atitle=Zum+Unit%C3%A4tsproblem+in+der+Physik&amp;rft.pages=966-972&amp;rft.date=1921&amp;rft_id=info%3Abibcode%2F1921SPAW.......966K&amp;rft.aulast=Kaluza&amp;rft.aufirst=Theodor&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-KZ-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-KZ_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KZ_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-KZ_4-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlein1926" class="citation journal cs1 cs1-prop-foreign-lang-source">Klein, Oskar (1926). "Quantentheorie und fünfdimensionale Relativitätstheorie". <i><a href="/wiki/Zeitschrift_f%C3%BCr_Physik_A" class="mw-redirect" title="Zeitschrift für Physik A">Zeitschrift für Physik A</a></i> (in German). <b>37</b> (12): 895–906. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1926ZPhy...37..895K">1926ZPhy...37..895K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01397481">10.1007/BF01397481</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Zeitschrift+f%C3%BCr+Physik+A&amp;rft.atitle=Quantentheorie+und+f%C3%BCnfdimensionale+Relativit%C3%A4tstheorie&amp;rft.volume=37&amp;rft.issue=12&amp;rft.pages=895-906&amp;rft.date=1926&amp;rft_id=info%3Adoi%2F10.1007%2FBF01397481&amp;rft_id=info%3Abibcode%2F1926ZPhy...37..895K&amp;rft.aulast=Klein&amp;rft.aufirst=Oskar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-KN-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-KN_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KN_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-KN_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-KN_5-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlein1926" class="citation journal cs1">Klein, Oskar (1926). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F118516a0">"The Atomicity of Electricity as a Quantum Theory Law"</a>. <i>Nature</i>. <b>118</b> (2971): 516. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1926Natur.118..516K">1926Natur.118..516K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F118516a0">10.1038/118516a0</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4127863">4127863</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=The+Atomicity+of+Electricity+as+a+Quantum+Theory+Law&amp;rft.volume=118&amp;rft.issue=2971&amp;rft.pages=516&amp;rft.date=1926&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4127863%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2F118516a0&amp;rft_id=info%3Abibcode%2F1926Natur.118..516K&amp;rft.aulast=Klein&amp;rft.aufirst=Oskar&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F118516a0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-gon-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-gon_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-gon_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-gon_6-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoenner2012" class="citation journal cs1">Goenner, H. (2012). "Some remarks on the genesis of scalar–tensor theories". <i>General Relativity and Gravitation</i>. <b>44</b> (8): 2077–2097. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1204.3455">1204.3455</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012GReGr..44.2077G">2012GReGr..44.2077G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10714-012-1378-8">10.1007/s10714-012-1378-8</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13399708">13399708</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=General+Relativity+and+Gravitation&amp;rft.atitle=Some+remarks+on+the+genesis+of+scalar%E2%80%93tensor+theories&amp;rft.volume=44&amp;rft.issue=8&amp;rft.pages=2077-2097&amp;rft.date=2012&amp;rft_id=info%3Aarxiv%2F1204.3455&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13399708%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10714-012-1378-8&amp;rft_id=info%3Abibcode%2F2012GReGr..44.2077G&amp;rft.aulast=Goenner&amp;rft.aufirst=H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLichnerowiczThiry1947" class="citation journal cs1 cs1-prop-foreign-lang-source">Lichnerowicz, A.; Thiry, M. Y. (1947). "Problèmes de calcul des variations liés à la dynamique classique et à la théorie unitaire du champ". <i>Compt. Rend. Acad. Sci. Paris</i> (in French). <b>224</b>: 529–531.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Compt.+Rend.+Acad.+Sci.+Paris&amp;rft.atitle=Probl%C3%A8mes+de+calcul+des+variations+li%C3%A9s+%C3%A0+la+dynamique+classique+et+%C3%A0+la+th%C3%A9orie+unitaire+du+champ&amp;rft.volume=224&amp;rft.pages=529-531&amp;rft.date=1947&amp;rft.aulast=Lichnerowicz&amp;rft.aufirst=A.&amp;rft.au=Thiry%2C+M.+Y.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-thry-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-thry_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-thry_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-thry_8-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-thry_8-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThiry1948" class="citation journal cs1 cs1-prop-foreign-lang-source">Thiry, M. Y. (1948). "Les équations de la théorie unitaire de Kaluza". <i>Compt. Rend. Acad. Sci. Paris</i> (in French). <b>226</b>: 216–218.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Compt.+Rend.+Acad.+Sci.+Paris&amp;rft.atitle=Les+%C3%A9quations+de+la+th%C3%A9orie+unitaire+de+Kaluza&amp;rft.volume=226&amp;rft.pages=216-218&amp;rft.date=1948&amp;rft.aulast=Thiry&amp;rft.aufirst=M.+Y.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThiry1948" class="citation journal cs1 cs1-prop-foreign-lang-source">Thiry, M. Y. (1948). "Sur la régularité des champs gravitationnel et électromagnétique dans les théories unitaires". <i>Compt. Rend. Acad. Sci. Paris</i> (in French). <b>226</b>: 1881–1882.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Compt.+Rend.+Acad.+Sci.+Paris&amp;rft.atitle=Sur+la+r%C3%A9gularit%C3%A9+des+champs+gravitationnel+et+%C3%A9lectromagn%C3%A9tique+dans+les+th%C3%A9ories+unitaires&amp;rft.volume=226&amp;rft.pages=1881-1882&amp;rft.date=1948&amp;rft.aulast=Thiry&amp;rft.aufirst=M.+Y.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-jor1-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-jor1_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-jor1_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-jor1_10-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJordan1946" class="citation journal cs1 cs1-prop-foreign-lang-source">Jordan, P. (1946). "Relativistische Gravitationstheorie mit variabler Gravitationskonstante". <i>Naturwissenschaften</i> (in German). <b>11</b> (8): 250–251. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1946NW.....33..250J">1946NW.....33..250J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01204481">10.1007/BF01204481</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20091903">20091903</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Naturwissenschaften&amp;rft.atitle=Relativistische+Gravitationstheorie+mit+variabler+Gravitationskonstante&amp;rft.volume=11&amp;rft.issue=8&amp;rft.pages=250-251&amp;rft.date=1946&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20091903%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF01204481&amp;rft_id=info%3Abibcode%2F1946NW.....33..250J&amp;rft.aulast=Jordan&amp;rft.aufirst=P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-jor2-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-jor2_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-jor2_11-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-jor2_11-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJordanMüller1947" class="citation journal cs1 cs1-prop-foreign-lang-source">Jordan, P.; Müller, C. (1947). <a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fzna-1947-0102">"Über die Feldgleichungen der Gravitation bei variabler "Gravitationslonstante"<span class="cs1-kern-right"></span>"</a>. <i>Z. Naturforsch.</i> (in German). <b>2a</b> (1): 1–2. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1947ZNatA...2....1J">1947ZNatA...2....1J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fzna-1947-0102">10.1515/zna-1947-0102</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:93849549">93849549</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Z.+Naturforsch.&amp;rft.atitle=%C3%9Cber+die+Feldgleichungen+der+Gravitation+bei+variabler+%22Gravitationslonstante%22&amp;rft.volume=2a&amp;rft.issue=1&amp;rft.pages=1-2&amp;rft.date=1947&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A93849549%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1515%2Fzna-1947-0102&amp;rft_id=info%3Abibcode%2F1947ZNatA...2....1J&amp;rft.aulast=Jordan&amp;rft.aufirst=P.&amp;rft.au=M%C3%BCller%2C+C.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1515%252Fzna-1947-0102&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLudwig1947" class="citation journal cs1 cs1-prop-foreign-lang-source">Ludwig, G. (1947). <a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fzna-1947-0103">"Der Zusammenhang zwischen den Variationsprinzipien der projektiven und der vierdimensionalen Relativitätstheorie"</a>. <i>Z. Naturforsch.</i> (in German). <b>2a</b> (1): 3–5. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1947ZNatA...2....3L">1947ZNatA...2....3L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fzna-1947-0103">10.1515/zna-1947-0103</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:94454994">94454994</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Z.+Naturforsch.&amp;rft.atitle=Der+Zusammenhang+zwischen+den+Variationsprinzipien+der+projektiven+und+der+vierdimensionalen+Relativit%C3%A4tstheorie&amp;rft.volume=2a&amp;rft.issue=1&amp;rft.pages=3-5&amp;rft.date=1947&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A94454994%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1515%2Fzna-1947-0103&amp;rft_id=info%3Abibcode%2F1947ZNatA...2....3L&amp;rft.aulast=Ludwig&amp;rft.aufirst=G.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1515%252Fzna-1947-0103&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-jor3-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-jor3_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-jor3_13-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-jor3_13-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJordan1948" class="citation journal cs1 cs1-prop-foreign-lang-source">Jordan, P. (1948). "Fünfdimensionale Kosmologie". <i>Astron. Nachr.</i> (in German). <b>276</b> (5–6): 193–208. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1948AN....276..193J">1948AN....276..193J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fasna.19482760502">10.1002/asna.19482760502</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Astron.+Nachr.&amp;rft.atitle=F%C3%BCnfdimensionale+Kosmologie&amp;rft.volume=276&amp;rft.issue=5%E2%80%936&amp;rft.pages=193-208&amp;rft.date=1948&amp;rft_id=info%3Adoi%2F10.1002%2Fasna.19482760502&amp;rft_id=info%3Abibcode%2F1948AN....276..193J&amp;rft.aulast=Jordan&amp;rft.aufirst=P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLudwigMüller1948" class="citation journal cs1">Ludwig, G.; Müller, C. (1948). "Ein Modell des Kosmos und der Sternentstehung". <i>Annalen der Physik</i>. <b>2</b> (6): 76–84. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1948AnP...437...76L">1948AnP...437...76L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19484370106">10.1002/andp.19484370106</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120176841">120176841</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annalen+der+Physik&amp;rft.atitle=Ein+Modell+des+Kosmos+und+der+Sternentstehung&amp;rft.volume=2&amp;rft.issue=6&amp;rft.pages=76-84&amp;rft.date=1948&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120176841%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fandp.19484370106&amp;rft_id=info%3Abibcode%2F1948AnP...437...76L&amp;rft.aulast=Ludwig&amp;rft.aufirst=G.&amp;rft.au=M%C3%BCller%2C+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScherrer1941" class="citation journal cs1 cs1-prop-foreign-lang-source">Scherrer, W. (1941). "Bemerkungen zu meiner Arbeit: "Ein Ansatz für die Wechselwirkung von Elementarteilchen"<span class="cs1-kern-right"></span>". <i>Helv. Phys. Acta</i> (in German). <b>14</b> (2): 130.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Helv.+Phys.+Acta&amp;rft.atitle=Bemerkungen+zu+meiner+Arbeit%3A+%22Ein+Ansatz+f%C3%BCr+die+Wechselwirkung+von+Elementarteilchen%22&amp;rft.volume=14&amp;rft.issue=2&amp;rft.pages=130&amp;rft.date=1941&amp;rft.aulast=Scherrer&amp;rft.aufirst=W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScherrer1949" class="citation journal cs1">Scherrer, W. (1949). "Über den Einfluss des metrischen Feldes auf ein skalares Materiefeld". <i>Helv. Phys. Acta</i>. <b>22</b>: 537–551.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Helv.+Phys.+Acta&amp;rft.atitle=%C3%9Cber+den+Einfluss+des+metrischen+Feldes+auf+ein+skalares+Materiefeld&amp;rft.volume=22&amp;rft.pages=537-551&amp;rft.date=1949&amp;rft.aulast=Scherrer&amp;rft.aufirst=W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScherrer1950" class="citation journal cs1 cs1-prop-foreign-lang-source">Scherrer, W. (1950). "Über den Einfluss des metrischen Feldes auf ein skalares Materiefeld (2. Mitteilung)". <i>Helv. Phys. Acta</i> (in German). <b>23</b>: 547–555.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Helv.+Phys.+Acta&amp;rft.atitle=%C3%9Cber+den+Einfluss+des+metrischen+Feldes+auf+ein+skalares+Materiefeld+%282.+Mitteilung%29&amp;rft.volume=23&amp;rft.pages=547-555&amp;rft.date=1950&amp;rft.aulast=Scherrer&amp;rft.aufirst=W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBransDicke1961" class="citation journal cs1">Brans, C. H.; Dicke, R. H. (November 1, 1961). "Mach's Principle and a Relativistic Theory of Gravitation". <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>124</b> (3): 925–935. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1961PhRv..124..925B">1961PhRv..124..925B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.124.925">10.1103/PhysRev.124.925</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review&amp;rft.atitle=Mach%27s+Principle+and+a+Relativistic+Theory+of+Gravitation&amp;rft.volume=124&amp;rft.issue=3&amp;rft.pages=925-935&amp;rft.date=1961-11-01&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRev.124.925&amp;rft_id=info%3Abibcode%2F1961PhRv..124..925B&amp;rft.aulast=Brans&amp;rft.aufirst=C.+H.&amp;rft.au=Dicke%2C+R.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-LLW-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-LLW_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LLW_19-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-LLW_19-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliams2015" class="citation journal cs1">Williams, L. L. (2015). <a rel="nofollow" class="external text" href="http://downloads.hindawi.com/archive/2015/901870.pdf">"Field Equations and Lagrangian for the Kaluza Metric Evaluated with Tensor Algebra Software"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Gravity</i>. <b>2015</b>: 901870. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2015%2F901870">10.1155/2015/901870</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Gravity&amp;rft.atitle=Field+Equations+and+Lagrangian+for+the+Kaluza+Metric+Evaluated+with+Tensor+Algebra+Software&amp;rft.volume=2015&amp;rft.pages=901870&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1155%2F2015%2F901870&amp;rft.aulast=Williams&amp;rft.aufirst=L.+L.&amp;rft_id=http%3A%2F%2Fdownloads.hindawi.com%2Farchive%2F2015%2F901870.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-fri-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-fri_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFerrari1989" class="citation journal cs1">Ferrari, J. A. (1989). "On an approximate solution for a charged object and the experimental evidence for the Kaluza-Klein theory". <i>Gen. Relativ. Gravit</i>. <b>21</b> (7): 683. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1989GReGr..21..683F">1989GReGr..21..683F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00759078">10.1007/BF00759078</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121977988">121977988</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Gen.+Relativ.+Gravit.&amp;rft.atitle=On+an+approximate+solution+for+a+charged+object+and+the+experimental+evidence+for+the+Kaluza-Klein+theory&amp;rft.volume=21&amp;rft.issue=7&amp;rft.pages=683&amp;rft.date=1989&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121977988%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF00759078&amp;rft_id=info%3Abibcode%2F1989GReGr..21..683F&amp;rft.aulast=Ferrari&amp;rft.aufirst=J.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-coq-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-coq_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCoquereauxEsposito-Farese1990" class="citation journal cs1">Coquereaux, R.; Esposito-Farese, G. (1990). "The theory of Kaluza–Klein–Jordan–Thiry revisited". <i>Annales de l'Institut Henri Poincaré</i>. <b>52</b>: 113.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annales+de+l%27Institut+Henri+Poincar%C3%A9&amp;rft.atitle=The+theory+of+Kaluza%E2%80%93Klein%E2%80%93Jordan%E2%80%93Thiry+revisited&amp;rft.volume=52&amp;rft.pages=113&amp;rft.date=1990&amp;rft.aulast=Coquereaux&amp;rft.aufirst=R.&amp;rft.au=Esposito-Farese%2C+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-LLW2-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-LLW2_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliams2020" class="citation journal cs1">Williams, L. L. (2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2020%2F1263723">"Field Equations and Lagrangian of the Kaluza Energy-Momentum Tensor"</a>. <i>Advances in Mathematical Physics</i>. <b>2020</b>: 1263723. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2020%2F1263723">10.1155/2020/1263723</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Mathematical+Physics&amp;rft.atitle=Field+Equations+and+Lagrangian+of+the+Kaluza+Energy-Momentum+Tensor&amp;rft.volume=2020&amp;rft.pages=1263723&amp;rft.date=2020&amp;rft_id=info%3Adoi%2F10.1155%2F2020%2F1263723&amp;rft.aulast=Williams&amp;rft.aufirst=L.+L.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2020%252F1263723&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAppelquistChodos,_AlanFreund,_Peter_G._O.1987" class="citation book cs1">Appelquist, Thomas; Chodos, Alan; Freund, Peter G. O. (1987). <i>Modern Kaluza–Klein Theories</i>. Menlo Park, Cal.: Addison–Wesley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-09829-7" title="Special:BookSources/978-0-201-09829-7"><bdi>978-0-201-09829-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modern+Kaluza%E2%80%93Klein+Theories&amp;rft.place=Menlo+Park%2C+Cal.&amp;rft.pub=Addison%E2%80%93Wesley&amp;rft.date=1987&amp;rft.isbn=978-0-201-09829-7&amp;rft.aulast=Appelquist&amp;rft.aufirst=Thomas&amp;rft.au=Chodos%2C+Alan&amp;rft.au=Freund%2C+Peter+G.+O.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWesson1999" class="citation book cs1">Wesson, Paul S. (1999). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/spacetimematterm0000wess"><i>Space–Time–Matter, Modern Kaluza–Klein Theory</i></a></span>. Singapore: World Scientific. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-02-3588-8" title="Special:BookSources/978-981-02-3588-8"><bdi>978-981-02-3588-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Space%E2%80%93Time%E2%80%93Matter%2C+Modern+Kaluza%E2%80%93Klein+Theory&amp;rft.place=Singapore&amp;rft.pub=World+Scientific&amp;rft.date=1999&amp;rft.isbn=978-981-02-3588-8&amp;rft.aulast=Wesson&amp;rft.aufirst=Paul+S.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fspacetimematterm0000wess&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPauli1958" class="citation book cs1">Pauli, Wolfgang (1958). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/theoryofrelativi00paul"><i>Theory of Relativity</i></a></span> (translated by George Field&#160;ed.). New York: Pergamon Press. pp.&#160;Supplement 23.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Relativity&amp;rft.place=New+York&amp;rft.pages=Supplement+23&amp;rft.edition=translated+by+George+Field&amp;rft.pub=Pergamon+Press&amp;rft.date=1958&amp;rft.aulast=Pauli&amp;rft.aufirst=Wolfgang&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftheoryofrelativi00paul&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrossPerry1983" class="citation journal cs1">Gross, D. J.; Perry, M. J. (1983). "Magnetic monopoles in Kaluza–Klein theories". <i>Nucl. Phys. B</i>. <b>226</b> (1): 29–48. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983NuPhB.226...29G">1983NuPhB.226...29G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0550-3213%2883%2990462-5">10.1016/0550-3213(83)90462-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nucl.+Phys.+B&amp;rft.atitle=Magnetic+monopoles+in+Kaluza%E2%80%93Klein+theories&amp;rft.volume=226&amp;rft.issue=1&amp;rft.pages=29-48&amp;rft.date=1983&amp;rft_id=info%3Adoi%2F10.1016%2F0550-3213%2883%2990462-5&amp;rft_id=info%3Abibcode%2F1983NuPhB.226...29G&amp;rft.aulast=Gross&amp;rft.aufirst=D.+J.&amp;rft.au=Perry%2C+M.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGegenbergKunstatter1984" class="citation journal cs1">Gegenberg, J.; Kunstatter, G. (1984). "The motion of charged particles in Kaluza–Klein space–time". <i>Phys. Lett</i>. <b>106A</b> (9): 410. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1984PhLA..106..410G">1984PhLA..106..410G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0375-9601%2884%2990980-0">10.1016/0375-9601(84)90980-0</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Phys.+Lett.&amp;rft.atitle=The+motion+of+charged+particles+in+Kaluza%E2%80%93Klein+space%E2%80%93time&amp;rft.volume=106A&amp;rft.issue=9&amp;rft.pages=410&amp;rft.date=1984&amp;rft_id=info%3Adoi%2F10.1016%2F0375-9601%2884%2990980-0&amp;rft_id=info%3Abibcode%2F1984PhLA..106..410G&amp;rft.aulast=Gegenberg&amp;rft.aufirst=J.&amp;rft.au=Kunstatter%2C+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWessonPonce_de_Leon1995" class="citation journal cs1">Wesson, P. S.; Ponce de Leon, J. (1995). "The equation of motion in Kaluza–Klein cosmology and its implications for astrophysics". <i>Astronomy and Astrophysics</i>. <b>294</b>: 1. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995A&amp;A...294....1W">1995A&#38;A...294....1W</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Astronomy+and+Astrophysics&amp;rft.atitle=The+equation+of+motion+in+Kaluza%E2%80%93Klein+cosmology+and+its+implications+for+astrophysics&amp;rft.volume=294&amp;rft.pages=1&amp;rft.date=1995&amp;rft_id=info%3Abibcode%2F1995A%26A...294....1W&amp;rft.aulast=Wesson&amp;rft.aufirst=P.+S.&amp;rft.au=Ponce+de+Leon%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliams2012" class="citation conference cs1 cs1-prop-long-vol">Williams, Lance L. (2012). "Physics of the Electromagnetic Control of Spacetime and Gravity". <i>Proceedings of 48th AIAA Joint Propulsion Conference</i>. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &amp; Exhibit, 30 July 2012 – 01 August 2012. Atlanta, Georgia. Vol.&#160;AIAA 2012-3916. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2514%2F6.2012-3916">10.2514/6.2012-3916</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-60086-935-8" title="Special:BookSources/978-1-60086-935-8"><bdi>978-1-60086-935-8</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122586403">122586403</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Physics+of+the+Electromagnetic+Control+of+Spacetime+and+Gravity&amp;rft.btitle=Proceedings+of+48th+AIAA+Joint+Propulsion+Conference&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122586403%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.2514%2F6.2012-3916&amp;rft.isbn=978-1-60086-935-8&amp;rft.aulast=Williams&amp;rft.aufirst=Lance+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">David Bleecker, "<a rel="nofollow" class="external text" href="https://zulfahmed.files.wordpress.com/2014/05/88623149-bleecker-d-gauge-theory-and-variational-principles-aw-1981-ka-t-201s-pqgf.pdf">Gauge Theory and Variational Principles</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210709185749/https://zulfahmed.files.wordpress.com/2014/05/88623149-bleecker-d-gauge-theory-and-variational-principles-aw-1981-ka-t-201s-pqgf.pdf">Archived</a> 2021-07-09 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>" (1982) D. Reidel Publishing <i>(See chapter 9</i>)</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">Ravndal, F., Oskar Klein and the fifth dimension, <a rel="nofollow" class="external text" href="https://arxiv.org/abs/1309.4113">arXiv:1309.4113</a> [physics.hist-ph]</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://5dstm.org">5Dstm.org</a></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">L. Castellani et al., Supergravity and superstrings, vol.&#160;2, ch.&#160;V.11.</span> </li> <li id="cite_note-arxiv.org_1-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-arxiv.org_1_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKhachatryanSirunyanTumasyanAdam2011" class="citation journal cs1">Khachatryan, V.; et&#160;al. (CMS Collaboration) (2011). "Search for microscopic black hole signatures at the Large Hadron Collider". <i>Physics Letters B</i>. <b>697</b> (5): 434–453. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1012.3375">1012.3375</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011PhLB..697..434C">2011PhLB..697..434C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2011.02.032">10.1016/j.physletb.2011.02.032</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122803232">122803232</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Letters+B&amp;rft.atitle=Search+for+microscopic+black+hole+signatures+at+the+Large+Hadron+Collider&amp;rft.volume=697&amp;rft.issue=5&amp;rft.pages=434-453&amp;rft.date=2011&amp;rft_id=info%3Aarxiv%2F1012.3375&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122803232%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2011.02.032&amp;rft_id=info%3Abibcode%2F2011PhLB..697..434C&amp;rft.aulast=Khachatryan&amp;rft.aufirst=V.&amp;rft.au=Sirunyan%2C+A.+M.&amp;rft.au=Tumasyan%2C+A.&amp;rft.au=Adam%2C+W.&amp;rft.au=Bergauer%2C+T.&amp;rft.au=Dragicevic%2C+M.&amp;rft.au=Er%C3%B6%2C+J.&amp;rft.au=Fabjan%2C+C.&amp;rft.au=Friedl%2C+M.&amp;rft.au=Fr%C3%BChwirth%2C+R.&amp;rft.au=Ghete%2C+V.M.&amp;rft.au=Hammer%2C+J.&amp;rft.au=H%C3%A4nsel%2C+S.&amp;rft.au=Hartl%2C+C.&amp;rft.au=Hoch%2C+M.&amp;rft.au=H%C3%B6rmann%2C+N.&amp;rft.au=Hrubec%2C+J.&amp;rft.au=Jeitler%2C+M.&amp;rft.au=Kasieczka%2C+G.&amp;rft.au=Kiesenhofer%2C+W.&amp;rft.au=Krammer%2C+M.&amp;rft.au=Liko%2C+D.&amp;rft.au=Mikulec%2C+I.&amp;rft.au=Pernicka%2C+M.&amp;rft.au=Rohringer%2C+H.&amp;rft.au=Sch%C3%B6fbeck%2C+R.&amp;rft.au=Strauss%2C+J.&amp;rft.au=Taurok%2C+A.&amp;rft.au=Teischinger%2C+F.&amp;rft.au=Waltenberger%2C+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> <li id="cite_note-arxiv.org_2-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-arxiv.org_2_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPardoFishbachHolzSpergel2018" class="citation journal cs1">Pardo, Kris; Fishbach, Maya; Holz, Daniel E.; Spergel, David N. (2018). "Limits on the number of spacetime dimensions from <a href="/wiki/GW170817" title="GW170817">GW170817</a>". <i>Journal of Cosmology and Astroparticle Physics</i>. <b>2018</b> (7): 048. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1801.08160">1801.08160</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018JCAP...07..048P">2018JCAP...07..048P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1475-7516%2F2018%2F07%2F048">10.1088/1475-7516/2018/07/048</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119197181">119197181</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Cosmology+and+Astroparticle+Physics&amp;rft.atitle=Limits+on+the+number+of+spacetime+dimensions+from+GW170817&amp;rft.volume=2018&amp;rft.issue=7&amp;rft.pages=048&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1801.08160&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119197181%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F1475-7516%2F2018%2F07%2F048&amp;rft_id=info%3Abibcode%2F2018JCAP...07..048P&amp;rft.aulast=Pardo&amp;rft.aufirst=Kris&amp;rft.au=Fishbach%2C+Maya&amp;rft.au=Holz%2C+Daniel+E.&amp;rft.au=Spergel%2C+David+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=17" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaluza1921" class="citation journal cs1">Kaluza, Theodor (1921). "Zum Unitätsproblem in der Physik". <i>Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.)</i>: 966–972. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1921SPAW.......966K">1921SPAW.......966K</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sitzungsber.+Preuss.+Akad.+Wiss.+Berlin.+%28Math.+Phys.%29&amp;rft.atitle=Zum+Unit%C3%A4tsproblem+in+der+Physik&amp;rft.pages=966-972&amp;rft.date=1921&amp;rft_id=info%3Abibcode%2F1921SPAW.......966K&amp;rft.aulast=Kaluza&amp;rft.aufirst=Theodor&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span> <a rel="nofollow" class="external free" href="https://archive.org/details/sitzungsberichte1921preussi">https://archive.org/details/sitzungsberichte1921preussi</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlein1926" class="citation journal cs1">Klein, Oskar (1926). "Quantentheorie und fünfdimensionale Relativitätstheorie". <i><a href="/wiki/Zeitschrift_f%C3%BCr_Physik_A" class="mw-redirect" title="Zeitschrift für Physik A">Zeitschrift für Physik A</a></i>. <b>37</b> (12): 895–906. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1926ZPhy...37..895K">1926ZPhy...37..895K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01397481">10.1007/BF01397481</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Zeitschrift+f%C3%BCr+Physik+A&amp;rft.atitle=Quantentheorie+und+f%C3%BCnfdimensionale+Relativit%C3%A4tstheorie&amp;rft.volume=37&amp;rft.issue=12&amp;rft.pages=895-906&amp;rft.date=1926&amp;rft_id=info%3Adoi%2F10.1007%2FBF01397481&amp;rft_id=info%3Abibcode%2F1926ZPhy...37..895K&amp;rft.aulast=Klein&amp;rft.aufirst=Oskar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWitten1981" class="citation journal cs1">Witten, Edward (1981). "Search for a realistic Kaluza–Klein theory". <i><a href="/wiki/Nuclear_Physics_B" class="mw-redirect" title="Nuclear Physics B">Nuclear Physics B</a></i>. <b>186</b> (3): 412–428. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1981NuPhB.186..412W">1981NuPhB.186..412W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0550-3213%2881%2990021-3">10.1016/0550-3213(81)90021-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nuclear+Physics+B&amp;rft.atitle=Search+for+a+realistic+Kaluza%E2%80%93Klein+theory&amp;rft.volume=186&amp;rft.issue=3&amp;rft.pages=412-428&amp;rft.date=1981&amp;rft_id=info%3Adoi%2F10.1016%2F0550-3213%2881%2990021-3&amp;rft_id=info%3Abibcode%2F1981NuPhB.186..412W&amp;rft.aulast=Witten&amp;rft.aufirst=Edward&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAppelquistChodos,_AlanFreund,_Peter_G._O.1987" class="citation book cs1">Appelquist, Thomas; Chodos, Alan; Freund, Peter G. O. (1987). <i>Modern Kaluza–Klein Theories</i>. Menlo Park, Cal.: Addison–Wesley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-09829-7" title="Special:BookSources/978-0-201-09829-7"><bdi>978-0-201-09829-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modern+Kaluza%E2%80%93Klein+Theories&amp;rft.place=Menlo+Park%2C+Cal.&amp;rft.pub=Addison%E2%80%93Wesley&amp;rft.date=1987&amp;rft.isbn=978-0-201-09829-7&amp;rft.aulast=Appelquist&amp;rft.aufirst=Thomas&amp;rft.au=Chodos%2C+Alan&amp;rft.au=Freund%2C+Peter+G.+O.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span> <i>(Includes reprints of the above articles as well as those of other important papers relating to Kaluza–Klein theory.)</i></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuff1994" class="citation book cs1">Duff, M. J. (1994). "Kaluza–Klein Theory in Perspective". In Lindström, Ulf (ed.). <i>Proceedings of the Symposium 'The Oskar Klein Centenary'<span></span></i>. Singapore: World Scientific. pp.&#160;22–35. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-02-2332-8" title="Special:BookSources/978-981-02-2332-8"><bdi>978-981-02-2332-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Kaluza%E2%80%93Klein+Theory+in+Perspective&amp;rft.btitle=Proceedings+of+the+Symposium+%27The+Oskar+Klein+Centenary%27&amp;rft.place=Singapore&amp;rft.pages=22-35&amp;rft.pub=World+Scientific&amp;rft.date=1994&amp;rft.isbn=978-981-02-2332-8&amp;rft.aulast=Duff&amp;rft.aufirst=M.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOverduinWesson,_P._S.1997" class="citation journal cs1">Overduin, J. M.; Wesson, P. S. (1997). "Kaluza–Klein Gravity". <i>Physics Reports</i>. <b>283</b> (5): 303–378. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/9805018">gr-qc/9805018</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997PhR...283..303O">1997PhR...283..303O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0370-1573%2896%2900046-4">10.1016/S0370-1573(96)00046-4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119087814">119087814</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Reports&amp;rft.atitle=Kaluza%E2%80%93Klein+Gravity&amp;rft.volume=283&amp;rft.issue=5&amp;rft.pages=303-378&amp;rft.date=1997&amp;rft_id=info%3Aarxiv%2Fgr-qc%2F9805018&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119087814%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2FS0370-1573%2896%2900046-4&amp;rft_id=info%3Abibcode%2F1997PhR...283..303O&amp;rft.aulast=Overduin&amp;rft.aufirst=J.+M.&amp;rft.au=Wesson%2C+P.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWesson2006" class="citation book cs1">Wesson, Paul S. (2006). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/fivedimensionalp0000wess"><i>Five-Dimensional Physics: Classical and Quantum Consequences of Kaluza–Klein Cosmology</i></a></span>. Singapore: World Scientific. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006fdpc.book.....W">2006fdpc.book.....W</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-256-661-4" title="Special:BookSources/978-981-256-661-4"><bdi>978-981-256-661-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Five-Dimensional+Physics%3A+Classical+and+Quantum+Consequences+of+Kaluza%E2%80%93Klein+Cosmology&amp;rft.place=Singapore&amp;rft.pub=World+Scientific&amp;rft.date=2006&amp;rft_id=info%3Abibcode%2F2006fdpc.book.....W&amp;rft.isbn=978-981-256-661-4&amp;rft.aulast=Wesson&amp;rft.aufirst=Paul+S.