CINXE.COM

Timothy A Sipkens | University of British Columbia - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Timothy A Sipkens | University of British Columbia - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="/Ft27WeLut4BqfCleqYi/9nziZFvTlStPDaca+dbr5s6izC6E9GUxNFYSX5iYFdYgX40mT+jhctWF9hFlYXdpw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="timothy a sipkens" /> <meta name="description" content="Timothy A Sipkens, University of British Columbia: 12 Followers, 9 Following, 55 Research papers. Research interests: Statistical Physics, Nanofluid (Heat…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9a8e9ca111ca412c76c8fd2767868304f6fa3970'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277509035,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732769195000); window.Aedu.timeDifference = new Date().getTime() - 1732769195000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bae13f9b51961d5f1e06008e39e31d0138cb31332e8c2e874c6d6a250ec2bb14.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-19a25d160d01bde427443d06cd6b810c4c92c6026e7cb31519e06313eb24ed90.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://ubc.academia.edu/TimothySipkens" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e032f1d55548c2f2dee4eac9fe52f38beaf13471f2298bb2ea82725ae930b83c.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens","photo":"https://0.academia-photos.com/34748228/10137253/20731563/s65_timothy.sipkens.jpg","has_photo":true,"department":{"id":23021,"name":"Mechanical Engineering","url":"https://ubc.academia.edu/Departments/Mechanical_Engineering/Documents","university":{"id":279,"name":"University of British Columbia","url":"https://ubc.academia.edu/"}},"position":"Post-Doc","position_id":2,"is_analytics_public":false,"interests":[{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":186938,"name":"Nanofluid (Heat Transfer)","url":"https://www.academia.edu/Documents/in/Nanofluid_Heat_Transfer_"},{"id":21472,"name":"Polymer Physics","url":"https://www.academia.edu/Documents/in/Polymer_Physics"},{"id":66036,"name":"Surface Coatings","url":"https://www.academia.edu/Documents/in/Surface_Coatings"},{"id":720,"name":"Hydrodynamics (Physics)","url":"https://www.academia.edu/Documents/in/Hydrodynamics_Physics_"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://ubc.academia.edu/TimothySipkens&quot;,&quot;location&quot;:&quot;/TimothySipkens&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;ubc.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/TimothySipkens&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-71d70f8c-3236-4295-ba7b-6a14db600a84"></div> <div id="ProfileCheckPaperUpdate-react-component-71d70f8c-3236-4295-ba7b-6a14db600a84"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Timothy A Sipkens" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/34748228/10137253/20731563/s200_timothy.sipkens.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Timothy A Sipkens</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://ubc.academia.edu/">University of British Columbia</a>, <a class="u-tcGrayDarker" href="https://ubc.academia.edu/Departments/Mechanical_Engineering/Documents">Mechanical Engineering</a>, <span class="u-tcGrayDarker">Post-Doc</span></div><div><a class="u-tcGrayDarker" href="https://uwaterloo.academia.edu/">University of Waterloo</a>, <a class="u-tcGrayDarker" href="https://uwaterloo.academia.edu/Departments/Mechanical_Mechatronics_Engineering/Documents">Mechanical &amp; Mechatronics Engineering</a>, <span class="u-tcGrayDarker">Graduate Student</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Timothy" data-follow-user-id="34748228" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="34748228"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">12</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">9</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">6</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="34748228" href="https://www.academia.edu/Documents/in/Statistical_Physics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://ubc.academia.edu/TimothySipkens&quot;,&quot;location&quot;:&quot;/TimothySipkens&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;ubc.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/TimothySipkens&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Statistical Physics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-b06b6c11-98ab-41fa-9a7e-eb617a1deb74"></div> <div id="Pill-react-component-b06b6c11-98ab-41fa-9a7e-eb617a1deb74"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="34748228" href="https://www.academia.edu/Documents/in/Nanofluid_Heat_Transfer_"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Nanofluid (Heat Transfer)&quot;]}" data-trace="false" data-dom-id="Pill-react-component-1cbbecde-57ce-4862-a0e5-b8a77ffd59ae"></div> <div id="Pill-react-component-1cbbecde-57ce-4862-a0e5-b8a77ffd59ae"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="34748228" href="https://www.academia.edu/Documents/in/Polymer_Physics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Polymer Physics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-ba9d19b1-c871-422f-9428-6dd375c08c9b"></div> <div id="Pill-react-component-ba9d19b1-c871-422f-9428-6dd375c08c9b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="34748228" href="https://www.academia.edu/Documents/in/Surface_Coatings"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Surface Coatings&quot;]}" data-trace="false" data-dom-id="Pill-react-component-8cf194a1-70ce-4a42-a12f-a328480f844f"></div> <div id="Pill-react-component-8cf194a1-70ce-4a42-a12f-a328480f844f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="34748228" href="https://www.academia.edu/Documents/in/Hydrodynamics_Physics_"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Hydrodynamics (Physics)&quot;]}" data-trace="false" data-dom-id="Pill-react-component-df173d9d-2c9d-40d7-8cc6-32fa03d9977d"></div> <div id="Pill-react-component-df173d9d-2c9d-40d7-8cc6-32fa03d9977d"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Timothy A Sipkens</h3></div><div class="js-work-strip profile--work_container" data-work-id="75547255"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75547255/Size_dependent_mass_absorption_cross_section_of_soot_particles_from_various_sources"><img alt="Research paper thumbnail of Size-dependent mass absorption cross-section of soot particles from various sources" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/75547255/Size_dependent_mass_absorption_cross_section_of_soot_particles_from_various_sources">Size-dependent mass absorption cross-section of soot particles from various sources</a></div><div class="wp-workCard_item"><span>Carbon</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547255"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547255"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547255; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547255]").text(description); $(".js-view-count[data-work-id=75547255]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547255; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547255']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547255, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75547255]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547255,"title":"Size-dependent mass absorption cross-section of soot particles from various sources","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Carbon"},"translated_abstract":null,"internal_url":"https://www.academia.edu/75547255/Size_dependent_mass_absorption_cross_section_of_soot_particles_from_various_sources","translated_internal_url":"","created_at":"2022-04-05T09:53:11.308-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Size_dependent_mass_absorption_cross_section_of_soot_particles_from_various_sources","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":5303,"name":"Carbon","url":"https://www.academia.edu/Documents/in/Carbon"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":19153482,"url":"https://api.elsevier.com/content/article/PII:S0008622322001221?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547254"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75547254/Comparison_of_measurement_systems_for_assessing_number_and_mass_based_particle_filtration_efficiency"><img alt="Research paper thumbnail of Comparison of measurement systems for assessing number- and mass-based particle filtration efficiency" class="work-thumbnail" src="https://attachments.academia-assets.com/83272137/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75547254/Comparison_of_measurement_systems_for_assessing_number_and_mass_based_particle_filtration_efficiency">Comparison of measurement systems for assessing number- and mass-based particle filtration efficiency</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The particle filtration efficiency (PFE) of a respirator or face mask is one of its key propertie...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The particle filtration efficiency (PFE) of a respirator or face mask is one of its key properties. While the physics of particle filtration results in the PFE being size-dependent, measurement standards are specified using a single, integrated PFE, for simplicity. This integrated PFE is commonly defined with respect to either the number (NBFE) or mass (MBFE) distribution of particles as a function of size. This relationship is non-trivial; it is influenced by both the shape of the particle distribution and the fact that multiple practical definitions of particle size are used. This manuscript discusses the relationship between NBFE and MBFE in detail, providing a guide to practitioners. Our discussion begins with a theoretical discussion of the underlying principles. We then present experimental results for a database of size-resolved PFE (SPFE) measurements for over 900 candidate respirators and filter media, including filter media with systematically varied properties and commerc...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0d0c271402d78c2f5b0789d7a9972d73" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:83272137,&quot;asset_id&quot;:75547254,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/83272137/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547254"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547254"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547254; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547254]").text(description); $(".js-view-count[data-work-id=75547254]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547254; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547254']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547254, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0d0c271402d78c2f5b0789d7a9972d73" } } $('.js-work-strip[data-work-id=75547254]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547254,"title":"Comparison of measurement systems for assessing number- and mass-based particle filtration efficiency","translated_title":"","metadata":{"abstract":"The particle filtration efficiency (PFE) of a respirator or face mask is one of its key properties. While the physics of particle filtration results in the PFE being size-dependent, measurement standards are specified using a single, integrated PFE, for simplicity. This integrated PFE is commonly defined with respect to either the number (NBFE) or mass (MBFE) distribution of particles as a function of size. This relationship is non-trivial; it is influenced by both the shape of the particle distribution and the fact that multiple practical definitions of particle size are used. This manuscript discusses the relationship between NBFE and MBFE in detail, providing a guide to practitioners. Our discussion begins with a theoretical discussion of the underlying principles. We then present experimental results for a database of size-resolved PFE (SPFE) measurements for over 900 candidate respirators and filter media, including filter media with systematically varied properties and commerc...","publication_date":{"day":null,"month":null,"year":2022,"errors":{}}},"translated_abstract":"The particle filtration efficiency (PFE) of a respirator or face mask is one of its key properties. While the physics of particle filtration results in the PFE being size-dependent, measurement standards are specified using a single, integrated PFE, for simplicity. This integrated PFE is commonly defined with respect to either the number (NBFE) or mass (MBFE) distribution of particles as a function of size. This relationship is non-trivial; it is influenced by both the shape of the particle distribution and the fact that multiple practical definitions of particle size are used. This manuscript discusses the relationship between NBFE and MBFE in detail, providing a guide to practitioners. Our discussion begins with a theoretical discussion of the underlying principles. We then present experimental results for a database of size-resolved PFE (SPFE) measurements for over 900 candidate respirators and filter media, including filter media with systematically varied properties and commerc...","internal_url":"https://www.academia.edu/75547254/Comparison_of_measurement_systems_for_assessing_number_and_mass_based_particle_filtration_efficiency","translated_internal_url":"","created_at":"2022-04-05T09:53:11.185-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83272137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272137/thumbnails/1.jpg","file_name":"2201.12446v1.pdf","download_url":"https://www.academia.edu/attachments/83272137/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparison_of_measurement_systems_for_as.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272137/2201.12446v1-libre.pdf?1649178400=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_measurement_systems_for_as.pdf\u0026Expires=1732772794\u0026Signature=WvJ7wN27bxvE1wy3Ym4J3o3VUXUbWwadke2IekCX4yoCDlMkgPsUqatkNynUVDpD2kYnONIRmDRLbI2Dlv-tKnHWNN4HYPPcf075DpH69RGn9Wqe9DEGQDvH88OQCBTTnYZP6QnW~MARsrhBGtnxbg2cab901juiOCw8pPaREgls3a6JkwRYycbdEhNKM~CFVkidrf5D8aCuAa63GN-VUpTFn3XxCfahC3dMRNmfIp98RNho4-5Vz7bvZTc0fn60~UzNacbFzeSFQXSFKvUcB1fhFcORvQx35OKyToMuIK9lROrIBsq5dbvdmElr0LcCFZLCkhtvWxDYudQMmXfMyg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comparison_of_measurement_systems_for_assessing_number_and_mass_based_particle_filtration_efficiency","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":83272137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272137/thumbnails/1.jpg","file_name":"2201.12446v1.pdf","download_url":"https://www.academia.edu/attachments/83272137/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparison_of_measurement_systems_for_as.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272137/2201.12446v1-libre.pdf?1649178400=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_measurement_systems_for_as.pdf\u0026Expires=1732772794\u0026Signature=WvJ7wN27bxvE1wy3Ym4J3o3VUXUbWwadke2IekCX4yoCDlMkgPsUqatkNynUVDpD2kYnONIRmDRLbI2Dlv-tKnHWNN4HYPPcf075DpH69RGn9Wqe9DEGQDvH88OQCBTTnYZP6QnW~MARsrhBGtnxbg2cab901juiOCw8pPaREgls3a6JkwRYycbdEhNKM~CFVkidrf5D8aCuAa63GN-VUpTFn3XxCfahC3dMRNmfIp98RNho4-5Vz7bvZTc0fn60~UzNacbFzeSFQXSFKvUcB1fhFcORvQx35OKyToMuIK9lROrIBsq5dbvdmElr0LcCFZLCkhtvWxDYudQMmXfMyg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":83272136,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272136/thumbnails/1.jpg","file_name":"2201.12446v1.pdf","download_url":"https://www.academia.edu/attachments/83272136/download_file","bulk_download_file_name":"Comparison_of_measurement_systems_for_as.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272136/2201.12446v1-libre.pdf?1649178401=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_measurement_systems_for_as.pdf\u0026Expires=1732772794\u0026Signature=LANIPMLm8YeAdJZuENqsWIftbN2H40YoQbVprrcKiz9obXNu29OBu7OC5l4pqzCegWtDqu~KvRZY~as5c~dp416VF7dzoTIVHL13c1IFgdwW07LejgqzeyTaNIiaiI~-DINKZGG4YXVLBhuwe5gTfvI~ObPJccWYJPSubF0zm6iWXc5QR0gprOL8F3z~moSixgPpzjghygHTqyEFUZczbudt8~NMqMM3j~jYzxBbkx5TUuHrZR4NQDqUioCvrzr~RvgGEypyqKv95rZJAzPOck0UQCncXu6RChrSjxJNtNSwqFNxaxWPYzoutFI4bj77SX-u86QGjUtVdaqtcZZXOA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":19153481,"url":"https://arxiv.org/pdf/2201.12446v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547253"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75547253/Filtration_and_breathability_of_nonwoven_fabrics_used_in_washable_masks"><img alt="Research paper thumbnail of Filtration and breathability of nonwoven fabrics used in washable masks" class="work-thumbnail" src="https://attachments.academia-assets.com/83272139/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75547253/Filtration_and_breathability_of_nonwoven_fabrics_used_in_washable_masks">Filtration and breathability of nonwoven fabrics used in washable masks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This study explores nonwoven and woven fabrics to improve upon the performance of the widespread ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This study explores nonwoven and woven fabrics to improve upon the performance of the widespread all-cotton mask, and examines the effect of layering, machine washing and drying on their filtration and breathability for submicron and supermicron particles. Individual materials were evaluated for their quality factor, Q, which combines filtration efficiency and breathability. Filtration was tested against particles 0.5 μm to 5 μm aerodynamic diameter. Nonwoven polyester and nonwoven polypropylene (craft fabrics, medical masks, and medical wraps) showed higher quality factors than woven materials (flannel cotton, Kona cotton, sateen cotton). Materials with meltblown nonwoven polypropylene filtered best, especially against submicron particles. Subsequently, we combined high performing fabrics into multi-layer sets, evaluating the sets’ quality factors before and after our washing protocol, which included machine washing, machine drying, and isopropanol soak. Sets incorporating meltblow...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f37cb4b99a11271b5848311c1dd414c3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:83272139,&quot;asset_id&quot;:75547253,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/83272139/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547253"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547253"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547253; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547253]").text(description); $(".js-view-count[data-work-id=75547253]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547253; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547253']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547253, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f37cb4b99a11271b5848311c1dd414c3" } } $('.js-work-strip[data-work-id=75547253]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547253,"title":"Filtration and breathability of nonwoven fabrics used in washable masks","translated_title":"","metadata":{"abstract":"This study explores nonwoven and woven fabrics to improve upon the performance of the widespread all-cotton mask, and examines the effect of layering, machine washing and drying on their filtration and breathability for submicron and supermicron particles. Individual materials were evaluated for their quality factor, Q, which combines filtration efficiency and breathability. Filtration was tested against particles 0.5 μm to 5 μm aerodynamic diameter. Nonwoven polyester and nonwoven polypropylene (craft fabrics, medical masks, and medical wraps) showed higher quality factors than woven materials (flannel cotton, Kona cotton, sateen cotton). Materials with meltblown nonwoven polypropylene filtered best, especially against submicron particles. Subsequently, we combined high performing fabrics into multi-layer sets, evaluating the sets’ quality factors before and after our washing protocol, which included machine washing, machine drying, and isopropanol soak. Sets incorporating meltblow...","publication_date":{"day":null,"month":null,"year":2022,"errors":{}}},"translated_abstract":"This study explores nonwoven and woven fabrics to improve upon the performance of the widespread all-cotton mask, and examines the effect of layering, machine washing and drying on their filtration and breathability for submicron and supermicron particles. Individual materials were evaluated for their quality factor, Q, which combines filtration efficiency and breathability. Filtration was tested against particles 0.5 μm to 5 μm aerodynamic diameter. Nonwoven polyester and nonwoven polypropylene (craft fabrics, medical masks, and medical wraps) showed higher quality factors than woven materials (flannel cotton, Kona cotton, sateen cotton). Materials with meltblown nonwoven polypropylene filtered best, especially against submicron particles. Subsequently, we combined high performing fabrics into multi-layer sets, evaluating the sets’ quality factors before and after our washing protocol, which included machine washing, machine drying, and isopropanol soak. Sets incorporating meltblow...","internal_url":"https://www.academia.edu/75547253/Filtration_and_breathability_of_nonwoven_fabrics_used_in_washable_masks","translated_internal_url":"","created_at":"2022-04-05T09:53:11.075-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83272139,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272139/thumbnails/1.jpg","file_name":"2202.03505v1.pdf","download_url":"https://www.academia.edu/attachments/83272139/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Filtration_and_breathability_of_nonwoven.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272139/2202.03505v1-libre.pdf?1649178404=\u0026response-content-disposition=attachment%3B+filename%3DFiltration_and_breathability_of_nonwoven.pdf\u0026Expires=1732772794\u0026Signature=BZiDmVgdUi4SHC1gzEV0yY0hlzWB1KvJDmlcXFKNvtuS7EsHOES1egy-YpcN--UtXW4J22xVXpHK1nN9WIAjRN5Su13N4Q3ihvJAilKRVOJW0u5SpAxBAhr5gCdLj6lXwfA3HpqfBU7HR0etzf15cqnEu8p9EXGRHKonK5GD8Z3YxetJ3K05GG0L0GGIUbg3cjPcaq~6dbAZVby~5rARtQU3JxX8Rv0bKMJAWRU0BHH3ldwaN8NL94HEC~2yNX2pgfO5ei5qV7RgNdhdUNxajpqma7058ZZE3E~60akQM50xDlBsCKycFRHbw8HIkkA1vb6aM1fisPa6Ua~lttpBxg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Filtration_and_breathability_of_nonwoven_fabrics_used_in_washable_masks","translated_slug":"","page_count":39,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":83272139,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272139/thumbnails/1.jpg","file_name":"2202.03505v1.pdf","download_url":"https://www.academia.edu/attachments/83272139/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Filtration_and_breathability_of_nonwoven.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272139/2202.03505v1-libre.pdf?1649178404=\u0026response-content-disposition=attachment%3B+filename%3DFiltration_and_breathability_of_nonwoven.pdf\u0026Expires=1732772794\u0026Signature=BZiDmVgdUi4SHC1gzEV0yY0hlzWB1KvJDmlcXFKNvtuS7EsHOES1egy-YpcN--UtXW4J22xVXpHK1nN9WIAjRN5Su13N4Q3ihvJAilKRVOJW0u5SpAxBAhr5gCdLj6lXwfA3HpqfBU7HR0etzf15cqnEu8p9EXGRHKonK5GD8Z3YxetJ3K05GG0L0GGIUbg3cjPcaq~6dbAZVby~5rARtQU3JxX8Rv0bKMJAWRU0BHH3ldwaN8NL94HEC~2yNX2pgfO5ei5qV7RgNdhdUNxajpqma7058ZZE3E~60akQM50xDlBsCKycFRHbw8HIkkA1vb6aM1fisPa6Ua~lttpBxg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":83272138,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272138/thumbnails/1.jpg","file_name":"2202.03505v1.pdf","download_url":"https://www.academia.edu/attachments/83272138/download_file","bulk_download_file_name":"Filtration_and_breathability_of_nonwoven.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272138/2202.03505v1-libre.pdf?1649178404=\u0026response-content-disposition=attachment%3B+filename%3DFiltration_and_breathability_of_nonwoven.pdf\u0026Expires=1732772794\u0026Signature=W-gNT5hs7ftnijQKUlXUf6VuFo7sfEb~ybcMDYJfRDgK-gWM1QZA-a4B3YYzzwL8oyQSsz2flM4J2s8avNeQ5XJLwMlSUZymo9pq3nTa9akxdNirzIgI-ecjfwZTmCH-1utW35Tu4g3EW87hzTH5nJPRU4XGK7ZpsdbAJrcRTmFrGYicBU3oB2bTuk2FwQhpSThi~2ims8s7L6PtzwfT1lLT5j7bhmRIzGuCtj3quvlVKxScE1L1-4NeOAP~dzkwVe4rDG6lnBPAZ1BNFR3EysxuSsLpyX01wmCuwmTLCCXdDjsu7d~nitmWIFJdk0CqILDAnhm286XGlxHTrCbXmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":19153480,"url":"https://arxiv.org/pdf/2202.03505v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547252"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75547252/Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods"><img alt="Research paper thumbnail of Particle filtration efficiency of commercial respirators and face masks: experimental comparison of test methods" class="work-thumbnail" src="https://attachments.academia-assets.com/83272179/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75547252/Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods">Particle filtration efficiency of commercial respirators and face masks: experimental comparison of test methods</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Respirators, medical masks, and barrier face coverings all filter airborne particles using simila...