CINXE.COM

Search results for: adhesive and adhesion

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: adhesive and adhesion</title> <meta name="description" content="Search results for: adhesive and adhesion"> <meta name="keywords" content="adhesive and adhesion"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="adhesive and adhesion" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="adhesive and adhesion"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 647</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: adhesive and adhesion</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">647</span> Biomimetic Adhesive Pads for Precision Manufacturing Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Yi">Hoon Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Sung"> Minho Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangil%20Ko"> Hangil Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Kyu%20Kwak"> Moon Kyu Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Eui%20Jeong"> Hoon Eui Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the remarkable adhesion properties of gecko lizards, bio-inspired dry adhesives with smart adhesion properties have been developed in the last decade. Compared to earlier dry adhesives, the recently developed ones exhibit excellent adhesion strength, smart directional adhesion, and structural robustness. With these unique adhesion properties, bio-inspired dry adhesive pads have strong potential for use in precision industries such as semiconductor or display manufacturing. In this communication, we present a new manufacturing technology based on advanced dry adhesive systems that enable precise manipulation of large-area substrates over repeating cycles without any requirement for external force application. This new manufacturing technique is also highly accurate and environment-friendly, and thus has strong potential as a next-generation clean manufacturing technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gecko" title="gecko">gecko</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20robot" title=" manufacturing robot"> manufacturing robot</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20manufacturing" title=" precision manufacturing"> precision manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/38058/biomimetic-adhesive-pads-for-precision-manufacturing-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">646</span> The Evaluation for Interfacial Adhesion between SOFC and Metal Adhesive in the High Temperature Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Koo%20Jeon">Sang Koo Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Hoon%20Nahm"> Seung Hoon Nahm</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh%20Heon%20Kwon"> Oh Heon Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unit cell of solid oxide fuel cell (SOFC) must be stacked as several layers type to obtain the high power. The most of researcher have concerned about the performance of stacked SOFC rather than the structural stability of stacked SOFC and especially interested how to design for reducing the electrical loss and improving the high efficiency. Consequently, the stacked SOFC able to produce the electrical high power and related parts like as manifold, gas seal, bipolar plate were developed to optimize the stack design. However, the unit cell of SOFC was just layered on the interconnector without the adhesion and the hydrogen and oxygen were injected to the interfacial layer in the high temperature. On the operating condition, the interfacial layer can be the one of the weak point in the stacked SOFC. Therefore the evaluation of the structural safety for the failure is essentially needed. In this study, interfacial adhesion between SOFC and metal adhesive was estimated in the high temperature environment. The metal adhesive was used to strongly connect the unit cell of SOFC with interconnector and provide the electrical conductivity between them. The four point bending test was performed to measure the interfacial adhesion. The unit cell of SOFC and SiO2 wafer were diced and then attached by metal adhesive. The SiO2 wafer had the center notch to initiate a crack from the tip of the notch. The modified stereomicroscope combined with the CCD camera and system for measuring the length was used to observe the fracture behavior. Additionally, the interfacial adhesion was evaluated in the high temperature condition because the metal adhesive was affected by high temperature. Also the specimen was exposed in the furnace during several hours and then the interfacial adhesion was evaluated. Finally, the interfacial adhesion energy was quantitatively determined and compared in the each condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide%20fuel%20cell%20%28SOFC%29" title="solid oxide fuel cell (SOFC)">solid oxide fuel cell (SOFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20adhesive" title=" metal adhesive"> metal adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a> </p> <a href="https://publications.waset.org/abstracts/13959/the-evaluation-for-interfacial-adhesion-between-sofc-and-metal-adhesive-in-the-high-temperature-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">645</span> Evaluation of the Elastic Mechanical Properties of a Hybrid Adhesive Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moudar%20H.%20A.%20Zgoul">Moudar H. A. Zgoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Al%20Zamer"> Amin Al Zamer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesive materials and adhesion have been the focal point of multiple research works related to numerous applications, particularly, aerospace, and aviation industries. To enhance the properties of conventional adhesive materials, additives have been introduced to the mix in order to enhance their mechanical and physical properties by creating a hybrid adhesive material. The evaluation of the mechanical properties of such hybrid adhesive materials is thus of an essential requirement for the purpose of properly modeling their behavior accurately. This paper presents an approach/tool to simulate the behavior such hybrid adhesives in a way that will allow researchers to better understand their behavior while in service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive%20materials" title="adhesive materials">adhesive materials</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20adhesives" title=" hybrid adhesives"> hybrid adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/83532/evaluation-of-the-elastic-mechanical-properties-of-a-hybrid-adhesive-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">644</span> Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iris%20K%C3%A4ppler">Iris Käppler</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Matth%C3%A4i"> Paul Matthäi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokri%20Cherif"> Chokri Cherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the scope of application of technical textiles, Non-Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitch-free method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxyfluorination was used. The modification of carbon-fibres by oxyfluorination was investigated via scanning electron microscope, X-ray photo electron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-crimp%20fabric" title="non-crimp fabric">non-crimp fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive" title=" adhesive"> adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=stitch-free" title=" stitch-free"> stitch-free</a>, <a href="https://publications.waset.org/abstracts/search?q=high-performance%20fibre" title=" high-performance fibre"> high-performance fibre</a> </p> <a href="https://publications.waset.org/abstracts/11677/adhesion-problematic-for-novel-non-crimp-fabric-and-surface-modification-of-carbon-fibres-using-oxy-fluorination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">643</span> In Vitro Evaluation of a Chitosan-Based Adhesive to Treat Bone Fractures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20J.%20Cedano">Francisco J. Cedano</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20%20M.%20Pinz%C3%B3n"> Laura M. Pinzón</a>, <a href="https://publications.waset.org/abstracts/search?q=Camila%20I.%20Castro"> Camila I. Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Salcedo"> Felipe Salcedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20P.