CINXE.COM
Search results for: Energy Prediction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Energy Prediction</title> <meta name="description" content="Search results for: Energy Prediction"> <meta name="keywords" content="Energy Prediction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Energy Prediction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Energy Prediction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3822</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Energy Prediction</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3822</span> Development of Neural Network Prediction Model of Energy Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Maryam%20Jamela%20Ismail">Maryam Jamela Ismail</a>, <a href="https://publications.waset.org/search?q=Rosdiazli%20Ibrahim"> Rosdiazli Ibrahim</a>, <a href="https://publications.waset.org/search?q=Idris%20Ismail"> Idris Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Energy%20Prediction" title="Energy Prediction">Energy Prediction</a>, <a href="https://publications.waset.org/search?q=Multilayer%20Feedforward" title=" Multilayer Feedforward"> Multilayer Feedforward</a>, <a href="https://publications.waset.org/search?q=Levenberg-Marquardt" title=" Levenberg-Marquardt"> Levenberg-Marquardt</a>, <a href="https://publications.waset.org/search?q=Root%20Mean%20Square%20Error%20%28RMSE%29" title=" Root Mean Square Error (RMSE)"> Root Mean Square Error (RMSE)</a> </p> <a href="https://publications.waset.org/12881/development-of-neural-network-prediction-model-of-energy-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12881/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12881/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12881/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12881/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12881/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12881/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12881/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12881/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12881/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12881/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2649</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3821</span> Energy Map Construction using Adaptive Alpha Grey Prediction Model in WSNs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Surender%20Kumar%20Soni">Surender Kumar Soni</a>, <a href="https://publications.waset.org/search?q=Dhirendra%20Pratap%20Singh"> Dhirendra Pratap Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless Sensor Networks can be used to monitor the physical phenomenon in such areas where human approach is nearly impossible. Hence the limited power supply is the major constraint of the WSNs due to the use of non-rechargeable batteries in sensor nodes. A lot of researches are going on to reduce the energy consumption of sensor nodes. Energy map can be used with clustering, data dissemination and routing techniques to reduce the power consumption of WSNs. Energy map can also be used to know which part of the network is going to fail in near future. In this paper, Energy map is constructed using the prediction based approach. Adaptive alpha GM(1,1) model is used as the prediction model. GM(1,1) is being used worldwide in many applications for predicting future values of time series using some past values due to its high computational efficiency and accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adaptive%20Alpha%20GM%281" title="Adaptive Alpha GM(1">Adaptive Alpha GM(1</a>, <a href="https://publications.waset.org/search?q=1%29%20Model" title="1) Model">1) Model</a>, <a href="https://publications.waset.org/search?q=Energy%20Map" title=" Energy Map"> Energy Map</a>, <a href="https://publications.waset.org/search?q=Prediction%20Based%20Data%20Reduction" title=" Prediction Based Data Reduction"> Prediction Based Data Reduction</a>, <a href="https://publications.waset.org/search?q=Wireless%20Sensor%20Networks" title=" Wireless Sensor Networks"> Wireless Sensor Networks</a> </p> <a href="https://publications.waset.org/11769/energy-map-construction-using-adaptive-alpha-grey-prediction-model-in-wsns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11769/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11769/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11769/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11769/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11769/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11769/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11769/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11769/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11769/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11769/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1803</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3820</span> The Traffic Prediction Multi-path Energy-aware Source Routing (TP-MESR)in Ad hoc Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Su%20Jin%20Kim">Su Jin Kim</a>, <a href="https://publications.waset.org/search?q=Ji%20Yeon%20Cho"> Ji Yeon Cho</a>, <a href="https://publications.waset.org/search?q=Bong%20Gyou%20Lee"> Bong Gyou Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to suggest energy efficient routing for ad hoc networks which are composed of nodes with limited energy. There are diverse problems including limitation of energy supply of node, and the node energy management problem has been presented. And a number of protocols have been proposed for energy conservation and energy efficiency. In this study, the critical point of the EA-MPDSR, that is the type of energy efficient routing using only two paths, is improved and developed. The proposed TP-MESR uses multi-path routing technique and traffic prediction function to increase number of path more than 2. It also verifies its efficiency compared to EA-MPDSR using network simulator (NS-2). Also, To give a academic value and explain protocol systematically, research guidelines which the Hevner(2004) suggests are applied. This proposed TP-MESR solved the existing multi-path routing problem related to overhead, radio interference, packet reassembly and it confirmed its contribution to effective use of energy in ad hoc networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ad%20hoc" title="Ad hoc">Ad hoc</a>, <a href="https://publications.waset.org/search?q=energy-aware" title=" energy-aware"> energy-aware</a>, <a href="https://publications.waset.org/search?q=multi-path" title=" multi-path"> multi-path</a>, <a href="https://publications.waset.org/search?q=routing%20protocol" title=" routing protocol"> routing protocol</a>, <a href="https://publications.waset.org/search?q=traffic%20prediction." title="traffic prediction.">traffic prediction.</a> </p> <a href="https://publications.waset.org/11467/the-traffic-prediction-multi-path-energy-aware-source-routing-tp-mesrin-ad-hoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11467/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11467/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11467/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11467/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11467/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11467/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11467/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11467/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11467/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11467/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1561</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3819</span> Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Anne-Lena%20Kampen">Anne-Lena Kampen</a>, <a href="https://publications.waset.org/search?q=%C3%98ivind%20Kure"> Øivind Kure</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Central%20ML" title="Central ML">Central ML</a>, <a href="https://publications.waset.org/search?q=embedded%20machine%20learning" title=" embedded machine learning"> embedded machine learning</a>, <a href="https://publications.waset.org/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/search?q=local%20ML" title=" local ML"> local ML</a>, <a href="https://publications.waset.org/search?q=Wireless%20Sensor%20Networks" title=" Wireless Sensor Networks"> Wireless Sensor Networks</a>, <a href="https://publications.waset.org/search?q=WSN." title=" WSN."