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles yet are tested using a variety of variety of standardized test methods. To quantify and understand the effects of differences between the standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). We systematically compared the experimental performance of the NIOSH and ASTM F2299 test methods in terms of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. Filtration efficiency is most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299 method have normally used non-neutralized (highly charged) aerosols at smaller face velocities, each of which may enhance measured filt...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="49fc125c9aaaa82e8e7cfd611047a4a7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:83272179,&quot;asset_id&quot;:75547252,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/83272179/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547252"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547252"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547252; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547252]").text(description); $(".js-view-count[data-work-id=75547252]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547252; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547252']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547252, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "49fc125c9aaaa82e8e7cfd611047a4a7" } } $('.js-work-strip[data-work-id=75547252]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547252,"title":"Particle filtration efficiency of commercial respirators and face masks: experimental comparison of test methods","translated_title":"","metadata":{"abstract":"Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles yet are tested using a variety of variety of standardized test methods. To quantify and understand the effects of differences between the standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). We systematically compared the experimental performance of the NIOSH and ASTM F2299 test methods in terms of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. Filtration efficiency is most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299 method have normally used non-neutralized (highly charged) aerosols at smaller face velocities, each of which may enhance measured filt...","publication_date":{"day":8,"month":6,"year":2021,"errors":{}}},"translated_abstract":"Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles yet are tested using a variety of variety of standardized test methods. To quantify and understand the effects of differences between the standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). We systematically compared the experimental performance of the NIOSH and ASTM F2299 test methods in terms of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. Filtration efficiency is most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299 method have normally used non-neutralized (highly charged) aerosols at smaller face velocities, each of which may enhance measured filt...","internal_url":"https://www.academia.edu/75547252/Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods","translated_internal_url":"","created_at":"2022-04-05T09:53:10.955-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83272179,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272179/thumbnails/1.jpg","file_name":"2106.pdf","download_url":"https://www.academia.edu/attachments/83272179/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Particle_filtration_efficiency_of_commer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272179/2106-libre.pdf?1649178400=\u0026response-content-disposition=attachment%3B+filename%3DParticle_filtration_efficiency_of_commer.pdf\u0026Expires=1732772794\u0026Signature=Q8-LGZjqRBcsHLHCpzxbClSkEvQvOzYtKR4oN1tB6QC6Fzjm~wsQ4iFUyzSGlsZbvpNlyoJUZF9PXHmTnHH1otKRaUJooSZr9h9xk9omyMMgXWQEunxGoX-lB~5IPIESmed2FwpR3YzQBQ2iNPzzZiWtk8qh54kvvUPMA1JRcyR1a1kXzb-~yMZxeaIuMOX2hrVky11a7N4f1wjGV-zSsL5qoLVeiL57G~PgmaxbyAZXTbiV8QqedavHa6hKzrFHzOSLSsQXz2-lYWETieKb~rMZJ5U6ZqvtZCvax7OuO5aNF6HnpmVJBh8FYKrCC4103qIZlSav36VAbA6SjzpjCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods","translated_slug":"","page_count":34,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":83272179,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272179/thumbnails/1.jpg","file_name":"2106.pdf","download_url":"https://www.academia.edu/attachments/83272179/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Particle_filtration_efficiency_of_commer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272179/2106-libre.pdf?1649178400=\u0026response-content-disposition=attachment%3B+filename%3DParticle_filtration_efficiency_of_commer.pdf\u0026Expires=1732772794\u0026Signature=Q8-LGZjqRBcsHLHCpzxbClSkEvQvOzYtKR4oN1tB6QC6Fzjm~wsQ4iFUyzSGlsZbvpNlyoJUZF9PXHmTnHH1otKRaUJooSZr9h9xk9omyMMgXWQEunxGoX-lB~5IPIESmed2FwpR3YzQBQ2iNPzzZiWtk8qh54kvvUPMA1JRcyR1a1kXzb-~yMZxeaIuMOX2hrVky11a7N4f1wjGV-zSsL5qoLVeiL57G~PgmaxbyAZXTbiV8QqedavHa6hKzrFHzOSLSsQXz2-lYWETieKb~rMZJ5U6ZqvtZCvax7OuO5aNF6HnpmVJBh8FYKrCC4103qIZlSav36VAbA6SjzpjCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547251"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75547251/Aggregate_level_segmentation_of_soot_TEM_images_by_unsupervised_machine_learning"><img alt="Research paper thumbnail of Aggregate-level segmentation of soot TEM images by unsupervised machine learning" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/75547251/Aggregate_level_segmentation_of_soot_TEM_images_by_unsupervised_machine_learning">Aggregate-level segmentation of soot TEM images by unsupervised machine learning</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547251"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547251"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547251; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547251]").text(description); $(".js-view-count[data-work-id=75547251]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547251; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547251']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547251, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75547251]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547251,"title":"Aggregate-level segmentation of soot TEM images by unsupervised machine learning","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/75547251/Aggregate_level_segmentation_of_soot_TEM_images_by_unsupervised_machine_learning","translated_internal_url":"","created_at":"2022-04-05T09:53:10.874-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Aggregate_level_segmentation_of_soot_TEM_images_by_unsupervised_machine_learning","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547250"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75547250/Background_oriented_schlieren_tomography_for_instantaneous_3D_combustion_imaging"><img alt="Research paper thumbnail of Background-oriented schlieren tomography for instantaneous 3D combustion imaging" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/75547250/Background_oriented_schlieren_tomography_for_instantaneous_3D_combustion_imaging">Background-oriented schlieren tomography for instantaneous 3D combustion imaging</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547250"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547250"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547250; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547250]").text(description); $(".js-view-count[data-work-id=75547250]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547250; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547250']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547250, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75547250]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547250,"title":"Background-oriented schlieren tomography for instantaneous 3D combustion imaging","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2018,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/75547250/Background_oriented_schlieren_tomography_for_instantaneous_3D_combustion_imaging","translated_internal_url":"","created_at":"2022-04-05T09:53:10.043-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Background_oriented_schlieren_tomography_for_instantaneous_3D_combustion_imaging","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547249"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75547249/Defining_regimes_and_analytical_expressions_for_fluence_curves_in_pulsed_laser_heating_of_aerosolized_nanoparticles"><img alt="Research paper thumbnail of Defining regimes and analytical expressions for fluence curves in pulsed laser heating of aerosolized nanoparticles" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75547249/Defining_regimes_and_analytical_expressions_for_fluence_curves_in_pulsed_laser_heating_of_aerosolized_nanoparticles">Defining regimes and analytical expressions for fluence curves in pulsed laser heating of aerosolized nanoparticles</a></div><div class="wp-workCard_item"><span>Optics Express</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fluence curves are a powerful tool for understanding the mechanisms underlying nanosecond pulse l...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fluence curves are a powerful tool for understanding the mechanisms underlying nanosecond pulse laser heating of aerosolized nanoparticles, which is relevant to laser-induced incandescence (LII). This paper presents analytical expressions encompassing the entirety of the fluence domain considered in LII and uses them to formally define fluence regimes. The derived expressions and non-dimensional parameters facilitate one of the first comparisons of published experimental fluence curves. This procedure provides physical insight into the laser-nanoparticle interaction and highlights inconsistencies in the application of LII models to analyze the data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547249"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547249"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547249; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547249]").text(description); $(".js-view-count[data-work-id=75547249]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547249; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547249']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547249, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75547249]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547249,"title":"Defining regimes and analytical expressions for fluence curves in pulsed laser heating of aerosolized nanoparticles","translated_title":"","metadata":{"abstract":"Fluence curves are a powerful tool for understanding the mechanisms underlying nanosecond pulse laser heating of aerosolized nanoparticles, which is relevant to laser-induced incandescence (LII). This paper presents analytical expressions encompassing the entirety of the fluence domain considered in LII and uses them to formally define fluence regimes. The derived expressions and non-dimensional parameters facilitate one of the first comparisons of published experimental fluence curves. This procedure provides physical insight into the laser-nanoparticle interaction and highlights inconsistencies in the application of LII models to analyze the data.","publisher":"The Optical Society","publication_name":"Optics Express"},"translated_abstract":"Fluence curves are a powerful tool for understanding the mechanisms underlying nanosecond pulse laser heating of aerosolized nanoparticles, which is relevant to laser-induced incandescence (LII). This paper presents analytical expressions encompassing the entirety of the fluence domain considered in LII and uses them to formally define fluence regimes. The derived expressions and non-dimensional parameters facilitate one of the first comparisons of published experimental fluence curves. This procedure provides physical insight into the laser-nanoparticle interaction and highlights inconsistencies in the application of LII models to analyze the data.","internal_url":"https://www.academia.edu/75547249/Defining_regimes_and_analytical_expressions_for_fluence_curves_in_pulsed_laser_heating_of_aerosolized_nanoparticles","translated_internal_url":"","created_at":"2022-04-05T09:53:09.914-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Defining_regimes_and_analytical_expressions_for_fluence_curves_in_pulsed_laser_heating_of_aerosolized_nanoparticles","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":516,"name":"Optics","url":"https://www.academia.edu/Documents/in/Optics"},{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":13621,"name":"Nanoparticles","url":"https://www.academia.edu/Documents/in/Nanoparticles"},{"id":48337,"name":"Laser Diagnostics","url":"https://www.academia.edu/Documents/in/Laser_Diagnostics"},{"id":263152,"name":"Optical physics","url":"https://www.academia.edu/Documents/in/Optical_physics"},{"id":283313,"name":"Soot","url":"https://www.academia.edu/Documents/in/Soot"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":19153479,"url":"https://www.osapublishing.org/viewmedia.cfm?URI=oe-25-5-5684\u0026seq=0"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547228"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75547228/Thermal_accommodation_coefficients_for_time_resolved_laser_induced_incandescence_sizing_of_metal_nanoparticles_in_monotomic_gases"><img alt="Research paper thumbnail of Thermal accommodation coefficients for time-resolved laser-induced incandescence sizing of metal nanoparticles in monotomic gases" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/75547228/Thermal_accommodation_coefficients_for_time_resolved_laser_induced_incandescence_sizing_of_metal_nanoparticles_in_monotomic_gases">Thermal accommodation coefficients for time-resolved laser-induced incandescence sizing of metal nanoparticles in monotomic gases</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">There is recent interest in adapting time-resolved laser-induced incandescence (TiRE-LII) to meas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">There is recent interest in adapting time-resolved laser-induced incandescence (TiRE-LII) to measure aerosolized metal nanoparticles, which requires knowledge of the thermal accommodation coefficient between the gas and the laser-energized particle. This paper presents accommodation coefficients for various metal particles in monatomic gases derived using molecular dynamics (MD). A comparative analysis of different gas/metal systems reveals a fundamental relationship between the thermal accommodation coefficient and the potential well depth. Finally, MD derived accommodation coefficients are used, for the first time, to recover particle sizes from TiRe-LII measurements made on molybdenum nanoparticles in helium and argon atmospheres.Copyright © 2012 by ASME</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547228"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547228"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547228; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547228]").text(description); $(".js-view-count[data-work-id=75547228]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547228; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547228']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547228, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75547228]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547228,"title":"Thermal accommodation coefficients for time-resolved laser-induced incandescence sizing of metal nanoparticles in monotomic gases","translated_title":"","metadata":{"abstract":"There is recent interest in adapting time-resolved laser-induced incandescence (TiRE-LII) to measure aerosolized metal nanoparticles, which requires knowledge of the thermal accommodation coefficient between the gas and the laser-energized particle. This paper presents accommodation coefficients for various metal particles in monatomic gases derived using molecular dynamics (MD). A comparative analysis of different gas/metal systems reveals a fundamental relationship between the thermal accommodation coefficient and the potential well depth. Finally, MD derived accommodation coefficients are used, for the first time, to recover particle sizes from TiRe-LII measurements made on molybdenum nanoparticles in helium and argon atmospheres.Copyright © 2012 by ASME","publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":"There is recent interest in adapting time-resolved laser-induced incandescence (TiRE-LII) to measure aerosolized metal nanoparticles, which requires knowledge of the thermal accommodation coefficient between the gas and the laser-energized particle. This paper presents accommodation coefficients for various metal particles in monatomic gases derived using molecular dynamics (MD). A comparative analysis of different gas/metal systems reveals a fundamental relationship between the thermal accommodation coefficient and the potential well depth. Finally, MD derived accommodation coefficients are used, for the first time, to recover particle sizes from TiRe-LII measurements made on molybdenum nanoparticles in helium and argon atmospheres.Copyright © 2012 by ASME","internal_url":"https://www.academia.edu/75547228/Thermal_accommodation_coefficients_for_time_resolved_laser_induced_incandescence_sizing_of_metal_nanoparticles_in_monotomic_gases","translated_internal_url":"","created_at":"2022-04-05T09:52:42.390-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Thermal_accommodation_coefficients_for_time_resolved_laser_induced_incandescence_sizing_of_metal_nanoparticles_in_monotomic_gases","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71535508"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/71535508/MATLAB_tools_for_PMA_transfer_function_evaluation_mat_tfer_pma_"><img alt="Research paper thumbnail of MATLAB tools for PMA transfer function evaluation (mat-tfer-pma)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/71535508/MATLAB_tools_for_PMA_transfer_function_evaluation_mat_tfer_pma_">MATLAB tools for PMA transfer function evaluation (mat-tfer-pma)</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The attached MATLAB functions and scripts are intended to reproduce the results of the associated...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The attached MATLAB functions and scripts are intended to reproduce the results of the associated paper (Sipkens et al., Aerosol Sci. Technol. 2019). They evaluate the transfer function of particle mass analyzers (PMAs), including the centrifugal particle mass analyzer (CPMA) and aerosol particle mass analyzer (APM). This is done using a novel set of expressions derived from particle tracking methods and using a finite difference method. Information on each file is given as header information in each file, and only a brief overview is provided here. Release officially associated with the associated paper (Sipkens et al., Aerosol Sci. Technol. 2019).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71535508"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71535508"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71535508; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71535508]").text(description); $(".js-view-count[data-work-id=71535508]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71535508; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71535508']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71535508, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=71535508]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71535508,"title":"MATLAB tools for PMA transfer function evaluation (mat-tfer-pma)","translated_title":"","metadata":{"abstract":"The attached MATLAB functions and scripts are intended to reproduce the results of the associated paper (Sipkens et al., Aerosol Sci. Technol. 2019). They evaluate the transfer function of particle mass analyzers (PMAs), including the centrifugal particle mass analyzer (CPMA) and aerosol particle mass analyzer (APM). This is done using a novel set of expressions derived from particle tracking methods and using a finite difference method. Information on each file is given as header information in each file, and only a brief overview is provided here. Release officially associated with the associated paper (Sipkens et al., Aerosol Sci. Technol. 2019).","publisher":"Zenodo","publication_date":{"day":20,"month":10,"year":2019,"errors":{}}},"translated_abstract":"The attached MATLAB functions and scripts are intended to reproduce the results of the associated paper (Sipkens et al., Aerosol Sci. Technol. 2019). They evaluate the transfer function of particle mass analyzers (PMAs), including the centrifugal particle mass analyzer (CPMA) and aerosol particle mass analyzer (APM). This is done using a novel set of expressions derived from particle tracking methods and using a finite difference method. Information on each file is given as header information in each file, and only a brief overview is provided here. Release officially associated with the associated paper (Sipkens et al., Aerosol Sci. Technol. 2019).","internal_url":"https://www.academia.edu/71535508/MATLAB_tools_for_PMA_transfer_function_evaluation_mat_tfer_pma_","translated_internal_url":"","created_at":"2022-02-14T12:14:23.902-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"MATLAB_tools_for_PMA_transfer_function_evaluation_mat_tfer_pma_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71535490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71535490/Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods"><img alt="Research paper thumbnail of Particle filtration efficiency of commercial respirators and face masks: experimental comparison of test methods" class="work-thumbnail" src="https://attachments.academia-assets.com/80836131/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71535490/Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods">Particle filtration efficiency of commercial respirators and face masks: experimental comparison of test methods</a></div><div class="wp-workCard_item"><span>arXiv: Medical Physics</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Respirators, medical masks, and barrier face coverings all filter airborne particles using simila...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles yet are tested using a variety of variety of standardized test methods. To quantify and understand the effects of differences between the standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). We systematically compared the experimental performance of the NIOSH and ASTM F2299 test methods in terms of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. Filtration efficiency is most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299 method have normally used non-neutralized (highly charged) aerosols at smaller face velocities, each of which may enhance measured filt...