CINXE.COM
{"title":"Enhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials","authors":"Bashir Ahmmad, Kensaku Kanomata, Fumihiko Hirose","volume":85,"journal":"International Journal of Energy and Power Engineering","pagesStart":24,"pagesEnd":30,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/9997121","abstract":"<p>The effect of carbon materials on TiO<sub>2<\/sub> for the photocatalytic hydrogen gas production from water \/ alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO<sub>2<\/sub>. Drastic synergy effects were found with increase in the amount of hydrogen gas by a factor of ca. 150 and 100 for SWNTs and GS with TiO<sub>2<\/sub>, respectively. Moreover, the increment factor of hydrogen production reached to 180, when the mixture of SWNTs and TiO<sub>2<\/sub> were smashed in an agate mortar before photocatalytic reactions. The order of H<sub>2<\/sub> gas production for these carbon materials was SWNTs > GS >> MWNTs > FLN > CNF > GP. To maximize the hydrogen production from SWNTs\/TiO<sub>2<\/sub>, various parameters of experimental condition were changed. Also, a comparison between Pt\/TiO<sub>2<\/sub>, SWNTs\/TiO<sub>2<\/sub> and GS\/TiO<sub>2<\/sub> was made for the amount of H<sub>2<\/sub> gas production. Finally, the recyclability of SWNTs\/TiO<sub>2<\/sub>or GS\/TiO<sub>2<\/sub> was tested.<\/p>\r\n","references":"[1]\tA. Fujishima, K. Honda, \"Electrochemical photolysis of water at a semiconductor electrode,\u201d Nature, vol. 238, p. 37\u201338 (1972).\r\n[2]\tV. Preethin, S. Kanmani, \"Photocatalytic hydrogen production,\u201d Mater. Sci. Semicond. Process, vol. 16, p. 561\u2013575 (2013).\r\n[3]\tM. Gratzel, Energy resources through photochemistry and catalysis (Eds.) Academic Press 1983, New York.\r\n[4]\tC.-H. Liao, C.-W. Huang, J. C. S. Wu, \"Hydrogen production from semiconductor-based photocatalysis via water splitting,\u201d Catalysts, vol. 2, p. 490\u2013516, (2012).\r\n[5]\tM. Ni, M. K.H. Leung, D. Y.C. Leung, K. Sumathy, \"A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,\u201d Renewable Sustainable Energy Rev., vol. 11, p. 401\u2013 425, (2007).\r\n[6]\tK. Shimura, H. Yoshida, \"Heterogeneous photocatalytic hydrogen production from water and biomass derivatives,\u201d Energy Environ. Sci., vol. 4, p. 2467\u20132481, (2011).\r\n[7]\tB. Ahmmad, Y. Kusumoto, M. S. Islam, \"One-step and large scale synthesis of non-metal doped TiO2submicrospheres and their photocatalytic activity,\u201d Adv. Powder Technol., vol. 21, p. 292\u2013297 (2010).\r\n[8]\tW. J. Youngblood, S.-H. Lee, K. Maeda, T. E. Mallouk, \"Visible light water splitting using dye-sensitized oxide semiconductors,\u201d Acc. Chem. Res., vol. 42, p. 1966\u20131973 (2009).\r\n[9]\tH. Park, W. Choi, M. R. Hoffmann, \"Effects of the preparation method of the ternary CdS\/TiO2\/Pt hybrid photocatalysts on visible light-induced hydrogen production,\u201d J. Mater. Chem., vol. 18, p. 2379\u20132385 (2008).\r\n[10]\tL. S. Al-Mazroai, M. Bowker, P. Davies, A. Dickinson, J. Greaves, D. James, L. Millard, \"The photocatalytic reforming of methanol,\u201d Catal. Today, vol. 122, p. 46 \u201350 (2007).\r\n[11]\t\tP. Serp, J.L. Figueiredo, Carbon Materials for Fatalysis; John Wiley & Sons: New Jersey, 2009.\r\n[12]\tG. Khan, Y. K. Kim, S. K. Choi, D. S. Han, A. Abdel-Wahab, H. Park, \"Evaluating the catalytic effects of carbon materials on the photocatalytic reduction and oxidation reactions of TiO2,\u201d Bull. Korean Chem. Soc. vol. 34, p. 1137\u20131144 (2013).\r\n[13]\tB. Ahmmad, Y. Kusumoto, M. Ikeda, S. Somekawa, Y. Horie, \"Photocatalytic hydrogen production from diacids and their decomposition over mixtures of TiO2 and single walled carbon nanotubes,\u201d J. Adv. Oxid. Technol. vol. 10, p. 415\u2013420 (2007).\r\n[14]\tB. Ahmmad, Y. Kusumoto, S. Somekawa, M. Ikeda, \"Carbon nanotubes synergistically enhance photocatalytic activity of TiO2,\u201dCatal. Commun. vol. 9, p. 1410\u20131413 (2008).\r\n[15]\tP. Serp, M. Corrias, P. Kalck, \"Carbon nanotubes and nanofibers in catalysis,\u201d Appl. Catal. A, vol. 253, p. 337\u2013358 (2003).\r\n[16]\tT. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, \"Electrical conductivity of individual carbon nanotubes,\u201d Nature, vol. 382, p. 54\u201356 (1996).\r\n[17]\tR. H. Baughman, A. A. Zakhidov, W. A. de Heer, \"Carbon nanotubes\u2013the route toward applications,\u201d Science, vol. 297, p. 787\u2013292 (2002).\r\n[18]\tM. Ikeda, Y. Kusumoto, Y. Yakushijin, S. Somekawa, P. Ngweniform, B. Ahmmad, \"Hybridized synergy effect among TiO2, Pt and graphite silica on photocatalytic hydrogen production from water-methanol solution,\u201d Catal. Commun., vol. 8, p. 1943\u20131946 (2007).\r\n[19]\tM. Ikeda, Y. Kusumoto, S. Somekawa, P. Ngweniform, B. Ahmmad, \"Effect of graphite silica on TiO2photocatalysis in hydrogen production from water-methanol solution,\u201d J. Photochem. Photobiol. A, vol. 184, p. 306\u2013312 (2006).\r\n[20]\tA. Hameed, M.A. Gondal, \"Production of hydrogen-rich syngas using p-type NiO catalyst: a laser-based photocatalytic approach,\u201d J. Mol. Catal. A: Chem., vol. 233 p. 35\u201341(2005).\r\n[21]\tW.-C. Lin, W.-D. Yang, I-L. Huang, T.-S. Wu, Z.-J. Chung, \"Hydrogen production from methanol\/water photocatalytic decomposition using Pt\/TiO2-xNx catalyst,\u201d Energy &Fuels,vol. 23, p. 2192\u20132196 (2009).\r\n[22]\tM. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Gratzel, \"Conversion of Light to Electricity by cis-X2Bis(2,2-bipyridyl-4, 4-dicarboxylate) ruthenium (II) charge- transfer sensitizers (X = Cl\u2013, Br\u2013, I\u2013, CN\u2013, and SCN\u2013) on Nanocrystalline TiO2 Electrodes,\u201d J. Am. Chem. Soc. vol. 115, p. 6382\u20136390 (1993).\r\n[23]\tF. L. Darkrima, P. Malbrunota, G.P. Tartagliab, \"Review of hydrogen storage by adsorption in carbon nanotubes,\u201d Int. J. Hydrogen Energy, vol. 27, p. 193\u2013202 (2002).\r\n","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 85, 2014"}