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffivedimensionalp0000wess&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AKaluza%E2%80%93Klein+theory" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;action=edit&amp;section=18" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The CDF Collaboration, <i><a rel="nofollow" class="external text" href="http://www-cdf.fnal.gov/PES/kkgrav/kkgrav.html">Search for Extra Dimensions using Missing Energy at CDF</a></i>, (2004) <i>(A simplified presentation of the search made for extra dimensions at the <a href="/wiki/Collider_Detector_at_Fermilab" title="Collider Detector at Fermilab">Collider Detector at Fermilab</a> (CDF) particle physics facility.)</i></li> <li>John M. Pierre, <i><a rel="nofollow" class="external text" href="http://www.sukidog.com/jpierre/strings/extradim.htm">SUPERSTRINGS! Extra Dimensions</a></i>, (2003).</li> <li>Chris Pope, <i><a rel="nofollow" class="external text" href="http://faculty.physics.tamu.edu/pope/ihplec.pdf">Lectures on Kaluza–Klein Theory</a></i>.</li> <li>Edward Witten (2014). "A Note On Einstein, Bergmann, and the Fifth Dimension", <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<a rel="nofollow" class="external text" href="https://arxiv.org/abs/1401.8048">1401.8048</a></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Theories_of_gravitation" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Theories_of_gravitation" title="Template:Theories of gravitation"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Theories_of_gravitation" title="Template talk:Theories of gravitation"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Theories_of_gravitation" title="Special:EditPage/Template:Theories of gravitation"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Theories_of_gravitation" style="font-size:114%;margin:0 4em"><a href="/wiki/Gravity" title="Gravity">Theories of gravitation</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Standard</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Newtonian gravity (NG)</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton&#39;s law of universal gravitation">Newton's law of universal gravitation</a></li> <li><a href="/wiki/Gauss%27s_law_for_gravity" title="Gauss&#39;s law for gravity">Gauss's law for gravity</a></li> <li><a href="/wiki/Poisson%27s_equation#Newtonian_gravity" title="Poisson&#39;s equation">Poisson's equation for gravity</a></li> <li><a href="/wiki/History_of_gravitational_theory" title="History of gravitational theory">History of gravitational theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/General_relativity" title="General relativity">General relativity (GR)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Introduction_to_general_relativity" title="Introduction to general relativity">Introduction</a></li> <li><a href="/wiki/History_of_general_relativity" title="History of general relativity">History</a></li> <li><a href="/wiki/Mathematics_of_general_relativity" title="Mathematics of general relativity">Mathematics</a></li> <li><a href="/wiki/Exact_solutions_in_general_relativity" title="Exact solutions in general relativity">Exact solutions</a></li> <li><a href="/wiki/General_relativity#Further_reading" title="General relativity">Resources</a></li> <li><a href="/wiki/Tests_of_general_relativity" title="Tests of general relativity">Tests</a></li> <li><a href="/wiki/Parameterized_post-Newtonian_formalism" title="Parameterized post-Newtonian formalism">Post-Newtonian formalism</a></li> <li><a href="/wiki/Linearized_gravity" title="Linearized gravity">Linearized gravity</a></li> <li><a href="/wiki/ADM_formalism" title="ADM formalism">ADM formalism</a></li> <li><a href="/wiki/Gibbons%E2%80%93Hawking%E2%80%93York_boundary_term" title="Gibbons–Hawking–York boundary term">Gibbons–Hawking–York boundary term</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;line-height:1.2em;"><a href="/wiki/Alternatives_to_general_relativity" title="Alternatives to general relativity">Alternatives to<br />general relativity</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Paradigms</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alternatives_to_general_relativity" title="Alternatives to general relativity">Classical theories of gravitation</a></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li> <li><a href="/wiki/Theory_of_everything" title="Theory of everything">Theory of everything</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Classical</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=Poincar%C3%A9_gauge_theory&amp;action=edit&amp;redlink=1" class="new" title="Poincaré gauge theory (page does not exist)">Poincaré gauge theory</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Einstein%E2%80%93Cartan_theory" title="Einstein–Cartan theory">Einstein–Cartan</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Teleparallelism" title="Teleparallelism">Teleparallelism</a></span></li></ul></li> <li><a href="/wiki/Bimetric_gravity" title="Bimetric gravity">Bimetric theories</a></li> <li><a href="/wiki/Gauge_theory_gravity" title="Gauge theory gravity">Gauge theory gravity</a></li> <li><a href="/wiki/Composite_gravity" title="Composite gravity">Composite gravity</a></li> <li><a href="/wiki/F(R)_gravity" title="F(R) gravity"><i>f</i>(<i>R</i>) gravity</a></li> <li><a href="/wiki/Infinite_derivative_gravity" title="Infinite derivative gravity">Infinite derivative gravity</a></li> <li><a href="/wiki/Massive_gravity" title="Massive gravity">Massive gravity</a></li> <li><a href="/wiki/Modified_Newtonian_dynamics" title="Modified Newtonian dynamics">Modified Newtonian dynamics, MOND</a> <ul><li><span style="font-size:85%;"><a href="/wiki/AQUAL" title="AQUAL">AQUAL</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Tensor%E2%80%93vector%E2%80%93scalar_gravity" title="Tensor–vector–scalar gravity">Tensor–vector–scalar</a></span></li></ul></li> <li><a href="/wiki/Nonsymmetric_gravitational_theory" title="Nonsymmetric gravitational theory">Nonsymmetric gravitation</a></li> <li><a href="/wiki/Scalar%E2%80%93tensor_theory" title="Scalar–tensor theory">Scalar–tensor theories</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Brans%E2%80%93Dicke_theory" title="Brans–Dicke theory">Brans–Dicke</a></span></li></ul></li> <li><a href="/wiki/Scalar%E2%80%93tensor%E2%80%93vector_gravity" title="Scalar–tensor–vector gravity">Scalar–tensor–vector</a></li> <li><a href="/wiki/Conformal_gravity" title="Conformal gravity">Conformal gravity</a></li> <li><a href="/wiki/Scalar_theories_of_gravitation" title="Scalar theories of gravitation">Scalar theories</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Nordstr%C3%B6m%27s_theory_of_gravitation" title="Nordström&#39;s theory of gravitation">Nordström</a></span></li></ul></li> <li><a href="/wiki/Whitehead%27s_theory_of_gravitation" title="Whitehead&#39;s theory of gravitation">Whitehead</a></li> <li><a href="/wiki/Geometrodynamics" title="Geometrodynamics">Geometrodynamics</a></li> <li><a href="/wiki/Induced_gravity" title="Induced gravity">Induced gravity</a></li> <li><a href="/wiki/Degenerate_Higher-Order_Scalar-Tensor_theories" title="Degenerate Higher-Order Scalar-Tensor theories">Degenerate Higher-Order Scalar-Tensor theories</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Quantum-mechanical</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Euclidean_quantum_gravity" title="Euclidean quantum gravity">Euclidean quantum gravity</a></li> <li><a href="/wiki/Canonical_quantum_gravity" title="Canonical quantum gravity">Canonical quantum gravity</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Wheeler%E2%80%93DeWitt_equation" title="Wheeler–DeWitt equation">Wheeler–DeWitt equation</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Loop_quantum_gravity" title="Loop quantum gravity">Loop quantum gravity</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Spin_foam" title="Spin foam">Spin foam</a></span></li></ul></li> <li><a href="/wiki/Causal_dynamical_triangulation" title="Causal dynamical triangulation">Causal dynamical triangulation</a></li> <li><a href="/wiki/Asymptotic_safety_in_quantum_gravity" title="Asymptotic safety in quantum gravity">Asymptotic safety in quantum gravity</a></li> <li><a href="/wiki/Causal_sets" title="Causal sets">Causal sets</a></li> <li><a href="/wiki/DGP_model" title="DGP model">DGP model</a></li> <li><a href="/wiki/Rainbow_gravity_theory" title="Rainbow gravity theory">Rainbow gravity theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Unified-field-theoric</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Kaluza–Klein theory</a></li> <li><a href="/wiki/Supergravity" title="Supergravity">Supergravity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Unified-field-theoric and <br /> quantum-mechanical</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Noncommutative_quantum_field_theory" title="Noncommutative quantum field theory">Noncommutative geometry</a></li> <li><a href="/wiki/Semiclassical_gravity" title="Semiclassical gravity">Semiclassical gravity</a></li> <li><a href="/wiki/Superfluid_vacuum_theory" title="Superfluid vacuum theory">Superfluid vacuum theory</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Superfluid_vacuum_theory#Logarithmic_BEC_vacuum_theory" title="Superfluid vacuum theory">Logarithmic BEC vacuum</a></span></li></ul></li> <li><a href="/wiki/String_theory" title="String theory">String theory</a> <ul><li><span style="font-size:85%;"><a href="/wiki/M-theory" title="M-theory">M-theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/F-theory" title="F-theory">F-theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Heterotic_string_theory" title="Heterotic string theory">Heterotic string theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Type_I_string_theory" title="Type I string theory">Type I string theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Type_0_string_theory" title="Type 0 string theory">Type 0 string theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Bosonic_string_theory" title="Bosonic string theory">Bosonic string theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Type_II_string_theory" title="Type II string theory">Type II string theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Little_string_theory" title="Little string theory">Little string theory</a></span></li></ul></li> <li><a href="/wiki/Twistor_theory" title="Twistor theory">Twistor theory</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Twistor_string_theory" title="Twistor string theory">Twistor string theory</a></span></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Generalisations / <br /> extensions of GR</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Liouville_gravity" class="mw-redirect" title="Liouville gravity">Liouville gravity</a></li> <li><a href="/wiki/Lovelock_theory_of_gravity" title="Lovelock theory of gravity">Lovelock theory</a></li> <li><a href="/wiki/(2%2B1)-dimensional_topological_gravity" title="(2+1)-dimensional topological gravity">(2+1)-dimensional topological gravity</a></li> <li><a href="/wiki/Gauss%E2%80%93Bonnet_gravity" title="Gauss–Bonnet gravity">Gauss–Bonnet gravity</a></li> <li><a href="/wiki/Jackiw%E2%80%93Teitelboim_gravity" title="Jackiw–Teitelboim gravity">Jackiw–Teitelboim gravity</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Pre-Newtonian<br />theories