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dea00767d58a53db0576aa63ed951d8e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80836131,&quot;asset_id&quot;:71535490,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80836131/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71535490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71535490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71535490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71535490]").text(description); $(".js-view-count[data-work-id=71535490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71535490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71535490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71535490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dea00767d58a53db0576aa63ed951d8e" } } $('.js-work-strip[data-work-id=71535490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71535490,"title":"Particle filtration efficiency of commercial respirators and face masks: experimental comparison of test methods","translated_title":"","metadata":{"abstract":"Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles yet are tested using a variety of variety of standardized test methods. To quantify and understand the effects of differences between the standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). We systematically compared the experimental performance of the NIOSH and ASTM F2299 test methods in terms of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. Filtration efficiency is most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299 method have normally used non-neutralized (highly charged) aerosols at smaller face velocities, each of which may enhance measured filt...","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"arXiv: Medical Physics"},"translated_abstract":"Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles yet are tested using a variety of variety of standardized test methods. To quantify and understand the effects of differences between the standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). We systematically compared the experimental performance of the NIOSH and ASTM F2299 test methods in terms of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. Filtration efficiency is most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299 method have normally used non-neutralized (highly charged) aerosols at smaller face velocities, each of which may enhance measured filt...","internal_url":"https://www.academia.edu/71535490/Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods","translated_internal_url":"","created_at":"2022-02-14T12:14:05.674-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80836131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80836131/thumbnails/1.jpg","file_name":"2106.pdf","download_url":"https://www.academia.edu/attachments/80836131/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Particle_filtration_efficiency_of_commer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80836131/2106-libre.pdf?1644869710=\u0026response-content-disposition=attachment%3B+filename%3DParticle_filtration_efficiency_of_commer.pdf\u0026Expires=1732772794\u0026Signature=GwiOYId~NapT8ezZcB5wTKb6f8QC-Hr4faiEpU3XOfobaC0nbM8~puLGLJkpRrCTvjHGQbFPTkxhFOTh7Z30e5nXFbWTGO1U5olU0wpUz-QPWNGwF80ZEhQVrcso8yyr~EuLv2RrJorndzbbhHlk9UMwGwshs~WsApkbarlwdVSk4~SPn~0sCIo7tBQshX932Ht7X-eptm98A-u2ZE6nRAv-SeWpoRcqJlGOUxUtHS1l6PKmMw1oroPcpjDi3lkKeIxhTKBHVjLQ2qlPsYCIT5z5wvJa2aPxr21NMKzN1T3lV-ejI9W3HXFTMg~OZBy3blh0DwzZYzjxh7W3LzGCJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods","translated_slug":"","page_count":34,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":80836131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80836131/thumbnails/1.jpg","file_name":"2106.pdf","download_url":"https://www.academia.edu/attachments/80836131/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Particle_filtration_efficiency_of_commer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80836131/2106-libre.pdf?1644869710=\u0026response-content-disposition=attachment%3B+filename%3DParticle_filtration_efficiency_of_commer.pdf\u0026Expires=1732772794\u0026Signature=GwiOYId~NapT8ezZcB5wTKb6f8QC-Hr4faiEpU3XOfobaC0nbM8~puLGLJkpRrCTvjHGQbFPTkxhFOTh7Z30e5nXFbWTGO1U5olU0wpUz-QPWNGwF80ZEhQVrcso8yyr~EuLv2RrJorndzbbhHlk9UMwGwshs~WsApkbarlwdVSk4~SPn~0sCIo7tBQshX932Ht7X-eptm98A-u2ZE6nRAv-SeWpoRcqJlGOUxUtHS1l6PKmMw1oroPcpjDi3lkKeIxhTKBHVjLQ2qlPsYCIT5z5wvJa2aPxr21NMKzN1T3lV-ejI9W3HXFTMg~OZBy3blh0DwzZYzjxh7W3LzGCJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80836130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80836130/thumbnails/1.jpg","file_name":"2106.pdf","download_url":"https://www.academia.edu/attachments/80836130/download_file","bulk_download_file_name":"Particle_filtration_efficiency_of_commer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80836130/2106-libre.pdf?1644869713=\u0026response-content-disposition=attachment%3B+filename%3DParticle_filtration_efficiency_of_commer.pdf\u0026Expires=1732772794\u0026Signature=BxVkBUIUv5rToaZy5xAViLu6sES2eTv8HrSuY1oszV0r-Fo6fk8Yysj4mGnkNWV~Va~RFk1nIicdkNH61MhUO33k8GTqMqs~73XMgZTfRLxgKzU6kEADWI6IR1kybmtdi5IiHPbTfZz8lPRSOaaQ0wKDEaZOCTKmPlwxBn9ib5s53zoFcmnY1W~2R9KLAs5UKpz4xaA9~YZdSVe4NKT48gCirUU4N733mTEkftoxpNHMX3Xtg0~YFKbS0PVDrOR~sQ~W5ZV7IwqIBPRRqgu87iInfcKVPDniLusfz7IPdFgLwenH6srV7fcBa4zhZ2HGiKgSaaKfHlYaPpV3WCuG6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"}],"urls":[{"id":17686526,"url":"http://arxiv-export-lb.library.cornell.edu/pdf/2106.04059"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878398"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65878398/Sizing_of_Non_Carbonaceous_Nanoparticles_by_Time_Resolved_Laser_Induced_Incandescence"><img alt="Research paper thumbnail of Sizing of Non-Carbonaceous Nanoparticles by Time-Resolved Laser-Induced Incandescence" class="work-thumbnail" src="https://attachments.academia-assets.com/77284652/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65878398/Sizing_of_Non_Carbonaceous_Nanoparticles_by_Time_Resolved_Laser_Induced_Incandescence">Sizing of Non-Carbonaceous Nanoparticles by Time-Resolved Laser-Induced Incandescence</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4de60a05a817db861a12c01b55675942" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77284652,&quot;asset_id&quot;:65878398,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77284652/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878398"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878398"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878398; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878398]").text(description); $(".js-view-count[data-work-id=65878398]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878398; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878398']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878398, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4de60a05a817db861a12c01b55675942" } } $('.js-work-strip[data-work-id=65878398]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878398,"title":"Sizing of Non-Carbonaceous Nanoparticles by Time-Resolved Laser-Induced Incandescence","translated_title":"","metadata":{"grobid_abstract":"I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"grobid_abstract_attachment_id":77284652},"translated_abstract":null,"internal_url":"https://www.academia.edu/65878398/Sizing_of_Non_Carbonaceous_Nanoparticles_by_Time_Resolved_Laser_Induced_Incandescence","translated_internal_url":"","created_at":"2021-12-24T10:02:59.913-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77284652,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284652/thumbnails/1.jpg","file_name":"Sipkens_Timothy.pdf","download_url":"https://www.academia.edu/attachments/77284652/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sizing_of_Non_Carbonaceous_Nanoparticles.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284652/Sipkens_Timothy-libre.pdf?1640376517=\u0026response-content-disposition=attachment%3B+filename%3DSizing_of_Non_Carbonaceous_Nanoparticles.pdf\u0026Expires=1732772794\u0026Signature=Xc4RLfD8aJ1AhbH0jc6nF5kSCjDEZssR-D8cml0XAcnBuahClcbfBJWygmNyALI7~TpFj8QnqaTab4lMy78XBoP8K8jxjCoxd~Ik1eL1P5uCqjl0BqYhnq7DMMYeWAkb03hgD~DkIz92zSxqLvzswEIJPfC~bVZDf6yaZ3o87ESynaEHewruzhAp8nCIz0mHX~GFw3lCnWM9LUG2c1s7NA9fGPhqW4oA~Thv2eY-W1DY7F9a-OryR~K0vN~XOuB2nfj5-Fsm0KBaX8XgBuRx-Q6YIyN~HfIBFLjFq-H7IQJX4LAB6wkb0c7OhUBTxf-otC5yrptpFV7wB2arBpoYWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sizing_of_Non_Carbonaceous_Nanoparticles_by_Time_Resolved_Laser_Induced_Incandescence","translated_slug":"","page_count":136,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":77284652,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284652/thumbnails/1.jpg","file_name":"Sipkens_Timothy.pdf","download_url":"https://www.academia.edu/attachments/77284652/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sizing_of_Non_Carbonaceous_Nanoparticles.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284652/Sipkens_Timothy-libre.pdf?1640376517=\u0026response-content-disposition=attachment%3B+filename%3DSizing_of_Non_Carbonaceous_Nanoparticles.pdf\u0026Expires=1732772794\u0026Signature=Xc4RLfD8aJ1AhbH0jc6nF5kSCjDEZssR-D8cml0XAcnBuahClcbfBJWygmNyALI7~TpFj8QnqaTab4lMy78XBoP8K8jxjCoxd~Ik1eL1P5uCqjl0BqYhnq7DMMYeWAkb03hgD~DkIz92zSxqLvzswEIJPfC~bVZDf6yaZ3o87ESynaEHewruzhAp8nCIz0mHX~GFw3lCnWM9LUG2c1s7NA9fGPhqW4oA~Thv2eY-W1DY7F9a-OryR~K0vN~XOuB2nfj5-Fsm0KBaX8XgBuRx-Q6YIyN~HfIBFLjFq-H7IQJX4LAB6wkb0c7OhUBTxf-otC5yrptpFV7wB2arBpoYWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":77284653,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284653/thumbnails/1.jpg","file_name":"Sipkens_Timothy.pdf","download_url":"https://www.academia.edu/attachments/77284653/download_file","bulk_download_file_name":"Sizing_of_Non_Carbonaceous_Nanoparticles.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284653/Sipkens_Timothy-libre.pdf?1640376527=\u0026response-content-disposition=attachment%3B+filename%3DSizing_of_Non_Carbonaceous_Nanoparticles.pdf\u0026Expires=1732772794\u0026Signature=AMzFG24R8gw~2YaelJZzL8CtZfh5S8f3YTDMIPNiVQW3YaHl9Ma6k5D5erCNGtK9geGKndHMc5vtqSXQxPUQJ6xxErHw3D1mMWdeg7BaeKB833OUh2ajGfr1l7SgHRMgDFlon0MPJrF~32BzazIdhla7xYZDcvjnI9LiJl6~BhQhshGFIBD7yRSm6qcV3LKgdOf9zl6UzpGSeqybQAH6MHTSGDx6~3FltGBY5l4K4PV7tN2QaeuSewNAFQkVI~~bMb4GV6dPpzDxH1vxTfx5YzvoYaNpUOrTD-wYaT7Q7jEROfDoU8EDuL8tAztkDSM1vRcmPEWiz0Cj6EtcN~ZlYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":15658737,"url":"https://uwspace.uwaterloo.ca/bitstream/handle/10012/8890/Sipkens_Timothy.pdf?isAllowed=y\u0026sequence=1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878397"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65878397/Advances_in_the_Modeling_of_Time_Resolved_Laser_Induced_Incandescence"><img alt="Research paper thumbnail of Advances in the Modeling of Time-Resolved Laser-Induced Incandescence" class="work-thumbnail" src="https://attachments.academia-assets.com/77284650/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65878397/Advances_in_the_Modeling_of_Time_Resolved_Laser_Induced_Incandescence">Advances in the Modeling of Time-Resolved Laser-Induced Incandescence</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">iv Sipkens, 2018 Abstract Aerosolized nanoparticles represent both great potential for the develo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">iv Sipkens, 2018 Abstract Aerosolized nanoparticles represent both great potential for the development of emerging technologies and one of the biggest challenges currently facing our planet. In the former case, aerosol-based synthesis techniques represent one of the most cost-effective approaches to generating engineered nanoparticles having applications that range from medicine to energy. In the latter case, aerosolized soot is the second largest forcing factor after carbon dioxide in climate change models and contributes significantly to asthma, bronchitis, and various other respiratory illnesses. The increased predominance of engineered nanoparticles also presents significant environmental and health risks due to various toxicological effects. In any of these cases, robust characterization is critical to the function and regulation of these nanoaerosols. Time-resolved laser-induced incandescence (TiRe-LII) is well-suited to meeting this challenge. Since its inception in the 1980s...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="41e507f7282357fc4ddda121206f2bd5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77284650,&quot;asset_id&quot;:65878397,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77284650/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878397"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878397"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878397; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878397]").text(description); $(".js-view-count[data-work-id=65878397]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878397; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878397']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878397, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "41e507f7282357fc4ddda121206f2bd5" } } $('.js-work-strip[data-work-id=65878397]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878397,"title":"Advances in the Modeling of Time-Resolved Laser-Induced Incandescence","translated_title":"","metadata":{"abstract":"iv Sipkens, 2018 Abstract Aerosolized nanoparticles represent both great potential for the development of emerging technologies and one of the biggest challenges currently facing our planet. In the former case, aerosol-based synthesis techniques represent one of the most cost-effective approaches to generating engineered nanoparticles having applications that range from medicine to energy. In the latter case, aerosolized soot is the second largest forcing factor after carbon dioxide in climate change models and contributes significantly to asthma, bronchitis, and various other respiratory illnesses. The increased predominance of engineered nanoparticles also presents significant environmental and health risks due to various toxicological effects. In any of these cases, robust characterization is critical to the function and regulation of these nanoaerosols. Time-resolved laser-induced incandescence (TiRe-LII) is well-suited to meeting this challenge. Since its inception in the 1980s...","publication_date":{"day":null,"month":null,"year":2018,"errors":{}}},"translated_abstract":"iv Sipkens, 2018 Abstract Aerosolized nanoparticles represent both great potential for the development of emerging technologies and one of the biggest challenges currently facing our planet. In the former case, aerosol-based synthesis techniques represent one of the most cost-effective approaches to generating engineered nanoparticles having applications that range from medicine to energy. In the latter case, aerosolized soot is the second largest forcing factor after carbon dioxide in climate change models and contributes significantly to asthma, bronchitis, and various other respiratory illnesses. The increased predominance of engineered nanoparticles also presents significant environmental and health risks due to various toxicological effects. In any of these cases, robust characterization is critical to the function and regulation of these nanoaerosols. Time-resolved laser-induced incandescence (TiRe-LII) is well-suited to meeting this challenge. Since its inception in the 1980s...","internal_url":"https://www.academia.edu/65878397/Advances_in_the_Modeling_of_Time_Resolved_Laser_Induced_Incandescence","translated_internal_url":"","created_at":"2021-12-24T10:02:59.795-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77284650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284650/thumbnails/1.jpg","file_name":"Sipkens_Timothy.pdf","download_url":"https://www.academia.edu/attachments/77284650/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Advances_in_the_Modeling_of_Time_Resolve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284650/Sipkens_Timothy-libre.pdf?1640376755=\u0026response-content-disposition=attachment%3B+filename%3DAdvances_in_the_Modeling_of_Time_Resolve.pdf\u0026Expires=1732772794\u0026Signature=AxfP7BfpTyKw0REGJLKv8IpxHKdgN-Ay1Erb7rvpAkkeOTMePrwIqDQJjC7cXDom1MENyxhxTOA3QNm~XAqXXQlvl0WlkZ~PDHBv0o1rFPqiq2SuDPgphmu1e58DK77HgIhR4lyNs7YnzqUkQYsbZdjJS4ZdEyoAEkJRBvmuW3YLYLzsIUM945qLzUa2vyTr5b6PTBJEnIqZeh8lvJJlyEvZAC~3dovHvv7fEFXBLmx3PpG6KT502AbImVBDQlEZrPuTYU~K7qKx3t3ceT~UKCxkLXhFjvc0AjbG7RVDkJ6YdH8fN5IWIDBD1JMbAVXku94DLxwf4Y1GRuL92Vig0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Advances_in_the_Modeling_of_Time_Resolved_Laser_Induced_Incandescence","translated_slug":"","page_count":318,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":77284650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284650/thumbnails/1.jpg","file_name":"Sipkens_Timothy.pdf","download_url":"https://www.academia.edu/attachments/77284650/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Advances_in_the_Modeling_of_Time_Resolve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284650/Sipkens_Timothy-libre.pdf?1640376755=\u0026response-content-disposition=attachment%3B+filename%3DAdvances_in_the_Modeling_of_Time_Resolve.pdf\u0026Expires=1732772794\u0026Signature=AxfP7BfpTyKw0REGJLKv8IpxHKdgN-Ay1Erb7rvpAkkeOTMePrwIqDQJjC7cXDom1MENyxhxTOA3QNm~XAqXXQlvl0WlkZ~PDHBv0o1rFPqiq2SuDPgphmu1e58DK77HgIhR4lyNs7YnzqUkQYsbZdjJS4ZdEyoAEkJRBvmuW3YLYLzsIUM945qLzUa2vyTr5b6PTBJEnIqZeh8lvJJlyEvZAC~3dovHvv7fEFXBLmx3PpG6KT502AbImVBDQlEZrPuTYU~K7qKx3t3ceT~UKCxkLXhFjvc0AjbG7RVDkJ6YdH8fN5IWIDBD1JMbAVXku94DLxwf4Y1GRuL92Vig0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":77284651,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284651/thumbnails/1.jpg","file_name":"Sipkens_Timothy.pdf","download_url":"https://www.academia.edu/attachments/77284651/download_file","bulk_download_file_name":"Advances_in_the_Modeling_of_Time_Resolve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284651/Sipkens_Timothy-libre.pdf?1640376744=\u0026response-content-disposition=attachment%3B+filename%3DAdvances_in_the_Modeling_of_Time_Resolve.pdf\u0026Expires=1732772794\u0026Signature=f98V7zzZ~PEEjQ3pCB46q9FCM0AGBduX5Xn5VVsEUdCX4WWhyFhRyCWNy3lk4YKOVB0Wes2dmI5tFiyoec~NdsVkUbPAGQgST47pYC7BvqbZyziUhTi0Z6ur5bfFJboaNe-TOBAmWujAJ0v0juGdBMeYw-D-0P-3l78-Mkqz3Fj2M5jSU3xaMvkEOB9e1qARR0-KditlO~kiykPk49~2rLijKS7bE-ygku87ulnBKdKcaQ9uYzrAAttkMkiAUO59iK~tX~OLKMXZ6MAllUkIAXMWkz0udQjZong3nfd~CFPTV36uCGkwInULrAdjs82QDztHKBj52o1iGj9vNqtKvg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":15658736,"url":"https://uwspace.uwaterloo.ca/bitstream/handle/10012/13860/Sipkens_Timothy.pdf?isAllowed=y\u0026sequence=7"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878396"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65878396/Systematic_experimental_comparison_of_particle_filtration_efficiency_test_methods_for_commercial_respirators_and_face_masks_preprint_"><img alt="Research paper thumbnail of Systematic experimental comparison of particle filtration efficiency test methods for commercial respirators and face masks (preprint)" class="work-thumbnail" src="https://attachments.academia-assets.com/77284649/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65878396/Systematic_experimental_comparison_of_particle_filtration_efficiency_test_methods_for_commercial_respirators_and_face_masks_preprint_">Systematic experimental comparison of particle filtration efficiency test methods for commercial respirators and face masks (preprint)</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Respirators, medical masks, and barrier face coverings all filter airborne particles using simila...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles. However, they are tested for certification using a variety of standardized test methods, creating challenges for the comparison of differently certified products. We have performed systematic experiments to quantify and understand the differences between standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). Our experiments demonstrate the role of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. The measured filtration efficiency was most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299/F2100 method have commonly used non-neutralized (highly charged) aerosol...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="21c97b856c250c42ab8dcd21aa88292a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77284649,&quot;asset_id&quot;:65878396,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77284649/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878396"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878396"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878396; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878396]").text(description); $(".js-view-count[data-work-id=65878396]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878396; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878396']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878396, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "21c97b856c250c42ab8dcd21aa88292a" } } $('.js-work-strip[data-work-id=65878396]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878396,"title":"Systematic experimental comparison of particle filtration efficiency test methods for commercial respirators and face masks (preprint)","translated_title":"","metadata":{"abstract":"Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles. However, they are tested for certification using a variety of standardized test methods, creating challenges for the comparison of differently certified products. We have performed systematic experiments to quantify and understand the differences between standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). Our experiments demonstrate the role of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. The measured filtration efficiency was most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299/F2100 method have commonly used non-neutralized (highly charged) aerosol...","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles. However, they are tested for certification using a variety of standardized test methods, creating challenges for the comparison of differently certified products. We have performed systematic experiments to quantify and understand the differences between standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). Our experiments demonstrate the role of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. The measured filtration efficiency was most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299/F2100 method have commonly used non-neutralized (highly charged) aerosol...","internal_url":"https://www.academia.edu/65878396/Systematic_experimental_comparison_of_particle_filtration_efficiency_test_methods_for_commercial_respirators_and_face_masks_preprint_","translated_internal_url":"","created_at":"2021-12-24T10:02:59.675-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77284649,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284649/thumbnails/1.jpg","file_name":"2106.04059v2.pdf","download_url":"https://www.academia.edu/attachments/77284649/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Systematic_experimental_comparison_of_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284649/2106.04059v2-libre.pdf?1640376493=\u0026response-content-disposition=attachment%3B+filename%3DSystematic_experimental_comparison_of_pa.pdf\u0026Expires=1732772794\u0026Signature=bvm-SsdjNXY5SfwJD-6l5nd3~G8nnVzjUtQLYTgwPKs9W4MIG~LabwElOVD4twD2c4HvENkJA4n1Og3a0bfEsIaXSZ5OVHH-CihYf3qpPps-R59JM4jC3vd6o9Boa8RXDVXDPWGywIsdZf6aWBIGf8nuyPhOGGLFAy0XAXonN3J1cIOLoHJSXvuvwoiF-jlSV0-nWlNSwsNcIYwNfWlT6qNlyQFfH9fui5ndvtCskxtXms2vuGW9~4wPlAVXH0-7aFzanx8RAZHuFsff7qlQA4AYtzpDzJLM9DmJ2mJzdg4BdH3KYRcP8wxRweCoiLKW1uwgFArcxDHr-W47cXnsNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Systematic_experimental_comparison_of_particle_filtration_efficiency_test_methods_for_commercial_respirators_and_face_masks_preprint_","translated_slug":"","page_count":34,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":77284649,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284649/thumbnails/1.jpg","file_name":"2106.04059v2.pdf","download_url":"https://www.academia.edu/attachments/77284649/download_file?st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Systematic_experimental_comparison_of_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284649/2106.04059v2-libre.pdf?1640376493=\u0026response-content-disposition=attachment%3B+filename%3DSystematic_experimental_comparison_of_pa.pdf\u0026Expires=1732772794\u0026Signature=bvm-SsdjNXY5SfwJD-6l5nd3~G8nnVzjUtQLYTgwPKs9W4MIG~LabwElOVD4twD2c4HvENkJA4n1Og3a0bfEsIaXSZ5OVHH-CihYf3qpPps-R59JM4jC3vd6o9Boa8RXDVXDPWGywIsdZf6aWBIGf8nuyPhOGGLFAy0XAXonN3J1cIOLoHJSXvuvwoiF-jlSV0-nWlNSwsNcIYwNfWlT6qNlyQFfH9fui5ndvtCskxtXms2vuGW9~4wPlAVXH0-7aFzanx8RAZHuFsff7qlQA4AYtzpDzJLM9DmJ2mJzdg4BdH3KYRcP8wxRweCoiLKW1uwgFArcxDHr-W47cXnsNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":15658735,"url":"https://arxiv.org/pdf/2106.04059v2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878395"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/65878395/Data_Based_Mesh_Selection_in_Chemical_Species_Tomography"><img alt="Research paper thumbnail of Data-Based Mesh Selection in Chemical Species Tomography" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/65878395/Data_Based_Mesh_Selection_in_Chemical_Species_Tomography">Data-Based Mesh Selection in Chemical Species Tomography</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878395"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878395"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878395; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878395]").text(description); $(".js-view-count[data-work-id=65878395]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878395; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878395']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878395, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65878395]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878395,"title":"Data-Based Mesh Selection in Chemical Species Tomography","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/65878395/Data_Based_Mesh_Selection_in_Chemical_Species_Tomography","translated_internal_url":"","created_at":"2021-12-24T10:02:59.585-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Data_Based_Mesh_Selection_in_Chemical_Species_Tomography","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878394"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65878394/Investigating_Non_Incandescence_Emission_During_Laser_Induced_Incandescence_Experiments_on_Aerosolized_Plasmonic_Nanoparticles"><img alt="Research paper thumbnail of Investigating Non-Incandescence Emission During Laser Induced Incandescence Experiments on Aerosolized Plasmonic Nanoparticles" class="work-thumbnail" src="https://attachments.academia-assets.com/77284647/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65878394/Investigating_Non_Incandescence_Emission_During_Laser_Induced_Incandescence_Experiments_on_Aerosolized_Plasmonic_Nanoparticles">Investigating Non-Incandescence Emission During Laser Induced Incandescence Experiments on Aerosolized Plasmonic Nanoparticles</a></div><div class="wp-workCard_item"><span>Proceeding of Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Time-resolved laser-induced incandescence (TiRe-LII) experiments conducted on aerosolized Ag, com...