CINXE.COM
Latest pairings | IUPHAR/BPS Guide to PHARMACOLOGY
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="https://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <script src="js/jquery.min.js"></script> <script src="js/jquery-ui.min.js"></script> <script src="js/jquery.cookie.js" type="text/javascript"></script> <script src="js/jquery.cookiecuttr.js" type="text/javascript"></script> <script src="js/cookie_tracking.js" type="text/javascript"></script> <script> // Define dataLayer and the gtag function. window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} // Default ad_storage to 'denied' as a placeholder // Determine actual values based on your own requirements gtag('consent', 'default', { 'ad_storage': 'denied', 'analytics_storage': 'denied' }); </script> <!-- Global site tag (gtag.js) - Google Analytics --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-2BNY8HSKW5"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-2BNY8HSKW5'); // gtag('event', eventName, eventParameters); </script> <script> if (jQuery.cookie('cc_cookie_decline') == "cc_cookie_decline") { // do nothing } else { gtag('consent', 'update', { 'analytics_storage': 'granted' }); } </script> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-W2MLL4P');</script> <!-- End Google Tag Manager --> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/> <title>Latest pairings | IUPHAR/BPS Guide to PHARMACOLOGY</title> <meta name="description" content="The IUPHAR/BPS Guide to PHARMACOLOGY Latest Pairings List. Recent reports of new pairings for orphan receptors."/> <link rel="stylesheet" type="text/css" href="css/iuphar.css" /> <link rel="stylesheet" type="text/css" href="css/grac.css" /> <link rel="stylesheet" href="css/font-awesome-4.7.0/css/font-awesome.min.css"> <link rel="stylesheet" media="screen" href="superfish/css/superfish.css" /> <link rel="stylesheet" href="css/cookiecuttr.css"/> <link rel="stylesheet" href="css/text.css" /> <link rel="stylesheet" href="css/960.css" /> <link rel="stylesheet" href="css/graceq.css" /> <link rel="stylesheet" href="css/jquery-ui.min.css"/> <link rel="shortcut icon" href="images/GTP_favicon_lg.ico"/> <script type="text/javascript" src="js/common.js"></script> <!-- <script src="js/jquery.min.js"></script> <script src="js/jquery-ui.min.js"></script> --> <script src="js/autocomplete.categories.js"></script> <script src="superfish/js/hoverIntent.js"></script> <script src="superfish/js/superfish.js"></script> <script src="superfish/js/supersubs.js"></script> <script> $(document).ready(function(){ $("ul.sf-menu").supersubs({ minWidth: 12, // minimum width of sub-menus in em units maxWidth: 27, // maximum width of sub-menus in em units extraWidth: 1 // extra width can ensure lines don't sometimes turn over // due to slight rounding differences and font-family }).superfish(); // call supersubs first, then superfish, so that subs are // not display:none when measuring. Call before initialising // containing tabs for same reason. }); </script> <!-- <script src="js/jquery.cookie.js" type="text/javascript"></script> <script src="js/jquery.cookiecuttr.js" type="text/javascript"></script> <script src="js/GA_tracking.js" type="text/javascript"></script> --> </head><body> <!-- Global site tag (gtag.js) - Google Analytics --> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-W2MLL4P" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class="container_16"> <!-- ========== HEAD SECTION START - DO NOT ADD ANY CONTENT HERE ===================== --> <div id="header"> <div class="brandandsearchtest"> <!-- <div class="brandandsearch"> --> <div class="newsearchright"> <form class="newmainsearch" method="get" action="/GRAC/DatabaseSearchForward"> <input type="text" id="quick_search" size="14" maxlength="200" name="searchString"/> <input type="hidden" name="searchCategories" value="all"/> <input type="hidden" name="species" value="none"/> <input type="hidden" name="type" value="all"/> <input type="hidden" name="comments" value="includeComments"/> <input type="hidden" name="order" value="rank"/> <!-- <input type="submit" name="submit" value="Search Database" /> --> <button type="submit" aria-label="Search button"><i class="fa fa-search"></i></button> </form> </div> <img alt="gtopdb_logo_and_banner_image" width="720" style="margin-top:15px;margin-bottom:15px;" src="images/gtopdb_banner_2020.png"> </div> <script> $("#quick_search").catcomplete({delay: 300, minLength: 2, source: "/GRAC/autocompleteAll.jsp", focus: function( event, ui ) { // $( "#ligand_text" ).val( ui.item.label ); // do nothing on mouse over return false; }, select: function( event, ui ) { //window.open(ui.item.value); self.location.href = ui.item.value; return false; } }); </script> </div> <!-- =========== END OF HEAD SECTION =================================================== --> <!-- ========== SUPERFISH NAV START ============================================================ --> <div class="mainnavcont"> <div class="mainnavtext"> <ul id="sample-menu-1" class="sf-menu"> <li class="current"> <a href="/">Home</a> </li> <li> <a href="/about.jsp">About</a> <ul> <li><a href="/about.jsp">About The Guide to PHARMACOLOGY</a></li> <li><a href="/nciuphar.jsp">About NC-IUPHAR</a></li> <li><a href="/databaseContent.jsp">Database Content</a></li> <li><a href="/GRAC/ContributorListForward">Contributors</a></li> <li><a href="/sponsors.jsp">Sponsors</a></li> <li><a href="/citing.jsp">Citing</a></li> <li><a href="/linking.jsp">Linking to us</a></li> <!