CINXE.COM
Teng Zhou | Hainan University - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Teng Zhou | Hainan University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="dC8bT7ptTK4pOmGNHRJvRkJq+0jTh84ai8SqgR0i/kMkfl/Kiwvh1msXcIivDwwiwW7A0PRwEGfyKpD+O8mPow==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="teng zhou" /> <meta name="description" content="Teng Zhou, Hainan University: 5 Followers, 10 Following, 47 Research papers. Research interests: Classical Physics, Microfluidics, Bio-MEMS, MEMS, and Modeling…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9387f500ddcbb8d05c67bef28a2fe0334f1aafb8'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15267,"monthly_visitors":"113 million","monthly_visitor_count":113692424,"monthly_visitor_count_in_millions":113,"user_count":277721739,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733024241000); window.Aedu.timeDifference = new Date().getTime() - 1733024241000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-3e572e3b706c3ed2ec5b2c1cb44a411fadc81f62a97963cb7bd9c327a0a9d5f2.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-2e8d3f30eaaddd1debd6ce4630b3453b23a23c91ac7c823ddf8822879835b029.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://pledco.academia.edu/TengZhou" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-ae3d0ee232cd83d11499343688b0160a3c7db15e95cb2d0844cae78d49ea53f1.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":1923748,"name":"Mechinical Engineering","url":"https://pledco.academia.edu/Departments/Mechinical_Engineering/Documents","university":{"id":40809,"name":"Hainan University","url":"https://pledco.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":162544,"name":"Microfluidics, Bio-MEMS, MEMS","url":"https://www.academia.edu/Documents/in/Microfluidics_Bio-MEMS_MEMS"},{"id":11820,"name":"Modeling and Simulation","url":"https://www.academia.edu/Documents/in/Modeling_and_Simulation"},{"id":61709,"name":"Computational Fluid Dynamics (CFD) modelling and simulation","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics_CFD_modelling_and_simulation"},{"id":897137,"name":"Particle-laden Flow","url":"https://www.academia.edu/Documents/in/Particle-laden_Flow"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://pledco.academia.edu/TengZhou","location":"/TengZhou","scheme":"https","host":"pledco.academia.edu","port":null,"pathname":"/TengZhou","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-97944781-69ef-41f9-a060-3c981087a95b"></div> <div id="ProfileCheckPaperUpdate-react-component-97944781-69ef-41f9-a060-3c981087a95b"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Teng Zhou</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://pledco.academia.edu/">Hainan University</a>, <a class="u-tcGrayDarker" href="https://pledco.academia.edu/Departments/Mechinical_Engineering/Documents">Mechinical Engineering</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Teng" data-follow-user-id="42451119" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="42451119"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">5</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">10</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Microfluidics<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="42451119" href="https://www.academia.edu/Documents/in/Classical_Physics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://pledco.academia.edu/TengZhou","location":"/TengZhou","scheme":"https","host":"pledco.academia.edu","port":null,"pathname":"/TengZhou","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Classical Physics"]}" data-trace="false" data-dom-id="Pill-react-component-b2f21226-e56f-4cfa-abba-53f0759369e4"></div> <div id="Pill-react-component-b2f21226-e56f-4cfa-abba-53f0759369e4"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="42451119" href="https://www.academia.edu/Documents/in/Microfluidics_Bio-MEMS_MEMS"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Microfluidics, Bio-MEMS, MEMS"]}" data-trace="false" data-dom-id="Pill-react-component-306adedd-196b-4dc1-ae69-44ce17a312da"></div> <div id="Pill-react-component-306adedd-196b-4dc1-ae69-44ce17a312da"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="42451119" href="https://www.academia.edu/Documents/in/Modeling_and_Simulation"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Modeling and Simulation"]}" data-trace="false" data-dom-id="Pill-react-component-73a315b5-ab2a-4bb1-b168-f5a80a5e4f38"></div> <div id="Pill-react-component-73a315b5-ab2a-4bb1-b168-f5a80a5e4f38"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="42451119" href="https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics_CFD_modelling_and_simulation"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Computational Fluid Dynamics (CFD) modelling and simulation"]}" data-trace="false" data-dom-id="Pill-react-component-19335f8a-c531-4792-b189-f0df573b4306"></div> <div id="Pill-react-component-19335f8a-c531-4792-b189-f0df573b4306"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="42451119" href="https://www.academia.edu/Documents/in/Particle-laden_Flow"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Particle-laden Flow"]}" data-trace="false" data-dom-id="Pill-react-component-4627baff-52f5-4e6e-896e-f62d417cdaf6"></div> <div id="Pill-react-component-4627baff-52f5-4e6e-896e-f62d417cdaf6"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Teng Zhou</h3></div><div class="js-work-strip profile--work_container" data-work-id="117239390"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117239390/An_Enhanced_One_Layer_Passive_Microfluidic_Mixer_With_an_Optimized_Lateral_Structure_With_the_Dean_Effect"><img alt="Research paper thumbnail of An Enhanced One-Layer Passive Microfluidic Mixer With an Optimized Lateral Structure With the Dean Effect" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/117239390/An_Enhanced_One_Layer_Passive_Microfluidic_Mixer_With_an_Optimized_Lateral_Structure_With_the_Dean_Effect">An Enhanced One-Layer Passive Microfluidic Mixer With an Optimized Lateral Structure With the Dean Effect</a></div><div class="wp-workCard_item"><span>Journal of Fluids Engineering-transactions of The Asme</span><span>, May 19, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Topology optimization method is applied to a contraction–expansion structure, based on which a si...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239390"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239390"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239390; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239390]").text(description); $(".js-view-count[data-work-id=117239390]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239390; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239390']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239390, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117239390]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239390,"title":"An Enhanced One-Layer Passive Microfluidic Mixer With an Optimized Lateral Structure With the Dean Effect","translated_title":"","metadata":{"abstract":"Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.","publisher":"ASM International","publication_date":{"day":19,"month":5,"year":2015,"errors":{}},"publication_name":"Journal of Fluids Engineering-transactions of The Asme"},"translated_abstract":"Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.","internal_url":"https://www.academia.edu/117239390/An_Enhanced_One_Layer_Passive_Microfluidic_Mixer_With_an_Optimized_Lateral_Structure_With_the_Dean_Effect","translated_internal_url":"","created_at":"2024-04-08T11:24:36.942-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_Enhanced_One_Layer_Passive_Microfluidic_Mixer_With_an_Optimized_Lateral_Structure_With_the_Dean_Effect","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"}],"urls":[{"id":40944631,"url":"https://doi.org/10.1115/1.4030288"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239389"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239389/Euler_force_actuation_mechanism_for_siphon_valving_in_compact_disk_like_microfluidic_chips"><img alt="Research paper thumbnail of Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips" class="work-thumbnail" src="https://attachments.academia-assets.com/113148630/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239389/Euler_force_actuation_mechanism_for_siphon_valving_in_compact_disk_like_microfluidic_chips">Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips</a></div><div class="wp-workCard_item"><span>Biomicrofluidics</span><span>, Mar 1, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f38dee00431c72bf6e8418c6d30c7ae5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148630,"asset_id":117239389,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148630/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239389"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239389"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239389; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239389]").text(description); $(".js-view-count[data-work-id=117239389]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239389; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239389']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239389, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f38dee00431c72bf6e8418c6d30c7ae5" } } $('.js-work-strip[data-work-id=117239389]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239389,"title":"Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips","translated_title":"","metadata":{"publisher":"American Institute of Physics","grobid_abstract":"Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO 2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber. V","publication_date":{"day":1,"month":3,"year":2014,"errors":{}},"publication_name":"Biomicrofluidics","grobid_abstract_attachment_id":113148630},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239389/Euler_force_actuation_mechanism_for_siphon_valving_in_compact_disk_like_microfluidic_chips","translated_internal_url":"","created_at":"2024-04-08T11:24:36.756-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148630,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148630/thumbnails/1.jpg","file_name":"pmc3977750.pdf","download_url":"https://www.academia.edu/attachments/113148630/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Euler_force_actuation_mechanism_for_siph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148630/pmc3977750-libre.pdf?1712605019=\u0026response-content-disposition=attachment%3B+filename%3DEuler_force_actuation_mechanism_for_siph.pdf\u0026Expires=1733027840\u0026Signature=NDnbL2jfZtpA-o1bSNs7NX8cljEHBRTDrcNnpVqPBkzkMzobXYzchCP~rYNqc6uZ2wkBCCxJzkPDnH4zL~tKJ3LBz-Ue~2K6ngDR8gKcX-75mzbjwetVle0If31NwZqH~T4mpdDbFI1HmQIkTGW07RVWIkV3M9qNGbhmTCDhNfC9QmulU74x29xxh1c0aB5hW3s-CBYES0XFNRPamM7KYiOTaassuToIOf7LqXEs1eniHb0pyh2sTAfyAtZEMWS8zeUV9sxVhFmhKZXtNmc54NNJk-DSpvDVURl8P-h7PK4cG4EOwDyVrhfnDRVrAn94nVwocjXzESUeD-c6p08tgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Euler_force_actuation_mechanism_for_siphon_valving_in_compact_disk_like_microfluidic_chips","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148630,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148630/thumbnails/1.jpg","file_name":"pmc3977750.pdf","download_url":"https://www.academia.edu/attachments/113148630/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Euler_force_actuation_mechanism_for_siph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148630/pmc3977750-libre.pdf?1712605019=\u0026response-content-disposition=attachment%3B+filename%3DEuler_force_actuation_mechanism_for_siph.pdf\u0026Expires=1733027840\u0026Signature=NDnbL2jfZtpA-o1bSNs7NX8cljEHBRTDrcNnpVqPBkzkMzobXYzchCP~rYNqc6uZ2wkBCCxJzkPDnH4zL~tKJ3LBz-Ue~2K6ngDR8gKcX-75mzbjwetVle0If31NwZqH~T4mpdDbFI1HmQIkTGW07RVWIkV3M9qNGbhmTCDhNfC9QmulU74x29xxh1c0aB5hW3s-CBYES0XFNRPamM7KYiOTaassuToIOf7LqXEs1eniHb0pyh2sTAfyAtZEMWS8zeUV9sxVhFmhKZXtNmc54NNJk-DSpvDVURl8P-h7PK4cG4EOwDyVrhfnDRVrAn94nVwocjXzESUeD-c6p08tgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113148629,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148629/thumbnails/1.jpg","file_name":"pmc3977750.pdf","download_url":"https://www.academia.edu/attachments/113148629/download_file","bulk_download_file_name":"Euler_force_actuation_mechanism_for_siph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148629/pmc3977750-libre.pdf?1712605020=\u0026response-content-disposition=attachment%3B+filename%3DEuler_force_actuation_mechanism_for_siph.pdf\u0026Expires=1733027840\u0026Signature=PdKzcJY2d~WTa9yOP4UKbY5-PBxA5NHrIcqyAAfen9RPA-sQl3nI0KfO2cihgj7ct-YOJVH~aOZLW5awv-wGHzmMuawKcCfQyJZL5TD-fGjU~NWLtqcYMhWbi2YCyB4cHEv83eI3wmdskZe9OWTPLV4qQTa78AFUIxvDntmOfZ4A84yfitPIL0oDq4xEpuXioVqBDYgmC2ufvgwucLjyBmd1Gkm8BLO8f-0CMszsmDPoPDcbkLBVR89sEif0qYdO5vl9LKM3zvPL9nuFeZMta0kBZpZ1-Nr9uI4-BJfzwfdZbnZE6w0ZLA3JuRP8jIb05arYKrclWfuIXlpIVuvcsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":49599,"name":"Biomicrofluidics","url":"https://www.academia.edu/Documents/in/Biomicrofluidics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":810972,"name":"Mechanism in Biology","url":"https://www.academia.edu/Documents/in/Mechanism_in_Biology"}],"urls":[{"id":40944629,"url":"https://europepmc.org/articles/pmc3977750?pdf=render"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239387"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239387/Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity"><img alt="Research paper thumbnail of Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity" class="work-thumbnail" src="https://attachments.academia-assets.com/113148672/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239387/Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity">Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity</a></div><div class="wp-workCard_item"><span>Computer Methods in Applied Mechanics and Engineering</span><span>, Nov 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4d9e2389f1f1365a2d4118dde6d3c6ba" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148672,"asset_id":117239387,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148672/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239387"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239387"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239387; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239387]").text(description); $(".js-view-count[data-work-id=117239387]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239387; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239387']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239387, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4d9e2389f1f1365a2d4118dde6d3c6ba" } } $('.js-work-strip[data-work-id=117239387]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239387,"title":"Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The robust Cassie-Baxter mode of the wetting behaviour on a micro-textured solid surface, is a key topography element yielding stable super-hydrophobicity. To meet this purpose, we propose an inverse computational design procedure for the discovery of suitable periodic micro-textures, based on three different tilings of the plane. The symmetric tiles of the lattice are regular triangles, quadrangles, and hexagons. The goal of the inverse design procedure is to achieve the robust Cassie-Baxter state, in which the liquid/vapour interface is mathematically described using the Young-Laplace equation on the lattice, and a topology optimisation approach is utilised to construct a variational problem for the inverse design procedure. Based on numerical calculations of the constructed variational problem, underlying effects are revealed for several factors, including the Bond number, duty ratio, feature size, and lattice constant. The effects of feature size and lattice constant provide approaches for compromisingly considering the robustness of the Cassie-Baxter mode and manufacturability of the inversely designed micro-textures; the effect of the lattice constant permits the scaling properties of the derived patterns, and this in turn provides an approach to avoid the elasto-capillary instability driven collapse of the micro/nanostructures in the derived micro-textures. Further, a monolithic inverse design procedure for the periodic micro-textures is proposed in the conclusions, with synthetically considering the manufacturability as well as contact angle and surface-volume ratio of the liquid bulge held by the supported liquid/vapour interface.","publication_date":{"day":1,"month":11,"year":2018,"errors":{}},"publication_name":"Computer Methods in Applied Mechanics and Engineering","grobid_abstract_attachment_id":113148672},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239387/Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity","translated_internal_url":"","created_at":"2024-04-08T11:24:36.553-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148672/thumbnails/1.jpg","file_name":"j.cma.2018.06.03420240408-1-ctz7ar.pdf","download_url":"https://www.academia.edu/attachments/113148672/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Inversely_designed_micro_textures_for_ro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148672/j.cma.2018.06.03420240408-1-ctz7ar-libre.pdf?1712605058=\u0026response-content-disposition=attachment%3B+filename%3DInversely_designed_micro_textures_for_ro.pdf\u0026Expires=1733027840\u0026Signature=Yx7Q8DbwqPjTKoYKm4IrueXB7B1ItoInjMrw~0yAvuWZvZGvuMuSicU0x5TTgoBeHFW4j53fP5QSZ4WDtAk-5tzZ4Nt~~kzHUFe2r4qJrzsCYJNtwaP9m-iazDkSl-wo8vIlOfalGuQVB5G5Z0fvpogzLmTq7ui6Vatg2c6XlBgv3P5aMR2XV0QGTNMrSrgBM6VKQMEqfmZFPJT1mcjBtzrB-X5ERdPb4vy4Yx4WKOZ8i7XAFJyzHDV6v~DFi-1wUT4Nac8ePkmOlR7jNo~4wEvyBPCgg5qBhgHFWRsIx0FUY6T3u44O0tTDa2vGl8rUYRCsHctIAvhfjpdH0wxBgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148672/thumbnails/1.jpg","file_name":"j.cma.2018.06.03420240408-1-ctz7ar.pdf","download_url":"https://www.academia.edu/attachments/113148672/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Inversely_designed_micro_textures_for_ro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148672/j.cma.2018.06.03420240408-1-ctz7ar-libre.pdf?1712605058=\u0026response-content-disposition=attachment%3B+filename%3DInversely_designed_micro_textures_for_ro.pdf\u0026Expires=1733027840\u0026Signature=Yx7Q8DbwqPjTKoYKm4IrueXB7B1ItoInjMrw~0yAvuWZvZGvuMuSicU0x5TTgoBeHFW4j53fP5QSZ4WDtAk-5tzZ4Nt~~kzHUFe2r4qJrzsCYJNtwaP9m-iazDkSl-wo8vIlOfalGuQVB5G5Z0fvpogzLmTq7ui6Vatg2c6XlBgv3P5aMR2XV0QGTNMrSrgBM6VKQMEqfmZFPJT1mcjBtzrB-X5ERdPb4vy4Yx4WKOZ8i7XAFJyzHDV6v~DFi-1wUT4Nac8ePkmOlR7jNo~4wEvyBPCgg5qBhgHFWRsIx0FUY6T3u44O0tTDa2vGl8rUYRCsHctIAvhfjpdH0wxBgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":40944628,"url":"https://doi.org/10.1016/j.cma.2018.06.034"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239386"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239386/Topology_optimization_of_electrode_patterns_for_electroosmotic_micromixer"><img alt="Research paper thumbnail of Topology optimization of electrode patterns for electroosmotic micromixer" class="work-thumbnail" src="https://attachments.academia-assets.com/113148673/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239386/Topology_optimization_of_electrode_patterns_for_electroosmotic_micromixer">Topology optimization of electrode patterns for electroosmotic micromixer</a></div><div class="wp-workCard_item"><span>International Journal of Heat and Mass Transfer</span><span>, Nov 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cd2e53cccd605f35e3763e0873db4aae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148673,"asset_id":117239386,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148673/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239386"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239386"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239386; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239386]").text(description); $(".js-view-count[data-work-id=117239386]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239386; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239386']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239386, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cd2e53cccd605f35e3763e0873db4aae" } } $('.js-work-strip[data-work-id=117239386]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239386,"title":"Topology optimization of electrode patterns for electroosmotic micromixer","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Electrode Pattern Optimization for Electroosmotic Micromixers","grobid_abstract":"In confined microfluidic spaces such as microchannels, electroosmosis is a convenient Coulomb-force mechanism used to electrically actuate charged particles and ions presented in the fluid and pump the electrolytic fluid itself through drag forces. The shape and position of electrode pairs, whose induced charges are in contact with the fluid, determine the electric field and hence the resulting fluid-dynamic velocity distribution. In this paper, we address the inverse design of the electrode-pair patterns in such actuation mechanisms. Our approach is to use topology optimization to inversely determine the patterns of an electrode pair. The optimization procedure requires a mathematical description of the desired fluid behaviour, and then drives the patterns of the electrode pairs to achieve the goal performance. We demonstrate the behaviour of the procedure, which couples the Navier-Stokes equations with charge transportation, to implement an efficient electroosmotic micromixer for laminar microflow. We show that the procedure allows to investigate such microflows under the influence of selected parameter variations, thereby exploring the design space towards optimal device performance. This developed method is novel on the topology optimization of a surface structure to control bulk performance and its implementation over a lower-dimensional surface of an otherwise volumetric domain, where the material interpolation is implemented between Dirichlet and Newmann types of boundary conditions.","publication_date":{"day":1,"month":11,"year":2018,"errors":{}},"publication_name":"International Journal of Heat and Mass Transfer","grobid_abstract_attachment_id":113148673},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239386/Topology_optimization_of_electrode_patterns_for_electroosmotic_micromixer","translated_internal_url":"","created_at":"2024-04-08T11:24:36.353-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148673,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148673/thumbnails/1.jpg","file_name":"j.ijheatmasstransfer.2018.06.06520240408-1-qxbyf7.pdf","download_url":"https://www.academia.edu/attachments/113148673/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Topology_optimization_of_electrode_patte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148673/j.ijheatmasstransfer.2018.06.06520240408-1-qxbyf7-libre.pdf?1712605018=\u0026response-content-disposition=attachment%3B+filename%3DTopology_optimization_of_electrode_patte.pdf\u0026Expires=1733027840\u0026Signature=KBmZfbHIFtsdmEi8e6AObdiCq4KLiFctRpqigjHc28EOFLRYRuU5nd62R~P-de0VYkP8FpcWNbvlhqhl1wPW-FOfn0l6A~3vEV4ND8QIwD9BtfnMHdIvOIRlnitLR8E4yqfVq7UasigwUhXiguE9vDArt-ZpO1tgu4QmQzE9bIoMlfmWCar1oHzcuSBIBEUzoFwWODrmKRD3OFn0Q3jDBoLE094vpS7cp41R8uQkCK6L9kStdTFTDi-m3Oss3qNe5PUydZFv6zOyWQvuo9BdmoavQ~~9DznGNnjDzG89veCWeJ9IXVIRv4oR29Teb2SzZ0ALpJofSDfHF7kB~jfmuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Topology_optimization_of_electrode_patterns_for_electroosmotic_micromixer","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148673,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148673/thumbnails/1.jpg","file_name":"j.ijheatmasstransfer.2018.06.06520240408-1-qxbyf7.pdf","download_url":"https://www.academia.edu/attachments/113148673/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Topology_optimization_of_electrode_patte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148673/j.ijheatmasstransfer.2018.06.06520240408-1-qxbyf7-libre.pdf?1712605018=\u0026response-content-disposition=attachment%3B+filename%3DTopology_optimization_of_electrode_patte.pdf\u0026Expires=1733027840\u0026Signature=KBmZfbHIFtsdmEi8e6AObdiCq4KLiFctRpqigjHc28EOFLRYRuU5nd62R~P-de0VYkP8FpcWNbvlhqhl1wPW-FOfn0l6A~3vEV4ND8QIwD9BtfnMHdIvOIRlnitLR8E4yqfVq7UasigwUhXiguE9vDArt-ZpO1tgu4QmQzE9bIoMlfmWCar1oHzcuSBIBEUzoFwWODrmKRD3OFn0Q3jDBoLE094vpS7cp41R8uQkCK6L9kStdTFTDi-m3Oss3qNe5PUydZFv6zOyWQvuo9BdmoavQ~~9DznGNnjDzG89veCWeJ9IXVIRv4oR29Teb2SzZ0ALpJofSDfHF7kB~jfmuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":20097,"name":"Topology Optimization","url":"https://www.academia.edu/Documents/in/Topology_Optimization"},{"id":33661,"name":"Heat and Mass Transfer","url":"https://www.academia.edu/Documents/in/Heat_and_Mass_Transfer"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":895043,"name":"Micromixer","url":"https://www.academia.edu/Documents/in/Micromixer"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"}],"urls":[{"id":40944626,"url":"https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.065"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239384"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239384/A_full_scale_computational_study_on_the_electrodynamics_of_a_rigid_particle_in_an_optically_induced_dielectrophoresis_chip"><img alt="Research paper thumbnail of A full-scale computational study on the electrodynamics of a rigid particle in an optically induced dielectrophoresis chip" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239384/A_full_scale_computational_study_on_the_electrodynamics_of_a_rigid_particle_in_an_optically_induced_dielectrophoresis_chip">A full-scale computational study on the electrodynamics of a rigid particle in an optically induced dielectrophoresis chip</a></div><div class="wp-workCard_item"><span>Modern Physics Letters B</span><span>, Apr 16, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A transient continuum model of the ODEP chip containing single circular particle inside is constr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A transient continuum model of the ODEP chip containing single circular particle inside is constructed based on multi-physical field coupling. The dielectrophoresis force and liquid viscous resistance acting on particle are calculated by employing the full Maxwell stress tensor. The coupled flow field, electric field and particle are solved by the arbitrary Lagrange–Euler (ALE) method simultaneously. The throughout dynamic process of particle in the ODEP chip is demonstrated, and the effect of several critical parameters on particle electrodynamics is illuminated. The additional disturbing effect of the photoconductive layer on the electric field as well as the micro-channel wall on the flow field is presented to clarify the particle motion in the vertical direction. The results in this study provide a detailed understanding of the particle dynamics in the ODEP chip.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239384"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239384"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239384; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239384]").text(description); $(".js-view-count[data-work-id=117239384]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239384; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239384']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239384, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117239384]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239384,"title":"A full-scale computational study on the electrodynamics of a rigid particle in an optically induced dielectrophoresis chip","translated_title":"","metadata":{"abstract":"A transient continuum model of the ODEP chip containing single circular particle inside is constructed based on multi-physical field coupling. The dielectrophoresis force and liquid viscous resistance acting on particle are calculated by employing the full Maxwell stress tensor. The coupled flow field, electric field and particle are solved by the arbitrary Lagrange–Euler (ALE) method simultaneously. The throughout dynamic process of particle in the ODEP chip is demonstrated, and the effect of several critical parameters on particle electrodynamics is illuminated. The additional disturbing effect of the photoconductive layer on the electric field as well as the micro-channel wall on the flow field is presented to clarify the particle motion in the vertical direction. The results in this study provide a detailed understanding of the particle dynamics in the ODEP chip.","publisher":"World Scientific","publication_date":{"day":16,"month":4,"year":2020,"errors":{}},"publication_name":"Modern Physics Letters B"},"translated_abstract":"A transient continuum model of the ODEP chip containing single circular particle inside is constructed based on multi-physical field coupling. The dielectrophoresis force and liquid viscous resistance acting on particle are calculated by employing the full Maxwell stress tensor. The coupled flow field, electric field and particle are solved by the arbitrary Lagrange–Euler (ALE) method simultaneously. The throughout dynamic process of particle in the ODEP chip is demonstrated, and the effect of several critical parameters on particle electrodynamics is illuminated. The additional disturbing effect of the photoconductive layer on the electric field as well as the micro-channel wall on the flow field is presented to clarify the particle motion in the vertical direction. The results in this study provide a detailed understanding of the particle dynamics in the ODEP chip.","internal_url":"https://www.academia.edu/117239384/A_full_scale_computational_study_on_the_electrodynamics_of_a_rigid_particle_in_an_optically_induced_dielectrophoresis_chip","translated_internal_url":"","created_at":"2024-04-08T11:24:36.135-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_full_scale_computational_study_on_the_electrodynamics_of_a_rigid_particle_in_an_optically_induced_dielectrophoresis_chip","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":27372,"name":"Dielectrophoresis","url":"https://www.academia.edu/Documents/in/Dielectrophoresis"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":2807557,"name":"Maxwell stress tensor","url":"https://www.academia.edu/Documents/in/Maxwell_stress_tensor"}],"urls":[{"id":40944625,"url":"https://doi.org/10.1142/s0217984920502334"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239383"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239383/Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis"><img alt="Research paper thumbnail of Continuous separation of microparticles based on optically induced dielectrophoresis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239383/Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis">Continuous separation of microparticles based on optically induced dielectrophoresis</a></div><div class="wp-workCard_item"><span>Microfluidics and Nanofluidics</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To achieve high-throughput and high-efficiency separation based on optically induced dielectropho...