CINXE.COM
Search results for: permeability index
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: permeability index</title> <meta name="description" content="Search results for: permeability index"> <meta name="keywords" content="permeability index"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="permeability index" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="permeability index"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4102</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: permeability index</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4102</span> Prediction of in situ Permeability for Limestone Rock Using Rock Quality Designation Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20T.%20Farid">Ahmed T. Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Rizwan"> Muhammed Rizwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geotechnical study for evaluating soil or rock permeability is a highly important parameter. Permeability values for rock formations are more difficult for determination than soil formation as it is an effect of the rock quality and its fracture values. In this research, the prediction of in situ permeability of limestone rock formations was predicted. The limestone rock permeability was evaluated using Lugeon tests (in-situ packer permeability). Different sites which spread all over the Riyadh region of Saudi Arabia were chosen to conduct our study of predicting the in-situ permeability of limestone rock. Correlations were deducted between the values of in-situ permeability of the limestone rock with the value of the rock quality designation (RQD) calculated during the execution of the boreholes of the study areas. The study was performed for different ranges of RQD values measured during drilling of the sites boreholes. The developed correlations are recommended for the onsite determination of the in-situ permeability of limestone rock only. For the other sedimentary formations of rock, more studies are needed for predicting the actual correlations related to each type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%20situ" title="In situ">In situ</a>, <a href="https://publications.waset.org/abstracts/search?q=packer" title=" packer"> packer</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=rock" title=" rock"> rock</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/64850/prediction-of-in-situ-permeability-for-limestone-rock-using-rock-quality-designation-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4101</span> [Keynote Talk]: A Comparative Study on Air Permeability Properties of Multilayered Nonwoven Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kucukali%20Ozturk">M. Kucukali Ozturk</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Nergis"> B. Nergis</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Candan"> C. Candan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air permeability plays an important role for applications such as filtration, thermal and acoustic insulation. The study discussed in this paper was conducted in an attempt to investigate air permeability property of various combinations of nonwovens. The PROWHITE air permeability tester was used for the measurement of the air permeability of the samples in accordance with the relevant standards and a comparative study of the results were made. It was found that the fabric mass per unit area was closely related to the air-permeability. The air permeability decreased with the increase in mass per unit area. Additionally, the air permeability of nonwoven fabrics decreased with the increase in thickness. Moreover, air permeability of multilayered SMS nonwoven structures was lower than those of single layered ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20permeability" title="air permeability">air permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20per%20unit%20area" title=" mass per unit area"> mass per unit area</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20structure" title=" nonwoven structure"> nonwoven structure</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20nonwoven" title=" polypropylene nonwoven"> polypropylene nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a> </p> <a href="https://publications.waset.org/abstracts/62811/keynote-talk-a-comparative-study-on-air-permeability-properties-of-multilayered-nonwoven-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4100</span> Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20A.%20Mohammed">Emad A. Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permeability" title="permeability">permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20flow%20units" title=" hydraulic flow units"> hydraulic flow units</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a> </p> <a href="https://publications.waset.org/abstracts/123859/permeability-prediction-based-on-hydraulic-flow-unit-identification-and-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4099</span> Evaluation of Erodibility Status of Soils in Some Areas of Imo and Abia States of Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andy%20Obinna%20Ibeje">Andy Obinna Ibeje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the erodibility indices and some soil properties of some cassava farms in selected areas of Abia and Imo States were investigated. This study involves taking measurements of some soil parameters such as permeability, soil texture and particle size analysis from which the erodibility indices were compared. Results showed that soils of the areas are very sandy. The results showed that Isiukwuato with index of 72 has the highest erodibility index. The results also showed that Arondizuogu with index of 34 has the least erodibility index. The results revealed that soil erodibility (k) values varied from 34 to 72. Nkporo has the highest sand content; Inyishie has the least silt content. The result indicates that there were respectively strong inverse relationship between clay and silt contents and erodibility index. On the other hand, sand, organic matter and moisture contents as well as soil permeability has significantly high positive correlation with soil erodibility and it can be concluded that particle size distribution is a major finger print on the erodibility index of soil in the study area. It is recommended that safe cultural practices like crop rotation, matching and adoption of organic farming techniques be incorporated into farming communities of Abia and Imo States in order to stem the advances of erosion in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erodibility" title="erodibility">erodibility</a>, <a href="https://publications.waset.org/abstracts/search?q=indices" title=" indices"> indices</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/38728/evaluation-of-erodibility-status-of-soils-in-some-areas-of-imo-and-abia-states-of-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4098</span> Reservoir Characterization of the Pre-Cenomanian Sandstone: Central Sinai, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Moktader%20A.%20El%20Sayed">Abdel Moktader A. El Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahla%20A.