CINXE.COM
Search results for: ecotype
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ecotype</title> <meta name="description" content="Search results for: ecotype"> <meta name="keywords" content="ecotype"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ecotype" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ecotype"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ecotype</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Ecotype Hybrids and Ecotype Mixture of Spantina alterniflora Loisel. in Coastal China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Xia">Lu Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasreen%20Jeelani"> Nasreen Jeelani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuqing%20An"> Shuqing An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spartina alterniflora, a species native to the east coast of North America, is currently the focus of increasing management concern due to its rapid expansion in coastal China. A total of 60 individuals and hundreds of seeds of S. alterniflora collected from three states in the United States representing three ecotypes (F-, G- and N-), i. e., Tampa Bay of Florida, Altamaha estuary of Georgia and Morehead City of North Carolina, were introduced into China in 1979 for ecological engineering purposes. To better understand the plant traits associated with the success of invasion, we examined distribution of ecotype hybrids and ecotype mixtures of the species in China. We collected and analyzed 144 samples from seven populations throughout coastal China (21.6º-38.6ºN; 109.7º-121.8ºE) using amplified fragment length polymorphisms (AFLP) markers. Results of assignment show that both ecotype hybrids and ecotype mixtures exist in coastal China, especially in southern populations. Therefore, the species’ success in coastal China may be attributable largely to the coexistence of various ecotype hybrids and ecotype mixtures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecotype%20hybrids" title="ecotype hybrids">ecotype hybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=ecotype%20mixtures" title=" ecotype mixtures"> ecotype mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=Spartina%20alterniflora" title=" Spartina alterniflora"> Spartina alterniflora</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20China" title=" coastal China"> coastal China</a> </p> <a href="https://publications.waset.org/abstracts/30187/ecotype-hybrids-and-ecotype-mixture-of-spantina-alterniflora-loisel-in-coastal-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Changes in Some Morphological Characters of Dill Under Cadmium Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Daneshian%20Moghaddam">A. M. Daneshian Moghaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Hosseinzadeh"> A. H. Hosseinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bandehagh"> A. Bandehagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate the effect of cadmium heavy metal stress on five ecotype of dill, this experiment was conducted in the greenhouse of Tabriz University and Shabestar Islamic Azad University’s laboratories with tree replications. After growing the plants, cadmium treatments (concentration 0,300, 600 µmol) were applied. The essential oil of the samples was measured by hydro distillation and using a Clevenger apparatus. Variables used in this study include: wet and dry roots and aerial part of plant, plant height, stem diameter, and root length. The results showed that different concentrations of heavy metal has statistical difference (p < 0.01) on the fresh weight, dry weight, plant height and root length but hadn’t significant difference on essential oil percentage and root length. Dill ecotypes have statistical significant difference on essential oil percent, fresh plant weight, plant height, root length, except plant dry weight. The interactions between Cd concentration and dill ecotypes have not significant effect on all traits, except root length. Maximum fresh weight (4.98 gr) and minimum amount (3.13 gr) were obtained in control trait and 600 ppm of cd concentration, respectively. Highest amount of fresh weight (4.78 gr) was obtained in Birjand ecotype. Maximum plant dry weight (1.2 gr) was obtained at control. The highest plant height (32.54 cm) was obtained in control and with applies cadmium concentrations from zero to 300 and 600 ppm was found significantly reduced in plant height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollution" title="pollution">pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=ecotype" title=" ecotype"> ecotype</a>, <a href="https://publications.waset.org/abstracts/search?q=dill" title=" dill"> dill</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a> </p> <a href="https://publications.waset.org/abstracts/28862/changes-in-some-morphological-characters-of-dill-under-cadmium-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Characterising Indigenous Chicken (Gallus gallus domesticus) Ecotypes of Tigray, Ethiopia: A Combined Approach Using Ecological Niche Modelling and Phenotypic Distribution Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gebreslassie%20Gebru">Gebreslassie Gebru</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurja%20Belay"> Gurja