--<li><a href="/faq.jsp">FAQ</a></li>--> <li><a href="/disclaimer.jsp">Disclaimer</a></li> <li><a href="/privacyPolicy.jsp">Privacy and Cookie Policy</a></li> </ul> </li> <li> <a href="/targets.jsp">Targets </a> <ul> <li> <a href="/GRAC/ReceptorFamiliesForward?type=GPCR">GPCRs</a> </li> <li> <a href="/GRAC/ReceptorFamiliesForward?type=IC">Ion channels</a> <ul> <li><a href="/GRAC/ReceptorFamiliesForward?type=IC">LGICs</a></li> <li><a href="/GRAC/ReceptorFamiliesForward?type=IC">VGICs</a></li> <li><a href="/GRAC/ReceptorFamiliesForward?type=IC">Other channels</a></li> </ul> </li> <li> <a href="/GRAC/ReceptorFamiliesForward?type=NHR">Nuclear receptors</a> </li> <li> <a href="/GRAC/FamilyDisplayForward?familyId=698&familyType=ENZYME">Kinases</a> </li> <li> <a href="/GRAC/ReceptorFamiliesForward?type=CATALYTICRECEPTOR">Catalytic receptors</a> </li> <li> <a href="/GRAC/ReceptorFamiliesForward?type=TRANSPORTER">Transporters</a> </li> <li> <a href="/GRAC/ReceptorFamiliesForward?type=ENZYME">Enzymes</a> </li> <li> <a href="/GRAC/ReceptorFamiliesForward?type=OTHER">Other protein targets</a> </li> <li><a href="/GRAC/searchPage.jsp">Target search</a> <ul> <li><a href="/GRAC/searchPage.jsp">Target search tools</a></li> <li><a href="/blast">BLAST</a></li> </ul> </li> </ul> </li> <li> <a href="/GRAC/LigandListForward?type=Approved">Ligands</a> <ul> <li><a href="/GRAC/LigandListForward?type=Approved">Ligand list</a></li> <li><a href="/GRAC/LigandFamiliesForward">Ligand families</a></li> <li><a href="/GRAC/chemSearch.jsp">Ligand search</a></li> </ul> </li> <li> <a href="/GRAC/DiseaseListForward">Diseases</a> </li> <li> <a href="/helpPage.jsp">Resources</a> <ul> <li><a href="/helpPage.jsp">Help</a></li> <li><a href="/GuidetoPHARMACOLOGY_Tutorial.pdf" target="_blank" onClick="recordEvent(this, 'Other files', 'View PDF', 'Tutorial');return false;">Tutorial</a></li> <li><a href="/faq.jsp">FAQ</a></li> <li><a href="/pdfs/termsAndSymbols.pdf" target="_blank" onClick="recordEvent(this, 'Other files', 'View PDF', 'Terms and Symbols');return false;">Terms and symbols</a></li> <li><a href="/nomenclature.jsp">Nomenclature guidelines</a></li> <li><a href="/nciupharPublications.jsp">Publications</a></li> <li><a href="/download.jsp">Downloads</a> <ul> <li><a href="/download.jsp">Download data and reports</a></li> <li><a href="/webServices.jsp">Web services</a></li> <li><a href="/slides.jsp">Slides and posters</a></li> </ul> </li> <li><a href="/news.jsp">News</a> <ul> <li><a href="/immuno/immuphar2018.jsp">Immunopharmacology Meeting 2018</a></li> <li><a href="/news.jsp">Latest news</a></li> <li><a href="/GRAC/HotTopicsForward">Hot topics</a></li> <li><a href="/latestPairings.jsp">Latest pairings</a></li> </ul> </li> <li><a href="https://bpspubs.onlinelibrary.wiley.com/toc/14765381/2023/180/S2" target="_blank" onClick="recordEvent(this, 'BJP links', 'https://bpspubs.onlinelibrary.wiley.com/toc/14765381/2023/180/S2', 'CGTP table of contents');return false;">Concise Guide to PHARMACOLOGY</a></li> <li><a href="/links.jsp">Useful links</a></li> </ul> </li> <li> <a href="/GRAC/searchPage.jsp">Advanced search</a> <ul> <li><a href="/GRAC/searchPage.jsp">Target search</a> <ul> <li><a href="/GRAC/searchPage.jsp">Target search tools</a></li> <li><a href="/blast">BLAST</a></li> </ul> </li> <li><a href="/GRAC/chemSearch.jsp">Ligand search</a></li> <li><a href="/GRAC/pharmacologySearch.jsp">Pharmacology search</a></li> </ul> </li> <li class="immuno_portal"> <a href="/immuno/index.jsp" onClick="recordEvent(this, 'index', 'Menu Link to GtoImmuPdb', 'Link to GtoImmuPdb');return false;">Immuno Portal</a> </li> <li class="gtmp_portal"> <a href="/malaria/index.jsp" onClick="recordEvent(this, 'index', 'Menu Link to GtoMPdb', 'Link to GtoMPdb');return false;">Malaria Portal</a> </li> <!-- <li class="immuno_portal"> <a href="http://www.guidetoimmunopharmacology.org/immuno/index.jsp">Guide to IMMUNOPHARMACOLOGY Portal</a> </li> --> </ul> </div> </div> <!-- ========== SUPERFISH NAV END ============================================================ --> <!-- ==================== BREADCRUMBS START - NEEDS TO BE UPDATED MANUALLY ==================== --> <div class="breadcrumbscont"> <ul class="crumbtext"> <li><a href="/index.jsp">Home</a></li> <li><a href="/news.jsp">News</a></li> <li>Latest pairings</li> </ul> </div> <!-- ==================== BREADCRUMBS END ======================================== --> <!-- ==================== CONTENT START ==================== --> <div class="grid_12"> <!-- ==================== GRID 16 START ==================== --> <div class="grid_16 alpha"> <a name="top"></a> <h4>Latest pairings</h4> <div class="contentboxfullhelp"> <div class="textright"> <p>The following are reports of recent pairings of receptors with endogenous or synthetic ligands, which in most cases are a single publication.<br /></p> <p style="text-align:center;"><a href="#2017">2017</a> | <a href="#2015">2015</a> | <a href="#2014">2014</a> | <a href="#2013">2013</a> | <a href="#2012">2012</a> | <a href="#2011">2011</a> | <a href="#2009">2009</a> | <a href="#2008">2008</a> | <a href="#2006">2006</a> | <a href="#2005">2005</a> | <a href="#2004">2004</a> | <a href="#2003">2003</a></p> <h3><a name="2017"></a>2017</h3> <p style="font-weight:bold;"><a name="GPR15-GPR15L"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=87">GPR15</a> & GPR15L (encoded by gene <i>C10ORF99</i>)</p> <p> Suply T <i>et al.</i> (2017). A natural ligand for the orphan receptor GPR15 modulates lymphocyte recruitment to epithelia.<br/><i>Sci Signal.</i>, <b>10</b> (496): eaal0180. DOI: 10.1126/scisignal.aal0180. [<a href="http://stke.sciencemag.org/content/10/496/eaal0180" target="_blank">Abstract</a>] </p> <p> Ocón B <i>et al.</i> (2017). A Mucosal and Cutaneous Chemokine Ligand for the Lymphocyte Chemoattractant Receptor GPR15.<br/><i>Front. Immunol.</i>, DOI: 10.3389/fimmu.2017.01111. [Epub ahead of print] [<a href="http://journal.frontiersin.org/article/10.3389/fimmu.2017.01111/full" target="_blank">Full text</a>] </p> <p style="font-weight:bold;"><a name="GFRAL-GDF15"></a><a href="https://www.uniprot.org/uniprot/Q6UXV0" target="_blank">GFRAL</a> & GDF15</p> <p> Mullican SE et al. (2017). GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. <i>Nat Med.