%20Casas"> Juan P. Casas</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20Brice%C3%B1o"> Juan C. Briceño</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex fractures located in articular surfaces are challenging to treat and their reduction with conventional treatments could compromise the functionality of the affected limb. An adhesive material to treat those fractures is desirable for orthopedic surgeons. This adhesive must be biocompatible and have a high adhesion to bone surface in an aqueous environment. The proposed adhesive is based on chitosan, given its adhesive and biocompatibility properties. Chitosan is mixed with calcium carbonate and hydroxyapatite, which contribute to structural support and a gel like behavior, and glutaraldehyde is used as a cross-linking agent to keep the adhesive mechanical performance in aqueous environment. This work aims to evaluate the rheological, adhesion strength and biocompatibility properties of the proposed adhesive using in vitro tests. The gelification process of the adhesive was monitored by oscillatory rheometry in an ARG-2 TA Instruments rheometer, using a parallel plate geometry of 22 mm and a gap of 1 mm. Time sweep experiments were conducted at 1 Hz frequency, 1% strain and 37°C from 0 to 2400 s. Adhesion strength is measured using a butt joint test with bovine cancellous bone fragments as substrates. The test is conducted at 5 min, 20min and 24 hours after curing the adhesive under water at 37°C. Biocompatibility is evaluated by a cytotoxicity test in a fibroblast cell culture using MTT assay and SEM. Rheological results concluded that the average gelification time of the adhesive is 820±107 s, also it reaches storage modulus magnitudes up to 106 Pa; The adhesive show solid-like behavior. Butt joint test showed 28.6 ± 9.2 kPa of tensile bond strength for the adhesive cured for 24 hours. Also there was no significant difference in adhesion strength between 20 minutes and 24 hours. MTT showed 70 ± 23 % of active cells at sixth day of culture, this percentage is estimated respect to a positive control (only cells with culture medium and bovine serum). High vacuum SEM observation permitted to localize and study the morphology of fibroblasts presented in the adhesive. All captured fibroblasts presented in SEM typical flatted structure with filopodia growth attached to adhesive surface. This project reports an adhesive based on chitosan that is biocompatible due to high active cells presented in MTT test and these results were correlated using SEM. Also, it has adhesion properties in conditions that model the clinical application, and the adhesion strength do not decrease between 5 minutes and 24 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioadhesive" title="bioadhesive">bioadhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20adhesive" title=" bone adhesive"> bone adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title=" calcium carbonate"> calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=glutaraldehyde" title=" glutaraldehyde"> glutaraldehyde</a> </p> <a href="https://publications.waset.org/abstracts/42598/in-vitro-evaluation-of-a-chitosan-based-adhesive-to-treat-bone-fractures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">642</span> Effect of UV/Ozone Treatment on the Adhesion Strength of Polymeric Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marouen%20Hamdi">Marouen Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20A.%20Poulis"> Johannes A. Poulis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the impact of UV/ozone treatment on the adhesion of ethylene propylene diene methylene (EPDM) rubber, polyvinyl chloride (PVC), and acrylonitrile butadiene styrene (ABS) materials. The experimental tests consist of contact angle measurements, standardized adhesion tests, and spectroscopic and microscopic observations. Also, commonly-used surface free energy models were applied to characterize the wettability of the materials. Preliminary results show that the treatment enhances the wettability of the examined polymers. Also, it considerably improved the adhesion strength of PVC and ABS and shifted their failure modes from adhesive to cohesive, without a significant effect on EPDM. Spectroscopic characterization showed significant oxidation-induced changes in the chemical structures of treated PVC and ABS surfaces. Also, new morphological changes (microcracks, micro-holes, and wrinkles) were observed on these two materials using the SEM. These chemical and morphological changes on treated PVC and ABS promote more reactivity and mechanical interlocking with the adhesive, which explains the improvement in their adhesion strength. After characterizing the adhesion strength of the systems, accelerated ageing tests in controlled environment chambers will be conducted to determine the effect of temperature, moisture, and UV radiation on the performance of the polymeric bonded joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20tests" title="accelerated tests">accelerated tests</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion%20strength" title=" adhesion strength"> adhesion strength</a>, <a href="https://publications.waset.org/abstracts/search?q=ageing%20of%20polymers" title=" ageing of polymers"> ageing of polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%2Fozone%20treatment" title=" UV/ozone treatment"> UV/ozone treatment</a> </p> <a href="https://publications.waset.org/abstracts/110983/effect-of-uvozone-treatment-on-the-adhesion-strength-of-polymeric-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">641</span> Force Measurement for E-Cadherin-Mediated Intercellular Adhesion Probed by Protein Micropattern and Traction Force Microscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chieh-Chung%20Tsou">Chieh-Chung Tsou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Min%20Lo"> Chun-Min Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeh-Shiu%20Chu"> Yeh-Shiu Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell’s mechanical forces provide important physical cues in regulation of proper cellular functions, such as cell differentiation, proliferation and migration. It is believed that adhesive forces generated by cell-cell interaction are able to transmit to the interior of cell through filamentous cortical cytoskeleton. Prominent among other membrane receptors, Cadherins are prototypical adhesive molecules able to generate remarkable forces to regulate intercellular adhesion. However, the mechanistic steps of mechano-transduction in Cadherin-mediated adhesion remain very controversial. We are interested in understanding how Cadherin protein complexes enable force generation and transmission at cell-cell contact in the initial stage of intercellular adhesion. For providing a better control of time, space, and substrate stiffness, in this study, a combination of protein micropattern, micropipette manipulation, and traction force microscopy is used. Pair micropattern with different forms confines cell spreading area and the gaps in pairs varied from 2 to 8 microns are applied for monitoring the forces that cell pairs generated, measured by traction force microscopy. Moreover, cell clones obtained from epithelial cells undergone genome editing are used to score the importance for known components of Cadherin complexes in force generation. We believe that our results from this combinatory mechanobiological method will provide deep insights on understanding the biophysical principle governing mechano- transduction of Cadherin-mediated intercellular adhesion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadherin" title="cadherin">cadherin</a>, <a href="https://publications.waset.org/abstracts/search?q=intercellular%20adhesion" title=" intercellular adhesion"> intercellular adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20micropattern" title=" protein micropattern"> protein micropattern</a>, <a href="https://publications.waset.org/abstracts/search?q=traction%20force%20microscopy" title=" traction force microscopy"> traction force microscopy</a> </p> <a href="https://publications.waset.org/abstracts/58816/force-measurement-for-e-cadherin-mediated-intercellular-adhesion-probed-by-protein-micropattern-and-traction-force-microscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">640</span> The Three-dimensional Response of Mussel Plaque Anchoring to Wet Substrates under Directional Tensions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingwei%20Hou">Yingwei Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Liu"> Tao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Pang"> Yong Pang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper explored the three-dimensional deformation of mussel plaques anchor to wet polydimethylsiloxane (PDMS) substrates under tension stress with different angles. Mussel plaques exhibiting natural adhesive structures, have attracted significant attention for their remarkable adhesion properties. Understanding their behavior under mechanical stress, particularly in a three-dimensional context, holds immense relevance for biomimetic material design and bio-inspired adhesive development. This study employed a novel approach to investigate the 3D deformation of the PDMS substrates anchored by mussel plaques subjected to controlled tension. Utilizing our customized stereo digital image correlation technique and mechanical mechanics analyses, we found the distributions of the displacement and resultant force on the substrate became concentrated under the plaque. Adhesion and sucking mechanisms were analyzed for the mussel plaque-substrate system under tension until detachment. The experimental findings were compared