CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–10 of 10 results for author: <span class="mathjax">Tran, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Tran%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tran, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tran%2C+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tran, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08681">arXiv:2406.08681</a> <span> [<a href="https://arxiv.org/pdf/2406.08681">pdf</a>, <a href="https://arxiv.org/format/2406.08681">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantitative determination of twist angle and strain in Van der Waals moir茅 superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S+J">Steven J. Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Uslu%2C+J">Jan-Lucas Uslu</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Finney%2C+J">Joe Finney</a>, <a href="/search/cond-mat?searchtype=author&query=Sharpe%2C+A+L">Aaron L. Sharpe</a>, <a href="/search/cond-mat?searchtype=author&query=Hocking%2C+M">Marisa Hocking</a>, <a href="/search/cond-mat?searchtype=author&query=Bittner%2C+N+J">Nathan J. Bittner</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Kastner%2C+M+A">Marc A. Kastner</a>, <a href="/search/cond-mat?searchtype=author&query=Mannix%2C+A+J">Andrew J. Mannix</a>, <a href="/search/cond-mat?searchtype=author&query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08681v1-abstract-short" style="display: inline;"> Scanning probe techniques are popular, non-destructive ways to visualize the real space structure of Van der Waals moir茅s. The high lateral spatial resolution provided by these techniques enables extracting the moir茅 lattice vectors from a scanning probe image. We have found that the extracted values, while precise, are not necessarily accurate. Scan-to-scan variations in the behavior of the piezo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08681v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08681v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08681v1-abstract-full" style="display: none;"> Scanning probe techniques are popular, non-destructive ways to visualize the real space structure of Van der Waals moir茅s. The high lateral spatial resolution provided by these techniques enables extracting the moir茅 lattice vectors from a scanning probe image. We have found that the extracted values, while precise, are not necessarily accurate. Scan-to-scan variations in the behavior of the piezos which drive the scanning probe, and thermally-driven slow relative drift between probe and sample, produce systematic errors in the extraction of lattice vectors. In this Letter, we identify the errors and provide a protocol to correct for them. Applying this protocol to an ensemble of ten successive scans of near-magic-angle twisted bilayer graphene, we are able to reduce our errors in extracting lattice vectors to less than 1%. This translates to extracting twist angles with a statistical uncertainty less than 0.001掳 and uniaxial heterostrain with uncertainty on the order of 0.002%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08681v1-abstract-full').style.display = 'none'; document.getElementById('2406.08681v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages including supplementary material and 3 main figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18588">arXiv:2405.18588</a> <span> [<a href="https://arxiv.org/pdf/2405.18588">pdf</a>, <a href="https://arxiv.org/format/2405.18588">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Deterministic fabrication of graphene hexagonal boron nitride moir茅 superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kamat%2C+R+V">Rupini V. Kamat</a>, <a href="/search/cond-mat?searchtype=author&query=Sharpe%2C+A+L">Aaron L. Sharpe</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jenny Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S+J">Steven J. Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Zaborski%2C+G">Gregory Zaborski Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Hocking%2C+M">Marisa Hocking</a>, <a href="/search/cond-mat?searchtype=author&query=Finney%2C+J">Joe Finney</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Kastner%2C+M+A">Marc A. Kastner</a>, <a href="/search/cond-mat?searchtype=author&query=Mannix%2C+A+J">Andrew J. Mannix</a>, <a href="/search/cond-mat?searchtype=author&query=Heinz%2C+T">Tony Heinz</a>, <a href="/search/cond-mat?searchtype=author&query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18588v1-abstract-short" style="display: inline;"> The electronic properties of moir茅 heterostructures depend sensitively on the relative orientation between layers of the stack. For example, near-magic-angle twisted bilayer graphene (TBG) commonly shows superconductivity, yet a TBG sample with one of the graphene layers rotationally aligned to a hexagonal Boron Nitride (hBN) cladding layer provided the first experimental observation of orbital fe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18588v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18588v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18588v1-abstract-full" style="display: none;"> The electronic properties of moir茅 heterostructures depend sensitively on the relative orientation between layers of the stack. For example, near-magic-angle twisted bilayer graphene (TBG) commonly shows superconductivity, yet a TBG sample with one of the graphene layers rotationally aligned to a hexagonal Boron Nitride (hBN) cladding layer provided the first experimental observation of orbital ferromagnetism. To create samples with aligned graphene/hBN, researchers often align edges of exfoliated flakes that appear straight in optical micrographs. However, graphene or hBN can cleave along either zig-zag or armchair