Belay</a>, <a href="https://publications.waset.org/abstracts/search?q=Minister%20Birhanie"> Minister Birhanie</a>, <a href="https://publications.waset.org/abstracts/search?q=Mulalem%20Zenebe"> Mulalem Zenebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadelle%20Dessie"> Tadelle Dessie</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Vallejo-Trujillo"> Adriana Vallejo-Trujillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Hanotte"> Olivier Hanotte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Livestock must adapt to changing environmental conditions, which can result in either phenotypic plasticity or irreversible phenotypic change. In this study, we combine Ecological Niche Modelling (ENM) and Phenotypic Distribution Modelling (PDM) to provide a comprehensive framework for understanding the ecological and phenotypic characteristics of indigenous chicken (Gallus gallus domesticus) ecotypes. This approach helped us to classify these ecotypes, differentiate their phenotypic traits, and identify associations between environmental variables and adaptive traits. We measured 297 adult indigenous chickens from various agro-ecologies, including 208 females and 89 males. A subset of the 22 measured traits was selected using stepwise selection, resulting in seven traits for each sex. Using ENM, we identified four agro-ecologies potentially harbouring distinct phenotypes of indigenous Tigray chickens. However, PDM classified these chickens into three phenotypical ecotypes. Chickens grouped in ecotype-1 and ecotype-3 exhibited superior adaptive traits compared to those in ecotype-2, with significant variance observed. This high variance suggests a broader range of trait expression within these ecotypes, indicating greater adaptation capacity and potentially more diverse genetic characteristics. Several environmental variables, such as soil clay content, forest cover, and mean temperature of the wettest quarter, were strongly associated with most phenotypic traits. This suggests that these environmental factors play a role in shaping the observed phenotypic variations. By integrating ENM and PDM, this study enhances our understanding of indigenous chickens' ecological and phenotypic diversity. It also provides valuable insights into their conservation and management in response to environmental changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20traits" title="adaptive traits">adaptive traits</a>, <a href="https://publications.waset.org/abstracts/search?q=agro-ecology" title=" agro-ecology"> agro-ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=appendage" title=" appendage"> appendage</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=imagej" title=" imagej"> imagej</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotypic%20variation" title=" phenotypic variation"> phenotypic variation</a> </p> <a href="https://publications.waset.org/abstracts/190035/characterising-indigenous-chicken-gallus-gallus-domesticus-ecotypes-of-tigray-ethiopia-a-combined-approach-using-ecological-niche-modelling-and-phenotypic-distribution-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Evaluation of Monoterpenes Induction in Ugni molinae Ecotypes Subjected to a Red Grape Caterpillar (Lepidoptera: Arctiidae) Herbivory </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Chacon-Fuentes">Manuel Chacon-Fuentes</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Bardehle"> Leonardo Bardehle</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Lizama"> Marcelo Lizama</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Reyes"> Claudio Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Andres%20Quiroz"> Andres Quiroz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The insect-plant interaction is a complex process in which the plant is able to release chemical signaling that modifies the behavior of insects. Insect herbivory can trigger mechanisms that allow the increase in the production of secondary metabolites that allow coping against the herbivores. Monoterpenes are a kind of secondary metabolites involved in direct defense acting as repellents of herbivorous or even in indirect defense acting as attractants for insect predators. In addition, an increase of the monoterpenes concentration is an effect commonly associated with the herbivory. Hence, plants subjected to damage by herbivory increase the monoterpenes production in comparison to plants without herbivory. In this framework, co-evolutionary aspects play a fundamental role in the adaptation of the herbivorous to their host and in the counter-adaptive strategies of the plants to avoid the herbivorous. In this context, Ugni molinae 'murtilla' is a native shrub from Chile characterized by its antioxidant activity mainly related to the phenolic compounds presents in its fruits. The larval stage of the red grape caterpillar Chilesia rudis Butler (Lepidoptera: Arctiidae) has been reported as an important defoliator of U. molinae. This insect is native from Chile and probably has been involved in a co-evolutionary process with murtilla. Therefore, we hypothesized that herbivory by the red grape caterpillar increases the emission of monoterpenes in Ugni molinae. Ecotypes 19-1 and 22-1 of murtilla were