with a developed model using finite element analysis and the results provide new insights into mussels’ attachment mechanism. This research not only contributes to the fundamental understanding of biological adhesion but also holds promising implications for the design of innovative adhesive materials with applications in fields such as medical adhesives, underwater technologies, and industrial bonding. The comprehensive exploration of mussel plaque behavior in three dimensions is important for advancements in biomimicry and materials science, fostering the development of adhesives that emulate nature's efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion%20mechanism" title="adhesion mechanism">adhesion mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=mytilus%20edulis" title=" mytilus edulis"> mytilus edulis</a>, <a href="https://publications.waset.org/abstracts/search?q=mussel%20plaque" title=" mussel plaque"> mussel plaque</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo%20digital%20image%20correlation" title=" stereo digital image correlation"> stereo digital image correlation</a> </p> <a href="https://publications.waset.org/abstracts/182739/the-three-dimensional-response-of-mussel-plaque-anchoring-to-wet-substrates-under-directional-tensions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">639</span> The Influence of Fiber Fillers on the Bonding Safety of Wood-Adhesive Interfaces: A Fracture Energetic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Brandtner-Hafner">M. H. Brandtner-Hafner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesives have established themselves as an innovative joining technology in the wood industry. The strengths of adhesive bonding lie in the realization of lightweight designs, the avoidance of material weakening, and the joining of different types of materials. There is now a number of ways to positively influence the properties of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion, structural integrity, and fracture toughness. In this study, the effectiveness of fiber-modified adhesives for bonding wooden joints is reviewed. A series of experimental tests were performed using the fracture analytical GF-principle to study the adhesive bonding safety and performance of the wood-adhesive interface. Two different construction adhesives based on epoxy and PUR were modified with different fiber materials and applied to bond wooden joints. The results show that bonding efficiency by adding fibrous materials to the bonding matrix leads to significant improvements in structural material properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber-modified%20adhesives" title="fiber-modified adhesives">fiber-modified adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding%20safety" title=" bonding safety"> bonding safety</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-adhesive%20interfaces" title=" wood-adhesive interfaces"> wood-adhesive interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20analysis" title=" fracture analysis"> fracture analysis</a> </p> <a href="https://publications.waset.org/abstracts/137969/the-influence-of-fiber-fillers-on-the-bonding-safety-of-wood-adhesive-interfaces-a-fracture-energetic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">638</span> Development of Adhesive from Prosopis african Seed Endosperm (OKPEYI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florence%20%20Chinyere%20Nwangwu">Florence Chinyere Nwangwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosemary%20Ene"> Rosemary Ene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was carried out to develop an adhesive from Prosopis africana seed endosperm. The Prosopis seeds for this work were obtained from Enugu State in the South East part of Nigeria. The Prosopis seeds were prepared by separating the Prosopis endosperm from the seed coat and cotyledon. The dry adhesive gotten from the endosperm was later dissolved to get the adhesive solution. Confirmatory tests like viscosity, density, pH, and binding strength were carried out. The effect of time, temperature, concentration on the yield and properties of the adhesive were investigated. The results obtained showed that increase in concentration, time, temperature decreases the viscosity of the Prosopis adhesive and yield of Prosopis endosperm. It was also deduced that increase in viscosity increases the binding strength of the Prosopis adhesive. The percentage of the adhesive yield from Prosopis endosperm showed that the commercialization of the seed in Nigeria will be possible and profitable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive" title="adhesive">adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=Prosopis" title=" Prosopis"> Prosopis</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=endosperm" title=" endosperm"> endosperm</a> </p> <a href="https://publications.waset.org/abstracts/20735/development-of-adhesive-from-prosopis-african-seed-endosperm-okpeyi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">637</span> Computation of Thermal Stress Intensity Factor for Bonded Composite Repairs in Aircraft Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fay%C3%A7al%20Benyahia">Fayçal Benyahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmohsen%20Albedah"> Abdelmohsen Albedah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bel%20Abbes%20Bachir%20Bouiadjra"> Bel Abbes Bachir Bouiadjra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the Finite element method is used to analyse the effect of the thermal residual stresses resulting from adhesive curing on the performances of the bonded composite repair in aircraft structures. The stress intensity factor at the crack tip is chosen as fracture criterion in order to estimate the repair performances. The obtained results show that the presence of the thermal residual stresses reduces considerably the repair performances and consequently decreases the fatigue life of cracked structures. The effects of the curing temperature, the adhesive properties and the adhesive thickness on the Stress Intensity Factor (SIF) variation with thermal stresses are also analysed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonded%20composite%20repair" title="bonded composite repair">bonded composite repair</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20transfer" title=" stress transfer"> stress transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/5385/computation-of-thermal-stress-intensity-factor-for-bonded-composite-repairs-in-aircraft-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">636</span> Effect of Carbide Precipitates in Tool Steel on Material Transfer: A Molecular Dynamics Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tamer%20AlMotasem">Ahmed Tamer AlMotasem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Bergstr%C3%B6m"> Jens Bergström</a>, <a href="https://publications.waset.org/abstracts/search?q=Anders%20G%C3%A5%C3%A5rd"> Anders Gåård</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Krakhmalev"> Pavel Krakhmalev</a>, <a href="https://publications.waset.org/abstracts/search?q=Thijs%20Jan%20Holleboom"> Thijs Jan Holleboom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In sheet metal forming processes, accumulation and transfer of sheet material to tool surfaces, often referred to as galling, is the major cause of tool failure. Initiation of galling is assumed to occur due to local adhesive wear between two surfaces. Therefore, reducing adhesion between the tool and the work sheet has a great potential to improve the tool materials galling resistance. Experimental observations and theoretical studies show that the presence of primary micro-sized carbides and/or nitrides in alloyed steels may significantly improve galling resistance. Generally, decreased adhesion between the ceramic precipitates and the sheet material counter-surface are attributed as main reason to the latter observations. On the other hand, adhesion processes occur at an atomic scale and, hence, fundamental understanding of galling can be obtained via atomic scale simulations. In the present study, molecular dynamics simulations are used, with utilizing second nearest neighbor embedded atom method potential to investigate the influence of nano-sized cementite precipitates embedded in tool atoms. The main aim of the simulations is to gain new fundamental knowledge on galling initiation mechanisms. Two tool/work piece configurations, iron/iron and iron-cementite/iron, are studied under dry sliding conditions. We find that the average frictional force decreases whereas the normal force increases for the iron-cementite/iron system, in comparison to the iron/iron configuration. Moreover, the average friction coefficient between the tool/work-piece decreases by about 10 % for the iron-cementite/iron case. The increase of the normal force in the case of iron-cementite/iron system may be attributed to the high stiffness of cementite compared to bcc iron. In order to qualitatively explain the effect of cementite on adhesion, the adhesion