> WSN.</a> </p> <a href="https://publications.waset.org/10011425/discussing-embedded-versus-central-machine-learning-in-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011425/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011425/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011425/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011425/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011425/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011425/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011425/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011425/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011425/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011425/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">838</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3818</span> Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Asmir%20Gogic">Asmir Gogic</a>, <a href="https://publications.waset.org/search?q=Aljo%20Mujcic"> Aljo Mujcic</a>, <a href="https://publications.waset.org/search?q=Sandra%20Ibric"> Sandra Ibric</a>, <a href="https://publications.waset.org/search?q=Nermin%20Suljanovic"> Nermin Suljanovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bluetooth%20low%20energy" title="Bluetooth low energy">Bluetooth low energy</a>, <a href="https://publications.waset.org/search?q=disaster%20prediction" title=" disaster prediction"> disaster prediction</a>, <a href="https://publications.waset.org/search?q=mesh%0D%0Arouting%20protocols" title=" mesh routing protocols"> mesh routing protocols</a>, <a href="https://publications.waset.org/search?q=wireless%20sensor%20networks." title=" wireless sensor networks."> wireless sensor networks.</a> </p> <a href="https://publications.waset.org/10004623/performance-analysis-of-bluetooth-low-energy-mesh-routing-algorithm-in-case-of-disaster-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004623/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004623/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004623/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004623/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004623/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004623/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004623/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004623/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004623/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004623/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2863</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3817</span> The Application of Data Mining Technology in Building Energy Consumption Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Liang%20Zhao">Liang Zhao</a>, <a href="https://publications.waset.org/search?q=Jili%20Zhang"> Jili Zhang</a>, <a href="https://publications.waset.org/search?q=Chongquan%20Zhong"> Chongquan Zhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20mining" title="Data mining">Data mining</a>, <a href="https://publications.waset.org/search?q=data%20analysis" title=" data analysis"> data analysis</a>, <a href="https://publications.waset.org/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/search?q=building%20operational%20performance." title=" building operational performance."> building operational performance.</a> </p> <a href="https://publications.waset.org/10003363/the-application-of-data-mining-technology-in-building-energy-consumption-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003363/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003363/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003363/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003363/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003363/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003363/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003363/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003363/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003363/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003363/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3716</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3816</span> Neural Networks for Short Term Wind Speed Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Sreelakshmi">K. Sreelakshmi</a>, <a href="https://publications.waset.org/search?q=P.%20Ramakanthkumar"> P. Ramakanthkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depends on the values of other meteorological variables, such as atmospheric pressure, moisture content, humidity, rainfall etc. The values of these parameters are obtained from a nearest weather station and are used to train various forms of neural networks. The trained model of neural networks is validated using a similar set of data. The model is then used to predict the wind speed, using the same meteorological information. This paper reports an Artificial Neural Network model for short term wind speed prediction, which uses back propagation algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Short%20term%20wind%20speed%20prediction" title="Short term wind speed prediction">Short term wind speed prediction</a>, <a href="https://publications.waset.org/search?q=Neural%20networks" title=" Neural networks"> Neural networks</a>, <a href="https://publications.waset.org/search?q=Back%20propagation." title="Back propagation.">Back propagation.</a> </p> <a href="https://publications.waset.org/568/neural-networks-for-short-term-wind-speed-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/568/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/568/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/568/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/568/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/568/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/568/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/568/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/568/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/568/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/568/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3069</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3815</span> Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Sir">B. Sir</a>, <a href="https://publications.waset.org/search?q=M.%20Podhoranyi"> M. Podhoranyi</a>, <a href="https://publications.waset.org/search?q=S.%20Kuchar"> S. Kuchar</a>, <a href="https://publications.waset.org/search?q=T.%20Kocyan"> T. Kocyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15 – May 18 2014). Prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Flood" title="Flood">Flood</a>, <a href="https://publications.waset.org/search?q=HEC-HMS" title=" HEC-HMS"> HEC-HMS</a>, <a href="https://publications.waset.org/search?q=Prediction" title=" Prediction"> Prediction</a>, <a href="https://publications.waset.org/search?q=Rainfall%20%E2%80%93%20Runoff." title=" Rainfall – Runoff."> Rainfall – Runoff.</a> </p> <a href="https://publications.waset.org/10001346/automatic-flood-prediction-using-rainfall-runoff-model-in-moravian-silesian-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001346/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001346/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001346/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001346/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001346/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001346/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001346/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001346/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001346/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001346/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2230</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3814</span> Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ioannis%20P.