and<br /><a href="/wiki/Toy_model" title="Toy model">toy models</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aristotelian_physics" title="Aristotelian physics">Aristotelian physics</a></li> <li><a href="/wiki/CGHS_model" title="CGHS model">CGHS model</a></li> <li><a href="/wiki/RST_model" title="RST model">RST model</a></li> <li><a href="/wiki/Mechanical_explanations_of_gravitation" title="Mechanical explanations of gravitation">Mechanical explanations</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Le_Sage%27s_theory_of_gravitation" title="Le Sage&#39;s theory of gravitation">Fatio–Le Sage</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Entropic_gravity" title="Entropic gravity">Entropic gravity</a></span></li></ul></li> <li><a href="/wiki/Gravitational_interaction_of_antimatter" title="Gravitational interaction of antimatter">Gravitational interaction of antimatter</a></li> <li><a href="/wiki/Physics_in_the_medieval_Islamic_world" title="Physics in the medieval Islamic world">Physics in the medieval Islamic world</a></li> <li><a href="/wiki/Theory_of_impetus" title="Theory of impetus">Theory of impetus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related topics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gravitational_wave" title="Gravitational wave">Gravitational wave</a></li> <li><a href="/wiki/Graviton" title="Graviton">Graviton</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Relativity" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align:center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Relativity" title="Template:Relativity"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Relativity" title="Template talk:Relativity"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Relativity" title="Special:EditPage/Template:Relativity"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Relativity" style="font-size:114%;margin:0 4em"><a href="/wiki/Theory_of_relativity" title="Theory of relativity">Relativity</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/Special_relativity" title="Special relativity">Special<br />relativity</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Principle_of_relativity" title="Principle of relativity">Principle of relativity</a> (<a href="/wiki/Galilean_invariance" title="Galilean invariance">Galilean relativity</a></li> <li><a href="/wiki/Galilean_transformation" title="Galilean transformation">Galilean transformation</a>)</li> <li><a href="/wiki/Special_relativity" title="Special relativity">Special relativity</a></li> <li><a href="/wiki/Doubly_special_relativity" title="Doubly special relativity">Doubly special relativity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Fundamental<br />concepts</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Frame_of_reference" title="Frame of reference">Frame of reference</a></li> <li><a href="/wiki/Speed_of_light" title="Speed of light">Speed of light</a></li> <li><a href="/wiki/Hyperbolic_orthogonality" title="Hyperbolic orthogonality">Hyperbolic orthogonality</a></li> <li><a href="/wiki/Rapidity" title="Rapidity">Rapidity</a></li> <li><a href="/wiki/Maxwell%27s_equations" title="Maxwell&#39;s equations">Maxwell's equations</a></li> <li><a href="/wiki/Proper_length" title="Proper length">Proper length</a></li> <li><a href="/wiki/Proper_time" title="Proper time">Proper time</a></li> <li><a href="/wiki/Proper_acceleration" title="Proper acceleration">Proper acceleration</a></li> <li><a href="/wiki/Mass_in_special_relativity" title="Mass in special relativity">Relativistic mass</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Formulation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a></li> <li><a href="/wiki/List_of_textbooks_on_relativity" title="List of textbooks on relativity">Textbooks</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Phenomena</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Time_dilation" title="Time dilation">Time dilation</a></li> <li><a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">Mass–energy equivalence (E=mc<sup>2</sup>)</a></li> <li><a href="/wiki/Length_contraction" title="Length contraction">Length contraction</a></li> <li><a href="/wiki/Relativity_of_simultaneity" title="Relativity of simultaneity">Relativity of simultaneity</a></li> <li><a href="/wiki/Relativistic_Doppler_effect" title="Relativistic Doppler effect">Relativistic Doppler effect</a></li> <li><a href="/wiki/Thomas_precession" title="Thomas precession">Thomas precession</a></li> <li><a href="/wiki/Ladder_paradox" title="Ladder paradox">Ladder paradox</a></li> <li><a href="/wiki/Twin_paradox" title="Twin paradox">Twin paradox</a></li> <li><a href="/wiki/Terrell_rotation" title="Terrell rotation">Terrell rotation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;"><a href="/wiki/Spacetime" title="Spacetime">Spacetime</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Light_cone" title="Light cone">Light cone</a></li> <li><a href="/wiki/World_line" title="World line">World line</a></li> <li><a href="/wiki/Minkowski_diagram" class="mw-redirect" title="Minkowski diagram">Minkowski diagram</a></li> <li><a href="/wiki/Biquaternion" title="Biquaternion">Biquaternions</a></li> <li><a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/General_relativity" title="General relativity">General<br />relativity</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Background</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Introduction_to_general_relativity" title="Introduction to general relativity">Introduction</a></li> <li><a href="/wiki/Mathematics_of_general_relativity" title="Mathematics of general relativity">Mathematical formulation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Fundamental<br />concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Equivalence_principle" title="Equivalence principle">Equivalence principle</a></li> <li><a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a></li> <li><a href="/wiki/Penrose_diagram" title="Penrose diagram">Penrose diagram</a></li> <li><a href="/wiki/Geodesics_in_general_relativity" title="Geodesics in general relativity">Geodesics</a></li> <li><a href="/wiki/Mach%27s_principle" title="Mach&#39;s principle">Mach's principle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Formulation</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/ADM_formalism" title="ADM formalism">ADM formalism</a></li> <li><a href="/wiki/BSSN_formalism" title="BSSN formalism">BSSN formalism</a></li> <li><a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a></li> <li><a href="/wiki/Linearized_gravity" title="Linearized gravity">Linearized gravity</a></li> <li><a href="/wiki/Parameterized_post-Newtonian_formalism" title="Parameterized post-Newtonian formalism">Post-Newtonian formalism</a></li> <li><a href="/wiki/Raychaudhuri_equation" title="Raychaudhuri equation">Raychaudhuri equation</a></li> <li><a href="/wiki/Hamilton%E2%80%93Jacobi%E2%80%93Einstein_equation" title="Hamilton–Jacobi–Einstein equation">Hamilton–Jacobi–Einstein equation</a></li> <li><a href="/wiki/Ernst_equation" title="Ernst equation">Ernst equation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Phenomena</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Black_hole" title="Black hole">Black hole</a></li> <li><a href="/wiki/Event_horizon" title="Event horizon">Event horizon</a></li> <li><a href="/wiki/Gravitational_singularity" title="Gravitational singularity">Singularity</a></li> <li><a href="/wiki/Two-body_problem_in_general_relativity" title="Two-body problem in general relativity">Two-body problem</a></li></ul> <ul><li><a href="/wiki/Gravitational_wave" title="Gravitational wave">Gravitational waves</a>: <a href="/wiki/Gravitational-wave_astronomy" title="Gravitational-wave astronomy">astronomy</a></li> <li><a href="/wiki/Gravitational-wave_observatory" title="Gravitational-wave observatory">detectors</a> (<a href="/wiki/LIGO" title="LIGO">LIGO</a> and <a href="/wiki/LIGO_Scientific_Collaboration" title="LIGO Scientific Collaboration">collaboration</a></li> <li><a href="/wiki/Virgo_interferometer" title="Virgo interferometer">Virgo</a></li> <li><a href="/wiki/LISA_Pathfinder" title="LISA Pathfinder">LISA Pathfinder</a></li> <li><a href="/wiki/GEO600" title="GEO600">GEO</a>)</li> <li><a href="/wiki/Hulse%E2%80%93Taylor_binary" class="mw-redirect" title="Hulse–Taylor binary">Hulse–Taylor binary</a></li></ul> <ul><li><a href="/wiki/Tests_of_general_relativity" title="Tests of general relativity">Other tests</a>: <a href="/wiki/Apsidal_precession" title="Apsidal precession">precession</a> of Mercury</li> <li><a href="/wiki/Gravitational_lens" title="Gravitational lens">lensing</a> (together with <a href="/wiki/Einstein_cross" class="mw-redirect" title="Einstein cross">Einstein cross</a> and <a href="/wiki/Einstein_rings" class="mw-redirect" title="Einstein rings">Einstein rings</a>)</li> <li><a href="/wiki/Gravitational_redshift" title="Gravitational redshift">redshift</a></li> <li><a href="/wiki/Shapiro_time_delay" title="Shapiro time delay">Shapiro delay</a></li> <li><a href="/wiki/Frame-dragging" title="Frame-dragging">frame-dragging</a> / <a href="/wiki/Geodetic_effect" title="Geodetic effect">geodetic effect</a> (<a href="/wiki/Lense%E2%80%93Thirring_precession" title="Lense–Thirring precession">Lense–Thirring precession</a>)</li> <li><a href="/wiki/Pulsar_timing_array" title="Pulsar timing array">pulsar timing arrays</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Advanced<br />theories</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Brans%E2%80%93Dicke_theory" title="Brans–Dicke theory">Brans–Dicke theory</a></li> <li><a class="mw-selflink selflink">Kaluza–Klein</a></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;"><a href="/wiki/Exact_solutions_in_general_relativity" title="Exact solutions in general relativity">Solutions</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li>Cosmological: <a href="/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metric" title="Friedmann–Lemaître–Robertson–Walker metric">Friedmann–Lemaître–Robertson–Walker</a> (<a href="/wiki/Friedmann_equations" title="Friedmann equations">Friedmann equations</a>)</li> <li><a href="/wiki/Lema%C3%AEtre%E2%80%93Tolman_metric" title="Lemaître–Tolman metric">Lemaître–Tolman</a></li> <li><a href="/wiki/Kasner_metric" title="Kasner metric">Kasner</a></li> <li><a href="/wiki/BKL_singularity" title="BKL singularity">BKL singularity</a></li> <li><a href="/wiki/G%C3%B6del_metric" title="Gödel metric">Gödel</a></li> <li><a href="/wiki/Milne_model" title="Milne model">Milne</a></li></ul> <ul><li>Spherical: <a href="/wiki/Schwarzschild_metric" title="Schwarzschild metric">Schwarzschild</a> (<a href="/wiki/Interior_Schwarzschild_metric" title="Interior Schwarzschild metric">interior</a></li> <li><a href="/wiki/Tolman%E2%80%93Oppenheimer%E2%80%93Volkoff_equation" title="Tolman–Oppenheimer–Volkoff equation">Tolman–Oppenheimer–Volkoff equation</a>)</li> <li><a href="/wiki/Reissner%E2%80%93Nordstr%C3%B6m_metric" title="Reissner–Nordström metric">Reissner–Nordström</a></li></ul> <ul><li>Axisymmetric: <a href="/wiki/Kerr_metric" title="Kerr metric">Kerr</a> (<a href="/wiki/Kerr%E2%80%93Newman_metric" title="Kerr–Newman metric">Kerr–Newman</a>)</li> <li><a href="/wiki/Weyl%E2%88%92Lewis%E2%88%92Papapetrou_coordinates" class="mw-redirect" title="Weyl−Lewis−Papapetrou coordinates">Weyl−Lewis−Papapetrou</a></li> <li><a href="/wiki/Taub%E2%80%93NUT_space" title="Taub–NUT