force between self-mated iron/iron and cementite/iron surfaces has been determined and we found that iron/cementite surface exhibits lower adhesive force than that of iron-iron surface. The variation of adhesion force with temperature was investigated up to 600 K and we found that the adhesive force, generally, decreases with increasing temperature. Structural analyses show that plastic deformation is the main deformation mechanism of the work-piece, accompanied with dislocations generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=cementite" title=" cementite"> cementite</a>, <a href="https://publications.waset.org/abstracts/search?q=galling" title=" galling"> galling</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/37180/effect-of-carbide-precipitates-in-tool-steel-on-material-transfer-a-molecular-dynamics-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">635</span> An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Kara">Emre Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eura%20Karakuzu"> Şura Karakuzu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Fatih%20Geylan"> Ahmet Fatih Geylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Metehan%20Demir"> Metehan Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Ko%C3%A7"> Kadir Koç</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Aykul"> Halil Aykul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0°/90°] cross ply E-Glass Biaxial stitched, [0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion" title="adhesive and adhesion">adhesive and adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20foam" title=" aluminum foam"> aluminum foam</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse%20mechanisms" title=" collapse mechanisms"> collapse mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/27466/an-investigation-on-the-sandwich-panels-with-flexible-and-toughened-adhesives-under-flexural-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">634</span> Analyzing the Effects of Bio-fibers on the Stiffness and Strength of Adhesively Bonded Thermoplastic Bio-fiber Reinforced Composites by a Mixed Experimental-Numerical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofie%20Verstraete">Sofie Verstraete</a>, <a href="https://publications.waset.org/abstracts/search?q=Stijn%20Debruyne"> Stijn Debruyne</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederik%20Desplentere"> Frederik Desplentere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering environmental issues, the interest to apply sustainable materials in industry increases. Specifically for composites, there is an emerging need for suitable materials and bonding techniques. As an alternative to traditional composites, short bio-fiber (cellulose-based flax) reinforced Polylactic Acid (PLA) is gaining popularity. However, these thermoplastic based composites show issues in adhesive bonding. This research focusses on analyzing the effects of the fibers near the bonding interphase. The research applies injection molded plate structures. A first important parameter concerns the fiber volume fraction, which directly affects adhesion characteristics of the surface. This parameter is varied between 0 (pure PLA) and 30%. Next to fiber volume fraction, the orientation of fibers near the bonding surface governs the adhesion characteristics of the injection molded parts. This parameter is not directly controlled in this work, but its effects are analyzed. Surface roughness also greatly determines surface wettability, thus adhesion. Therefore, this research work considers three different roughness conditions. Different mechanical treatments yield values up to 0.5 mm. In this preliminary research, only one adhesive type is considered. This is a two-part epoxy which is cured at 23 °C for 48 hours. In order to assure a dedicated parametric study, simple and reproduceable adhesive bonds are manufactured. Both single lap (substrate width 25 mm, thickness 3 mm, overlap length 10 mm) and double lap tests are considered since these are well documented and quite straightforward to conduct. These tests are conducted for the different substrate and surface conditions. Dog bone tensile testing is applied to retrieve the stiffness and strength characteristics of the substrates (with different fiber volume fractions). Numerical modelling (non-linear FEA) relates the effects of the considered parameters on the stiffness and strength of the different joints, obtained through the abovementioned tests. Ongoing work deals with developing dedicated numerical models, incorporating the different considered adhesion parameters. Although this work is the start of an extensive research project on the bonding characteristics of thermoplastic bio-fiber reinforced composites, some interesting results are already prominent. Firstly, a clear correlation between the surface roughness and the wettability of the substrates is observed. Given the adhesive type (and viscosity), it is noticed that an increase in surface energy is proportional to the surface roughness, to some extent. This becomes more pronounced when fiber volume fraction increases. Secondly, ultimate bond strength (single lap) also increases with increasing fiber volume fraction. On a macroscopic level, this confirms the positive effect of fibers near the adhesive bond line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive%20bonding" title="adhesive bonding">adhesive bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-fiber%20reinforced%20composite" title=" bio-fiber reinforced composite"> bio-fiber reinforced composite</a>, <a href="https://publications.waset.org/abstracts/search?q=flax%20fibers" title=" flax fibers"> flax fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=lap%20joint" title=" lap joint"> lap joint</a> </p> <a href="https://publications.waset.org/abstracts/123388/analyzing-the-effects-of-bio-fibers-on-the-stiffness-and-strength-of-adhesively-bonded-thermoplastic-bio-fiber-reinforced-composites-by-a-mixed-experimental-numerical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">633</span> Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Waichman">Sharon Waichman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahaf%20Froim"> Shahaf Froim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ido%20Zukerman"> Ido Zukerman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmuel%20Barzilai"> Shmuel Barzilai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmual%20Hayun"> Shmual Hayun</a>, <a href="https://publications.waset.org/abstracts/search?q=Avi%20Raveh"> Avi Raveh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide%20coatings" title=" boron carbide coatings"> boron carbide coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%2Fmetal%20bond" title=" ceramic/metal bond"> ceramic/metal bond</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediate%20layer" title=" intermediate layer"> intermediate layer</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed-DC%20magnetron%20sputtering" title=" pulsed-DC magnetron sputtering"> pulsed-DC magnetron sputtering</a> </p> <a href="https://publications.waset.org/abstracts/107246/adhesion-enhancement-of-boron-carbide-coatings-on-aluminum-substrates-utilizing-an-intermediate-adhesive-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">632</span> The Effect of Adhesion on the Frictional Hysteresis Loops at a Rough Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bazrafshan">M. Bazrafshan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20de%20Rooij"> M. B. de Rooij</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Schipper"> D. J. Schipper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frictional hysteresis is the phenomenon in which mechanical contacts are subject to small (compared to contact area) oscillating tangential displacements. In the presence of adhesion at the interface, the contact repulsive force increases leading to a higher static friction force and pre-sliding displacement. This paper proposes a boundary element model (BEM) for the adhesive frictional hysteresis contact at the interface of two contacting bodies of arbitrary geometries. In this model, adhesion is represented by means of a Dugdale approximation of the total work of adhesion at local areas with a very small gap between the two bodies. The frictional contact is divided into sticking and slipping regions in order to take into account the transition from stick to slip (pre-sliding regime). In the pre-sliding regime, the stick and slip regions are defined based on the local values of shear stress and normal pressure. In the studied cases, a fixed normal force is applied to the interface and the friction force varies in such a way to start gross sliding in one direction reciprocally. For the first case, the problem is solved at the smooth interface between a ball and a flat for different values of work of adhesion. It is shown that as the work of adhesion increases, both static friction and pre-sliding distance increase due to the increase in the contact repulsive force. For the