CINXE.COM
Search results for: photocatalysis
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: photocatalysis</title> <meta name="description" content="Search results for: photocatalysis"> <meta name="keywords" content="photocatalysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="photocatalysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="photocatalysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: photocatalysis</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Photocatalytic and Sonophotocatalytic Degradation of Reactive Red 120 using Dye Sensitized TiO2 under Visible Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.K.Kavitha">S.K.Kavitha</a>, <a href="https://publications.waset.org/search?q=P.N.Palanisamy"> P.N.Palanisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The accelerated sonophotocatalytic degradation of Reactive Red (RR) 120 dye under visible light using dye sensitized TiO2 activated by ultrasound has been carried out. The effect of sonolysis, photocatalysis and sonophotocatalysis under visible light has been examined to study the influence on the degradation rates by varying the initial substrate concentration, pH and catalyst loading to ascertain the synergistic effect on the degradation techniques. Ultrasonic activation contributes degradation through cavitation leading to the splitting of H2O2 produced by both photocatalysis and sonolysis. This results in the formation of oxidative species, such as singlet oxygen (1O2) and superoxide (O2 -●) radicals in the presence of oxygen. The increase in the amount of reactive radical species which induce faster oxidation of the substrate and degradation of intermediates and also the deaggregation of the photocatalyst are responsible for the synergy observed under sonication. A comparative study of photocatalysis and sonophotocatalysis using TiO2, Hombikat UV 100 and ZnO was also carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Photocatalysis" title="Photocatalysis">Photocatalysis</a>, <a href="https://publications.waset.org/search?q=Reactive%20Red%20120" title=" Reactive Red 120"> Reactive Red 120</a>, <a href="https://publications.waset.org/search?q=Sonophotocatalysis" title=" Sonophotocatalysis"> Sonophotocatalysis</a>, <a href="https://publications.waset.org/search?q=Sonolysis." title=" Sonolysis."> Sonolysis.</a> </p> <a href="https://publications.waset.org/7772/photocatalytic-and-sonophotocatalytic-degradation-of-reactive-red-120-using-dye-sensitized-tio2-under-visible-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7772/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7772/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7772/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7772/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7772/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7772/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7772/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7772/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7772/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7772/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3424</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Meichen%20Lee">Meichen Lee</a>, <a href="https://publications.waset.org/search?q=Michael%20K.%20H.%20Leung"> Michael K. H. Leung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microwave%20solvothermal%20process" title="Microwave solvothermal process">Microwave solvothermal process</a>, <a href="https://publications.waset.org/search?q=nanoplates" title=" nanoplates"> nanoplates</a>, <a href="https://publications.waset.org/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/search?q=visible-light%20photocatalysis." title=" visible-light photocatalysis."> visible-light photocatalysis.</a> </p> <a href="https://publications.waset.org/10005522/microwave-assisted-fabrication-of-visible-light-activated-biobr-nanoplate-photocatalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005522/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005522/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005522/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005522/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005522/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005522/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005522/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005522/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005522/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005522/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1001</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Developing Cu-Mesoporous TiO2 Cooperated with Ozone Assistance and Online- Regeneration System for Acid Odor Removal in All Weather</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yuchih%20Lin">Yuchih Lin</a>, <a href="https://publications.waset.org/search?q=Chung-Liang%20Chang"> Chung-Liang Chang</a>, <a href="https://publications.waset.org/search?q=Hong-Yi%20Cao"> Hong-Yi Cao</a>, <a href="https://publications.waset.org/search?q=Sheng-Hsuan%20Hsiao"> Sheng-Hsuan Hsiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cu-mesoporous TiO2 is developed for removal acid odor cooperated with ozone assistance and online- regeneration system with/without UV irradiation (all weather) in study. The results showed that Cu-mesoporous TiO2 present the desirable adsorption efficiency of acid odor without UV irradiation, due to the larger surface area, pore sizeand the additional absorption ability provided by Cu. In the photocatalysis process, the material structure also benefits Cu-mesoporous TiO2 to perform the more outstanding efficiency on degrading acid odor. Cu also postponed the recombination of electron-hole pairs excited from TiO2 to enhance photodegradation ability. Cu-mesoporous TiO2 could gain the conspicuous increase on photocatalysis ability from ozone