%20Panapakidis">Ioannis P. Panapakidis</a>, <a href="https://publications.waset.org/search?q=Marios%20N.%20Moschakis"> Marios N. Moschakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Deregulated%20energy%20market" title="Deregulated energy market">Deregulated energy market</a>, <a href="https://publications.waset.org/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=system%20marginal%20price" title=" system marginal price"> system marginal price</a>, <a href="https://publications.waset.org/search?q=energy%20efficiency%20and%20quality." title=" energy efficiency and quality."> energy efficiency and quality.</a> </p> <a href="https://publications.waset.org/10010164/comparison-of-machine-learning-models-for-the-prediction-of-system-marginal-price-of-greek-energy-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010164/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010164/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010164/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010164/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010164/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010164/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010164/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010164/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010164/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010164/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1315</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3813</span> Predicting the Minimum Free Energy RNA Secondary Structures using Harmony Search Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abdulqader%20M.%20Mohsen">Abdulqader M. Mohsen</a>, <a href="https://publications.waset.org/search?q=Ahamad%20Tajudin%20Khader"> Ahamad Tajudin Khader</a>, <a href="https://publications.waset.org/search?q=Dhanesh%20Ramachandram">Dhanesh Ramachandram</a>, <a href="https://publications.waset.org/search?q=Abdullatif%20Ghallab"> Abdullatif Ghallab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The physical methods for RNA secondary structure prediction are time consuming and expensive, thus methods for computational prediction will be a proper alternative. Various algorithms have been used for RNA structure prediction including dynamic programming and metaheuristic algorithms. Musician's behaviorinspired harmony search is a recently developed metaheuristic algorithm which has been successful in a wide variety of complex optimization problems. This paper proposes a harmony search algorithm (HSRNAFold) to find RNA secondary structure with minimum free energy and similar to the native structure. HSRNAFold is compared with dynamic programming benchmark mfold and metaheuristic algorithms (RnaPredict, SetPSO and HelixPSO). The results showed that HSRNAFold is comparable to mfold and better than metaheuristics in finding the minimum free energies and the number of correct base pairs.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Metaheuristic%20algorithms" title="Metaheuristic algorithms">Metaheuristic algorithms</a>, <a href="https://publications.waset.org/search?q=dynamic%20programming%20algorithms" title=" dynamic programming algorithms"> dynamic programming algorithms</a>, <a href="https://publications.waset.org/search?q=harmony%20search%20optimization" title=" harmony search optimization"> harmony search optimization</a>, <a href="https://publications.waset.org/search?q=RNA%20folding" title=" RNA folding"> RNA folding</a>, <a href="https://publications.waset.org/search?q=Minimum%20free%20energy." title=" Minimum free energy."> Minimum free energy.</a> </p> <a href="https://publications.waset.org/12151/predicting-the-minimum-free-energy-rna-secondary-structures-using-harmony-search-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12151/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12151/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12151/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12151/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12151/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12151/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12151/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12151/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12151/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12151/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2341</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3812</span> River Flow Prediction Using Nonlinear Prediction Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20H.%20Adenan">N. H. Adenan</a>, <a href="https://publications.waset.org/search?q=M.%20S.%20M.%20Noorani"> M. S. M. Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (<em>CC</em>) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=River%20flow" title="River flow">River flow</a>, <a href="https://publications.waset.org/search?q=nonlinear%20prediction%20method" title=" nonlinear prediction method"> nonlinear prediction method</a>, <a href="https://publications.waset.org/search?q=phase%20space" title=" phase space"> phase space</a>, <a href="https://publications.waset.org/search?q=local%20linear%20approximation." title=" local linear approximation."> local linear approximation.</a> </p> <a href="https://publications.waset.org/17410/river-flow-prediction-using-nonlinear-prediction-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17410/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17410/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17410/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17410/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17410/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17410/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17410/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17410/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17410/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17410/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2369</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3811</span> Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Doseong%20Eom">Doseong Eom</a>, <a href="https://publications.waset.org/search?q=Jeongmin%20Kim"> Jeongmin Kim</a>, <a href="https://publications.waset.org/search?q=Kwang%20Ryel%20Ryu"> Kwang Ryel Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Building%20energy%20management" title="Building energy management">Building energy management</a>, <a href="https://publications.waset.org/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=simulation-based%20optimization" title=" simulation-based optimization"> simulation-based optimization</a>, <a href="https://publications.waset.org/search?q=operation%20planning." title=" operation planning."> operation planning.</a> </p> <a href="https://publications.waset.org/10007235/prediction-based-midterm-operation-planning-for-energy-management-of-exhibition-hall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007235/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007235/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007235/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007235/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007235/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007235/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007235/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007235/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007235/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007235/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">991</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3810</span> Monthly River Flow Prediction Using a Nonlinear Prediction Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20H.%20Adenan">N. H. Adenan</a>, <a href="https://publications.waset.org/search?q=M.%20S.%20M.