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Time-resolved laser-induced incandescence (TiRe-LII) experiments conducted on aerosolized Ag, commercial soot and Au nanoparticles energized with a 1064 nm laser pulse. Detected TiRe-LII signal from aerosolized Ag nanoparticles suggest that the observed signal could originate from electron neutral bremsstrahlung and not of incandescence origin. A new model is proposed based on plasmonically-enhanced photoemission of electrons from Ag nanoparticles. The interaction of the electrons with buffer gas neutral species leads to inverse neutral bremsstrahlung absorption of the laser pulse as well as neutral bremsstrahlung emission. The new model could potentially explain some of the anomalies observed during TiRe-LII experiments as a secondary signal contaminating the original incandescence signal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="85c8e2ed8ff6773f952aa1e62b8beaea" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77284647,&quot;asset_id&quot;:65878394,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77284647/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878394"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878394"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878394; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878394]").text(description); $(".js-view-count[data-work-id=65878394]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878394; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878394']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878394, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "85c8e2ed8ff6773f952aa1e62b8beaea" } } $('.js-work-strip[data-work-id=65878394]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878394,"title":"Investigating Non-Incandescence Emission During Laser Induced Incandescence Experiments on Aerosolized Plasmonic Nanoparticles","translated_title":"","metadata":{"abstract":"Time-resolved laser-induced incandescence (TiRe-LII) experiments conducted on aerosolized Ag, commercial soot and Au nanoparticles energized with a 1064 nm laser pulse. Detected TiRe-LII signal from aerosolized Ag nanoparticles suggest that the observed signal could originate from electron neutral bremsstrahlung and not of incandescence origin. A new model is proposed based on plasmonically-enhanced photoemission of electrons from Ag nanoparticles. The interaction of the electrons with buffer gas neutral species leads to inverse neutral bremsstrahlung absorption of the laser pulse as well as neutral bremsstrahlung emission. The new model could potentially explain some of the anomalies observed during TiRe-LII experiments as a secondary signal contaminating the original incandescence signal.","publisher":"Proceeding of Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Proceeding of Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19"},"translated_abstract":"Time-resolved laser-induced incandescence (TiRe-LII) experiments conducted on aerosolized Ag, commercial soot and Au nanoparticles energized with a 1064 nm laser pulse. Detected TiRe-LII signal from aerosolized Ag nanoparticles suggest that the observed signal could originate from electron neutral bremsstrahlung and not of incandescence origin. A new model is proposed based on plasmonically-enhanced photoemission of electrons from Ag nanoparticles. The interaction of the electrons with buffer gas neutral species leads to inverse neutral bremsstrahlung absorption of the laser pulse as well as neutral bremsstrahlung emission. The new model could potentially explain some of the anomalies observed during TiRe-LII experiments as a secondary signal contaminating the original incandescence signal.","internal_url":"https://www.academia.edu/65878394/Investigating_Non_Incandescence_Emission_During_Laser_Induced_Incandescence_Experiments_on_Aerosolized_Plasmonic_Nanoparticles","translated_internal_url":"","created_at":"2021-12-24T10:02:59.450-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77284647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284647/thumbnails/1.jpg","file_name":"nh-08.pdf","download_url":"https://www.academia.edu/attachments/77284647/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Investigating_Non_Incandescence_Emission.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284647/nh-08-libre.pdf?1640376482=\u0026response-content-disposition=attachment%3B+filename%3DInvestigating_Non_Incandescence_Emission.pdf\u0026Expires=1732772795\u0026Signature=Ob~imTtPfNm1MOYa9356Jrbl7nJ8ix-rfVaBtPxSWBHCZlMRlbkJ-QaC0eVwLzu-JrecRNNON5pgknELlBuC9M~BXIej8l8e4F4A19C1DmtlRmejm-ssKakRqlYj-5YQdaJzG1bl~AlUJG88VRrJo-Vql1QSxkciLymgvQbbvao-GkP84Ay7GbdNPztiUVSLnusidaIKHLTCudWvKCzH3Cz113~Kj-1E6cHsGR8cTIZydpQPp-cKwS0J4wCBtkfiyqf6K~EM1Tp3TYybe09XwsMjuP4ZgEwpI-DcUs5mMKKxB-~M~QFxKS7~k294OJ7Z7N31upYEdBzx0RhXsrRgzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Investigating_Non_Incandescence_Emission_During_Laser_Induced_Incandescence_Experiments_on_Aerosolized_Plasmonic_Nanoparticles","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":77284647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284647/thumbnails/1.jpg","file_name":"nh-08.pdf","download_url":"https://www.academia.edu/attachments/77284647/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Investigating_Non_Incandescence_Emission.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284647/nh-08-libre.pdf?1640376482=\u0026response-content-disposition=attachment%3B+filename%3DInvestigating_Non_Incandescence_Emission.pdf\u0026Expires=1732772795\u0026Signature=Ob~imTtPfNm1MOYa9356Jrbl7nJ8ix-rfVaBtPxSWBHCZlMRlbkJ-QaC0eVwLzu-JrecRNNON5pgknELlBuC9M~BXIej8l8e4F4A19C1DmtlRmejm-ssKakRqlYj-5YQdaJzG1bl~AlUJG88VRrJo-Vql1QSxkciLymgvQbbvao-GkP84Ay7GbdNPztiUVSLnusidaIKHLTCudWvKCzH3Cz113~Kj-1E6cHsGR8cTIZydpQPp-cKwS0J4wCBtkfiyqf6K~EM1Tp3TYybe09XwsMjuP4ZgEwpI-DcUs5mMKKxB-~M~QFxKS7~k294OJ7Z7N31upYEdBzx0RhXsrRgzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":77284648,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284648/thumbnails/1.jpg","file_name":"nh-08.pdf","download_url":"https://www.academia.edu/attachments/77284648/download_file","bulk_download_file_name":"Investigating_Non_Incandescence_Emission.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284648/nh-08-libre.pdf?1640376482=\u0026response-content-disposition=attachment%3B+filename%3DInvestigating_Non_Incandescence_Emission.pdf\u0026Expires=1732772795\u0026Signature=fY3MhUeJDtiWPieQLhG-Xvv~YBP5-KZUlNyG9nGnMvzVGHDwpUWNpJUP9DiHL8BU8pCGv2~ud2wShPZYnBrX1HYio7DkzIEaYSDkjRPXjbzDJxUGsD4pEzm6~HAWKzkaKLvSbxRZNrTewtUqSnPiNGakTjW0H1afbb6DZfHsgMhdnJEh8knwM-B8~SDEH0-0OvfO~f7wH75uAhU6OfeHGepEMOE5nxQkkYBvDDRhEPFh-jm37QXdGQ3jR1ylu400UkY8lR6zij-dThLmwQ9BNaLoWIKbYB2k8lfCp5~o~km8zIKuJmasXierWLyoneJ5HS8aUus23FsJxlShm1kvXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":15658734,"url":"https://www.ichmt.org/storage/files/upload/nh-08.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878393"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/65878393/MATLAB_tools_for_a_general_TiRe_LII_error_model"><img alt="Research paper thumbnail of MATLAB tools for a general TiRe-LII error model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/65878393/MATLAB_tools_for_a_general_TiRe_LII_error_model">MATLAB tools for a general TiRe-LII error model</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This software is an implementation of the general error model described in the work entitled &amp;quo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This software is an implementation of the general error model described in the work entitled &amp;quot;General error model for analysis of laser-induced incandescence signals&amp;quot; by T. A. Sipkens and coworkers, which simulates signals according to the described error model (sufficient for generating Figure 1 in the associated work) and demonstrates a fitting procedure to infer the error model parameters from the produced signals. This software package was developed for use with MATLAB 2016a running on Windows. Users can execute the main script immediately, provided all attached files are located in the same directory and that directory is included in the MATLAB path. One must then enter &amp;quot;main_simulate_C&amp;quot; in the MATLAB command line.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878393"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878393"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878393; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878393]").text(description); $(".js-view-count[data-work-id=65878393]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878393; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878393']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878393, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65878393]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878393,"title":"MATLAB tools for a general TiRe-LII error model","translated_title":"","metadata":{"abstract":"This software is an implementation of the general error model described in the work entitled \u0026quot;General error model for analysis of laser-induced incandescence signals\u0026quot; by T. A. Sipkens and coworkers, which simulates signals according to the described error model (sufficient for generating Figure 1 in the associated work) and demonstrates a fitting procedure to infer the error model parameters from the produced signals. This software package was developed for use with MATLAB 2016a running on Windows. Users can execute the main script immediately, provided all attached files are located in the same directory and that directory is included in the MATLAB path. One must then enter \u0026quot;main_simulate_C\u0026quot; in the MATLAB command line.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":"This software is an implementation of the general error model described in the work entitled \u0026quot;General error model for analysis of laser-induced incandescence signals\u0026quot; by T. A. Sipkens and coworkers, which simulates signals according to the described error model (sufficient for generating Figure 1 in the associated work) and demonstrates a fitting procedure to infer the error model parameters from the produced signals. This software package was developed for use with MATLAB 2016a running on Windows. Users can execute the main script immediately, provided all attached files are located in the same directory and that directory is included in the MATLAB path. One must then enter \u0026quot;main_simulate_C\u0026quot; in the MATLAB command line.","internal_url":"https://www.academia.edu/65878393/MATLAB_tools_for_a_general_TiRe_LII_error_model","translated_internal_url":"","created_at":"2021-12-24T10:02:59.360-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"MATLAB_tools_for_a_general_TiRe_LII_error_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878392"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65878392/An_improved_inversion_method_for_determining_two_dimensional_mass_distributions_of_non_refractory_materials_on_refractory_black_carbon"><img alt="Research paper thumbnail of An improved inversion method for determining two-dimensional mass distributions of non-refractory materials on refractory black carbon" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65878392/An_improved_inversion_method_for_determining_two_dimensional_mass_distributions_of_non_refractory_materials_on_refractory_black_carbon">An improved inversion method for determining two-dimensional mass distributions of non-refractory materials on refractory black carbon</a></div><div class="wp-workCard_item"><span>Aerosol Science and Technology</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The present study describes an improved inversion method for determining the two-dimensional mass...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The present study describes an improved inversion method for determining the two-dimensional mass distribution of non-refractory materials on refractory black carbon using a centrifugal particle mass analyzer (CPMA) and single-particle soot photometer (SP2) system. The novel approach is tested with several well-established regularization methods to determine which method works best in the new method. Contrary to other two-dimensional inversion applications in the literature, in the CPMA-SP2 inversion, there is a physical constraint that the refractory black carbon mass () cannot exceed the total particle mass (). This constraint has to be considered in the inversion to accommodate the sharp edge where equals which causes established regularization methods to underperform and potentially smooth the distribution over this boundary. This study introduces a novel deconvolution scheme which accommodates the physical constraint and can be solved with various inversion techniques including...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878392"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878392"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878392; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878392]").text(description); $(".js-view-count[data-work-id=65878392]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878392; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878392']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878392, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65878392]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878392,"title":"An improved inversion method for determining two-dimensional mass distributions of non-refractory materials on refractory black carbon","translated_title":"","metadata":{"abstract":"The present study describes an improved inversion method for determining the two-dimensional mass distribution of non-refractory materials on refractory black carbon using a centrifugal particle mass analyzer (CPMA) and single-particle soot photometer (SP2) system. The novel approach is tested with several well-established regularization methods to determine which method works best in the new method. Contrary to other two-dimensional inversion applications in the literature, in the CPMA-SP2 inversion, there is a physical constraint that the refractory black carbon mass () cannot exceed the total particle mass (). This constraint has to be considered in the inversion to accommodate the sharp edge where equals which causes established regularization methods to underperform and potentially smooth the distribution over this boundary. This study introduces a novel deconvolution scheme which accommodates the physical constraint and can be solved with various inversion techniques including...","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Aerosol Science and Technology"},"translated_abstract":"The present study describes an improved inversion method for determining the two-dimensional mass distribution of non-refractory materials on refractory black carbon using a centrifugal particle mass analyzer (CPMA) and single-particle soot photometer (SP2) system. The novel approach is tested with several well-established regularization methods to determine which method works best in the new method. Contrary to other two-dimensional inversion applications in the literature, in the CPMA-SP2 inversion, there is a physical constraint that the refractory black carbon mass () cannot exceed the total particle mass (). This constraint has to be considered in the inversion to accommodate the sharp edge where equals which causes established regularization methods to underperform and potentially smooth the distribution over this boundary. This study introduces a novel deconvolution scheme which accommodates the physical constraint and can be solved with various inversion techniques including...","internal_url":"https://www.academia.edu/65878392/An_improved_inversion_method_for_determining_two_dimensional_mass_distributions_of_non_refractory_materials_on_refractory_black_carbon","translated_internal_url":"","created_at":"2021-12-24T10:02:59.269-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_improved_inversion_method_for_determining_two_dimensional_mass_distributions_of_non_refractory_materials_on_refractory_black_carbon","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":165873,"name":"Aerosol Science and Technology","url":"https://www.academia.edu/Documents/in/Aerosol_Science_and_Technology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878391"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/65878391/Gas_Jet_Injection_Characterization_using_BOS_Imaging_and_Abel_Inversion_for_Engine_Relevant_Pressure_Ratios"><img alt="Research paper thumbnail of Gas Jet Injection Characterization using BOS Imaging and Abel Inversion for Engine Relevant Pressure Ratios" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/65878391/Gas_Jet_Injection_Characterization_using_BOS_Imaging_and_Abel_Inversion_for_Engine_Relevant_Pressure_Ratios">Gas Jet Injection Characterization using BOS Imaging and Abel Inversion for Engine Relevant Pressure Ratios</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A pulsed gas Jet is imaged using the background-oriented schlieren technique to probe sensitivity...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A pulsed gas Jet is imaged using the background-oriented schlieren technique to probe sensitivity to operating conditions, such as pressure ratio. Multiple inversion schemes will be considered to improve flow property estimates.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878391"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878391"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878391; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878391]").text(description); $(".js-view-count[data-work-id=65878391]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878391; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878391']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878391, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65878391]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878391,"title":"Gas Jet Injection Characterization using BOS Imaging and Abel Inversion for Engine Relevant Pressure Ratios","translated_title":"","metadata":{"abstract":"A pulsed gas Jet is imaged using the background-oriented schlieren technique to probe sensitivity to operating conditions, such as pressure ratio. Multiple inversion schemes will be considered to improve flow property estimates.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"A pulsed gas Jet is imaged using the background-oriented schlieren technique to probe sensitivity to operating conditions, such as pressure ratio. Multiple inversion schemes will be considered to improve flow property estimates.","internal_url":"https://www.academia.edu/65878391/Gas_Jet_Injection_Characterization_using_BOS_Imaging_and_Abel_Inversion_for_Engine_Relevant_Pressure_Ratios","translated_internal_url":"","created_at":"2021-12-24T10:02:59.176-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Gas_Jet_Injection_Characterization_using_BOS_Imaging_and_Abel_Inversion_for_Engine_Relevant_Pressure_Ratios","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878390"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/65878390/Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_II_Existing_and_novel_Bayesian_methods"><img alt="Research paper thumbnail of Inversion methods to determine two-dimensional aerosol mass-mobility distributions II: Existing and novel Bayesian methods" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/65878390/Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_II_Existing_and_novel_Bayesian_methods">Inversion methods to determine two-dimensional aerosol mass-mobility distributions II: Existing and novel Bayesian methods</a></div><div class="wp-workCard_item"><span>Journal of Aerosol Science</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878390"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878390"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878390; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878390]").text(description); $(".js-view-count[data-work-id=65878390]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878390; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878390']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878390, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65878390]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878390,"title":"Inversion methods to determine two-dimensional aerosol mass-mobility distributions II: Existing and novel Bayesian methods","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Journal of Aerosol Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/65878390/Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_II_Existing_and_novel_Bayesian_methods","translated_internal_url":"","created_at":"2021-12-24T10:02:59.028-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_II_Existing_and_novel_Bayesian_methods","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":60285,"name":"Atmospheric sciences","url":"https://www.academia.edu/Documents/in/Atmospheric_sciences"},{"id":1759667,"name":"Aerosol Science","url":"https://www.academia.edu/Documents/in/Aerosol_Science"}],"urls":[{"id":15658733,"url":"https://api.elsevier.com/content/article/PII:S0021850220300549?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878389"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65878389/Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_A_critical_comparison_of_established_methods"><img alt="Research paper thumbnail of Inversion methods to determine two-dimensional aerosol mass-mobility distributions: A critical comparison of established methods" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65878389/Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_A_critical_comparison_of_established_methods">Inversion methods to determine two-dimensional aerosol mass-mobility distributions: A critical comparison of established methods</a></div><div class="wp-workCard_item"><span>Journal of Aerosol Science</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper provides a critical review of methods used to invert tandem measurements to d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper provides a critical review of methods used to invert tandem measurements to determine the two-dimensional distribution of particle mass and mobility. We consider the performance of weighted least-squares analysis, Twomey-type approaches, a maximum entropy method, Tikhonov regularization (over a range of regularization parameters), and statistical inversion. A detailed analysis is performed on a bimodal phantom to demonstrate the typical characteristics of reconstructions resulting from the different inversion techniques, before the Euclidean error between the phantom and reconstructions are evaluated for a wider range of phantoms. It is found that 1st order Tikhonov regularization generally outperforms the other established inversion methods, even for narrow phantoms, where the finite representation of the mass-mobility distribution becomes a larger contributor to reconstruction accuracy. Twomey-type approaches, while not as robust, are shown to be an acceptable alternative.