second case, the rough interface between a glass ball against a silicon wafer and a DLC (Diamond-Like Carbon) coating is considered. The work of adhesion is assumed to be identical for both interfaces. As adhesion depends on the interface roughness, the corresponding contact repulsive force is different for these interfaces. For the smoother interface, a larger contact repulsive force and consequently, a larger static friction force and pre-sliding distance are observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20model" title="boundary element model">boundary element model</a>, <a href="https://publications.waset.org/abstracts/search?q=frictional%20hysteresis" title=" frictional hysteresis"> frictional hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-sliding" title=" pre-sliding"> pre-sliding</a> </p> <a href="https://publications.waset.org/abstracts/98974/the-effect-of-adhesion-on-the-frictional-hysteresis-loops-at-a-rough-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">631</span> New Techniques to Decrease the Interfacial Stress in Steel Beams Strengthened With FRP Laminates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Bouchikhi">A. S. Bouchikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Megueni"> A. Megueni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Habibi"> S. Habibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One major problem when using bonded Fiber Reinforced Polymer is the presence of high inter facial stresses near the end of the composite laminate which might govern the failure of the strengthening schedule. It is known that the decrease of FRP plate thickness and the fitness of adhesive reduce the stress concentration at plate ends. Another way is to use a plate with a non uniform section or tapered ends and softer adhesive at the edges. In this paper, a comprehensive finite element (FE) study has been conducted to investigate the effect of mixed adhesive joints (MAJ) and tapering plate on the inter facial stress distribution in the adhesive layer, this paper presents the results of a study of application of two adhesives with different stiffnesses (bi-adhesive) along the joint strength length between the CFRP-strengthened steel beam for tapered and untapered plate on the distribution of inter facial stresses. A stiff adhesive was applied in the middle portion of the joint strength, while a low modulus adhesive was applied towards the edges prone to stress concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FRP" title="FRP">FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20adhesive%20joints" title=" mixed adhesive joints"> mixed adhesive joints</a>, <a href="https://publications.waset.org/abstracts/search?q=stresses" title=" stresses"> stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=tapered%20plate" title=" tapered plate"> tapered plate</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofitted%20beams%20bonded" title=" retrofitted beams bonded"> retrofitted beams bonded</a> </p> <a href="https://publications.waset.org/abstracts/19553/new-techniques-to-decrease-the-interfacial-stress-in-steel-beams-strengthened-with-frp-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">630</span> Studying the Load Sharing and Failure Mechanism of Hybrid Composite Joints Using Experiment and Finite Element Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Mohammad%20Hasheminia">Seyyed Mohammad Hasheminia</a>, <a href="https://publications.waset.org/abstracts/search?q=Heoung%20Jae%20Chun"> Heoung Jae Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Chan%20Park"> Jong Chan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Suk%20Chang"> Hong Suk Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite joints have been getting attention recently due to their high specific mechanical strength to weight ratio that is crucial for structures such as aircrafts and automobiles. In this study on hybrid joints, quasi-static experiments and finite element analysis were performed to investigate the failure mechanism of hybrid composite joint with respect to the joint properties such as the adhesive material, clamping force, and joint geometry. The outcomes demonstrated that the stiffness of the adhesive is the most imperative design parameter. In this investigation, two adhesives with various stiffness values were utilized. Regarding the joints utilizing the adhesive with the lower stiffness modulus, it was observed that the load was exchanged promptly through the adhesive since it was shared more proficiently between the bolt and adhesive. This phenomenon permitted the hybrid joints with low-modulus adhesive to support more prominent loads before failure when contrasted with the joints that utilize the stiffer adhesive. In the next step, the stress share between the bond and bolt as a function of various design parameters was studied using a finite element model in which it was understood that the geometrical parameters such as joint overlap and width have a significant influence on the load sharing between the bolt and the adhesive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20joints" title="composite joints">composite joints</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20joints" title=" hybrid joints"> hybrid joints</a>, <a href="https://publications.waset.org/abstracts/search?q=single-lap%20joint" title=" single-lap joint"> single-lap joint</a> </p> <a href="https://publications.waset.org/abstracts/85844/studying-the-load-sharing-and-failure-mechanism-of-hybrid-composite-joints-using-experiment-and-finite-element-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">629</span> Sulfanilamide/Epoxy Resin and Its Application as Tackifier in Epoxy Adhesives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oiane%20Ruiz%20de%20Azua">Oiane Ruiz de Azua</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvador%20Borros"> Salvador Borros</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuria%20Agullo"> Nuria Agullo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordi%20Arbusa"> Jordi Arbusa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tackiness is described as the ability to spontaneously form a bond to another material under light pressures within a short application time. During the first few minutes of the adhesive's curing, it is necessary to have enough tack to keep the substrates together while cohesion is increasing within the adhesive. This property plays a key role in the manufacturing process of pieces. Epoxy adhesives, unlike other adhesives, usually present low tackiness before curing; however, there is very little literature about the use of tackifiers in epoxy adhesives, except for the high molecular weight epoxy additives. In the present work, a tetrafunctional epoxy resin based on Bisphenol-A and Sulfanilamide has been synthesized in order to be used as a tackifier. This additive offers improved specific adhesion to two-component (2K) epoxy adhesives. The dosage of the tackifier has to be done carefully not to alter the mechanical and rheological properties of the adhesive. The synthetized product has been analyzed by FTIR and ¹H-NMR analysis, and the effect of the addition of 1 wt % of the tackifier on rheological properties, viscoelastic behavior, and mechanical properties has been studied. On one hand, the addition of the product in the epoxy resin part showed a significant increase in tackiness regarding the neat epoxy resin. On the other hand, tackiness of the whole formulation was also increased. Curing time of the adhesive has not undergone any relevant changes with the tackifier addition. Regarding viscoelastic properties, Storage Modulus (G') and Loss Modulus (G'') remain also unchanged at ambient temperature. Probably, in case higher tackifier concentration would be added, differences in viscoelastic properties would be observed. The study of mechanical properties shows that hardness and tensile strength also keep their values unchanged regarding neat two component adhesive. In conclusion, the addition of 1 wt % of sulfanilamide/epoxy enhanced the tackiness of the epoxy resin part, improves tack without modifying significantly either the rheological, the mechanical, or the viscoelastic properties of the product. Thus, the sulfanilamide presented could be a good candidate to be used as an additive to the 2k epoxy formulation for the manufacturing process of pieces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20adhesive" title="epoxy adhesive">epoxy adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20process%20of%20pieces" title=" manufacturing process of pieces"> manufacturing process of pieces</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfanilamide" title=" sulfanilamide"> sulfanilamide</a>, <a href="https://publications.waset.org/abstracts/search?q=tackifiers" title=" tackifiers"> tackifiers</a> </p> <a href="https://publications.waset.org/abstracts/131587/sulfanilamideepoxy-resin-and-its-application-as-tackifier-in-epoxy-adhesives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">628</span> Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaid%20A.