%20Noorani"> M. S. M. Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>River flow prediction is an essential tool to ensure proper management of water resources and the optimal distribution of water to consumers. This study presents an analysis and prediction by using nonlinear prediction method with monthly river flow data for Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The reconstruction of phase space involves the reconstruction of one-dimension (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. The revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (<em>CC</em>) and root mean square error (RMSE) was employed to compare prediction performance for the nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show that the prediction results using the nonlinear prediction method are better than ARIMA and SVM. Therefore, the results of this study could be used to develop an efficient water management system to optimize the allocation of water resources.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=River%20flow" title="River flow">River flow</a>, <a href="https://publications.waset.org/search?q=nonlinear%20prediction%20method" title=" nonlinear prediction method"> nonlinear prediction method</a>, <a href="https://publications.waset.org/search?q=phase%20space" title=" phase space"> phase space</a>, <a href="https://publications.waset.org/search?q=local%20linear%20approximation." title=" local linear approximation."> local linear approximation.</a> </p> <a href="https://publications.waset.org/9997328/monthly-river-flow-prediction-using-a-nonlinear-prediction-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997328/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997328/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997328/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997328/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997328/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997328/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997328/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997328/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997328/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997328/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1965</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3809</span> System Reliability by Prediction of Generator Output and Losses in a Competitive Energy Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Perumal%20Nallagownden">Perumal Nallagownden</a>, <a href="https://publications.waset.org/search?q=Ravindra%20N.%20Mukerjee"> Ravindra N. Mukerjee</a>, <a href="https://publications.waset.org/search?q=Syafrudin%20Masri"> Syafrudin Masri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a competitive energy market, system reliability should be maintained at all times. Power system operation being of online in nature, the energy balance requirements must be satisfied to ensure reliable operation the system. To achieve this, information regarding the expected status of the system, the scheduled transactions and the relevant inputs necessary to make either a transaction contract or a transmission contract operational, have to be made available in real time. The real time procedure proposed, facilitates this. This paper proposes a quadratic curve learning procedure, which enables a generator-s contribution to the retailer demand, power loss of transaction in a line at the retail end and its associated losses for an oncoming operating scenario to be predicted. Matlab program was used to test in on a 24-bus IEE Reliability Test System, and the results are found to be acceptable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Deregulation" title="Deregulation">Deregulation</a>, <a href="https://publications.waset.org/search?q=learning%20coefficients" title=" learning coefficients"> learning coefficients</a>, <a href="https://publications.waset.org/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/search?q=prediction" title="prediction">prediction</a>, <a href="https://publications.waset.org/search?q=competitive%20energy%20market." title=" competitive energy market."> competitive energy market.</a> </p> <a href="https://publications.waset.org/1270/system-reliability-by-prediction-of-generator-output-and-losses-in-a-competitive-energy-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1270/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1270/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1270/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1270/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1270/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1270/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1270/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1270/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1270/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1270/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1480</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3808</span> Fast Intra Prediction Algorithm for H.264/AVC Based on Quadratic and Gradient Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Elyousfi">A. Elyousfi</a>, <a href="https://publications.waset.org/search?q=A.%20Tamtaoui"> A. Tamtaoui</a>, <a href="https://publications.waset.org/search?q=E.%20Bouyakhf"> E. Bouyakhf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The H.264/AVC standard uses an intra prediction, 9 directional modes for 4x4 luma blocks and 8x8 luma blocks, 4 directional modes for 16x16 macroblock and 8x8 chroma blocks, respectively. It means that, for a macroblock, it has to perform 736 different RDO calculation before a best RDO modes is determined. With this Multiple intra-mode prediction, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards, but computational complexity is increased significantly. This paper presents a fast intra prediction algorithm for H.264/AVC intra prediction based a characteristic of homogeneity information. In this study, the gradient prediction method used to predict the homogeneous area and the quadratic prediction function used to predict the nonhomogeneous area. Based on the correlation between the homogeneity and block size, the smaller block is predicted by gradient prediction and quadratic prediction, so the bigger block is predicted by gradient prediction. Experimental results are presented to show that the proposed method reduce the complexity by up to 76.07% maintaining the similar PSNR quality with about 1.94%bit rate increase in average. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Intra%20prediction" title="Intra prediction">Intra prediction</a>, <a href="https://publications.waset.org/search?q=H.264%2FAVC" title=" H.264/AVC"> H.264/AVC</a>, <a href="https://publications.waset.org/search?q=video%20coding" title=" video coding"> video coding</a>, <a href="https://publications.waset.org/search?q=encodercomplexity." title=" encodercomplexity."> encodercomplexity.</a> </p> <a href="https://publications.waset.org/2152/fast-intra-prediction-algorithm-for-h264avc-based-on-quadratic-and-gradient-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2152/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2152/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2152/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2152/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2152/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2152/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2152/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2152/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2152/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2152/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1898</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3807</span> Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dalin%20Si">Dalin Si</a>, <a href="https://publications.waset.org/search?q=Azizan%20Aziz"> Azizan Aziz</a>, <a href="https://publications.waset.org/search?q=Bertrand%20Lasternas"> Bertrand Lasternas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Building%20energy%20prediction" title="Building energy prediction">Building energy prediction</a>, <a href="https://publications.waset.org/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/search?q=demand%20response" title=" demand response"> demand response</a>, <a href="https://publications.waset.org/search?q=electricity%20market." title=" electricity market."