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878389"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878389"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878389; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878389]").text(description); $(".js-view-count[data-work-id=65878389]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878389; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878389']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878389, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65878389]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878389,"title":"Inversion methods to determine two-dimensional aerosol mass-mobility distributions: A critical comparison of established methods","translated_title":"","metadata":{"abstract":"Abstract This paper provides a critical review of methods used to invert tandem measurements to determine the two-dimensional distribution of particle mass and mobility. We consider the performance of weighted least-squares analysis, Twomey-type approaches, a maximum entropy method, Tikhonov regularization (over a range of regularization parameters), and statistical inversion. A detailed analysis is performed on a bimodal phantom to demonstrate the typical characteristics of reconstructions resulting from the different inversion techniques, before the Euclidean error between the phantom and reconstructions are evaluated for a wider range of phantoms. It is found that 1st order Tikhonov regularization generally outperforms the other established inversion methods, even for narrow phantoms, where the finite representation of the mass-mobility distribution becomes a larger contributor to reconstruction accuracy. Twomey-type approaches, while not as robust, are shown to be an acceptable alternative.","publisher":"Elsevier BV","publication_name":"Journal of Aerosol Science"},"translated_abstract":"Abstract This paper provides a critical review of methods used to invert tandem measurements to determine the two-dimensional distribution of particle mass and mobility. We consider the performance of weighted least-squares analysis, Twomey-type approaches, a maximum entropy method, Tikhonov regularization (over a range of regularization parameters), and statistical inversion. A detailed analysis is performed on a bimodal phantom to demonstrate the typical characteristics of reconstructions resulting from the different inversion techniques, before the Euclidean error between the phantom and reconstructions are evaluated for a wider range of phantoms. It is found that 1st order Tikhonov regularization generally outperforms the other established inversion methods, even for narrow phantoms, where the finite representation of the mass-mobility distribution becomes a larger contributor to reconstruction accuracy. Twomey-type approaches, while not as robust, are shown to be an acceptable alternative.","internal_url":"https://www.academia.edu/65878389/Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_A_critical_comparison_of_established_methods","translated_internal_url":"","created_at":"2021-12-24T10:02:58.891-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_A_critical_comparison_of_established_methods","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":60285,"name":"Atmospheric sciences","url":"https://www.academia.edu/Documents/in/Atmospheric_sciences"},{"id":1759667,"name":"Aerosol Science","url":"https://www.academia.edu/Documents/in/Aerosol_Science"}],"urls":[{"id":15658732,"url":"https://api.elsevier.com/content/article/PII:S0021850219305889?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3522720" id="papers"><div class="js-work-strip profile--work_container" data-work-id="75547255"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75547255/Size_dependent_mass_absorption_cross_section_of_soot_particles_from_various_sources"><img alt="Research paper thumbnail of Size-dependent mass absorption cross-section of soot particles from various sources" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/75547255/Size_dependent_mass_absorption_cross_section_of_soot_particles_from_various_sources">Size-dependent mass absorption cross-section of soot particles from various sources</a></div><div class="wp-workCard_item"><span>Carbon</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547255"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547255"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547255; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547255]").text(description); $(".js-view-count[data-work-id=75547255]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547255; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547255']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547255, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75547255]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547255,"title":"Size-dependent mass absorption cross-section of soot particles from various sources","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Carbon"},"translated_abstract":null,"internal_url":"https://www.academia.edu/75547255/Size_dependent_mass_absorption_cross_section_of_soot_particles_from_various_sources","translated_internal_url":"","created_at":"2022-04-05T09:53:11.308-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Size_dependent_mass_absorption_cross_section_of_soot_particles_from_various_sources","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":5303,"name":"Carbon","url":"https://www.academia.edu/Documents/in/Carbon"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":19153482,"url":"https://api.elsevier.com/content/article/PII:S0008622322001221?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547254"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75547254/Comparison_of_measurement_systems_for_assessing_number_and_mass_based_particle_filtration_efficiency"><img alt="Research paper thumbnail of Comparison of measurement systems for assessing number- and mass-based particle filtration efficiency" class="work-thumbnail" src="https://attachments.academia-assets.com/83272137/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75547254/Comparison_of_measurement_systems_for_assessing_number_and_mass_based_particle_filtration_efficiency">Comparison of measurement systems for assessing number- and mass-based particle filtration efficiency</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The particle filtration efficiency (PFE) of a respirator or face mask is one of its key propertie...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The particle filtration efficiency (PFE) of a respirator or face mask is one of its key properties. While the physics of particle filtration results in the PFE being size-dependent, measurement standards are specified using a single, integrated PFE, for simplicity. This integrated PFE is commonly defined with respect to either the number (NBFE) or mass (MBFE) distribution of particles as a function of size. This relationship is non-trivial; it is influenced by both the shape of the particle distribution and the fact that multiple practical definitions of particle size are used. This manuscript discusses the relationship between NBFE and MBFE in detail, providing a guide to practitioners. Our discussion begins with a theoretical discussion of the underlying principles. We then present experimental results for a database of size-resolved PFE (SPFE) measurements for over 900 candidate respirators and filter media, including filter media with systematically varied properties and commerc...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0d0c271402d78c2f5b0789d7a9972d73" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:83272137,&quot;asset_id&quot;:75547254,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/83272137/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547254"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547254"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547254; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547254]").text(description); $(".js-view-count[data-work-id=75547254]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547254; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547254']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547254, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0d0c271402d78c2f5b0789d7a9972d73" } } $('.js-work-strip[data-work-id=75547254]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547254,"title":"Comparison of measurement systems for assessing number- and mass-based particle filtration efficiency","translated_title":"","metadata":{"abstract":"The particle filtration efficiency (PFE) of a respirator or face mask is one of its key properties. While the physics of particle filtration results in the PFE being size-dependent, measurement standards are specified using a single, integrated PFE, for simplicity. This integrated PFE is commonly defined with respect to either the number (NBFE) or mass (MBFE) distribution of particles as a function of size. This relationship is non-trivial; it is influenced by both the shape of the particle distribution and the fact that multiple practical definitions of particle size are used. This manuscript discusses the relationship between NBFE and MBFE in detail, providing a guide to practitioners. Our discussion begins with a theoretical discussion of the underlying principles. We then present experimental results for a database of size-resolved PFE (SPFE) measurements for over 900 candidate respirators and filter media, including filter media with systematically varied properties and commerc...","publication_date":{"day":null,"month":null,"year":2022,"errors":{}}},"translated_abstract":"The particle filtration efficiency (PFE) of a respirator or face mask is one of its key properties. While the physics of particle filtration results in the PFE being size-dependent, measurement standards are specified using a single, integrated PFE, for simplicity. This integrated PFE is commonly defined with respect to either the number (NBFE) or mass (MBFE) distribution of particles as a function of size. This relationship is non-trivial; it is influenced by both the shape of the particle distribution and the fact that multiple practical definitions of particle size are used. This manuscript discusses the relationship between NBFE and MBFE in detail, providing a guide to practitioners. Our discussion begins with a theoretical discussion of the underlying principles. We then present experimental results for a database of size-resolved PFE (SPFE) measurements for over 900 candidate respirators and filter media, including filter media with systematically varied properties and commerc...","internal_url":"https://www.academia.edu/75547254/Comparison_of_measurement_systems_for_assessing_number_and_mass_based_particle_filtration_efficiency","translated_internal_url":"","created_at":"2022-04-05T09:53:11.185-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83272137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272137/thumbnails/1.jpg","file_name":"2201.12446v1.pdf","download_url":"https://www.academia.edu/attachments/83272137/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparison_of_measurement_systems_for_as.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272137/2201.12446v1-libre.pdf?1649178400=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_measurement_systems_for_as.pdf\u0026Expires=1732772794\u0026Signature=WvJ7wN27bxvE1wy3Ym4J3o3VUXUbWwadke2IekCX4yoCDlMkgPsUqatkNynUVDpD2kYnONIRmDRLbI2Dlv-tKnHWNN4HYPPcf075DpH69RGn9Wqe9DEGQDvH88OQCBTTnYZP6QnW~MARsrhBGtnxbg2cab901juiOCw8pPaREgls3a6JkwRYycbdEhNKM~CFVkidrf5D8aCuAa63GN-VUpTFn3XxCfahC3dMRNmfIp98RNho4-5Vz7bvZTc0fn60~UzNacbFzeSFQXSFKvUcB1fhFcORvQx35OKyToMuIK9lROrIBsq5dbvdmElr0LcCFZLCkhtvWxDYudQMmXfMyg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comparison_of_measurement_systems_for_assessing_number_and_mass_based_particle_filtration_efficiency","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":83272137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272137/thumbnails/1.jpg","file_name":"2201.12446v1.pdf","download_url":"https://www.academia.edu/attachments/83272137/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparison_of_measurement_systems_for_as.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272137/2201.12446v1-libre.pdf?1649178400=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_measurement_systems_for_as.pdf\u0026Expires=1732772794\u0026Signature=WvJ7wN27bxvE1wy3Ym4J3o3VUXUbWwadke2IekCX4yoCDlMkgPsUqatkNynUVDpD2kYnONIRmDRLbI2Dlv-tKnHWNN4HYPPcf075DpH69RGn9Wqe9DEGQDvH88OQCBTTnYZP6QnW~MARsrhBGtnxbg2cab901juiOCw8pPaREgls3a6JkwRYycbdEhNKM~CFVkidrf5D8aCuAa63GN-VUpTFn3XxCfahC3dMRNmfIp98RNho4-5Vz7bvZTc0fn60~UzNacbFzeSFQXSFKvUcB1fhFcORvQx35OKyToMuIK9lROrIBsq5dbvdmElr0LcCFZLCkhtvWxDYudQMmXfMyg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":83272136,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272136/thumbnails/1.jpg","file_name":"2201.12446v1.pdf","download_url":"https://www.academia.edu/attachments/83272136/download_file","bulk_download_file_name":"Comparison_of_measurement_systems_for_as.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272136/2201.12446v1-libre.pdf?1649178401=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_measurement_systems_for_as.pdf\u0026Expires=1732772794\u0026Signature=LANIPMLm8YeAdJZuENqsWIftbN2H40YoQbVprrcKiz9obXNu29OBu7OC5l4pqzCegWtDqu~KvRZY~as5c~dp416VF7dzoTIVHL13c1IFgdwW07LejgqzeyTaNIiaiI~-DINKZGG4YXVLBhuwe5gTfvI~ObPJccWYJPSubF0zm6iWXc5QR0gprOL8F3z~moSixgPpzjghygHTqyEFUZczbudt8~NMqMM3j~jYzxBbkx5TUuHrZR4NQDqUioCvrzr~RvgGEypyqKv95rZJAzPOck0UQCncXu6RChrSjxJNtNSwqFNxaxWPYzoutFI4bj77SX-u86QGjUtVdaqtcZZXOA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":19153481,"url":"https://arxiv.org/pdf/2201.12446v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547253"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75547253/Filtration_and_breathability_of_nonwoven_fabrics_used_in_washable_masks"><img alt="Research paper thumbnail of Filtration and breathability of nonwoven fabrics used in washable masks" class="work-thumbnail" src="https://attachments.academia-assets.com/83272139/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75547253/Filtration_and_breathability_of_nonwoven_fabrics_used_in_washable_masks">Filtration and breathability of nonwoven fabrics used in washable masks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This study explores nonwoven and woven fabrics to improve upon the performance of the widespread ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This study explores nonwoven and woven fabrics to improve upon the performance of the widespread all-cotton mask, and examines the effect of layering, machine washing and drying on their filtration and breathability for submicron and supermicron particles. Individual materials were evaluated for their quality factor, Q, which combines filtration efficiency and breathability. Filtration was tested against particles 0.5 μm to 5 μm aerodynamic diameter. Nonwoven polyester and nonwoven polypropylene (craft fabrics, medical masks, and medical wraps) showed higher quality factors than woven materials (flannel cotton, Kona cotton, sateen cotton). Materials with meltblown nonwoven polypropylene filtered best, especially against submicron particles. Subsequently, we combined high performing fabrics into multi-layer sets, evaluating the sets’ quality factors before and after our washing protocol, which included machine washing, machine drying, and isopropanol soak. Sets incorporating meltblow...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f37cb4b99a11271b5848311c1dd414c3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:83272139,&quot;asset_id&quot;:75547253,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/83272139/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547253"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547253"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547253; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547253]").text(description); $(".js-view-count[data-work-id=75547253]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547253; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547253']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547253, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f37cb4b99a11271b5848311c1dd414c3" } } $('.js-work-strip[data-work-id=75547253]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547253,"title":"Filtration and breathability of nonwoven fabrics used in washable masks","translated_title":"","metadata":{"abstract":"This study explores nonwoven and woven fabrics to improve upon the performance of the widespread all-cotton mask, and examines the effect of layering, machine washing and drying on their filtration and breathability for submicron and supermicron particles. Individual materials were evaluated for their quality factor, Q, which combines filtration efficiency and breathability. Filtration was tested against particles 0.5 μm to 5 μm aerodynamic diameter. Nonwoven polyester and nonwoven polypropylene (craft fabrics, medical masks, and medical wraps) showed higher quality factors than woven materials (flannel cotton, Kona cotton, sateen cotton). Materials with meltblown nonwoven polypropylene filtered best, especially against submicron particles. Subsequently, we combined high performing fabrics into multi-layer sets, evaluating the sets’ quality factors before and after our washing protocol, which included machine washing, machine drying, and isopropanol soak. Sets incorporating meltblow...","publication_date":{"day":null,"month":null,"year":2022,"errors":{}}},"translated_abstract":"This study explores nonwoven and woven fabrics to improve upon the performance of the widespread all-cotton mask, and examines the effect of layering, machine washing and drying on their filtration and breathability for submicron and supermicron particles. Individual materials were evaluated for their quality factor, Q, which combines filtration efficiency and breathability. Filtration was tested against particles 0.5 μm to 5 μm aerodynamic diameter. Nonwoven polyester and nonwoven polypropylene (craft fabrics, medical masks, and medical wraps) showed higher quality factors than woven materials (flannel cotton, Kona cotton, sateen cotton). Materials with meltblown nonwoven polypropylene filtered best, especially against submicron particles. Subsequently, we combined high performing fabrics into multi-layer sets, evaluating the sets’ quality factors before and after our washing protocol, which included machine washing, machine drying, and isopropanol soak. Sets incorporating meltblow...","internal_url":"https://www.academia.edu/75547253/Filtration_and_breathability_of_nonwoven_fabrics_used_in_washable_masks","translated_internal_url":"","created_at":"2022-04-05T09:53:11.075-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83272139,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272139/thumbnails/1.jpg","file_name":"2202.03505v1.pdf","download_url":"https://www.academia.edu/attachments/83272139/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Filtration_and_breathability_of_nonwoven.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272139/2202.03505v1-libre.pdf?1649178404=\u0026response-content-disposition=attachment%3B+filename%3DFiltration_and_breathability_of_nonwoven.pdf\u0026Expires=1732772794\u0026Signature=BZiDmVgdUi4SHC1gzEV0yY0hlzWB1KvJDmlcXFKNvtuS7EsHOES1egy-YpcN--UtXW4J22xVXpHK1nN9WIAjRN5Su13N4Q3ihvJAilKRVOJW0u5SpAxBAhr5gCdLj6lXwfA3HpqfBU7HR0etzf15cqnEu8p9EXGRHKonK5GD8Z3YxetJ3K05GG0L0GGIUbg3cjPcaq~6dbAZVby~5rARtQU3JxX8Rv0bKMJAWRU0BHH3ldwaN8NL94HEC~2yNX2pgfO5ei5qV7RgNdhdUNxajpqma7058ZZE3E~60akQM50xDlBsCKycFRHbw8HIkkA1vb6aM1fisPa6Ua~lttpBxg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Filtration_and_breathability_of_nonwoven_fabrics_used_in_washable_masks","translated_slug":"","page_count":39,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":83272139,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272139/thumbnails/1.jpg","file_name":"2202.03505v1.pdf","download_url":"https://www.academia.edu/attachments/83272139/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Filtration_and_breathability_of_nonwoven.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272139/2202.03505v1-libre.pdf?1649178404=\u0026response-content-disposition=attachment%3B+filename%3DFiltration_and_breathability_of_nonwoven.pdf\u0026Expires=1732772794\u0026Signature=BZiDmVgdUi4SHC1gzEV0yY0hlzWB1KvJDmlcXFKNvtuS7EsHOES1egy-YpcN--UtXW4J22xVXpHK1nN9WIAjRN5Su13N4Q3ihvJAilKRVOJW0u5SpAxBAhr5gCdLj6lXwfA3HpqfBU7HR0etzf15cqnEu8p9EXGRHKonK5GD8Z3YxetJ3K05GG0L0GGIUbg3cjPcaq~6dbAZVby~5rARtQU3JxX8Rv0bKMJAWRU0BHH3ldwaN8NL94HEC~2yNX2pgfO5ei5qV7RgNdhdUNxajpqma7058ZZE3E~60akQM50xDlBsCKycFRHbw8HIkkA1vb6aM1fisPa6Ua~lttpBxg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":83272138,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272138/thumbnails/1.jpg","file_name":"2202.03505v1.pdf","download_url":"https://www.academia.edu/attachments/83272138/download_file","bulk_download_file_name":"Filtration_and_breathability_of_nonwoven.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272138/2202.03505v1-libre.pdf?1649178404=\u0026response-content-disposition=attachment%3B+filename%3DFiltration_and_breathability_of_nonwoven.pdf\u0026Expires=1732772794\u0026Signature=W-gNT5hs7ftnijQKUlXUf6VuFo7sfEb~ybcMDYJfRDgK-gWM1QZA-a4B3YYzzwL8oyQSsz2flM4J2s8avNeQ5XJLwMlSUZymo9pq3nTa9akxdNirzIgI-ecjfwZTmCH-1utW35Tu4g3EW87hzTH5nJPRU4XGK7ZpsdbAJrcRTmFrGYicBU3oB2bTuk2FwQhpSThi~2ims8s7L6PtzwfT1lLT5j7bhmRIzGuCtj3quvlVKxScE1L1-4NeOAP~dzkwVe4rDG6lnBPAZ1BNFR3EysxuSsLpyX01wmCuwmTLCCXdDjsu7d~nitmWIFJdk0CqILDAnhm286XGlxHTrCbXmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":19153480,"url":"https://arxiv.org/pdf/2202.03505v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547252"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75547252/Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods"><img alt="Research paper thumbnail of Particle filtration efficiency of commercial respirators and face masks: experimental comparison of test methods" class="work-thumbnail" src="https://attachments.academia-assets.com/83272179/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75547252/Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods">Particle filtration efficiency of commercial respirators and face masks: experimental comparison of test methods</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Respirators, medical masks, and barrier face coverings all filter airborne particles using simila...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles yet are tested using a variety of variety of standardized test methods. To quantify and understand the effects of differences between the standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). We systematically compared the experimental performance of the NIOSH and ASTM F2299 test methods in terms of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. Filtration efficiency is most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299 method have normally used non-neutralized (highly charged) aerosols at smaller face velocities, each of which may enhance measured filt...