assistance, but without any benefit on adsorption. In addition, the online regeneration procedure could process the used Cu-mesoporous TiO2 to reinstate the adsorption ability and maintain the photodegradtion performance, depended on scrubbing, desorping acid odor and reducing Cu to metal state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=mesoporous%20material" title="mesoporous material">mesoporous material</a>, <a href="https://publications.waset.org/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/search?q=regeneration%20usage" title=" regeneration usage"> regeneration usage</a>, <a href="https://publications.waset.org/search?q=photocatalytic%20ozonation" title=" photocatalytic ozonation"> photocatalytic ozonation</a> </p> <a href="https://publications.waset.org/11652/developing-cu-mesoporous-tio2-cooperated-with-ozone-assistance-and-online-regeneration-system-for-acid-odor-removal-in-all-weather" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11652/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11652/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11652/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11652/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11652/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11652/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11652/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11652/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11652/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11652/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1882</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Solar Photocatalysis of Methyl Orange Using Multi-Ion Doped TiO2 Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Victor%20R.%20Thulari">Victor R. Thulari</a>, <a href="https://publications.waset.org/search?q=John%20Akach"> John Akach</a>, <a href="https://publications.waset.org/search?q=Haleden%20Chiririwa"> Haleden Chiririwa</a>, <a href="https://publications.waset.org/search?q=Aoyi%20Ochieng"> Aoyi Ochieng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar-light activated titanium dioxide photocatalysts were prepared by hydrolysis of titanium (IV) isopropoxide with thiourea, followed by calcinations at 450 °C. The experiments demonstrated that methyl orange in aqueous solutions were successfully degraded under solar light using doped TiO<sub>2</sub>. The photocatalytic oxidation of a mono azo methyl-orange dye has been investigated in multi ion doped TiO<sub>2</sub> and solar light. Solutions were irradiated by solar-light until high removal was achieved. It was found that there was no degradation of methyl orange in the dark and in the absence of TiO<sub>2</sub>. Varieties of laboratory prepared TiO<sub>2</sub> catalysts both un-doped and doped using titanium (IV) isopropoxide and thiourea as a dopant were tested in order to compare their photoreactivity. As a result, it was found that the efficiency of the process strongly depends on the working conditions. The highest degradation rate of methyl orange was obtained at optimum dosage using commercially produced TiO<sub>2</sub>. Our work focused on laboratory synthesized catalyst and the maximum methyl orange removal was achieved at 81% with catalyst loading of 0.04 g/L, initial pH of 3 and methyl orange concentration of 0.005 g/L using multi-ion doped catalyst. The kinetics of photocatalytic methyl orange dye stuff degradation was found to follow a pseudo-first-order rate law. The presence of the multi-ion dopant (thiourea) enhanced the photoefficiency of the titanium dioxide catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Degradation" title="Degradation">Degradation</a>, <a href="https://publications.waset.org/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/search?q=photocatalysis." title=" photocatalysis."> photocatalysis.</a> </p> <a href="https://publications.waset.org/10006097/solar-photocatalysis-of-methyl-orange-using-multi-ion-doped-tio2-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006097/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006097/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006097/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006097/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006097/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006097/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006097/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006097/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006097/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006097/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1266</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Evaluation of the Discoloration of Methyl Orange Using Black Sand as Semiconductor through Photocatalytic Oxidation and Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Acosta-Santamar%C3%ADa">P. Acosta-Santamaría</a>, <a href="https://publications.waset.org/search?q=A.%20Ibat%C3%A1-Soto"> A. Ibatá-Soto</a>, <a href="https://publications.waset.org/search?q=A.