%20Janjua">Zaid A. Janjua</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Turnbull"> Barbara Turnbull</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwing-So%20Choi"> Kwing-So Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20adhesion" title="ice adhesion">ice adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifuge" title=" centrifuge"> centrifuge</a>, <a href="https://publications.waset.org/abstracts/search?q=glaze%20ice" title=" glaze ice"> glaze ice</a>, <a href="https://publications.waset.org/abstracts/search?q=freezing%20temperature" title=" freezing temperature"> freezing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20temperature" title=" ambient temperature"> ambient temperature</a> </p> <a href="https://publications.waset.org/abstracts/60459/centrifuge-testing-to-determine-the-effect-of-temperature-on-the-adhesion-strength-of-ice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">627</span> Modification of Polyurethane Adhesive for OSB/EPS Panel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stepan%20Hysek">Stepan Hysek</a>, <a href="https://publications.waset.org/abstracts/search?q=Premysl%20Sedivka"> Premysl Sedivka</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Gajdacova"> Petra Gajdacova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, structural composite materials contain cellulose-based particles (wood chips, fibers) bonded with synthetic adhesives containing formaldehyde (urea-formaldehyde, melamine-formaldehyde adhesives and others). Formaldehyde is classified as a volatile substance with provable carcinogenic effects on live organisms, and an emphasis has been put on continual reduction of its content in products. One potential solution could be the development of an agglomerated material which does not contain adhesives releasing formaldehyde. A potential alternative to formaldehyde-based adhesives could be polyurethane adhesives containing no formaldehyde. Such adhesives have been increasingly used in applications where a few years ago formaldehyde-based adhesives were the only option. Advantages of polyurethane adhesive in comparison with others in the industry include the high elasticity of the joint, which is able to resist dynamic stress, and resistance to increased humidity and climatic effects. These properties predict polyurethane adhesives to be used in OSB/EPS panel production. The objective of this paper is to develop an adhesive for bonding of sandwich panels made of material based on wood and other materials, e.g. SIP) and optimization of input components in order to obtain an adhesive with required properties suitable for bonding of the given materials without involvement of formaldehyde. It was found that polyurethane recyclate as a filler is suitable modification of polyurethane adhesive and results have clearly revealed that modified adhesive can be used for OSB/EPS panel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive" title="adhesive">adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=recyclate" title=" recyclate"> recyclate</a>, <a href="https://publications.waset.org/abstracts/search?q=SIP" title=" SIP"> SIP</a> </p> <a href="https://publications.waset.org/abstracts/72185/modification-of-polyurethane-adhesive-for-osbeps-panel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">626</span> iPSCs More Effectively Differentiate into Neurons on PLA Scaffolds with High Adhesive Properties for Primary Neuronal Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azieva%20A.%20M.">Azieva A. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Yastremsky%20E.%20V."> Yastremsky E. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirillova%20D.%20A."> Kirillova D. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Patsaev%20T.%20D."> Patsaev T. D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharikov%20R.%20V."> Sharikov R. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamyshinsky%20R.%20A."> Kamyshinsky R. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukanina%20K.%20I."> Lukanina K. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharikova%20N.%20A."> Sharikova N. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Grigoriev%20T.%20E."> Grigoriev T. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasiliev%20A.%20L."> Vasiliev A. L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesive properties of scaffolds, which predominantly depend on the chemical and structural features of their surface, play the most important role in tissue engineering. The basic requirements for such scaffolds are biocompatibility, biodegradation, high cell adhesion, which promotes cell proliferation and differentiation. In many cases, synthetic polymers scaffolds have proven advantageous because they are easy to shape, they are tough, and they have high tensile properties. The regeneration of nerve tissue still remains a big challenge for medicine, and neural stem cells provide promising therapeutic potential for cell replacement therapy. However, experiments with stem cells have their limitations, such as low level of cell viability and poor control of cell differentiation. Whereas the study of already differentiated neuronal cell culture obtained from newborn mouse brain is limited only to cell adhesion. The growth and implantation of neuronal culture requires proper scaffolds. Moreover, the polymer scaffolds implants with neuronal cells could demand specific morphology. To date, it has been proposed to use numerous synthetic polymers for these purposes, including polystyrene, polylactic acid (PLA), polyglycolic acid, and polylactide-glycolic acid. Tissue regeneration experiments demonstrated good biocompatibility of PLA scaffolds, despite the hydrophobic nature of the compound. Problem with poor wettability of the PLA scaffold surface could be overcome in several ways: the surface can be pre-treated by poly-D-lysine or polyethyleneimine peptides; roughness and hydrophilicity of PLA surface could be increased by plasma treatment, or PLA could be combined with natural fibers, such as collagen or chitosan. This work presents a study of adhesion of both induced pluripotent stem cells (iPSCs) and mouse primary neuronal cell culture on the polylactide scaffolds of various types: oriented and non-oriented fibrous nonwoven materials and sponges – with and without the effect of plasma treatment and composites with collagen and chitosan. To evaluate the effect of different types of PLA scaffolds on the neuronal differentiation of iPSCs, we assess the expression of NeuN in differentiated cells through immunostaining. iPSCs more effectively differentiate into neurons on PLA scaffolds with high adhesive properties for primary neuronal cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PLA%20scaffold" title="PLA scaffold">PLA scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=neurons" title=" neurons"> neurons</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20differentiation" title=" neuronal differentiation"> neuronal differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells"> stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactid" title=" polylactid"> polylactid</a> </p> <a href="https://publications.waset.org/abstracts/164951/ipscs-more-effectively-differentiate-into-neurons-on-pla-scaffolds-with-high-adhesive-properties-for-primary-neuronal-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">625</span> Properties of Composite Materials Made from Surface Treated Particles from Annual Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%A0t%C4%9Bp%C3%A1n%20H%C3%BDsek">Štěpán Hýsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Gajda%C4%8Dov%C3%A1"> Petra Gajdačová</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Podlena"> Milan Podlena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Annual plants are becoming more and more popular source of lignin and cellulose. In those days a lot of research is carried out in order to evaluate the possibility of utilization of fibres and particles from these plants in composite materials production. These lingo-cellulosic materials seem to be a great alternative to wood, however, due to waxy and silica layers on the surface of these stalks, one additional technological step is needed–erosion of the layers for the purpose of achieving better adhesion between particle and adhesive. In this research, we used several kinds of particle pre-treatment, in order to modify surface properties of these particles. Further, an adhesive was applied to the particles using laboratory blender and board were produced using laboratory press. Both physical and mechanical properties of boards were observed. It was found out that the surface modification of particles had statistically significant effect on properties of produced boards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annual%20plant" title="annual plant">annual plant</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=particleboard" title=" particleboard"> particleboard</a> </p> <a