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To achieve high-throughput and high-efficiency separation based on optically induced dielectrophoresis (ODEP), an ODEP-based transient numerical model containing microparticles is developed under alternating current (AC) electric field coupling with an open flow field. In this model, the MST method is employed to calculate the time-averaged AC DEP force and the fluid viscous resistance acting on the particle, the Arbitrary Lagrangian–Eulerian (ALE) method is used to numerically solve the strong coupling electric-fluid–solid mechanics, and the efficient and continuous separation of microparticles is achieved. The results show that the trajectories of particles with different conductivity are clearly differentiated due to two different DEP actions, which enables separation of particles, and its separation performance can be optimized by adjusting the key parameters, including bright area width, applied alternating current (AC) electric voltage and inlet flow velocity. This study explains the continuous separation mechanism of particles under the combined action of AC electric field and flow field, and provides theoretical support for the design of high-efficiency ODEP microparticles separation device.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239383"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239383"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239383; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239383]").text(description); $(".js-view-count[data-work-id=117239383]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239383; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239383']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239383, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117239383]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239383,"title":"Continuous separation of microparticles based on optically induced dielectrophoresis","translated_title":"","metadata":{"abstract":"To achieve high-throughput and high-efficiency separation based on optically induced dielectrophoresis (ODEP), an ODEP-based transient numerical model containing microparticles is developed under alternating current (AC) electric field coupling with an open flow field. In this model, the MST method is employed to calculate the time-averaged AC DEP force and the fluid viscous resistance acting on the particle, the Arbitrary Lagrangian–Eulerian (ALE) method is used to numerically solve the strong coupling electric-fluid–solid mechanics, and the efficient and continuous separation of microparticles is achieved. The results show that the trajectories of particles with different conductivity are clearly differentiated due to two different DEP actions, which enables separation of particles, and its separation performance can be optimized by adjusting the key parameters, including bright area width, applied alternating current (AC) electric voltage and inlet flow velocity. This study explains the continuous separation mechanism of particles under the combined action of AC electric field and flow field, and provides theoretical support for the design of high-efficiency ODEP microparticles separation device.","publisher":"Springer Science+Business Media","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Microfluidics and Nanofluidics"},"translated_abstract":"To achieve high-throughput and high-efficiency separation based on optically induced dielectrophoresis (ODEP), an ODEP-based transient numerical model containing microparticles is developed under alternating current (AC) electric field coupling with an open flow field. In this model, the MST method is employed to calculate the time-averaged AC DEP force and the fluid viscous resistance acting on the particle, the Arbitrary Lagrangian–Eulerian (ALE) method is used to numerically solve the strong coupling electric-fluid–solid mechanics, and the efficient and continuous separation of microparticles is achieved. The results show that the trajectories of particles with different conductivity are clearly differentiated due to two different DEP actions, which enables separation of particles, and its separation performance can be optimized by adjusting the key parameters, including bright area width, applied alternating current (AC) electric voltage and inlet flow velocity. This study explains the continuous separation mechanism of particles under the combined action of AC electric field and flow field, and provides theoretical support for the design of high-efficiency ODEP microparticles separation device.","internal_url":"https://www.academia.edu/117239383/Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis","translated_internal_url":"","created_at":"2024-04-08T11:24:35.923-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":27372,"name":"Dielectrophoresis","url":"https://www.academia.edu/Documents/in/Dielectrophoresis"},{"id":317912,"name":"Microfluidics and Nanofluidics","url":"https://www.academia.edu/Documents/in/Microfluidics_and_Nanofluidics"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":3849972,"name":"Springer Nature","url":"https://www.academia.edu/Documents/in/Springer_Nature"}],"urls":[{"id":40944623,"url":"https://doi.org/10.1007/s10404-021-02512-0"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239381"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239381/Dielectrophoretic_choking_phenomenon_of_a_deformable_particle_in_a_converging_diverging_microchannel"><img alt="Research paper thumbnail of Dielectrophoretic choking phenomenon of a deformable particle in a converging-diverging microchannel" class="work-thumbnail" src="https://attachments.academia-assets.com/113148674/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239381/Dielectrophoretic_choking_phenomenon_of_a_deformable_particle_in_a_converging_diverging_microchannel">Dielectrophoretic choking phenomenon of a deformable particle in a converging-diverging microchannel</a></div><div class="wp-workCard_item"><span>Electrophoresis</span><span>, Dec 27, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="01198ce7dc34be42b483cf22bd8e0fd7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148674,"asset_id":117239381,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148674/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239381"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239381"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239381; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239381]").text(description); $(".js-view-count[data-work-id=117239381]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239381; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239381']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239381, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "01198ce7dc34be42b483cf22bd8e0fd7" } } $('.js-work-strip[data-work-id=117239381]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239381,"title":"Dielectrophoretic choking phenomenon of a deformable particle in a converging-diverging microchannel","translated_title":"","metadata":{"publisher":"Wiley","grobid_abstract":"The translational motion of small particles in an electrokinetic fluid flow through a constriction can be enhanced by an increase of the applied electric potential. Beyond a critical potential, however, the negative dielectrophoresis (DEP) can overpower other forces to prevent particles that are even smaller than the constriction from passing through the constriction. This DEP choking phenomenon was studied previously for rigid particles. Here, the DEP choking phenomenon is revisited for deformable particles, which are ubiquitous in many biomedical applications. Particle deformability is measured by the particle shear modulus, and the choking conditions are reported through a parametric study that includes the channel geometry, external electric potential, and particle zeta potential. The study was carried out using a numerical model based on an arbitrary Lagrangian-Eulerican (ALE) finite-element method.","publication_date":{"day":27,"month":12,"year":2017,"errors":{}},"publication_name":"Electrophoresis","grobid_abstract_attachment_id":113148674},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239381/Dielectrophoretic_choking_phenomenon_of_a_deformable_particle_in_a_converging_diverging_microchannel","translated_internal_url":"","created_at":"2024-04-08T11:24:35.742-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148674,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148674/thumbnails/1.jpg","file_name":"elps.20170025020240408-1-xrxpj8.pdf","download_url":"https://www.academia.edu/attachments/113148674/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dielectrophoretic_choking_phenomenon_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148674/elps.20170025020240408-1-xrxpj8-libre.pdf?1712605024=\u0026response-content-disposition=attachment%3B+filename%3DDielectrophoretic_choking_phenomenon_of.pdf\u0026Expires=1733027840\u0026Signature=aQvWqNagt2FlRGYw6vPqMGBl~o-RSTNxJ8CoOgSwWhAwVIVBA1~2ZHJYe0zCLmBtpffAAdGFeaUE-zJMlMZbtILBvnSUCfRUTsfYQ1O--lpGYB83fjL3XVonrOG-lUMBMGpIv9aXWeJyypqMD5Duo2fdjw59uL6R2BulPWRDZQbBi~2bToGpf6N~tO69BD8w4Gh6C2DrU-tb8hn~I3isQ70JTWlzRGwSY6Wz8Ypq03N3~RdLKE0E4KFiQG2em2yj8rPIlsEFfTFCZtsUVyX9pg4QVmLtYw54DTBxi2PhhU6tKcDcRFy9txpnEvxUUUteu6VI3g21ei6JHYnNTL-AoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dielectrophoretic_choking_phenomenon_of_a_deformable_particle_in_a_converging_diverging_microchannel","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148674,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148674/thumbnails/1.jpg","file_name":"elps.20170025020240408-1-xrxpj8.pdf","download_url":"https://www.academia.edu/attachments/113148674/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dielectrophoretic_choking_phenomenon_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148674/elps.20170025020240408-1-xrxpj8-libre.pdf?1712605024=\u0026response-content-disposition=attachment%3B+filename%3DDielectrophoretic_choking_phenomenon_of.pdf\u0026Expires=1733027840\u0026Signature=aQvWqNagt2FlRGYw6vPqMGBl~o-RSTNxJ8CoOgSwWhAwVIVBA1~2ZHJYe0zCLmBtpffAAdGFeaUE-zJMlMZbtILBvnSUCfRUTsfYQ1O--lpGYB83fjL3XVonrOG-lUMBMGpIv9aXWeJyypqMD5Duo2fdjw59uL6R2BulPWRDZQbBi~2bToGpf6N~tO69BD8w4Gh6C2DrU-tb8hn~I3isQ70JTWlzRGwSY6Wz8Ypq03N3~RdLKE0E4KFiQG2em2yj8rPIlsEFfTFCZtsUVyX9pg4QVmLtYw54DTBxi2PhhU6tKcDcRFy9txpnEvxUUUteu6VI3g21ei6JHYnNTL-AoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":27372,"name":"Dielectrophoresis","url":"https://www.academia.edu/Documents/in/Dielectrophoresis"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":983062,"name":"Zeta Potential","url":"https://www.academia.edu/Documents/in/Zeta_Potential"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":4074029,"name":"Choking","url":"https://www.academia.edu/Documents/in/Choking"}],"urls":[{"id":40944622,"url":"https://doi.org/10.1002/elps.201700250"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239379"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239379/An_Enhanced_Electroosmotic_Micromixer_with_an_Efficient_Asymmetric_Lateral_Structure"><img alt="Research paper thumbnail of An Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure" class="work-thumbnail" src="https://attachments.academia-assets.com/113148620/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239379/An_Enhanced_Electroosmotic_Micromixer_with_an_Efficient_Asymmetric_Lateral_Structure">An Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, Dec 1, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0c7ea617a5008de962a43db946c08ac1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148620,"asset_id":117239379,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148620/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239379"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239379"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239379; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239379]").text(description); $(".js-view-count[data-work-id=117239379]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239379; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239379']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239379, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0c7ea617a5008de962a43db946c08ac1" } } $('.js-work-strip[data-work-id=117239379]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239379,"title":"An Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure","translated_title":"","metadata":{"publisher":"Multidisciplinary Digital Publishing Institute","ai_title_tag":"Efficient Asymmetric Electroosmotic Micromixer for Microfluidics","grobid_abstract":"Homogeneous and rapid mixing in microfluidic devices is difficult to accomplish, owing to the low Reynolds number associated with most flows in microfluidic channels. Here, an efficient electroosmotic micromixer based on a carefully designed lateral structure is demonstrated. The electroosmotic flow in this mixer with an asymmetrical structure induces enhanced disturbance in the micro channel, helping the fluid streams' folding and stretching, thereby enabling appreciable mixing. Quantitative analysis of the mixing efficiency with respect to the potential applied and the flow rate suggests that the electroosmotic microfluidic mixer developed in the present work can achieve efficient mixing with low applied potential.","publication_date":{"day":1,"month":12,"year":2016,"errors":{}},"publication_name":"Micromachines","grobid_abstract_attachment_id":113148620},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239379/An_Enhanced_Electroosmotic_Micromixer_with_an_Efficient_Asymmetric_Lateral_Structure","translated_internal_url":"","created_at":"2024-04-08T11:24:35.565-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148620,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148620/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113148620/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Enhanced_Electroosmotic_Micromixer_wi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148620/pdf-libre.pdf?1712605022=\u0026response-content-disposition=attachment%3B+filename%3DAn_Enhanced_Electroosmotic_Micromixer_wi.pdf\u0026Expires=1733027840\u0026Signature=b0Ea38tKg~ekB94Gn5zgJ-hgbHzw1dO1vmJNGCCA9R1rF5ohcciVlFguRwGJ3ZIzxTdW~UhHB5p8h--jn2CGvUWbdSDRwytgDmX28VsEyQdPAa6AHiicjC9s2fuXmN2RuiGQlKZnjW0WqWSNaSDQb30jkG7D3euyEVbrZoyKa8uxaevfUNt6A2uia7~GBl6H4x5LYgBMw6DBMehPBqd8RnBOEdTGqQ4sOsbsljKLdaR55VZbo8C93N0VJ1F5uOwXomBONTsyY-LFySC417T4UFq-9re-PnBN7J1Z1p-CsBODlKhs0TsyqaUJlUwzcKIoTZhtQU53cssI-MndU~DBnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Enhanced_Electroosmotic_Micromixer_with_an_Efficient_Asymmetric_Lateral_Structure","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148620,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148620/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113148620/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Enhanced_Electroosmotic_Micromixer_wi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148620/pdf-libre.pdf?1712605022=\u0026response-content-disposition=attachment%3B+filename%3DAn_Enhanced_Electroosmotic_Micromixer_wi.pdf\u0026Expires=1733027840\u0026Signature=b0Ea38tKg~ekB94Gn5zgJ-hgbHzw1dO1vmJNGCCA9R1rF5ohcciVlFguRwGJ3ZIzxTdW~UhHB5p8h--jn2CGvUWbdSDRwytgDmX28VsEyQdPAa6AHiicjC9s2fuXmN2RuiGQlKZnjW0WqWSNaSDQb30jkG7D3euyEVbrZoyKa8uxaevfUNt6A2uia7~GBl6H4x5LYgBMw6DBMehPBqd8RnBOEdTGqQ4sOsbsljKLdaR55VZbo8C93N0VJ1F5uOwXomBONTsyY-LFySC417T4UFq-9re-PnBN7J1Z1p-CsBODlKhs0TsyqaUJlUwzcKIoTZhtQU53cssI-MndU~DBnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":225478,"name":"Electro-Osmosis","url":"https://www.academia.edu/Documents/in/Electro-Osmosis"},{"id":895043,"name":"Micromixer","url":"https://www.academia.edu/Documents/in/Micromixer"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"}],"urls":[{"id":40944621,"url":"https://www.mdpi.com/2072-666X/7/12/218/pdf?version=1480598050"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239378"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239378/Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis"><img alt="Research paper thumbnail of Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis" class="work-thumbnail" src="https://attachments.academia-assets.com/113148621/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239378/Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis">Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, Jun 24, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5798260116a883323982e141a4c1b47d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148621,"asset_id":117239378,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148621/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239378"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239378"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239378; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239378]").text(description); $(".js-view-count[data-work-id=117239378]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239378; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239378']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239378, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5798260116a883323982e141a4c1b47d" } } $('.js-work-strip[data-work-id=117239378]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239378,"title":"Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis","translated_title":"","metadata":{"publisher":"Multidisciplinary Digital Publishing Institute","grobid_abstract":"This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY","publication_date":{"day":24,"month":6,"year":2021,"errors":{}},"publication_name":"Micromachines","grobid_abstract_attachment_id":113148621},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239378/Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis","translated_internal_url":"","created_at":"2024-04-08T11:24:35.391-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148621,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148621/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113148621/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mixing_Mechanism_of_Microfluidic_Mixer_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148621/pdf-libre.pdf?1712605024=\u0026response-content-disposition=attachment%3B+filename%3DMixing_Mechanism_of_Microfluidic_Mixer_w.pdf\u0026Expires=1733027840\u0026Signature=JvOhaDP7hB~phBAed4Pc8Njtduj~qN-FSs1RdUAznhoTQO64X0-rQ7ztcHq1iviyMnj~IU-f42QF0~LBPxEoeCjUPIbEeNmqsGStmBDszYOx6dFH0FerVv48Z7oMjQ9M~xp52UbIiBvhf4OZhlCJaJKsYE6UR~fB7TvMP5xDk-n30ySi8HjymlnAKRpHlNLB-clcZF~Dns7VEBAiRMeTB4poyaSRkTa81L0pNC5y0D0Cdc8fnTBVHNpQkKUrQD7FBv6Zyn6aLlBt0Bo8h4LZurAeKL1g9hJW-UABs3ou5G4fOnl~zkqMWwpV6Y9j4DCOrhkrlts0wlsEcjc92B-low__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148621,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148621/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113148621/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mixing_Mechanism_of_Microfluidic_Mixer_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148621/pdf-libre.pdf?1712605024=\u0026response-content-disposition=attachment%3B+filename%3DMixing_Mechanism_of_Microfluidic_Mixer_w.pdf\u0026Expires=1733027840\u0026Signature=JvOhaDP7hB~phBAed4Pc8Njtduj~qN-FSs1RdUAznhoTQO64X0-rQ7ztcHq1iviyMnj~IU-f42QF0~LBPxEoeCjUPIbEeNmqsGStmBDszYOx6dFH0FerVv48Z7oMjQ9M~xp52UbIiBvhf4OZhlCJaJKsYE6UR~fB7TvMP5xDk-n30ySi8HjymlnAKRpHlNLB-clcZF~Dns7VEBAiRMeTB4poyaSRkTa81L0pNC5y0D0Cdc8fnTBVHNpQkKUrQD7FBv6Zyn6aLlBt0Bo8h4LZurAeKL1g9hJW-UABs3ou5G4fOnl~zkqMWwpV6Y9j4DCOrhkrlts0wlsEcjc92B-low__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":225478,"name":"Electro-Osmosis","url":"https://www.academia.edu/Documents/in/Electro-Osmosis"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":895043,"name":"Micromixer","url":"https://www.academia.edu/Documents/in/Micromixer"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"}],"urls":[{"id":40944620,"url":"https://www.mdpi.com/2072-666X/12/7/744/pdf?version=1624602900"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239376"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239376/A_Novel_Electroosmotic_Micromixer_with_Asymmetric_Lateral_Structures_and_DC_Electrode_Arrays"><img alt="Research paper thumbnail of A Novel Electroosmotic Micromixer with Asymmetric Lateral Structures and DC Electrode Arrays" class="work-thumbnail" src="https://attachments.academia-assets.com/113148622/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239376/A_Novel_Electroosmotic_Micromixer_with_Asymmetric_Lateral_Structures_and_DC_Electrode_Arrays">A Novel Electroosmotic Micromixer with Asymmetric Lateral Structures and DC Electrode Arrays</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, Mar 29, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fab409b254afcd804d51d400863012c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148622,"asset_id":117239376,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148622/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239376"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239376"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239376; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239376]").text(description); $(".js-view-count[data-work-id=117239376]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239376; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239376']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239376, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fab409b254afcd804d51d400863012c7" } } $('.js-work-strip[data-work-id=117239376]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239376,"title":"A Novel Electroosmotic Micromixer with Asymmetric Lateral Structures and DC Electrode Arrays","translated_title":"","metadata":{"publisher":"Multidisciplinary Digital Publishing Institute","ai_title_tag":"Enhanced Mixing in a Novel Electroosmotic Micromixer","grobid_abstract":"We present a novel electroosmotic micromixer that consists of arrays of direct current (DC) asymmetric electrode and asymmetric lateral structures. By embedding asymmetric electrode arrays on the top and bottom walls of a rectangular microchannel appropriately, the flow perturbations and vortexes can be induced when a DC electric field is imposed. An efficient lateral structure is then sequentially combined with the rectangular microchannel, which enhances the mixing effect significantly. The effects of operational parameters such as the Reynolds number, the applied potential, and the Peclet number on the mixing performance are analyzed in detail by numerical simulations. The results indicate that an enhanced mixing performance can be achieved with low applied potential. The novel method proposed in this paper provides a simple solution for mixing in the field of micro-total-analysis systems.","publication_date":{"day":29,"month":3,"year":2017,"errors":{}},"publication_name":"Micromachines","grobid_abstract_attachment_id":113148622},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239376/A_Novel_Electroosmotic_Micromixer_with_Asymmetric_Lateral_Structures_and_DC_Electrode_Arrays","translated_internal_url":"","created_at":"2024-04-08T11:24:35.193-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148622/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113148622/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Novel_Electroosmotic_Micromixer_with_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148622/pdf-libre.pdf?1712605032=\u0026response-content-disposition=attachment%3B+filename%3DA_Novel_Electroosmotic_Micromixer_with_A.pdf\u0026Expires=1733027840\u0026Signature=E1FG-WJxDU7tHgAgUkyfq7gmf5Cgd~glK~DGw3nfu1cDLOpcVpZVdJjGU9b50T-gZyVIYyQqvV1GygEgT68FbRSX2kBNtAT~dWh7wHd3SsPuHZm0cJJfDXudTBU5NJ2BOQnKHFx7f8Lzj7ZYYCwTt2ULQN0acY3UEgAd0zqavyXZILG9ZHFySqCu8s0sNsxlq~KN5cG8GROgin83u0PrCakkyQ7TP2SuusfYfJP1ZhOOflX96zQQKeuG1gBwna~kQEkdcynunpEMm5Oi-njk6yfiHI3RkrvhlBuTqPW8q7KS9Z8E9D9I73E~hFU9KMxkVejwldhPG050JDctZwkXkw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Novel_Electroosmotic_Micromixer_with_Asymmetric_Lateral_Structures_and_DC_Electrode_Arrays","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148622/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113148622/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Novel_Electroosmotic_Micromixer_with_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148622/pdf-libre.pdf?1712605032=\u0026response-content-disposition=attachment%3B+filename%3DA_Novel_Electroosmotic_Micromixer_with_A.pdf\u0026Expires=1733027840\u0026Signature=E1FG-WJxDU7tHgAgUkyfq7gmf5Cgd~glK~DGw3nfu1cDLOpcVpZVdJjGU9b50T-gZyVIYyQqvV1GygEgT68FbRSX2kBNtAT~dWh7wHd3SsPuHZm0cJJfDXudTBU5NJ2BOQnKHFx7f8Lzj7ZYYCwTt2ULQN0acY3UEgAd0zqavyXZILG9ZHFySqCu8s0sNsxlq~KN5cG8GROgin83u0PrCakkyQ7TP2SuusfYfJP1ZhOOflX96zQQKeuG1gBwna~kQEkdcynunpEMm5Oi-njk6yfiHI3RkrvhlBuTqPW8q7KS9Z8E9D9I73E~hFU9KMxkVejwldhPG050JDctZwkXkw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":225310,"name":"Vortex","url":"https://www.academia.edu/Documents/in/Vortex"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":895043,"name":"Micromixer","url":"https://www.academia.edu/Documents/in/Micromixer"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"}],"urls":[{"id":40944618,"url":"https://www.mdpi.com/2072-666X/8/4/105/pdf?version=1490790702"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239375"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239375/Optimal_control_based_inverse_determination_of_electrode_distribution_for_electroosmotic_micromixer"><img alt="Research paper thumbnail of Optimal control-based inverse determination of electrode distribution for electroosmotic micromixer" class="work-thumbnail" src="https://attachments.academia-assets.com/113148619/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239375/Optimal_control_based_inverse_determination_of_electrode_distribution_for_electroosmotic_micromixer">Optimal control-based inverse determination of electrode distribution for electroosmotic micromixer</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Dec 31, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d8c581802912b1685307a58c5164eb5e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148619,"asset_id":117239375,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148619/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239375"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239375"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239375; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239375]").text(description); $(".js-view-count[data-work-id=117239375]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239375; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239375']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239375, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d8c581802912b1685307a58c5164eb5e" } } $('.js-work-strip[data-work-id=117239375]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239375,"title":"Optimal control-based inverse determination of electrode distribution for electroosmotic micromixer","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"This paper presents an optimal control-based inverse method used to determine the distribution of the electrodes for the electroosmotic micromixers with external driven flow from the inlet. Based on the optimal control method, one Dirichlet boundary control problem is constructed to inversely find the optimal distribution of the electrodes on the sidewalls of electroosmotic micromixers and achieve the acceptable mixing performance. After solving the boundary control problem, the step-shaped distribution of the external electric potential imposed on the sidewalls can be obtained and the distribution of electrodes can be inversely determined according to the obtained external electric potential. Numerical results are also provided to demonstrate the effectivity of the proposed method.","publication_date":{"day":31,"month":12,"year":2015,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113148619},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239375/Optimal_control_based_inverse_determination_of_electrode_distribution_for_electroosmotic_micromixer","translated_internal_url":"","created_at":"2024-04-08T11:24:35.002-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148619,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148619/thumbnails/1.jpg","file_name":"1601.pdf","download_url":"https://www.academia.edu/attachments/113148619/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimal_control_based_inverse_determinat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148619/1601-libre.pdf?1712609314=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_control_based_inverse_determinat.pdf\u0026Expires=1733027840\u0026Signature=JV5KMrCA7FWpN8YOTzGpRWRWNYhdGYUDL6L4nJyrtMKjRjTvc4Iut0UDHwJ~j6x-aFOBGcLqbw5t5RuN8F8seaTNfqdoiw9eqOE~fUr~O-g2ISoW9vEIkHDs53RmCfCM7s5k-IGpJL6vUG7iiGASiknATrRED9A6CWESgVDt9P3ph5yWKPt2ObJImcEPkcmBrXVr0GuYI~j5mAO8UJYLpiovD6PEFA8xEk6N97AHvqquWl0hhdt6hVZu9nXquiZxS60WWKdXhsvKsblv7Jgki1AFhgtJsNucESUHzWraXt0UcyMoPd9vcYGrvTUgiRUUAmi9HDaO7RyqSnCMSvYHLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Optimal_control_based_inverse_determination_of_electrode_distribution_for_electroosmotic_micromixer","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148619,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148619/thumbnails/1.jpg","file_name":"1601.pdf","download_url":"https://www.academia.edu/attachments/113148619/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimal_control_based_inverse_determinat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148619/1601-libre.pdf?1712609314=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_control_based_inverse_determinat.pdf\u0026Expires=1733027840\u0026Signature=JV5KMrCA7FWpN8YOTzGpRWRWNYhdGYUDL6L4nJyrtMKjRjTvc4Iut0UDHwJ~j6x-aFOBGcLqbw5t5RuN8F8seaTNfqdoiw9eqOE~fUr~O-g2ISoW9vEIkHDs53RmCfCM7s5k-IGpJL6vUG7iiGASiknATrRED9A6CWESgVDt9P3ph5yWKPt2ObJImcEPkcmBrXVr0GuYI~j5mAO8UJYLpiovD6PEFA8xEk6N97AHvqquWl0hhdt6hVZu9nXquiZxS60WWKdXhsvKsblv7Jgki1AFhgtJsNucESUHzWraXt0UcyMoPd9vcYGrvTUgiRUUAmi9HDaO7RyqSnCMSvYHLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113148618,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148618/thumbnails/1.jpg","file_name":"1601.pdf","download_url":"https://www.academia.edu/attachments/113148618/download_file","bulk_download_file_name":"Optimal_control_based_inverse_determinat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148618/1601-libre.pdf?1712609323=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_control_based_inverse_determinat.pdf\u0026Expires=1733027840\u0026Signature=f6QqtW3GAjz2XvXvMX5esSNjBPxJYQ8VG8Sky-TOfSvAZ4TddwagP79Rd1l0wdMUwnz1TBCrX0arbx~GfmIUSTZ~e8SyWJpGrg1kB0OpVxmdCVwIOH8VfaQiLhOD796N3WDshGKhE7PDNKpU8yiqvilEW3chATsUjGg8ZrceLecJw4QC4bpe6ZoMqWlEYbXWCiaCjfXg7cRT97qWP0ZDaTIaNvViyhlg9eXBVXN~huGly51L-lIlF8Iw3kePNPp0RxUWKhbjr8sAXxotLAMBbtREJdUg0Q0w26OKOsa0v-qeKZiD72tbHs63bq50gYtvCf3HVX8tuzFVJ7~RuD4ZEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2200,"name":"Optimal Control","url":"https://www.academia.edu/Documents/in/Optimal_Control"},{"id":893194,"name":"Inverse","url":"https://www.academia.edu/Documents/in/Inverse"},{"id":895043,"name":"Micromixer","url":"https://www.academia.edu/Documents/in/Micromixer"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"},{"id":1789645,"name":"Nanoscience and nanotechnology","url":"https://www.academia.edu/Documents/in/Nanoscience_and_nanotechnology-1"}],"urls":[{"id":40944617,"url":"http://arxiv.org/pdf/1601.03076"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239374"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239374/Point_of_Care_Testing_for_Multiple_Cardiac_Markers_Based_on_a_Snail_Shaped_Microfluidic_Chip"><img alt="Research paper thumbnail of Point-of-Care Testing for Multiple Cardiac Markers Based on a Snail-Shaped Microfluidic Chip" class="work-thumbnail" src="https://attachments.academia-assets.com/113148664/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239374/Point_of_Care_Testing_for_Multiple_Cardiac_Markers_Based_on_a_Snail_Shaped_Microfluidic_Chip">Point-of-Care Testing for Multiple Cardiac Markers Based on a Snail-Shaped Microfluidic Chip</a></div><div class="wp-workCard_item"><span>Frontiers in Chemistry</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Existing methods for detecting cardiac markers are difficult to be applied in point-of-care testi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Existing methods for detecting cardiac markers are difficult to be applied in point-of-care testing (POCT) due to complex operation, long time consumption, and low sensitivity. Here, we report a snail-shaped microfluidic chip (SMC) for the multiplex detection of cTnI, CK-MB, and Myo with high sensitivity and a short detection time. The SMC consists of a sandwich structure: a channel layer with a mixer and reaction zone, a reaction layer coated with capture antibodies, and a base layer. The opening or closing of the microchannels is realized by controlling the downward movement of the press-type mechanical valve. The chemiluminescence method was used as a signal readout, and the experimental conditions were optimized. SMC could detect cTnI, CK-MB, and Myo at concentrations as low as 1.02, 1.37, and 4.15. The SMC will be a promising platform for a simultaneous determination of multianalytes and shows a potential application in POCT.