%20L%C3%B3pez-V%C3%A1squez"> A. López-Vásquez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Organic compounds in wastewaters coming from textile and pharmaceutical industry generated multiple harmful effects on the environment and the human health. One of them is the methyl orange (MeO), an azoic dye considered to be a recalcitrant compound. The heterogeneous photocatalysis emerges as an alternative for treating this type of hazardous compounds, through the generation of OH radicals using radiation and a semiconductor oxide. According to the author’s knowledge, catalysts such as TiO<sub>2</sub> doped with metals show high efficiency in degrading MeO; however, this presents economic limitations on industrial scale. Black sand can be considered as a naturally doped catalyst because in its structure is common to find compounds such as titanium, iron and aluminum oxides, also elements such as zircon, cadmium, manganese, etc. This study reports the photocatalytic activity of the mineral black sand used as semiconductor in the discoloration of MeO by oxidation and reduction photocatalytic techniques. For this, magnetic composites from the mineral were prepared (RM, M1, M2 and NM) and their activity were tested through MeO discoloration while TiO<sub>2</sub> was used as reference. For the fractions, chemical, morphological and structural characterizations were performed using Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analysis. M2 fraction showed higher MeO discoloration (93%) in oxidation conditions at pH 2 and it could be due to the presence of ferric oxides. However, the best result to reduction process was using M1 fraction (20%) at pH 2, which contains a higher titanium percentage. In the first process, hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) was used as electron donor agent. According to the results, black sand mineral can be used as natural semiconductor in photocatalytic process. It could be considered as a photocatalyst precursor in such processes, due to its low cost and easy access.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Black%20sand%20mineral" title="Black sand mineral">Black sand mineral</a>, <a href="https://publications.waset.org/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/search?q=reduction." title=" reduction."> reduction.</a> </p> <a href="https://publications.waset.org/10005940/evaluation-of-the-discoloration-of-methyl-orange-using-black-sand-as-semiconductor-through-photocatalytic-oxidation-and-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005940/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005940/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005940/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005940/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005940/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005940/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005940/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005940/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005940/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005940/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1272</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Preparation and Characterization of CuFe2O4/TiO2 Photocatalyst for the Conversion of CO2 into Methanol under Visible Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Md.%20Maksudur%20Rahman%20Khan">Md. Maksudur Rahman Khan</a>, <a href="https://publications.waset.org/search?q=M.%20Rahim%20Uddin"> M. Rahim Uddin</a>, <a href="https://publications.waset.org/search?q=Hamidah%20Abdullah"> Hamidah Abdullah</a>, <a href="https://publications.waset.org/search?q=Kaykobad%20Md.%20Rezaul%20Karim"> Kaykobad Md. Rezaul Karim</a>, <a href="https://publications.waset.org/search?q=Abu%20Yousuf"> Abu Yousuf</a>, <a href="https://publications.waset.org/search?q=Chin%20Kui%20Cheng"> Chin Kui Cheng</a>, <a href="https://publications.waset.org/search?q=Huei%20Ruey%20Ong"> Huei Ruey Ong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A systematic study was conducted to explore the photocatalytic reduction of carbon dioxide (CO<sub>2</sub>) into methanol on TiO<sub>2</sub> loaded copper ferrite (CuFe<sub>2</sub>O<sub>4</sub>) photocatalyst under visible light irradiation. The phases and crystallite size of the photocatalysts were characterized by X-ray diffraction (XRD) and it indicates CuFe<sub>2</sub>O<sub>4</sub> as tetragonal phase incorporation with anatase TiO<sub>2</sub> in CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> hetero-structure. The XRD results confirmed the formation of spinel type tetragonal CuFe<sub>2</sub>O<sub>4 </sub>phases along with predominantly anatase phase of TiO<sub>2</sub> in the CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> hetero-structure. UV-Vis absorption spectrum suggested the formation of the hetero-junction with relatively lower band gap than that of TiO<sub>2</sub>. Photoluminescence (PL) technique was used to study the electron–hole (e<sup>−</sup>/h<sup>+</sup>) recombination process. PL spectra analysis confirmed the slow-down of the recombination of electron–hole (e<sup>−</sup>/h<sup>+</sup>) pairs in the CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> hetero-structure. The photocatalytic performance of CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> was evaluated based on the methanol yield with varying amount of TiO<sub>2 </sub>over CuFe<sub>2</sub>O<sub>4</sub> (0.5:1, 1:1, and 2:1) and changing light intensity. The mechanism of the photocatalysis was proposed based on the fact that the predominant species of CO<sub>2</sub> in aqueous phase were dissolved CO<sub>2 </sub>and HCO<sub>3</sub><sup>- </sup>at pH ~5.9. It was evident that the CuFe<sub>2</sub>O<sub>4</sub> could harvest the electrons under visible light irradiation, which could further be injected to the conduction band of TiO<sub>2</sub> to increase the life time of the electron and facilitating the reactions of CO<sub>2</sub> to methanol. The developed catalyst showed good recycle ability up to four cycles where the loss of activity was ~25%. Methanol was observed as the main product over CuFe<sub>2</sub>O<sub>4</sub>, but loading with TiO<sub>2</sub> remarkably increased the methanol yield. Methanol yield over CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> was found to be about three times higher (651 μmol/g<sub>cat </sub>L) than that of CuFe<sub>2</sub>O<sub>4 </sub>photocatalyst. This occurs because the energy of the band excited electrons lies above the redox potentials of the reaction products CO<sub>2</sub>/CH<sub>3</sub>OH.