href="https://publications.waset.org/abstracts/82722/properties-of-composite-materials-made-from-surface-treated-particles-from-annual-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">624</span> Efficient Production of Cell-Adhesive Motif From Human Fibronectin Domains to Design a Bio-Functionalized Scaffold for Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Ben%20Abla">Amina Ben Abla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvie%20Changotade"> Sylvie Changotade</a>, <a href="https://publications.waset.org/abstracts/search?q=Geraldine%20Rohman"> Geraldine Rohman</a>, <a href="https://publications.waset.org/abstracts/search?q=Guilhem%20Boeuf"> Guilhem Boeuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyrine%20Dridi"> Cyrine Dridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elmarjou"> Ahmed Elmarjou</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20Dufour"> Florence Dufour</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Lutomski"> Didier Lutomski</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20Elm%E2%80%99semi"> Abdellatif Elm’semi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding cell adhesion and interaction with the extracellular matrix is essential for biomedical and biotechnological applications, including the development of biomaterials. In recent years, numerous biomaterials have emerged and were used in the field of tissue engineering. Nevertheless, the lack of interaction of biomaterials with cells still limits their bio-integration. Thus, the design of bioactive biomaterials to improve cell attachment and proliferation is of growing interest. In this study, bio-functionalized material was developed combining a synthetic polymer scaffold surface with selected domains of type III human fibronectin (FNIII-DOM) to promote cell adhesion and proliferation. Bioadhesive ligand includes cell-binding domains of human fibronectin, a major ECM protein that interacts with a variety of integrins cell-surface receptors, and ECM proteins through specific binding domains were engineered. FNIII-DOM was produced in bacterial system E. coli in 5L fermentor with a high yield level reaching 20mg/L. Bioactivity of the produced fragment was validated by studying cellular adhesion of human cells. The adsorption and immobilization of FNIII-DOM onto the polymer scaffold were evaluated in order to develop an innovative biomaterial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title="biomaterials">biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20adhesion" title=" cellular adhesion"> cellular adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=fibronectin" title=" fibronectin"> fibronectin</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/122734/efficient-production-of-cell-adhesive-motif-from-human-fibronectin-domains-to-design-a-bio-functionalized-scaffold-for-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">623</span> Non-Linear Finite Element Analysis of Bonded Single Lap Joint in Composite Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benhamena">A. Benhamena</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Aminallah"> L. Aminallah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aid"> A. Aid</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benguediab"> M. Benguediab</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amrouche"> A. Amrouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this work is to analyze the severity of interfacial stress distribution in the single lap adhesive joint under tensile loading. The three-dimensional and non-linear finite element method based on the computation of the peel and shear stresses was used to analyze the fracture behaviour of single lap adhesive joint. The effect of the loading magnitude and the overlap length on the distribution of peel and shear stresses was highlighted. A good correlation was found between the FEM simulations and the analytical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%202024-T3%20alloy" title="aluminum 2024-T3 alloy">aluminum 2024-T3 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=single-lap%20adhesive%20joints" title=" single-lap adhesive joints"> single-lap adhesive joints</a>, <a href="https://publications.waset.org/abstracts/search?q=Interface%20stress%20distributions" title=" Interface stress distributions"> Interface stress distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20nonlinear%20analysis" title=" material nonlinear analysis"> material nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive" title=" adhesive"> adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20moment" title=" bending moment"> bending moment</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/16813/non-linear-finite-element-analysis-of-bonded-single-lap-joint-in-composite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">622</span> The Influence of Fiber Fillers on the Bonding Safety of Structural Adhesives: A Fracture Analytical Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brandtner-Hafner%20Martin">Brandtner-Hafner Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesives have established themselves as an innovative joining technology in the industry. Their strengths lie in joining different materials, avoiding structural weakening as in welding or screwing, and enabling lightweight construction methods. Now there are a variety of ways to improve the efficiency and effectiveness of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion and cohesion (structural integrity). In this study, the effectiveness of fiber-modified adhesives for bonding different construction materials is reviewed. A series of experimental tests were performed using the fracture analytical GF principle to study the adhesive bonding safety and performance of the joint. Three different structural adhesive systems based on epoxy, CA/A hybrid, and PUR were modified with different fiber materials on different substrates. The results show that significant performance improvements can be achieved and that bonding reliability can be sustainably increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber-modified%20adhesives" title="fiber-modified adhesives">fiber-modified adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding%20safety" title=" bonding safety"> bonding safety</a>, <a href="https://publications.waset.org/abstracts/search?q=GF-principle" title=" GF-principle"> GF-principle</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20analysis" title=" fracture analysis"> fracture analysis</a> </p> <a href="https://publications.waset.org/abstracts/137880/the-influence-of-fiber-fillers-on-the-bonding-safety-of-structural-adhesives-a-fracture-analytical-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">621</span> Boiler Ash as a Reducer of Formaldehyde Emission in Medium-Density Fiberboard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexsandro%20Bayestorff%20da%20Cunha">Alexsandro Bayestorff da Cunha</a>, <a href="https://publications.waset.org/abstracts/search?q=Dpebora%20Caline%20de%20Mello"> Dpebora Caline de Mello</a>, <a href="https://publications.waset.org/abstracts/search?q=Camila%20Alves%20Corr%C3%AAa"> Camila Alves Corrêa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the production of fiberboards, an adhesive based on urea-formaldehyde resin is used, which has the advantages of low cost, homogeneity of distribution, solubility in water, high reactivity in an acid medium, and high adhesion to wood. On the other hand, as a disadvantage, there is low resistance to humidity and the release of formaldehyde. The objective of the study was to determine the viability of adding industrial boiler ash to the urea formaldehyde-based adhesive for the production of medium-density fiberboard. The raw material used was composed of Pinus spp fibers, urea-formaldehyde resin, paraffin emulsion, ammonium sulfate, and boiler ash. The experimental plan, consisting of 8 treatments, was completely randomized with a factorial arrangement, with 0%, 1%, 3%, and 5% ash added to the adhesive, with and without the application of a catalyst. In each treatment, 4 panels were produced with density of 750 kg.m⁻³, dimensions of 40 x 40 x 1,5 cm, 12% urea formaldehyde resin, 1% paraffin emulsion and hot pressing at a temperature of 180ºC, the pressure of 40 kgf/cm⁻² for a time of 10 minutes. The different compositions of the adhesive were characterized in terms of viscosity, pH, gel time and solids, and the panels by physical and mechanical properties, in addition to evaluation using the IMAL DPX300 X-ray densitometer and formaldehyde emission by the perforator method. The results showed a significant reduction of all adhesive properties with the use of the catalyst, regardless of the treatment; while the percentage increase of ashes provided an increase in the average values of viscosity, gel time, and solids and a reduction in pH for the panels with a catalyst; for panels without catalyst, the behavior was the opposite, with the exception of solids. For the physical properties, the results of the variables