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1f0f6d37c7c4af84cd1520282c6aa2a4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148664,"asset_id":117239374,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148664/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239374"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239374"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239374; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239374]").text(description); $(".js-view-count[data-work-id=117239374]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239374; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239374']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239374, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1f0f6d37c7c4af84cd1520282c6aa2a4" } } $('.js-work-strip[data-work-id=117239374]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239374,"title":"Point-of-Care Testing for Multiple Cardiac Markers Based on a Snail-Shaped Microfluidic Chip","translated_title":"","metadata":{"abstract":"Existing methods for detecting cardiac markers are difficult to be applied in point-of-care testing (POCT) due to complex operation, long time consumption, and low sensitivity. Here, we report a snail-shaped microfluidic chip (SMC) for the multiplex detection of cTnI, CK-MB, and Myo with high sensitivity and a short detection time. The SMC consists of a sandwich structure: a channel layer with a mixer and reaction zone, a reaction layer coated with capture antibodies, and a base layer. The opening or closing of the microchannels is realized by controlling the downward movement of the press-type mechanical valve. The chemiluminescence method was used as a signal readout, and the experimental conditions were optimized. SMC could detect cTnI, CK-MB, and Myo at concentrations as low as 1.02, 1.37, and 4.15. The SMC will be a promising platform for a simultaneous determination of multianalytes and shows a potential application in POCT.","publisher":"Frontiers Media SA","ai_title_tag":"Multiplex Cardiac Marker Detection with Snail-Shaped Chip","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Frontiers in Chemistry"},"translated_abstract":"Existing methods for detecting cardiac markers are difficult to be applied in point-of-care testing (POCT) due to complex operation, long time consumption, and low sensitivity. Here, we report a snail-shaped microfluidic chip (SMC) for the multiplex detection of cTnI, CK-MB, and Myo with high sensitivity and a short detection time. The SMC consists of a sandwich structure: a channel layer with a mixer and reaction zone, a reaction layer coated with capture antibodies, and a base layer. The opening or closing of the microchannels is realized by controlling the downward movement of the press-type mechanical valve. The chemiluminescence method was used as a signal readout, and the experimental conditions were optimized. SMC could detect cTnI, CK-MB, and Myo at concentrations as low as 1.02, 1.37, and 4.15. The SMC will be a promising platform for a simultaneous determination of multianalytes and shows a potential application in POCT.","internal_url":"https://www.academia.edu/117239374/Point_of_Care_Testing_for_Multiple_Cardiac_Markers_Based_on_a_Snail_Shaped_Microfluidic_Chip","translated_internal_url":"","created_at":"2024-04-08T11:24:34.821-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148664,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148664/thumbnails/1.jpg","file_name":"fchem-09-741058.pdf","download_url":"https://www.academia.edu/attachments/113148664/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Point_of_Care_Testing_for_Multiple_Cardi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148664/fchem-09-741058-libre.pdf?1712605017=\u0026response-content-disposition=attachment%3B+filename%3DPoint_of_Care_Testing_for_Multiple_Cardi.pdf\u0026Expires=1733027840\u0026Signature=dGqw9fFDg598JhPwrIf9N3D~fXQhpNsQ066~1YiBehpNWfIZWBSxoIPxOvECDDAzaitKW5T19OrP0JsGdbR6dzqj32hrG8T7ormLLfRNYAUwbOxCwz9XzDu51UYGmqG8XFiG5r1~4F-u9p~dM3Q-yHNQ09Gbvgx8wv9cuLK6zgUedoWYclNbPIIrNRgXokDuXFy~QSb0nxMCIyms8Qq0gP~F0dQoQm~0UENqaX-5oPTeqsF2YtT0GiTAXIWWZHmXbGVmow2f~HinaTpGn4Uc8Ya6z424reO1YxU8krcq-5qGzTA2NRR9RWuwS7Tn0Nq1aGdJlIO7oLlQ7aVgaxDwvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Point_of_Care_Testing_for_Multiple_Cardiac_Markers_Based_on_a_Snail_Shaped_Microfluidic_Chip","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148664,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148664/thumbnails/1.jpg","file_name":"fchem-09-741058.pdf","download_url":"https://www.academia.edu/attachments/113148664/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Point_of_Care_Testing_for_Multiple_Cardi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148664/fchem-09-741058-libre.pdf?1712605017=\u0026response-content-disposition=attachment%3B+filename%3DPoint_of_Care_Testing_for_Multiple_Cardi.pdf\u0026Expires=1733027840\u0026Signature=dGqw9fFDg598JhPwrIf9N3D~fXQhpNsQ066~1YiBehpNWfIZWBSxoIPxOvECDDAzaitKW5T19OrP0JsGdbR6dzqj32hrG8T7ormLLfRNYAUwbOxCwz9XzDu51UYGmqG8XFiG5r1~4F-u9p~dM3Q-yHNQ09Gbvgx8wv9cuLK6zgUedoWYclNbPIIrNRgXokDuXFy~QSb0nxMCIyms8Qq0gP~F0dQoQm~0UENqaX-5oPTeqsF2YtT0GiTAXIWWZHmXbGVmow2f~HinaTpGn4Uc8Ya6z424reO1YxU8krcq-5qGzTA2NRR9RWuwS7Tn0Nq1aGdJlIO7oLlQ7aVgaxDwvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":914941,"name":"Point of Care Testing","url":"https://www.academia.edu/Documents/in/Point_of_Care_Testing"}],"urls":[{"id":40944616,"url":"https://www.frontiersin.org/articles/10.3389/fchem.2021.741058/full"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239373"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239373/Robust_sulfonated_poly_ether_ether_ketone_nanochannels_for_high_performance_osmotic_energy_conversion"><img alt="Research paper thumbnail of Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion" class="work-thumbnail" src="https://attachments.academia-assets.com/113148617/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239373/Robust_sulfonated_poly_ether_ether_ketone_nanochannels_for_high_performance_osmotic_energy_conversion">Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion</a></div><div class="wp-workCard_item"><span>National Science Review</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The membrane-based reverse electrodialysis (RED) technique has a fundamental role in harvesting c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The membrane-based reverse electrodialysis (RED) technique has a fundamental role in harvesting clean and sustainable osmotic energy existing in the salinity gradient. However, the current designs of membranes cannot cope with the high output power density and robustness. Here, we construct a sulfonated poly (ether ether ketone) (SPEEK) nanochannel membrane with numerous nanochannels for a membrane-based osmotic power generator. The parallel nanochannels with high space charges show excellent cation-selectivity, which could further be improved by adjusting the length and charge density of nanochannels. Based on numerical simulation, the system with space charge shows better conductivity and selectivity than those of a surface-charged nanochannel. The output power density of our proposed membrane-based device reaches up to 5.8 W/m2 by mixing artificial seawater and river water. Additionally, the SPEEK membranes exhibit good mechanical properties, endowing the possibility of creating ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ffd518629692aa93c622c80c223c51f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148617,"asset_id":117239373,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148617/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239373"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239373"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239373; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239373]").text(description); $(".js-view-count[data-work-id=117239373]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239373; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239373']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239373, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ffd518629692aa93c622c80c223c51f5" } } $('.js-work-strip[data-work-id=117239373]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239373,"title":"Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion","translated_title":"","metadata":{"abstract":"The membrane-based reverse electrodialysis (RED) technique has a fundamental role in harvesting clean and sustainable osmotic energy existing in the salinity gradient. However, the current designs of membranes cannot cope with the high output power density and robustness. Here, we construct a sulfonated poly (ether ether ketone) (SPEEK) nanochannel membrane with numerous nanochannels for a membrane-based osmotic power generator. The parallel nanochannels with high space charges show excellent cation-selectivity, which could further be improved by adjusting the length and charge density of nanochannels. Based on numerical simulation, the system with space charge shows better conductivity and selectivity than those of a surface-charged nanochannel. The output power density of our proposed membrane-based device reaches up to 5.8 W/m2 by mixing artificial seawater and river water. Additionally, the SPEEK membranes exhibit good mechanical properties, endowing the possibility of creating ...","publisher":"Oxford University Press (OUP)","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"National Science Review"},"translated_abstract":"The membrane-based reverse electrodialysis (RED) technique has a fundamental role in harvesting clean and sustainable osmotic energy existing in the salinity gradient. However, the current designs of membranes cannot cope with the high output power density and robustness. Here, we construct a sulfonated poly (ether ether ketone) (SPEEK) nanochannel membrane with numerous nanochannels for a membrane-based osmotic power generator. The parallel nanochannels with high space charges show excellent cation-selectivity, which could further be improved by adjusting the length and charge density of nanochannels. Based on numerical simulation, the system with space charge shows better conductivity and selectivity than those of a surface-charged nanochannel. The output power density of our proposed membrane-based device reaches up to 5.8 W/m2 by mixing artificial seawater and river water. Additionally, the SPEEK membranes exhibit good mechanical properties, endowing the possibility of creating ...","internal_url":"https://www.academia.edu/117239373/Robust_sulfonated_poly_ether_ether_ketone_nanochannels_for_high_performance_osmotic_energy_conversion","translated_internal_url":"","created_at":"2024-04-08T11:24:34.638-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148617,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148617/thumbnails/1.jpg","file_name":"nwaa057.pdf","download_url":"https://www.academia.edu/attachments/113148617/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Robust_sulfonated_poly_ether_ether_keton.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148617/nwaa057-libre.pdf?1712609303=\u0026response-content-disposition=attachment%3B+filename%3DRobust_sulfonated_poly_ether_ether_keton.pdf\u0026Expires=1733027840\u0026Signature=P6xe1Tu9gJW23ELsYQLSxa8kxVL3ZUETsSv-RmNLPsALodyVh~-TxeQyCxTI59eFtoArv793FpR7t~TB7ipk6z7~oX2ZA5yMCKFjs3C4x3qBsYH2SvDSOrMshLtNxbHG1G7PACDf5EGsoDNG~glD0VHS8Q1M~JcbOraXW9X3bvGHNHsbG1w3NMc1f-gfDNb1MnZhD2QthO1ZRWGXUzSUW0wPa4DBnPyGaxxqnNNMevopz5UHuJ5KNPQaTflYRZJ0KS0gZRQMQC4K1pwKEaajxChf-K0u6GR4axO6zsIDU5WSkK-k5AGapmS4kJ5P2Ised-Xwj734oswvkd2IRe8ECg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Robust_sulfonated_poly_ether_ether_ketone_nanochannels_for_high_performance_osmotic_energy_conversion","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148617,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148617/thumbnails/1.jpg","file_name":"nwaa057.pdf","download_url":"https://www.academia.edu/attachments/113148617/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Robust_sulfonated_poly_ether_ether_keton.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148617/nwaa057-libre.pdf?1712609303=\u0026response-content-disposition=attachment%3B+filename%3DRobust_sulfonated_poly_ether_ether_keton.pdf\u0026Expires=1733027840\u0026Signature=P6xe1Tu9gJW23ELsYQLSxa8kxVL3ZUETsSv-RmNLPsALodyVh~-TxeQyCxTI59eFtoArv793FpR7t~TB7ipk6z7~oX2ZA5yMCKFjs3C4x3qBsYH2SvDSOrMshLtNxbHG1G7PACDf5EGsoDNG~glD0VHS8Q1M~JcbOraXW9X3bvGHNHsbG1w3NMc1f-gfDNb1MnZhD2QthO1ZRWGXUzSUW0wPa4DBnPyGaxxqnNNMevopz5UHuJ5KNPQaTflYRZJ0KS0gZRQMQC4K1pwKEaajxChf-K0u6GR4axO6zsIDU5WSkK-k5AGapmS4kJ5P2Ised-Xwj734oswvkd2IRe8ECg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113148616,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148616/thumbnails/1.jpg","file_name":"nwaa057.pdf","download_url":"https://www.academia.edu/attachments/113148616/download_file","bulk_download_file_name":"Robust_sulfonated_poly_ether_ether_keton.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148616/nwaa057-libre.pdf?1712609305=\u0026response-content-disposition=attachment%3B+filename%3DRobust_sulfonated_poly_ether_ether_keton.pdf\u0026Expires=1733027840\u0026Signature=Xx4oudsPH56JAFRGN6nnp2HRmsYqk3k5i-x8gMVMcd62IEy99kLa0xtMxRu2gfYQrDZe2waXmbIb9a3WOjfkzlWqfdDs68cGAg2DCj9lhufbDb9DbukuyDBC3~98B-H8zbWyqpryb9r5QB0tRzGmcGXGfitro3s3V9YFNTrtbOfCfnc-YlN9AapZycGoXSeUV5TjMI4W3PRn4EawvRGOvJuHMuCHCo-5GGv~Ap8kjrst3cO9DGdj-eTl1UdSmUvxPGsBvGbq2evnvGPWhK9k~q7o62uMSP-b6lkZII3vlW31e0oBOLf4eADy59xF8eg1zwLqKig7fJL7vJZ3uSaqOQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":6779,"name":"Science","url":"https://www.academia.edu/Documents/in/Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":99631,"name":"Pressure Retarded Osmosis","url":"https://www.academia.edu/Documents/in/Pressure_Retarded_Osmosis"},{"id":111976,"name":"Osmotic power","url":"https://www.academia.edu/Documents/in/Osmotic_power"},{"id":242298,"name":"Membrane","url":"https://www.academia.edu/Documents/in/Membrane"},{"id":2254453,"name":"Power Density","url":"https://www.academia.edu/Documents/in/Power_Density"}],"urls":[{"id":40944615,"url":"http://academic.oup.com/nsr/advance-article-pdf/doi/10.1093/nsr/nwaa057/32990731/nwaa057.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239310"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239310/Design_of_microfluidic_channel_networks_with_specified_output_flow_rates_using_the_CFD_based_optimization_method"><img alt="Research paper thumbnail of Design of microfluidic channel networks with specified output flow rates using the CFD-based optimization method" class="work-thumbnail" src="https://attachments.academia-assets.com/113148631/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239310/Design_of_microfluidic_channel_networks_with_specified_output_flow_rates_using_the_CFD_based_optimization_method">Design of microfluidic channel networks with specified output flow rates using the CFD-based optimization method</a></div><div class="wp-workCard_item"><span>Microfluidics and Nanofluidics</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0de32d0c6162db8fd17f9a1fd7f78025" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148631,"asset_id":117239310,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148631/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239310"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239310"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239310; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239310]").text(description); $(".js-view-count[data-work-id=117239310]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239310; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239310']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239310, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0de32d0c6162db8fd17f9a1fd7f78025" } } $('.js-work-strip[data-work-id=117239310]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239310,"title":"Design of microfluidic channel networks with specified output flow rates using the CFD-based optimization method","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","ai_title_tag":"Optimizing Microfluidic Channel Networks for Desired Flow Rates","grobid_abstract":"the inlets to the outlets (Whitesides 2006; Zhao and Yang 2011). The layout of channel networks can be rather simple, with constant width, straight channels, or the layout can be very complex, with multiple splitters, combiners, or even multiple layers. In addition, a suitable design of the width or topology of fluidic channels can modify the resistance of flow so that the channel can be used as functional units, such as valves (","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Microfluidics and Nanofluidics","grobid_abstract_attachment_id":113148631},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239310/Design_of_microfluidic_channel_networks_with_specified_output_flow_rates_using_the_CFD_based_optimization_method","translated_internal_url":"","created_at":"2024-04-08T11:23:32.626-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148631,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148631/thumbnails/1.jpg","file_name":"s10404-016-1842-y20240408-1-l5aah1.pdf","download_url":"https://www.academia.edu/attachments/113148631/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Design_of_microfluidic_channel_networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148631/s10404-016-1842-y20240408-1-l5aah1-libre.pdf?1712605018=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_microfluidic_channel_networks.pdf\u0026Expires=1733027840\u0026Signature=Qiy2KE2ZuOGwn~t2pf7pyH68ftX0kzq6OrDjwpRp-MH6TnC90VX5IS0b79H4LJ2Vn9FcTLPE4QilxOP1PL6N3nY-DrV9LKqzlLer~ZBbvkBovT9EyxExk8IegxcByIZNf-rKcSS1hiaZVfoUKU24m~gjsShsODaU99KHcJPEFYMpzDr~hFWS2Bz6uAFGv9vYBtfiozyb8w-pBJD4jqXbrI6oD9ARZnezuOPZufCqBPmzOJNnmBojWEhhdYmoVTQsozJ4aIjcRtbDGwWOkPL6rPNeqNXQczlCiSjbG6fOPkVzjkp4pgeJ0Fgz4JdC5lXSwUU15sNHyEJxuDvVMWCA0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Design_of_microfluidic_channel_networks_with_specified_output_flow_rates_using_the_CFD_based_optimization_method","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148631,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148631/thumbnails/1.jpg","file_name":"s10404-016-1842-y20240408-1-l5aah1.pdf","download_url":"https://www.academia.edu/attachments/113148631/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Design_of_microfluidic_channel_networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148631/s10404-016-1842-y20240408-1-l5aah1-libre.pdf?1712605018=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_microfluidic_channel_networks.pdf\u0026Expires=1733027840\u0026Signature=Qiy2KE2ZuOGwn~t2pf7pyH68ftX0kzq6OrDjwpRp-MH6TnC90VX5IS0b79H4LJ2Vn9FcTLPE4QilxOP1PL6N3nY-DrV9LKqzlLer~ZBbvkBovT9EyxExk8IegxcByIZNf-rKcSS1hiaZVfoUKU24m~gjsShsODaU99KHcJPEFYMpzDr~hFWS2Bz6uAFGv9vYBtfiozyb8w-pBJD4jqXbrI6oD9ARZnezuOPZufCqBPmzOJNnmBojWEhhdYmoVTQsozJ4aIjcRtbDGwWOkPL6rPNeqNXQczlCiSjbG6fOPkVzjkp4pgeJ0Fgz4JdC5lXSwUU15sNHyEJxuDvVMWCA0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2298,"name":"Computational Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":213990,"name":"Flexibility in engineering design","url":"https://www.academia.edu/Documents/in/Flexibility_in_engineering_design"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":317912,"name":"Microfluidics and Nanofluidics","url":"https://www.academia.edu/Documents/in/Microfluidics_and_Nanofluidics"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":852297,"name":"Fluidics","url":"https://www.academia.edu/Documents/in/Fluidics"}],"urls":[{"id":40944570,"url":"https://doi.org/10.1007/s10404-016-1842-y"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100626520"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100626520/Combustion_Characteristics_of_Small_Laminar_Flames_in_an_Upward_Decreasing_Magnetic_Field"><img alt="Research paper thumbnail of Combustion Characteristics of Small Laminar Flames in an Upward Decreasing Magnetic Field" class="work-thumbnail" src="https://attachments.academia-assets.com/101395892/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100626520/Combustion_Characteristics_of_Small_Laminar_Flames_in_an_Upward_Decreasing_Magnetic_Field">Combustion Characteristics of Small Laminar Flames in an Upward Decreasing Magnetic Field</a></div><div class="wp-workCard_item"><span>Energies</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The combustion characteristics of laminar biogas premixed and diffusion flames in the presence of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The combustion characteristics of laminar biogas premixed and diffusion flames in the presence of upward decreasing magnetic fields have been investigated in this study. The mechanism of magnet–flame interaction in the literature, in which magnetic fields change the behaviors of laminar flames due to the paramagnetic and diamagnetic properties of the constituent gases, is examined and the results are as follows. The magnetic field has no noticeable effect on premixed flames due to low oxygen concentration of the mixed gas at the injection and the relatively high flow momentum. However, due to the diffusion nature of diffusion flames and paramagnetic property of oxygen in ambient air, oxygen distributions are subjected to the gradient of magnetic flux, thus shortening the height of diffusion flames. Results also show that the flame volume is more strongly varied than flame height. Altered oxygen distributions result in improved combustion and higher flame temperature. In the case of ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1a468d1fbd581995a410a0edc333e9a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101395892,"asset_id":100626520,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101395892/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100626520"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100626520"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100626520; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100626520]").text(description); $(".js-view-count[data-work-id=100626520]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100626520; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100626520']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100626520, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1a468d1fbd581995a410a0edc333e9a8" } } $('.js-work-strip[data-work-id=100626520]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100626520,"title":"Combustion Characteristics of Small Laminar Flames in an Upward Decreasing Magnetic Field","translated_title":"","metadata":{"abstract":"The combustion characteristics of laminar biogas premixed and diffusion flames in the presence of upward decreasing magnetic fields have been investigated in this study. The mechanism of magnet–flame interaction in the literature, in which magnetic fields change the behaviors of laminar flames due to the paramagnetic and diamagnetic properties of the constituent gases, is examined and the results are as follows. The magnetic field has no noticeable effect on premixed flames due to low oxygen concentration of the mixed gas at the injection and the relatively high flow momentum. However, due to the diffusion nature of diffusion flames and paramagnetic property of oxygen in ambient air, oxygen distributions are subjected to the gradient of magnetic flux, thus shortening the height of diffusion flames. Results also show that the flame volume is more strongly varied than flame height. Altered oxygen distributions result in improved combustion and higher flame temperature. In the case of ...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Energies"},"translated_abstract":"The combustion characteristics of laminar biogas premixed and diffusion flames in the presence of upward decreasing magnetic fields have been investigated in this study. The mechanism of magnet–flame interaction in the literature, in which magnetic fields change the behaviors of laminar flames due to the paramagnetic and diamagnetic properties of the constituent gases, is examined and the results are as follows. The magnetic field has no noticeable effect on premixed flames due to low oxygen concentration of the mixed gas at the injection and the relatively high flow momentum. However, due to the diffusion nature of diffusion flames and paramagnetic property of oxygen in ambient air, oxygen distributions are subjected to the gradient of magnetic flux, thus shortening the height of diffusion flames. Results also show that the flame volume is more strongly varied than flame height. Altered oxygen distributions result in improved combustion and higher flame temperature. In the case of ...","internal_url":"https://www.academia.edu/100626520/Combustion_Characteristics_of_Small_Laminar_Flames_in_an_Upward_Decreasing_Magnetic_Field","translated_internal_url":"","created_at":"2023-04-23T07:09:31.093-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101395892,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395892/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101395892/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combustion_Characteristics_of_Small_Lami.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395892/pdf-libre.pdf?1682280149=\u0026response-content-disposition=attachment%3B+filename%3DCombustion_Characteristics_of_Small_Lami.pdf\u0026Expires=1733027840\u0026Signature=aYCzu7vOpKS9fQ9x~kFfdMLmg1x9uHHhxhumwLoUrtk0Ls0VzeHGX3lOc-m3qsoJeoJVgkWKpAeJk3A1jip02BEuZoFwj9amWBDKFfLE0cRDwWU6rsw-aSL9IDD9XGhy8EfuVyaBac8YqvcYr83K6Kx8Gp0hTLs~w53kwQQ5Q-nurG4ckb3QP8EeKrAuZvzBbs4sO27b1iMNwY2~s7GQ3qiBKViFiZki0NyixA31x1LRZOR1Ix6pe~rhyxYtyBPUhJfSjBrBt8KCfOzH9l0wjJ99~sEQ-fbuIRki8hH6kIaYMEsmyxw5IhClqPAl8t2Rcvl1ieoLr6jWxXqQx~Qk6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Combustion_Characteristics_of_Small_Laminar_Flames_in_an_Upward_Decreasing_Magnetic_Field","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":101395892,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395892/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101395892/download_file?st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combustion_Characteristics_of_Small_Lami.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395892/pdf-libre.pdf?1682280149=\u0026response-content-disposition=attachment%3B+filename%3DCombustion_Characteristics_of_Small_Lami.pdf\u0026Expires=1733027840\u0026Signature=aYCzu7vOpKS9fQ9x~kFfdMLmg1x9uHHhxhumwLoUrtk0Ls0VzeHGX3lOc-m3qsoJeoJVgkWKpAeJk3A1jip02BEuZoFwj9amWBDKFfLE0cRDwWU6rsw-aSL9IDD9XGhy8EfuVyaBac8YqvcYr83K6Kx8Gp0hTLs~w53kwQQ5Q-nurG4ckb3QP8EeKrAuZvzBbs4sO27b1iMNwY2~s7GQ3qiBKViFiZki0NyixA31x1LRZOR1Ix6pe~rhyxYtyBPUhJfSjBrBt8KCfOzH9l0wjJ99~sEQ-fbuIRki8hH6kIaYMEsmyxw5IhClqPAl8t2Rcvl1ieoLr6jWxXqQx~Qk6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101395893,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395893/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101395893/download_file","bulk_download_file_name":"Combustion_Characteristics_of_Small_Lami.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395893/pdf-libre.pdf?1682280155=\u0026response-content-disposition=attachment%3B+filename%3DCombustion_Characteristics_of_Small_Lami.pdf\u0026Expires=1733027840\u0026Signature=I-e9OB80zvcuMS-2uRRwV7K4jgcQeMhqaK0KEiexbh89bUda2WEEb4xF6L7rLOhWIQT5gwF2ntYUeB03jabGPM~Nbw-fuiKYisVg3ILxvDYqzxOWk8gfVDfbgqRZTpr9fZlQgPJPzYMYVdBgyTgYN3kmYQbUreOdVthUtUxrT4c9i4VQabZ76C3kHQOmiR1AzhKnxbzbmVTqJGS9si4y8coDUZC-TMvnYx88xtqukk-ZRaaybVWYsv5ildUgX~awZzBRL81J5vc2CJXHB7-TFNIbovmyDRb8LA3uJYs8~fyMFor-uPOpTAJgdJhgT5RJIyaB17KhZi-NSK7Dlaf3KA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":6263,"name":"Combustion","url":"https://www.academia.edu/Documents/in/Combustion"},{"id":34754,"name":"Magnetic field","url":"https://www.academia.edu/Documents/in/Magnetic_field"},{"id":83315,"name":"Diffusion","url":"https://www.academia.edu/Documents/in/Diffusion"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":511019,"name":"Diamagnetism","url":"https://www.academia.edu/Documents/in/Diamagnetism"},{"id":832176,"name":"Diffusion Flame","url":"https://www.academia.edu/Documents/in/Diffusion_Flame"},{"id":1011047,"name":"Laminar Flame Speed","url":"https://www.academia.edu/Documents/in/Laminar_Flame_Speed"},{"id":1290065,"name":"ENERGIES","url":"https://www.academia.edu/Documents/in/ENERGIES-1"},{"id":2980369,"name":"Paramagnetism","url":"https://www.academia.edu/Documents/in/Paramagnetism"}],"urls":[{"id":30849375,"url":"https://www.mdpi.com/1996-1073/14/7/1969/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100626519"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100626519/Enzyme_Method_Based_Microfluidic_Chip_for_the_Rapid_Detection_of_Copper_Ions"><img alt="Research paper thumbnail of Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions" class="work-thumbnail" src="https://attachments.academia-assets.com/101395891/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100626519/Enzyme_Method_Based_Microfluidic_Chip_for_the_Rapid_Detection_of_Copper_Ions">Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Metal ions in high concentrations can pollute the marine environment. Human activities and indust...