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Photocatalysis" title="Photocatalysis">Photocatalysis</a>, <a href="https://publications.waset.org/search?q=CuFe2O4%2FTiO2" title=" CuFe2O4/TiO2"> CuFe2O4/TiO2</a>, <a href="https://publications.waset.org/search?q=band-gap%20energy" title=" band-gap energy"> band-gap energy</a>, <a href="https://publications.waset.org/search?q=methanol." title=" methanol. "> methanol. </a> </p> <a href="https://publications.waset.org/10005535/preparation-and-characterization-of-cufe2o4tio2-photocatalyst-for-the-conversion-of-co2-into-methanol-under-visible-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005535/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005535/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005535/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005535/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005535/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005535/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005535/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005535/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005535/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005535/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2138</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Hydrothermal Synthesis of ZnO/SnO2 Nanoparticles with High Photocatalytic Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Azam%20Anaraki%20Firooz">Azam Anaraki Firooz</a>, <a href="https://publications.waset.org/search?q=Ali%20Reza%20Mahjoub"> Ali Reza Mahjoub</a>, <a href="https://publications.waset.org/search?q=Abbas%20Ali%20Khodadadi"> Abbas Ali Khodadadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper reports the preparation and photocatalytic activity of ZnO/SnO2 and SnO2 nanoparticles. These nanoparticles were synthesized by hydrothermal method. The products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their grain sizes are about 50-100 nm. The photocatalytic activities of these materials were investigated for congo red removal from aqueous solution under UV light irradiation. It was shown that the use of ZnO/SnO2 as photocatalyst have better photocatalytic activity for degradation of congo red than SnO2 or TiO2 (anatase, particle size: 30nm) alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ZnO%2FSnO2%20nanoparticle" title="ZnO/SnO2 nanoparticle">ZnO/SnO2 nanoparticle</a>, <a href="https://publications.waset.org/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/search?q=photocatalysis" title="photocatalysis">photocatalysis</a> </p> <a href="https://publications.waset.org/1302/hydrothermal-synthesis-of-znosno2-nanoparticles-with-high-photocatalytic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1302/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1302/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1302/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1302/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1302/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1302/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1302/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1302/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1302/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1302/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3468</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Analysis of Structural and Photocatalytical Properties of Anatase, Rutile and Mixed Phase TiO2 Films Deposited by Pulsed-Direct Current and Radio Frequency Magnetron Co-Sputtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Varnagiris">S. Varnagiris</a>, <a href="https://publications.waset.org/search?q=M.%20Urbonavicius"> M. Urbonavicius</a>, <a href="https://publications.waset.org/search?q=S.%20Tuckute"> S. Tuckute</a>, <a href="https://publications.waset.org/search?q=M.%20Lelis"> M. Lelis</a>, <a href="https://publications.waset.org/search?q=K.%20Bockute"> K. Bockute</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Amongst many water purification techniques, TiO<sub>2</sub> photocatalysis is recognized as one of the most promising sustainable methods. It is known that for photocatalytical applications anatase is the most suitable TiO<sub>2</sub> phase, however heterojunction of anatase/rutile phases could improve the photocatalytical activity of TiO<sub>2</sub> even further. Despite the relative simplicity of TiO<sub>2</sub> different synthesis methods lead to the highly dispersed crystal phases and photocatalytic activity of the corresponding samples. Accordingly, suggestions and investigations of various innovative methods of TiO<sub>2</sub> synthesis are still needed. In this work structural and photocatalytical properties of TiO<sub>2</sub> films deposited by the unconventional method of simultaneous co-sputtering from two magnetrons powered by pulsed-Direct Current (pDC) and Radio Frequency (RF) power sources with negative bias voltage have been studied. More specifically, TiO<sub>2</sub> film thickness, microstructure, surface roughness, crystal structure, optical transmittance and photocatalytical properties were investigated by profilometer, scanning electron microscope, atomic force microscope, X-ray diffractometer and UV-Vis spectrophotometer respectively. The proposed unconventional two magnetron co-sputtering based TiO<sub>2</sub> film formation method showed very promising results for crystalline TiO<sub>2</sub> film formation while keeping process temperatures below 100 °C. XRD analysis revealed that by using proper combination of power source type and bias voltage various TiO<sub>2</sub> phases (amorphous, anatase, rutile or their mixture) can be synthesized selectively. Moreover, strong dependency between power source type and surface roughness, as well as between the bias voltage and band gap value of TiO<sub>2</sub> films was observed. Interestingly, TiO<sub>2</sub> films deposited by two magnetron co-sputtering without bias voltage had one of the highest band gap values between the investigated films but its photocatalytic activity was superior compared to all other samples. It is suggested that this is due to the dominating nanocrystalline anatase phase with various exposed surfaces including photocatalytically the most active {001}.