established and maintained at 25° C in the Laboratorio de Química Ecológica at Universidad de La Frontera. Red grape caterpillars of ⁓40 mm were collected near to Temuco (Chile) from grasses, and they were deprived of food for 24 h before performing the assays. Ten caterpillars were placed on the foliage of the ecotypes 19-1 and 22-1 and allowed to feed during 48 h. After this time, caterpillars were removed from the ecotypes and monoterpenes were collected. A glass chamber was used to enclose the ecotypes and a Porapak-Q column was used to trap the monoterpenes. After 24 h of capturing, columns were desorbed with hexane. Then, samples were injected in a gas chromatograph coupled to mass spectrometer and monoterpenes were determined according to the NIST library. All the experiments were performed in triplicate. Results showed that α-pinene, β-phellandrene, limonene, and 1,8 cineole were the main monoterpenes released by murtilla ecotypes. For the ecotype 19-1, the abundance of α-pinene was significantly higher in plants subjected to herbivory (100%) in relation to control plants (54.58%). Moreover, β-phellandrene and 1,8 cineole were observed only in control plants. For ecotype 22-1, there was no significant difference in monoterpenes abundance. In conclusion, the results suggest a trade-off of β-phellandrene and 1,8 cineole in response to herbivory damage by red grape caterpillar generating an increase in α-pinene abundance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chilesia%20rudis" title="Chilesia rudis">Chilesia rudis</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=monoterpenes" title=" monoterpenes"> monoterpenes</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugni%20molinae" title=" Ugni molinae"> Ugni molinae</a> </p> <a href="https://publications.waset.org/abstracts/108703/evaluation-of-monoterpenes-induction-in-ugni-molinae-ecotypes-subjected-to-a-red-grape-caterpillar-lepidoptera-arctiidae-herbivory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Effect of Thistle Ecotype in the Physical-Chemical and Sensorial Properties of Serra da Estrela Cheese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raquel%20P.%20F.%20Guin%C3%A9">Raquel P. F. Guiné</a>, <a href="https://publications.waset.org/abstracts/search?q=Marlene%20I.%20C.%20Tenreiro"> Marlene I. C. Tenreiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20C.%20Correia"> Ana C. Correia</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Barracosa"> Paulo Barracosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20M.%20R.%20Correia"> Paula M. R. Correia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to evaluate the physical and chemical characteristics of Serra da Estrela cheese and compare these results with those of the sensory analysis. For the study were taken six samples of Serra da Estrela cheese produced with 6 different ecotypes of thistle in a dairy situated in Penalva do Castelo. The chemical properties evaluated were moisture content, protein, fat, ash, chloride and pH; the physical properties studied were color and texture; and finally a sensory evaluation was undertaken. The results showed moisture varying in the range 40-48%, protein in the range 15-20%, fat between 41-45%, ash between 3.9-5.0% and chlorides varying from 1.2 to 3.0%. The pH varied from 4.8 to 5.4. The textural properties revealed that the crust hardness is relatively low (maximum 7.3 N), although greater than flesh firmness (maximum 1.7 N), and also that these cheeses are in fact soft paste type, with measurable stickiness and intense adhesiveness. The color analysis showed that the crust is relatively light (L* over 50), and with a predominant yellow coloration (b* around 20 or over) although with a slight greenish tone (a* negative). The results of the sensory analysis did not show great variability for most of the attributes measured, although some differences were found in attributes such as crust thickness, crust uniformity, and creamy flesh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title="chemical composition">chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=color" title=" color"> color</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorial%20analysis" title=" sensorial analysis"> sensorial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Serra%20da%20Estrela%20cheese" title=" Serra da Estrela cheese"> Serra da Estrela cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a> </p> <a href="https://publications.waset.org/abstracts/22235/effect-of-thistle-ecotype-in-the-physical-chemical-and-sensorial-properties-of-serra-da-estrela-cheese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guadalupe%20P%C3%A9rez">Guadalupe Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Islas"> Jorge Islas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Guevara"> Mirna Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%BAl%20Su%C3%A1rez"> Raúl Suárez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Jatropha curcas</em> is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of <em>Jatropha curcas</em> under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of <em>Jatropha curcas</em> (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (µg/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish <em>Jatropha curcas</em> as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel%20production" title="biodiesel production">biodiesel production</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title=" Jatropha curcas"> Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20oil%20content" title=" seed oil content"> seed oil content</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20and%20non-toxic%20ecotypes" title=" toxic and non-toxic ecotypes"> toxic and non-toxic ecotypes</a> </p> <a href="https://publications.waset.org/abstracts/106293/experimental-evaluation-of-10-ecotypes-of-toxic-and-non-toxic-jatropha-curcas-as-raw-material-to-produce-biodiesel-in-morelos-state-mexico" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Evidence of Natural Selection Footprints among Some African Chicken Breeds and Village Ecotypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elbeltagy">Ahmed Elbeltagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesca%20%20Bertolini"> Francesca Bertolini</a>, <a href="https://publications.waset.org/abstracts/search?q=Damarius%20%20Fleming"> Damarius Fleming</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelica%20%20Van%20Goor"> Angelica Van Goor</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20%20Ashwell"> Chris Ashwell</a>, <a href="https://publications.waset.org/abstracts/search?q=Carl%20Schmidt"> Carl Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Donald%20%20Kugonza"> Donald Kugonza</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Lamont"> Susan Lamont</a>, <a href="https://publications.waset.org/abstracts/search?q=Max%20Rothschild"> Max Rothschild</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major factor in shaping genomic variation of the African indigenous rural chicken is likely natural selection drives the development genetic footprints in the chicken genomes. To investigate such a hypothesis of a selection footprint, a total of 292 birds were randomly sampled from three indigenous ecotypes from East Africa (Uganda, Rwanda) and North Africa (Egypt) and two registered Egyptian breeds (Fayoumi and Dandarawi), and from the synthetic Kuroiler breed. Samples were genotyped using the Affymetrix 600K Axiom® Array. A total of 526,652 SNPs were utilized in the downstream analysis after quality control measures. The intra-population runs of homozygosity (ROH) that were consensuses in > 50% of individuals of an ecotype or > 75% of a breed were studied. To identify inter-population differentiation due to genetic structure, FST was calculated for North- vs. East- African populations in addition to population-pairwise combinations for overlapping windows (500Kb with an overlap of 250Kb). A total of 28,563 ROH were determined and were classified into three length categories. ROH and Fst detected sweeps were identified on several autosomes. Several genes in these regions are likely to be related to adaptation to local environmental stresses that include high altitude, diseases resistance, poor nutrition, oxidative and heat stresses and were linked to gene ontology terms (GO) related to immune response, oxygen consumption and heme binding, carbohydrate metabolism, oxidation-reduction, and behavior. Results indicated a possible effect of natural selection forces on shaping genomic structure for adaptation to local environmental stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=African%20Chicken" title="African Chicken">African Chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=runs%20of%20homozygosity" title=" runs of homozygosity"> runs of homozygosity</a>, <a href="https://publications.waset.org/abstracts/search?q=FST" title=" FST"> FST</a>, <a href="https://publications.waset.org/abstracts/search?q=selection%20footprints" title=" selection footprints "> selection footprints </a> </p> <a href="https://publications.waset.org/abstracts/63529/evidence-of-natural-selection-footprints-among-some-african-chicken-breeds-and-village-ecotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Geometric-Morphometric Analysis of Head, Pronotum and Elytra of Brontispa Longissima Gestro in Selected Provinces of the Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Marie%20T.%20Acevedo">Ana Marie T. Acevedo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to describe variations in the shapes of the elytra, head and pronotum of populations of adult Brontispa longissima (Gestro) infesting coconut farms from selected areas in the Philippines using Cluster Analysis, Relative Warp Analysis coupled with box plot and histograms and Procustean analysis. The data used in this study included shape residuals captured using the method of landmark based geometric morphometrics. Results: The results of the cluster analyses based on the average shapes of the elytra, head and pronotum shows no consistent pattern of similarity between and among five populations of B. longissima. When localized variations using Relative Warp Analysis coupled with box plot and histograms was done, the findings revealed that RWA was only successful in summarizing variations using two relative warps in the shape of the elytra where the first two warps contained 86.29% of the variations of the female and 85.48% for the males. For