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Metal ions in high concentrations can pollute the marine environment. Human activities and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging from 3.91 nM to 256 μM. The proposed enzyme method-based microfluidic chip detects Cu2+ with a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying the ability of the chip in practical applications. Furthermore, the chip realizes the functions of two AND gates in series and...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5e20507e3a59f59594fd639605e9f2a4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101395891,"asset_id":100626519,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101395891/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100626519"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100626519"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100626519; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100626519]").text(description); $(".js-view-count[data-work-id=100626519]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100626519; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100626519']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100626519, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5e20507e3a59f59594fd639605e9f2a4" } } $('.js-work-strip[data-work-id=100626519]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100626519,"title":"Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions","translated_title":"","metadata":{"abstract":"Metal ions in high concentrations can pollute the marine environment. Human activities and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging from 3.91 nM to 256 μM. The proposed enzyme method-based microfluidic chip detects Cu2+ with a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying the ability of the chip in practical applications. Furthermore, the chip realizes the functions of two AND gates in series and...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Micromachines"},"translated_abstract":"Metal ions in high concentrations can pollute the marine environment. Human activities and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging from 3.91 nM to 256 μM. The proposed enzyme method-based microfluidic chip detects Cu2+ with a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying the ability of the chip in practical applications. Furthermore, the chip realizes the functions of two AND gates in series and...","internal_url":"https://www.academia.edu/100626519/Enzyme_Method_Based_Microfluidic_Chip_for_the_Rapid_Detection_of_Copper_Ions","translated_internal_url":"","created_at":"2023-04-23T07:09:30.901-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101395891,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395891/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101395891/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Enzyme_Method_Based_Microfluidic_Chip_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395891/pdf-libre.pdf?1682280149=\u0026response-content-disposition=attachment%3B+filename%3DEnzyme_Method_Based_Microfluidic_Chip_fo.pdf\u0026Expires=1733027841\u0026Signature=Cv08s3KkiwZ9mDDK50nH5xYaa6UDaPQ5oaT4WTuNhdfRURGADkx8Uw87keqp45S-V1I0czFJwkj0JzZYq7uPDG4fBenLYlS4GOvati4u-VQJnPGkzRFOLdjp9JA6s8Ei9ffm~2pTog6fw1a~I9E96ELFUVpwLkCO2Ztj5~1wYZ2rdMnDTZJ7tN5QSO5RGl1bTOwxS8fX9sRcI6uR9CLXvxry0tBYxOvyM1-4Ahg5cvAftyU1lf4eGt4f4l~dKknm09M5Vo3nEDu4MXTjSYwsj9fNJDXegfKygPecGJG3iw3f8GDyqd83M4wFKfpJ8vpKT4Mtq8daWtCj~8GYLllRCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Enzyme_Method_Based_Microfluidic_Chip_for_the_Rapid_Detection_of_Copper_Ions","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":101395891,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395891/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101395891/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Enzyme_Method_Based_Microfluidic_Chip_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395891/pdf-libre.pdf?1682280149=\u0026response-content-disposition=attachment%3B+filename%3DEnzyme_Method_Based_Microfluidic_Chip_fo.pdf\u0026Expires=1733027841\u0026Signature=Cv08s3KkiwZ9mDDK50nH5xYaa6UDaPQ5oaT4WTuNhdfRURGADkx8Uw87keqp45S-V1I0czFJwkj0JzZYq7uPDG4fBenLYlS4GOvati4u-VQJnPGkzRFOLdjp9JA6s8Ei9ffm~2pTog6fw1a~I9E96ELFUVpwLkCO2Ztj5~1wYZ2rdMnDTZJ7tN5QSO5RGl1bTOwxS8fX9sRcI6uR9CLXvxry0tBYxOvyM1-4Ahg5cvAftyU1lf4eGt4f4l~dKknm09M5Vo3nEDu4MXTjSYwsj9fNJDXegfKygPecGJG3iw3f8GDyqd83M4wFKfpJ8vpKT4Mtq8daWtCj~8GYLllRCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101395890,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395890/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101395890/download_file","bulk_download_file_name":"Enzyme_Method_Based_Microfluidic_Chip_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395890/pdf-libre.pdf?1682280152=\u0026response-content-disposition=attachment%3B+filename%3DEnzyme_Method_Based_Microfluidic_Chip_fo.pdf\u0026Expires=1733027841\u0026Signature=Zz93gQY02LnYKwmM10RseTcM~SYe-CQaDUfdibIBuRYMXm-rU2599s1kjhF3bB~ktfwWTZhwTXiwNWawJdmr2ZT5rQkDgQmYz2zN0SM7yOxVv~v26rB4pQ23qISgNHPbarDNQbqGaTcFG4fLpxSjBUjVH0MgLvDa0-Kh~oYZD2P93qARmmwmRPUbctvsn~gGjKYL8lfPU~OViWTN1--SxDMlb3UVC4e-Kuqnitc0ba0inVoUe1CxoMNB-4vbclprpcgaogFbeuoRDesyHphPjyKhuMzKSAc4Za4~-6Mxr8Gx30bgSQX2wW-OOwvfMFB-9u0jf9c~k1WEy6VS-suIIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":80692,"name":"Copper","url":"https://www.academia.edu/Documents/in/Copper"},{"id":184467,"name":"Seawater","url":"https://www.academia.edu/Documents/in/Seawater"},{"id":322954,"name":"Chip","url":"https://www.academia.edu/Documents/in/Chip"},{"id":753116,"name":"Absorbance","url":"https://www.academia.edu/Documents/in/Absorbance"},{"id":2465388,"name":"Naked Eye","url":"https://www.academia.edu/Documents/in/Naked_Eye"}],"urls":[{"id":30849374,"url":"https://www.mdpi.com/2072-666X/12/11/1380/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100626518"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100626518/Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity"><img alt="Research paper thumbnail of Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity" class="work-thumbnail" src="https://attachments.academia-assets.com/101395918/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100626518/Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity">Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity</a></div><div class="wp-workCard_item"><span>Computer Methods in Applied Mechanics and Engineering</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b52599d72a820fafff221a89b61abb82" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101395918,"asset_id":100626518,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101395918/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100626518"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100626518"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100626518; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100626518]").text(description); $(".js-view-count[data-work-id=100626518]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100626518; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100626518']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100626518, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b52599d72a820fafff221a89b61abb82" } } $('.js-work-strip[data-work-id=100626518]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100626518,"title":"Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The robust Cassie-Baxter mode of the wetting behaviour on a micro-textured solid surface, is a key topography element yielding stable super-hydrophobicity. To meet this purpose, we propose an inverse computational design procedure for the discovery of suitable periodic micro-textures, based on three different tilings of the plane. The symmetric tiles of the lattice are regular triangles, quadrangles, and hexagons. The goal of the inverse design procedure is to achieve the robust Cassie-Baxter state, in which the liquid/vapour interface is mathematically described using the Young-Laplace equation on the lattice, and a topology optimisation approach is utilised to construct a variational problem for the inverse design procedure. Based on numerical calculations of the constructed variational problem, underlying effects are revealed for several factors, including the Bond number, duty ratio, feature size, and lattice constant. The effects of feature size and lattice constant provide approaches for compromisingly considering the robustness of the Cassie-Baxter mode and manufacturability of the inversely designed micro-textures; the effect of the lattice constant permits the scaling properties of the derived patterns, and this in turn provides an approach to avoid the elasto-capillary instability driven collapse of the micro/nanostructures in the derived micro-textures. Further, a monolithic inverse design procedure for the periodic micro-textures is proposed in the conclusions, with synthetically considering the manufacturability as well as contact angle and surface-volume ratio of the liquid bulge held by the supported liquid/vapour interface.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Computer Methods in Applied Mechanics and Engineering","grobid_abstract_attachment_id":101395918},"translated_abstract":null,"internal_url":"https://www.academia.edu/100626518/Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity","translated_internal_url":"","created_at":"2023-04-23T07:09:30.731-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101395918,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395918/thumbnails/1.jpg","file_name":"j.cma.2018.06.03420230423-1-ia3as3.pdf","download_url":"https://www.academia.edu/attachments/101395918/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Inversely_designed_micro_textures_for_ro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395918/j.cma.2018.06.03420230423-1-ia3as3-libre.pdf?1682280490=\u0026response-content-disposition=attachment%3B+filename%3DInversely_designed_micro_textures_for_ro.pdf\u0026Expires=1733027841\u0026Signature=a4JCfXHOeIjDCrkeJ0FCYs9bbNnGl4Zq168b0PNuHlVhYhfyFpbZbJRACpSmOKj-ZM3ARnH5CByWQpsRRINy0IpHQkLERcNMTnna0Er3jlG3nt3kvZYMxEK22lwLJ4x8Bs3~WcmbnPFD9CztsPEAdN2BJT~VytvD6R78Ds0aZy2WDLh4-ClvvXGgBSn8OIGLS~ZDBx1J-fUe-fhZFAu4OXDJuuJx6K8OSSuzoy3oZ1b4qMKKt9veE8MOHsDE61ghd4gDr3A0P2Y60wsL0otupnX6msbMImpRdPgcQlzwbFNGt9ZXywT7Ix0ZVcT5tG9R0ouD9mpzt83qeGraGu8Vig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":101395918,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395918/thumbnails/1.jpg","file_name":"j.cma.2018.06.03420230423-1-ia3as3.pdf","download_url":"https://www.academia.edu/attachments/101395918/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Inversely_designed_micro_textures_for_ro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395918/j.cma.2018.06.03420230423-1-ia3as3-libre.pdf?1682280490=\u0026response-content-disposition=attachment%3B+filename%3DInversely_designed_micro_textures_for_ro.pdf\u0026Expires=1733027841\u0026Signature=a4JCfXHOeIjDCrkeJ0FCYs9bbNnGl4Zq168b0PNuHlVhYhfyFpbZbJRACpSmOKj-ZM3ARnH5CByWQpsRRINy0IpHQkLERcNMTnna0Er3jlG3nt3kvZYMxEK22lwLJ4x8Bs3~WcmbnPFD9CztsPEAdN2BJT~VytvD6R78Ds0aZy2WDLh4-ClvvXGgBSn8OIGLS~ZDBx1J-fUe-fhZFAu4OXDJuuJx6K8OSSuzoy3oZ1b4qMKKt9veE8MOHsDE61ghd4gDr3A0P2Y60wsL0otupnX6msbMImpRdPgcQlzwbFNGt9ZXywT7Ix0ZVcT5tG9R0ouD9mpzt83qeGraGu8Vig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":30849373,"url":"https://api.elsevier.com/content/article/PII:S0045782518303323?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76752476"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76752476/The_polarization_reverse_of_diode_like_conical_nanopore_under_pH_gradient"><img alt="Research paper thumbnail of The polarization reverse of diode-like conical nanopore under pH gradient" class="work-thumbnail" src="https://attachments.academia-assets.com/84351649/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76752476/The_polarization_reverse_of_diode_like_conical_nanopore_under_pH_gradient">The polarization reverse of diode-like conical nanopore under pH gradient</a></div><div class="wp-workCard_item"><span>SN Applied Sciences</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="97e8b72741f0dafde16fd9ec63e48234" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84351649,"asset_id":76752476,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84351649/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76752476"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76752476"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76752476; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76752476]").text(description); $(".js-view-count[data-work-id=76752476]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76752476; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76752476']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76752476, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "97e8b72741f0dafde16fd9ec63e48234" } } $('.js-work-strip[data-work-id=76752476]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76752476,"title":"The polarization reverse of diode-like conical nanopore under pH gradient","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"In the past decade, with the improvement of nanofabrication technology, silica nanopores and nanochannels have been widely used in the fields of ion pumps, energy conversion, ion channels, metal ion detection, and biosensors. Although both potential and pH gradient can significantly change the performance of ion current rectification in nanoscale, the potential mechanism is still not fully understood. In this study, the ion current rectification, surface charge distribution and ion selectivity of silica nanopore under different background salt concentration and pH gradient were discussed by an analytical model, which takes into account the effects of electroosmotic flow, multiple ionic species, and the acid base neutralization. The results show that the polarity of nanopore rectifier can be changed by changing the acidity and alkalinity at both ends of the nanopore. For the first time, we find that the rectification polarity of silica conical nanopore exhibits different performances under high and low electric field intensity. One case in this study shows the rectification ratio curve of the nanopore will have a maximum or minimum value and the extreme point is near the zero of the ion current. With the increase of the concentration of background salt solution, the voltage at the zero point of ion current approaches the zero point, and then the maximum or minimum point moves to the left. The extreme point offset and polarity reversal phenomena may have potential application value in nanopore-based sensing devices.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"SN Applied Sciences","grobid_abstract_attachment_id":84351649},"translated_abstract":null,"internal_url":"https://www.academia.edu/76752476/The_polarization_reverse_of_diode_like_conical_nanopore_under_pH_gradient","translated_internal_url":"","created_at":"2022-04-17T16:37:23.635-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84351649,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84351649/thumbnails/1.jpg","file_name":"s42452-020-03675-1.pdf","download_url":"https://www.academia.edu/attachments/84351649/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_polarization_reverse_of_diode_like_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84351649/s42452-020-03675-1-libre.pdf?1650239166=\u0026response-content-disposition=attachment%3B+filename%3DThe_polarization_reverse_of_diode_like_c.pdf\u0026Expires=1733027841\u0026Signature=TrQBeIN5o2P57Womyo~Rrz5Ct60SsyMuVIq8D5ythld69jyvEdBMJ8USPDtF8KjKZL30FWLzXa9E~r9WpURol0ANNGgfvzhTlh9ILH1bxRtTLux1WDFXe7KEe4YalTnV3~m90h8chgBc6mZdJumbP1Ro3Ug-LpNQLCEOF7xPZaX3aiSRdwJisWJfLUH~zg5L4edElEdOm1nUAnexuji46n2AWcAwhmZvBap4FkkdLt8Y~y2QLYX0dIGrDRtTW~PP7rSEy1WiqmzDObvug20KnCfu6jVZAILWQmddIJVDsYWkPgVleS5euWx9YzKfJ-QAISmksa7hltmqzp~cF4LSrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_polarization_reverse_of_diode_like_conical_nanopore_under_pH_gradient","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":84351649,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84351649/thumbnails/1.jpg","file_name":"s42452-020-03675-1.pdf","download_url":"https://www.academia.edu/attachments/84351649/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_polarization_reverse_of_diode_like_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84351649/s42452-020-03675-1-libre.pdf?1650239166=\u0026response-content-disposition=attachment%3B+filename%3DThe_polarization_reverse_of_diode_like_c.pdf\u0026Expires=1733027841\u0026Signature=TrQBeIN5o2P57Womyo~Rrz5Ct60SsyMuVIq8D5ythld69jyvEdBMJ8USPDtF8KjKZL30FWLzXa9E~r9WpURol0ANNGgfvzhTlh9ILH1bxRtTLux1WDFXe7KEe4YalTnV3~m90h8chgBc6mZdJumbP1Ro3Ug-LpNQLCEOF7xPZaX3aiSRdwJisWJfLUH~zg5L4edElEdOm1nUAnexuji46n2AWcAwhmZvBap4FkkdLt8Y~y2QLYX0dIGrDRtTW~PP7rSEy1WiqmzDObvug20KnCfu6jVZAILWQmddIJVDsYWkPgVleS5euWx9YzKfJ-QAISmksa7hltmqzp~cF4LSrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":84351650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84351650/thumbnails/1.jpg","file_name":"s42452-020-03675-1.pdf","download_url":"https://www.academia.edu/attachments/84351650/download_file","bulk_download_file_name":"The_polarization_reverse_of_diode_like_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84351650/s42452-020-03675-1-libre.pdf?1650239167=\u0026response-content-disposition=attachment%3B+filename%3DThe_polarization_reverse_of_diode_like_c.pdf\u0026Expires=1733027841\u0026Signature=MFSQp2pyl81D6S1771KrZ~50WhSSF9qir44t3XHsOl0iFMVarvT0nyLKBDZyyjEHl~GxCRmOApF1Rvl4lW5pKg-ShzoiKojCLaoWW0p-7ir-WEv4g6aoQ~zswRbq7RVZVs6PDmvL-R9ach~1lX2Smmc3eCsS2iy-QMBcgfJmAy4z1vGLz1YhF6yMS1~aUCgDrJ0cNM4dqC4hX~~Kty4oWEW0~MGtTUDCpFOKUW6Jft4KA2hK70UpFj918TNy1dK0xjb9tnh~m2DKsUj4ic7lU~wKSBPYlKylvVUYzM0PTaWYivjXibz-w4aNHmIRWcRP1HomkHqiVzSuDxiUnlcozQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":19595376,"url":"http://link.springer.com/content/pdf/10.1007/s42452-020-03675-1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76752475"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76752475/Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis"><img alt="Research paper thumbnail of Continuous separation of microparticles based on optically induced dielectrophoresis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76752475/Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis">Continuous separation of microparticles based on optically induced dielectrophoresis</a></div><div class="wp-workCard_item"><span>Microfluidics and Nanofluidics</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To achieve high-throughput and high-efficiency separation based on optically induced dielectropho...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To achieve high-throughput and high-efficiency separation based on optically induced dielectrophoresis (ODEP), an ODEP-based transient numerical model containing microparticles is developed under alternating current (AC) electric field coupling with an open flow field. In this model, the MST method is employed to calculate the time-averaged AC DEP force and the fluid viscous resistance acting on the particle, the Arbitrary Lagrangian–Eulerian (ALE) method is used to numerically solve the strong coupling electric-fluid–solid mechanics, and the efficient and continuous separation of microparticles is achieved. The results show that the trajectories of particles with different conductivity are clearly differentiated due to two different DEP actions, which enables separation of particles, and its separation performance can be optimized by adjusting the key parameters, including bright area width, applied alternating current (AC) electric voltage and inlet flow velocity. This study explains the continuous separation mechanism of particles under the combined action of AC electric field and flow field, and provides theoretical support for the design of high-efficiency ODEP microparticles separation device.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76752475"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76752475"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76752475; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76752475]").text(description); $(".js-view-count[data-work-id=76752475]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76752475; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76752475']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76752475, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=76752475]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76752475,"title":"Continuous separation of microparticles based on optically induced dielectrophoresis","translated_title":"","metadata":{"abstract":"To achieve high-throughput and high-efficiency separation based on optically induced dielectrophoresis (ODEP), an ODEP-based transient numerical model containing microparticles is developed under alternating current (AC) electric field coupling with an open flow field. In this model, the MST method is employed to calculate the time-averaged AC DEP force and the fluid viscous resistance acting on the particle, the Arbitrary Lagrangian–Eulerian (ALE) method is used to numerically solve the strong coupling electric-fluid–solid mechanics, and the efficient and continuous separation of microparticles is achieved. The results show that the trajectories of particles with different conductivity are clearly differentiated due to two different DEP actions, which enables separation of particles, and its separation performance can be optimized by adjusting the key parameters, including bright area width, applied alternating current (AC) electric voltage and inlet flow velocity. This study explains the continuous separation mechanism of particles under the combined action of AC electric field and flow field, and provides theoretical support for the design of high-efficiency ODEP microparticles separation device.","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Microfluidics and Nanofluidics"},"translated_abstract":"To achieve high-throughput and high-efficiency separation based on optically induced dielectrophoresis (ODEP), an ODEP-based transient numerical model containing microparticles is developed under alternating current (AC) electric field coupling with an open flow field. In this model, the MST method is employed to calculate the time-averaged AC DEP force and the fluid viscous resistance acting on the particle, the Arbitrary Lagrangian–Eulerian (ALE) method is used to numerically solve the strong coupling electric-fluid–solid mechanics, and the efficient and continuous separation of microparticles is achieved. The results show that the trajectories of particles with different conductivity are clearly differentiated due to two different DEP actions, which enables separation of particles, and its separation performance can be optimized by adjusting the key parameters, including bright area width, applied alternating current (AC) electric voltage and inlet flow velocity. This study explains the continuous separation mechanism of particles under the combined action of AC electric field and flow field, and provides theoretical support for the design of high-efficiency ODEP microparticles separation device.","internal_url":"https://www.academia.edu/76752475/Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis","translated_internal_url":"","created_at":"2022-04-17T16:37:23.492-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[],"research_interests":[{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":317912,"name":"Microfluidics and Nanofluidics","url":"https://www.academia.edu/Documents/in/Microfluidics_and_Nanofluidics"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":3849972,"name":"Springer Nature","url":"https://www.academia.edu/Documents/in/Springer_Nature"}],"urls":[{"id":19595375,"url":"https://link.springer.com/content/pdf/10.1007/s10404-021-02512-0.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76752474"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76752474/Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis"><img alt="Research paper thumbnail of Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis" class="work-thumbnail" src="https://attachments.academia-assets.com/84351648/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76752474/Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis">Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we present a novel microfluidic mixer with staggered virtual electrode based on li...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we present a novel microfluidic mixer with staggered virtual electrode based on light-actuated AC electroosmosis (LACE). We solve the coupled system of the flow field described by Navier–Stokes equations, the described electric field by a Laplace equation, and the concentration field described by a convection–diffusion equation via a finite-element method (FEM). Moreover, we study the distribution of the flow, electric, and concentration fields in the microchannel, and reveal the generating mechanism of the rotating vortex on the cross-section of the microchannel and the mixing mechanism of the fluid sample. We also explore the influence of several key geometric parameters such as the length, width, and spacing of the virtual electrode, and the height of the microchannel on mixing performance; the relatively optimal mixer structure is thus obtained. The current micromixer provides a favorable fluid-mixing method based on an optical virtual electrode, and could promote...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7eead9f4feabe0fbf281e9fb7cce84ba" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84351648,"asset_id":76752474,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84351648/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76752474"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76752474"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76752474; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76752474]").text(description); $(".js-view-count[data-work-id=76752474]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76752474; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76752474']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76752474, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7eead9f4feabe0fbf281e9fb7cce84ba" } } $('.js-work-strip[data-work-id=76752474]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76752474,"title":"Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis","translated_title":"","metadata":{"abstract":"In this paper, we present a novel microfluidic mixer with staggered virtual electrode based on light-actuated AC electroosmosis (LACE). We solve the coupled system of the flow field described by Navier–Stokes equations, the described electric field by a Laplace equation, and the concentration field described by a convection–diffusion equation via a finite-element method (FEM). Moreover, we study the distribution of the flow, electric, and concentration fields in the microchannel, and reveal the generating mechanism of the rotating vortex on the cross-section of the microchannel and the mixing mechanism of the fluid sample. We also explore the influence of several key geometric parameters such as the length, width, and spacing of the virtual electrode, and the height of the microchannel on mixing performance; the relatively optimal mixer structure is thus obtained. The current micromixer provides a favorable fluid-mixing method based on an optical virtual electrode, and could promote...","publisher":"Micromachines","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Micromachines"},"translated_abstract":"In this paper, we present a novel microfluidic mixer with staggered virtual electrode based on light-actuated AC electroosmosis (LACE). We solve the coupled system of the flow field described by Navier–Stokes equations, the described electric field by a Laplace equation, and the concentration field described by a convection–diffusion equation via a finite-element method (FEM). Moreover, we study the distribution of the flow, electric, and concentration fields in the microchannel, and reveal the generating mechanism of the rotating vortex on the cross-section of the microchannel and the mixing mechanism of the fluid sample. We also explore the influence of several key geometric parameters such as the length, width, and spacing of the virtual electrode, and the height of the microchannel on mixing performance; the relatively optimal mixer structure is thus obtained. The current micromixer provides a favorable fluid-mixing method based on an optical virtual electrode, and could promote...","internal_url":"https://www.academia.edu/76752474/Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis","translated_internal_url":"","created_at":"2022-04-17T16:37:23.358-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84351648,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84351648/thumbnails/1.jpg","file_name":"micromachines-12-00744-v2.pdf","download_url":"https://www.academia.edu/attachments/84351648/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mixing_Mechanism_of_Microfluidic_Mixer_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84351648/micromachines-12-00744-v2-libre.pdf?1650239166=\u0026response-content-disposition=attachment%3B+filename%3DMixing_Mechanism_of_Microfluidic_Mixer_w.pdf\u0026Expires=1733027841\u0026Signature=LEAQlYa0~muufOOJ5JeM6UAlLezmuf19tiYXIh4yc0sSYh2L52U2JjsWxnu5z3xtErMdpIi7YJWHGaBdDwqExz0m5KPS3MxgUUlJ1k8GMuxxpdINMEMM1x5iIvXAjLETlI15w4dLNvFQ8Xr44FBfD~Ao3ph83nAV8JYPdi81T87Q4zFS6sm9ohXx0com~VEz~8snlbOgg8aZfHIkgD8QoUMjEZVY4oDxsDvbUrsqLfUddRZhNvMsKqEhSEo8bam2cRNPninfHnDumPO8z9Dv2qdSODIB4KJLZJVC5anoYCbb1xfjsgxWpHXP-NU3C763YOZQfeCCux5LQp6GMZ58zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":84351648,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84351648/thumbnails/1.jpg","file_name":"micromachines-12-00744-v2.pdf","download_url":"https://www.academia.edu/attachments/84351648/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mixing_Mechanism_of_Microfluidic_Mixer_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84351648/micromachines-12-00744-v2-libre.pdf?1650239166=\u0026response-content-disposition=attachment%3B+filename%3DMixing_Mechanism_of_Microfluidic_Mixer_w.pdf\u0026Expires=1733027841\u0026Signature=LEAQlYa0~muufOOJ5JeM6UAlLezmuf19tiYXIh4yc0sSYh2L52U2JjsWxnu5z3xtErMdpIi7YJWHGaBdDwqExz0m5KPS3MxgUUlJ1k8GMuxxpdINMEMM1x5iIvXAjLETlI15w4dLNvFQ8Xr44FBfD~Ao3ph83nAV8JYPdi81T87Q4zFS6sm9ohXx0com~VEz~8snlbOgg8aZfHIkgD8QoUMjEZVY4oDxsDvbUrsqLfUddRZhNvMsKqEhSEo8bam2cRNPninfHnDumPO8z9Dv2qdSODIB4KJLZJVC5anoYCbb1xfjsgxWpHXP-NU3C763YOZQfeCCux5LQp6GMZ58zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":84351647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84351647/thumbnails/1.jpg","file_name":"micromachines-12-00744-v2.pdf","download_url":"https://www.academia.edu/attachments/84351647/download_file","bulk_download_file_name":"Mixing_Mechanism_of_Microfluidic_Mixer_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84351647/micromachines-12-00744-v2-libre.pdf?1650239167=\u0026response-content-disposition=attachment%3B+filename%3DMixing_Mechanism_of_Microfluidic_Mixer_w.pdf\u0026Expires=1733027841\u0026Signature=L8aK-iYvSmd~nZvVZtMGxfYSya0H2pthZUtTftnJa-fvDnwiNoo0c1MNv2Xk2q95riLpUZA~1c2~3Z1glt2WNsP3wmu6cLXb44nJMxkzy-fO3kXKfI8trB57XL-TyYmSIDvv0HI~VdQn-kYurmDcPTZ~R5UOI1FaLj4N~DocN4ZMuLWT7a0uxxwUrRJrRH8g0rfKQT~N1Cc0gEnu4shEvtchLv8iz3GOsurKNqOkyeq0U-GemwJhuaSy9IsQAgeYMU1cYehKaA1k~0xjkUE4wqWkQc6dIL7ZCHUc89DfW4ObVZd9fGKrxYpNpwXEvPJvahsBXbXA3xFJiQW-wv9G8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"}],"urls":[{"id":19595374,"url":"https://res.mdpi.com/d_attachment/micromachines/micromachines-12-00744/article_deploy/micromachines-12-00744-v2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="4521295" id="papers"><div class="js-work-strip profile--work_container" data-work-id="117239390"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117239390/An_Enhanced_One_Layer_Passive_Microfluidic_Mixer_With_an_Optimized_Lateral_Structure_With_the_Dean_Effect"><img alt="Research paper thumbnail of An Enhanced One-Layer Passive Microfluidic Mixer With an Optimized Lateral Structure With the Dean Effect" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/117239390/An_Enhanced_One_Layer_Passive_Microfluidic_Mixer_With_an_Optimized_Lateral_Structure_With_the_Dean_Effect">An Enhanced One-Layer Passive Microfluidic Mixer With an Optimized Lateral Structure With the Dean Effect</a></div><div class="wp-workCard_item"><span>Journal of Fluids Engineering-transactions of The Asme</span><span>, May 19, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Topology optimization method is applied to a contraction–expansion structure, based on which a si...