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Films" title="Films">Films</a>, <a href="https://publications.waset.org/search?q=magnetron%20co-sputtering" title=" magnetron co-sputtering"> magnetron co-sputtering</a>, <a href="https://publications.waset.org/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/search?q=TiO2." title=" TiO2. "> TiO2. </a> </p> <a href="https://publications.waset.org/10010808/analysis-of-structural-and-photocatalytical-properties-of-anatase-rutile-and-mixed-phase-tio2-films-deposited-by-pulsed-direct-current-and-radio-frequency-magnetron-co-sputtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010808/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010808/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010808/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010808/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010808/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010808/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010808/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010808/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010808/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010808/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">651</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Ferroelectric Relaxor Behaviour in Some Lead- Free Compositions and their Potential Applications as Photocatalyst to Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Kerfah">A. Kerfah</a>, <a href="https://publications.waset.org/search?q=K.%20Ta%C3%AFbi"> K. Taïbi</a>, <a href="https://publications.waset.org/search?q=S.%20Omeiri"> S. Omeiri</a>, <a href="https://publications.waset.org/search?q=M.%20Trari."> M. Trari.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New lead-free ferroelectric relaxor ceramics were prepared by conventional solid-state synthesis in the BaTiO3-Bi2O3- Y2O3 systems. Some of these ceramics present a ferroelectric relaxor with transition temperature close to room temperature. These new materials are very interesting for applications and can replace leadbased ceramic to prevent the toxic pollutions during the preparation state. In the other hand, the energy band diagram shows the potentiality of these compounds for the solar energy conversion. Thus, some compositions have been tested successfully for H2 production upon visible light. The best activity occurs in alkaline media with a rate evolution of about 0.15 mL g-1 mn-1 and a quantum yield of 1% under polychromatic light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ferroelectric" title="Ferroelectric">Ferroelectric</a>, <a href="https://publications.waset.org/search?q=Hydrogen%20production" title=" Hydrogen production"> Hydrogen production</a>, <a href="https://publications.waset.org/search?q=Lead-free" title=" Lead-free"> Lead-free</a>, <a href="https://publications.waset.org/search?q=Photocatalysis." title=" Photocatalysis."> Photocatalysis.</a> </p> <a href="https://publications.waset.org/10016/ferroelectric-relaxor-behaviour-in-some-lead-free-compositions-and-their-potential-applications-as-photocatalyst-to-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10016/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10016/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10016/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10016/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10016/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10016/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10016/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10016/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10016/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10016/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1726</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Enhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Bashir%20Ahmmad">Bashir Ahmmad</a>, <a href="https://publications.waset.org/search?q=Kensaku%20Kanomata"> Kensaku Kanomata</a>, <a href="https://publications.waset.org/search?q=Fumihiko%20Hirose"> Fumihiko Hirose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The effect of carbon materials on TiO<sub>2</sub> for the photocatalytic hydrogen gas production from water / alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO<sub>2</sub>. Drastic synergy effects were found with increase in the amount of hydrogen gas by a factor of ca. 150 and 100 for SWNTs and GS with TiO<sub>2</sub>, respectively. Moreover, the increment factor of hydrogen production reached to 180, when the mixture of SWNTs and TiO<sub>2</sub> were smashed in an agate mortar before photocatalytic reactions. The order of H<sub>2</sub> gas production for these carbon materials was SWNTs > GS >> MWNTs > FLN > CNF > GP. To maximize the hydrogen production from SWNTs/TiO<sub>2</sub>, various parameters of experimental condition were changed. Also, a comparison between Pt/TiO<sub>2</sub>, SWNTs/TiO<sub>2</sub> and GS/TiO<sub>2</sub> was made for the amount of H<sub>2</sub> gas production. Finally, the recyclability of SWNTs/TiO<sub>2</sub>or GS/TiO<sub>2</sub> was tested.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Photocatalysis" title="Photocatalysis">Photocatalysis</a>, <a href="https://publications.waset.org/search?q=carbon%20materials" title=" carbon materials"> carbon materials</a>, <a href="https://publications.waset.org/search?q=alcohol%20reforming" title=" alcohol reforming"> alcohol reforming</a>, <a href="https://publications.waset.org/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/search?q=titanium%20oxide." title=" titanium oxide."> titanium oxide.