</i>, doi: 10.1038/nm.4392. [Epub ahead of print] [PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/28846097" target="_blank" rel="noopener noreferrer">28846097</a>] </p> <p> Emmerson PJ et al. (2017). The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. <i>Nat Med.</i>, doi: 10.1038/nm.4393. [Epub ahead of print] [PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/28846098" target="_blank" rel="noopener noreferrer">28846098</a>] </p> <p> Yang L et al. (2017). GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. <i>Nat Med.</i>, doi: 10.1038/nm.4394. [Epub ahead of print] [PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/28846099" target="_blank" rel="noopener noreferrer">28846099</a>] </p> <p style="font-weight:bold;"><a name="GPR19-adropin"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=90">GPR19</a> & adropin</p> <p><i>Comments by Anthony Davenport:</i></p> <p><b>Further report on activation of <a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=90">GPR19</a> by the peptide hormone, adropin</b></p> <p>Rao <i>et al.</i> (1) report <i>in vitro</i> signalling studies with the lysates of cells overexpressing the Energy Homeostasis Associated gene (ENHO) that encodes the peptide hormone adropin, inhibits forskolin increases in cAMP and was replicated by using synthetic adropin (EC<sub>50</sub> = 8 nM). GPR19 signals via MAPK/ERK1/2 and the authors suggest may play a role in metastasis by promoting the mesenchymal-epithelial transition (MET) through the ERK/MAPK pathway, thus facilitating colonisation of metastatic breast tumour cells.</p> <p>This study supports the observation of Stein <i>et al.</i> (2). The authors showed reduction in GPR19 mRNA levels in medial basal hypothalamus of male rats resulted in the loss of the inhibitory effect of adropin on water deprivation-induced thirst.</p> <p>Interestingly, adropin<sub>34-76</sub> was screened in a β-arrestin assay as part of a library of 10,000 compounds against ~80 orphan receptors which included GPR19 but no activity was detected, suggesting the possibility that adropin is more effective in signalling via G-proteins (3).</p> <p>Further characterisation in pharmacological assays is required to establish adropin as the cognate ligand.</p> <ol> <li>Rao A, Herr DR. 2017. G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells. <i>Biochim Biophys Acta.</i> <b>1864</b>: 1318-1327. [PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/28476646?dopt=AbstractPlus" target="_blank">28476646</a>]</li> <li>Stein LM, Yosten GL, Samson WK. 2016. Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19. <i>Am J Physiol Regul Integr Comp Physiol.</i> <b>310</b>: R476-80. [PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/26739651?dopt=AbstractPlus" target="_blank">26739651</a>]</li> <li>Southern C, Cook JM, Neetoo-Isseljee Z <i>et al.</i> 2013. Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. <i>J Biomol Screen.</i> <b>18</b>: 599-609. [PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/23396314?dopt=AbstractPlus" target="_blank">23396314</a>]</li> </ol> <h3><a name="2015"></a>2015</h3> <p style="font-weight:bold;"><a name="GPR139-Trp-Phe"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=130">GPR139</a> & amino acids L-Tryptophan and L-Phenylalanine</p> <p>Read more <a href="/hotTopics.jsp#GPR139-Trp-Phe">here</a>...</p> <p> Isberg V, Andersen KB, Bisig C <i>et al.</i> (2014). Computer-aided discovery of aromatic l-α-amino acids as agonists of the orphan G protein-coupled receptor GPR139.<br/><i>J Chem Inf Model.</i> <b>54</b>: 1553-7. [PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/24826842?dopt=AbstractPlus" target="_blank">24826842</a>] </p> <p> Liu C, Bonaventure P, Lee G <i>et al.</i> (2015). GPR139, an Orphan Receptor Highly Enriched in the Habenula and Septum, is Activated by the Essential Amino Acids L-Tryptophan and L-Phenylalanine.<br/><i>Mol Pharmacol.</i> <b>88</b>: 911-25. [PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/26349500?dopt=AbstractPlus" target="_blank">26349500</a>] </p> <p style="font-weight:bold;"><a name="SLC38A9-lysosomal-transporter"></a><a href="https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=227">SLC38A9 orphan transporter</a> is a lysosomal transporter able to transport 3H-glutamine, and to a lesser extent, 3H-arginine and 3H-asparagine.</p> <p> Rebsamen M, Pochini L, Stasyk T <i>et al.</i> (2015). SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1.<br/> <i>Nature.</i> <b>519</b>: 477-81. [PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/25561175?dopt=AbstractPlus" target="_blank">25561175</a>] </p> <h3><a name="2014"></a>2014</h3> <p style="font-weight:bold;"><a name="GPR126-collagen"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=200">GPR126</a> & Type IV collagen.</p> <p>Paavola KJ, Sidik H, Zuchero JB, Eckart M, Talbot WS. (2014)<br/>Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. <i>Sci Signal.</i> <b>7</b>: ra76 [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=25118328" target="_blank">25118328</a>]</p> <h3><a name="2013"></a>2013</h3> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=88">GPR17</a> & cysteinyl-leukotrienes (CysLTs)/ uracil nucleotides.</p> <p>Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, Ferrario S, Parravicini C, Capra V, Gelosa P, Guerrini U, Belcredito S, Cimino M, Sironi L,Tremoli E, Rovati GE, Martini C, Abbracchio MP. (2006)<br/>The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. <i>EMBO J.</i> <b>25</b>: 4615-27 [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16990797" target="_blank">16990797</a>]</p> <p style="font-weight:bold; color:red; padding-left:20px;">Update 2013: Initial pairing could not be repeated</p> <p style="padding-left:20px;">Heise CE, O'Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS, Stocco R, Bellefeuille JN, Abramovitz M, Cheng R, Williams DL Jr, Zeng Z, Liu Q, Ma L, Clements MK, Coulombe N, Liu Y, Austin CP, George SR, O'Neill GP, Metters KM, Lynch KR, Evans JF. (2000)<br/>Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT(2)) receptor. <i>J Biol Chem.