> electricity market.</a> </p> <a href="https://publications.waset.org/10006260/development-of-prediction-models-of-day-ahead-hourly-building-electricity-consumption-and-peak-power-demand-using-the-machine-learning-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006260/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006260/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006260/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006260/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006260/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006260/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006260/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006260/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006260/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006260/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2208</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3806</span> On Improving Breast Cancer Prediction Using GRNN-CP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kefaya%20Qaddoum">Kefaya Qaddoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Neural%20network" title="Neural network">Neural network</a>, <a href="https://publications.waset.org/search?q=conformal%20prediction" title=" conformal prediction"> conformal prediction</a>, <a href="https://publications.waset.org/search?q=cancer%20classification" title=" cancer classification"> cancer classification</a>, <a href="https://publications.waset.org/search?q=regression." title=" regression."> regression.</a> </p> <a href="https://publications.waset.org/10007942/on-improving-breast-cancer-prediction-using-grnn-cp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007942/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007942/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007942/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007942/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007942/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007942/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007942/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007942/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007942/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007942/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">843</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3805</span> Selective Intra Prediction Mode Decision for H.264/AVC Encoders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jun%20Sung%20Park">Jun Sung Park</a>, <a href="https://publications.waset.org/search?q=Hyo%20Jung%20Song"> Hyo Jung Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards such as MPEG-2, but computational complexity is increased significantly. In this paper, we propose selective mode decision schemes for fast intra prediction mode selection. The objective is to reduce the computational complexity of the H.264/AVC encoder without significant rate-distortion performance degradation. In our proposed schemes, the intra prediction complexity is reduced by limiting the luma and chroma prediction modes using the directional information of the 16×16 prediction mode. Experimental results are presented to show that the proposed schemes reduce the complexity by up to 78% maintaining the similar PSNR quality with about 1.46% bit rate increase in average. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Video%20encoding" title="Video encoding">Video encoding</a>, <a href="https://publications.waset.org/search?q=H.264" title=" H.264"> H.264</a>, <a href="https://publications.waset.org/search?q=Intra%20prediction." title=" Intra prediction."> Intra prediction.</a> </p> <a href="https://publications.waset.org/1738/selective-intra-prediction-mode-decision-for-h264avc-encoders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1738/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1738/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1738/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1738/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1738/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1738/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1738/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1738/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1738/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1738/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3470</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3804</span> Diesel Fault Prediction Based on Optimized Gray Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Han%20Bing">Han Bing</a>, <a href="https://publications.waset.org/search?q=Yin%20Zhenjie"> Yin Zhenjie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fault%20prediction" title="Fault prediction">Fault prediction</a>, <a href="https://publications.waset.org/search?q=Neural%20network" title=" Neural network"> Neural network</a>, <a href="https://publications.waset.org/search?q=GM%20%281.5%29" title=" GM (1.5)"> GM (1.5)</a>, <a href="https://publications.waset.org/search?q=Genetic%20algorithm" title=" Genetic algorithm"> Genetic algorithm</a>, <a href="https://publications.waset.org/search?q=GBPGA." title=" GBPGA."> GBPGA.</a> </p> <a href="https://publications.waset.org/10004611/diesel-fault-prediction-based-on-optimized-gray-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004611/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004611/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004611/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004611/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004611/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004611/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004611/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004611/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004611/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004611/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1303</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3803</span> Intra Prediction using Weighted Average of Pixel Values According to Prediction Direction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kibaek%20Kim">Kibaek Kim</a>, <a href="https://publications.waset.org/search?q=Dongjin%20Jung"> Dongjin Jung</a>, <a href="https://publications.waset.org/search?q=Jinik%20Jang"> Jinik Jang</a>, <a href="https://publications.waset.org/search?q=Jechang%20Jeong"> Jechang Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed a method to reduce quantization error. In order to reduce quantization error, low pass filtering is applied on neighboring samples of current block in H.264/AVC. However, it has a weak point that low pass filtering is performed regardless of prediction direction. Since it doesn-t consider prediction direction, it may not reduce quantization error effectively. Proposed method considers prediction direction for low pass filtering and uses a threshold condition for reducing flag bit. We compare our experimental result with conventional method in H.264/AVC and we can achieve the average bit-rate reduction of 1.534% by applying the proposed method. Bit-rate reduction between 0.580% and 3.567% are shown for experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Coding%20efficiency" title="Coding efficiency">Coding efficiency</a>, <a href="https://publications.waset.org/search?q=H.264%2FAVC" title=" H.264/AVC"> H.264/AVC</a>, <a href="https://publications.waset.org/search?q=Intra%20prediction" title=" Intra prediction"> Intra prediction</a>, <a href="https://publications.waset.org/search?q=Low%20pass%20filter" title="Low pass filter">Low pass filter</a> </p> <a href="https://publications.waset.org/8359/intra-prediction-using-weighted-average-of-pixel-values-according-to-prediction-direction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8359/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8359/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8359/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8359/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8359/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8359/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8359/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8359/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8359/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8359/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1753</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3802</span> A Comparison of Grey Model and Fuzzy Predictive Model for Time Series</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20I.