the head and pronotum, the first two relative warps captured less than 50% of the overall variation. Looking at the shapes of the frequency histograms, all were found to follow a unimodal distribution. The box plots reveal no consistent results. Among the three characters studied only the elytra were more robust and reliable compared to head and pronotum and then Tandag differ from the rest of the other over-lapping populations. On the other hand, Procustean Analyses revealed that elytra were more spread in the posterior region both in male and female. The coordinates in head and pronotum were evenly distributed. In the overlapping consensus configurations show that variability was exaggerated in the right side of the elytra and the posterior parts of the head and pronotum. Results also showed expansion among females while compression among males in elytra. For males, expansion are localized in the posterior part of the elytra, For the head, results showed asymmetry in the distribution of expansion areas where expansion are observed in the right postero-lateral aspect of the female head. Conclusion: The overall results may imply that they might belong to one operational taxonomic unit or ecotype or biotype. Geography might not be the factor responsible for the differentiation of the populations of B. longissima. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title="cluster analysis">cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20warp%20analysis" title=" relative warp analysis"> relative warp analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=procrustean%20analysis" title=" procrustean analysis"> procrustean analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20parameters" title=" environmental parameters"> environmental parameters</a> </p> <a href="https://publications.waset.org/abstracts/31845/geometric-morphometric-analysis-of-head-pronotum-and-elytra-of-brontispa-longissima-gestro-in-selected-provinces-of-the-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> In Vitro Digestibility of Grains and Straw of Seventeen Ecotypes of Bitter Vetch (Vicia ervilia) in the North of Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukrouh%20Soumaya">Boukrouh Soumaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Cabaraux%20Jean-Fran%C3%A7ois"> Cabaraux Jean-François</a>, <a href="https://publications.waset.org/abstracts/search?q=Avril%20Claire"> Avril Claire</a>, <a href="https://publications.waset.org/abstracts/search?q=Noutfia%20Ali"> Noutfia Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Chentouf%20Mouad"> Chentouf Mouad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The introduction of marginal leguminous forage species in the diet of ruminants are of great importance. Bitter vetch is a good source of proteins, highly resistant against drought and poor soil conditions. Accordingly; two years field trials (2018/2019 and 2019-2020) were conducted to determine the digestibility of straw and grains of 17 promising bitter vetch ecotypes(Vicia ervilia) in the north of Morocco. In vitro dry and organic matter digestibility, gas production, and kinetics of fermentation of grains and straw were evaluated using gas production technique, pepsin-cellulase enzymatic digestibility of DM (CDDM)and OM (CDOM), as well as protease enzymatic CP degradation (CPD) and in vitro true digestibility, were performed using DAISYII Incubator. In vitro digestibility was performed using gas production method of (Menke et al., 1979) improved by Menke and Steingass (1988). Samples were incubated in glass syringes that contained rumen fluid and incubation solution that conserved in water bath in 39°C during 72 hours. Gas production was recorded after 2, 4, 8, 12, 24, 48, and 72 hours. Studied digestibility parameters were dry and organic matter digestibility, microbial biomass production, partitioning factor, and volatile fatty acids. Enzymatic dry matter digestibility was different (p < 0.05) among grains and straw for all ecotypes. It varied from 804.1 to 957.7 g/kg DM and 270.4 to 412.3 g/kg DM for grains and straw, respectively. Metabolizable energy varied between 11.7 to 14.3 MJ/kg DM and 2.6 to 5.0 MJ/kg DM for grains and straw, respectively. Potential gas production (A), the rate constants (c and d), and lag times of grains and straws from different bitter vetch ecotypes were different (p > 0.05). The results emphasized that in any evaluation of bitter vetch ecotypes, where straw of this legume seed is used as an animal feed, not only seed yield but also yield and quality of straw should be taken into consideration, particularly in areas where straw from this legume is considered as an important feedstuff for ruminants. Enzymatic digestibility was lower than in vitro digestibility by gaz production and by the DAISYII method because rumen fluid contains bacteria than increase digestibility. There was no difference between in vitro digestibility by gaz production and the DAISY II method. The DAISY II method can be used to increase labor efficiency in the in vitro DM digestibility analysis if gaz production is not necessary for analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20vetch" title="bitter vetch">bitter vetch</a>, <a