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239390"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239390"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239390; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239390]").text(description); $(".js-view-count[data-work-id=117239390]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239390; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239390']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239390, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117239390]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239390,"title":"An Enhanced One-Layer Passive Microfluidic Mixer With an Optimized Lateral Structure With the Dean Effect","translated_title":"","metadata":{"abstract":"Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.","publisher":"ASM International","publication_date":{"day":19,"month":5,"year":2015,"errors":{}},"publication_name":"Journal of Fluids Engineering-transactions of The Asme"},"translated_abstract":"Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.","internal_url":"https://www.academia.edu/117239390/An_Enhanced_One_Layer_Passive_Microfluidic_Mixer_With_an_Optimized_Lateral_Structure_With_the_Dean_Effect","translated_internal_url":"","created_at":"2024-04-08T11:24:36.942-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_Enhanced_One_Layer_Passive_Microfluidic_Mixer_With_an_Optimized_Lateral_Structure_With_the_Dean_Effect","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"}],"urls":[{"id":40944631,"url":"https://doi.org/10.1115/1.4030288"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239389"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239389/Euler_force_actuation_mechanism_for_siphon_valving_in_compact_disk_like_microfluidic_chips"><img alt="Research paper thumbnail of Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips" class="work-thumbnail" src="https://attachments.academia-assets.com/113148630/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239389/Euler_force_actuation_mechanism_for_siphon_valving_in_compact_disk_like_microfluidic_chips">Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips</a></div><div class="wp-workCard_item"><span>Biomicrofluidics</span><span>, Mar 1, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f38dee00431c72bf6e8418c6d30c7ae5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148630,"asset_id":117239389,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148630/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239389"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239389"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239389; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239389]").text(description); $(".js-view-count[data-work-id=117239389]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239389; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239389']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239389, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f38dee00431c72bf6e8418c6d30c7ae5" } } $('.js-work-strip[data-work-id=117239389]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239389,"title":"Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips","translated_title":"","metadata":{"publisher":"American Institute of Physics","grobid_abstract":"Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO 2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber. V","publication_date":{"day":1,"month":3,"year":2014,"errors":{}},"publication_name":"Biomicrofluidics","grobid_abstract_attachment_id":113148630},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239389/Euler_force_actuation_mechanism_for_siphon_valving_in_compact_disk_like_microfluidic_chips","translated_internal_url":"","created_at":"2024-04-08T11:24:36.756-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148630,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148630/thumbnails/1.jpg","file_name":"pmc3977750.pdf","download_url":"https://www.academia.edu/attachments/113148630/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Euler_force_actuation_mechanism_for_siph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148630/pmc3977750-libre.pdf?1712605019=\u0026response-content-disposition=attachment%3B+filename%3DEuler_force_actuation_mechanism_for_siph.pdf\u0026Expires=1733027840\u0026Signature=NDnbL2jfZtpA-o1bSNs7NX8cljEHBRTDrcNnpVqPBkzkMzobXYzchCP~rYNqc6uZ2wkBCCxJzkPDnH4zL~tKJ3LBz-Ue~2K6ngDR8gKcX-75mzbjwetVle0If31NwZqH~T4mpdDbFI1HmQIkTGW07RVWIkV3M9qNGbhmTCDhNfC9QmulU74x29xxh1c0aB5hW3s-CBYES0XFNRPamM7KYiOTaassuToIOf7LqXEs1eniHb0pyh2sTAfyAtZEMWS8zeUV9sxVhFmhKZXtNmc54NNJk-DSpvDVURl8P-h7PK4cG4EOwDyVrhfnDRVrAn94nVwocjXzESUeD-c6p08tgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Euler_force_actuation_mechanism_for_siphon_valving_in_compact_disk_like_microfluidic_chips","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148630,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148630/thumbnails/1.jpg","file_name":"pmc3977750.pdf","download_url":"https://www.academia.edu/attachments/113148630/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Euler_force_actuation_mechanism_for_siph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148630/pmc3977750-libre.pdf?1712605019=\u0026response-content-disposition=attachment%3B+filename%3DEuler_force_actuation_mechanism_for_siph.pdf\u0026Expires=1733027840\u0026Signature=NDnbL2jfZtpA-o1bSNs7NX8cljEHBRTDrcNnpVqPBkzkMzobXYzchCP~rYNqc6uZ2wkBCCxJzkPDnH4zL~tKJ3LBz-Ue~2K6ngDR8gKcX-75mzbjwetVle0If31NwZqH~T4mpdDbFI1HmQIkTGW07RVWIkV3M9qNGbhmTCDhNfC9QmulU74x29xxh1c0aB5hW3s-CBYES0XFNRPamM7KYiOTaassuToIOf7LqXEs1eniHb0pyh2sTAfyAtZEMWS8zeUV9sxVhFmhKZXtNmc54NNJk-DSpvDVURl8P-h7PK4cG4EOwDyVrhfnDRVrAn94nVwocjXzESUeD-c6p08tgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113148629,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148629/thumbnails/1.jpg","file_name":"pmc3977750.pdf","download_url":"https://www.academia.edu/attachments/113148629/download_file","bulk_download_file_name":"Euler_force_actuation_mechanism_for_siph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148629/pmc3977750-libre.pdf?1712605020=\u0026response-content-disposition=attachment%3B+filename%3DEuler_force_actuation_mechanism_for_siph.pdf\u0026Expires=1733027840\u0026Signature=PdKzcJY2d~WTa9yOP4UKbY5-PBxA5NHrIcqyAAfen9RPA-sQl3nI0KfO2cihgj7ct-YOJVH~aOZLW5awv-wGHzmMuawKcCfQyJZL5TD-fGjU~NWLtqcYMhWbi2YCyB4cHEv83eI3wmdskZe9OWTPLV4qQTa78AFUIxvDntmOfZ4A84yfitPIL0oDq4xEpuXioVqBDYgmC2ufvgwucLjyBmd1Gkm8BLO8f-0CMszsmDPoPDcbkLBVR89sEif0qYdO5vl9LKM3zvPL9nuFeZMta0kBZpZ1-Nr9uI4-BJfzwfdZbnZE6w0ZLA3JuRP8jIb05arYKrclWfuIXlpIVuvcsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":49599,"name":"Biomicrofluidics","url":"https://www.academia.edu/Documents/in/Biomicrofluidics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":810972,"name":"Mechanism in Biology","url":"https://www.academia.edu/Documents/in/Mechanism_in_Biology"}],"urls":[{"id":40944629,"url":"https://europepmc.org/articles/pmc3977750?pdf=render"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239387"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239387/Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity"><img alt="Research paper thumbnail of Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity" class="work-thumbnail" src="https://attachments.academia-assets.com/113148672/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239387/Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity">Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity</a></div><div class="wp-workCard_item"><span>Computer Methods in Applied Mechanics and Engineering</span><span>, Nov 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4d9e2389f1f1365a2d4118dde6d3c6ba" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148672,"asset_id":117239387,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148672/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239387"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239387"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239387; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239387]").text(description); $(".js-view-count[data-work-id=117239387]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239387; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239387']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239387, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4d9e2389f1f1365a2d4118dde6d3c6ba" } } $('.js-work-strip[data-work-id=117239387]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239387,"title":"Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The robust Cassie-Baxter mode of the wetting behaviour on a micro-textured solid surface, is a key topography element yielding stable super-hydrophobicity. To meet this purpose, we propose an inverse computational design procedure for the discovery of suitable periodic micro-textures, based on three different tilings of the plane. The symmetric tiles of the lattice are regular triangles, quadrangles, and hexagons. The goal of the inverse design procedure is to achieve the robust Cassie-Baxter state, in which the liquid/vapour interface is mathematically described using the Young-Laplace equation on the lattice, and a topology optimisation approach is utilised to construct a variational problem for the inverse design procedure. Based on numerical calculations of the constructed variational problem, underlying effects are revealed for several factors, including the Bond number, duty ratio, feature size, and lattice constant. The effects of feature size and lattice constant provide approaches for compromisingly considering the robustness of the Cassie-Baxter mode and manufacturability of the inversely designed micro-textures; the effect of the lattice constant permits the scaling properties of the derived patterns, and this in turn provides an approach to avoid the elasto-capillary instability driven collapse of the micro/nanostructures in the derived micro-textures. Further, a monolithic inverse design procedure for the periodic micro-textures is proposed in the conclusions, with synthetically considering the manufacturability as well as contact angle and surface-volume ratio of the liquid bulge held by the supported liquid/vapour interface.","publication_date":{"day":1,"month":11,"year":2018,"errors":{}},"publication_name":"Computer Methods in Applied Mechanics and Engineering","grobid_abstract_attachment_id":113148672},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239387/Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity","translated_internal_url":"","created_at":"2024-04-08T11:24:36.553-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148672/thumbnails/1.jpg","file_name":"j.cma.2018.06.03420240408-1-ctz7ar.pdf","download_url":"https://www.academia.edu/attachments/113148672/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Inversely_designed_micro_textures_for_ro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148672/j.cma.2018.06.03420240408-1-ctz7ar-libre.pdf?1712605058=\u0026response-content-disposition=attachment%3B+filename%3DInversely_designed_micro_textures_for_ro.pdf\u0026Expires=1733027840\u0026Signature=Yx7Q8DbwqPjTKoYKm4IrueXB7B1ItoInjMrw~0yAvuWZvZGvuMuSicU0x5TTgoBeHFW4j53fP5QSZ4WDtAk-5tzZ4Nt~~kzHUFe2r4qJrzsCYJNtwaP9m-iazDkSl-wo8vIlOfalGuQVB5G5Z0fvpogzLmTq7ui6Vatg2c6XlBgv3P5aMR2XV0QGTNMrSrgBM6VKQMEqfmZFPJT1mcjBtzrB-X5ERdPb4vy4Yx4WKOZ8i7XAFJyzHDV6v~DFi-1wUT4Nac8ePkmOlR7jNo~4wEvyBPCgg5qBhgHFWRsIx0FUY6T3u44O0tTDa2vGl8rUYRCsHctIAvhfjpdH0wxBgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148672/thumbnails/1.jpg","file_name":"j.cma.2018.06.03420240408-1-ctz7ar.pdf","download_url":"https://www.academia.edu/attachments/113148672/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Inversely_designed_micro_textures_for_ro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148672/j.cma.2018.06.03420240408-1-ctz7ar-libre.pdf?1712605058=\u0026response-content-disposition=attachment%3B+filename%3DInversely_designed_micro_textures_for_ro.pdf\u0026Expires=1733027840\u0026Signature=Yx7Q8DbwqPjTKoYKm4IrueXB7B1ItoInjMrw~0yAvuWZvZGvuMuSicU0x5TTgoBeHFW4j53fP5QSZ4WDtAk-5tzZ4Nt~~kzHUFe2r4qJrzsCYJNtwaP9m-iazDkSl-wo8vIlOfalGuQVB5G5Z0fvpogzLmTq7ui6Vatg2c6XlBgv3P5aMR2XV0QGTNMrSrgBM6VKQMEqfmZFPJT1mcjBtzrB-X5ERdPb4vy4Yx4WKOZ8i7XAFJyzHDV6v~DFi-1wUT4Nac8ePkmOlR7jNo~4wEvyBPCgg5qBhgHFWRsIx0FUY6T3u44O0tTDa2vGl8rUYRCsHctIAvhfjpdH0wxBgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":40944628,"url":"https://doi.org/10.1016/j.cma.2018.06.034"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239386"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239386/Topology_optimization_of_electrode_patterns_for_electroosmotic_micromixer"><img alt="Research paper thumbnail of Topology optimization of electrode patterns for electroosmotic micromixer" class="work-thumbnail" src="https://attachments.academia-assets.com/113148673/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239386/Topology_optimization_of_electrode_patterns_for_electroosmotic_micromixer">Topology optimization of electrode patterns for electroosmotic micromixer</a></div><div class="wp-workCard_item"><span>International Journal of Heat and Mass Transfer</span><span>, Nov 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cd2e53cccd605f35e3763e0873db4aae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148673,"asset_id":117239386,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148673/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239386"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239386"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239386; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239386]").text(description); $(".js-view-count[data-work-id=117239386]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239386; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239386']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239386, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cd2e53cccd605f35e3763e0873db4aae" } } $('.js-work-strip[data-work-id=117239386]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239386,"title":"Topology optimization of electrode patterns for electroosmotic micromixer","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Electrode Pattern Optimization for Electroosmotic Micromixers","grobid_abstract":"In confined microfluidic spaces such as microchannels, electroosmosis is a convenient Coulomb-force mechanism used to electrically actuate charged particles and ions presented in the fluid and pump the electrolytic fluid itself through drag forces. The shape and position of electrode pairs, whose induced charges are in contact with the fluid, determine the electric field and hence the resulting fluid-dynamic velocity distribution. In this paper, we address the inverse design of the electrode-pair patterns in such actuation mechanisms. Our approach is to use topology optimization to inversely determine the patterns of an electrode pair. The optimization procedure requires a mathematical description of the desired fluid behaviour, and then drives the patterns of the electrode pairs to achieve the goal performance. We demonstrate the behaviour of the procedure, which couples the Navier-Stokes equations with charge transportation, to implement an efficient electroosmotic micromixer for laminar microflow. We show that the procedure allows to investigate such microflows under the influence of selected parameter variations, thereby exploring the design space towards optimal device performance. This developed method is novel on the topology optimization of a surface structure to control bulk performance and its implementation over a lower-dimensional surface of an otherwise volumetric domain, where the material interpolation is implemented between Dirichlet and Newmann types of boundary conditions.","publication_date":{"day":1,"month":11,"year":2018,"errors":{}},"publication_name":"International Journal of Heat and Mass Transfer","grobid_abstract_attachment_id":113148673},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239386/Topology_optimization_of_electrode_patterns_for_electroosmotic_micromixer","translated_internal_url":"","created_at":"2024-04-08T11:24:36.353-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148673,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148673/thumbnails/1.jpg","file_name":"j.ijheatmasstransfer.2018.06.06520240408-1-qxbyf7.pdf","download_url":"https://www.academia.edu/attachments/113148673/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Topology_optimization_of_electrode_patte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148673/j.ijheatmasstransfer.2018.06.06520240408-1-qxbyf7-libre.pdf?1712605018=\u0026response-content-disposition=attachment%3B+filename%3DTopology_optimization_of_electrode_patte.pdf\u0026Expires=1733027840\u0026Signature=KBmZfbHIFtsdmEi8e6AObdiCq4KLiFctRpqigjHc28EOFLRYRuU5nd62R~P-de0VYkP8FpcWNbvlhqhl1wPW-FOfn0l6A~3vEV4ND8QIwD9BtfnMHdIvOIRlnitLR8E4yqfVq7UasigwUhXiguE9vDArt-ZpO1tgu4QmQzE9bIoMlfmWCar1oHzcuSBIBEUzoFwWODrmKRD3OFn0Q3jDBoLE094vpS7cp41R8uQkCK6L9kStdTFTDi-m3Oss3qNe5PUydZFv6zOyWQvuo9BdmoavQ~~9DznGNnjDzG89veCWeJ9IXVIRv4oR29Teb2SzZ0ALpJofSDfHF7kB~jfmuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Topology_optimization_of_electrode_patterns_for_electroosmotic_micromixer","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148673,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148673/thumbnails/1.jpg","file_name":"j.ijheatmasstransfer.2018.06.06520240408-1-qxbyf7.pdf","download_url":"https://www.academia.edu/attachments/113148673/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Topology_optimization_of_electrode_patte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148673/j.ijheatmasstransfer.2018.06.06520240408-1-qxbyf7-libre.pdf?1712605018=\u0026response-content-disposition=attachment%3B+filename%3DTopology_optimization_of_electrode_patte.pdf\u0026Expires=1733027840\u0026Signature=KBmZfbHIFtsdmEi8e6AObdiCq4KLiFctRpqigjHc28EOFLRYRuU5nd62R~P-de0VYkP8FpcWNbvlhqhl1wPW-FOfn0l6A~3vEV4ND8QIwD9BtfnMHdIvOIRlnitLR8E4yqfVq7UasigwUhXiguE9vDArt-ZpO1tgu4QmQzE9bIoMlfmWCar1oHzcuSBIBEUzoFwWODrmKRD3OFn0Q3jDBoLE094vpS7cp41R8uQkCK6L9kStdTFTDi-m3Oss3qNe5PUydZFv6zOyWQvuo9BdmoavQ~~9DznGNnjDzG89veCWeJ9IXVIRv4oR29Teb2SzZ0ALpJofSDfHF7kB~jfmuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":20097,"name":"Topology Optimization","url":"https://www.academia.edu/Documents/in/Topology_Optimization"},{"id":33661,"name":"Heat and Mass Transfer","url":"https://www.academia.edu/Documents/in/Heat_and_Mass_Transfer"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":895043,"name":"Micromixer","url":"https://www.academia.edu/Documents/in/Micromixer"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"}],"urls":[{"id":40944626,"url":"https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.065"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239384"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239384/A_full_scale_computational_study_on_the_electrodynamics_of_a_rigid_particle_in_an_optically_induced_dielectrophoresis_chip"><img alt="Research paper thumbnail of A full-scale computational study on the electrodynamics of a rigid particle in an optically induced dielectrophoresis chip" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239384/A_full_scale_computational_study_on_the_electrodynamics_of_a_rigid_particle_in_an_optically_induced_dielectrophoresis_chip">A full-scale computational study on the electrodynamics of a rigid particle in an optically induced dielectrophoresis chip</a></div><div class="wp-workCard_item"><span>Modern Physics Letters B</span><span>, Apr 16, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A transient continuum model of the ODEP chip containing single circular particle inside is constr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A transient continuum model of the ODEP chip containing single circular particle inside is constructed based on multi-physical field coupling. The dielectrophoresis force and liquid viscous resistance acting on particle are calculated by employing the full Maxwell stress tensor. The coupled flow field, electric field and particle are solved by the arbitrary Lagrange–Euler (ALE) method simultaneously. The throughout dynamic process of particle in the ODEP chip is demonstrated, and the effect of several critical parameters on particle electrodynamics is illuminated. The additional disturbing effect of the photoconductive layer on the electric field as well as the micro-channel wall on the flow field is presented to clarify the particle motion in the vertical direction. The results in this study provide a detailed understanding of the particle dynamics in the ODEP chip.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239384"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239384"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239384; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239384]").text(description); $(".js-view-count[data-work-id=117239384]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239384; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239384']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239384, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117239384]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239384,"title":"A full-scale computational study on the electrodynamics of a rigid particle in an optically induced dielectrophoresis chip","translated_title":"","metadata":{"abstract":"A transient continuum model of the ODEP chip containing single circular particle inside is constructed based on multi-physical field coupling. The dielectrophoresis force and liquid viscous resistance acting on particle are calculated by employing the full Maxwell stress tensor. The coupled flow field, electric field and particle are solved by the arbitrary Lagrange–Euler (ALE) method simultaneously. The throughout dynamic process of particle in the ODEP chip is demonstrated, and the effect of several critical parameters on particle electrodynamics is illuminated. The additional disturbing effect of the photoconductive layer on the electric field as well as the micro-channel wall on the flow field is presented to clarify the particle motion in the vertical direction. The results in this study provide a detailed understanding of the particle dynamics in the ODEP chip.","publisher":"World Scientific","publication_date":{"day":16,"month":4,"year":2020,"errors":{}},"publication_name":"Modern Physics Letters B"},"translated_abstract":"A transient continuum model of the ODEP chip containing single circular particle inside is constructed based on multi-physical field coupling. The dielectrophoresis force and liquid viscous resistance acting on particle are calculated by employing the full Maxwell stress tensor. The coupled flow field, electric field and particle are solved by the arbitrary Lagrange–Euler (ALE) method simultaneously. The throughout dynamic process of particle in the ODEP chip is demonstrated, and the effect of several critical parameters on particle electrodynamics is illuminated. The additional disturbing effect of the photoconductive layer on the electric field as well as the micro-channel wall on the flow field is presented to clarify the particle motion in the vertical direction. The results in this study provide a detailed understanding of the particle dynamics in the ODEP chip.","internal_url":"https://www.academia.edu/117239384/A_full_scale_computational_study_on_the_electrodynamics_of_a_rigid_particle_in_an_optically_induced_dielectrophoresis_chip","translated_internal_url":"","created_at":"2024-04-08T11:24:36.135-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_full_scale_computational_study_on_the_electrodynamics_of_a_rigid_particle_in_an_optically_induced_dielectrophoresis_chip","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":27372,"name":"Dielectrophoresis","url":"https://www.academia.edu/Documents/in/Dielectrophoresis"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":2807557,"name":"Maxwell stress tensor","url":"https://www.academia.edu/Documents/in/Maxwell_stress_tensor"}],"urls":[{"id":40944625,"url":"https://doi.org/10.1142/s0217984920502334"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239383"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239383/Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis"><img alt="Research paper thumbnail of Continuous separation of microparticles based on optically induced dielectrophoresis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239383/Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis">Continuous separation of microparticles based on optically induced dielectrophoresis</a></div><div class="wp-workCard_item"><span>Microfluidics and Nanofluidics</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To achieve high-throughput and high-efficiency separation based on optically induced dielectropho...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To achieve high-throughput and high-efficiency separation based on optically induced dielectrophoresis (ODEP), an ODEP-based transient numerical model containing microparticles is developed under alternating current (AC) electric field coupling with an open flow field. In this model, the MST method is employed to calculate the time-averaged AC DEP force and the fluid viscous resistance acting on the particle, the Arbitrary Lagrangian–Eulerian (ALE) method is used to numerically solve the strong coupling electric-fluid–solid mechanics, and the efficient and continuous separation of microparticles is achieved. The results show that the trajectories of particles with different conductivity are clearly differentiated due to two different DEP actions, which enables separation of particles, and its separation performance can be optimized by adjusting the key parameters, including bright area width, applied alternating current (AC) electric voltage and inlet flow velocity. This study explains the continuous separation mechanism of particles under the combined action of AC electric field and flow field, and provides theoretical support for the design of high-efficiency ODEP microparticles separation device.