%20Dounis">A. I. Dounis</a>, <a href="https://publications.waset.org/search?q=P.%20Tiropanis"> P. Tiropanis</a>, <a href="https://publications.waset.org/search?q=D.%20Tseles"> D. Tseles</a>, <a href="https://publications.waset.org/search?q=G.%20Nikolaou"> G. Nikolaou</a>, <a href="https://publications.waset.org/search?q=G.%20P.%20Syrcos"> G. P. Syrcos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prediction of meteorological parameters at a meteorological station is an interesting and open problem. A firstorder linear dynamic model GM(1,1) is the main component of the grey system theory. The grey model requires only a few previous data points in order to make a real-time forecast. In this paper, we consider the daily average ambient temperature as a time series and the grey model GM(1,1) applied to local prediction (short-term prediction) of the temperature. In the same case study we use a fuzzy predictive model for global prediction. We conclude the paper with a comparison between local and global prediction schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fuzzy%20predictive%20model" title="Fuzzy predictive model">Fuzzy predictive model</a>, <a href="https://publications.waset.org/search?q=grey%20model" title=" grey model"> grey model</a>, <a href="https://publications.waset.org/search?q=local%20andglobal%20prediction" title=" local andglobal prediction"> local andglobal prediction</a>, <a href="https://publications.waset.org/search?q=meteorological%20forecasting" title=" meteorological forecasting"> meteorological forecasting</a>, <a href="https://publications.waset.org/search?q=time%20series." title=" time series."> time series.</a> </p> <a href="https://publications.waset.org/15438/a-comparison-of-grey-model-and-fuzzy-predictive-model-for-time-series" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15438/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15438/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15438/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15438/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15438/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15438/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15438/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15438/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15438/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15438/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2159</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3801</span> Analysis of Physicochemical Properties on Prediction of R5, X4 and R5X4 HIV-1 Coreceptor Usage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kai-Ti%20Hsu">Kai-Ti Hsu</a>, <a href="https://publications.waset.org/search?q=Hui-Ling%20Huang"> Hui-Ling Huang</a>, <a href="https://publications.waset.org/search?q=Chun-Wei%20Tung"> Chun-Wei Tung</a>, <a href="https://publications.waset.org/search?q=Yi-Hsiung%20Chen"> Yi-Hsiung Chen</a>, <a href="https://publications.waset.org/search?q=Shinn-Ying%20Ho"> Shinn-Ying Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioinformatics methods for predicting the T cell coreceptor usage from the array of membrane protein of HIV-1 are investigated. In this study, we aim to propose an effective prediction method for dealing with the three-class classification problem of CXCR4 (X4), CCR5 (R5) and CCR5/CXCR4 (R5X4). We made efforts in investigating the coreceptor prediction problem as follows: 1) proposing a feature set of informative physicochemical properties which is cooperated with SVM to achieve high prediction test accuracy of 81.48%, compared with the existing method with accuracy of 70.00%; 2) establishing a large up-to-date data set by increasing the size from 159 to 1225 sequences to verify the proposed prediction method where the mean test accuracy is 88.59%, and 3) analyzing the set of 14 informative physicochemical properties to further understand the characteristics of HIV-1coreceptors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Coreceptor" title="Coreceptor">Coreceptor</a>, <a href="https://publications.waset.org/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/search?q=HIV-1" title=" HIV-1"> HIV-1</a>, <a href="https://publications.waset.org/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/search?q=physicochemical%20properties" title=" physicochemical properties"> physicochemical properties</a>, <a href="https://publications.waset.org/search?q=prediction." title=" prediction."> prediction.</a> </p> <a href="https://publications.waset.org/15320/analysis-of-physicochemical-properties-on-prediction-of-r5-x4-and-r5x4-hiv-1-coreceptor-usage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15320/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15320/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15320/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15320/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15320/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15320/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15320/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15320/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15320/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15320/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2388</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3800</span> An Improved Prediction Model of Ozone Concentration Time Series Based On Chaotic Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Z.%20A.%20Hamid">N. Z. A. Hamid</a>, <a href="https://publications.waset.org/search?q=M.%20S.%20M.%20Noorani"> M. S. M. Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly Ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Chaotic%20approach" title="Chaotic approach">Chaotic approach</a>, <a href="https://publications.waset.org/search?q=phase%20space" title=" phase space"> phase space</a>, <a href="https://publications.waset.org/search?q=Cao%20method" title=" Cao method"> Cao method</a>, <a href="https://publications.waset.org/search?q=local%20linear%20approximation%20method." title=" local linear approximation method."> local linear approximation method.</a> </p> <a href="https://publications.waset.org/17414/an-improved-prediction-model-of-ozone-concentration-time-series-based-on-chaotic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17414/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17414/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17414/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17414/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17414/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17414/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17414/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17414/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17414/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17414/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1788</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3799</span> Typical Day Prediction Model for Output Power and Energy Efficiency of a Grid-Connected Solar Photovoltaic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yan%20Su">Yan Su</a>, <a href="https://publications.waset.org/search?q=L.