</i> <b>275</b>: 30531-6. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=10851239" target="_blank">10851239</a>]</p> <p style="padding-left:20px;">Wunder F, Tinel H, Kast R, Geerts A, Becker EM, Kolkhof P, H眉tter J, Erg眉den J, H盲rter M. (2010)<br/>Characterization of the human cysteinyl leukotriene 2 receptor. <i>Br J Pharmacol.</i> <b>160</b>: 399-409. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=20423349" target="_blank">20423349</a>]</p> <p style="padding-left:20px;">Qi AD, Harden TK, Nicholas RA. (2013)<br/>Is GPR17 a P2Y/leukotriene receptor? examination of uracil nucleotides, nucleotide sugars, and cysteinyl leukotrienes as agonists of GPR17. <i>J Pharmacol Exp Ther.</i> <b>347</b>: 38-46. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=23908386" target="_blank">23908386</a>]</p> <p style="padding-left:20px;">Hennen S, Wang H, Peters L, Merten N, Simon K, Spinrath A, Bl盲ttermann S, Akkari R, Schrage R, Schr枚der R, Schulz D, Vermeiren C, Zimmermann K, Kehraus S, Drewke C, Pfeifer A, K枚nig GM, Mohr K, Gillard M, M眉ller CE, Lu QR, Gomeza J, Kostenis E. (2013)<br/>Decoding signaling and function of the orphan G protein-coupled receptor GPR17 with a small-molecule agonist. <i>Sci Signal.</i> <b>6</b>: ra93. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=24150254" target="_blank">24150254</a>]</p> <p style="padding-left:20px; font-style: italic;">See also:</p> <p style="padding-left:20px;">Harden TK. (2013)<br/>Enigmatic GPCR finds a stimulating drug. <i>Sci Signal.</i> <b>6</b>: pe34. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=24150253" target="_blank">24150253</a>]</p> <p style="font-weight:bold;"><a name="GPR171-BigLEN"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=143">GPR171</a> & BigLEN.</p> <p>Gomes I, Aryal DK, Wardman JH, Gupta A, Gagnidze K, Rodriguiz RM, Kumar S, Wetsel WC, Pintar JE, Fricker LD, Devi LA. (2013)<br/>GPR171 is a hypothalamic G protein-coupled receptor for BigLEN, a neuropeptide involved in feeding.<br/><i>Proc Natl Acad Sci U S A.</i> <b>110</b>: 16211-6. [PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/24043826" target="_blank">24043826</a>]</p> <p style="font-weight:bold;"><a name="C3a-TLQP-21"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=31">C3a receptor</a> & VGF derived peptide TLQP-21.</p> <p><i>Comments by NC-IUPHAR:</i><br/>"A recent report concerning a peptide derived from the vgf gene product, TLQP-21, is suggestive of an interaction with C3a receptor in rodents. However, in competition binding assays the affinity of TLQP-21 is comparatively low for a peptide-GPCR interaction, where sub-nanomolar affinities are usual. Further reports characterising this interaction, perhaps also extending the observations to human TLQP-21, are required to formally confirm the ligand/receptor pairing."</p> <p>Hannedouche S, Beck V, Leighton-Davies J, Beibel M, Roma G, Oakeley EJ, Lannoy V, Bernard J, Hamon J, Barbieri S, Preuss I, Lasbennes MC, Sailer AW, Suply T, Seuwen K, Parker CN, Bassilana F. (2013)<br/>The identification of the C3a Receptor (C3AR1) as the target of the VGF derived peptide TLQP-21 in rodent cells.<br/><i>J Biol Chem.</i> <b>288</b>: 27434-43. [PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/23940034" target="_blank">23940034</a>]</p> <p style="font-weight:bold;"><a name="GPR146-proinsulin-C-peptide"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=133">GPR146</a> & proinsulin C-peptide.</p> <p>Yosten GL, Kolar GR, Redlinger LJ, Samson WK. (2013)<br/>Evidence for an interaction between proinsulin C-peptide and GPR146.<br/><i>J Endocrinol.</i> <b>218</b>: B1-8. [PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/23759446" target="_blank">23759446</a>]</p> <p style="font-weight:bold;"><a name="GPR37-GPR37L1-neuropeptides"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=103">GPR37</a> and <a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=104">GPR37L1</a> & the neuroprotective and glioprotective factors prosaptide and prosaposin.</p> <p>Meyer RC, Giddens MM, Schaefer SA, Hall RA. (2013)<br/>GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin.<br/><i>Proc Natl Acad Sci U S A.</i> <b>110</b>: 9529-34. [PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/23690594" target="_blank">23690594</a>]</p> <p style="font-weight:bold;"><a name="MRGPRD-alamandine"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=152">MRGPRD</a> & alamandine, a novel endogenous heptapeptide cleaved from angiotensin A by ACE2.</p> <p>Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, Jankowski J, Jankowski V, Sousa F, Alzamora A, Soares E, Barbosa C, Kjeldsen F, Oliveira A, Braga J, Savergnini S, Maia G, Peluso AB, Passos-Silva D, Ferreira A, Alves F, Martins A, Raizada M, Paula R, Motta-Santos D, Kemplin F, Pimenta A, Alenina N, Sinisterra R, Bader M, Campagnole-Santos MJ, Santos RA. (2013)<br/>Discovery and characterization of alamandine: a novel component of the Renin-Angiotensin system.<br/><i>Circ Res.</i> <b>112</b>: 1104-11 [PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/23446738" target="_blank">23446738</a>]</p> <p style="font-weight:bold;"><a name="GPR174-lysophosphatidylserine"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=145">GPR174</a> & lysophosphatidylserine.</p> <p>Sugita K, Yamamura C, Tabata K, Fujita N. (2013)<br/>Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP.<br/><i>Biochem Biophys Res Commun.</i> <b>430</b>: 190-5 [PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/23178570" target="_blank">23178570</a>]</p> <p>Inoue A, Ishiguro J, Kitamura H, Arima N, Okutani M, Shuto A, Higashiyama S, Ohwada T, Arai H, Makide K, Aoki J. (2012)<br/>TGFα shedding assay: an accurate and versatile method for detecting GPCR activation.