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="49fc125c9aaaa82e8e7cfd611047a4a7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:83272179,&quot;asset_id&quot;:75547252,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/83272179/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547252"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547252"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547252; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547252]").text(description); $(".js-view-count[data-work-id=75547252]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547252; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547252']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547252, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "49fc125c9aaaa82e8e7cfd611047a4a7" } } $('.js-work-strip[data-work-id=75547252]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547252,"title":"Particle filtration efficiency of commercial respirators and face masks: experimental comparison of test methods","translated_title":"","metadata":{"abstract":"Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles yet are tested using a variety of variety of standardized test methods. To quantify and understand the effects of differences between the standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). We systematically compared the experimental performance of the NIOSH and ASTM F2299 test methods in terms of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. Filtration efficiency is most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299 method have normally used non-neutralized (highly charged) aerosols at smaller face velocities, each of which may enhance measured filt...","publication_date":{"day":8,"month":6,"year":2021,"errors":{}}},"translated_abstract":"Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles yet are tested using a variety of variety of standardized test methods. To quantify and understand the effects of differences between the standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). We systematically compared the experimental performance of the NIOSH and ASTM F2299 test methods in terms of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. Filtration efficiency is most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299 method have normally used non-neutralized (highly charged) aerosols at smaller face velocities, each of which may enhance measured filt...","internal_url":"https://www.academia.edu/75547252/Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods","translated_internal_url":"","created_at":"2022-04-05T09:53:10.955-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83272179,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272179/thumbnails/1.jpg","file_name":"2106.pdf","download_url":"https://www.academia.edu/attachments/83272179/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Particle_filtration_efficiency_of_commer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272179/2106-libre.pdf?1649178400=\u0026response-content-disposition=attachment%3B+filename%3DParticle_filtration_efficiency_of_commer.pdf\u0026Expires=1732772794\u0026Signature=Q8-LGZjqRBcsHLHCpzxbClSkEvQvOzYtKR4oN1tB6QC6Fzjm~wsQ4iFUyzSGlsZbvpNlyoJUZF9PXHmTnHH1otKRaUJooSZr9h9xk9omyMMgXWQEunxGoX-lB~5IPIESmed2FwpR3YzQBQ2iNPzzZiWtk8qh54kvvUPMA1JRcyR1a1kXzb-~yMZxeaIuMOX2hrVky11a7N4f1wjGV-zSsL5qoLVeiL57G~PgmaxbyAZXTbiV8QqedavHa6hKzrFHzOSLSsQXz2-lYWETieKb~rMZJ5U6ZqvtZCvax7OuO5aNF6HnpmVJBh8FYKrCC4103qIZlSav36VAbA6SjzpjCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods","translated_slug":"","page_count":34,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":83272179,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83272179/thumbnails/1.jpg","file_name":"2106.pdf","download_url":"https://www.academia.edu/attachments/83272179/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Particle_filtration_efficiency_of_commer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83272179/2106-libre.pdf?1649178400=\u0026response-content-disposition=attachment%3B+filename%3DParticle_filtration_efficiency_of_commer.pdf\u0026Expires=1732772794\u0026Signature=Q8-LGZjqRBcsHLHCpzxbClSkEvQvOzYtKR4oN1tB6QC6Fzjm~wsQ4iFUyzSGlsZbvpNlyoJUZF9PXHmTnHH1otKRaUJooSZr9h9xk9omyMMgXWQEunxGoX-lB~5IPIESmed2FwpR3YzQBQ2iNPzzZiWtk8qh54kvvUPMA1JRcyR1a1kXzb-~yMZxeaIuMOX2hrVky11a7N4f1wjGV-zSsL5qoLVeiL57G~PgmaxbyAZXTbiV8QqedavHa6hKzrFHzOSLSsQXz2-lYWETieKb~rMZJ5U6ZqvtZCvax7OuO5aNF6HnpmVJBh8FYKrCC4103qIZlSav36VAbA6SjzpjCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547251"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75547251/Aggregate_level_segmentation_of_soot_TEM_images_by_unsupervised_machine_learning"><img alt="Research paper thumbnail of Aggregate-level segmentation of soot TEM images by unsupervised machine learning" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/75547251/Aggregate_level_segmentation_of_soot_TEM_images_by_unsupervised_machine_learning">Aggregate-level segmentation of soot TEM images by unsupervised machine learning</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547251"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547251"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547251; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547251]").text(description); $(".js-view-count[data-work-id=75547251]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547251; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547251']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547251, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75547251]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547251,"title":"Aggregate-level segmentation of soot TEM images by unsupervised machine learning","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/75547251/Aggregate_level_segmentation_of_soot_TEM_images_by_unsupervised_machine_learning","translated_internal_url":"","created_at":"2022-04-05T09:53:10.874-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Aggregate_level_segmentation_of_soot_TEM_images_by_unsupervised_machine_learning","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547250"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75547250/Background_oriented_schlieren_tomography_for_instantaneous_3D_combustion_imaging"><img alt="Research paper thumbnail of Background-oriented schlieren tomography for instantaneous 3D combustion imaging" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/75547250/Background_oriented_schlieren_tomography_for_instantaneous_3D_combustion_imaging">Background-oriented schlieren tomography for instantaneous 3D combustion imaging</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547250"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547250"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547250; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547250]").text(description); $(".js-view-count[data-work-id=75547250]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547250; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547250']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547250, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75547250]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547250,"title":"Background-oriented schlieren tomography for instantaneous 3D combustion imaging","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2018,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/75547250/Background_oriented_schlieren_tomography_for_instantaneous_3D_combustion_imaging","translated_internal_url":"","created_at":"2022-04-05T09:53:10.043-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Background_oriented_schlieren_tomography_for_instantaneous_3D_combustion_imaging","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547249"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75547249/Defining_regimes_and_analytical_expressions_for_fluence_curves_in_pulsed_laser_heating_of_aerosolized_nanoparticles"><img alt="Research paper thumbnail of Defining regimes and analytical expressions for fluence curves in pulsed laser heating of aerosolized nanoparticles" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75547249/Defining_regimes_and_analytical_expressions_for_fluence_curves_in_pulsed_laser_heating_of_aerosolized_nanoparticles">Defining regimes and analytical expressions for fluence curves in pulsed laser heating of aerosolized nanoparticles</a></div><div class="wp-workCard_item"><span>Optics Express</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fluence curves are a powerful tool for understanding the mechanisms underlying nanosecond pulse l...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fluence curves are a powerful tool for understanding the mechanisms underlying nanosecond pulse laser heating of aerosolized nanoparticles, which is relevant to laser-induced incandescence (LII). This paper presents analytical expressions encompassing the entirety of the fluence domain considered in LII and uses them to formally define fluence regimes. The derived expressions and non-dimensional parameters facilitate one of the first comparisons of published experimental fluence curves. This procedure provides physical insight into the laser-nanoparticle interaction and highlights inconsistencies in the application of LII models to analyze the data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547249"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547249"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547249; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547249]").text(description); $(".js-view-count[data-work-id=75547249]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547249; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547249']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547249, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75547249]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547249,"title":"Defining regimes and analytical expressions for fluence curves in pulsed laser heating of aerosolized nanoparticles","translated_title":"","metadata":{"abstract":"Fluence curves are a powerful tool for understanding the mechanisms underlying nanosecond pulse laser heating of aerosolized nanoparticles, which is relevant to laser-induced incandescence (LII). This paper presents analytical expressions encompassing the entirety of the fluence domain considered in LII and uses them to formally define fluence regimes. The derived expressions and non-dimensional parameters facilitate one of the first comparisons of published experimental fluence curves. This procedure provides physical insight into the laser-nanoparticle interaction and highlights inconsistencies in the application of LII models to analyze the data.","publisher":"The Optical Society","publication_name":"Optics Express"},"translated_abstract":"Fluence curves are a powerful tool for understanding the mechanisms underlying nanosecond pulse laser heating of aerosolized nanoparticles, which is relevant to laser-induced incandescence (LII). This paper presents analytical expressions encompassing the entirety of the fluence domain considered in LII and uses them to formally define fluence regimes. The derived expressions and non-dimensional parameters facilitate one of the first comparisons of published experimental fluence curves. This procedure provides physical insight into the laser-nanoparticle interaction and highlights inconsistencies in the application of LII models to analyze the data.","internal_url":"https://www.academia.edu/75547249/Defining_regimes_and_analytical_expressions_for_fluence_curves_in_pulsed_laser_heating_of_aerosolized_nanoparticles","translated_internal_url":"","created_at":"2022-04-05T09:53:09.914-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Defining_regimes_and_analytical_expressions_for_fluence_curves_in_pulsed_laser_heating_of_aerosolized_nanoparticles","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":516,"name":"Optics","url":"https://www.academia.edu/Documents/in/Optics"},{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":13621,"name":"Nanoparticles","url":"https://www.academia.edu/Documents/in/Nanoparticles"},{"id":48337,"name":"Laser Diagnostics","url":"https://www.academia.edu/Documents/in/Laser_Diagnostics"},{"id":263152,"name":"Optical physics","url":"https://www.academia.edu/Documents/in/Optical_physics"},{"id":283313,"name":"Soot","url":"https://www.academia.edu/Documents/in/Soot"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":19153479,"url":"https://www.osapublishing.org/viewmedia.cfm?URI=oe-25-5-5684\u0026seq=0"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75547228"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/75547228/Thermal_accommodation_coefficients_for_time_resolved_laser_induced_incandescence_sizing_of_metal_nanoparticles_in_monotomic_gases"><img alt="Research paper thumbnail of Thermal accommodation coefficients for time-resolved laser-induced incandescence sizing of metal nanoparticles in monotomic gases" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/75547228/Thermal_accommodation_coefficients_for_time_resolved_laser_induced_incandescence_sizing_of_metal_nanoparticles_in_monotomic_gases">Thermal accommodation coefficients for time-resolved laser-induced incandescence sizing of metal nanoparticles in monotomic gases</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">There is recent interest in adapting time-resolved laser-induced incandescence (TiRE-LII) to meas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">There is recent interest in adapting time-resolved laser-induced incandescence (TiRE-LII) to measure aerosolized metal nanoparticles, which requires knowledge of the thermal accommodation coefficient between the gas and the laser-energized particle. This paper presents accommodation coefficients for various metal particles in monatomic gases derived using molecular dynamics (MD). A comparative analysis of different gas/metal systems reveals a fundamental relationship between the thermal accommodation coefficient and the potential well depth. Finally, MD derived accommodation coefficients are used, for the first time, to recover particle sizes from TiRe-LII measurements made on molybdenum nanoparticles in helium and argon atmospheres.Copyright © 2012 by ASME</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75547228"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75547228"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75547228; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75547228]").text(description); $(".js-view-count[data-work-id=75547228]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75547228; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75547228']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75547228, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75547228]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75547228,"title":"Thermal accommodation coefficients for time-resolved laser-induced incandescence sizing of metal nanoparticles in monotomic gases","translated_title":"","metadata":{"abstract":"There is recent interest in adapting time-resolved laser-induced incandescence (TiRE-LII) to measure aerosolized metal nanoparticles, which requires knowledge of the thermal accommodation coefficient between the gas and the laser-energized particle. This paper presents accommodation coefficients for various metal particles in monatomic gases derived using molecular dynamics (MD). A comparative analysis of different gas/metal systems reveals a fundamental relationship between the thermal accommodation coefficient and the potential well depth. Finally, MD derived accommodation coefficients are used, for the first time, to recover particle sizes from TiRe-LII measurements made on molybdenum nanoparticles in helium and argon atmospheres.Copyright © 2012 by ASME","publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":"There is recent interest in adapting time-resolved laser-induced incandescence (TiRE-LII) to measure aerosolized metal nanoparticles, which requires knowledge of the thermal accommodation coefficient between the gas and the laser-energized particle. This paper presents accommodation coefficients for various metal particles in monatomic gases derived using molecular dynamics (MD). A comparative analysis of different gas/metal systems reveals a fundamental relationship between the thermal accommodation coefficient and the potential well depth. Finally, MD derived accommodation coefficients are used, for the first time, to recover particle sizes from TiRe-LII measurements made on molybdenum nanoparticles in helium and argon atmospheres.Copyright © 2012 by ASME","internal_url":"https://www.academia.edu/75547228/Thermal_accommodation_coefficients_for_time_resolved_laser_induced_incandescence_sizing_of_metal_nanoparticles_in_monotomic_gases","translated_internal_url":"","created_at":"2022-04-05T09:52:42.390-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Thermal_accommodation_coefficients_for_time_resolved_laser_induced_incandescence_sizing_of_metal_nanoparticles_in_monotomic_gases","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71535508"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/71535508/MATLAB_tools_for_PMA_transfer_function_evaluation_mat_tfer_pma_"><img alt="Research paper thumbnail of MATLAB tools for PMA transfer function evaluation (mat-tfer-pma)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/71535508/MATLAB_tools_for_PMA_transfer_function_evaluation_mat_tfer_pma_">MATLAB tools for PMA transfer function evaluation (mat-tfer-pma)</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The attached MATLAB functions and scripts are intended to reproduce the results of the associated...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The attached MATLAB functions and scripts are intended to reproduce the results of the associated paper (Sipkens et al., Aerosol Sci. Technol. 2019). They evaluate the transfer function of particle mass analyzers (PMAs), including the centrifugal particle mass analyzer (CPMA) and aerosol particle mass analyzer (APM). This is done using a novel set of expressions derived from particle tracking methods and using a finite difference method. Information on each file is given as header information in each file, and only a brief overview is provided here. Release officially associated with the associated paper (Sipkens et al., Aerosol Sci. Technol. 2019).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71535508"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71535508"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71535508; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71535508]").text(description); $(".js-view-count[data-work-id=71535508]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71535508; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71535508']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71535508, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=71535508]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71535508,"title":"MATLAB tools for PMA transfer function evaluation (mat-tfer-pma)","translated_title":"","metadata":{"abstract":"The attached MATLAB functions and scripts are intended to reproduce the results of the associated paper (Sipkens et al., Aerosol Sci. Technol. 2019). They evaluate the transfer function of particle mass analyzers (PMAs), including the centrifugal particle mass analyzer (CPMA) and aerosol particle mass analyzer (APM). This is done using a novel set of expressions derived from particle tracking methods and using a finite difference method. Information on each file is given as header information in each file, and only a brief overview is provided here. Release officially associated with the associated paper (Sipkens et al., Aerosol Sci. Technol. 2019).","publisher":"Zenodo","publication_date":{"day":20,"month":10,"year":2019,"errors":{}}},"translated_abstract":"The attached MATLAB functions and scripts are intended to reproduce the results of the associated paper (Sipkens et al., Aerosol Sci. Technol. 2019). They evaluate the transfer function of particle mass analyzers (PMAs), including the centrifugal particle mass analyzer (CPMA) and aerosol particle mass analyzer (APM). This is done using a novel set of expressions derived from particle tracking methods and using a finite difference method. Information on each file is given as header information in each file, and only a brief overview is provided here. Release officially associated with the associated paper (Sipkens et al., Aerosol Sci. Technol. 2019).","internal_url":"https://www.academia.edu/71535508/MATLAB_tools_for_PMA_transfer_function_evaluation_mat_tfer_pma_","translated_internal_url":"","created_at":"2022-02-14T12:14:23.902-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"MATLAB_tools_for_PMA_transfer_function_evaluation_mat_tfer_pma_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71535490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71535490/Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods"><img alt="Research paper thumbnail of Particle filtration efficiency of commercial respirators and face masks: experimental comparison of test methods" class="work-thumbnail" src="https://attachments.academia-assets.com/80836131/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71535490/Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods">Particle filtration efficiency of commercial respirators and face masks: experimental comparison of test methods</a></div><div class="wp-workCard_item"><span>arXiv: Medical Physics</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Respirators, medical masks, and barrier face coverings all filter airborne particles using simila...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles yet are tested using a variety of variety of standardized test methods. To quantify and understand the effects of differences between the standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). We systematically compared the experimental performance of the NIOSH and ASTM F2299 test methods in terms of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. Filtration efficiency is most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299 method have normally used non-neutralized (highly charged) aerosols at smaller face velocities, each of which may enhance measured filt...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dea00767d58a53db0576aa63ed951d8e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80836131,&quot;asset_id&quot;:71535490,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80836131/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71535490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71535490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71535490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71535490]").text(description); $(".js-view-count[data-work-id=71535490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71535490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71535490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71535490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dea00767d58a53db0576aa63ed951d8e" } } $('.js-work-strip[data-work-id=71535490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71535490,"title":"Particle filtration efficiency of commercial respirators and face masks: experimental comparison of test methods","translated_title":"","metadata":{"abstract":"Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles yet are tested using a variety of variety of standardized test methods. To quantify and understand the effects of differences between the standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). We systematically compared the experimental performance of the NIOSH and ASTM F2299 test methods in terms of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. Filtration efficiency is most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299 method have normally used non-neutralized (highly charged) aerosols at smaller face velocities, each of which may enhance measured filt...","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"arXiv: Medical Physics"},"translated_abstract":"Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles yet are tested using a variety of variety of standardized test methods. To quantify and understand the effects of differences between the standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). We systematically compared the experimental performance of the NIOSH and ASTM F2299 test methods in terms of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. Filtration efficiency is most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299 method have normally used non-neutralized (highly charged) aerosols at smaller face velocities, each of which may enhance measured filt...","internal_url":"https://www.academia.edu/71535490/Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods","translated_internal_url":"","created_at":"2022-02-14T12:14:05.674-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80836131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80836131/thumbnails/1.jpg","file_name":"2106.pdf","download_url":"https://www.academia.edu/attachments/80836131/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Particle_filtration_efficiency_of_commer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80836131/2106-libre.pdf?1644869710=\u0026response-content-disposition=attachment%3B+filename%3DParticle_filtration_efficiency_of_commer.pdf\u0026Expires=1732772794\u0026Signature=GwiOYId~NapT8ezZcB5wTKb6f8QC-Hr4faiEpU3XOfobaC0nbM8~puLGLJkpRrCTvjHGQbFPTkxhFOTh7Z30e5nXFbWTGO1U5olU0wpUz-QPWNGwF80ZEhQVrcso8yyr~EuLv2RrJorndzbbhHlk9UMwGwshs~WsApkbarlwdVSk4~SPn~0sCIo7tBQshX932Ht7X-eptm98A-u2ZE6nRAv-SeWpoRcqJlGOUxUtHS1l6PKmMw1oroPcpjDi3lkKeIxhTKBHVjLQ2qlPsYCIT5z5wvJa2aPxr21NMKzN1T3lV-ejI9W3HXFTMg~OZBy3blh0DwzZYzjxh7W3LzGCJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Particle_filtration_efficiency_of_commercial_respirators_and_face_masks_experimental_comparison_of_test_methods","translated_slug":"","page_count":34,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":80836131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80836131/thumbnails/1.jpg","file_name":"2106.pdf","download_url":"https://www.academia.edu/attachments/80836131/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Particle_filtration_efficiency_of_commer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80836131/2106-libre.pdf?1644869710=\u0026response-content-disposition=attachment%3B+filename%3DParticle_filtration_efficiency_of_commer.pdf\u0026Expires=1732772794\u0026Signature=GwiOYId~NapT8ezZcB5wTKb6f8QC-Hr4faiEpU3XOfobaC0nbM8~puLGLJkpRrCTvjHGQbFPTkxhFOTh7Z30e5nXFbWTGO1U5olU0wpUz-QPWNGwF80ZEhQVrcso8yyr~EuLv2RrJorndzbbhHlk9UMwGwshs~WsApkbarlwdVSk4~SPn~0sCIo7tBQshX932Ht7X-eptm98A-u2ZE6nRAv-SeWpoRcqJlGOUxUtHS1l6PKmMw1oroPcpjDi3lkKeIxhTKBHVjLQ2qlPsYCIT5z5wvJa2aPxr21NMKzN1T3lV-ejI9W3HXFTMg~OZBy3blh0DwzZYzjxh7W3LzGCJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80836130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80836130/thumbnails/1.jpg","file_name":"2106.pdf","download_url":"https://www.academia.edu/attachments/80836130/download_file","bulk_download_file_name":"Particle_filtration_efficiency_of_commer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80836130/2106-libre.pdf?1644869713=\u0026response-content-disposition=attachment%3B+filename%3DParticle_filtration_efficiency_of_commer.pdf\u0026Expires=1732772794\u0026Signature=BxVkBUIUv5rToaZy5xAViLu6sES2eTv8HrSuY1oszV0r-Fo6fk8Yysj4mGnkNWV~Va~RFk1nIicdkNH61MhUO33k8GTqMqs~73XMgZTfRLxgKzU6kEADWI6IR1kybmtdi5IiHPbTfZz8lPRSOaaQ0wKDEaZOCTKmPlwxBn9ib5s53zoFcmnY1W~2R9KLAs5UKpz4xaA9~YZdSVe4NKT48gCirUU4N733mTEkftoxpNHMX3Xtg0~YFKbS0PVDrOR~sQ~W5ZV7IwqIBPRRqgu87iInfcKVPDniLusfz7IPdFgLwenH6srV7fcBa4zhZ2HGiKgSaaKfHlYaPpV3WCuG6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"}],"urls":[{"id":17686526,"url":"http://arxiv-export-lb.library.cornell.edu/pdf/2106.04059"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878398"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65878398/Sizing_of_Non_Carbonaceous_Nanoparticles_by_Time_Resolved_Laser_Induced_Incandescence"><img alt="Research paper thumbnail of Sizing of Non-Carbonaceous Nanoparticles by Time-Resolved Laser-Induced Incandescence" class="work-thumbnail" src="https://attachments.academia-assets.com/77284652/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65878398/Sizing_of_Non_Carbonaceous_Nanoparticles_by_Time_Resolved_Laser_Induced_Incandescence">Sizing of Non-Carbonaceous Nanoparticles by Time-Resolved Laser-Induced Incandescence</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4de60a05a817db861a12c01b55675942" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77284652,&quot;asset_id&quot;:65878398,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77284652/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878398"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878398"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878398; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878398]").text(description); $(".js-view-count[data-work-id=65878398]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878398; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878398']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878398, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4de60a05a817db861a12c01b55675942" } } $('.js-work-strip[data-work-id=65878398]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878398,"title":"Sizing of Non-Carbonaceous Nanoparticles by Time-Resolved Laser-Induced Incandescence","translated_title":"","metadata":{"grobid_abstract":"I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"grobid_abstract_attachment_id":77284652},"translated_abstract":null,"internal_url":"https://www.academia.edu/65878398/Sizing_of_Non_Carbonaceous_Nanoparticles_by_Time_Resolved_Laser_Induced_Incandescence","translated_internal_url":"","created_at":"2021-12-24T10:02:59.913-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77284652,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284652/thumbnails/1.jpg","file_name":"Sipkens_Timothy.pdf","download_url":"https://www.academia.edu/attachments/77284652/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sizing_of_Non_Carbonaceous_Nanoparticles.