%20C.%20Chan"> L. C. Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A novel typical day prediction model have been built and validated by the measured data of a grid-connected solar photovoltaic (PV) system in Macau. Unlike conventional statistical method used by previous study on PV systems which get results by averaging nearby continuous points, the present typical day statistical method obtain the value at every minute in a typical day by averaging discontinuous points at the same minute in different days. This typical day statistical method based on discontinuous point averaging makes it possible for us to obtain the Gaussian shape dynamical distributions for solar irradiance and output power in a yearly or monthly typical day. Based on the yearly typical day statistical analysis results, the maximum possible accumulated output energy in a year with on site climate conditions and the corresponding optimal PV system running time are obtained. Periodic Gaussian shape prediction models for solar irradiance, output energy and system energy efficiency have been built and their coefficients have been determined based on the yearly, maximum and minimum monthly typical day Gaussian distribution parameters, which are obtained from iterations for minimum Root Mean Squared Deviation (RMSD). With the present model, the dynamical effects due to time difference in a day are kept and the day to day uncertainty due to weather changing are smoothed but still included. The periodic Gaussian shape correlations for solar irradiance, output power and system energy efficiency have been compared favorably with data of the PV system in Macau and proved to be an improvement than previous models.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Grid%20Connected" title="Grid Connected">Grid Connected</a>, <a href="https://publications.waset.org/search?q=RMSD" title=" RMSD"> RMSD</a>, <a href="https://publications.waset.org/search?q=Solar%20PV%20System" title=" Solar PV System"> Solar PV System</a>, <a href="https://publications.waset.org/search?q=Typical%20Day." title=" Typical Day."> Typical Day.</a> </p> <a href="https://publications.waset.org/202/typical-day-prediction-model-for-output-power-and-energy-efficiency-of-a-grid-connected-solar-photovoltaic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/202/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/202/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/202/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/202/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/202/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/202/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/202/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/202/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/202/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/202/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1681</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3798</span> Two States Mapping Based Neural Network Model for Decreasing of Prediction Residual Error</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Insung%20Jung">Insung Jung</a>, <a href="https://publications.waset.org/search?q=lockjo%20Koo"> lockjo Koo</a>, <a href="https://publications.waset.org/search?q=Gi-Nam%20Wang"> Gi-Nam Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The objective of this paper is to design a model of human vital sign prediction for decreasing prediction error by using two states mapping based time series neural network BP (back-propagation) model. Normally, lot of industries has been applying the neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has a residual error between real value and prediction output. Therefore, we designed two states of neural network model for compensation of residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We found that most of simulations cases were satisfied by the two states mapping based time series prediction model compared to normal BP. In particular, small sample size of times series were more accurate than the standard MLP model. We expect that this algorithm can be available to sudden death prevention and monitoring AGENT system in a ubiquitous homecare environment.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Neural%20network" title="Neural network">Neural network</a>, <a href="https://publications.waset.org/search?q=U-healthcare" title=" U-healthcare"> U-healthcare</a>, <a href="https://publications.waset.org/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/search?q=timeseries" title=" timeseries"> timeseries</a>, <a href="https://publications.waset.org/search?q=computer%20aided%20prediction." title=" computer aided prediction."> computer aided prediction.</a> </p> <a href="https://publications.waset.org/1491/two-states-mapping-based-neural-network-model-for-decreasing-of-prediction-residual-error" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1491/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1491/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1491/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1491/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1491/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1491/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1491/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1491/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1491/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1491/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1986</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3797</span> Protein Secondary Structure Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Manpreet%20Singh">Manpreet Singh</a>, <a href="https://publications.waset.org/search?q=Parvinder%20Singh%20Sandhu"> Parvinder Singh Sandhu</a>, <a href="https://publications.waset.org/search?q=Reet%20Kamal%20Kaur"> Reet Kamal Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein structure determination and prediction has been a focal research subject in the field of bioinformatics due to the importance of protein structure in understanding the biological and chemical activities of organisms. The experimental methods used by biotechnologists to determine the structures of proteins demand sophisticated equipment and time. A host of computational methods are developed to predict the location of secondary structure elements in proteins for complementing or creating insights into experimental results. However, prediction accuracies of these methods rarely exceed 70%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Protein" title="Protein">Protein</a>, <a href="https://publications.waset.org/search?q=Secondary%20Structure" title=" Secondary Structure"> Secondary Structure</a>, <a href="https://publications.waset.org/search?q=Prediction" title=" Prediction"> Prediction</a>, <a href="https://publications.waset.org/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/search?q=RNA." title="RNA.">RNA.</a> </p> <a href="https://publications.waset.org/14119/protein-secondary-structure-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14119/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14119/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14119/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14119/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14119/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14119/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14119/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14119/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14119/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14119/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1393</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3796</span> Stock Movement Prediction Using Price Factor and Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hy%20Dang">Hy Dang</a>, <a href="https://publications.waset.org/search?q=Bo%20Mei"> Bo Mei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classification" title="Classification">Classification</a>, <a href="https://publications.waset.org/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=time%20representation" title=" time representation"> time representation</a>, <a href="https://publications.waset.org/search?q=stock%20prediction." title=" stock prediction."