CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 95 results for author: <span class="mathjax">Mehta, P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Mehta%2C+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mehta, P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mehta%2C+P&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mehta, P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Mehta%2C+P&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Mehta%2C+P&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Mehta%2C+P&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17002">arXiv:2502.17002</a> <span> [<a href="https://arxiv.org/pdf/2502.17002">pdf</a>, <a href="https://arxiv.org/format/2502.17002">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Neutron multiplicity measurement in muon capture on oxygen nuclei in the Gd-loaded Super-Kamiokande detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+T+S">The Super-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+S">S. Abe</a>, <a href="/search/physics?searchtype=author&query=Asaoka%2C+Y">Y. Asaoka</a>, <a href="/search/physics?searchtype=author&query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&query=Harada%2C+M">M. Harada</a>, <a href="/search/physics?searchtype=author&query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&query=Okamoto%2C+K">K. Okamoto</a> , et al. (265 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17002v1-abstract-short" style="display: inline;"> In recent neutrino detectors, neutrons produced in neutrino reactions play an important role. Muon capture on oxygen nuclei is one of the processes that produce neutrons in water Cherenkov detectors. We measured neutron multiplicity in the process using cosmic ray muons that stop in the gadolinium-loaded Super-Kamiokande detector. For this measurement, neutron detection efficiency is obtained with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17002v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17002v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17002v1-abstract-full" style="display: none;"> In recent neutrino detectors, neutrons produced in neutrino reactions play an important role. Muon capture on oxygen nuclei is one of the processes that produce neutrons in water Cherenkov detectors. We measured neutron multiplicity in the process using cosmic ray muons that stop in the gadolinium-loaded Super-Kamiokande detector. For this measurement, neutron detection efficiency is obtained with the muon capture events followed by gamma rays to be $50.2^{+2.0}_{-2.1}\%$. By fitting the observed multiplicity considering the detection efficiency, we measure neutron multiplicity in muon capture as $P(0)=24\pm3\%$, $P(1)=70^{+3}_{-2}\%$, $P(2)=6.1\pm0.5\%$, $P(3)=0.38\pm0.09\%$. This is the first measurement of the multiplicity of neutrons associated with muon capture without neutron energy threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17002v1-abstract-full').style.display = 'none'; document.getElementById('2502.17002v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20506">arXiv:2410.20506</a> <span> [<a href="https://arxiv.org/pdf/2410.20506">pdf</a>, <a href="https://arxiv.org/format/2410.20506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Quantitative Biology">q-bio.OT</span> </div> </div> <p class="title is-5 mathjax"> A twenty-first century statistical physics of life </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mehta%2C+P">Pankaj Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20506v1-abstract-short" style="display: inline;"> The molecular biology revolution of the last seventy five years has transformed our view of living systems. Scientific explanations of biological phenomena are now synonymous with the identification of the genes, proteins, and signaling molecules involved. The hegemony of the molecular paradigm has only become more pronounced as new technologies allow us to make measurements at scale. Combining th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20506v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20506v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20506v1-abstract-full" style="display: none;"> The molecular biology revolution of the last seventy five years has transformed our view of living systems. Scientific explanations of biological phenomena are now synonymous with the identification of the genes, proteins, and signaling molecules involved. The hegemony of the molecular paradigm has only become more pronounced as new technologies allow us to make measurements at scale. Combining this wealth of data with new ``artificial intelligence'' techniques is viewed as the future of biology. Here, we challenge this emerging ``common sense'', laying out a roadmap for developing a theoretical understanding of life. We argue that a twenty-first century theoretical biology must be founded on a new type of statistical physics suited to the living world. Rather than merely constructing statistical models, a statistical theory requires developing ``quantitative abstractions'' for understanding the gene-organism-environment triad. This necessitates overcoming four major challenges that distinguish living matter: (1) living systems are composed of a large number of heterogeneous parts rather than a large number of identical objects; (2) living systems control and manipulate the physical world in a manner that is extremely different from the ways considered in traditional statistical physics; (3) living systems necessarily operate out of equilibrium; (4) living systems are evolved objects with a function, resulting in new types of constraints that must be imposed on probabilistic ensembles. We conclude by discussing a few key themes that we view as promising directions for developing a statistical physics of life: typicality, localized biological control, a linear response of complex systems with non-reciprocal interactions, biological resource allocation, and learning and adaptation in overparameterized systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20506v1-abstract-full').style.display = 'none'; document.getElementById('2410.20506v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages; Essay written for Chan Zuckerberg Theory in Biology