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284652/Sipkens_Timothy-libre.pdf?1640376517=\u0026response-content-disposition=attachment%3B+filename%3DSizing_of_Non_Carbonaceous_Nanoparticles.pdf\u0026Expires=1732772794\u0026Signature=Xc4RLfD8aJ1AhbH0jc6nF5kSCjDEZssR-D8cml0XAcnBuahClcbfBJWygmNyALI7~TpFj8QnqaTab4lMy78XBoP8K8jxjCoxd~Ik1eL1P5uCqjl0BqYhnq7DMMYeWAkb03hgD~DkIz92zSxqLvzswEIJPfC~bVZDf6yaZ3o87ESynaEHewruzhAp8nCIz0mHX~GFw3lCnWM9LUG2c1s7NA9fGPhqW4oA~Thv2eY-W1DY7F9a-OryR~K0vN~XOuB2nfj5-Fsm0KBaX8XgBuRx-Q6YIyN~HfIBFLjFq-H7IQJX4LAB6wkb0c7OhUBTxf-otC5yrptpFV7wB2arBpoYWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sizing_of_Non_Carbonaceous_Nanoparticles_by_Time_Resolved_Laser_Induced_Incandescence","translated_slug":"","page_count":136,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":77284652,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284652/thumbnails/1.jpg","file_name":"Sipkens_Timothy.pdf","download_url":"https://www.academia.edu/attachments/77284652/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sizing_of_Non_Carbonaceous_Nanoparticles.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284652/Sipkens_Timothy-libre.pdf?1640376517=\u0026response-content-disposition=attachment%3B+filename%3DSizing_of_Non_Carbonaceous_Nanoparticles.pdf\u0026Expires=1732772794\u0026Signature=Xc4RLfD8aJ1AhbH0jc6nF5kSCjDEZssR-D8cml0XAcnBuahClcbfBJWygmNyALI7~TpFj8QnqaTab4lMy78XBoP8K8jxjCoxd~Ik1eL1P5uCqjl0BqYhnq7DMMYeWAkb03hgD~DkIz92zSxqLvzswEIJPfC~bVZDf6yaZ3o87ESynaEHewruzhAp8nCIz0mHX~GFw3lCnWM9LUG2c1s7NA9fGPhqW4oA~Thv2eY-W1DY7F9a-OryR~K0vN~XOuB2nfj5-Fsm0KBaX8XgBuRx-Q6YIyN~HfIBFLjFq-H7IQJX4LAB6wkb0c7OhUBTxf-otC5yrptpFV7wB2arBpoYWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":77284653,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284653/thumbnails/1.jpg","file_name":"Sipkens_Timothy.pdf","download_url":"https://www.academia.edu/attachments/77284653/download_file","bulk_download_file_name":"Sizing_of_Non_Carbonaceous_Nanoparticles.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284653/Sipkens_Timothy-libre.pdf?1640376527=\u0026response-content-disposition=attachment%3B+filename%3DSizing_of_Non_Carbonaceous_Nanoparticles.pdf\u0026Expires=1732772794\u0026Signature=AMzFG24R8gw~2YaelJZzL8CtZfh5S8f3YTDMIPNiVQW3YaHl9Ma6k5D5erCNGtK9geGKndHMc5vtqSXQxPUQJ6xxErHw3D1mMWdeg7BaeKB833OUh2ajGfr1l7SgHRMgDFlon0MPJrF~32BzazIdhla7xYZDcvjnI9LiJl6~BhQhshGFIBD7yRSm6qcV3LKgdOf9zl6UzpGSeqybQAH6MHTSGDx6~3FltGBY5l4K4PV7tN2QaeuSewNAFQkVI~~bMb4GV6dPpzDxH1vxTfx5YzvoYaNpUOrTD-wYaT7Q7jEROfDoU8EDuL8tAztkDSM1vRcmPEWiz0Cj6EtcN~ZlYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":15658737,"url":"https://uwspace.uwaterloo.ca/bitstream/handle/10012/8890/Sipkens_Timothy.pdf?isAllowed=y\u0026sequence=1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878397"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65878397/Advances_in_the_Modeling_of_Time_Resolved_Laser_Induced_Incandescence"><img alt="Research paper thumbnail of Advances in the Modeling of Time-Resolved Laser-Induced Incandescence" class="work-thumbnail" src="https://attachments.academia-assets.com/77284650/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65878397/Advances_in_the_Modeling_of_Time_Resolved_Laser_Induced_Incandescence">Advances in the Modeling of Time-Resolved Laser-Induced Incandescence</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">iv Sipkens, 2018 Abstract Aerosolized nanoparticles represent both great potential for the develo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">iv Sipkens, 2018 Abstract Aerosolized nanoparticles represent both great potential for the development of emerging technologies and one of the biggest challenges currently facing our planet. In the former case, aerosol-based synthesis techniques represent one of the most cost-effective approaches to generating engineered nanoparticles having applications that range from medicine to energy. In the latter case, aerosolized soot is the second largest forcing factor after carbon dioxide in climate change models and contributes significantly to asthma, bronchitis, and various other respiratory illnesses. The increased predominance of engineered nanoparticles also presents significant environmental and health risks due to various toxicological effects. In any of these cases, robust characterization is critical to the function and regulation of these nanoaerosols. Time-resolved laser-induced incandescence (TiRe-LII) is well-suited to meeting this challenge. Since its inception in the 1980s...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="41e507f7282357fc4ddda121206f2bd5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77284650,&quot;asset_id&quot;:65878397,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77284650/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878397"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878397"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878397; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878397]").text(description); $(".js-view-count[data-work-id=65878397]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878397; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878397']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878397, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "41e507f7282357fc4ddda121206f2bd5" } } $('.js-work-strip[data-work-id=65878397]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878397,"title":"Advances in the Modeling of Time-Resolved Laser-Induced Incandescence","translated_title":"","metadata":{"abstract":"iv Sipkens, 2018 Abstract Aerosolized nanoparticles represent both great potential for the development of emerging technologies and one of the biggest challenges currently facing our planet. In the former case, aerosol-based synthesis techniques represent one of the most cost-effective approaches to generating engineered nanoparticles having applications that range from medicine to energy. In the latter case, aerosolized soot is the second largest forcing factor after carbon dioxide in climate change models and contributes significantly to asthma, bronchitis, and various other respiratory illnesses. The increased predominance of engineered nanoparticles also presents significant environmental and health risks due to various toxicological effects. In any of these cases, robust characterization is critical to the function and regulation of these nanoaerosols. Time-resolved laser-induced incandescence (TiRe-LII) is well-suited to meeting this challenge. Since its inception in the 1980s...","publication_date":{"day":null,"month":null,"year":2018,"errors":{}}},"translated_abstract":"iv Sipkens, 2018 Abstract Aerosolized nanoparticles represent both great potential for the development of emerging technologies and one of the biggest challenges currently facing our planet. In the former case, aerosol-based synthesis techniques represent one of the most cost-effective approaches to generating engineered nanoparticles having applications that range from medicine to energy. In the latter case, aerosolized soot is the second largest forcing factor after carbon dioxide in climate change models and contributes significantly to asthma, bronchitis, and various other respiratory illnesses. The increased predominance of engineered nanoparticles also presents significant environmental and health risks due to various toxicological effects. In any of these cases, robust characterization is critical to the function and regulation of these nanoaerosols. Time-resolved laser-induced incandescence (TiRe-LII) is well-suited to meeting this challenge. Since its inception in the 1980s...","internal_url":"https://www.academia.edu/65878397/Advances_in_the_Modeling_of_Time_Resolved_Laser_Induced_Incandescence","translated_internal_url":"","created_at":"2021-12-24T10:02:59.795-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77284650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284650/thumbnails/1.jpg","file_name":"Sipkens_Timothy.pdf","download_url":"https://www.academia.edu/attachments/77284650/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Advances_in_the_Modeling_of_Time_Resolve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284650/Sipkens_Timothy-libre.pdf?1640376755=\u0026response-content-disposition=attachment%3B+filename%3DAdvances_in_the_Modeling_of_Time_Resolve.pdf\u0026Expires=1732772794\u0026Signature=AxfP7BfpTyKw0REGJLKv8IpxHKdgN-Ay1Erb7rvpAkkeOTMePrwIqDQJjC7cXDom1MENyxhxTOA3QNm~XAqXXQlvl0WlkZ~PDHBv0o1rFPqiq2SuDPgphmu1e58DK77HgIhR4lyNs7YnzqUkQYsbZdjJS4ZdEyoAEkJRBvmuW3YLYLzsIUM945qLzUa2vyTr5b6PTBJEnIqZeh8lvJJlyEvZAC~3dovHvv7fEFXBLmx3PpG6KT502AbImVBDQlEZrPuTYU~K7qKx3t3ceT~UKCxkLXhFjvc0AjbG7RVDkJ6YdH8fN5IWIDBD1JMbAVXku94DLxwf4Y1GRuL92Vig0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Advances_in_the_Modeling_of_Time_Resolved_Laser_Induced_Incandescence","translated_slug":"","page_count":318,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":77284650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284650/thumbnails/1.jpg","file_name":"Sipkens_Timothy.pdf","download_url":"https://www.academia.edu/attachments/77284650/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Advances_in_the_Modeling_of_Time_Resolve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284650/Sipkens_Timothy-libre.pdf?1640376755=\u0026response-content-disposition=attachment%3B+filename%3DAdvances_in_the_Modeling_of_Time_Resolve.pdf\u0026Expires=1732772794\u0026Signature=AxfP7BfpTyKw0REGJLKv8IpxHKdgN-Ay1Erb7rvpAkkeOTMePrwIqDQJjC7cXDom1MENyxhxTOA3QNm~XAqXXQlvl0WlkZ~PDHBv0o1rFPqiq2SuDPgphmu1e58DK77HgIhR4lyNs7YnzqUkQYsbZdjJS4ZdEyoAEkJRBvmuW3YLYLzsIUM945qLzUa2vyTr5b6PTBJEnIqZeh8lvJJlyEvZAC~3dovHvv7fEFXBLmx3PpG6KT502AbImVBDQlEZrPuTYU~K7qKx3t3ceT~UKCxkLXhFjvc0AjbG7RVDkJ6YdH8fN5IWIDBD1JMbAVXku94DLxwf4Y1GRuL92Vig0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":77284651,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284651/thumbnails/1.jpg","file_name":"Sipkens_Timothy.pdf","download_url":"https://www.academia.edu/attachments/77284651/download_file","bulk_download_file_name":"Advances_in_the_Modeling_of_Time_Resolve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284651/Sipkens_Timothy-libre.pdf?1640376744=\u0026response-content-disposition=attachment%3B+filename%3DAdvances_in_the_Modeling_of_Time_Resolve.pdf\u0026Expires=1732772794\u0026Signature=f98V7zzZ~PEEjQ3pCB46q9FCM0AGBduX5Xn5VVsEUdCX4WWhyFhRyCWNy3lk4YKOVB0Wes2dmI5tFiyoec~NdsVkUbPAGQgST47pYC7BvqbZyziUhTi0Z6ur5bfFJboaNe-TOBAmWujAJ0v0juGdBMeYw-D-0P-3l78-Mkqz3Fj2M5jSU3xaMvkEOB9e1qARR0-KditlO~kiykPk49~2rLijKS7bE-ygku87ulnBKdKcaQ9uYzrAAttkMkiAUO59iK~tX~OLKMXZ6MAllUkIAXMWkz0udQjZong3nfd~CFPTV36uCGkwInULrAdjs82QDztHKBj52o1iGj9vNqtKvg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":15658736,"url":"https://uwspace.uwaterloo.ca/bitstream/handle/10012/13860/Sipkens_Timothy.pdf?isAllowed=y\u0026sequence=7"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878396"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65878396/Systematic_experimental_comparison_of_particle_filtration_efficiency_test_methods_for_commercial_respirators_and_face_masks_preprint_"><img alt="Research paper thumbnail of Systematic experimental comparison of particle filtration efficiency test methods for commercial respirators and face masks (preprint)" class="work-thumbnail" src="https://attachments.academia-assets.com/77284649/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65878396/Systematic_experimental_comparison_of_particle_filtration_efficiency_test_methods_for_commercial_respirators_and_face_masks_preprint_">Systematic experimental comparison of particle filtration efficiency test methods for commercial respirators and face masks (preprint)</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Respirators, medical masks, and barrier face coverings all filter airborne particles using simila...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles. However, they are tested for certification using a variety of standardized test methods, creating challenges for the comparison of differently certified products. We have performed systematic experiments to quantify and understand the differences between standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). Our experiments demonstrate the role of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. The measured filtration efficiency was most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299/F2100 method have commonly used non-neutralized (highly charged) aerosol...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="21c97b856c250c42ab8dcd21aa88292a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77284649,&quot;asset_id&quot;:65878396,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77284649/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878396"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878396"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878396; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878396]").text(description); $(".js-view-count[data-work-id=65878396]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878396; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878396']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878396, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "21c97b856c250c42ab8dcd21aa88292a" } } $('.js-work-strip[data-work-id=65878396]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878396,"title":"Systematic experimental comparison of particle filtration efficiency test methods for commercial respirators and face masks (preprint)","translated_title":"","metadata":{"abstract":"Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles. However, they are tested for certification using a variety of standardized test methods, creating challenges for the comparison of differently certified products. We have performed systematic experiments to quantify and understand the differences between standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). Our experiments demonstrate the role of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. The measured filtration efficiency was most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299/F2100 method have commonly used non-neutralized (highly charged) aerosol...","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles. However, they are tested for certification using a variety of standardized test methods, creating challenges for the comparison of differently certified products. We have performed systematic experiments to quantify and understand the differences between standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). Our experiments demonstrate the role of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. The measured filtration efficiency was most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299/F2100 method have commonly used non-neutralized (highly charged) aerosol...","internal_url":"https://www.academia.edu/65878396/Systematic_experimental_comparison_of_particle_filtration_efficiency_test_methods_for_commercial_respirators_and_face_masks_preprint_","translated_internal_url":"","created_at":"2021-12-24T10:02:59.675-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77284649,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284649/thumbnails/1.jpg","file_name":"2106.04059v2.pdf","download_url":"https://www.academia.edu/attachments/77284649/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Systematic_experimental_comparison_of_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284649/2106.04059v2-libre.pdf?1640376493=\u0026response-content-disposition=attachment%3B+filename%3DSystematic_experimental_comparison_of_pa.pdf\u0026Expires=1732772794\u0026Signature=bvm-SsdjNXY5SfwJD-6l5nd3~G8nnVzjUtQLYTgwPKs9W4MIG~LabwElOVD4twD2c4HvENkJA4n1Og3a0bfEsIaXSZ5OVHH-CihYf3qpPps-R59JM4jC3vd6o9Boa8RXDVXDPWGywIsdZf6aWBIGf8nuyPhOGGLFAy0XAXonN3J1cIOLoHJSXvuvwoiF-jlSV0-nWlNSwsNcIYwNfWlT6qNlyQFfH9fui5ndvtCskxtXms2vuGW9~4wPlAVXH0-7aFzanx8RAZHuFsff7qlQA4AYtzpDzJLM9DmJ2mJzdg4BdH3KYRcP8wxRweCoiLKW1uwgFArcxDHr-W47cXnsNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Systematic_experimental_comparison_of_particle_filtration_efficiency_test_methods_for_commercial_respirators_and_face_masks_preprint_","translated_slug":"","page_count":34,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":77284649,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284649/thumbnails/1.jpg","file_name":"2106.04059v2.pdf","download_url":"https://www.academia.edu/attachments/77284649/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Systematic_experimental_comparison_of_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284649/2106.04059v2-libre.pdf?1640376493=\u0026response-content-disposition=attachment%3B+filename%3DSystematic_experimental_comparison_of_pa.pdf\u0026Expires=1732772794\u0026Signature=bvm-SsdjNXY5SfwJD-6l5nd3~G8nnVzjUtQLYTgwPKs9W4MIG~LabwElOVD4twD2c4HvENkJA4n1Og3a0bfEsIaXSZ5OVHH-CihYf3qpPps-R59JM4jC3vd6o9Boa8RXDVXDPWGywIsdZf6aWBIGf8nuyPhOGGLFAy0XAXonN3J1cIOLoHJSXvuvwoiF-jlSV0-nWlNSwsNcIYwNfWlT6qNlyQFfH9fui5ndvtCskxtXms2vuGW9~4wPlAVXH0-7aFzanx8RAZHuFsff7qlQA4AYtzpDzJLM9DmJ2mJzdg4BdH3KYRcP8wxRweCoiLKW1uwgFArcxDHr-W47cXnsNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":15658735,"url":"https://arxiv.org/pdf/2106.04059v2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878395"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/65878395/Data_Based_Mesh_Selection_in_Chemical_Species_Tomography"><img alt="Research paper thumbnail of Data-Based Mesh Selection in Chemical Species Tomography" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/65878395/Data_Based_Mesh_Selection_in_Chemical_Species_Tomography">Data-Based Mesh Selection in Chemical Species Tomography</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878395"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878395"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878395; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878395]").text(description); $(".js-view-count[data-work-id=65878395]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878395; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878395']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878395, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65878395]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878395,"title":"Data-Based Mesh Selection in Chemical Species Tomography","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/65878395/Data_Based_Mesh_Selection_in_Chemical_Species_Tomography","translated_internal_url":"","created_at":"2021-12-24T10:02:59.585-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Data_Based_Mesh_Selection_in_Chemical_Species_Tomography","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878394"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65878394/Investigating_Non_Incandescence_Emission_During_Laser_Induced_Incandescence_Experiments_on_Aerosolized_Plasmonic_Nanoparticles"><img alt="Research paper thumbnail of Investigating Non-Incandescence Emission During Laser Induced Incandescence Experiments on Aerosolized Plasmonic Nanoparticles" class="work-thumbnail" src="https://attachments.academia-assets.com/77284647/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65878394/Investigating_Non_Incandescence_Emission_During_Laser_Induced_Incandescence_Experiments_on_Aerosolized_Plasmonic_Nanoparticles">Investigating Non-Incandescence Emission During Laser Induced Incandescence Experiments on Aerosolized Plasmonic Nanoparticles</a></div><div class="wp-workCard_item"><span>Proceeding of Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Time-resolved laser-induced incandescence (TiRe-LII) experiments conducted on aerosolized Ag, com...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Time-resolved laser-induced incandescence (TiRe-LII) experiments conducted on aerosolized Ag, commercial soot and Au nanoparticles energized with a 1064 nm laser pulse. Detected TiRe-LII signal from aerosolized Ag nanoparticles suggest that the observed signal could originate from electron neutral bremsstrahlung and not of incandescence origin. A new model is proposed based on plasmonically-enhanced photoemission of electrons from Ag nanoparticles. The interaction of the electrons with buffer gas neutral species leads to inverse neutral bremsstrahlung absorption of the laser pulse as well as neutral bremsstrahlung emission. The new model could potentially explain some of the anomalies observed during TiRe-LII experiments as a secondary signal contaminating the original incandescence signal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="85c8e2ed8ff6773f952aa1e62b8beaea" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77284647,&quot;asset_id&quot;:65878394,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77284647/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878394"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878394"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878394; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878394]").text(description); $(".js-view-count[data-work-id=65878394]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878394; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878394']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878394, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "85c8e2ed8ff6773f952aa1e62b8beaea" } } $('.js-work-strip[data-work-id=65878394]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878394,"title":"Investigating Non-Incandescence Emission During Laser Induced Incandescence Experiments on Aerosolized Plasmonic Nanoparticles","translated_title":"","metadata":{"abstract":"Time-resolved laser-induced incandescence (TiRe-LII) experiments conducted on aerosolized Ag, commercial soot and Au nanoparticles energized with a 1064 nm laser pulse. Detected TiRe-LII signal from aerosolized Ag nanoparticles suggest that the observed signal could originate from electron neutral bremsstrahlung and not of incandescence origin. A new model is proposed based on plasmonically-enhanced photoemission of electrons from Ag nanoparticles. The interaction of the electrons with buffer gas neutral species leads to inverse neutral bremsstrahlung absorption of the laser pulse as well as neutral bremsstrahlung emission. The new model could potentially explain some of the anomalies observed during TiRe-LII experiments as a secondary signal contaminating the original incandescence signal.","publisher":"Proceeding of Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Proceeding of Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19"},"translated_abstract":"Time-resolved laser-induced incandescence (TiRe-LII) experiments conducted on aerosolized Ag, commercial soot and Au nanoparticles energized with a 1064 nm laser pulse. Detected TiRe-LII signal from aerosolized Ag nanoparticles suggest that the observed signal could originate from electron neutral bremsstrahlung and not of incandescence origin. A new model is proposed based on plasmonically-enhanced photoemission of electrons from Ag nanoparticles. The interaction of the electrons with buffer gas neutral species leads to inverse neutral bremsstrahlung absorption of the laser pulse as well as neutral bremsstrahlung emission. The new model could potentially explain some of the anomalies observed during TiRe-LII experiments as a secondary signal contaminating the original incandescence signal.","internal_url":"https://www.academia.edu/65878394/Investigating_Non_Incandescence_Emission_During_Laser_Induced_Incandescence_Experiments_on_Aerosolized_Plasmonic_Nanoparticles","translated_internal_url":"","created_at":"2021-12-24T10:02:59.450-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77284647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284647/thumbnails/1.jpg","file_name":"nh-08.pdf","download_url":"https://www.academia.edu/attachments/77284647/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Investigating_Non_Incandescence_Emission.