of density, compaction ratio, and thickness were equivalent and in accordance with the standard, while the moisture content was significantly reduced with the use of the catalyst but without the influence of the percentage of ash. The density profile for all treatments was characteristic of medium-density fiberboard, with more compacted and dense surfaces when compared to the central layer. For thickness, the swelling was not influenced by the catalyst and the use of ash, presenting average values within the normalized parameters. For mechanical properties, the influence of ashes on the adhesive was negatively observed in the modulus of rupture from 1% and in the traction test from 3%; however, only this last property, in the percentages of 3% and 5%, were below the minimum limit of the norm. The use of catalyst and ashes with percentages of 3% and 5% reduced the formaldehyde emission of the panels; however, only the panels that used adhesive with catalyst presented emissions below 8mg of formaldehyde / 100g of the panel. In this way, it can be said that boiler ash can be added to the adhesive with a catalyst without impairing the technological properties by up to 1%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reconstituted%20wood%20panels" title="reconstituted wood panels">reconstituted wood panels</a>, <a href="https://publications.waset.org/abstracts/search?q=formaldehyde%20emission" title=" formaldehyde emission"> formaldehyde emission</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20properties%20of%20panels" title=" technological properties of panels"> technological properties of panels</a>, <a href="https://publications.waset.org/abstracts/search?q=perforator" title=" perforator"> perforator</a> </p> <a href="https://publications.waset.org/abstracts/165371/boiler-ash-as-a-reducer-of-formaldehyde-emission-in-medium-density-fiberboard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">620</span> Bonding Strength of Adhesive Scarf Joints Improved by Nano-Silica Subjected to Humidity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Paygozar">B. Paygozar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.A.%20Dizaji"> S.A. Dizaji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.C.%20Kandemir"> A.C. Kandemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of the modified adhesive including different concentrations of Nano-silica are surveyed on the bonding strength of the adhesive scarf joints. The nanoparticles are added in two different concentrations, to an epoxy-based two-component structural adhesive, Araldite 2011, to survey the influences of the nanoparticle weight percentage on the failure load of the joints compared to that of the joints manufactured by the neat adhesive. The effects of being exposure to a moist ambience on the joint strength are also investigated for the joints produced of both neat and modified adhesives. For this purpose, an ageing process was carried out on the joints of both neat and improved kinds with variable immersion periods (20, 40 and 60 days). All the specimens were tested under a quasi-static tensile loading of 2 mm/min speed so as to find the quantities of the failure loads. Outcomes indicate that the failure loads of the joints with modified adhesives are measurably higher than that of the joint with neat adhesive, even while being put for a while under a moist condition. Another result points out that humidity lessens the bonding strength of all the joints of both types as the exposure time increases, which can be attributed to the change in the failure mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20strength" title="bonding strength">bonding strength</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-silica" title=" nano-silica"> nano-silica</a>, <a href="https://publications.waset.org/abstracts/search?q=scarf%20joint" title=" scarf joint"> scarf joint</a> </p> <a href="https://publications.waset.org/abstracts/115145/bonding-strength-of-adhesive-scarf-joints-improved-by-nano-silica-subjected-to-humidity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">619</span> Bonding Characteristics Between FRP and Concrete Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houssam%20A.%20Toutanji">Houssam A. Toutanji</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Han"> Meng Han </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the development of a fracture mechanics based-model that predicts the debonding behavior of FRP strengthened RC beams. In this study, a database includes 351 concrete prisms bonded with FRP plates tested in single and double shear were prepared. The existing fracture-mechanics-based models are applied to this database. Unfortunately the properties of adhesive layer, especially a soft adhesive layer, used on the specimens in the existing studies were not always able to found. Thus, the new model’s proposal was based on fifteen newly conducted pullout tests and twenty four data selected from two independent existing studies with the application of a soft adhesive layers and the availability of adhesive properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20composite%20materials" title="carbon fiber composite materials">carbon fiber composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20response" title=" interface response"> interface response</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20characteristics" title=" fracture characteristics"> fracture characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20shear%20stress" title=" maximum shear stress"> maximum shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20transferable%20load" title=" ultimate transferable load"> ultimate transferable load</a> </p> <a href="https://publications.waset.org/abstracts/1319/bonding-characteristics-between-frp-and-concrete-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">618</span> Preparation and Optimization of Curcumin-HPβCD Complex Bioadhesive Vaginal Films for Vaginal Candidiasis by Factorial Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umme%20Hani">Umme Hani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20G.%20Shivakumar"> H. G. Shivakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Younus%20Pasha"> M. D. Younus Pasha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this work was to design and optimize a novel vaginal drug delivery system for more effective treatment against vaginal candidiasis. To achieve a better therapeutic efficacy and patient compliance in the treatment for vaginal candidiasis, herbal antifungal agent Curcumin which is 2.5 fold more potent than fluconazole at inhibiting the adhesion of candida albicans has been formulated in a bio-adhesive vaginal film. Curcumin was formulated in bio-adhesive film formulations that could be retained in the vagina for prolonged intervals. The polymeric films were prepared by solvent evaporation and optimized for various physicodynamic and aesthetic properties. Curcumin HPβCD (Hydroxypropyl β Cyclodextrin) was first developed to increase the solubility of curcumin. The formation of the Curcumin HPβCD complex was characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and FT-IR and evaluated for its solubility. Curcumin HPβCD complex was formulated in a bio-adhesive film using hydroxypropyl methyl cellulose (HPMC) and Carbopol 934P and characterized. DSC and FT-IR data of Curcumin HPβCD indicate there was complex formation between the drug and HPβCD. The little moisture content (8.02±0.34% w/w) was present in the film, which helps them to remain stable and kept them from being completely dry and brittle. The mechanical properties, tensile strength, and percentage elongation at break reveal that the formulations were found to be soft and tough. The films showed good peelability, relatively good swelling index, and moderate tensile strength and retained vaginal mucosa up to 8 h. The developed Curcumin vaginal film could be a promising safe herbal medication and can ensure longer residence at the vagina and provide an efficient therapy for vaginal candidiasis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curcumin" title="curcumin">curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin-HP%CE%B2CD%20complex" title=" curcumin-HPβCD complex"> curcumin-HPβCD complex</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-adhesive%20vaginal%20film" title=" bio-adhesive vaginal film"> bio-adhesive vaginal film</a>, <a href="https://publications.waset.org/abstracts/search?q=vaginal%20candidiasis" title=" vaginal candidiasis"> vaginal candidiasis</a>, <a href="https://publications.waset.org/abstracts/search?q=23%20factorial%20design" title=" 23 factorial design"> 23 factorial design</a> </p> <a href="https://publications.waset.org/abstracts/11543/preparation-and-optimization-of-curcumin-hpvcd-complex-bioadhesive-vaginal-films-for-vaginal-candidiasis-by-factorial-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion&amp;page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion&amp;page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10