%20El%20Sayed"> Nahla A. El Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fifty-one sandstone core samples were obtained from the wadi Saal area. They belong to the Pre-Cenomanian age. These samples were subjected to various laboratory measurements such as density, porosity, permeability, electrical resistivity, grain size analysis and ultrasonic wave velocity. The parameters describing reservoir properties are outlined. The packing index, reservoir quality index, flow zone indicator and pore throat radius (R35 and R36) were calculated. The obtained interrelationships among these parameters allow improving petrophysical knowledge about the Pre-Cenomanian reservoir information. The obtained rock physics models could be employed with some precautions to the subsurface existences of the Pre-Cenomanian sandstone reservoirs, especially in the surrounding areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resevoir%20sandstone" title="resevoir sandstone">resevoir sandstone</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinai" title=" Sinai"> Sinai</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a> </p> <a href="https://publications.waset.org/abstracts/162994/reservoir-characterization-of-the-pre-cenomanian-sandstone-central-sinai-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4097</span> Groundwater Quality and Its Suitability for Agricultural Use in the Jeloula Basin, Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intissar%20Farid">Intissar Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater quality assessment is crucial for sustainable water use, especially in semi-arid regions like the Jeloula basin in Tunisia, where groundwater is essential for domestic and agricultural needs. The present research aims to characterize the suitability of groundwater for irrigational purposes by considering various parameters: total salt concentration as measured by Electrical Conductivity EC, relative proportions of Na⁺ as expressed by %Na and SAR, Kelly’s ratio, Permeability Index, Magnesium hazard and Residual Sodium chloride. Chemical data indicate that the percent sodium (%Na) in the study area ranged from 26.3 to 45.3%. According to the Wilcox diagram, the quality classification of irrigation water suggests that analyzed groundwaters are suitable for irrigation purposes. The SAR values vary between 2.1 and 5. Most of the groundwater samples plot in the Richards’C3S1 water class and indicate little danger from sodium content to soil and plant growth. The Kelly’s ratio of the analyzed samples ranged from 0.3 to 0.8. These values indicate that the waters are fit for agricultural purposes. Magnesium hazard (MH) values range from 27.5 to 52.6, with an average of 38.9 in the analyzed waters. Hence, the Mg²⁺ content of the groundwater from the shallow aquifer cannot cause any problem to the soil permeability. Permeability index (PI) values computed for the area ranged from 33.6 to 52.7%. The above result, therefore, suggests that most of the water samples fall within class I of the Doneen chart and can be categorized as good irrigation water. The groundwaters collected from the Jeloula shallow aquifer were found to be within the safe limits and thus suitable for irrigation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kelly%27s%20ratio" title="Kelly's ratio">Kelly's ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20hazard" title=" magnesium hazard"> magnesium hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability%20index" title=" permeability index"> permeability index</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20sodium%20chloride" title=" residual sodium chloride"> residual sodium chloride</a> </p> <a href="https://publications.waset.org/abstracts/190237/groundwater-quality-and-its-suitability-for-agricultural-use-in-the-jeloula-basin-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4096</span> Laboratory Measurement of Relative Permeability of Immiscible Fluids in Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khwaja%20Naweed%20Seddiqi">Khwaja Naweed Seddiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Honma"> Shigeo Honma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relative permeability is the important parameter controlling the immiscible displacement of multiphase fluids flow in porous medium. The relative permeability for immiscible displacement of two-phase fluids flow (oil and water) in porous medium has been measured in this paper. As a result of the experiment, irreducible water saturation, Swi, residual oil saturation, Sor, and relative permeability curves for Kerosene, Heavy oil and Lubricant oil were determined successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title="relative permeability">relative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=immiscible%20displacement" title=" immiscible displacement"> immiscible displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium "> porous medium </a> </p> <a href="https://publications.waset.org/abstracts/47120/laboratory-measurement-of-relative-permeability-of-immiscible-fluids-in-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4095</span> Evaluating the Permeability Coefficient of Sandy Soil for Grouting to Reinforce Soft Soil in Binh Duong, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trung%20Le%20Thanh">Trung Le Thanh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil permeability coefficient is an important parameter that affects the effectiveness of mortar restoration work to reinforce soft soil. Currently, there are many methods to determine the permeability coefficient of ground through laboratory and field experiments. However, the value of the permeability coefficient is determined very differently depending on the geology in general and the sand base in particular. This article presents how to determine the permeability coefficient of sand foundation in Phu My Ward, Tan Uyen City, Binh Duong. The author analyzes and evaluates the advantages and disadvantages of assessment methods based on the data and results obtained, and on that basis recommends a suitable method for determining the permeability coefficient for sand foundations. The research results serve the evaluation of the effectiveness of grouting to reinforce soft ground in general, and grouting of bored piles in particular. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permeability%20coefficient" title="permeability coefficient">permeability coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20grouting" title=" shaft grouting"> shaft grouting</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20grouting" title=" post grouting"> post grouting</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20grouting" title=" jet grouting"> jet grouting</a> </p> <a href="https://publications.waset.org/abstracts/173939/evaluating-the-permeability-coefficient-of-sandy-soil-for-grouting-to-reinforce-soft-soil-in-binh-duong-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4094</span> Influence of Structural Cracks on Transport Performance of Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Okenyi">V. A. Okenyi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Yang"> K. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20M.%20Basheer"> P. A. M. Basheer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete structures in service are constantly under the influence of load. Microstructural cracks often develop in them and considering those in the marine environment; these microcracks often serve as a means for transportation of harmful fluids into the concrete. This paper studies the influence of flexural tensile stress that structural elements undergo on the transport properties of such concrete in the tensile zone of the structural member. Reinforced concrete beams of 1200mm ⨉ 230mm ⨉ 150mm in dimension in a four-point bending set up were subjected to various levels of the loading required to cause a microcrack width of 100µm. The use of Autoclam permeability tests, sorptivity tests as well as the Permit chloride ion migration tests were employed, and results showed that air permeability, sorptivity and water permeability all increased as the load increased in the concrete tensile zone. For air permeability, an increase in stress levels led to more permeability, and the addition of steel macrofibers had no significant effect until at 75% of stress level where it decreased air permeability. For sorptivity, there was no absorption into concrete when no load was added, but water sorptivity index was high at 75% stress levels and higher in steel fiber reinforced concrete (SFRC). Steel macrofibers produced more water permeability into the concrete at 75% stress level under the 100µm crack width considered while steel macrofibers helped in slightly reducing the migration of chloride into concrete by 8.8% reduction, compared to control samples at 75% stress level. It is clear from this research that load-induced cracking leads to an increase in fluid permeability into concrete and the effect of the addition of steel macrofiber to concrete for durability is not significant under 100µm crack width. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durability" title="durability">durability</a>, <a href="https://publications.waset.org/abstracts/search?q=microcracks" title=" microcracks"> microcracks</a>, <a href="https://publications.waset.org/abstracts/search?q=SFRC" title=" SFRC"> SFRC</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20Level" title=" stress Level"> stress Level</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20properties" title=" transport properties"> transport properties</a> </p> <a href="https://publications.waset.org/abstracts/110171/influence-of-structural-cracks-on-transport-performance-of-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4093</span> The Effect of Nanofiber Web on Thermal Conductivity, Air and Water Vapor Permeability </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilkay%20Ozsev%20Yuksek">Ilkay Ozsev Yuksek</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuray%20Ucar"> Nuray Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Esma%20Soygur"> Zeynep Esma Soygur</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20Kucuk"> Yasemin Kucuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, composite fabrics with polyacrylonitrile electrospun nanofiber deposited onto quilted polyester fabric have been produced in order to control the isolation properties such as water vapor permeability, air permeability and thermal conductivity. Different nanofiber webs were manufactured by changing polymer concentration from 10% to 16% and by changing the deposition time from 1 to 3 hours. Presence of nanofiber layer on the quilted fabric results to an increase of an isolation, i.e., a decrease of the moisture vapor transport rates at 20%, decrease of thermal conductivity at 15% and a decrease of air permeability values at 50%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofiber%2Ffabric%20composites" title="nanofiber/fabric composites">nanofiber/fabric composites</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20vapor%20transport" title=" moisture vapor transport"> moisture vapor transport</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20permeability" title=" air permeability"> air permeability</a> </p> <a href="https://publications.waset.org/abstracts/56070/the-effect-of-nanofiber-web-on-thermal-conductivity-air-and-water-vapor-permeability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4092</span> Study of the Responding Time for Low Permeability Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Lei">G. Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Dong"> P. C. Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Q.%20Cen"> X. Q. Cen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Mo"> S. Y. Mo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most significant parameters, describing the effect of water flooding in porous media, is flood-response time, and it is an important index in oilfield development. The responding time in low permeability reservoir is usually calculated by the method of stable state successive substitution neglecting the effect of medium deformation. Numerous studies show that the media deformation has an important impact on the development for low permeability reservoirs and can not be neglected. On the base of streamline tube model, we developed a method to interpret responding time with medium deformation factor. The results show that: the media deformation factor, threshold pressure gradient and well spacing have a significant effect on the flood response time. The greater the media deformation factor, threshold pressure gradient or well spacing is, the lower the flood response time is. The responding time of different streamlines varies. As the angle with the main streamline increases, the water flooding response time delays as a "parabola" shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20permeability" title="low permeability">low permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=flood-response%20time" title=" flood-response time"> flood-response time</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20pressure%20gradient" title=" threshold pressure gradient"> threshold pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=medium%20deformation" title=" medium deformation"> medium deformation</a> </p> <a href="https://publications.waset.org/abstracts/11166/study-of-the-responding-time-for-low-permeability-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4091</span> Experimental Investigation on Correlation Between Permeability Variation and Sabkha Soil Salts Dissolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20A.