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284647/nh-08-libre.pdf?1640376482=\u0026response-content-disposition=attachment%3B+filename%3DInvestigating_Non_Incandescence_Emission.pdf\u0026Expires=1732772795\u0026Signature=Ob~imTtPfNm1MOYa9356Jrbl7nJ8ix-rfVaBtPxSWBHCZlMRlbkJ-QaC0eVwLzu-JrecRNNON5pgknELlBuC9M~BXIej8l8e4F4A19C1DmtlRmejm-ssKakRqlYj-5YQdaJzG1bl~AlUJG88VRrJo-Vql1QSxkciLymgvQbbvao-GkP84Ay7GbdNPztiUVSLnusidaIKHLTCudWvKCzH3Cz113~Kj-1E6cHsGR8cTIZydpQPp-cKwS0J4wCBtkfiyqf6K~EM1Tp3TYybe09XwsMjuP4ZgEwpI-DcUs5mMKKxB-~M~QFxKS7~k294OJ7Z7N31upYEdBzx0RhXsrRgzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Investigating_Non_Incandescence_Emission_During_Laser_Induced_Incandescence_Experiments_on_Aerosolized_Plasmonic_Nanoparticles","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[{"id":77284647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284647/thumbnails/1.jpg","file_name":"nh-08.pdf","download_url":"https://www.academia.edu/attachments/77284647/download_file?st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&st=MTczMjc2OTE5NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Investigating_Non_Incandescence_Emission.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284647/nh-08-libre.pdf?1640376482=\u0026response-content-disposition=attachment%3B+filename%3DInvestigating_Non_Incandescence_Emission.pdf\u0026Expires=1732772795\u0026Signature=Ob~imTtPfNm1MOYa9356Jrbl7nJ8ix-rfVaBtPxSWBHCZlMRlbkJ-QaC0eVwLzu-JrecRNNON5pgknELlBuC9M~BXIej8l8e4F4A19C1DmtlRmejm-ssKakRqlYj-5YQdaJzG1bl~AlUJG88VRrJo-Vql1QSxkciLymgvQbbvao-GkP84Ay7GbdNPztiUVSLnusidaIKHLTCudWvKCzH3Cz113~Kj-1E6cHsGR8cTIZydpQPp-cKwS0J4wCBtkfiyqf6K~EM1Tp3TYybe09XwsMjuP4ZgEwpI-DcUs5mMKKxB-~M~QFxKS7~k294OJ7Z7N31upYEdBzx0RhXsrRgzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":77284648,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77284648/thumbnails/1.jpg","file_name":"nh-08.pdf","download_url":"https://www.academia.edu/attachments/77284648/download_file","bulk_download_file_name":"Investigating_Non_Incandescence_Emission.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77284648/nh-08-libre.pdf?1640376482=\u0026response-content-disposition=attachment%3B+filename%3DInvestigating_Non_Incandescence_Emission.pdf\u0026Expires=1732772795\u0026Signature=fY3MhUeJDtiWPieQLhG-Xvv~YBP5-KZUlNyG9nGnMvzVGHDwpUWNpJUP9DiHL8BU8pCGv2~ud2wShPZYnBrX1HYio7DkzIEaYSDkjRPXjbzDJxUGsD4pEzm6~HAWKzkaKLvSbxRZNrTewtUqSnPiNGakTjW0H1afbb6DZfHsgMhdnJEh8knwM-B8~SDEH0-0OvfO~f7wH75uAhU6OfeHGepEMOE5nxQkkYBvDDRhEPFh-jm37QXdGQ3jR1ylu400UkY8lR6zij-dThLmwQ9BNaLoWIKbYB2k8lfCp5~o~km8zIKuJmasXierWLyoneJ5HS8aUus23FsJxlShm1kvXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":15658734,"url":"https://www.ichmt.org/storage/files/upload/nh-08.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878393"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/65878393/MATLAB_tools_for_a_general_TiRe_LII_error_model"><img alt="Research paper thumbnail of MATLAB tools for a general TiRe-LII error model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/65878393/MATLAB_tools_for_a_general_TiRe_LII_error_model">MATLAB tools for a general TiRe-LII error model</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This software is an implementation of the general error model described in the work entitled &amp;quo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This software is an implementation of the general error model described in the work entitled &amp;quot;General error model for analysis of laser-induced incandescence signals&amp;quot; by T. A. Sipkens and coworkers, which simulates signals according to the described error model (sufficient for generating Figure 1 in the associated work) and demonstrates a fitting procedure to infer the error model parameters from the produced signals. This software package was developed for use with MATLAB 2016a running on Windows. Users can execute the main script immediately, provided all attached files are located in the same directory and that directory is included in the MATLAB path. One must then enter &amp;quot;main_simulate_C&amp;quot; in the MATLAB command line.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878393"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878393"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878393; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878393]").text(description); $(".js-view-count[data-work-id=65878393]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878393; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878393']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878393, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65878393]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878393,"title":"MATLAB tools for a general TiRe-LII error model","translated_title":"","metadata":{"abstract":"This software is an implementation of the general error model described in the work entitled \u0026quot;General error model for analysis of laser-induced incandescence signals\u0026quot; by T. A. Sipkens and coworkers, which simulates signals according to the described error model (sufficient for generating Figure 1 in the associated work) and demonstrates a fitting procedure to infer the error model parameters from the produced signals. This software package was developed for use with MATLAB 2016a running on Windows. Users can execute the main script immediately, provided all attached files are located in the same directory and that directory is included in the MATLAB path. One must then enter \u0026quot;main_simulate_C\u0026quot; in the MATLAB command line.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":"This software is an implementation of the general error model described in the work entitled \u0026quot;General error model for analysis of laser-induced incandescence signals\u0026quot; by T. A. Sipkens and coworkers, which simulates signals according to the described error model (sufficient for generating Figure 1 in the associated work) and demonstrates a fitting procedure to infer the error model parameters from the produced signals. This software package was developed for use with MATLAB 2016a running on Windows. Users can execute the main script immediately, provided all attached files are located in the same directory and that directory is included in the MATLAB path. One must then enter \u0026quot;main_simulate_C\u0026quot; in the MATLAB command line.","internal_url":"https://www.academia.edu/65878393/MATLAB_tools_for_a_general_TiRe_LII_error_model","translated_internal_url":"","created_at":"2021-12-24T10:02:59.360-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"MATLAB_tools_for_a_general_TiRe_LII_error_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878392"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65878392/An_improved_inversion_method_for_determining_two_dimensional_mass_distributions_of_non_refractory_materials_on_refractory_black_carbon"><img alt="Research paper thumbnail of An improved inversion method for determining two-dimensional mass distributions of non-refractory materials on refractory black carbon" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65878392/An_improved_inversion_method_for_determining_two_dimensional_mass_distributions_of_non_refractory_materials_on_refractory_black_carbon">An improved inversion method for determining two-dimensional mass distributions of non-refractory materials on refractory black carbon</a></div><div class="wp-workCard_item"><span>Aerosol Science and Technology</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The present study describes an improved inversion method for determining the two-dimensional mass...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The present study describes an improved inversion method for determining the two-dimensional mass distribution of non-refractory materials on refractory black carbon using a centrifugal particle mass analyzer (CPMA) and single-particle soot photometer (SP2) system. The novel approach is tested with several well-established regularization methods to determine which method works best in the new method. Contrary to other two-dimensional inversion applications in the literature, in the CPMA-SP2 inversion, there is a physical constraint that the refractory black carbon mass () cannot exceed the total particle mass (). This constraint has to be considered in the inversion to accommodate the sharp edge where equals which causes established regularization methods to underperform and potentially smooth the distribution over this boundary. This study introduces a novel deconvolution scheme which accommodates the physical constraint and can be solved with various inversion techniques including...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878392"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878392"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878392; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878392]").text(description); $(".js-view-count[data-work-id=65878392]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878392; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878392']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878392, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65878392]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878392,"title":"An improved inversion method for determining two-dimensional mass distributions of non-refractory materials on refractory black carbon","translated_title":"","metadata":{"abstract":"The present study describes an improved inversion method for determining the two-dimensional mass distribution of non-refractory materials on refractory black carbon using a centrifugal particle mass analyzer (CPMA) and single-particle soot photometer (SP2) system. The novel approach is tested with several well-established regularization methods to determine which method works best in the new method. Contrary to other two-dimensional inversion applications in the literature, in the CPMA-SP2 inversion, there is a physical constraint that the refractory black carbon mass () cannot exceed the total particle mass (). This constraint has to be considered in the inversion to accommodate the sharp edge where equals which causes established regularization methods to underperform and potentially smooth the distribution over this boundary. This study introduces a novel deconvolution scheme which accommodates the physical constraint and can be solved with various inversion techniques including...","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Aerosol Science and Technology"},"translated_abstract":"The present study describes an improved inversion method for determining the two-dimensional mass distribution of non-refractory materials on refractory black carbon using a centrifugal particle mass analyzer (CPMA) and single-particle soot photometer (SP2) system. The novel approach is tested with several well-established regularization methods to determine which method works best in the new method. Contrary to other two-dimensional inversion applications in the literature, in the CPMA-SP2 inversion, there is a physical constraint that the refractory black carbon mass () cannot exceed the total particle mass (). This constraint has to be considered in the inversion to accommodate the sharp edge where equals which causes established regularization methods to underperform and potentially smooth the distribution over this boundary. This study introduces a novel deconvolution scheme which accommodates the physical constraint and can be solved with various inversion techniques including...","internal_url":"https://www.academia.edu/65878392/An_improved_inversion_method_for_determining_two_dimensional_mass_distributions_of_non_refractory_materials_on_refractory_black_carbon","translated_internal_url":"","created_at":"2021-12-24T10:02:59.269-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_improved_inversion_method_for_determining_two_dimensional_mass_distributions_of_non_refractory_materials_on_refractory_black_carbon","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":165873,"name":"Aerosol Science and Technology","url":"https://www.academia.edu/Documents/in/Aerosol_Science_and_Technology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878391"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/65878391/Gas_Jet_Injection_Characterization_using_BOS_Imaging_and_Abel_Inversion_for_Engine_Relevant_Pressure_Ratios"><img alt="Research paper thumbnail of Gas Jet Injection Characterization using BOS Imaging and Abel Inversion for Engine Relevant Pressure Ratios" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/65878391/Gas_Jet_Injection_Characterization_using_BOS_Imaging_and_Abel_Inversion_for_Engine_Relevant_Pressure_Ratios">Gas Jet Injection Characterization using BOS Imaging and Abel Inversion for Engine Relevant Pressure Ratios</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A pulsed gas Jet is imaged using the background-oriented schlieren technique to probe sensitivity...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A pulsed gas Jet is imaged using the background-oriented schlieren technique to probe sensitivity to operating conditions, such as pressure ratio. Multiple inversion schemes will be considered to improve flow property estimates.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878391"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878391"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878391; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878391]").text(description); $(".js-view-count[data-work-id=65878391]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878391; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878391']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878391, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65878391]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878391,"title":"Gas Jet Injection Characterization using BOS Imaging and Abel Inversion for Engine Relevant Pressure Ratios","translated_title":"","metadata":{"abstract":"A pulsed gas Jet is imaged using the background-oriented schlieren technique to probe sensitivity to operating conditions, such as pressure ratio. Multiple inversion schemes will be considered to improve flow property estimates.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"A pulsed gas Jet is imaged using the background-oriented schlieren technique to probe sensitivity to operating conditions, such as pressure ratio. Multiple inversion schemes will be considered to improve flow property estimates.","internal_url":"https://www.academia.edu/65878391/Gas_Jet_Injection_Characterization_using_BOS_Imaging_and_Abel_Inversion_for_Engine_Relevant_Pressure_Ratios","translated_internal_url":"","created_at":"2021-12-24T10:02:59.176-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Gas_Jet_Injection_Characterization_using_BOS_Imaging_and_Abel_Inversion_for_Engine_Relevant_Pressure_Ratios","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878390"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/65878390/Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_II_Existing_and_novel_Bayesian_methods"><img alt="Research paper thumbnail of Inversion methods to determine two-dimensional aerosol mass-mobility distributions II: Existing and novel Bayesian methods" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/65878390/Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_II_Existing_and_novel_Bayesian_methods">Inversion methods to determine two-dimensional aerosol mass-mobility distributions II: Existing and novel Bayesian methods</a></div><div class="wp-workCard_item"><span>Journal of Aerosol Science</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878390"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878390"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878390; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878390]").text(description); $(".js-view-count[data-work-id=65878390]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878390; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878390']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878390, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65878390]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878390,"title":"Inversion methods to determine two-dimensional aerosol mass-mobility distributions II: Existing and novel Bayesian methods","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Journal of Aerosol Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/65878390/Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_II_Existing_and_novel_Bayesian_methods","translated_internal_url":"","created_at":"2021-12-24T10:02:59.028-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_II_Existing_and_novel_Bayesian_methods","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":60285,"name":"Atmospheric sciences","url":"https://www.academia.edu/Documents/in/Atmospheric_sciences"},{"id":1759667,"name":"Aerosol Science","url":"https://www.academia.edu/Documents/in/Aerosol_Science"}],"urls":[{"id":15658733,"url":"https://api.elsevier.com/content/article/PII:S0021850220300549?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65878389"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65878389/Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_A_critical_comparison_of_established_methods"><img alt="Research paper thumbnail of Inversion methods to determine two-dimensional aerosol mass-mobility distributions: A critical comparison of established methods" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65878389/Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_A_critical_comparison_of_established_methods">Inversion methods to determine two-dimensional aerosol mass-mobility distributions: A critical comparison of established methods</a></div><div class="wp-workCard_item"><span>Journal of Aerosol Science</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper provides a critical review of methods used to invert tandem measurements to d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper provides a critical review of methods used to invert tandem measurements to determine the two-dimensional distribution of particle mass and mobility. We consider the performance of weighted least-squares analysis, Twomey-type approaches, a maximum entropy method, Tikhonov regularization (over a range of regularization parameters), and statistical inversion. A detailed analysis is performed on a bimodal phantom to demonstrate the typical characteristics of reconstructions resulting from the different inversion techniques, before the Euclidean error between the phantom and reconstructions are evaluated for a wider range of phantoms. It is found that 1st order Tikhonov regularization generally outperforms the other established inversion methods, even for narrow phantoms, where the finite representation of the mass-mobility distribution becomes a larger contributor to reconstruction accuracy. Twomey-type approaches, while not as robust, are shown to be an acceptable alternative.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65878389"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65878389"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65878389; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65878389]").text(description); $(".js-view-count[data-work-id=65878389]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65878389; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65878389']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65878389, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65878389]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65878389,"title":"Inversion methods to determine two-dimensional aerosol mass-mobility distributions: A critical comparison of established methods","translated_title":"","metadata":{"abstract":"Abstract This paper provides a critical review of methods used to invert tandem measurements to determine the two-dimensional distribution of particle mass and mobility. We consider the performance of weighted least-squares analysis, Twomey-type approaches, a maximum entropy method, Tikhonov regularization (over a range of regularization parameters), and statistical inversion. A detailed analysis is performed on a bimodal phantom to demonstrate the typical characteristics of reconstructions resulting from the different inversion techniques, before the Euclidean error between the phantom and reconstructions are evaluated for a wider range of phantoms. It is found that 1st order Tikhonov regularization generally outperforms the other established inversion methods, even for narrow phantoms, where the finite representation of the mass-mobility distribution becomes a larger contributor to reconstruction accuracy. Twomey-type approaches, while not as robust, are shown to be an acceptable alternative.","publisher":"Elsevier BV","publication_name":"Journal of Aerosol Science"},"translated_abstract":"Abstract This paper provides a critical review of methods used to invert tandem measurements to determine the two-dimensional distribution of particle mass and mobility. We consider the performance of weighted least-squares analysis, Twomey-type approaches, a maximum entropy method, Tikhonov regularization (over a range of regularization parameters), and statistical inversion. A detailed analysis is performed on a bimodal phantom to demonstrate the typical characteristics of reconstructions resulting from the different inversion techniques, before the Euclidean error between the phantom and reconstructions are evaluated for a wider range of phantoms. It is found that 1st order Tikhonov regularization generally outperforms the other established inversion methods, even for narrow phantoms, where the finite representation of the mass-mobility distribution becomes a larger contributor to reconstruction accuracy. Twomey-type approaches, while not as robust, are shown to be an acceptable alternative.","internal_url":"https://www.academia.edu/65878389/Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_A_critical_comparison_of_established_methods","translated_internal_url":"","created_at":"2021-12-24T10:02:58.891-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34748228,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Inversion_methods_to_determine_two_dimensional_aerosol_mass_mobility_distributions_A_critical_comparison_of_established_methods","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34748228,"first_name":"Timothy","middle_initials":"A","last_name":"Sipkens","page_name":"TimothySipkens","domain_name":"ubc","created_at":"2015-09-10T12:29:23.932-07:00","display_name":"Timothy A Sipkens","url":"https://ubc.academia.edu/TimothySipkens"},"attachments":[],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":60285,"name":"Atmospheric sciences","url":"https://www.academia.edu/Documents/in/Atmospheric_sciences"},{"id":1759667,"name":"Aerosol Science","url":"https://www.academia.edu/Documents/in/Aerosol_Science"}],"urls":[{"id":15658732,"url":"https://api.elsevier.com/content/article/PII:S0021850219305889?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "ce7e6ff6350424c6976f81e18714678dbffbb371a12d00dc4f42283e6a1d70b2", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="ORPrMFbtaBzXRTsWLcGp9Eoxr4AhAUsGOt7Tk10Z5Tv/w61nIrdGBge0gs01B9xTErwSiHHsmmBQ/5e9L8eXBw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://ubc.academia.edu/TimothySipkens" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="cGt3/9gJ+zrQZ4buVemTvy1jhIeFCNMzIpjIlQTSKEy2uzGorFPVIACWPzVNL+YYde45j9XlAlVIuYy7dgxacA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10