lattice directions, introducing a 30 degree ambiguity in the relative orientation of two flakes. By characterizing the crystal lattice orientation of exfoliated flakes prior to stacking using Raman and second-harmonic generation for graphene and hBN, respectively, we unambiguously align monolayer graphene to hBN at a near-0 degree, not 30 degree, relative twist angle. We confirm this alignment by torsional force microscopy (TFM) of the graphene/hBN moir茅 on an open-face stack, and then by cryogenic transport measurements, after full encapsulation with a second, non-aligned hBN layer. This work demonstrates a key step toward systematically exploring the effects of the relative twist angle between dissimilar materials within moir茅 heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18588v1-abstract-full').style.display = 'none'; document.getElementById('2405.18588v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09912">arXiv:2403.09912</a> <span> [<a href="https://arxiv.org/pdf/2403.09912">pdf</a>, <a href="https://arxiv.org/format/2403.09912">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thermal relaxation of strain and twist in ferroelectric hexagonal boron nitride moir茅 interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hocking%2C+M">Marisa Hocking</a>, <a href="/search/cond-mat?searchtype=author&query=Henzinger%2C+C+E">Christina E. Henzinger</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S">Steven Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Bittner%2C+N+J">Nathan J. Bittner</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a>, <a href="/search/cond-mat?searchtype=author&query=Mannix%2C+A+J">Andrew J. Mannix</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09912v1-abstract-short" style="display: inline;"> New properties can arise at van der Waals (vdW) interfaces hosting a moir茅 pattern generated by interlayer twist and strain. However, achieving precise control of interlayer twist/strain remains an ongoing challenge in vdW heterostructure assembly, and even subtle variation in these structural parameters can create significant changes in the moir茅 period and emergent properties. Characterizing the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09912v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09912v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09912v1-abstract-full" style="display: none;"> New properties can arise at van der Waals (vdW) interfaces hosting a moir茅 pattern generated by interlayer twist and strain. However, achieving precise control of interlayer twist/strain remains an ongoing challenge in vdW heterostructure assembly, and even subtle variation in these structural parameters can create significant changes in the moir茅 period and emergent properties. Characterizing the rate of interlayer twist/strain relaxation during thermal annealing is critical to establish a thermal budget for vdW heterostructure construction and may provide a route to improve the homogeneity of the interface or to control its final state. Here, we characterize the spatial and temporal dependence of interfacial twist and strain relaxation in marginally-twisted hBN/hBN interfaces heated under conditions relevant to vdW heterostructure assembly and typical sample annealing. We find that the ferroelectric hBN/hBN moir茅 relaxes minimally during annealing in air at typical assembly temperatures of 170掳C. However, at 400掳C, twist angle relaxes significantly, accompanied by a decrease in spatial uniformity. Uniaxial heterostrain initially increases and then decreases over time, becoming increasingly non-uniform in direction. Structural irregularities such as step edges, contamination bubbles, or contact with the underlying substrate result in local inhomogeneity in the rate of relaxation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09912v1-abstract-full').style.display = 'none'; document.getElementById('2403.09912v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.08814">arXiv:2308.08814</a> <span> [<a href="https://arxiv.org/pdf/2308.08814">pdf</a>, <a href="https://arxiv.org/format/2308.08814">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2314083121">10.1073/pnas.2314083121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Torsional Force Microscopy of Van der Waals Moir茅s and Atomic Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S+J">Steven J. Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Zaborski%2C+G">Gregory Zaborski Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Finney%2C+J">Joe Finney</a>, <a href="/search/cond-mat?searchtype=author&query=Sharpe%2C+A+L">Aaron L. Sharpe</a>, <a href="/search/cond-mat?searchtype=author&query=Kamat%2C+R+V">Rupini V. Kamat</a>, <a href="/search/cond-mat?searchtype=author&query=Kalantre%2C+S+S">Sandesh S. Kalantre</a>, <a href="/search/cond-mat?searchtype=author&query=Hocking%2C+M">Marisa Hocking</a>, <a href="/search/cond-mat?searchtype=author&query=Bittner%2C+N+J">Nathan J. Bittner</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Pittenger%2C+B">Bede Pittenger</a>, <a href="/search/cond-mat?searchtype=author&query=Newcomb%2C+C+J">Christina J. Newcomb</a>, <a href="/search/cond-mat?searchtype=author&query=Kastner%2C+M+A">Marc A. Kastner</a>, <a href="/search/cond-mat?searchtype=author&query=Mannix%2C+A+J">Andrew J. Mannix</a>, <a href="/search/cond-mat?searchtype=author&query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.08814v2-abstract-short" style="display: inline;"> In a stack of atomically-thin Van der Waals layers, introducing interlayer twist creates a moir茅 superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult, hence determining that twist angle and mapping its s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08814v2-abstract-full').style.display = 