%20Alotaibi">Fahad A. Alotaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An increase in salt dissolution rate with continuous water flow is expected to lead to the progressive collapse of the soil structure. Evaluation of the relationship between soil salt dissolution and the variation of sabkha soil permeability in terms of type, rate, and quantity in order to assure construction safety in these environments. The current study investigates the relationship of soil permeability with the rate of dissolution of calcium (Ca2+), sulfate (SO4-2), chloride (CL−1), magnesium (Mg2+), sodium (Na+), and potassium (K+1) ions. Results revealed an increase in sabkha soil permeability with the rate of ions dissolution. This makes the efficiency of using a waterproofing stabilization agent in the reduction of sabkha salts dissolution the main criterion is selecting suitable stabilizing method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sabkha" title="sabkha">sabkha</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=salts" title=" salts"> salts</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a> </p> <a href="https://publications.waset.org/abstracts/157869/experimental-investigation-on-correlation-between-permeability-variation-and-sabkha-soil-salts-dissolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4090</span> The Effects of Different Types of Cement on the Permeability of Deep Mixing Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojebullah%20Wahidy">Mojebullah Wahidy</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Olgun"> Murat Olgun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, four different types of cement are used to investigate the permeability of DMC (Deep Mixing Column) in the clay. The clay used in this research is in the kaolin group, and the types of cement are; CEM I 42.5.R. normal portland cement, CEM II/A-M (P-L) pozzolan doped cement, CEM III/A 42.5 N blast furnace slag cement and DMFC-800 fine-grained portland cement. Firstly, some rheological tests are done on every cement, and a 0.9 water/cement ratio is selected as the appropriate ratio. This ratio is used to prepare the small-scale DMCs for all types of cement with %6, %9, %12, and %15, which are determined as the dry weight of the clay. For all the types of cement, three samples were prepared in every percentage and were kept on curing for 7, 14, and 28 days for permeability tests. As a result of the small-scale DMCs, permeability tests, a %12 selected for big-scale DMCs. A total of five big scales DMC were prepared by using a %12-cement and were kept for 28 days curing for permeability tests. The results of the permeability tests show that by increasing the cement percentage and curing time of all DMCs, the permeability coefficient (k) is decreased. Despite variable results in different cement ratios and curing time in general, samples treated by DMFC-800 fine-grained cement have the lowest permeability coefficient. Samples treated with CEM II and CEM I cement types were the second and third lowest permeable samples. The highest permeability coefficient belongs to the samples that were treated with CEM III cement type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20mixing%20column" title="deep mixing column">deep mixing column</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20test" title=" rheological test"> rheological test</a>, <a href="https://publications.waset.org/abstracts/search?q=DMFC-800" title=" DMFC-800"> DMFC-800</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability%20test" title=" permeability test"> permeability test</a> </p> <a href="https://publications.waset.org/abstracts/162073/the-effects-of-different-types-of-cement-on-the-permeability-of-deep-mixing-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4089</span> A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chico%20Horacio%20Jose%20Sambo">Chico Horacio Jose Sambo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title="neural network">neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20perceptron" title=" multilayer perceptron"> multilayer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20log" title=" well log "> well log </a> </p> <a href="https://publications.waset.org/abstracts/32636/a-neural-network-modelling-approach-for-predicting-permeability-from-well-logs-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4088</span> Modified Evaluation of the Hydro-Mechanical Dependency of the Water Coefficient of Permeability of a Clayey Sand with a Novel Permeameter for Unsaturated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Adelian">G. Adelian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirzaii"> A. Mirzaii</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Yasrobi"> S. S. Yasrobi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper represents data of an extensive experimental laboratory testing program for the measurement of the water coefficient of permeability of clayey sand in different hydraulic and mechanical boundary conditions. A novel permeameter was designed and constructed for the experimental testing program, suitable for the study of flow in unsaturated soils in different hydraulic and mechanical loading conditions. In this work, the effect of hydraulic hysteresis, net isotropic confining stress, water flow condition, and sample dimensions are evaluated on the water coefficient of permeability of understudying soil. The experimental results showed a hysteretic variation for the water coefficient of permeability versus matrix suction and degree of saturation, with higher values in drying portions of the SWCC. The measurement of the water permeability in different applied net isotropic stress also signified that the water coefficient of permeability increased within the increment of net isotropic consolidation stress. The water coefficient of permeability also appeared to be independent of different applied flow heads, water flow condition, and sample dimensions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20permeability" title="water permeability">water permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soils" title=" unsaturated soils"> unsaturated soils</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20hysteresis" title=" hydraulic hysteresis"> hydraulic hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20ratio" title=" void ratio"> void ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20suction" title=" matrix suction"> matrix suction</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20saturation" title=" degree of saturation"> degree of saturation</a> </p> <a href="https://publications.waset.org/abstracts/4905/modified-evaluation-of-the-hydro-mechanical-dependency-of-the-water-coefficient-of-permeability-of-a-clayey-sand-with-a-novel-permeameter-for-unsaturated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4087</span> Investigation of the Cooling and Uniformity Effectiveness in a Sinter Packed Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uzu-Kuei%20Hsu">Uzu-Kuei Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Hsien%20Tai"> Chang-Hsien Tai</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai-Wun%20Jin"> Kai-Wun Jin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When sinters are filled into the cooler from the sintering machine, and the non-uniform distribution of the sinters leads to uneven cooling. This causes the temperature difference of the sinters leaving the cooler to be so large that it results in the conveyors being deformed by the heat. The present work applies CFD method to