<br/><i>Nat Methods.</i> <b>9</b>: 1021-9 [PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/22983457" target="_blank">22983457</a>]</p> <p style="font-weight:bold;"><a name="GPR84-FFA"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=120">GPR84</a> & medium chain free fatty acids.</p> <p>Confirmation of medium chain fatty acids as ligands at GPR84 and a new surrogate ligand, 6-n-octylaminouracil, a fatty acid nucleobase conjugate.</p> <p>Suzuki M, Takaishi S, Nagasaki M, Onozawa Y, Iino I, Maeda H, Komai T, Oda T. (2013)<br/>Medium-chain fatty acid sensing receptor, GPR84 is a proinflammatory receptor.<br/><i>J Biol Chem.</i> <b>288</b>: 10684-91 [PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/23449982" target="_blank">23449982</a>]</p> <p style="font-weight:bold;"><a name="OXGR1-LTE4"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=162">Oxoglutarate receptor (GPR99)</a> & leukotriene E4.</p> <p>Kanaoka Y, Maekawa A, Austen KF. (2013)<br/>Identification of GPR99 as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4.<br/><i>J Biol Chem.</i> <b>288</b>: 10967-72. [PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/23504326" target="_blank">23504326</a>]</p> <p style="font-weight:bold;"><a name="OrphanGPCRs"></a>A screen of 10000 ligands against 82 GPCRs confirms pairings of cognate ligands with orphan receptors and identifies novel surrogate ligands</p> <p>An article published online ahead of print in the <i>Journal of Biomolecular Screening</i> reports the results of screening ~10,000 ligands against eighty-two G protein-coupled receptors, mainly orphans, using the PathHunter β-arrestin recruitment assays. Pairings of cognate ligands with orphan receptors were confirmed and a number of novel surrogate ligands identified.</p> <p>Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, Merritt A, Bassoni DL, Raab WJ, Quinn E, Wehrman TS, Davenport AP, Brown AJ, Green A, Wigglesworth MJ, Rees S. (2013)<br/>Screening β-Arrestin Recruitment for the Identification of Natural Ligands for Orphan G-Protein-Coupled Receptors.<br/> <i>J Biomol Screen.</i> <b>18</b>: 599-609. [PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/23396314" target="_blank">23396314</a>] </p> <h3><a name="2012"></a>2012</h3> <p style="font-weight:bold;"><a name="GPR107-neuronostatin"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=651">GPR107</a> & neuronostatin.</p> <p>Yosten GL, Redlinger LJ, Samson WK. (2012)<br/>Evidence for an interaction of neuronostatin with the orphan G protein-coupled receptor, GPR107.<br/><i>Am J Physiol Regul Integr Comp Physiol.</i> <b>303</b> (9): R941-9. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=22933024">22933024</a>]</p> <h3><a name="2011"></a>2011</h3> <p style="font-weight:bold;"><a name="GPR31-12SHydroxyeicosatetraenoic"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=98">GPR31</a> & 12-(<i>S</i>)-Hydroxyeicosatetraenoic Acid.</p> <p>Guo Y, Zhang W, Giroux C, Cai Y, Ekambaram P, Dilly AK, Hsu A, Zhou S, Maddipati KR, Liu J, Joshi S, Tucker SC, Lee MJ, Honn KV. (2011)<br/>Identification of the Orphan G Protein-coupled Receptor GPR31 as a Receptor for 12-(S)-Hydroxyeicosatetraenoic Acid. <i>J Biol Chem.</i> <b>286</b> (39): 33832-40. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=21712392">21712392</a>]</p> <p style="font-weight:bold;"><a name="GPR56-collagen3alpha1"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=186">GPR56</a> & collagen, type III, alpha-1 (gene symbol <i>COL3A1</i>).</p> <p>Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X. (2011)<br/>G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. <i>Proc Natl Acad Sci U S A.</i> <b>108</b> (31): 12925-30. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=21768377">21768377</a>]</p> <p style="font-weight:bold;"><a name="GPR35-kynurenic-acid-and-2-acyl-lysophosphatidic-acid"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=102">GPR35</a> & kynurenic acid/2-acyl lysophosphatidic acid.</p> <p style="font-weight:bold; color:red; padding-left:20px;">Statement by NC-IUPHAR on GPR35</p> <p style="padding-left:20px;">"The original report that kynurenic acid is an agonist of GPR35 (1) has been replicated, but controversy remains as to whether it reaches sufficient tissue concentrations to be the endogenous ligand (2). 2-acyl lysophosphatidic acid has also been proposed as an endogenous ligand (3). Pamoic acid, a synthetic chemical that enables long-acting formulations of numerous drugs, has also been reported to be an agonist (see 4 and commentary in 5)." </p> <ol> <li>Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L. (2006)<br/>Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. <i>J Biol Chem.</i> <b>281</b> (31): 22021-22028. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16754668">16754668</a>]</li> <li>Kuc D, Zgrajka W, Parada-Turska J, Urbanik-Sypniewska T, Turski WA. (2008)<br/>Micromolar concentration of kynurenic acid in rat small intestine. <i>Amino Acids.</i> <b>35</b> (2): 503-5. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=18235993">18235993</a>]</li> <li>Oka S, Ota R, Shima M, Yamashita A, Sugiura T. (2010)<br/>GPR35 is a novel lysophosphatidic acid receptor. <i>Biochem Biophys Res Commun.</i> <b>395</b> (2): 232-7. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=20361937">20361937</a>]</li> <li>Zhao P, Sharir H, Kapur A, Cowan A, Geller EB, Adler MW, Seltzman HH, Reggio PH, Heynen-Genel S, Sauer M, Chung TD, Bai Y, Chen W, Caron MG, Barak LS, Abood ME. (2010)<br/>Targeting of the orphan receptor GPR35 by pamoic acid: a potent activator of extracellular signal-regulated kinase and 尾-arrestin2 with antinociceptive activity. <i>Mol Pharmacol.</i> <b>78</b> (4): 560-8. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=20826425">20826425</a>]</li> <li>Neubig RR. (2010)<br/>Mind your salts: when the inactive constituent isn't. <i>Mol Pharmacol.</i> <b>78</b> (4): 558-9. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=20651116">20651116</a>]</li> </ol> <p style="font-weight:bold;"><a name="GPR183-oxysterols"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=81">GPR183 (EBI2)</a> & oxysterols.</p> <p style="font-weight:bold; color:red; padding-left:20px;">Statement by NC-IUPHAR on GPR183 (EBI2)</p> <p style="padding-left:20px;">"Two independent reports (1, 2) propose 7伪, 25-dihydroxycholesterol (7伪,25-OHC) as an endogenous ligand of this receptor. 7伪,25-OHC is synthesised from cholesterol by the sequential action of cholesterol 25-hydroxylase (CH25H) and CYP7B1 (25-hydroxycholesterol 7-伪-hydroxylase). Consistent with 7伪,25-OHC as an endogenous ligand, inhibition of CYP7B1 with clotrimazole reduced the content of 7伪,25-OHC in the mouse spleen and mimicked the phenotype of pre-activated B cells from EBI2-deficient mice (2) and mice deficient in CH25H had a similar phenotype to EBI2 knockout mice." </p> <ol> <li>Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D, Pereira JP, Guerini D, Baumgarten BU, Roggo S, Wen B, Knochenmuss R, No毛l S, Gessier F, Kelly LM, Vanek M, Laurent S, Preuss I, Miault C, Christen I, Karuna R, Li W, Koo DI, Suply T, Schmedt C, Peters EC, Falchetto R, Katopodis A, Spanka C, Roy MO, Detheux M, Chen YA, Schultz PG, Cho CY, Seuwen K, Cyster JG, Sailer AW. (2011)<br/>Oxysterols direct immune cell migration via EBI2. <i>Nature.</i> <b>475</b> (7357): 524-7. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=21796212">21796212</a>]</li> <li>Liu C, Yang XV, Wu J, Kuei C, Mani NS, Zhang L, Yu J, Sutton SW, Qin N, Banie H, Karlsson L, Sun S, Lovenberg TW. (2011)<br/>Oxysterols direct B-cell migration through EBI2. <i>Nature.</i> <b>475</b> (7357): 519-23. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=21796211">21796211</a>]</li> </ol> <h3><a name="2009"></a>2009</h3> <p style="font-weight:bold;"><a name="GPR55-LPI"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=109">GPR55</a> & lysophosphatidylinositol.</p> <p>Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T. (2007)<br/>Identification of GPR55 as a lysophosphatidylinositol receptor. <i>Biochem Biophys Res Commun.</i> <b>362</b>, 928-34. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=17765871">17765871</a>]</p> <p>Henstridge CM, Balenga NA, Ford LA, Ross RA, Waldhoer M, Irving AJ. (2009)<br/>The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. <i>FASEB J.</i> <b>23</b>, 183-93. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=18757503">18757503</a>]</p> <p>Oka S, Toshida T, Maruyama K, Nakajima K, Yamashita A, Sugiura T. (2009)<br/>2-Arachidonoyl-sn-glycero-3-phosphoinositol: A Possible Natural Ligand for GPR55. <i>J Biochem.</i> <b>145</b>, 13-20. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=18845565">18845565</a>]</p> <p style="font-weight:bold;"><a name="GPR81-lactate"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=311">GPR81</a> & lactate.</p> <p>Cai TQ, Ren N, Jin L, Cheng K, Kash S, Chen R, Wright SD, Taggart AK, Waters MG. (2008)<br/>Role of GPR81 in lactate-mediated reduction of adipose lipolysis. <i>Biochem Biophys Res Commun.</i> <b>377</b>, 987-91. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=18952058">18952058</a>]</p> <p>Liu C, Wu J, Zhu J, Kuei C, Yu J, Shelton J, Sutton SW, Li X, Yun SJ, Mirzadegan T, Mazur C, Kamme F, Lovenberg TW. (2009)<br/>Lactate Inhibits Lipolysis in Fat Cells through Activation of an Orphan G-protein-coupled Receptor, GPR81. <i>J Biol Chem.</i> <b>284</b>, 2811-22. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=19047060">19047060</a>]</p> <h3><a name="2008"></a>2008</h3> <p style="font-weight:bold;"><a name="CMKOR1-CXCL11+CXCL12"></a><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=80">CMKOR1</a> & CXC chemokines CXCL11 and CXCL12/SDF-1</p> <p style="font-weight:bold; color:red; padding-left:20px;">Statement by NC-IUPHAR on CMKOR1</p> <p style="padding-left:20px;">"A molecule listed in the IUPHAR orphan receptor database as CMKOR1, and originally named RDC1, is now commonly referred to in the literature as CXCR7, on the basis of its clear ability to bind the CXC chemokines CXCL11 and CXCL12/SDF-1 with high affinity. Although reports have suggested that this molecule is able to mediate cellular responses, including chemotaxis and Akt activation, this has not been consistently shown in primary cells. In transfection systems, CXCR7 was reported to form heterodimers with CXCR4 and to modulate CXCL12 signaling. Several studies suggest a role for this receptor in cell growth and survival, and in tumorigenesis, but the underlying signaling pathways remain unknown. The mouse homologue is clearly involved in cardiac valve development and has minor effects on marginal zone B cell localization, but the signaling mechanisms are not defined. The zebrafish homologue is clearly involved in primordial germ cell migration, where the mechanism appears to involve scavenging of CXCL12 leading to formation of CXCL12 gradients. The NC-IUPHAR sub-committee on chemokine receptor nomenclature has concluded that use of the systematic chemokine receptor nomenclature name CXCR7 for this molecule shall remain unofficial until clear evidence of signal transduction mechanisms can be obtained." </p> <p style="font-weight:bold; color:red; padding-left:20px;">For database entry <a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=80">click here</a></p> <h3><a name="2006"></a>2006</h3> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=124">GPR92/LPA5</a> & lysophosphatidic acid.</p> <p>Lee CW, Rivera R, Gardell S, Dubin AE, Chun J. (2006)<br/>GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. <i>J Biol Chem.