</a> </p> <a href="https://publications.waset.org/9997121/enhanced-photocatalytic-hydrogen-production-on-tio2-by-using-carbon-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997121/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997121/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997121/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997121/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997121/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997121/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997121/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997121/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997121/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997121/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3986</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dionisios%20Panagiotaras">Dionisios Panagiotaras</a>, <a href="https://publications.waset.org/search?q=Dimitrios%20Papoulis"> Dimitrios Papoulis</a>, <a href="https://publications.waset.org/search?q=Elias%20Stathatos"> Elias Stathatos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO<sub>2 </sub>are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450<sup>o</sup>C. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO<sub>2</sub> nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties.</p> <p>The composite palygorskite-TiO<sub>2 </sub>and halloysite-TiO<sub>2</sub> films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite-TiO<sub>2</sub> or halloysite-TiO<sub>2</sub> catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO<sub>2</sub> on clay minerals avoiding aggregation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Halloysite" title="Halloysite">Halloysite</a>, <a href="https://publications.waset.org/search?q=Palygorskite" title=" Palygorskite"> Palygorskite</a>, <a href="https://publications.waset.org/search?q=Photocatalysis" title=" Photocatalysis"> Photocatalysis</a>, <a href="https://publications.waset.org/search?q=Titanium%20Dioxide." title=" Titanium Dioxide. "> Titanium Dioxide. </a> </p> <a href="https://publications.waset.org/9997792/tio2clay-minerals-palygorskitehalloysite-nanocomposite-coatings-for-water-disinfection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997792/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997792/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997792/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997792/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997792/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997792/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997792/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997792/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997792/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997792/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3598</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Effect of Precursors Aging Time on the Photocatalytic Activity of ZnO Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Kaneva">N. Kaneva</a>, <a href="https://publications.waset.org/search?q=A.%20Bojinova"> A. Bojinova</a>, <a href="https://publications.waset.org/search?q=K.%20Papazova"> K. Papazova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15 and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied in the photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction, occurring on the surface of the films and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ZnO%20thin%20films" title="ZnO thin films">ZnO thin films</a>, <a href="https://publications.waset.org/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/search?q=aging%20time." title=" aging time."> aging time.</a> </p> <a href="https://publications.waset.org/10000623/effect-of-precursors-aging-time-on-the-photocatalytic-activity-of-zno-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000623/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000623/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000623/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000623/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000623/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000623/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000623/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000623/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000623/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000623/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2449</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Silver Modified TiO2/Halloysite Thin Films for Decontamination of Target Pollutants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dionisios%20Panagiotaras">Dionisios Panagiotaras</a>, <a href="https://publications.waset.org/search?q=Elias%20Stathatos"> Elias Stathatos</a>, <a href="https://publications.waset.org/search?q=Dimitrios%20Papoulis"> Dimitrios Papoulis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p> Sol-gel method has been used to fabricate nanocomposite films on glass substrates composed halloysite clay mineral and nanocrystalline TiO2. The methodology for the synthesis involves a simple chemistry method utilized nonionic surfactant molecule as pore directing agent along with the acetic acid-based solgel route with the absence of water molecules. The thermal treatment of composite films at 450oC ensures elimination of organic material and lead to the formation of TiO2 nanoparticles onto the surface of the halloysite nanotubes. Microscopy techniques and porosimetry methods used in order to delineate the structural characteristics of the materials. The nanocomposite films produced have no cracks and active anatase crystal phase with small crystallite size were deposited on halloysite nanotubes. The photocatalytic properties for the new materials were examined for the decomposition of the Basic Blue 41 azo dye in solution. These, nanotechnology based composite films show high efficiency for dye’s discoloration in spite of different halloysite quantities and small amount of halloysite/TiO2 catalyst immobilized onto glass substrates. Moreover, we examined the modification of the halloysite/TiO2 films with silver particles in order to improve the photocatalytic properties of the films. Indeed, the presence of silver nanoparticles enhances the discoloration rate of the Basic Blue 41 compared to the efficiencies obtained for unmodified films.