investigate the thermo flowfield phenomena in a sinter cooler by the Porous Media Model. Using the obtained experimental data to simulate porosity (Ε), permeability (κ), inertial coefficient (F), specific heat (Cp) and effective thermal conductivity (keff) of the sinter packed beds. The physical model is a similar geometry whose Darcy numbers (Da) are similar to the sinter cooler. Using the Cooling Index (CI) and Uniformity Index (UI) to analyze the thermo flowfield in the sinter packed bed obtains the cooling performance of the sinter cooler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title="porous media">porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=sinter" title=" sinter"> sinter</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20index%20%28CI%29" title=" cooling index (CI)"> cooling index (CI)</a>, <a href="https://publications.waset.org/abstracts/search?q=uniformity%20index%20%28UI%29" title=" uniformity index (UI)"> uniformity index (UI)</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/49499/investigation-of-the-cooling-and-uniformity-effectiveness-in-a-sinter-packed-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4086</span> An Experimental Study of the Influence of Flow Rate on Formation Damage at Different pH</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khabat%20M.%20Ahmad">Khabat M. Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment focuses on the reduction of permeability (formation damage) as a result of fines migration by changing pH and flow rate on core plugs selected from sandstone reservoir of Pannonian basin (Upper Miocene, East Hungary). The main objective of coreflooding experiments was to investigate the influence of both high and low pH fluids and the flow rate on stability of clay minerals. The selected core samples were examined by X-ray powder diffraction (XRD) for bulk mineralogical and clay mineral composition. The shape, position, distribution and type of clay minerals within the core samples were diagnosed by scanning electron microscopy and energy dispersive spectroscopy (SEM- EDS). The basic petrophysical properties such as porosity and initial permeability were determined prior to experiments. The special core analysis (influence of pH and flow rate) on permeability reduction was examined through a series of laboratory coreflooding experiments, testing for acidic (3) and alkaline (11) solutions at different flow rates (50, 100 and 200 ml/h). Permeability in continuously reduced for pH 11 to more than 50 % of initial permeability. However, at pH 3 after a slow decrease, a significant increase is observed, to more than 40 % of initial permeability. The variation is also influenced by flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20rate" title="flow rate">flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20migration" title=" fine migration"> fine migration</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20damage" title=" formation damage"> formation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM-%20EDS" title=" SEM- EDS"> SEM- EDS</a> </p> <a href="https://publications.waset.org/abstracts/177356/an-experimental-study-of-the-influence-of-flow-rate-on-formation-damage-at-different-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4085</span> Groundwater Quality Assessment Using Water Quality Index and Geographical Information System Techniques: A Case Study of Busan City, South Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Venkatramanan">S. Venkatramanan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Chung"> S. Y. Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Selvam"> S. Selvam</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Hussam"> E. E. Hussam</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gnanachandrasamy"> G. Gnanachandrasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of groundwater was evaluated by major ions concentration around Busan city, South Korea. The groundwater samples were collected from 40 wells. The order of abundance of major cations concentration in groundwater is Na > Ca > Mg > K, in case of anions are Cl > HCO₃ > SO₄ > NO₃ > F. Based on Piper’s diagram Ca (HCO₃)₂, CaCl₂, and NaCl are the leading groundwater types. While Gibbs diagram suggested that most of groundwater samples belong to rock-weathering zone. Hydrogeochemical condition of groundwater in this city is influenced by evaporation, ion exchange and dissolution of minerals. Water Quality Index (WQI) revealed that 86 % of the samples belong to excellent, 2 % good, 4 % poor to very poor and 8 % unsuitable categories. The results of sodium absorption ratio (SAR), Permeability Index (PI), Residual Sodium Carbonate (RSC) and Magnesium Hazard (MH) exhibit that most of the groundwater samples are suitable for domestic and irrigation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WQI%20%28Water%20Quality%20Index%29" title="WQI (Water Quality Index)">WQI (Water Quality Index)</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20index" title=" saturation index"> saturation index</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20types" title=" groundwater types"> groundwater types</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a> </p> <a href="https://publications.waset.org/abstracts/79048/groundwater-quality-assessment-using-water-quality-index-and-geographical-information-system-techniques-a-case-study-of-busan-city-south-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4084</span> Modeling of the Pores Form Influence on the Hydraulic Resistance of Membranes and Their Permeability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhanat%20Umarova">Zhanat Umarova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Until the present time, modeling of the pores form influence on the hydraulic resistance of membranes and their permeability has not been analyzed. The aim of the given work is the theoretical consideration of the issue on the productivity of polymer membranes with the profile pores and determination of the optimum form of pores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20membranes" title=" polymer membranes"> polymer membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=pore%E2%80%99s%20density" title=" pore’s density"> pore’s density</a> </p> <a href="https://publications.waset.org/abstracts/17321/modeling-of-the-pores-form-influence-on-the-hydraulic-resistance-of-membranes-and-their-permeability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4083</span> Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Rifa%E2%80%99i">A. Rifa’i</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Takeshita"> Y. Takeshita</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Komatsu"> M. Komatsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system has ever built to avoid such a problem, but puddles still didn’t stop appearing after rain. Permeability parameter needs to be determined by using more simple procedure to find exact method of solution. The instrument modelling were proposed according to the development of field permeability testing instrument. This experiment used proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow. The procedure were carried out from unsaturated until saturated soil condition. Volumetric water content (θ) were being monitored by soil moisture measurement device. The results were relationship between k and θ which drawn by numerical approach Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr= 68 %) until 9.98 x 10-4 cm/sec (Sr= 82 %). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constant%20discharge%20method" title="constant discharge method">constant discharge method</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20permeability%20test" title=" in situ permeability test"> in situ permeability test</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20soil" title=" sandy soil"> sandy soil</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20conditions" title=" unsaturated conditions"> unsaturated conditions</a> </p> <a href="https://publications.waset.org/abstracts/18447/development-of-in-situ-permeability-test-using-constant-discharge-method-for-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4082</span> Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Nazari">A. J. Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Honma"> S. Honma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21<sup>st</sup>, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20flow" title="fractional flow">fractional flow</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20displacement" title=" oil displacement"> oil displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneously%20flow" title=" simultaneously flow"> simultaneously flow</a> </p> <a href="https://publications.waset.org/abstracts/59190/oil-displacement-by-water-in-hauterivian-sandstone-reservoir-of-kashkari-oil-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4081</span> Effect of Mineral Admixtures on Transport Properties of SCCs Composites: Influence of Mechanical Damage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davood%20Niknezhad">Davood Niknezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Siham%20Kamali-Bernard"> Siham Kamali-Bernard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete durability is one of the most important considerations in the design of new structures in aggressive environments. It is now common knowledge that the transport properties of a concrete, i.e; permeability and chloride diffusion coefficient are important indicators of its durability. The development of microcracking in concrete structures leads to significant permeability and to durability problems as a result. The main objective of the study presented in this paper is to investigate the influence of mineral admixtures and impact of compressive cracks by mechanical uniaxial compression up to 80% of the ultimate strength on transport properties of self-compacting concrete (SCC) manufactured with the eco-materials (metakaolin, fly ash, slag HF). The chloride resistance and binding capacity of the different SCCs produced with the different admixtures in damaged and undamaged state are measured using a chloride migration test accelerated by an external applied electrical field. Intrinsic permeability is measured using the helium gas and one permeameter at constant load. Klinkenberg approach is used for the determination of the intrinsic permeability. Based on the findings of this study, the use of mineral admixtures increases the resistance of SCC to chloride ingress and reduces their permeability. From the impact of mechanical damage, we show that the Gas permeability is more sensitive of concrete damaged than chloride diffusion. A correlation is obtained between the intrinsic permeability and chloride migration coefficient according to the damage variable for the four studied mixtures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SCC" title="SCC">SCC</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20durability" title=" concrete durability"> concrete durability</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20properties" title=" transport properties"> transport properties</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20permeability" title=" gas permeability"> gas permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride%20diffusion" title=" chloride diffusion"> chloride diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20damage" title=" mechanical damage"> mechanical damage</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20admixtures" title=" mineral admixtures"> mineral admixtures</a> </p> <a href="https://publications.waset.org/abstracts/48587/effect-of-mineral-admixtures-on-transport-properties-of-sccs-composites-influence-of-mechanical-damage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4080</span> Prediction of Permeability of Frozen Unsaturated Soil Using Van Genuchten Model and Fredlund-Xing Model in Soil Vision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhavita%20S.%20Dave">Bhavita S. Dave</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaimin%20Vaidya"> Jaimin Vaidya</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandresh%20H.%20Solanki"> Chandresh H. Solanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20K."> Atul K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To measure the permeability of a soil specimen, one of the basic assumptions of Darcy's law is that the soil sample should be saturated. Unlike saturated soils, the permeability of unsaturated soils cannot be found using conventional methods as it does not follow Darcy's law. Many empirical models, such as the Van Genuchten Model and Fredlund-Xing Model were suggested to predict permeability value for unsaturated soil. Such models use data from the soil-freezing characteristic curve to find fitting parameters for frozen unsaturated soils. In this study, soil specimens were subjected to 0, 1, 3, and 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and its soil freezing characteristic curves were formulated for all F-T cycles. Changes in fitting parameters and relative permeability with subsequent F-T cycles are presented in this paper for both models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frozen%20unsaturated%20soil" title="frozen unsaturated soil">frozen unsaturated soil</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredlund%20Xing%20model" title=" Fredlund Xing model"> Fredlund Xing model</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-freezing%20characteristic%20curve" title=" soil-freezing characteristic curve"> soil-freezing characteristic curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Genuchten%20model" title=" Van Genuchten model"> Van Genuchten model</a> </p> <a href="https://publications.waset.org/abstracts/131717/prediction-of-permeability-of-frozen-unsaturated-soil-using-van-genuchten-model-and-fredlund-xing-model-in-soil-vision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4079</span> Topological Indices of Some Graph Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Mary">U. Mary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let be a graph with a finite, nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of