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239383"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239383"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239383; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239383]").text(description); $(".js-view-count[data-work-id=117239383]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239383; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239383']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239383, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117239383]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239383,"title":"Continuous separation of microparticles based on optically induced dielectrophoresis","translated_title":"","metadata":{"abstract":"To achieve high-throughput and high-efficiency separation based on optically induced dielectrophoresis (ODEP), an ODEP-based transient numerical model containing microparticles is developed under alternating current (AC) electric field coupling with an open flow field. In this model, the MST method is employed to calculate the time-averaged AC DEP force and the fluid viscous resistance acting on the particle, the Arbitrary Lagrangian–Eulerian (ALE) method is used to numerically solve the strong coupling electric-fluid–solid mechanics, and the efficient and continuous separation of microparticles is achieved. The results show that the trajectories of particles with different conductivity are clearly differentiated due to two different DEP actions, which enables separation of particles, and its separation performance can be optimized by adjusting the key parameters, including bright area width, applied alternating current (AC) electric voltage and inlet flow velocity. This study explains the continuous separation mechanism of particles under the combined action of AC electric field and flow field, and provides theoretical support for the design of high-efficiency ODEP microparticles separation device.","publisher":"Springer Science+Business Media","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Microfluidics and Nanofluidics"},"translated_abstract":"To achieve high-throughput and high-efficiency separation based on optically induced dielectrophoresis (ODEP), an ODEP-based transient numerical model containing microparticles is developed under alternating current (AC) electric field coupling with an open flow field. In this model, the MST method is employed to calculate the time-averaged AC DEP force and the fluid viscous resistance acting on the particle, the Arbitrary Lagrangian–Eulerian (ALE) method is used to numerically solve the strong coupling electric-fluid–solid mechanics, and the efficient and continuous separation of microparticles is achieved. The results show that the trajectories of particles with different conductivity are clearly differentiated due to two different DEP actions, which enables separation of particles, and its separation performance can be optimized by adjusting the key parameters, including bright area width, applied alternating current (AC) electric voltage and inlet flow velocity. This study explains the continuous separation mechanism of particles under the combined action of AC electric field and flow field, and provides theoretical support for the design of high-efficiency ODEP microparticles separation device.","internal_url":"https://www.academia.edu/117239383/Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis","translated_internal_url":"","created_at":"2024-04-08T11:24:35.923-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":27372,"name":"Dielectrophoresis","url":"https://www.academia.edu/Documents/in/Dielectrophoresis"},{"id":317912,"name":"Microfluidics and Nanofluidics","url":"https://www.academia.edu/Documents/in/Microfluidics_and_Nanofluidics"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":3849972,"name":"Springer Nature","url":"https://www.academia.edu/Documents/in/Springer_Nature"}],"urls":[{"id":40944623,"url":"https://doi.org/10.1007/s10404-021-02512-0"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239381"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239381/Dielectrophoretic_choking_phenomenon_of_a_deformable_particle_in_a_converging_diverging_microchannel"><img alt="Research paper thumbnail of Dielectrophoretic choking phenomenon of a deformable particle in a converging-diverging microchannel" class="work-thumbnail" src="https://attachments.academia-assets.com/113148674/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239381/Dielectrophoretic_choking_phenomenon_of_a_deformable_particle_in_a_converging_diverging_microchannel">Dielectrophoretic choking phenomenon of a deformable particle in a converging-diverging microchannel</a></div><div class="wp-workCard_item"><span>Electrophoresis</span><span>, Dec 27, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="01198ce7dc34be42b483cf22bd8e0fd7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148674,"asset_id":117239381,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148674/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239381"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239381"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239381; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239381]").text(description); $(".js-view-count[data-work-id=117239381]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239381; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239381']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239381, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "01198ce7dc34be42b483cf22bd8e0fd7" } } $('.js-work-strip[data-work-id=117239381]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239381,"title":"Dielectrophoretic choking phenomenon of a deformable particle in a converging-diverging microchannel","translated_title":"","metadata":{"publisher":"Wiley","grobid_abstract":"The translational motion of small particles in an electrokinetic fluid flow through a constriction can be enhanced by an increase of the applied electric potential. Beyond a critical potential, however, the negative dielectrophoresis (DEP) can overpower other forces to prevent particles that are even smaller than the constriction from passing through the constriction. This DEP choking phenomenon was studied previously for rigid particles. Here, the DEP choking phenomenon is revisited for deformable particles, which are ubiquitous in many biomedical applications. Particle deformability is measured by the particle shear modulus, and the choking conditions are reported through a parametric study that includes the channel geometry, external electric potential, and particle zeta potential. The study was carried out using a numerical model based on an arbitrary Lagrangian-Eulerican (ALE) finite-element method.","publication_date":{"day":27,"month":12,"year":2017,"errors":{}},"publication_name":"Electrophoresis","grobid_abstract_attachment_id":113148674},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239381/Dielectrophoretic_choking_phenomenon_of_a_deformable_particle_in_a_converging_diverging_microchannel","translated_internal_url":"","created_at":"2024-04-08T11:24:35.742-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148674,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148674/thumbnails/1.jpg","file_name":"elps.20170025020240408-1-xrxpj8.pdf","download_url":"https://www.academia.edu/attachments/113148674/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dielectrophoretic_choking_phenomenon_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148674/elps.20170025020240408-1-xrxpj8-libre.pdf?1712605024=\u0026response-content-disposition=attachment%3B+filename%3DDielectrophoretic_choking_phenomenon_of.pdf\u0026Expires=1733027840\u0026Signature=aQvWqNagt2FlRGYw6vPqMGBl~o-RSTNxJ8CoOgSwWhAwVIVBA1~2ZHJYe0zCLmBtpffAAdGFeaUE-zJMlMZbtILBvnSUCfRUTsfYQ1O--lpGYB83fjL3XVonrOG-lUMBMGpIv9aXWeJyypqMD5Duo2fdjw59uL6R2BulPWRDZQbBi~2bToGpf6N~tO69BD8w4Gh6C2DrU-tb8hn~I3isQ70JTWlzRGwSY6Wz8Ypq03N3~RdLKE0E4KFiQG2em2yj8rPIlsEFfTFCZtsUVyX9pg4QVmLtYw54DTBxi2PhhU6tKcDcRFy9txpnEvxUUUteu6VI3g21ei6JHYnNTL-AoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dielectrophoretic_choking_phenomenon_of_a_deformable_particle_in_a_converging_diverging_microchannel","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148674,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148674/thumbnails/1.jpg","file_name":"elps.20170025020240408-1-xrxpj8.pdf","download_url":"https://www.academia.edu/attachments/113148674/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dielectrophoretic_choking_phenomenon_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148674/elps.20170025020240408-1-xrxpj8-libre.pdf?1712605024=\u0026response-content-disposition=attachment%3B+filename%3DDielectrophoretic_choking_phenomenon_of.pdf\u0026Expires=1733027840\u0026Signature=aQvWqNagt2FlRGYw6vPqMGBl~o-RSTNxJ8CoOgSwWhAwVIVBA1~2ZHJYe0zCLmBtpffAAdGFeaUE-zJMlMZbtILBvnSUCfRUTsfYQ1O--lpGYB83fjL3XVonrOG-lUMBMGpIv9aXWeJyypqMD5Duo2fdjw59uL6R2BulPWRDZQbBi~2bToGpf6N~tO69BD8w4Gh6C2DrU-tb8hn~I3isQ70JTWlzRGwSY6Wz8Ypq03N3~RdLKE0E4KFiQG2em2yj8rPIlsEFfTFCZtsUVyX9pg4QVmLtYw54DTBxi2PhhU6tKcDcRFy9txpnEvxUUUteu6VI3g21ei6JHYnNTL-AoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":27372,"name":"Dielectrophoresis","url":"https://www.academia.edu/Documents/in/Dielectrophoresis"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":983062,"name":"Zeta Potential","url":"https://www.academia.edu/Documents/in/Zeta_Potential"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":4074029,"name":"Choking","url":"https://www.academia.edu/Documents/in/Choking"}],"urls":[{"id":40944622,"url":"https://doi.org/10.1002/elps.201700250"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239379"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239379/An_Enhanced_Electroosmotic_Micromixer_with_an_Efficient_Asymmetric_Lateral_Structure"><img alt="Research paper thumbnail of An Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure" class="work-thumbnail" src="https://attachments.academia-assets.com/113148620/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239379/An_Enhanced_Electroosmotic_Micromixer_with_an_Efficient_Asymmetric_Lateral_Structure">An Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, Dec 1, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0c7ea617a5008de962a43db946c08ac1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148620,"asset_id":117239379,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148620/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239379"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239379"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239379; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239379]").text(description); $(".js-view-count[data-work-id=117239379]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239379; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239379']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239379, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0c7ea617a5008de962a43db946c08ac1" } } $('.js-work-strip[data-work-id=117239379]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239379,"title":"An Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure","translated_title":"","metadata":{"publisher":"Multidisciplinary Digital Publishing Institute","ai_title_tag":"Efficient Asymmetric Electroosmotic Micromixer for Microfluidics","grobid_abstract":"Homogeneous and rapid mixing in microfluidic devices is difficult to accomplish, owing to the low Reynolds number associated with most flows in microfluidic channels. Here, an efficient electroosmotic micromixer based on a carefully designed lateral structure is demonstrated. The electroosmotic flow in this mixer with an asymmetrical structure induces enhanced disturbance in the micro channel, helping the fluid streams' folding and stretching, thereby enabling appreciable mixing. Quantitative analysis of the mixing efficiency with respect to the potential applied and the flow rate suggests that the electroosmotic microfluidic mixer developed in the present work can achieve efficient mixing with low applied potential.","publication_date":{"day":1,"month":12,"year":2016,"errors":{}},"publication_name":"Micromachines","grobid_abstract_attachment_id":113148620},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239379/An_Enhanced_Electroosmotic_Micromixer_with_an_Efficient_Asymmetric_Lateral_Structure","translated_internal_url":"","created_at":"2024-04-08T11:24:35.565-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148620,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148620/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113148620/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Enhanced_Electroosmotic_Micromixer_wi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148620/pdf-libre.pdf?1712605022=\u0026response-content-disposition=attachment%3B+filename%3DAn_Enhanced_Electroosmotic_Micromixer_wi.pdf\u0026Expires=1733027840\u0026Signature=b0Ea38tKg~ekB94Gn5zgJ-hgbHzw1dO1vmJNGCCA9R1rF5ohcciVlFguRwGJ3ZIzxTdW~UhHB5p8h--jn2CGvUWbdSDRwytgDmX28VsEyQdPAa6AHiicjC9s2fuXmN2RuiGQlKZnjW0WqWSNaSDQb30jkG7D3euyEVbrZoyKa8uxaevfUNt6A2uia7~GBl6H4x5LYgBMw6DBMehPBqd8RnBOEdTGqQ4sOsbsljKLdaR55VZbo8C93N0VJ1F5uOwXomBONTsyY-LFySC417T4UFq-9re-PnBN7J1Z1p-CsBODlKhs0TsyqaUJlUwzcKIoTZhtQU53cssI-MndU~DBnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Enhanced_Electroosmotic_Micromixer_with_an_Efficient_Asymmetric_Lateral_Structure","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148620,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148620/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113148620/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Enhanced_Electroosmotic_Micromixer_wi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148620/pdf-libre.pdf?1712605022=\u0026response-content-disposition=attachment%3B+filename%3DAn_Enhanced_Electroosmotic_Micromixer_wi.pdf\u0026Expires=1733027840\u0026Signature=b0Ea38tKg~ekB94Gn5zgJ-hgbHzw1dO1vmJNGCCA9R1rF5ohcciVlFguRwGJ3ZIzxTdW~UhHB5p8h--jn2CGvUWbdSDRwytgDmX28VsEyQdPAa6AHiicjC9s2fuXmN2RuiGQlKZnjW0WqWSNaSDQb30jkG7D3euyEVbrZoyKa8uxaevfUNt6A2uia7~GBl6H4x5LYgBMw6DBMehPBqd8RnBOEdTGqQ4sOsbsljKLdaR55VZbo8C93N0VJ1F5uOwXomBONTsyY-LFySC417T4UFq-9re-PnBN7J1Z1p-CsBODlKhs0TsyqaUJlUwzcKIoTZhtQU53cssI-MndU~DBnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":225478,"name":"Electro-Osmosis","url":"https://www.academia.edu/Documents/in/Electro-Osmosis"},{"id":895043,"name":"Micromixer","url":"https://www.academia.edu/Documents/in/Micromixer"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"}],"urls":[{"id":40944621,"url":"https://www.mdpi.com/2072-666X/7/12/218/pdf?version=1480598050"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239378"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239378/Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis"><img alt="Research paper thumbnail of Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis" class="work-thumbnail" src="https://attachments.academia-assets.com/113148621/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239378/Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis">Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, Jun 24, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5798260116a883323982e141a4c1b47d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148621,"asset_id":117239378,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148621/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239378"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239378"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239378; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239378]").text(description); $(".js-view-count[data-work-id=117239378]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239378; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239378']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239378, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5798260116a883323982e141a4c1b47d" } } $('.js-work-strip[data-work-id=117239378]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239378,"title":"Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis","translated_title":"","metadata":{"publisher":"Multidisciplinary Digital Publishing Institute","grobid_abstract":"This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY","publication_date":{"day":24,"month":6,"year":2021,"errors":{}},"publication_name":"Micromachines","grobid_abstract_attachment_id":113148621},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239378/Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis","translated_internal_url":"","created_at":"2024-04-08T11:24:35.391-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148621,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148621/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113148621/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mixing_Mechanism_of_Microfluidic_Mixer_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148621/pdf-libre.pdf?1712605024=\u0026response-content-disposition=attachment%3B+filename%3DMixing_Mechanism_of_Microfluidic_Mixer_w.pdf\u0026Expires=1733027840\u0026Signature=JvOhaDP7hB~phBAed4Pc8Njtduj~qN-FSs1RdUAznhoTQO64X0-rQ7ztcHq1iviyMnj~IU-f42QF0~LBPxEoeCjUPIbEeNmqsGStmBDszYOx6dFH0FerVv48Z7oMjQ9M~xp52UbIiBvhf4OZhlCJaJKsYE6UR~fB7TvMP5xDk-n30ySi8HjymlnAKRpHlNLB-clcZF~Dns7VEBAiRMeTB4poyaSRkTa81L0pNC5y0D0Cdc8fnTBVHNpQkKUrQD7FBv6Zyn6aLlBt0Bo8h4LZurAeKL1g9hJW-UABs3ou5G4fOnl~zkqMWwpV6Y9j4DCOrhkrlts0wlsEcjc92B-low__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148621,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148621/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113148621/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mixing_Mechanism_of_Microfluidic_Mixer_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148621/pdf-libre.pdf?1712605024=\u0026response-content-disposition=attachment%3B+filename%3DMixing_Mechanism_of_Microfluidic_Mixer_w.pdf\u0026Expires=1733027840\u0026Signature=JvOhaDP7hB~phBAed4Pc8Njtduj~qN-FSs1RdUAznhoTQO64X0-rQ7ztcHq1iviyMnj~IU-f42QF0~LBPxEoeCjUPIbEeNmqsGStmBDszYOx6dFH0FerVv48Z7oMjQ9M~xp52UbIiBvhf4OZhlCJaJKsYE6UR~fB7TvMP5xDk-n30ySi8HjymlnAKRpHlNLB-clcZF~Dns7VEBAiRMeTB4poyaSRkTa81L0pNC5y0D0Cdc8fnTBVHNpQkKUrQD7FBv6Zyn6aLlBt0Bo8h4LZurAeKL1g9hJW-UABs3ou5G4fOnl~zkqMWwpV6Y9j4DCOrhkrlts0wlsEcjc92B-low__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":225478,"name":"Electro-Osmosis","url":"https://www.academia.edu/Documents/in/Electro-Osmosis"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":895043,"name":"Micromixer","url":"https://www.academia.edu/Documents/in/Micromixer"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"}],"urls":[{"id":40944620,"url":"https://www.mdpi.com/2072-666X/12/7/744/pdf?version=1624602900"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239376"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239376/A_Novel_Electroosmotic_Micromixer_with_Asymmetric_Lateral_Structures_and_DC_Electrode_Arrays"><img alt="Research paper thumbnail of A Novel Electroosmotic Micromixer with Asymmetric Lateral Structures and DC Electrode Arrays" class="work-thumbnail" src="https://attachments.academia-assets.com/113148622/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239376/A_Novel_Electroosmotic_Micromixer_with_Asymmetric_Lateral_Structures_and_DC_Electrode_Arrays">A Novel Electroosmotic Micromixer with Asymmetric Lateral Structures and DC Electrode Arrays</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, Mar 29, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fab409b254afcd804d51d400863012c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148622,"asset_id":117239376,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148622/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239376"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239376"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239376; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239376]").text(description); $(".js-view-count[data-work-id=117239376]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239376; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239376']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239376, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fab409b254afcd804d51d400863012c7" } } $('.js-work-strip[data-work-id=117239376]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239376,"title":"A Novel Electroosmotic Micromixer with Asymmetric Lateral Structures and DC Electrode Arrays","translated_title":"","metadata":{"publisher":"Multidisciplinary Digital Publishing Institute","ai_title_tag":"Enhanced Mixing in a Novel Electroosmotic Micromixer","grobid_abstract":"We present a novel electroosmotic micromixer that consists of arrays of direct current (DC) asymmetric electrode and asymmetric lateral structures. By embedding asymmetric electrode arrays on the top and bottom walls of a rectangular microchannel appropriately, the flow perturbations and vortexes can be induced when a DC electric field is imposed. An efficient lateral structure is then sequentially combined with the rectangular microchannel, which enhances the mixing effect significantly. The effects of operational parameters such as the Reynolds number, the applied potential, and the Peclet number on the mixing performance are analyzed in detail by numerical simulations. The results indicate that an enhanced mixing performance can be achieved with low applied potential. The novel method proposed in this paper provides a simple solution for mixing in the field of micro-total-analysis systems.","publication_date":{"day":29,"month":3,"year":2017,"errors":{}},"publication_name":"Micromachines","grobid_abstract_attachment_id":113148622},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239376/A_Novel_Electroosmotic_Micromixer_with_Asymmetric_Lateral_Structures_and_DC_Electrode_Arrays","translated_internal_url":"","created_at":"2024-04-08T11:24:35.193-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148622/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113148622/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Novel_Electroosmotic_Micromixer_with_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148622/pdf-libre.pdf?1712605032=\u0026response-content-disposition=attachment%3B+filename%3DA_Novel_Electroosmotic_Micromixer_with_A.pdf\u0026Expires=1733027840\u0026Signature=E1FG-WJxDU7tHgAgUkyfq7gmf5Cgd~glK~DGw3nfu1cDLOpcVpZVdJjGU9b50T-gZyVIYyQqvV1GygEgT68FbRSX2kBNtAT~dWh7wHd3SsPuHZm0cJJfDXudTBU5NJ2BOQnKHFx7f8Lzj7ZYYCwTt2ULQN0acY3UEgAd0zqavyXZILG9ZHFySqCu8s0sNsxlq~KN5cG8GROgin83u0PrCakkyQ7TP2SuusfYfJP1ZhOOflX96zQQKeuG1gBwna~kQEkdcynunpEMm5Oi-njk6yfiHI3RkrvhlBuTqPW8q7KS9Z8E9D9I73E~hFU9KMxkVejwldhPG050JDctZwkXkw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Novel_Electroosmotic_Micromixer_with_Asymmetric_Lateral_Structures_and_DC_Electrode_Arrays","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148622/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113148622/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Novel_Electroosmotic_Micromixer_with_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148622/pdf-libre.pdf?1712605032=\u0026response-content-disposition=attachment%3B+filename%3DA_Novel_Electroosmotic_Micromixer_with_A.pdf\u0026Expires=1733027840\u0026Signature=E1FG-WJxDU7tHgAgUkyfq7gmf5Cgd~glK~DGw3nfu1cDLOpcVpZVdJjGU9b50T-gZyVIYyQqvV1GygEgT68FbRSX2kBNtAT~dWh7wHd3SsPuHZm0cJJfDXudTBU5NJ2BOQnKHFx7f8Lzj7ZYYCwTt2ULQN0acY3UEgAd0zqavyXZILG9ZHFySqCu8s0sNsxlq~KN5cG8GROgin83u0PrCakkyQ7TP2SuusfYfJP1ZhOOflX96zQQKeuG1gBwna~kQEkdcynunpEMm5Oi-njk6yfiHI3RkrvhlBuTqPW8q7KS9Z8E9D9I73E~hFU9KMxkVejwldhPG050JDctZwkXkw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":225310,"name":"Vortex","url":"https://www.academia.edu/Documents/in/Vortex"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":895043,"name":"Micromixer","url":"https://www.academia.edu/Documents/in/Micromixer"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"}],"urls":[{"id":40944618,"url":"https://www.mdpi.com/2072-666X/8/4/105/pdf?version=1490790702"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239375"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239375/Optimal_control_based_inverse_determination_of_electrode_distribution_for_electroosmotic_micromixer"><img alt="Research paper thumbnail of Optimal control-based inverse determination of electrode distribution for electroosmotic micromixer" class="work-thumbnail" src="https://attachments.academia-assets.com/113148619/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239375/Optimal_control_based_inverse_determination_of_electrode_distribution_for_electroosmotic_micromixer">Optimal control-based inverse determination of electrode distribution for electroosmotic micromixer</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Dec 31, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d8c581802912b1685307a58c5164eb5e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148619,"asset_id":117239375,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148619/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239375"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239375"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239375; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239375]").text(description); $(".js-view-count[data-work-id=117239375]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239375; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239375']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239375, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d8c581802912b1685307a58c5164eb5e" } } $('.js-work-strip[data-work-id=117239375]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239375,"title":"Optimal control-based inverse determination of electrode distribution for electroosmotic micromixer","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"This paper presents an optimal control-based inverse method used to determine the distribution of the electrodes for the electroosmotic micromixers with external driven flow from the inlet. Based on the optimal control method, one Dirichlet boundary control problem is constructed to inversely find the optimal distribution of the electrodes on the sidewalls of electroosmotic micromixers and achieve the acceptable mixing performance. After solving the boundary control problem, the step-shaped distribution of the external electric potential imposed on the sidewalls can be obtained and the distribution of electrodes can be inversely determined according to the obtained external electric potential. Numerical results are also provided to demonstrate the effectivity of the proposed method.","publication_date":{"day":31,"month":12,"year":2015,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113148619},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239375/Optimal_control_based_inverse_determination_of_electrode_distribution_for_electroosmotic_micromixer","translated_internal_url":"","created_at":"2024-04-08T11:24:35.002-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148619,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148619/thumbnails/1.jpg","file_name":"1601.pdf","download_url":"https://www.academia.edu/attachments/113148619/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimal_control_based_inverse_determinat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148619/1601-libre.pdf?1712609314=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_control_based_inverse_determinat.pdf\u0026Expires=1733027840\u0026Signature=JV5KMrCA7FWpN8YOTzGpRWRWNYhdGYUDL6L4nJyrtMKjRjTvc4Iut0UDHwJ~j6x-aFOBGcLqbw5t5RuN8F8seaTNfqdoiw9eqOE~fUr~O-g2ISoW9vEIkHDs53RmCfCM7s5k-IGpJL6vUG7iiGASiknATrRED9A6CWESgVDt9P3ph5yWKPt2ObJImcEPkcmBrXVr0GuYI~j5mAO8UJYLpiovD6PEFA8xEk6N97AHvqquWl0hhdt6hVZu9nXquiZxS60WWKdXhsvKsblv7Jgki1AFhgtJsNucESUHzWraXt0UcyMoPd9vcYGrvTUgiRUUAmi9HDaO7RyqSnCMSvYHLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Optimal_control_based_inverse_determination_of_electrode_distribution_for_electroosmotic_micromixer","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148619,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148619/thumbnails/1.jpg","file_name":"1601.pdf","download_url":"https://www.academia.edu/attachments/113148619/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimal_control_based_inverse_determinat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148619/1601-libre.pdf?1712609314=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_control_based_inverse_determinat.pdf\u0026Expires=1733027840\u0026Signature=JV5KMrCA7FWpN8YOTzGpRWRWNYhdGYUDL6L4nJyrtMKjRjTvc4Iut0UDHwJ~j6x-aFOBGcLqbw5t5RuN8F8seaTNfqdoiw9eqOE~fUr~O-g2ISoW9vEIkHDs53RmCfCM7s5k-IGpJL6vUG7iiGASiknATrRED9A6CWESgVDt9P3ph5yWKPt2ObJImcEPkcmBrXVr0GuYI~j5mAO8UJYLpiovD6PEFA8xEk6N97AHvqquWl0hhdt6hVZu9nXquiZxS60WWKdXhsvKsblv7Jgki1AFhgtJsNucESUHzWraXt0UcyMoPd9vcYGrvTUgiRUUAmi9HDaO7RyqSnCMSvYHLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113148618,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148618/thumbnails/1.jpg","file_name":"1601.pdf","download_url":"https://www.academia.edu/attachments/113148618/download_file","bulk_download_file_name":"Optimal_control_based_inverse_determinat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148618/1601-libre.pdf?1712609323=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_control_based_inverse_determinat.pdf\u0026Expires=1733027840\u0026Signature=f6QqtW3GAjz2XvXvMX5esSNjBPxJYQ8VG8Sky-TOfSvAZ4TddwagP79Rd1l0wdMUwnz1TBCrX0arbx~GfmIUSTZ~e8SyWJpGrg1kB0OpVxmdCVwIOH8VfaQiLhOD796N3WDshGKhE7PDNKpU8yiqvilEW3chATsUjGg8ZrceLecJw4QC4bpe6ZoMqWlEYbXWCiaCjfXg7cRT97qWP0ZDaTIaNvViyhlg9eXBVXN~huGly51L-lIlF8Iw3kePNPp0RxUWKhbjr8sAXxotLAMBbtREJdUg0Q0w26OKOsa0v-qeKZiD72tbHs63bq50gYtvCf3HVX8tuzFVJ7~RuD4ZEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2200,"name":"Optimal Control","url":"https://www.academia.edu/Documents/in/Optimal_Control"},{"id":893194,"name":"Inverse","url":"https://www.academia.edu/Documents/in/Inverse"},{"id":895043,"name":"Micromixer","url":"https://www.academia.edu/Documents/in/Micromixer"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"},{"id":1789645,"name":"Nanoscience and nanotechnology","url":"https://www.academia.edu/Documents/in/Nanoscience_and_nanotechnology-1"}],"urls":[{"id":40944617,"url":"http://arxiv.org/pdf/1601.03076"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239374"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239374/Point_of_Care_Testing_for_Multiple_Cardiac_Markers_Based_on_a_Snail_Shaped_Microfluidic_Chip"><img alt="Research paper thumbnail of Point-of-Care Testing for Multiple Cardiac Markers Based on a Snail-Shaped Microfluidic Chip" class="work-thumbnail" src="https://attachments.academia-assets.com/113148664/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239374/Point_of_Care_Testing_for_Multiple_Cardiac_Markers_Based_on_a_Snail_Shaped_Microfluidic_Chip">Point-of-Care Testing for Multiple Cardiac Markers Based on a Snail-Shaped Microfluidic Chip</a></div><div class="wp-workCard_item"><span>Frontiers in Chemistry</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Existing methods for detecting cardiac markers are difficult to be applied in point-of-care testi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Existing methods for detecting cardiac markers are difficult to be applied in point-of-care testing (POCT) due to complex operation, long time consumption, and low sensitivity. Here, we report a snail-shaped microfluidic chip (SMC) for the multiplex detection of cTnI, CK-MB, and Myo with high sensitivity and a short detection time. The SMC consists of a sandwich structure: a channel layer with a mixer and reaction zone, a reaction layer coated with capture antibodies, and a base layer. The opening or closing of the microchannels is realized by controlling the downward movement of the press-type mechanical valve. The chemiluminescence method was used as a signal readout, and the experimental conditions were optimized. SMC could detect cTnI, CK-MB, and Myo at concentrations as low as 1.02, 1.37, and 4.15. The SMC will be a promising platform for a simultaneous determination of multianalytes and shows a potential application in POCT.