space">Taub–NUT</a></li> <li><a href="/wiki/Van_Stockum_dust" title="Van Stockum dust">van Stockum dust</a></li> <li><a href="/wiki/Relativistic_disk" title="Relativistic disk">discs</a></li></ul> <ul><li>Others: <a href="/wiki/Pp-wave_spacetime" title="Pp-wave spacetime">pp-wave</a></li> <li><a href="/wiki/Ozsv%C3%A1th%E2%80%93Sch%C3%BCcking_metric" title="Ozsváth–Schücking metric">Ozsváth–Schücking</a></li> <li><a href="/wiki/Alcubierre_drive" title="Alcubierre drive">Alcubierre</a></li></ul> <ul><li>In computational physics: <a href="/wiki/Numerical_relativity" title="Numerical relativity">Numerical relativity</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Scientists</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Poincaré</a></li> <li><a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Lorentz</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a></li> <li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li> <li><a href="/wiki/Karl_Schwarzschild" title="Karl Schwarzschild">Schwarzschild</a></li> <li><a href="/wiki/Willem_de_Sitter" title="Willem de Sitter">de Sitter</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl</a></li> <li><a href="/wiki/Arthur_Eddington" title="Arthur Eddington">Eddington</a></li> <li><a href="/wiki/Alexander_Friedmann" title="Alexander Friedmann">Friedmann</a></li> <li><a href="/wiki/Georges_Lema%C3%AEtre" title="Georges Lemaître">Lemaître</a></li> <li><a href="/wiki/Edward_Arthur_Milne" title="Edward Arthur Milne">Milne</a></li> <li><a href="/wiki/Howard_P._Robertson" title="Howard P. Robertson">Robertson</a></li> <li><a href="/wiki/Subrahmanyan_Chandrasekhar" title="Subrahmanyan Chandrasekhar">Chandrasekhar</a></li> <li><a href="/wiki/Fritz_Zwicky" title="Fritz Zwicky">Zwicky</a></li> <li><a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">Wheeler</a></li> <li><a href="/wiki/Yvonne_Choquet-Bruhat" title="Yvonne Choquet-Bruhat">Choquet-Bruhat</a></li> <li><a href="/wiki/Roy_Kerr" title="Roy Kerr">Kerr</a></li> <li><a href="/wiki/Yakov_Zeldovich" title="Yakov Zeldovich">Zel'dovich</a></li> <li><a href="/wiki/Igor_Dmitriyevich_Novikov" title="Igor Dmitriyevich Novikov">Novikov</a></li> <li><a href="/wiki/J%C3%BCrgen_Ehlers" title="Jürgen Ehlers">Ehlers</a></li> <li><a href="/wiki/Robert_Geroch" title="Robert Geroch">Geroch</a></li> <li><a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose</a></li> <li><a href="/wiki/Stephen_Hawking" title="Stephen Hawking">Hawking</a></li> <li><a href="/wiki/Joseph_Hooton_Taylor_Jr." title="Joseph Hooton Taylor Jr.">Taylor</a></li> <li><a href="/wiki/Russell_Alan_Hulse" title="Russell Alan Hulse">Hulse</a></li> <li><a href="/wiki/Hermann_Bondi" title="Hermann Bondi">Bondi</a></li> <li><a href="/wiki/Charles_W._Misner" title="Charles W. Misner">Misner</a></li> <li><a href="/wiki/Shing-Tung_Yau" title="Shing-Tung Yau">Yau</a></li> <li><a href="/wiki/Kip_Thorne" title="Kip Thorne">Thorne</a></li> <li><a href="/wiki/Rainer_Weiss" title="Rainer Weiss">Weiss</a></li> <li><a href="/wiki/List_of_contributors_to_general_relativity" title="List of contributors to general relativity"><i>others</i></a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2" style="text-align:center;"><div><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Theory_of_relativity" title="Category:Theory of relativity">Category</a></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="String_theory" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align:center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:String_theory_topics" title="Template:String theory topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:String_theory_topics" title="Template talk:String theory topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:String_theory_topics" title="Special:EditPage/Template:String theory topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="String_theory" style="font-size:114%;margin:0 4em"><a href="/wiki/String_theory" title="String theory">String theory</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/String_(physics)" title="String (physics)">Strings</a></li> <li><a href="/wiki/Cosmic_string" title="Cosmic string">Cosmic strings</a></li> <li><a href="/wiki/History_of_string_theory" title="History of string theory">History of string theory</a> <ul><li><a href="/wiki/First_superstring_revolution" class="mw-redirect" title="First superstring revolution">First superstring revolution</a></li> <li><a href="/wiki/Second_superstring_revolution" class="mw-redirect" title="Second superstring revolution">Second superstring revolution</a></li></ul></li> <li><a href="/wiki/String_theory_landscape" title="String theory landscape">String theory landscape</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Theory</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nambu%E2%80%93Goto_action" title="Nambu–Goto action">Nambu–Goto action</a></li> <li><a href="/wiki/Polyakov_action" title="Polyakov action">Polyakov action</a></li> <li><a href="/wiki/Bosonic_string_theory" title="Bosonic string theory">Bosonic string theory</a></li> <li><a href="/wiki/Superstring_theory" title="Superstring theory">Superstring theory</a> <ul><li><a href="/wiki/Type_I_string_theory" title="Type I string theory">Type I string</a></li> <li><a href="/wiki/Type_II_string_theory" title="Type II string theory">Type II string</a> <ul><li><a href="/wiki/Type_II_string_theory" title="Type II string theory">Type IIA string</a></li> <li><a href="/wiki/Type_II_string_theory" title="Type II string theory">Type IIB string</a></li></ul></li> <li><a href="/wiki/Heterotic_string_theory" title="Heterotic string theory">Heterotic string</a></li></ul></li> <li><a href="/wiki/N%3D2_superstring" class="mw-redirect" title="N=2 superstring">N=2 superstring</a></li> <li><a href="/wiki/F-theory" title="F-theory">F-theory</a></li> <li><a href="/wiki/String_field_theory" title="String field theory">String field theory</a></li> <li><a href="/wiki/Matrix_string_theory" title="Matrix string theory">Matrix string theory</a></li> <li><a href="/wiki/Non-critical_string_theory" title="Non-critical string theory">Non-critical string theory</a></li> <li><a href="/wiki/Non-linear_sigma_model" title="Non-linear sigma model">Non-linear sigma model</a></li> <li><a href="/wiki/Tachyon_condensation" title="Tachyon condensation">Tachyon condensation</a></li> <li><a href="/wiki/RNS_formalism" title="RNS formalism">RNS formalism</a></li> <li><a href="/wiki/GS_formalism" title="GS formalism">GS formalism</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/String_duality" title="String duality">String duality</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/T-duality" title="T-duality">T-duality</a></li> <li><a href="/wiki/S-duality" title="S-duality">S-duality</a></li> <li><a href="/wiki/U-duality" title="U-duality">U-duality</a></li> <li><a href="/wiki/Montonen%E2%80%93Olive_duality" title="Montonen–Olive duality">Montonen–Olive duality</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Particles and fields</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Graviton" title="Graviton">Graviton</a></li> <li><a href="/wiki/Dilaton" title="Dilaton">Dilaton</a></li> <li><a href="/wiki/Tachyon" title="Tachyon">Tachyon</a></li> <li><a href="/wiki/Ramond%E2%80%93Ramond_field" title="Ramond–Ramond field">Ramond–Ramond field</a></li> <li><a href="/wiki/Kalb%E2%80%93Ramond_field" title="Kalb–Ramond field">Kalb–Ramond field</a></li> <li><a href="/wiki/Magnetic_monopole" title="Magnetic monopole">Magnetic monopole</a></li> <li><a href="/wiki/Dual_graviton" title="Dual graviton">Dual graviton</a></li> <li><a href="/wiki/Dual_photon" title="Dual photon">Dual photon</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/Brane" title="Brane">Branes</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/D-brane" title="D-brane">D-brane</a></li> <li><a href="/wiki/NS5-brane" title="NS5-brane">NS5-brane</a></li> <li><a href="/wiki/M2-brane" title="M2-brane">M2-brane</a></li> <li><a href="/wiki/M5-brane" title="M5-brane">M5-brane</a></li> <li><a href="/wiki/S-brane" title="S-brane">S-brane</a></li> <li><a href="/wiki/Black_brane" title="Black brane">Black brane</a></li> <li><a href="/wiki/Black_hole" title="Black hole">Black holes</a></li> <li><a href="/wiki/Black_string" class="mw-redirect" title="Black string">Black string</a></li> <li><a href="/wiki/Brane_cosmology" title="Brane cosmology">Brane cosmology</a></li> <li><a href="/wiki/Quiver_diagram" title="Quiver diagram">Quiver diagram</a></li> <li><a href="/wiki/Hanany%E2%80%93Witten_transition" title="Hanany–Witten transition">Hanany–Witten transition</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/Conformal_field_theory" title="Conformal field theory">Conformal field theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Virasoro_algebra" title="Virasoro algebra">Virasoro algebra</a></li> <li><a href="/wiki/Mirror_symmetry_(string_theory)" title="Mirror symmetry (string theory)">Mirror symmetry</a></li> <li><a href="/wiki/Conformal_anomaly" title="Conformal anomaly">Conformal anomaly</a></li> <li><a href="/wiki/Conformal_symmetry" title="Conformal symmetry">Conformal algebra</a></li> <li><a href="/wiki/Superconformal_algebra" title="Superconformal algebra">Superconformal algebra</a></li> <li><a href="/wiki/Vertex_operator_algebra" title="Vertex operator algebra">Vertex operator algebra</a></li> <li><a href="/wiki/Loop_algebra" title="Loop algebra">Loop algebra</a></li> <li><a href="/wiki/Kac%E2%80%93Moody_algebra" title="Kac–Moody algebra">Kac–Moody algebra</a></li> <li><a href="/wiki/Wess%E2%80%93Zumino%E2%80%93Witten_model" title="Wess–Zumino–Witten model">Wess–Zumino–Witten model</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/Gauge_theory" title="Gauge theory">Gauge theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anomaly_(physics)" title="Anomaly (physics)">Anomalies</a></li> <li><a href="/wiki/Instanton" title="Instanton">Instantons</a></li> <li><a href="/wiki/Chern%E2%80%93Simons_form" title="Chern–Simons form">Chern–Simons form</a></li> <li><a href="/wiki/Bogomol%27nyi%E2%80%93Prasad%E2%80%93Sommerfield_bound" title="Bogomol&#39;nyi–Prasad–Sommerfield bound">Bogomol'nyi–Prasad–Sommerfield bound</a></li> <li><a href="/wiki/Exceptional_Lie_group" class="mw-redirect" title="Exceptional Lie group">Exceptional Lie groups</a> (<a href="/wiki/G2_(mathematics)" title="G2 (mathematics)">G<sub>2</sub></a>, <a href="/wiki/F4_(mathematics)" title="F4 (mathematics)">F<sub>4</sub></a>, <a href="/wiki/E6_(mathematics)" title="E6 (mathematics)">E<sub>6</sub></a>, <a href="/wiki/E7_(mathematics)" title="E7 (mathematics)">E<sub>7</sub></a>, <a href="/wiki/E8_(mathematics)" title="E8 (mathematics)">E<sub>8</sub></a>)</li> <li><a href="/wiki/ADE_classification" title="ADE classification">ADE classification</a></li> <li><a href="/wiki/Dirac_string" title="Dirac string">Dirac string</a></li> <li><a href="/wiki/P-form_electrodynamics" title="P-form electrodynamics"><i>p</i>-form electrodynamics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Geometry</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Worldsheet" title="Worldsheet">Worldsheet</a></li> <li><a class="mw-selflink selflink">Kaluza–Klein theory</a></li> <li><a href="/wiki/Compactification_(physics)" title="Compactification (physics)">Compactification</a></li> <li><a href="/wiki/Why_10_dimensions" class="mw-redirect" title="Why 10 dimensions">Why 10 dimensions</a>?