called edges. The vertex set is denoted by and the edge set by. Given two graphs and the wiener index of, wiener index for the splitting graph of a graph, the first Zagreb index of and its splitting graph, the 3-steiner wiener index of, the 3-steiner wiener index of a special graph are explored in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complementary%20prism%20graph" title="complementary prism graph">complementary prism graph</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20Zagreb%20index" title=" first Zagreb index"> first Zagreb index</a>, <a href="https://publications.waset.org/abstracts/search?q=neighborhood%20corona%20graph" title=" neighborhood corona graph"> neighborhood corona graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20distance" title=" steiner distance"> steiner distance</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20graph" title=" splitting graph"> splitting graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20wiener%20index" title=" steiner wiener index"> steiner wiener index</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20index" title=" wiener index"> wiener index</a> </p> <a href="https://publications.waset.org/abstracts/16774/topological-indices-of-some-graph-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4078</span> Modeling of Flows in Porous Materials under Pressure Difference</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicoleta%20O.%20Tanase">Nicoleta O. Tanase</a>, <a href="https://publications.waset.org/abstracts/search?q=Ciprian%20S.%20Mateescu"> Ciprian S. Mateescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with the numerical study of the flow through porous media. The purpose of this project is to determine the permeability of a medium and its connection to porosity to be able to identify how the permeability of said medium can be altered without changing the porosity. The numerical simulations are performed in 2D flow configurations with the laminar solvers implemented in Workbench - ANSYS Fluent. The direction of flow of the working fluid (water) is axial, from left to right, and in steady-state conditions. The working fluid is water. The 2D geometry is a channel with 300 mm length and 30 mm width, with a different number of circles that are positioned differently, modelling a porous medium. The permeability of a porous medium can be altered without changing the porosity by positioning the circles differently (by missing the same number of circles) in the flow domain, which induces a change in the flow spectrum. The main goal of the paper is to investigate the flow pattern and permeability under controlled perturbations induced by the variation of velocity and porous medium. Numerical solutions provide insight into all flow magnitudes, one of the most important being the WSS distribution on the circles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20spectrum" title=" flow spectrum"> flow spectrum</a> </p> <a href="https://publications.waset.org/abstracts/183313/modeling-of-flows-in-porous-materials-under-pressure-difference" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4077</span> Optimum Design of Alkali Activated Slag Concretes for Low Chloride Ion Permeability and Water Absorption Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCzeyyen%20Bal%C3%A7ikanli">Müzeyyen Balçikanli</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdo%C4%9Fan%20%C3%96zbay"> Erdoğan Özbay</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Tacettin%20T%C3%BCrker"> Hakan Tacettin Türker</a>, <a href="https://publications.waset.org/abstracts/search?q=Okan%20Karahan"> Okan Karahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20Duran%20Ati%C5%9F"> Cengiz Duran Atiş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, effect of curing time (TC), curing temperature (CT), sodium concentration (SC) and silicate modules (SM) on the compressive strength, chloride ion permeability, and water absorption capacity of alkali activated slag (AAS) concretes were investigated. For maximization of compressive strength while for minimization of chloride ion permeability and water absorption capacity of AAS concretes, best possible combination of CT, CTime, SC and SM were determined. An experimental program was conducted by using the central composite design method. Alkali solution-slag ratio was kept constant at 0.53 in all mixture. The effects of the independent parameters were characterized and analyzed by using statistically significant quadratic regression models on the measured properties (dependent parameters). The proposed regression models are valid for AAS concretes with the SC from 0.1% to 7.5%, SM from 0.4 to 3.2, CT from 20 °C to 94 °C and TC from 1.2 hours to 25 hours. The results of test and analysis indicate that the most effective parameter for the compressive strength, chloride ion permeability and water absorption capacity is the sodium concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20chloride%20permeability" title=" rapid chloride permeability"> rapid chloride permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption%20capacity" title=" water absorption capacity"> water absorption capacity</a> </p> <a href="https://publications.waset.org/abstracts/54620/optimum-design-of-alkali-activated-slag-concretes-for-low-chloride-ion-permeability-and-water-absorption-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4076</span> Understanding the Role of Gas Hydrate Morphology on the Producibility of a Hydrate-Bearing Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Lall">David Lall</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikram%20Vishal"> Vikram Vishal</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20G.%20Ranjith"> P. G. Ranjith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical modeling of gas production from hydrate-bearing reservoirs requires the solution of various thermal, hydrological, chemical, and mechanical phenomena in a coupled manner. Among the various reservoir properties that influence gas production estimates, the distribution of permeability across the domain is one of the most crucial parameters since it determines both heat transfer and mass transfer. The aspect of permeability in hydrate-bearing reservoirs is particularly complex compared to conventional reservoirs since it depends on the saturation of gas hydrates and hence, is dynamic during production. The dependence of permeability on hydrate saturation is mathematically represented using permeability-reduction models, which are specific to the expected morphology of hydrate accumulations (such as grain-coating or pore-filling hydrates). In this study, we demonstrate the impact of various permeability-reduction models, and consequently, different morphologies of hydrate deposits on the estimates of gas production using depressurization at the reservoir scale. We observe significant differences in produced water volumes and cumulative mass of produced gas between the models, thereby highlighting the uncertainty in production behavior arising from the ambiguity in the prevalent gas hydrate