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1f0f6d37c7c4af84cd1520282c6aa2a4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148664,"asset_id":117239374,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148664/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239374"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239374"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239374; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239374]").text(description); $(".js-view-count[data-work-id=117239374]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239374; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239374']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239374, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1f0f6d37c7c4af84cd1520282c6aa2a4" } } $('.js-work-strip[data-work-id=117239374]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239374,"title":"Point-of-Care Testing for Multiple Cardiac Markers Based on a Snail-Shaped Microfluidic Chip","translated_title":"","metadata":{"abstract":"Existing methods for detecting cardiac markers are difficult to be applied in point-of-care testing (POCT) due to complex operation, long time consumption, and low sensitivity. Here, we report a snail-shaped microfluidic chip (SMC) for the multiplex detection of cTnI, CK-MB, and Myo with high sensitivity and a short detection time. The SMC consists of a sandwich structure: a channel layer with a mixer and reaction zone, a reaction layer coated with capture antibodies, and a base layer. The opening or closing of the microchannels is realized by controlling the downward movement of the press-type mechanical valve. The chemiluminescence method was used as a signal readout, and the experimental conditions were optimized. SMC could detect cTnI, CK-MB, and Myo at concentrations as low as 1.02, 1.37, and 4.15. The SMC will be a promising platform for a simultaneous determination of multianalytes and shows a potential application in POCT.","publisher":"Frontiers Media SA","ai_title_tag":"Multiplex Cardiac Marker Detection with Snail-Shaped Chip","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Frontiers in Chemistry"},"translated_abstract":"Existing methods for detecting cardiac markers are difficult to be applied in point-of-care testing (POCT) due to complex operation, long time consumption, and low sensitivity. Here, we report a snail-shaped microfluidic chip (SMC) for the multiplex detection of cTnI, CK-MB, and Myo with high sensitivity and a short detection time. The SMC consists of a sandwich structure: a channel layer with a mixer and reaction zone, a reaction layer coated with capture antibodies, and a base layer. The opening or closing of the microchannels is realized by controlling the downward movement of the press-type mechanical valve. The chemiluminescence method was used as a signal readout, and the experimental conditions were optimized. SMC could detect cTnI, CK-MB, and Myo at concentrations as low as 1.02, 1.37, and 4.15. The SMC will be a promising platform for a simultaneous determination of multianalytes and shows a potential application in POCT.","internal_url":"https://www.academia.edu/117239374/Point_of_Care_Testing_for_Multiple_Cardiac_Markers_Based_on_a_Snail_Shaped_Microfluidic_Chip","translated_internal_url":"","created_at":"2024-04-08T11:24:34.821-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148664,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148664/thumbnails/1.jpg","file_name":"fchem-09-741058.pdf","download_url":"https://www.academia.edu/attachments/113148664/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Point_of_Care_Testing_for_Multiple_Cardi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148664/fchem-09-741058-libre.pdf?1712605017=\u0026response-content-disposition=attachment%3B+filename%3DPoint_of_Care_Testing_for_Multiple_Cardi.pdf\u0026Expires=1733027840\u0026Signature=dGqw9fFDg598JhPwrIf9N3D~fXQhpNsQ066~1YiBehpNWfIZWBSxoIPxOvECDDAzaitKW5T19OrP0JsGdbR6dzqj32hrG8T7ormLLfRNYAUwbOxCwz9XzDu51UYGmqG8XFiG5r1~4F-u9p~dM3Q-yHNQ09Gbvgx8wv9cuLK6zgUedoWYclNbPIIrNRgXokDuXFy~QSb0nxMCIyms8Qq0gP~F0dQoQm~0UENqaX-5oPTeqsF2YtT0GiTAXIWWZHmXbGVmow2f~HinaTpGn4Uc8Ya6z424reO1YxU8krcq-5qGzTA2NRR9RWuwS7Tn0Nq1aGdJlIO7oLlQ7aVgaxDwvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Point_of_Care_Testing_for_Multiple_Cardiac_Markers_Based_on_a_Snail_Shaped_Microfluidic_Chip","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148664,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148664/thumbnails/1.jpg","file_name":"fchem-09-741058.pdf","download_url":"https://www.academia.edu/attachments/113148664/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Point_of_Care_Testing_for_Multiple_Cardi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148664/fchem-09-741058-libre.pdf?1712605017=\u0026response-content-disposition=attachment%3B+filename%3DPoint_of_Care_Testing_for_Multiple_Cardi.pdf\u0026Expires=1733027840\u0026Signature=dGqw9fFDg598JhPwrIf9N3D~fXQhpNsQ066~1YiBehpNWfIZWBSxoIPxOvECDDAzaitKW5T19OrP0JsGdbR6dzqj32hrG8T7ormLLfRNYAUwbOxCwz9XzDu51UYGmqG8XFiG5r1~4F-u9p~dM3Q-yHNQ09Gbvgx8wv9cuLK6zgUedoWYclNbPIIrNRgXokDuXFy~QSb0nxMCIyms8Qq0gP~F0dQoQm~0UENqaX-5oPTeqsF2YtT0GiTAXIWWZHmXbGVmow2f~HinaTpGn4Uc8Ya6z424reO1YxU8krcq-5qGzTA2NRR9RWuwS7Tn0Nq1aGdJlIO7oLlQ7aVgaxDwvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":914941,"name":"Point of Care Testing","url":"https://www.academia.edu/Documents/in/Point_of_Care_Testing"}],"urls":[{"id":40944616,"url":"https://www.frontiersin.org/articles/10.3389/fchem.2021.741058/full"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239373"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239373/Robust_sulfonated_poly_ether_ether_ketone_nanochannels_for_high_performance_osmotic_energy_conversion"><img alt="Research paper thumbnail of Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion" class="work-thumbnail" src="https://attachments.academia-assets.com/113148617/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239373/Robust_sulfonated_poly_ether_ether_ketone_nanochannels_for_high_performance_osmotic_energy_conversion">Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion</a></div><div class="wp-workCard_item"><span>National Science Review</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The membrane-based reverse electrodialysis (RED) technique has a fundamental role in harvesting c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The membrane-based reverse electrodialysis (RED) technique has a fundamental role in harvesting clean and sustainable osmotic energy existing in the salinity gradient. However, the current designs of membranes cannot cope with the high output power density and robustness. Here, we construct a sulfonated poly (ether ether ketone) (SPEEK) nanochannel membrane with numerous nanochannels for a membrane-based osmotic power generator. The parallel nanochannels with high space charges show excellent cation-selectivity, which could further be improved by adjusting the length and charge density of nanochannels. Based on numerical simulation, the system with space charge shows better conductivity and selectivity than those of a surface-charged nanochannel. The output power density of our proposed membrane-based device reaches up to 5.8 W/m2 by mixing artificial seawater and river water. Additionally, the SPEEK membranes exhibit good mechanical properties, endowing the possibility of creating ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ffd518629692aa93c622c80c223c51f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148617,"asset_id":117239373,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148617/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239373"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239373"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239373; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239373]").text(description); $(".js-view-count[data-work-id=117239373]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239373; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239373']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239373, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ffd518629692aa93c622c80c223c51f5" } } $('.js-work-strip[data-work-id=117239373]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239373,"title":"Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion","translated_title":"","metadata":{"abstract":"The membrane-based reverse electrodialysis (RED) technique has a fundamental role in harvesting clean and sustainable osmotic energy existing in the salinity gradient. However, the current designs of membranes cannot cope with the high output power density and robustness. Here, we construct a sulfonated poly (ether ether ketone) (SPEEK) nanochannel membrane with numerous nanochannels for a membrane-based osmotic power generator. The parallel nanochannels with high space charges show excellent cation-selectivity, which could further be improved by adjusting the length and charge density of nanochannels. Based on numerical simulation, the system with space charge shows better conductivity and selectivity than those of a surface-charged nanochannel. The output power density of our proposed membrane-based device reaches up to 5.8 W/m2 by mixing artificial seawater and river water. Additionally, the SPEEK membranes exhibit good mechanical properties, endowing the possibility of creating ...","publisher":"Oxford University Press (OUP)","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"National Science Review"},"translated_abstract":"The membrane-based reverse electrodialysis (RED) technique has a fundamental role in harvesting clean and sustainable osmotic energy existing in the salinity gradient. However, the current designs of membranes cannot cope with the high output power density and robustness. Here, we construct a sulfonated poly (ether ether ketone) (SPEEK) nanochannel membrane with numerous nanochannels for a membrane-based osmotic power generator. The parallel nanochannels with high space charges show excellent cation-selectivity, which could further be improved by adjusting the length and charge density of nanochannels. Based on numerical simulation, the system with space charge shows better conductivity and selectivity than those of a surface-charged nanochannel. The output power density of our proposed membrane-based device reaches up to 5.8 W/m2 by mixing artificial seawater and river water. Additionally, the SPEEK membranes exhibit good mechanical properties, endowing the possibility of creating ...","internal_url":"https://www.academia.edu/117239373/Robust_sulfonated_poly_ether_ether_ketone_nanochannels_for_high_performance_osmotic_energy_conversion","translated_internal_url":"","created_at":"2024-04-08T11:24:34.638-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148617,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148617/thumbnails/1.jpg","file_name":"nwaa057.pdf","download_url":"https://www.academia.edu/attachments/113148617/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Robust_sulfonated_poly_ether_ether_keton.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148617/nwaa057-libre.pdf?1712609303=\u0026response-content-disposition=attachment%3B+filename%3DRobust_sulfonated_poly_ether_ether_keton.pdf\u0026Expires=1733027840\u0026Signature=P6xe1Tu9gJW23ELsYQLSxa8kxVL3ZUETsSv-RmNLPsALodyVh~-TxeQyCxTI59eFtoArv793FpR7t~TB7ipk6z7~oX2ZA5yMCKFjs3C4x3qBsYH2SvDSOrMshLtNxbHG1G7PACDf5EGsoDNG~glD0VHS8Q1M~JcbOraXW9X3bvGHNHsbG1w3NMc1f-gfDNb1MnZhD2QthO1ZRWGXUzSUW0wPa4DBnPyGaxxqnNNMevopz5UHuJ5KNPQaTflYRZJ0KS0gZRQMQC4K1pwKEaajxChf-K0u6GR4axO6zsIDU5WSkK-k5AGapmS4kJ5P2Ised-Xwj734oswvkd2IRe8ECg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Robust_sulfonated_poly_ether_ether_ketone_nanochannels_for_high_performance_osmotic_energy_conversion","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148617,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148617/thumbnails/1.jpg","file_name":"nwaa057.pdf","download_url":"https://www.academia.edu/attachments/113148617/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Robust_sulfonated_poly_ether_ether_keton.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148617/nwaa057-libre.pdf?1712609303=\u0026response-content-disposition=attachment%3B+filename%3DRobust_sulfonated_poly_ether_ether_keton.pdf\u0026Expires=1733027840\u0026Signature=P6xe1Tu9gJW23ELsYQLSxa8kxVL3ZUETsSv-RmNLPsALodyVh~-TxeQyCxTI59eFtoArv793FpR7t~TB7ipk6z7~oX2ZA5yMCKFjs3C4x3qBsYH2SvDSOrMshLtNxbHG1G7PACDf5EGsoDNG~glD0VHS8Q1M~JcbOraXW9X3bvGHNHsbG1w3NMc1f-gfDNb1MnZhD2QthO1ZRWGXUzSUW0wPa4DBnPyGaxxqnNNMevopz5UHuJ5KNPQaTflYRZJ0KS0gZRQMQC4K1pwKEaajxChf-K0u6GR4axO6zsIDU5WSkK-k5AGapmS4kJ5P2Ised-Xwj734oswvkd2IRe8ECg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113148616,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148616/thumbnails/1.jpg","file_name":"nwaa057.pdf","download_url":"https://www.academia.edu/attachments/113148616/download_file","bulk_download_file_name":"Robust_sulfonated_poly_ether_ether_keton.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148616/nwaa057-libre.pdf?1712609305=\u0026response-content-disposition=attachment%3B+filename%3DRobust_sulfonated_poly_ether_ether_keton.pdf\u0026Expires=1733027840\u0026Signature=Xx4oudsPH56JAFRGN6nnp2HRmsYqk3k5i-x8gMVMcd62IEy99kLa0xtMxRu2gfYQrDZe2waXmbIb9a3WOjfkzlWqfdDs68cGAg2DCj9lhufbDb9DbukuyDBC3~98B-H8zbWyqpryb9r5QB0tRzGmcGXGfitro3s3V9YFNTrtbOfCfnc-YlN9AapZycGoXSeUV5TjMI4W3PRn4EawvRGOvJuHMuCHCo-5GGv~Ap8kjrst3cO9DGdj-eTl1UdSmUvxPGsBvGbq2evnvGPWhK9k~q7o62uMSP-b6lkZII3vlW31e0oBOLf4eADy59xF8eg1zwLqKig7fJL7vJZ3uSaqOQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":6779,"name":"Science","url":"https://www.academia.edu/Documents/in/Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":99631,"name":"Pressure Retarded Osmosis","url":"https://www.academia.edu/Documents/in/Pressure_Retarded_Osmosis"},{"id":111976,"name":"Osmotic power","url":"https://www.academia.edu/Documents/in/Osmotic_power"},{"id":242298,"name":"Membrane","url":"https://www.academia.edu/Documents/in/Membrane"},{"id":2254453,"name":"Power Density","url":"https://www.academia.edu/Documents/in/Power_Density"}],"urls":[{"id":40944615,"url":"http://academic.oup.com/nsr/advance-article-pdf/doi/10.1093/nsr/nwaa057/32990731/nwaa057.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117239310"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117239310/Design_of_microfluidic_channel_networks_with_specified_output_flow_rates_using_the_CFD_based_optimization_method"><img alt="Research paper thumbnail of Design of microfluidic channel networks with specified output flow rates using the CFD-based optimization method" class="work-thumbnail" src="https://attachments.academia-assets.com/113148631/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117239310/Design_of_microfluidic_channel_networks_with_specified_output_flow_rates_using_the_CFD_based_optimization_method">Design of microfluidic channel networks with specified output flow rates using the CFD-based optimization method</a></div><div class="wp-workCard_item"><span>Microfluidics and Nanofluidics</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0de32d0c6162db8fd17f9a1fd7f78025" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113148631,"asset_id":117239310,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113148631/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117239310"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117239310"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117239310; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117239310]").text(description); $(".js-view-count[data-work-id=117239310]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117239310; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117239310']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117239310, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0de32d0c6162db8fd17f9a1fd7f78025" } } $('.js-work-strip[data-work-id=117239310]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117239310,"title":"Design of microfluidic channel networks with specified output flow rates using the CFD-based optimization method","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","ai_title_tag":"Optimizing Microfluidic Channel Networks for Desired Flow Rates","grobid_abstract":"the inlets to the outlets (Whitesides 2006; Zhao and Yang 2011). The layout of channel networks can be rather simple, with constant width, straight channels, or the layout can be very complex, with multiple splitters, combiners, or even multiple layers. In addition, a suitable design of the width or topology of fluidic channels can modify the resistance of flow so that the channel can be used as functional units, such as valves (","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Microfluidics and Nanofluidics","grobid_abstract_attachment_id":113148631},"translated_abstract":null,"internal_url":"https://www.academia.edu/117239310/Design_of_microfluidic_channel_networks_with_specified_output_flow_rates_using_the_CFD_based_optimization_method","translated_internal_url":"","created_at":"2024-04-08T11:23:32.626-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113148631,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148631/thumbnails/1.jpg","file_name":"s10404-016-1842-y20240408-1-l5aah1.pdf","download_url":"https://www.academia.edu/attachments/113148631/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Design_of_microfluidic_channel_networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148631/s10404-016-1842-y20240408-1-l5aah1-libre.pdf?1712605018=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_microfluidic_channel_networks.pdf\u0026Expires=1733027840\u0026Signature=Qiy2KE2ZuOGwn~t2pf7pyH68ftX0kzq6OrDjwpRp-MH6TnC90VX5IS0b79H4LJ2Vn9FcTLPE4QilxOP1PL6N3nY-DrV9LKqzlLer~ZBbvkBovT9EyxExk8IegxcByIZNf-rKcSS1hiaZVfoUKU24m~gjsShsODaU99KHcJPEFYMpzDr~hFWS2Bz6uAFGv9vYBtfiozyb8w-pBJD4jqXbrI6oD9ARZnezuOPZufCqBPmzOJNnmBojWEhhdYmoVTQsozJ4aIjcRtbDGwWOkPL6rPNeqNXQczlCiSjbG6fOPkVzjkp4pgeJ0Fgz4JdC5lXSwUU15sNHyEJxuDvVMWCA0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Design_of_microfluidic_channel_networks_with_specified_output_flow_rates_using_the_CFD_based_optimization_method","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":113148631,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113148631/thumbnails/1.jpg","file_name":"s10404-016-1842-y20240408-1-l5aah1.pdf","download_url":"https://www.academia.edu/attachments/113148631/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Design_of_microfluidic_channel_networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113148631/s10404-016-1842-y20240408-1-l5aah1-libre.pdf?1712605018=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_microfluidic_channel_networks.pdf\u0026Expires=1733027840\u0026Signature=Qiy2KE2ZuOGwn~t2pf7pyH68ftX0kzq6OrDjwpRp-MH6TnC90VX5IS0b79H4LJ2Vn9FcTLPE4QilxOP1PL6N3nY-DrV9LKqzlLer~ZBbvkBovT9EyxExk8IegxcByIZNf-rKcSS1hiaZVfoUKU24m~gjsShsODaU99KHcJPEFYMpzDr~hFWS2Bz6uAFGv9vYBtfiozyb8w-pBJD4jqXbrI6oD9ARZnezuOPZufCqBPmzOJNnmBojWEhhdYmoVTQsozJ4aIjcRtbDGwWOkPL6rPNeqNXQczlCiSjbG6fOPkVzjkp4pgeJ0Fgz4JdC5lXSwUU15sNHyEJxuDvVMWCA0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2298,"name":"Computational Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":213990,"name":"Flexibility in engineering design","url":"https://www.academia.edu/Documents/in/Flexibility_in_engineering_design"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":317912,"name":"Microfluidics and Nanofluidics","url":"https://www.academia.edu/Documents/in/Microfluidics_and_Nanofluidics"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":852297,"name":"Fluidics","url":"https://www.academia.edu/Documents/in/Fluidics"}],"urls":[{"id":40944570,"url":"https://doi.org/10.1007/s10404-016-1842-y"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100626520"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100626520/Combustion_Characteristics_of_Small_Laminar_Flames_in_an_Upward_Decreasing_Magnetic_Field"><img alt="Research paper thumbnail of Combustion Characteristics of Small Laminar Flames in an Upward Decreasing Magnetic Field" class="work-thumbnail" src="https://attachments.academia-assets.com/101395892/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100626520/Combustion_Characteristics_of_Small_Laminar_Flames_in_an_Upward_Decreasing_Magnetic_Field">Combustion Characteristics of Small Laminar Flames in an Upward Decreasing Magnetic Field</a></div><div class="wp-workCard_item"><span>Energies</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The combustion characteristics of laminar biogas premixed and diffusion flames in the presence of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The combustion characteristics of laminar biogas premixed and diffusion flames in the presence of upward decreasing magnetic fields have been investigated in this study. The mechanism of magnet–flame interaction in the literature, in which magnetic fields change the behaviors of laminar flames due to the paramagnetic and diamagnetic properties of the constituent gases, is examined and the results are as follows. The magnetic field has no noticeable effect on premixed flames due to low oxygen concentration of the mixed gas at the injection and the relatively high flow momentum. However, due to the diffusion nature of diffusion flames and paramagnetic property of oxygen in ambient air, oxygen distributions are subjected to the gradient of magnetic flux, thus shortening the height of diffusion flames. Results also show that the flame volume is more strongly varied than flame height. Altered oxygen distributions result in improved combustion and higher flame temperature. In the case of ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1a468d1fbd581995a410a0edc333e9a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101395892,"asset_id":100626520,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101395892/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100626520"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100626520"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100626520; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100626520]").text(description); $(".js-view-count[data-work-id=100626520]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100626520; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100626520']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100626520, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1a468d1fbd581995a410a0edc333e9a8" } } $('.js-work-strip[data-work-id=100626520]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100626520,"title":"Combustion Characteristics of Small Laminar Flames in an Upward Decreasing Magnetic Field","translated_title":"","metadata":{"abstract":"The combustion characteristics of laminar biogas premixed and diffusion flames in the presence of upward decreasing magnetic fields have been investigated in this study. The mechanism of magnet–flame interaction in the literature, in which magnetic fields change the behaviors of laminar flames due to the paramagnetic and diamagnetic properties of the constituent gases, is examined and the results are as follows. The magnetic field has no noticeable effect on premixed flames due to low oxygen concentration of the mixed gas at the injection and the relatively high flow momentum. However, due to the diffusion nature of diffusion flames and paramagnetic property of oxygen in ambient air, oxygen distributions are subjected to the gradient of magnetic flux, thus shortening the height of diffusion flames. Results also show that the flame volume is more strongly varied than flame height. Altered oxygen distributions result in improved combustion and higher flame temperature. In the case of ...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Energies"},"translated_abstract":"The combustion characteristics of laminar biogas premixed and diffusion flames in the presence of upward decreasing magnetic fields have been investigated in this study. The mechanism of magnet–flame interaction in the literature, in which magnetic fields change the behaviors of laminar flames due to the paramagnetic and diamagnetic properties of the constituent gases, is examined and the results are as follows. The magnetic field has no noticeable effect on premixed flames due to low oxygen concentration of the mixed gas at the injection and the relatively high flow momentum. However, due to the diffusion nature of diffusion flames and paramagnetic property of oxygen in ambient air, oxygen distributions are subjected to the gradient of magnetic flux, thus shortening the height of diffusion flames. Results also show that the flame volume is more strongly varied than flame height. Altered oxygen distributions result in improved combustion and higher flame temperature. In the case of ...","internal_url":"https://www.academia.edu/100626520/Combustion_Characteristics_of_Small_Laminar_Flames_in_an_Upward_Decreasing_Magnetic_Field","translated_internal_url":"","created_at":"2023-04-23T07:09:31.093-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101395892,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395892/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101395892/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combustion_Characteristics_of_Small_Lami.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395892/pdf-libre.pdf?1682280149=\u0026response-content-disposition=attachment%3B+filename%3DCombustion_Characteristics_of_Small_Lami.pdf\u0026Expires=1733027840\u0026Signature=aYCzu7vOpKS9fQ9x~kFfdMLmg1x9uHHhxhumwLoUrtk0Ls0VzeHGX3lOc-m3qsoJeoJVgkWKpAeJk3A1jip02BEuZoFwj9amWBDKFfLE0cRDwWU6rsw-aSL9IDD9XGhy8EfuVyaBac8YqvcYr83K6Kx8Gp0hTLs~w53kwQQ5Q-nurG4ckb3QP8EeKrAuZvzBbs4sO27b1iMNwY2~s7GQ3qiBKViFiZki0NyixA31x1LRZOR1Ix6pe~rhyxYtyBPUhJfSjBrBt8KCfOzH9l0wjJ99~sEQ-fbuIRki8hH6kIaYMEsmyxw5IhClqPAl8t2Rcvl1ieoLr6jWxXqQx~Qk6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Combustion_Characteristics_of_Small_Laminar_Flames_in_an_Upward_Decreasing_Magnetic_Field","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":101395892,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395892/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101395892/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combustion_Characteristics_of_Small_Lami.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395892/pdf-libre.pdf?1682280149=\u0026response-content-disposition=attachment%3B+filename%3DCombustion_Characteristics_of_Small_Lami.pdf\u0026Expires=1733027840\u0026Signature=aYCzu7vOpKS9fQ9x~kFfdMLmg1x9uHHhxhumwLoUrtk0Ls0VzeHGX3lOc-m3qsoJeoJVgkWKpAeJk3A1jip02BEuZoFwj9amWBDKFfLE0cRDwWU6rsw-aSL9IDD9XGhy8EfuVyaBac8YqvcYr83K6Kx8Gp0hTLs~w53kwQQ5Q-nurG4ckb3QP8EeKrAuZvzBbs4sO27b1iMNwY2~s7GQ3qiBKViFiZki0NyixA31x1LRZOR1Ix6pe~rhyxYtyBPUhJfSjBrBt8KCfOzH9l0wjJ99~sEQ-fbuIRki8hH6kIaYMEsmyxw5IhClqPAl8t2Rcvl1ieoLr6jWxXqQx~Qk6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101395893,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395893/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101395893/download_file","bulk_download_file_name":"Combustion_Characteristics_of_Small_Lami.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395893/pdf-libre.pdf?1682280155=\u0026response-content-disposition=attachment%3B+filename%3DCombustion_Characteristics_of_Small_Lami.pdf\u0026Expires=1733027840\u0026Signature=I-e9OB80zvcuMS-2uRRwV7K4jgcQeMhqaK0KEiexbh89bUda2WEEb4xF6L7rLOhWIQT5gwF2ntYUeB03jabGPM~Nbw-fuiKYisVg3ILxvDYqzxOWk8gfVDfbgqRZTpr9fZlQgPJPzYMYVdBgyTgYN3kmYQbUreOdVthUtUxrT4c9i4VQabZ76C3kHQOmiR1AzhKnxbzbmVTqJGS9si4y8coDUZC-TMvnYx88xtqukk-ZRaaybVWYsv5ildUgX~awZzBRL81J5vc2CJXHB7-TFNIbovmyDRb8LA3uJYs8~fyMFor-uPOpTAJgdJhgT5RJIyaB17KhZi-NSK7Dlaf3KA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":6263,"name":"Combustion","url":"https://www.academia.edu/Documents/in/Combustion"},{"id":34754,"name":"Magnetic field","url":"https://www.academia.edu/Documents/in/Magnetic_field"},{"id":83315,"name":"Diffusion","url":"https://www.academia.edu/Documents/in/Diffusion"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":511019,"name":"Diamagnetism","url":"https://www.academia.edu/Documents/in/Diamagnetism"},{"id":832176,"name":"Diffusion Flame","url":"https://www.academia.edu/Documents/in/Diffusion_Flame"},{"id":1011047,"name":"Laminar Flame Speed","url":"https://www.academia.edu/Documents/in/Laminar_Flame_Speed"},{"id":1290065,"name":"ENERGIES","url":"https://www.academia.edu/Documents/in/ENERGIES-1"},{"id":2980369,"name":"Paramagnetism","url":"https://www.academia.edu/Documents/in/Paramagnetism"}],"urls":[{"id":30849375,"url":"https://www.mdpi.com/1996-1073/14/7/1969/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100626519"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100626519/Enzyme_Method_Based_Microfluidic_Chip_for_the_Rapid_Detection_of_Copper_Ions"><img alt="Research paper thumbnail of Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions" class="work-thumbnail" src="https://attachments.academia-assets.com/101395891/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100626519/Enzyme_Method_Based_Microfluidic_Chip_for_the_Rapid_Detection_of_Copper_Ions">Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Metal ions in high concentrations can pollute the marine environment. Human activities and indust...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Metal ions in high concentrations can pollute the marine environment. Human activities and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging from 3.91 nM to 256 μM. The proposed enzyme method-based microfluidic chip detects Cu2+ with a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying the ability of the chip in practical applications. Furthermore, the chip realizes the functions of two AND gates in series and...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5e20507e3a59f59594fd639605e9f2a4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101395891,"asset_id":100626519,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101395891/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100626519"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100626519"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100626519; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100626519]").text(description); $(".js-view-count[data-work-id=100626519]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100626519; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100626519']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100626519, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5e20507e3a59f59594fd639605e9f2a4" } } $('.js-work-strip[data-work-id=100626519]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100626519,"title":"Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions","translated_title":"","metadata":{"abstract":"Metal ions in high concentrations can pollute the marine environment. Human activities and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging from 3.91 nM to 256 μM. The proposed enzyme method-based microfluidic chip detects Cu2+ with a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying the ability of the chip in practical applications. Furthermore, the chip realizes the functions of two AND gates in series and...