</i> <b>281</b>, 23589-97 [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16774927">16774927</a>]</p> <p>Kotarsky K, Boketoft A, Bristulf J, Nilsson NE, Norberg A, Hansson S, Owman C, Sillard R, Leeb-Lundberg LM, Olde B (2006)<br/>Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. <i>J Pharmacol Exp Ther.</i> <b>318</b>, 619-28 [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16651401">16651401</a>]</p> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=94">GPR23/LPA4</a> & lysophosphatidic acid.</p> <p>Ignatov, A., Robert, J., Gregory-Evans, C., Schaller, H. C. (2006)<br/>GPR23 is a lysophosphatidic acid (LPA) receptor utilizing G(s)-,G(q)/G(i)-mediated calcium signaling and G(12/13)-mediated Rho activation. <i>J Biol Chem.</i> <b>282</b>, 4310-7. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=17166850">17166850</a>]</p> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=115">GPR75</a> & RANTES</p> <p>Ignatov, A., Robert, J., Gregory-Evans, C., Schaller, H. C. (2006)<br/>RANTES stimulates Ca(2+) mobilization and inositol triphosphate (IP(3)) formation in cells transfected with G protein-coupled receptor 75. <i>Br J Pharmacol.</i> <b>149</b>, 490-7. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=17001303">17001303</a>]</p> <p style="font-weight:bold;padding-left:20px">See also:</p> <p style="padding-left:20px">Pease, J. E. (2006)<br/>Tails of the unexpected - an atypical receptor for the chemokine RANTES/CCL5 expressed in brain. <i>Br J Pharmacol.</i> <b>149</b>, 460-2. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=17001302">17001302</a>]</p> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=102">GPR35</a> & Kynurenic acid.</p> <p>Wang, J., Simonavicius, N., Wu, X., Swaminath, G., Reagan, J., Tian, H., Ling, L. (2006)<br/>Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. <i>J Biol Chem.</i> <b>281</b>, 22021-22028. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16754668">16754668</a>]</p> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=103">GPR37</a> & The neuropeptide head activator (HA)</p> <p>Rezgaoui, M., Susens, U., Ignatov, A., Gelderblom, M., Glassmeier, G., Franke, I., Urny, J., Imai, Y., Takahashi, R. and Schaller, H. C. (2006) <br/>The neuropeptide head activator is a high-affinity ligand for the orphan G-protein-coupled receptor GPR37. <i>J Cell Sci.</i> <b>119</b>, 542-549. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16443751">16443751</a>]</p> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=126">GPR119</a> & Oleoylethanolamide (OEA)</p> <p>Overton, H. A., Babbs, A. J., Doel, S. M., Fyfe, M. C., Gardner, L. S., Griffin, G., Jackson, H. C., Procter, M. J., Rasamison, C. M., Tang-Christensen, M., Widdowson, P. S., Williams, G. M. and Reynet, C. (2006) <br/>Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. <i>Cell Metab.</i> <b>3</b>, 167-175. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16517404">16517404</a>]</p> <p style="font-weight:bold;"><span style="color:red">RETRACTED:</span> <a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=114">GPR68</a> & Sphingosylphosphorylcholine </p> <p style="padding-left:20px;">Retraction of:<br />Xu, Y., Zhu, K., Hong, G., Wu, W., Baudhuin, L. M., Xiao, Y. and Damron, D. S. (2000) <i>Nat Cell Biol.</i> <b>2</b>, 261-7. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=10806476">10806476</a>]</p> <p>[No authors listed] (2006)<br />Retraction. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. <i>Nat Cell Biol.</i> <b>8</b>, 299. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16508674">16508674</a>]</p> <h3><a name="2005"></a>2005</h3> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=127">GPR120</a> & Free Fatty Acids.</p> <p>Hirasawa, A., Tsumaya, K., Awaji, T., Katsuma, S., Adachi, T., Yamada, M., Sugimoto, Y., Miyazaki, S. and Tsujimoto, G. (2005)<br/>Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. <i>Nat Med.</i> <b>11</b>, 90-94. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=15619630">15619630</a>]</p> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=221">GPR30</a> & Estrogen</p> <p style="font-weight:bold; color:red; padding-left:20px;">Several groups have confirmed that estrogen is an agonist of this receptor, for database entry <a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=221">click here.</a></p> <p style="padding-left:20px;"><span style="font-weight:bold; color:red;">For review see:</span> Filardo, E. J. and Thomas, P. (2005)<br/>GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release. <i>Trends Endocrinol Metab.</i> <b>16</b>, 362-367. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16125968">16125968</a>]</p> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=105">GPR39</a> & Obestatin</p> <p>Zhang, J. V., Ren, P. G., Avsian-Kretchmer, O., Luo, C. W., Rauch, R., Klein, C. and Hsueh, A. J. (2005)<br/>Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. <i>Science.</i> <b>310</b>, 996-999. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16284174">16284174</a>]</p> <p style="font-weight:bold; color:red; padding-left:20px;">Initial pairing could not be repeated</p> <p style="padding-left:20px;">Holst, B., Egerod, K. L., Schild, E., Vickers, S. P., Cheetham, S., Gerlach, L. O., Storjohann, L., Stidsen, C. E., Jones, R. Beck-Sickinger, A. G., Schwartz, T. W. (2007)<br/>GPR39 signaling is stimulated by zinc ions but not by obestatin. <i>Endocrinology</i> <b>148</b>, 13-20. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16959833">16959833</a>]</p> <p style="padding-left:20px;">Chartrel N, Alvear-Perez R, Leprince J, Iturrioz X, Reaux-Le Goazigo A, Audinot V, Chomarat P, Coge F, Nosjean O, Rodriguez M, Galizzi JP, Boutin JA, Vaudry H, Llorens-Cortes C. (2007)<br/>Zhang et al. reported that obestatin, a peptide derived from the ghrelin precursor, activated the orphan G protein-coupled receptor GPR39. However, we found that I125-obestatin does not bind GPR39 and observed no effects of obestatin on GPR39-transfected cells in various functional assays (cyclic adenosine monophosphate production, calcium mobilization, and GPR39 internalization). Our results indicate that obestatin is not the cognate ligand for GPR39. <i>Science</i> <b>315</b>, 766. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=17289961">17289961</a>]</p> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=69">CXCR2</a> & Macrophage Derived lectin MNCF</p> <p>Moreno, A. N., Pereira-da-Silva, G., Oliver, C., Jamur, M. C., Panunto-Castelo, A. and Roque-Barreira, M. C. (2005)<br/>The macrophage-derived lectin, MNCF, activates neutrophil migration through a pertussis toxin-sensitive pathway. <i>J. Histochem. Cytochem.</i> <b>53</b>, 715-723.</p> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=79">CMKLR1</a> & Resolvin E1 (RvE1) oxygenated product of eicosapentaenoic acid (EPA)</p> <p>Arita, M., Bianchini, F., Aliberti, J., Sher, A., Chiang, N., Hong, S., Yang, R., Petasis, N. A. and Serhan, C. N. (2005) <br/>Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. <i>J Exp Med.</i> <b>201</b>, 713-722. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=15753205">15753205</a>]<br/><img src="../images/spacer.gif" width="10" height="5"></p> <h3><a name="2004"></a>2004</h3> <p style="font-weight:bold;"><a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=109">GPR55</a>: Proposed as a cannabinoid receptor but endogenous ligand not yet known.</p> <p>Drmota, T., Greasley, P. and Groblewski T. (2004) <br/>Screening assays for cannabinoid-ligand-type modulators of GPR55. WIPO patent 074 844</p> <h3><a name="2003"></a>2003</h3> <p style="font-weight:bold;">TIG2/chermerin found to be an alternative ligand for <a href="https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=79">CMKLR1</a>.</p> <p >Meder, W., Wendland, M., Busmann, A., Kutzleb, C., Spodsberg, N., John, H., Richter, R., Schleuder, D., Meyer, M. and Forssmann, W. G. (2003)<br/> Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. <i>FEBS Lett.</i> <b>555</b>, 495-499. [PMID: <a href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=14675762">14675762</a>]</p> </div> </div> </div> <!-- ==================== GRID 16 END ========================================--> </div> <!-- ==================== CONTENT END ============================================ --> <!-- ============== FOOTER START ========================================================--> <div class="clear"></div> <div id="footer"> <div> <div style="display:table-cell; vertical-align:middle; width:250px; float:left; display:inline;"> <p style="text-align:left;margin: 5px 0px 0px 10px;"><a href="/revealEmail.jsp" onclick="window.open('/revealEmail.jsp', '', 'toolbar=0,scrollbars=0,location=0,statusbar=0,menubar=0,resizable=0,width=550,height=300'); return false;" title="Reveal this e-mail address">Contact us</a></p> <p style="text-align:left;margin: 5px 0px 5px 10px;"> <span class="invisible_link"><a href="https://twitter.com/#!/GuidetoPHARM" target="_blank" title="Follow us on Twitter"><img class="logo" style="vertical-align:middle;" src="/images/twitter.png" alt="Link to Guide to Pharmacology on Twitter"/></a><a href="https://www.facebook.com/pages/Guide-to-PHARMACOLOGY/231393780304076" target="_blank" title="Like us on Facebook"><img class="logo" style="vertical-align:middle;margin-left:5px;" src="/images/facebook.png" alt="Link to Guide to Pharmacology on Facebook"/></a><a href="http://www.linkedin.com/company/guide-to-pharmacology" target="_blank" title="Follow us on LinkedIn"><img class="logo" style="vertical-align:middle;margin-left:5px;" src="/images/LinkedIn.png" alt="Link to Guide to Pharmacology on LinkedIn"/></a><a href="http://blog.guidetopharmacology.org/" target="_blank" title="Visit our blog"><img class="logo" style="vertical-align:middle;margin-left:5px;" src="/images/wpmini-blue.png" alt="Wordpress Logo link to Guide to Pharmacology blog"/></a><a href="http://www.slideshare.net/GuidetoPHARM" target="_blank" title="View slide sets and posters on SlideShare"><img class="logo" style="vertical-align:middle;margin-left:5px;" src="/images/slideshare_no_name.png" alt="Link to Guide to Pharmacology on Slideshare"/></a></span></p> <p style="text-align:left;margin: 8px 0px 0px 10px;"><small><a href="/privacyPolicy.jsp">Privacy and Cookie Policy</a></small></p> </div> <div style="vertical-align:middle; display:table-cell; float:left; display:inline;"> <p style="margin: 10px 30px 0px 0px;"><a href="https://globalbiodata.org/what-we-do/global-core-biodata-resources/" target="_blank" title="GCBR Global Core Biodata Resource"><img class="logo" style="vertical-align:middle; width:140px;" src="/images/GCBR-Logo.jpg" alt="Link to GCBR"/></a></p> </div> <div style="vertical-align:middle; display:table-cell; float:left; display:inline;"> <p style="margin: 5px 10px 0px 10px;"><a href="https://elixiruknode.org/" target="_blank" title="Elixir UK Resource"><img class="logo" style="vertical-align:middle; width:70px;" src="/images/ELIXIR-UK_Logo.png" alt="Link to Elixir-UK"/></a></p> </div> <div style="vertical-align:middle; display:table-cell; float:right; display:inline; width:340px;"> <p style="text-align:right; margin: 5px 10px 0px 0px; font-weight:bold; font-size:12pt;"><a href="/sponsors.jsp">Sponsors list</a></p> <p style="text-align:right; margin: 5px 10px 0px 0px; "><a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons Licence" style="border-width:0; float: left;" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><small>This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a></small></p> </div> </div> </div> <!-- ============== FOOTER END ======================================================== --> </div> </body> </html>