</li> <li><a href="/wiki/K%C3%A4hler_manifold" title="Kähler manifold">Kähler manifold</a></li> <li><a href="/wiki/Ricci-flat_manifold" title="Ricci-flat manifold">Ricci-flat manifold</a> <ul><li><a href="/wiki/Calabi%E2%80%93Yau_manifold" title="Calabi–Yau manifold">Calabi–Yau manifold</a></li> <li><a href="/wiki/Hyperk%C3%A4hler_manifold" title="Hyperkähler manifold">Hyperkähler manifold</a> <ul><li><a href="/wiki/K3_surface" title="K3 surface">K3 surface</a></li></ul></li> <li><a href="/wiki/G2_manifold" title="G2 manifold">G<sub>2</sub> manifold</a></li> <li><a href="/wiki/Spin(7)-manifold" title="Spin(7)-manifold">Spin(7)-manifold</a></li></ul></li> <li><a href="/wiki/Generalized_complex_structure" title="Generalized complex structure">Generalized complex manifold</a></li> <li><a href="/wiki/Orbifold" title="Orbifold">Orbifold</a></li> <li><a href="/wiki/Conifold" title="Conifold">Conifold</a></li> <li><a href="/wiki/Orientifold" title="Orientifold">Orientifold</a></li> <li><a href="/wiki/Moduli_space" title="Moduli space">Moduli space</a></li> <li><a href="/wiki/Ho%C5%99ava%E2%80%93Witten_theory" title="Hořava–Witten theory">Hořava–Witten theory</a></li> <li><a href="/wiki/K-theory_(physics)" title="K-theory (physics)">K-theory (physics)</a></li> <li><a href="/wiki/Twisted_K-theory" title="Twisted K-theory">Twisted K-theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/Supersymmetry" title="Supersymmetry">Supersymmetry</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Supergravity" title="Supergravity">Supergravity</a></li> <li><a href="/wiki/Eleven-dimensional_supergravity" title="Eleven-dimensional supergravity">Eleven-dimensional supergravity</a></li> <li><a href="/wiki/Type_I_supergravity" title="Type I supergravity">Type I supergravity</a></li> <li><a href="/wiki/Type_IIA_supergravity" title="Type IIA supergravity">Type IIA supergravity</a></li> <li><a href="/wiki/Type_IIB_supergravity" title="Type IIB supergravity">Type IIB supergravity</a></li> <li><a href="/wiki/Superspace" title="Superspace">Superspace</a></li> <li><a href="/wiki/Lie_superalgebra" title="Lie superalgebra">Lie superalgebra</a></li> <li><a href="/wiki/Lie_supergroup" class="mw-redirect" title="Lie supergroup">Lie supergroup</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/Holography" title="Holography">Holography</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Holographic_principle" title="Holographic principle">Holographic principle</a></li> <li><a href="/wiki/AdS/CFT_correspondence" title="AdS/CFT correspondence">AdS/CFT correspondence</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/M-theory" title="M-theory">M-theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Matrix_theory_(physics)" title="Matrix theory (physics)">Matrix theory</a></li> <li><a href="/wiki/Introduction_to_M-theory" title="Introduction to M-theory">Introduction to M-theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">String theorists</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mina_Aganagi%C4%87" title="Mina Aganagić">Aganagić</a></li> <li><a href="/wiki/Nima_Arkani-Hamed" title="Nima Arkani-Hamed">Arkani-Hamed</a></li> <li><a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Atiyah</a></li> <li><a href="/wiki/Tom_Banks_(physicist)" title="Tom Banks (physicist)">Banks</a></li> <li><a href="/wiki/David_Berenstein" title="David Berenstein">Berenstein</a></li> <li><a href="/wiki/Raphael_Bousso" title="Raphael Bousso">Bousso</a></li> <li><a href="/wiki/Thomas_Curtright" title="Thomas Curtright">Curtright</a></li> <li><a href="/wiki/Robbert_Dijkgraaf" title="Robbert Dijkgraaf">Dijkgraaf</a></li> <li><a href="/wiki/Jacques_Distler" title="Jacques Distler">Distler</a></li> <li><a href="/wiki/Michael_R._Douglas" title="Michael R. Douglas">Douglas</a></li> <li><a href="/wiki/Michael_Duff_(physicist)" title="Michael Duff (physicist)">Duff</a></li> <li><a href="/wiki/Gia_Dvali" class="mw-redirect" title="Gia Dvali">Dvali</a></li> <li><a href="/wiki/Sergio_Ferrara" title="Sergio Ferrara">Ferrara</a></li> <li><a href="/wiki/Willy_Fischler" title="Willy Fischler">Fischler</a></li> <li><a href="/wiki/Daniel_Friedan" title="Daniel Friedan">Friedan</a></li> <li><a href="/wiki/Sylvester_James_Gates" title="Sylvester James Gates">Gates</a></li> <li><a href="/wiki/Ferdinando_Gliozzi" title="Ferdinando Gliozzi">Gliozzi</a></li> <li><a href="/wiki/Rajesh_Gopakumar" title="Rajesh Gopakumar">Gopakumar</a></li> <li><a href="/wiki/Michael_Green_(physicist)" title="Michael Green (physicist)">Green</a></li> <li><a href="/wiki/Brian_Greene" title="Brian Greene">Greene</a></li> <li><a href="/wiki/David_Gross" title="David Gross">Gross</a></li> <li><a href="/wiki/Steven_Gubser" title="Steven Gubser">Gubser</a></li> <li><a href="/wiki/Sergei_Gukov" title="Sergei Gukov">Gukov</a></li> <li><a href="/wiki/Alan_Guth" title="Alan Guth">Guth</a></li> <li><a href="/wiki/Andrew_J._Hanson" title="Andrew J. Hanson">Hanson</a></li> <li><a href="/wiki/Jeffrey_A._Harvey" title="Jeffrey A. Harvey">Harvey</a></li> <li><a href="/wiki/Gerard_%27t_Hooft" title="Gerard &#39;t Hooft">'t Hooft</a></li> <li><a href="/wiki/Petr_Ho%C5%99ava_(theorist)" class="mw-redirect" title="Petr Hořava (theorist)">Hořava</a></li> <li><a href="/wiki/Gary_Gibbons" title="Gary Gibbons">Gibbons</a></li> <li><a href="/wiki/Shamit_Kachru" title="Shamit Kachru">Kachru</a></li> <li><a href="/wiki/Michio_Kaku" title="Michio Kaku">Kaku</a></li> <li><a href="/wiki/Renata_Kallosh" title="Renata Kallosh">Kallosh</a></li> <li><a href="/wiki/Theodor_Kaluza" title="Theodor Kaluza">Kaluza</a></li> <li><a href="/wiki/Anton_Kapustin" title="Anton Kapustin">Kapustin</a></li> <li><a href="/wiki/Igor_Klebanov" title="Igor Klebanov">Klebanov</a></li> <li><a href="/wiki/Vadim_Knizhnik" title="Vadim Knizhnik">Knizhnik</a></li> <li><a href="/wiki/Maxim_Kontsevich" title="Maxim Kontsevich">Kontsevich</a></li> <li><a href="/wiki/Oskar_Klein" title="Oskar Klein">Klein</a></li> <li><a href="/wiki/Andrei_Linde" title="Andrei Linde">Linde</a></li> <li><a href="/wiki/Juan_Mart%C3%ADn_Maldacena" class="mw-redirect" title="Juan Martín Maldacena">Maldacena</a></li> <li><a href="/wiki/Stanley_Mandelstam" title="Stanley Mandelstam">Mandelstam</a></li> <li><a href="/wiki/Donald_Marolf" title="Donald Marolf">Marolf</a></li> <li><a href="/wiki/Emil_Martinec" title="Emil Martinec">Martinec</a></li> <li><a href="/wiki/Shiraz_Minwalla" title="Shiraz Minwalla">Minwalla</a></li> <li><a href="/wiki/Greg_Moore_(physicist)" title="Greg Moore (physicist)">Moore</a></li> <li><a href="/wiki/Lubo%C5%A1_Motl" title="Luboš Motl">Motl</a></li> <li><a href="/wiki/Sunil_Mukhi" title="Sunil Mukhi">Mukhi</a></li> <li><a href="/wiki/Robert_Myers_(physicist)" title="Robert Myers (physicist)">Myers</a></li> <li><a href="/wiki/Dimitri_Nanopoulos" title="Dimitri Nanopoulos">Nanopoulos</a></li> <li><a href="/wiki/Hora%C8%9Biu_N%C4%83stase" title="Horațiu Năstase">Năstase</a></li> <li><a href="/wiki/Nikita_Nekrasov" title="Nikita Nekrasov">Nekrasov</a></li> <li><a href="/wiki/Andr%C3%A9_Neveu" title="André Neveu">Neveu</a></li> <li><a href="/wiki/Holger_Bech_Nielsen" title="Holger Bech Nielsen">Nielsen</a></li> <li><a href="/wiki/Peter_van_Nieuwenhuizen" title="Peter van Nieuwenhuizen">van Nieuwenhuizen</a></li> <li><a href="/wiki/Sergei_Novikov_(mathematician)" title="Sergei Novikov (mathematician)">Novikov</a></li> <li><a href="/wiki/David_Olive" title="David Olive">Olive</a></li> <li><a href="/wiki/Hirosi_Ooguri" title="Hirosi Ooguri">Ooguri</a></li> <li><a href="/wiki/Burt_Ovrut" title="Burt Ovrut">Ovrut</a></li> <li><a href="/wiki/Joseph_Polchinski" title="Joseph Polchinski">Polchinski</a></li> <li><a href="/wiki/Alexander_Markovich_Polyakov" title="Alexander Markovich Polyakov">Polyakov</a></li> <li><a href="/wiki/Arvind_Rajaraman" title="Arvind Rajaraman">Rajaraman</a></li> <li><a href="/wiki/Pierre_Ramond" title="Pierre Ramond">Ramond</a></li> <li><a href="/wiki/Lisa_Randall" title="Lisa Randall">Randall</a></li> <li><a href="/wiki/Seifallah_Randjbar-Daemi" title="Seifallah Randjbar-Daemi">Randjbar-Daemi</a></li> <li><a href="/wiki/Martin_Ro%C4%8Dek" title="Martin Roček">Roček</a></li> <li><a href="/wiki/Ryan_Rohm" title="Ryan Rohm">Rohm</a></li> <li><a href="/wiki/Augusto_Sagnotti" title="Augusto Sagnotti">Sagnotti</a></li> <li><a href="/wiki/Jo%C3%ABl_Scherk" title="Joël Scherk">Scherk</a></li> <li><a href="/wiki/John_Henry_Schwarz" title="John Henry Schwarz">Schwarz</a></li> <li><a href="/wiki/Nathan_Seiberg" title="Nathan Seiberg">Seiberg</a></li> <li><a href="/wiki/Ashoke_Sen" title="Ashoke Sen">Sen</a></li> <li><a href="/wiki/Stephen_Shenker" title="Stephen Shenker">Shenker</a></li> <li><a href="/wiki/Warren_Siegel" title="Warren Siegel">Siegel</a></li> <li><a href="/wiki/Eva_Silverstein" title="Eva Silverstein">Silverstein</a></li> <li><a href="/wiki/%C4%90%C3%A0m_Thanh_S%C6%A1n" title="Đàm Thanh Sơn">Sơn</a></li> <li><a href="/wiki/Matthias_Staudacher" title="Matthias Staudacher">Staudacher</a></li> <li><a href="/wiki/Paul_Steinhardt" title="Paul Steinhardt">Steinhardt</a></li> <li><a href="/wiki/Andrew_Strominger" title="Andrew Strominger">Strominger</a></li> <li><a href="/wiki/Raman_Sundrum" title="Raman Sundrum">Sundrum</a></li> <li><a href="/wiki/Leonard_Susskind" title="Leonard Susskind">Susskind</a></li> <li><a href="/wiki/Paul_Townsend" title="Paul Townsend">Townsend</a></li> <li><a href="/wiki/Sandip_Trivedi" title="Sandip Trivedi">Trivedi</a></li> <li><a href="/wiki/Neil_Turok" title="Neil Turok">Turok</a></li> <li><a href="/wiki/Cumrun_Vafa" title="Cumrun Vafa">Vafa</a></li> <li><a href="/wiki/Gabriele_Veneziano" title="Gabriele Veneziano">Veneziano</a></li> <li><a href="/wiki/Erik_Verlinde" title="Erik Verlinde">Verlinde</a></li> <li><a href="/wiki/Herman_Verlinde" title="Herman Verlinde">Verlinde</a></li> <li><a href="/wiki/Julius_Wess" title="Julius Wess">Wess</a></li> <li><a href="/wiki/Edward_Witten" title="Edward Witten">Witten</a></li> <li><a href="/wiki/Shing-Tung_Yau" title="Shing-Tung Yau">Yau</a></li> <li><a href="/wiki/Tamiaki_Yoneya" title="Tamiaki Yoneya">Yoneya</a></li> <li><a href="/wiki/Alexander_Zamolodchikov" title="Alexander Zamolodchikov">Zamolodchikov</a></li> <li><a href="/wiki/Alexei_Zamolodchikov" title="Alexei Zamolodchikov">Zamolodchikov</a></li> <li><a href="/wiki/Eric_Zaslow" title="Eric Zaslow">Zaslow</a></li> <li><a href="/wiki/Bruno_Zumino" title="Bruno Zumino">Zumino</a></li> <li><a href="/wiki/Barton_Zwiebach" title="Barton Zwiebach">Zwiebach</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Standard_Model" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Standard_model_of_physics" title="Template:Standard model of physics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Standard_model_of_physics" title="Template talk:Standard model of physics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Standard_model_of_physics" title="Special:EditPage/Template:Standard model of physics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Standard_Model" style="font-size:114%;margin:0 4em"><a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Particle_physics" title="Particle physics">Particle physics</a> <ul><li><a href="/wiki/Fermion" title="Fermion">Fermions</a></li> <li><a href="/wiki/Gauge_boson" title="Gauge boson">Gauge boson</a></li> <li><a href="/wiki/Higgs_boson" title="Higgs boson">Higgs boson</a></li></ul></li> <li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a></li> <li><a href="/wiki/Gauge_theory" title="Gauge theory">Gauge theory</a></li> <li><a href="/wiki/Strong_interaction" title="Strong interaction">Strong interaction</a> <ul><li><a href="/wiki/Color_charge" title="Color charge">Color charge</a></li> <li><a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">Quantum chromodynamics</a></li> <li><a href="/wiki/Quark_model" title="Quark model">Quark model</a></li></ul></li> <li><a href="/wiki/Electroweak_interaction" title="Electroweak interaction">Electroweak interaction</a> <ul><li><a href="/wiki/Weak_interaction" title="Weak interaction">Weak interaction</a></li> <li><a href="/wiki/Quantum_electrodynamics" title="Quantum electrodynamics">Quantum electrodynamics</a></li> <li><a href="/wiki/Fermi%27s_interaction" title="Fermi&#39;s interaction">Fermi's interaction</a></li> <li><a href="/wiki/Weak_hypercharge" title="Weak hypercharge">Weak hypercharge</a></li> <li><a href="/wiki/Weak_isospin" title="Weak isospin">Weak isospin</a></li></ul></li></ul> </div></td><td class="noviewer navbox-image" rowspan="4" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standard_Model_of_Elementary_Particles.svg/150px-Standard_Model_of_Elementary_Particles.svg.png" decoding="async" width="150" height="144" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standard_Model_of_Elementary_Particles.svg/225px-Standard_Model_of_Elementary_Particles.