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Micromachines"},"translated_abstract":"Metal ions in high concentrations can pollute the marine environment. Human activities and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging from 3.91 nM to 256 μM. The proposed enzyme method-based microfluidic chip detects Cu2+ with a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying the ability of the chip in practical applications. Furthermore, the chip realizes the functions of two AND gates in series and...","internal_url":"https://www.academia.edu/100626519/Enzyme_Method_Based_Microfluidic_Chip_for_the_Rapid_Detection_of_Copper_Ions","translated_internal_url":"","created_at":"2023-04-23T07:09:30.901-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101395891,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395891/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101395891/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Enzyme_Method_Based_Microfluidic_Chip_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395891/pdf-libre.pdf?1682280149=\u0026response-content-disposition=attachment%3B+filename%3DEnzyme_Method_Based_Microfluidic_Chip_fo.pdf\u0026Expires=1733027841\u0026Signature=Cv08s3KkiwZ9mDDK50nH5xYaa6UDaPQ5oaT4WTuNhdfRURGADkx8Uw87keqp45S-V1I0czFJwkj0JzZYq7uPDG4fBenLYlS4GOvati4u-VQJnPGkzRFOLdjp9JA6s8Ei9ffm~2pTog6fw1a~I9E96ELFUVpwLkCO2Ztj5~1wYZ2rdMnDTZJ7tN5QSO5RGl1bTOwxS8fX9sRcI6uR9CLXvxry0tBYxOvyM1-4Ahg5cvAftyU1lf4eGt4f4l~dKknm09M5Vo3nEDu4MXTjSYwsj9fNJDXegfKygPecGJG3iw3f8GDyqd83M4wFKfpJ8vpKT4Mtq8daWtCj~8GYLllRCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Enzyme_Method_Based_Microfluidic_Chip_for_the_Rapid_Detection_of_Copper_Ions","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":101395891,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395891/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101395891/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Enzyme_Method_Based_Microfluidic_Chip_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395891/pdf-libre.pdf?1682280149=\u0026response-content-disposition=attachment%3B+filename%3DEnzyme_Method_Based_Microfluidic_Chip_fo.pdf\u0026Expires=1733027841\u0026Signature=Cv08s3KkiwZ9mDDK50nH5xYaa6UDaPQ5oaT4WTuNhdfRURGADkx8Uw87keqp45S-V1I0czFJwkj0JzZYq7uPDG4fBenLYlS4GOvati4u-VQJnPGkzRFOLdjp9JA6s8Ei9ffm~2pTog6fw1a~I9E96ELFUVpwLkCO2Ztj5~1wYZ2rdMnDTZJ7tN5QSO5RGl1bTOwxS8fX9sRcI6uR9CLXvxry0tBYxOvyM1-4Ahg5cvAftyU1lf4eGt4f4l~dKknm09M5Vo3nEDu4MXTjSYwsj9fNJDXegfKygPecGJG3iw3f8GDyqd83M4wFKfpJ8vpKT4Mtq8daWtCj~8GYLllRCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101395890,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395890/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101395890/download_file","bulk_download_file_name":"Enzyme_Method_Based_Microfluidic_Chip_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395890/pdf-libre.pdf?1682280152=\u0026response-content-disposition=attachment%3B+filename%3DEnzyme_Method_Based_Microfluidic_Chip_fo.pdf\u0026Expires=1733027841\u0026Signature=Zz93gQY02LnYKwmM10RseTcM~SYe-CQaDUfdibIBuRYMXm-rU2599s1kjhF3bB~ktfwWTZhwTXiwNWawJdmr2ZT5rQkDgQmYz2zN0SM7yOxVv~v26rB4pQ23qISgNHPbarDNQbqGaTcFG4fLpxSjBUjVH0MgLvDa0-Kh~oYZD2P93qARmmwmRPUbctvsn~gGjKYL8lfPU~OViWTN1--SxDMlb3UVC4e-Kuqnitc0ba0inVoUe1CxoMNB-4vbclprpcgaogFbeuoRDesyHphPjyKhuMzKSAc4Za4~-6Mxr8Gx30bgSQX2wW-OOwvfMFB-9u0jf9c~k1WEy6VS-suIIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":80692,"name":"Copper","url":"https://www.academia.edu/Documents/in/Copper"},{"id":184467,"name":"Seawater","url":"https://www.academia.edu/Documents/in/Seawater"},{"id":322954,"name":"Chip","url":"https://www.academia.edu/Documents/in/Chip"},{"id":753116,"name":"Absorbance","url":"https://www.academia.edu/Documents/in/Absorbance"},{"id":2465388,"name":"Naked Eye","url":"https://www.academia.edu/Documents/in/Naked_Eye"}],"urls":[{"id":30849374,"url":"https://www.mdpi.com/2072-666X/12/11/1380/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100626518"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100626518/Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity"><img alt="Research paper thumbnail of Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity" class="work-thumbnail" src="https://attachments.academia-assets.com/101395918/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100626518/Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity">Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity</a></div><div class="wp-workCard_item"><span>Computer Methods in Applied Mechanics and Engineering</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b52599d72a820fafff221a89b61abb82" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101395918,"asset_id":100626518,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101395918/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100626518"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100626518"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100626518; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100626518]").text(description); $(".js-view-count[data-work-id=100626518]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100626518; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100626518']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100626518, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b52599d72a820fafff221a89b61abb82" } } $('.js-work-strip[data-work-id=100626518]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100626518,"title":"Inversely designed micro-textures for robust Cassie–Baxter mode of super-hydrophobicity","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The robust Cassie-Baxter mode of the wetting behaviour on a micro-textured solid surface, is a key topography element yielding stable super-hydrophobicity. To meet this purpose, we propose an inverse computational design procedure for the discovery of suitable periodic micro-textures, based on three different tilings of the plane. The symmetric tiles of the lattice are regular triangles, quadrangles, and hexagons. The goal of the inverse design procedure is to achieve the robust Cassie-Baxter state, in which the liquid/vapour interface is mathematically described using the Young-Laplace equation on the lattice, and a topology optimisation approach is utilised to construct a variational problem for the inverse design procedure. Based on numerical calculations of the constructed variational problem, underlying effects are revealed for several factors, including the Bond number, duty ratio, feature size, and lattice constant. The effects of feature size and lattice constant provide approaches for compromisingly considering the robustness of the Cassie-Baxter mode and manufacturability of the inversely designed micro-textures; the effect of the lattice constant permits the scaling properties of the derived patterns, and this in turn provides an approach to avoid the elasto-capillary instability driven collapse of the micro/nanostructures in the derived micro-textures. Further, a monolithic inverse design procedure for the periodic micro-textures is proposed in the conclusions, with synthetically considering the manufacturability as well as contact angle and surface-volume ratio of the liquid bulge held by the supported liquid/vapour interface.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Computer Methods in Applied Mechanics and Engineering","grobid_abstract_attachment_id":101395918},"translated_abstract":null,"internal_url":"https://www.academia.edu/100626518/Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity","translated_internal_url":"","created_at":"2023-04-23T07:09:30.731-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101395918,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395918/thumbnails/1.jpg","file_name":"j.cma.2018.06.03420230423-1-ia3as3.pdf","download_url":"https://www.academia.edu/attachments/101395918/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Inversely_designed_micro_textures_for_ro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395918/j.cma.2018.06.03420230423-1-ia3as3-libre.pdf?1682280490=\u0026response-content-disposition=attachment%3B+filename%3DInversely_designed_micro_textures_for_ro.pdf\u0026Expires=1733027841\u0026Signature=a4JCfXHOeIjDCrkeJ0FCYs9bbNnGl4Zq168b0PNuHlVhYhfyFpbZbJRACpSmOKj-ZM3ARnH5CByWQpsRRINy0IpHQkLERcNMTnna0Er3jlG3nt3kvZYMxEK22lwLJ4x8Bs3~WcmbnPFD9CztsPEAdN2BJT~VytvD6R78Ds0aZy2WDLh4-ClvvXGgBSn8OIGLS~ZDBx1J-fUe-fhZFAu4OXDJuuJx6K8OSSuzoy3oZ1b4qMKKt9veE8MOHsDE61ghd4gDr3A0P2Y60wsL0otupnX6msbMImpRdPgcQlzwbFNGt9ZXywT7Ix0ZVcT5tG9R0ouD9mpzt83qeGraGu8Vig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Inversely_designed_micro_textures_for_robust_Cassie_Baxter_mode_of_super_hydrophobicity","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":101395918,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101395918/thumbnails/1.jpg","file_name":"j.cma.2018.06.03420230423-1-ia3as3.pdf","download_url":"https://www.academia.edu/attachments/101395918/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Inversely_designed_micro_textures_for_ro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101395918/j.cma.2018.06.03420230423-1-ia3as3-libre.pdf?1682280490=\u0026response-content-disposition=attachment%3B+filename%3DInversely_designed_micro_textures_for_ro.pdf\u0026Expires=1733027841\u0026Signature=a4JCfXHOeIjDCrkeJ0FCYs9bbNnGl4Zq168b0PNuHlVhYhfyFpbZbJRACpSmOKj-ZM3ARnH5CByWQpsRRINy0IpHQkLERcNMTnna0Er3jlG3nt3kvZYMxEK22lwLJ4x8Bs3~WcmbnPFD9CztsPEAdN2BJT~VytvD6R78Ds0aZy2WDLh4-ClvvXGgBSn8OIGLS~ZDBx1J-fUe-fhZFAu4OXDJuuJx6K8OSSuzoy3oZ1b4qMKKt9veE8MOHsDE61ghd4gDr3A0P2Y60wsL0otupnX6msbMImpRdPgcQlzwbFNGt9ZXywT7Ix0ZVcT5tG9R0ouD9mpzt83qeGraGu8Vig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":30849373,"url":"https://api.elsevier.com/content/article/PII:S0045782518303323?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76752476"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76752476/The_polarization_reverse_of_diode_like_conical_nanopore_under_pH_gradient"><img alt="Research paper thumbnail of The polarization reverse of diode-like conical nanopore under pH gradient" class="work-thumbnail" src="https://attachments.academia-assets.com/84351649/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76752476/The_polarization_reverse_of_diode_like_conical_nanopore_under_pH_gradient">The polarization reverse of diode-like conical nanopore under pH gradient</a></div><div class="wp-workCard_item"><span>SN Applied Sciences</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="97e8b72741f0dafde16fd9ec63e48234" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84351649,"asset_id":76752476,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84351649/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76752476"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76752476"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76752476; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76752476]").text(description); $(".js-view-count[data-work-id=76752476]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76752476; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76752476']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76752476, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "97e8b72741f0dafde16fd9ec63e48234" } } $('.js-work-strip[data-work-id=76752476]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76752476,"title":"The polarization reverse of diode-like conical nanopore under pH gradient","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"In the past decade, with the improvement of nanofabrication technology, silica nanopores and nanochannels have been widely used in the fields of ion pumps, energy conversion, ion channels, metal ion detection, and biosensors. Although both potential and pH gradient can significantly change the performance of ion current rectification in nanoscale, the potential mechanism is still not fully understood. In this study, the ion current rectification, surface charge distribution and ion selectivity of silica nanopore under different background salt concentration and pH gradient were discussed by an analytical model, which takes into account the effects of electroosmotic flow, multiple ionic species, and the acid base neutralization. The results show that the polarity of nanopore rectifier can be changed by changing the acidity and alkalinity at both ends of the nanopore. For the first time, we find that the rectification polarity of silica conical nanopore exhibits different performances under high and low electric field intensity. One case in this study shows the rectification ratio curve of the nanopore will have a maximum or minimum value and the extreme point is near the zero of the ion current. With the increase of the concentration of background salt solution, the voltage at the zero point of ion current approaches the zero point, and then the maximum or minimum point moves to the left. The extreme point offset and polarity reversal phenomena may have potential application value in nanopore-based sensing devices.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"SN Applied Sciences","grobid_abstract_attachment_id":84351649},"translated_abstract":null,"internal_url":"https://www.academia.edu/76752476/The_polarization_reverse_of_diode_like_conical_nanopore_under_pH_gradient","translated_internal_url":"","created_at":"2022-04-17T16:37:23.635-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84351649,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84351649/thumbnails/1.jpg","file_name":"s42452-020-03675-1.pdf","download_url":"https://www.academia.edu/attachments/84351649/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_polarization_reverse_of_diode_like_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84351649/s42452-020-03675-1-libre.pdf?1650239166=\u0026response-content-disposition=attachment%3B+filename%3DThe_polarization_reverse_of_diode_like_c.pdf\u0026Expires=1733027841\u0026Signature=TrQBeIN5o2P57Womyo~Rrz5Ct60SsyMuVIq8D5ythld69jyvEdBMJ8USPDtF8KjKZL30FWLzXa9E~r9WpURol0ANNGgfvzhTlh9ILH1bxRtTLux1WDFXe7KEe4YalTnV3~m90h8chgBc6mZdJumbP1Ro3Ug-LpNQLCEOF7xPZaX3aiSRdwJisWJfLUH~zg5L4edElEdOm1nUAnexuji46n2AWcAwhmZvBap4FkkdLt8Y~y2QLYX0dIGrDRtTW~PP7rSEy1WiqmzDObvug20KnCfu6jVZAILWQmddIJVDsYWkPgVleS5euWx9YzKfJ-QAISmksa7hltmqzp~cF4LSrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_polarization_reverse_of_diode_like_conical_nanopore_under_pH_gradient","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":84351649,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84351649/thumbnails/1.jpg","file_name":"s42452-020-03675-1.pdf","download_url":"https://www.academia.edu/attachments/84351649/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_polarization_reverse_of_diode_like_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84351649/s42452-020-03675-1-libre.pdf?1650239166=\u0026response-content-disposition=attachment%3B+filename%3DThe_polarization_reverse_of_diode_like_c.pdf\u0026Expires=1733027841\u0026Signature=TrQBeIN5o2P57Womyo~Rrz5Ct60SsyMuVIq8D5ythld69jyvEdBMJ8USPDtF8KjKZL30FWLzXa9E~r9WpURol0ANNGgfvzhTlh9ILH1bxRtTLux1WDFXe7KEe4YalTnV3~m90h8chgBc6mZdJumbP1Ro3Ug-LpNQLCEOF7xPZaX3aiSRdwJisWJfLUH~zg5L4edElEdOm1nUAnexuji46n2AWcAwhmZvBap4FkkdLt8Y~y2QLYX0dIGrDRtTW~PP7rSEy1WiqmzDObvug20KnCfu6jVZAILWQmddIJVDsYWkPgVleS5euWx9YzKfJ-QAISmksa7hltmqzp~cF4LSrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":84351650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84351650/thumbnails/1.jpg","file_name":"s42452-020-03675-1.pdf","download_url":"https://www.academia.edu/attachments/84351650/download_file","bulk_download_file_name":"The_polarization_reverse_of_diode_like_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84351650/s42452-020-03675-1-libre.pdf?1650239167=\u0026response-content-disposition=attachment%3B+filename%3DThe_polarization_reverse_of_diode_like_c.pdf\u0026Expires=1733027841\u0026Signature=MFSQp2pyl81D6S1771KrZ~50WhSSF9qir44t3XHsOl0iFMVarvT0nyLKBDZyyjEHl~GxCRmOApF1Rvl4lW5pKg-ShzoiKojCLaoWW0p-7ir-WEv4g6aoQ~zswRbq7RVZVs6PDmvL-R9ach~1lX2Smmc3eCsS2iy-QMBcgfJmAy4z1vGLz1YhF6yMS1~aUCgDrJ0cNM4dqC4hX~~Kty4oWEW0~MGtTUDCpFOKUW6Jft4KA2hK70UpFj918TNy1dK0xjb9tnh~m2DKsUj4ic7lU~wKSBPYlKylvVUYzM0PTaWYivjXibz-w4aNHmIRWcRP1HomkHqiVzSuDxiUnlcozQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":19595376,"url":"http://link.springer.com/content/pdf/10.1007/s42452-020-03675-1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76752475"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76752475/Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis"><img alt="Research paper thumbnail of Continuous separation of microparticles based on optically induced dielectrophoresis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76752475/Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis">Continuous separation of microparticles based on optically induced dielectrophoresis</a></div><div class="wp-workCard_item"><span>Microfluidics and Nanofluidics</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To achieve high-throughput and high-efficiency separation based on optically induced dielectropho...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To achieve high-throughput and high-efficiency separation based on optically induced dielectrophoresis (ODEP), an ODEP-based transient numerical model containing microparticles is developed under alternating current (AC) electric field coupling with an open flow field. In this model, the MST method is employed to calculate the time-averaged AC DEP force and the fluid viscous resistance acting on the particle, the Arbitrary Lagrangian–Eulerian (ALE) method is used to numerically solve the strong coupling electric-fluid–solid mechanics, and the efficient and continuous separation of microparticles is achieved. The results show that the trajectories of particles with different conductivity are clearly differentiated due to two different DEP actions, which enables separation of particles, and its separation performance can be optimized by adjusting the key parameters, including bright area width, applied alternating current (AC) electric voltage and inlet flow velocity. This study explains the continuous separation mechanism of particles under the combined action of AC electric field and flow field, and provides theoretical support for the design of high-efficiency ODEP microparticles separation device.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76752475"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76752475"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76752475; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76752475]").text(description); $(".js-view-count[data-work-id=76752475]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76752475; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76752475']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76752475, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=76752475]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76752475,"title":"Continuous separation of microparticles based on optically induced dielectrophoresis","translated_title":"","metadata":{"abstract":"To achieve high-throughput and high-efficiency separation based on optically induced dielectrophoresis (ODEP), an ODEP-based transient numerical model containing microparticles is developed under alternating current (AC) electric field coupling with an open flow field. In this model, the MST method is employed to calculate the time-averaged AC DEP force and the fluid viscous resistance acting on the particle, the Arbitrary Lagrangian–Eulerian (ALE) method is used to numerically solve the strong coupling electric-fluid–solid mechanics, and the efficient and continuous separation of microparticles is achieved. The results show that the trajectories of particles with different conductivity are clearly differentiated due to two different DEP actions, which enables separation of particles, and its separation performance can be optimized by adjusting the key parameters, including bright area width, applied alternating current (AC) electric voltage and inlet flow velocity. This study explains the continuous separation mechanism of particles under the combined action of AC electric field and flow field, and provides theoretical support for the design of high-efficiency ODEP microparticles separation device.","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Microfluidics and Nanofluidics"},"translated_abstract":"To achieve high-throughput and high-efficiency separation based on optically induced dielectrophoresis (ODEP), an ODEP-based transient numerical model containing microparticles is developed under alternating current (AC) electric field coupling with an open flow field. In this model, the MST method is employed to calculate the time-averaged AC DEP force and the fluid viscous resistance acting on the particle, the Arbitrary Lagrangian–Eulerian (ALE) method is used to numerically solve the strong coupling electric-fluid–solid mechanics, and the efficient and continuous separation of microparticles is achieved. The results show that the trajectories of particles with different conductivity are clearly differentiated due to two different DEP actions, which enables separation of particles, and its separation performance can be optimized by adjusting the key parameters, including bright area width, applied alternating current (AC) electric voltage and inlet flow velocity. This study explains the continuous separation mechanism of particles under the combined action of AC electric field and flow field, and provides theoretical support for the design of high-efficiency ODEP microparticles separation device.","internal_url":"https://www.academia.edu/76752475/Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis","translated_internal_url":"","created_at":"2022-04-17T16:37:23.492-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Continuous_separation_of_microparticles_based_on_optically_induced_dielectrophoresis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[],"research_interests":[{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":317912,"name":"Microfluidics and Nanofluidics","url":"https://www.academia.edu/Documents/in/Microfluidics_and_Nanofluidics"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":3849972,"name":"Springer Nature","url":"https://www.academia.edu/Documents/in/Springer_Nature"}],"urls":[{"id":19595375,"url":"https://link.springer.com/content/pdf/10.1007/s10404-021-02512-0.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76752474"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76752474/Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis"><img alt="Research paper thumbnail of Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis" class="work-thumbnail" src="https://attachments.academia-assets.com/84351648/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76752474/Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis">Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis</a></div><div class="wp-workCard_item"><span>Micromachines</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we present a novel microfluidic mixer with staggered virtual electrode based on li...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we present a novel microfluidic mixer with staggered virtual electrode based on light-actuated AC electroosmosis (LACE). We solve the coupled system of the flow field described by Navier–Stokes equations, the described electric field by a Laplace equation, and the concentration field described by a convection–diffusion equation via a finite-element method (FEM). Moreover, we study the distribution of the flow, electric, and concentration fields in the microchannel, and reveal the generating mechanism of the rotating vortex on the cross-section of the microchannel and the mixing mechanism of the fluid sample. We also explore the influence of several key geometric parameters such as the length, width, and spacing of the virtual electrode, and the height of the microchannel on mixing performance; the relatively optimal mixer structure is thus obtained. The current micromixer provides a favorable fluid-mixing method based on an optical virtual electrode, and could promote...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7eead9f4feabe0fbf281e9fb7cce84ba" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84351648,"asset_id":76752474,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84351648/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76752474"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76752474"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76752474; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76752474]").text(description); $(".js-view-count[data-work-id=76752474]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76752474; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76752474']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76752474, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7eead9f4feabe0fbf281e9fb7cce84ba" } } $('.js-work-strip[data-work-id=76752474]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76752474,"title":"Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis","translated_title":"","metadata":{"abstract":"In this paper, we present a novel microfluidic mixer with staggered virtual electrode based on light-actuated AC electroosmosis (LACE). We solve the coupled system of the flow field described by Navier–Stokes equations, the described electric field by a Laplace equation, and the concentration field described by a convection–diffusion equation via a finite-element method (FEM). Moreover, we study the distribution of the flow, electric, and concentration fields in the microchannel, and reveal the generating mechanism of the rotating vortex on the cross-section of the microchannel and the mixing mechanism of the fluid sample. We also explore the influence of several key geometric parameters such as the length, width, and spacing of the virtual electrode, and the height of the microchannel on mixing performance; the relatively optimal mixer structure is thus obtained. The current micromixer provides a favorable fluid-mixing method based on an optical virtual electrode, and could promote...","publisher":"Micromachines","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Micromachines"},"translated_abstract":"In this paper, we present a novel microfluidic mixer with staggered virtual electrode based on light-actuated AC electroosmosis (LACE). We solve the coupled system of the flow field described by Navier–Stokes equations, the described electric field by a Laplace equation, and the concentration field described by a convection–diffusion equation via a finite-element method (FEM). Moreover, we study the distribution of the flow, electric, and concentration fields in the microchannel, and reveal the generating mechanism of the rotating vortex on the cross-section of the microchannel and the mixing mechanism of the fluid sample. We also explore the influence of several key geometric parameters such as the length, width, and spacing of the virtual electrode, and the height of the microchannel on mixing performance; the relatively optimal mixer structure is thus obtained. The current micromixer provides a favorable fluid-mixing method based on an optical virtual electrode, and could promote...","internal_url":"https://www.academia.edu/76752474/Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis","translated_internal_url":"","created_at":"2022-04-17T16:37:23.358-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42451119,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84351648,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84351648/thumbnails/1.jpg","file_name":"micromachines-12-00744-v2.pdf","download_url":"https://www.academia.edu/attachments/84351648/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mixing_Mechanism_of_Microfluidic_Mixer_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84351648/micromachines-12-00744-v2-libre.pdf?1650239166=\u0026response-content-disposition=attachment%3B+filename%3DMixing_Mechanism_of_Microfluidic_Mixer_w.pdf\u0026Expires=1733027841\u0026Signature=LEAQlYa0~muufOOJ5JeM6UAlLezmuf19tiYXIh4yc0sSYh2L52U2JjsWxnu5z3xtErMdpIi7YJWHGaBdDwqExz0m5KPS3MxgUUlJ1k8GMuxxpdINMEMM1x5iIvXAjLETlI15w4dLNvFQ8Xr44FBfD~Ao3ph83nAV8JYPdi81T87Q4zFS6sm9ohXx0com~VEz~8snlbOgg8aZfHIkgD8QoUMjEZVY4oDxsDvbUrsqLfUddRZhNvMsKqEhSEo8bam2cRNPninfHnDumPO8z9Dv2qdSODIB4KJLZJVC5anoYCbb1xfjsgxWpHXP-NU3C763YOZQfeCCux5LQp6GMZ58zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mixing_Mechanism_of_Microfluidic_Mixer_with_Staggered_Virtual_Electrode_Based_on_Light_Actuated_AC_Electroosmosis","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":42451119,"first_name":"Teng","middle_initials":null,"last_name":"Zhou","page_name":"TengZhou","domain_name":"pledco","created_at":"2016-01-31T23:51:58.359-08:00","display_name":"Teng Zhou","url":"https://pledco.academia.edu/TengZhou"},"attachments":[{"id":84351648,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84351648/thumbnails/1.jpg","file_name":"micromachines-12-00744-v2.pdf","download_url":"https://www.academia.edu/attachments/84351648/download_file?st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&st=MTczMzAyNDI0MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mixing_Mechanism_of_Microfluidic_Mixer_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84351648/micromachines-12-00744-v2-libre.pdf?1650239166=\u0026response-content-disposition=attachment%3B+filename%3DMixing_Mechanism_of_Microfluidic_Mixer_w.pdf\u0026Expires=1733027841\u0026Signature=LEAQlYa0~muufOOJ5JeM6UAlLezmuf19tiYXIh4yc0sSYh2L52U2JjsWxnu5z3xtErMdpIi7YJWHGaBdDwqExz0m5KPS3MxgUUlJ1k8GMuxxpdINMEMM1x5iIvXAjLETlI15w4dLNvFQ8Xr44FBfD~Ao3ph83nAV8JYPdi81T87Q4zFS6sm9ohXx0com~VEz~8snlbOgg8aZfHIkgD8QoUMjEZVY4oDxsDvbUrsqLfUddRZhNvMsKqEhSEo8bam2cRNPninfHnDumPO8z9Dv2qdSODIB4KJLZJVC5anoYCbb1xfjsgxWpHXP-NU3C763YOZQfeCCux5LQp6GMZ58zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":84351647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84351647/thumbnails/1.jpg","file_name":"micromachines-12-00744-v2.pdf","download_url":"https://www.academia.edu/attachments/84351647/download_file","bulk_download_file_name":"Mixing_Mechanism_of_Microfluidic_Mixer_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84351647/micromachines-12-00744-v2-libre.pdf?1650239167=\u0026response-content-disposition=attachment%3B+filename%3DMixing_Mechanism_of_Microfluidic_Mixer_w.pdf\u0026Expires=1733027841\u0026Signature=L8aK-iYvSmd~nZvVZtMGxfYSya0H2pthZUtTftnJa-fvDnwiNoo0c1MNv2Xk2q95riLpUZA~1c2~3Z1glt2WNsP3wmu6cLXb44nJMxkzy-fO3kXKfI8trB57XL-TyYmSIDvv0HI~VdQn-kYurmDcPTZ~R5UOI1FaLj4N~DocN4ZMuLWT7a0uxxwUrRJrRH8g0rfKQT~N1Cc0gEnu4shEvtchLv8iz3GOsurKNqOkyeq0U-GemwJhuaSy9IsQAgeYMU1cYehKaA1k~0xjkUE4wqWkQc6dIL7ZCHUc89DfW4ObVZd9fGKrxYpNpwXEvPJvahsBXbXA3xFJiQW-wv9G8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"}],"urls":[{"id":19595374,"url":"https://res.mdpi.com/d_attachment/micromachines/micromachines-12-00744/article_deploy/micromachines-12-00744-v2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "861f85e13a3eb8cd4d23a6f5b690a3e373a90949ef92f9a27e23f6e8ae391d43", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="aInWcDUJKs7iFHyKfEbbxMBJWrrxlNwOs0ynBjTCBXI42JL1BG+HtqA5bY/OW7igQ01hItZjAnPKop15Eil0kg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://pledco.academia.edu/TengZhou" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="8oqznTosoOGhh8apsC+Vzkpoi/+Fotn/jyHR66nTAVCi2/cYC0oNmeOq16wCMvaqyWywZ6JVB4L2z+uUjzhwsA==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>