'inline'; document.getElementById('2308.08814v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.08814v2-abstract-full" style="display: none;"> In a stack of atomically-thin Van der Waals layers, introducing interlayer twist creates a moir茅 superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult, hence determining that twist angle and mapping its spatial variation is very important. Techniques have emerged to do this by imaging the moir茅, but most of these require sophisticated infrastructure, time-consuming sample preparation beyond stack synthesis, or both. In this work, we show that Torsional Force Microscopy (TFM), a scanning probe technique sensitive to dynamic friction, can reveal surface and shallow subsurface structure of Van der Waals stacks on multiple length scales: the moir茅s formed between bi-layers of graphene and between graphene and hexagonal boron nitride (hBN), and also the atomic crystal lattices of graphene and hBN. In TFM, torsional motion of an AFM cantilever is monitored as it is actively driven at a torsional resonance while a feedback loop maintains contact at a set force with the sample surface. TFM works at room temperature in air, with no need for an electrical bias between the tip and the sample, making it applicable to a wide array of samples. It should enable determination of precise structural information including twist angles and strain in moir茅 superlattices and crystallographic orientation of VdW flakes to support predictable moir茅 heterostructure fabrication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08814v2-abstract-full').style.display = 'none'; document.getElementById('2308.08814v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 14 figures and 1 table including supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 121 (10) e2314083121 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01522">arXiv:2109.01522</a> <span> [<a href="https://arxiv.org/pdf/2109.01522">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c04274">10.1021/acs.nanolett.1c04274 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale electronic transparency of wafer-scale hexagonal boron nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zerger%2C+C+Z">Caleb Z. Zerger</a>, <a href="/search/cond-mat?searchtype=author&query=Rodenbach%2C+L+K">Linsey K. Rodenbach</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yi-Ting Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Safvati%2C+B">Benjamin Safvati</a>, <a href="/search/cond-mat?searchtype=author&query=Brubaker%2C+M+Z">Morgan Z. Brubaker</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S">Steven Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+T">Tse-An Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+M">Ming-Yang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+L">Lain-Jong Li</a>, <a href="/search/cond-mat?searchtype=author&query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a>, <a href="/search/cond-mat?searchtype=author&query=Manoharan%2C+H+C">Hari C. Manoharan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01522v1-abstract-short" style="display: inline;"> Monolayer hBN has attracted interest as a potentially weakly interacting 2D insulating layer in heterostructures. Recently, wafer-scale hBN growth on Cu(111) has been demonstrated for semiconductor chip fabrication processes and transistor action. For all these applications, the perturbation on the underlying electronically active layers is critical. For example, while hBN on Cu(111) has been show… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01522v1-abstract-full').style.display = 'inline'; document.getElementById('2109.01522v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01522v1-abstract-full" style="display: none;"> Monolayer hBN has attracted interest as a potentially weakly interacting 2D insulating layer in heterostructures. Recently, wafer-scale hBN growth on Cu(111) has been demonstrated for semiconductor chip fabrication processes and transistor action. For all these applications, the perturbation on the underlying electronically active layers is critical. For example, while hBN on Cu(111) has been shown to preserve the Cu(111) surface state 2D electron gas, it was previously unknown how this varies over the sample and how it is affected by local electronic corrugation. Here, we demonstrate that the Cu(111) surface state under wafer-scale hBN is robustly homogeneous in energy and spectral weight over nanometer length scales and over atomic terraces. We contrast this with a benchmark spectral feature associated with interaction between BN atoms and the Cu surface, which varies with the Moir茅 pattern of the hBN/Cu(111) sample and is dependent on atomic registry. This work demonstrates that fragile 2D electron systems and interface states are largely unperturbed by local variations created by the hBN due to atomic-scale interactions with the substrate, thus providing a remarkably transparent window on low-energy electronic structure below the hBN monolayer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01522v1-abstract-full').style.display = 'none'; document.getElementById('2109.01522v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00453">arXiv:1903.00453</a> <span> [<a href="https://arxiv.org/pdf/1903.00453">pdf</a>, <a href="https://arxiv.org/format/1903.00453">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.043204">10.1103/PhysRevResearch.2.043204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical Josephson Effects in NbSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S">S. Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Sell%2C+J">J. Sell</a>, <a href="/search/cond-mat?searchtype=author&query=Williams%2C+J+R">J. R. Williams</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00453v3-abstract-short" style="display: inline;"> The study of superconducting materials that also possess nontrivial correlations or interactions remains an active frontier of condensed matter physics. NbSe$_2$ belongs to this class of superconductors and recent research has focused on the two-dimensional properties of this layered material. Here an investigation of the superconducting-to-normal-state transition in NbSe$_2$ is detailed, and foun… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00453v3-abstract-full').style.display = 'inline'; document.getElementById('1903.00453v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00453v3-abstract-full" style="display: none;"> The study of superconducting materials that also possess nontrivial correlations or interactions remains an active frontier of condensed matter physics. NbSe$_2$ belongs to this class of superconductors and recent research has focused on the two-dimensional properties of this layered material. Here an investigation of the superconducting-to-normal-state transition in NbSe$_2$ is detailed, and found to be driven by dynamically-created vortices. Under the application of RF radiation, these vortices allow for two novel Josephson effects to be observed. The first is a coupling between Josephson currents and charge density waves in phase-slip junctions. The second is the Josephson detection of multi-band superconductivity, which is revealed in an anomalous magnetic field and RF frequency response of the AC Josephson effect. Our results shed light on the nature of superconductivity in this material, unearthing exotic phenomena by exploiting nonequilibrium superconducting effects in atomically-thin materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00453v3-abstract-full').style.display = 'none'; document.getElementById('1903.00453v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 043204 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05151">arXiv:1902.05151</a> <span> [<a href="https://arxiv.org/pdf/1902.05151">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Correlated Insulating and Superconducting States in Twisted Bilayer Graphene Below the Magic Angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Codecido%2C+E">Emilio Codecido</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qiyue Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Koester%2C+R">Ryan Koester</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+H">Haidong Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+R">Rui Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S">Son Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05151v1-abstract-short" style="display: inline;"> The emergence of flat bands and correlated behaviors in 'magic angle' twisted bilayer graphene (tBLG) has sparked tremendous interest, though many aspects of the system are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of approximately 0.93, which is smaller than the magic angle by 15%. At an electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05151v1-abstract-full').style.display = 'inline'; document.getElementById('1902.05151v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05151v1-abstract-full" style="display: none;"> The emergence of flat bands and correlated behaviors in 'magic angle' twisted bilayer graphene (tBLG) has sparked tremendous interest, though many aspects of the system are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of approximately 0.93, which is smaller than the magic angle by 15%. At an electron concentration of +/-5 electrons per moire unit cell, we observe a narrow resistance peak with an activation energy gap of approximately 0.1 meV, indicating the existence of an additional correlated insulating state. This is consistent with theory predicting the presence of a high-energy band with an energetically flat dispersion. At a doping of +/-12 electrons per moire unit cell we observe a resistance peak due to the presence of Dirac points in the spectrum. Our results reveal that the magic range of tBLG is in fact larger than what is previously expected, and provide a wealth of new information to help decipher the strongly correlated phenomena observed in tBLG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05151v1-abstract-full').style.display = 'none'; document.getElementById('1902.05151v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.02427">arXiv:1804.02427</a> <span> [<a href="https://arxiv.org/pdf/1804.02427">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.7b03954">10.1021/acs.nanolett.7b03954 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integer and Fractional Quantum Hall effect in Ultra-high Quality Few-layer Black Phosphorus Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiawei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S">Son Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Jason Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Baek%2C+H">Hongwoo Baek</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R">Ruoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.02427v1-abstract-short" style="display: inline;"> As a high mobility two-dimensional semiconductor with strong structural and electronic anisotropy, atomically thin black phosphorus (BP) provides a new playground for investigating the quantum Hall (QH) effect, including outstanding questions such as the functional dependence of Landau level (LL) gaps on magnetic field B, and possible anisotropic fractional QH states. Using encapsulating few-layer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02427v1-abstract-full').style.display = 'inline'; document.getElementById('1804.02427v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.02427v1-abstract-full" style="display: none;"> As a high mobility two-dimensional semiconductor with strong structural and electronic anisotropy, atomically