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Clay%20mineral" title="Clay mineral">Clay mineral</a>, <a href="https://publications.waset.org/search?q=nanotubular%20Halloysite" title=" nanotubular Halloysite"> nanotubular Halloysite</a>, <a href="https://publications.waset.org/search?q=Photocatalysis" title=" Photocatalysis"> Photocatalysis</a>, <a href="https://publications.waset.org/search?q=Titanium%20Dioxide" title=" Titanium Dioxide"> Titanium Dioxide</a>, <a href="https://publications.waset.org/search?q=Silver%20modification." title=" Silver modification."> Silver modification.</a> </p> <a href="https://publications.waset.org/9999189/silver-modified-tio2halloysite-thin-films-for-decontamination-of-target-pollutants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999189/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999189/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999189/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999189/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999189/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999189/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999189/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999189/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999189/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999189/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2530</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Photocatalytic Active Surface of LWSCC Architectural Concretes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Novosad">P. Novosad</a>, <a href="https://publications.waset.org/search?q=L.%20Osuska"> L. Osuska</a>, <a href="https://publications.waset.org/search?q=M.%20Tazky"> M. Tazky</a>, <a href="https://publications.waset.org/search?q=T.%20Tazky"> T. Tazky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Current trends in the building industry are oriented towards the reduction of maintenance costs and the ecological benefits of buildings or building materials. Surface treatment of building materials with photocatalytic active titanium dioxide added into concrete can offer a good solution in this context. Architectural concrete has one disadvantage – dust and fouling keep settling on its surface, diminishing its aesthetic value and increasing maintenance e costs. Concrete surface – silicate material with open porosity – fulfils the conditions of effective photocatalysis, in particular, the self-cleaning properties of surfaces. This modern material is advantageous in particular for direct finishing and architectural concrete applications. If photoactive titanium dioxide is part of the top layers of road concrete on busy roads and the facades of the buildings surrounding these roads, exhaust fumes can be degraded with the aid of sunshine; hence, environmental load will decrease. It is clear that options for removing pollutants like nitrogen oxides (NOx) must be found. Not only do these gases present a health risk, they also cause the degradation of the surfaces of concrete structures. The photocatalytic properties of titanium dioxide can in the long term contribute to the enhanced appearance of surface layers and eliminate harmful pollutants dispersed in the air, and facilitate the conversion of pollutants into less toxic forms (e.g., NOx to HNO<sub>3</sub>). This paper describes verification of the photocatalytic properties of titanium dioxide and presents the results of mechanical and physical tests on samples of architectural lightweight self-compacting concretes (LWSCC). The very essence of the use of LWSCC is their rheological ability to seep into otherwise extremely hard accessible or inaccessible construction areas, or sections thereof where concrete compacting will be a problem, or where vibration is completely excluded. They are also able to create a solid monolithic element with a large variety of shapes; the concrete will at the same meet the requirements of both chemical aggression and the influences of the surrounding environment. Due to their viscosity, LWSCCs are able to imprint the formwork elements into their structure and thus create high quality lightweight architectural concretes.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Photocatalytic%20concretes" title="Photocatalytic concretes">Photocatalytic concretes</a>, <a href="https://publications.waset.org/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a>, <a href="https://publications.waset.org/search?q=architectural%20concretes" title=" architectural concretes"> architectural concretes</a>, <a href="https://publications.waset.org/search?q=LWSCC." title=" LWSCC."> LWSCC.</a> </p> <a href="https://publications.waset.org/10008201/photocatalytic-active-surface-of-lwscc-architectural-concretes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008201/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008201/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008201/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008201/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008201/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008201/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008201/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008201/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008201/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008201/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">767</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>