Initiative</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span> [<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The track-length extension fitting algorithm for energy measurement of interacting particles in liquid argon TPCs and its performance with ProtoDUNE-SP data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v3-abstract-short" style="display: inline;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy los… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v3-abstract-full" style="display: none;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'none'; document.getElementById('2409.18288v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12725">arXiv:2408.12725</a> <span> [<a href="https://arxiv.org/pdf/2408.12725">pdf</a>, <a href="https://arxiv.org/format/2408.12725">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12725v1-abstract-short" style="display: inline;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12725v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12725v1-abstract-full" style="display: none;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'none'; document.getElementById('2408.12725v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2833-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00582">arXiv:2408.00582</a> <span> [<a href="https://arxiv.org/pdf/2408.00582">pdf</a>, <a href="https://arxiv.org/format/2408.00582">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.092011">10.1103/PhysRevD.110.092011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1341 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00582v1-abstract-short" style="display: inline;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00582v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00582v1-abstract-full" style="display: none;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'none'; document.getElementById('2408.00582v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-211, FERMILAB-PUB-24-0216-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, (2024) 092011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10339">arXiv:2407.10339</a> <span> [<a href="https://arxiv.org/pdf/2407.10339">pdf</a>, <a href="https://arxiv.org/format/2407.10339">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Supernova Pointing Capabilities of DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10339v1-abstract-short" style="display: inline;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10339v1-abstract-full" style="display: none;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'none'; document.getElementById('2407.10339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0319-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04865">arXiv:2407.04865</a> <span> [<a href="https://arxiv.org/pdf/2407.04865">pdf</a>, <a href="https://arxiv.org/format/2407.04865">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> A differentiable Gillespie algorithm for simulating chemical kinetics, parameter estimation, and designing synthetic biological circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rijal%2C+K">Krishna Rijal</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P">Pankaj Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04865v3-abstract-short" style="display: inline;"> The Gillespie algorithm is commonly used to simulate and analyze complex chemical reaction networks. Here, we leverage recent breakthroughs in deep learning to develop a fully differentiable variant of the Gillespie algorithm. The differentiable Gillespie algorithm (DGA) approximates discontinuous operations in the exact Gillespie algorithm using smooth functions, allowing for the calculation of g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04865v3-abstract-full').style.display = 'inline'; document.getElementById('2407.04865v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04865v3-abstract-full" style="display: none;"> The Gillespie algorithm is commonly used to simulate and analyze complex chemical reaction networks. Here, we leverage recent breakthroughs in deep learning to develop a fully differentiable variant of the Gillespie algorithm. The differentiable Gillespie algorithm (DGA) approximates discontinuous operations in the exact Gillespie algorithm using smooth functions, allowing for the calculation of gradients using backpropagation. The DGA can be used to quickly and accurately learn kinetic parameters using gradient descent and design biochemical networks with desired properties. As an illustration, we apply the DGA to study stochastic models of gene promoters. We show that the DGA can be used to: (i) successfully learn kinetic parameters from experimental measurements of mRNA expression levels from two distinct $\textit{E. coli}$ promoters and (ii) design nonequilibrium promoter architectures with desired input-output relationships. These examples illustrate the utility of the DGA for analyzing stochastic chemical kinetics, including a wide variety of problems of interest to synthetic and systems biology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04865v3-abstract-full').style.display = 'none'; document.getElementById('2407.04865v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09920">arXiv:2404.09920</a> <span> [<a href="https://arxiv.org/pdf/2404.09920">pdf</a>, <a href="https://arxiv.org/format/2404.09920">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad5fee">10.3847/1538-4357/ad5fee <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=KamLAND"> KamLAND</a>, <a href="/search/physics?searchtype=author&query=Collaborations%2C+S">Super-Kamiokande Collaborations</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+S">Seisho Abe</a>, <a href="/search/physics?searchtype=author&query=Eizuka%2C+M">Minori Eizuka</a>, <a href="/search/physics?searchtype=author&query=Futagi%2C+S">Sawako Futagi</a>, <a href="/search/physics?searchtype=author&query=Gando%2C+A">Azusa Gando</a>, <a href="/search/physics?searchtype=author&query=Gando%2C+Y">Yoshihito Gando</a>, <a href="/search/physics?searchtype=author&query=Goto%2C+S">Shun Goto</a>, <a href="/search/physics?searchtype=author&query=Hachiya%2C+T">Takahiko Hachiya</a>, <a href="/search/physics?searchtype=author&query=Hata%2C+K">Kazumi Hata</a>, <a