thin black phosphorus (BP) provides a new playground for investigating the quantum Hall (QH) effect, including outstanding questions such as the functional dependence of Landau level (LL) gaps on magnetic field B, and possible anisotropic fractional QH states. Using encapsulating few-layer BP transistors with mobility up to 55,000 cm2/Vs, we extract LL gaps over an exceptionally wide range of B for QH states at filling factors 谓=-1 to -4, which are determined to be linear in B, thus resolving a controversy raised by its anisotropy. Furthermore, a fractional QH state at 谓~ -4/3 and an additional feature at -0.56+/- 0.1 are observed, underscoring BP as a tunable 2D platform for exploring electron interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02427v1-abstract-full').style.display = 'none'; document.getElementById('1804.02427v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 18, 1, 229-234 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.04911">arXiv:1703.04911</a> <span> [<a href="https://arxiv.org/pdf/1703.04911">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Surface Transport and Quantum Hall Effect in Ambipolar Black Phosphorus Double Quantum Wells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S">Son Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiawei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Gillgren%2C+N">Nathaniel Gillgren</a>, <a href="/search/cond-mat?searchtype=author&query=Espiritu%2C+T">Timothy Espiritu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yanmeng Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Moon%2C+S">Seongphill Moon</a>, <a href="/search/cond-mat?searchtype=author&query=Baek%2C+H">Hongwoo Baek</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R">Ruoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.04911v2-abstract-short" style="display: inline;"> Quantum wells constitute one of the most important classes of devices in the study of 2D systems. In a double layer QW, the additional "which-layer" degree of freedom gives rise to celebrated phenomena such as Coulomb drag, Hall drag and exciton condensation. Here we demonstrate facile formation of wide QWs in few-layer black phosphorus devices that host double layers of charge carriers. In contra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04911v2-abstract-full').style.display = 'inline'; document.getElementById('1703.04911v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.04911v2-abstract-full" style="display: none;"> Quantum wells constitute one of the most important classes of devices in the study of 2D systems. In a double layer QW, the additional "which-layer" degree of freedom gives rise to celebrated phenomena such as Coulomb drag, Hall drag and exciton condensation. Here we demonstrate facile formation of wide QWs in few-layer black phosphorus devices that host double layers of charge carriers. In contrast to tradition QWs, each 2D layer is ambipolar, and can be tuned into n-doped, p-doped or intrinsic regimes. Fully spin-polarized quantum Hall states are observed on each layer, with enhanced Lande g-factor that is attributed to exchange interactions. Our work opens the door for using 2D semiconductors as ambipolar single, double or wide QWs with unusual properties such as high anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04911v2-abstract-full').style.display = 'none'; document.getElementById('1703.04911v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 3, e1603179 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.00323">arXiv:1608.00323</a> <span> [<a href="https://arxiv.org/pdf/1608.00323">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Weak Localization and Electron-electron Interactions in Few Layer Black Phosphorus Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yanmeng Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Gillgren%2C+N">Nathaniel Gillgren</a>, <a href="/search/cond-mat?searchtype=author&query=Espiritu%2C+T">Timothy Espiritu</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+S">Son Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiawei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takahashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.00323v1-abstract-short" style="display: inline;"> Few layer phosphorene(FLP) devices are extensively studied due to its unique electronic properties and potential applications on nano-electronics . Here we present magnetotransport studies which reveal electron-electron interactions as the dominant scattering mechanism in hexagonal boron nitride-encapsulated FLP devices. From weak localization measurements, we estimate the electron dephasing lengt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00323v1-abstract-full').style.display = 'inline'; document.getElementById('1608.00323v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.00323v1-abstract-full" style="display: none;"> Few layer phosphorene(FLP) devices are extensively studied due to its unique electronic properties and potential applications on nano-electronics . Here we present magnetotransport studies which reveal electron-electron interactions as the dominant scattering mechanism in hexagonal boron nitride-encapsulated FLP devices. From weak localization measurements, we estimate the electron dephasing length to be 30 to 100 nm at low temperatures, which exhibits a strong dependence on carrier density n and a power-law dependence on temperature (~T-0.4). These results establish that the dominant scattering mechanism in FLP is electron-electron interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00323v1-abstract-full').style.display = 'none'; document.getElementById('1608.00323v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by 2D Materials</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>