morphology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20hydrate%20morphology" title="gas hydrate morphology">gas hydrate morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20modeling" title=" multi-scale modeling"> multi-scale modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=THMC" title=" THMC"> THMC</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow%20in%20porous%20media" title=" fluid flow in porous media"> fluid flow in porous media</a> </p> <a href="https://publications.waset.org/abstracts/144558/understanding-the-role-of-gas-hydrate-morphology-on-the-producibility-of-a-hydrate-bearing-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4075</span> Strength and Permeability Characteristics of Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amrit%20Pal%20Singh%20Arora">Amrit Pal Singh Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper reports the results of a study undertaken to study the effects of addition of steel fibres of different aspect ratios on the permeability and strength characteristics of steel fiber reinforced fly ash concrete (SFRC). Corrugated steel fibres having a diameter of 0.6 mm and lengths of 12.5 mm, 30 mm and 50 mm were used in this study. Cube samples of 100 mm x 100 mm x 100 mm were cast from mixes replacing 0%, 10%, 20% and 30% cement content by fly ash with and without fibres and tested for the determination of coefficient of water permeability, compressive and split tensile strengths after 7 and 28 days of curing. Plain concrete samples were also cast and tested for reference purposes. Permeability was observed to decrease significantly for all concrete mixes with the addition of steel fibers as compared to plain concrete. The replacement of cement content by fly ash results in an increase in the coefficient of water permeability. With the addition of fly ash to the plain mix the7 day compressive and split tensile strengths decreased, however both the compressive and split tensile strengths increased with increase in curing age. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing%20age" title="curing age">curing age</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20shape" title=" fiber shape"> fiber shape</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=Darcy%E2%80%99s%20law" title=" Darcy’s law"> Darcy’s law</a>, <a href="https://publications.waset.org/abstracts/search?q=Ppermeability" title=" Ppermeability"> Ppermeability</a> </p> <a href="https://publications.waset.org/abstracts/57483/strength-and-permeability-characteristics-of-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4074</span> An Approach to Spatial Planning for Water Conservation: The Case of Kovada Sub-Watershed (Turkey)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aybike%20Ayfer%20Karada%C4%9F">Aybike Ayfer Karadağ</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the amount of water available is decreasing day by day due to global warming, environmental problems and population increase. To protect water resources, it is necessary to take a lot of measures from the global scale to the local scale. Some of these measures are related to spatial planning studies. In this study, the impact of water process analysis was assessed in the development of spatial planning for water conservation. The study was conducted in the Kovada sub-watershed (Isparta, Turkey). By means of water process analysis, the way to reach underground water of surface water in the study area is mapped. In this context, plant cover, soil and rock permeability were evaluated holistically with geographic information systems technologies. Then, on the map, water permeability is classified and this is spatially expressed. The findings show that the permeability of the water is different in the study case. As a result, the water permeability map needs to be included in the planning for water conservation planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20planning" title=" spatial planning"> spatial planning</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20process%20analysis" title=" water process analysis"> water process analysis</a> </p> <a href="https://publications.waset.org/abstracts/97414/an-approach-to-spatial-planning-for-water-conservation-the-case-of-kovada-sub-watershed-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4073</span> Fabrication of a High-Performance Polyetherimide Membrane for Helium Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Alqaheem">Y. Alqaheem</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alomair"> A. Alomair</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Altarkait"> F. Altarkait</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Alswaileh"> F. Alswaileh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusrat%20Tanoli"> Nusrat Tanoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Helium market is continuously growing due to its essential uses in the electronic and healthcare sectors. Currently, helium is produced by cryogenic distillation but the process is uneconomical especially for low production volumes. On the other hand, polymeric membranes can provide a cost-effective solution for helium purification due to their low operating energy. However, the preparation of membranes involves the use of very toxic solvents such as chloroform. In this work, polyetherimide membranes were prepared using a less toxic solvent, n-methylpyrrolidone with a polymer-to-solvent ratio of 27 wt%. The developed membrane showed a superior helium permeability of 15.9 Barrer that surpassed the permeability of membranes made by chloroform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helium%20separation" title="helium separation">helium separation</a>, <a href="https://publications.waset.org/abstracts/search?q=polyetherimide" title=" polyetherimide"> polyetherimide</a>, <a href="https://publications.waset.org/abstracts/search?q=dense%20membrane" title=" dense membrane"> dense membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20permeability" title=" gas permeability"> gas permeability</a> </p> <a href="https://publications.waset.org/abstracts/105153/fabrication-of-a-high-performance-polyetherimide-membrane-for-helium-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permeability%20index&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permeability%20index&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permeability%20index&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permeability%20index&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permeability%20index&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permeability%20index&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permeability%20index&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permeability%20index&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permeability%20index&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permeability%20index&page=136">136</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permeability%20index&page=137">137</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permeability%20index&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>