> stock prediction.</a> </p> <a href="https://publications.waset.org/10012461/stock-movement-prediction-using-price-factor-and-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012461/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012461/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012461/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012461/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012461/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012461/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012461/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012461/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012461/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012461/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1156</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3795</span> On the Prediction of Transmembrane Helical Segments in Membrane Proteins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yu%20Bin">Yu Bin</a>, <a href="https://publications.waset.org/search?q=Zhang%20Yan"> Zhang Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prediction of transmembrane helical segments (TMHs) in membrane proteins is an important field in the bioinformatics research. In this paper, a method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1F88 was chosen as an example to describe the prediction of the number and location of TMHs in membrane proteins by using this method. One group of test data sets that contain total 19 protein sequences was utilized to access the effect of this method. Compared with the prediction results of DAS, PRED-TMR2, SOSUI, HMMTOP2.0 and TMHMM2.0, the obtained results indicate that the presented method has higher prediction accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=hydrophobicity" title="hydrophobicity">hydrophobicity</a>, <a href="https://publications.waset.org/search?q=membrane%20protein" title=" membrane protein"> membrane protein</a>, <a href="https://publications.waset.org/search?q=transmembranehelical%20segments" title=" transmembranehelical segments"> transmembranehelical segments</a>, <a href="https://publications.waset.org/search?q=wavelet%20transform" title=" wavelet transform"> wavelet transform</a> </p> <a href="https://publications.waset.org/12464/on-the-prediction-of-transmembrane-helical-segments-in-membrane-proteins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12464/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12464/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12464/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12464/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12464/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12464/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12464/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12464/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12464/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12464/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1583</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3794</span> Prediction of Henry's Constant in Polymer Solutions using the Peng-Robinson Equation of State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Somayeh%20Tourani">Somayeh Tourani</a>, <a href="https://publications.waset.org/search?q=Alireza%20Behvandi"> Alireza Behvandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The peng-Robinson (PR), a cubic equation of state (EoS), is extended to polymers by using a single set of energy (A1, A2, A3) and co-volume (b) parameters per polymer fitted to experimental volume data. Excellent results for the volumetric behavior of the 11 polymer up to 2000 bar pressure are obtained. The EoS is applied to the correlation and prediction of Henry constants in polymer solutions comprising three polymer and many nonpolar and polar solvents, including supercritical gases. The correlation achieved with two adjustable parameter is satisfactory compared with the experimental data. As a result, the present work provides a simple and useful model for the prediction of Henry's constant for polymer containing systems including those containing polar, nonpolar and supercritical fluids.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Equation%20of%20state" title="Equation of state">Equation of state</a>, <a href="https://publications.waset.org/search?q=Henry%27s%20constant" title=" Henry's constant"> Henry's constant</a>, <a href="https://publications.waset.org/search?q=Peng-Robinson" title=" Peng-Robinson"> Peng-Robinson</a>, <a href="https://publications.waset.org/search?q=polymer%20solution." title=" polymer solution."> polymer solution.</a> </p> <a href="https://publications.waset.org/4495/prediction-of-henrys-constant-in-polymer-solutions-using-the-peng-robinson-equation-of-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4495/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4495/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4495/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4495/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4495/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4495/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4495/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4495/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4495/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4495/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2147</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3793</span> Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yoshio%20Kurosawa">Yoshio Kurosawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vibration" title="Vibration">Vibration</a>, <a href="https://publications.waset.org/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/search?q=car" title=" car"> car</a>, <a href="https://publications.waset.org/search?q=statistical%20energy%20analysis." title=" statistical energy analysis. "> statistical energy analysis. </a> </p> <a href="https://publications.waset.org/10007848/predicting-automotive-interior-noise-including-wind-noise-by-statistical-energy-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007848/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007848/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007848/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007848/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007848/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007848/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007848/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007848/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007848/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007848/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1580</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Energy%20Prediction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Energy%20Prediction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Energy%20Prediction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Energy%20Prediction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Energy%20Prediction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Energy%20Prediction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Energy%20Prediction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Energy%20Prediction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Energy%20Prediction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Energy%20Prediction&page=127">127</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Energy%20Prediction&page=128">128</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Energy%20Prediction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>