href="https://publications.waset.org/abstracts/search?q=grains" title=" grains"> grains</a>, <a href="https://publications.waset.org/abstracts/search?q=straw" title=" straw"> straw</a>, <a href="https://publications.waset.org/abstracts/search?q=ecotype" title=" ecotype"> ecotype</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20digestibility" title=" in vitro digestibility"> in vitro digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=gaz%20production" title=" gaz production"> gaz production</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20digestibility" title=" enzymatic digestibility"> enzymatic digestibility</a> </p> <a href="https://publications.waset.org/abstracts/144002/in-vitro-digestibility-of-grains-and-straw-of-seventeen-ecotypes-of-bitter-vetch-vicia-ervilia-in-the-north-of-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Isoflavonoid Dynamic Variation in Red Clover Genotypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9s%20Quiroz">Andrés Quiroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Hormaz%C3%A1bal"> Emilio Hormazábal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Mutis"> Ana Mutis</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Ortega"> Fernando Ortega</a>, <a href="https://publications.waset.org/abstracts/search?q=Loreto%20M%C3%A9ndez"> Loreto Méndez</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Parra"> Leonardo Parra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red clover root borer, Hylastinus obscurus Marsham (Coleoptera: Curculionidae), is the main insect pest associated to red clover, Trifolium pratense L. An average of 1.5 H. obscurus per plant can cause 5.5% reduction in forage yield in pastures of two to three years old. Moreover, insect attack can reach 70% to 100% of the plants. To our knowledge, there is no a chemical strategy for controlling this pest. Therefore alternative strategies for controlling H. obscurus are a high priority for red clover producers. One of this alternative is related to the study of secondary metabolites involved in intrinsic chemical defenses developed by plants, such as isoflavonoids. The isoflavonoids formononetin and daidzein have elicited an antifeedant and phagostimult effect on H. obscurus respectively. However, we do not know how is the dynamic variation of these isoflavonoids under field conditions. The main objective of this work was to evaluate the variation of the antifeedant isoflavonoids formononetin, the phagostimulant isoflavonoids daidzein, and their respective glycosides over time in different ecotypes of red clover. Fourteen red clover ecotypes (8 cultivars and 6 experimental lines), were collected at INIA-Carillanca (La Araucanía, Chile). These plants were established in October 2015 under irrigated conditions. The cultivars were distributed in a randomized complete block with three replicates. The whole plants were sampled in four times: 15th October 2016, 12th December 2016, 27th January 2017 and 16th March 2017 with sufficient amount of soil to avoid root damage. A polar fraction of isoflavonoid was obtained from 20 mg of lyophilized root tissue extracted with 2 mL of 80% MeOH for 16 h using an orbital shaker in the dark at room temperature. After, an aliquot of 1.4 mL of the supernatant was evaporated, and the residue was resuspended in 300 µL of 45% MeOH. The identification and quantification of isoflavonoid root extracts were performed by the injection of 20 µL into a Shimadzu HPLC equipped with a C-18 column. The sample was eluted with a mobile phase composed of AcOH: H₂O (1:9 v/v) as solvent A and CH₃CN as solvent B. The detection was performed at 260 nm. The results showed that the amount of aglycones was higher than the respective glycosides. This result is according to the biosynthetic pathway of flavonoids, where the formation of glycoside is further to the glycosides biosynthesis. The amount of formononetin was higher than daidzein. In roots, where H. obscurus spent the most part of its live cycle, the highest content of formononetin was found in G 27, Pawera, Sabtoron High, Redqueli-INIA and Superqueli-INIA cvs. (2.1, 1.8, 1.8, 1.6 and 1.0 mg g⁻¹ respectively); and the lowest amount of daidzein were found Superqueli-INIA (0.32 mg g⁻¹) and in the experimental line Sel Syn Int4 (0.24 mg g⁻¹). This ecotype showed a high content of formononetin (0.9 mg g⁻¹). This information, associated with cultural practices, could help farmers and breeders to reduce H. obscurus in grassland, selecting ecotypes with high content of formononetin and low amount of daidzein in the roots of red clover plants. Acknowledgements: FONDECYT 1141245 and 11130715. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daidzein" title="daidzein">daidzein</a>, <a href="https://publications.waset.org/abstracts/search?q=formononetin" title=" formononetin"> formononetin</a>, <a href="https://publications.waset.org/abstracts/search?q=isoflavonoid%20glycosides" title=" isoflavonoid glycosides"> isoflavonoid glycosides</a>, <a href="https://publications.waset.org/abstracts/search?q=trifolium%20pratense" title=" trifolium pratense"> trifolium pratense</a> </p> <a href="https://publications.waset.org/abstracts/76357/isoflavonoid-dynamic-variation-in-red-clover-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>