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standard_Model_of_Elementary_Particles.svg/300px-Standard_Model_of_Elementary_Particles.svg.png 2x" data-file-width="1390" data-file-height="1330" /></span></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Constituents</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix" title="Cabibbo–Kobayashi–Maskawa matrix">CKM matrix</a></li> <li><a href="/wiki/Spontaneous_symmetry_breaking" title="Spontaneous symmetry breaking">Spontaneous symmetry breaking</a></li> <li><a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a></li> <li><a href="/wiki/Mathematical_formulation_of_the_Standard_Model" title="Mathematical formulation of the Standard Model">Mathematical formulation of the Standard Model</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Physics_beyond_the_Standard_Model" title="Physics beyond the Standard Model">Beyond the<br />Standard Model</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Evidence</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hierarchy_problem" title="Hierarchy problem">Hierarchy problem</a></li> <li><a href="/wiki/Dark_matter" title="Dark matter">Dark matter</a></li> <li><a href="/wiki/Cosmological_constant" title="Cosmological constant">Cosmological constant</a> <ul><li><a href="/wiki/Cosmological_constant_problem" title="Cosmological constant problem">problem</a></li></ul></li> <li><a href="/wiki/CP_violation" title="CP violation">Strong CP problem</a></li> <li><a href="/wiki/Neutrino_oscillation" title="Neutrino oscillation">Neutrino oscillation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theories</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Technicolor_(physics)" title="Technicolor (physics)">Technicolor</a></li> <li><a class="mw-selflink selflink">Kaluza–Klein theory</a></li> <li><a href="/wiki/Grand_Unified_Theory" title="Grand Unified Theory">Grand Unified Theory</a></li> <li><a href="/wiki/Theory_of_everything" title="Theory of everything">Theory of everything</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Supersymmetry" title="Supersymmetry">Supersymmetry</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Minimal_Supersymmetric_Standard_Model" title="Minimal Supersymmetric Standard Model">MSSM</a></li> <li><a href="/wiki/Next-to-Minimal_Supersymmetric_Standard_Model" title="Next-to-Minimal Supersymmetric Standard Model">NMSSM</a></li> <li><a href="/wiki/Split_supersymmetry" title="Split supersymmetry">Split supersymmetry</a></li> <li><a href="/wiki/Supergravity" title="Supergravity">Supergravity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/String_theory" title="String theory">String theory</a></li> <li><a href="/wiki/Superstring_theory" title="Superstring theory">Superstring theory</a></li> <li><a href="/wiki/Loop_quantum_gravity" title="Loop quantum gravity">Loop quantum gravity</a></li> <li><a href="/wiki/Causal_dynamical_triangulation" title="Causal dynamical triangulation">Causal dynamical triangulation</a></li> <li><a href="/wiki/Canonical_quantum_gravity" title="Canonical quantum gravity">Canonical quantum gravity</a></li> <li><a href="/wiki/Superfluid_vacuum_theory" title="Superfluid vacuum theory">Superfluid vacuum theory</a></li> <li><a href="/wiki/Twistor_theory" title="Twistor theory">Twistor theory</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Experiments</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Laboratori_Nazionali_del_Gran_Sasso" title="Laboratori Nazionali del Gran Sasso">Gran Sasso</a></li> <li><a href="/wiki/India-based_Neutrino_Observatory" title="India-based Neutrino Observatory">INO</a></li> <li><a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">LHC</a></li> <li><a href="/wiki/Sudbury_Neutrino_Observatory" title="Sudbury Neutrino Observatory">SNO</a></li> <li><a href="/wiki/Super-Kamiokande" title="Super-Kamiokande">Super-K</a></li> <li><a href="/wiki/Tevatron" title="Tevatron">Tevatron</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Standard_Model" title="Category:Standard Model">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <b><a href="https://commons.wikimedia.org/wiki/Category:Standard_Model_(physics)" class="extiw" title="commons:Category:Standard Model (physics)">Commons</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q944095#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q944095#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q944095#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4224276-9">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh86006241">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb12290058z">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb12290058z">BnF data</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007565948805171">Israel</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.idref.fr/031741746">IdRef</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐hbx8z Cached time: 20241122140730 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.928 seconds Real time usage: 1.306 seconds Preprocessor visited node count: 4926/1000000 Post‐expand include size: 242263/2097152 bytes Template argument size: 4065/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 8/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 192711/5000000 bytes Lua time usage: 0.519/10.000 seconds Lua memory usage: 9594752/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 839.843 1 -total 31.46% 264.205 1 Template:Reflist 25.77% 216.423 30 Template:Cite_journal 15.10% 126.789 1 Template:Beyond_the_Standard_Model 14.82% 124.435 1 Template:Sidebar_with_collapsible_lists 9.02% 75.727 1 Template:Short_description 8.23% 69.135 9 Template:Navbox 7.89% 66.253 1 Template:Primary_sources 7.74% 64.980 2 Template:Ambox 6.02% 50.533 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:idhash:17070-0!canonical and timestamp 20241122140730 and revision id 1251527061. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Kaluza–Klein_theory&amp;oldid=1251527061">https://en.wikipedia.org/w/index.php?title=Kaluza–Klein_theory&amp;oldid=1251527061</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Theories_of_gravity" title="Category:Theories of gravity">Theories of gravity</a></li><li><a href="/wiki/Category:Particle_physics" title="Category:Particle physics">Particle physics</a></li><li><a href="/wiki/Category:Physical_cosmology" title="Category:Physical cosmology">Physical cosmology</a></li><li><a href="/wiki/Category:String_theory" title="Category:String theory">String theory</a></li><li><a href="/wiki/Category:Physics_beyond_the_Standard_Model" title="Category:Physics beyond the Standard Model">Physics beyond the Standard Model</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_lacking_reliable_references_from_January_2023" title="Category:Articles lacking reliable references from January 2023">Articles lacking reliable references from January 2023</a></li><li><a href="/wiki/Category:All_articles_lacking_reliable_references" title="Category:All articles lacking reliable references">All articles lacking reliable references</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_September_2023" title="Category:Wikipedia articles needing clarification from September 2023">Wikipedia articles needing clarification from September 2023</a></li><li><a href="/wiki/Category:Articles_to_be_expanded_from_February_2015" title="Category:Articles to be expanded from February 2015">Articles to be expanded from February 2015</a></li><li><a href="/wiki/Category:All_articles_to_be_expanded" title="Category:All articles to be expanded">All articles to be expanded</a></li><li><a href="/wiki/Category:Articles_with_empty_sections_from_February_2015" title="Category:Articles with empty sections from February 2015">Articles with empty sections from February 2015</a></li><li><a href="/wiki/Category:All_articles_with_empty_sections" title="Category:All articles with empty sections">All articles with empty sections</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_February_2017" title="Category:Articles with unsourced statements from February 2017">Articles with unsourced statements from February 2017</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_June_2024" title="Category:Articles with unsourced statements from June 2024">Articles with unsourced statements from June 2024</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 16 October 2024, at 16:14<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Kaluza%E2%80%93Klein_theory&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-bxzm6","wgBackendResponseTime":124,"wgPageParseReport":{"limitreport":{"cputime":"0.928","walltime":"1.306","ppvisitednodes":{"value":4926,"limit":1000000},"postexpandincludesize":{"value":242263,"limit":2097152},"templateargumentsize":{"value":4065,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":192711,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 839.843 1 -total"," 31.46% 264.205 1 Template:Reflist"," 25.77% 216.423 30 Template:Cite_journal"," 15.10% 126.789 1 Template:Beyond_the_Standard_Model"," 14.82% 124.435 1 Template:Sidebar_with_collapsible_lists"," 9.02% 75.727 1 Template:Short_description"," 8.23% 69.135 9 Template:Navbox"," 7.89% 66.253 1 Template:Primary_sources"," 7.74% 64.980 2 Template:Ambox"," 6.02% 50.533 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.519","limit":"10.000"},"limitreport-memusage":{"value":9594752,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-hbx8z","timestamp":"20241122140730","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Kaluza\u2013Klein theory","url":"https:\/\/en.wikipedia.org\/wiki\/Kaluza%E2%80%93Klein_theory","sameAs":"http:\/\/www.wikidata.org\/entity\/Q944095","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q944095","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-10-29T13:36:11Z","dateModified":"2024-10-16T16:14:57Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/1\/1c\/CMS_Higgs-event.jpg","headline":"field theory on a spacetime with small, compact extra dimensions beyond the large observed dimensions"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10