href="/search/physics?searchtype=author&query=Ichimura%2C+K">Koichi Ichimura</a>, <a href="/search/physics?searchtype=author&query=Ieki%2C+S">Sei Ieki</a>, <a href="/search/physics?searchtype=author&query=Ikeda%2C+H">Haruo Ikeda</a>, <a href="/search/physics?searchtype=author&query=Inoue%2C+K">Kunio Inoue</a>, <a href="/search/physics?searchtype=author&query=Ishidoshiro%2C+K">Koji Ishidoshiro</a>, <a href="/search/physics?searchtype=author&query=Kamei%2C+Y">Yuto Kamei</a>, <a href="/search/physics?searchtype=author&query=Kawada%2C+N">Nanami Kawada</a>, <a href="/search/physics?searchtype=author&query=Kishimoto%2C+Y">Yasuhiro Kishimoto</a>, <a href="/search/physics?searchtype=author&query=Koga%2C+M">Masayuki Koga</a>, <a href="/search/physics?searchtype=author&query=Kurasawa%2C+M">Maho Kurasawa</a>, <a href="/search/physics?searchtype=author&query=Mitsui%2C+T">Tadao Mitsui</a>, <a href="/search/physics?searchtype=author&query=Miyake%2C+H">Haruhiko Miyake</a>, <a href="/search/physics?searchtype=author&query=Morita%2C+D">Daisuke Morita</a>, <a href="/search/physics?searchtype=author&query=Nakahata%2C+T">Takeshi Nakahata</a> , et al. (290 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09920v3-abstract-short" style="display: inline;"> Preceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are ob… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09920v3-abstract-full').style.display = 'inline'; document.getElementById('2404.09920v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09920v3-abstract-full" style="display: none;"> Preceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande, both located in the Kamioka mine in Japan, have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector was developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M$_{\odot}$ star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09920v3-abstract-full').style.display = 'none'; document.getElementById('2404.09920v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Resubmitted to ApJ. 22 pages, 16 figures, for more information about the combined pre-supernova alert system, see https://www.lowbg.org/presnalarm/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07796">arXiv:2403.07796</a> <span> [<a href="https://arxiv.org/pdf/2403.07796">pdf</a>, <a href="https://arxiv.org/format/2403.07796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.169480">10.1016/j.nima.2024.169480 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Second gadolinium loading to Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&query=Sato%2C+K">K. Sato</a>, <a href="/search/physics?searchtype=author&query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&query=Shiba%2C+H">H. Shiba</a>, <a href="/search/physics?searchtype=author&query=Shimizu%2C+K">K. Shimizu</a>, <a href="/search/physics?searchtype=author&query=Shiozawa%2C+M">M. Shiozawa</a> , et al. (225 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07796v3-abstract-short" style="display: inline;"> The first loading of gadolinium (Gd) into Super-Kamiokande in 2020 was successful, and the neutron capture efficiency on Gd reached 50\%. To further increase the Gd neutron capture efficiency to 75\%, 26.1 tons of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ was additionally loaded into Super-Kamiokande (SK) from May 31 to July 4, 2022. As the amount of loaded $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ was do… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07796v3-abstract-full').style.display = 'inline'; document.getElementById('2403.07796v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07796v3-abstract-full" style="display: none;"> The first loading of gadolinium (Gd) into Super-Kamiokande in 2020 was successful, and the neutron capture efficiency on Gd reached 50\%. To further increase the Gd neutron capture efficiency to 75\%, 26.1 tons of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ was additionally loaded into Super-Kamiokande (SK) from May 31 to July 4, 2022. As the amount of loaded $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ was doubled compared to the first loading, the capacity of the powder dissolving system was doubled. We also developed new batches of gadolinium sulfate with even further reduced radioactive impurities. In addition, a more efficient screening method was devised and implemented to evaluate these new batches of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$. Following the second loading, the Gd concentration in SK was measured to be $333.5\pm2.5$ ppm via an Atomic Absorption Spectrometer (AAS). From the mean neutron capture time constant of neutrons from an Am/Be calibration source, the Gd concentration was independently measured to be 332.7 $\pm$ 6.8(sys.) $\pm$ 1.1(stat.) ppm, consistent with the AAS result. Furthermore, during the loading the Gd concentration was monitored continually using the capture time constant of each spallation neutron produced by cosmic-ray muons,and the final neutron capture efficiency was shown to become 1.5 times higher than that of the first loaded phase, as expected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07796v3-abstract-full').style.display = 'none'; document.getElementById('2403.07796v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 13 figures, submitted to Nuclear Inst. and Methods in Physics Research, A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 1065 (2024) 169480 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03212">arXiv:2403.03212</a> <span> [<a href="https://arxiv.org/pdf/2403.03212">pdf</a>, <a href="https://arxiv.org/format/2403.03212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Performance of a modular ton-scale pixel-readout liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03212v1-abstract-short" style="display: inline;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03212v1-abstract-full" style="display: none;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'none'; document.getElementById('2403.03212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 41 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0073-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01568">arXiv:2402.01568</a> <span> [<a href="https://arxiv.org/pdf/2402.01568">pdf</a>, <a href="https://arxiv.org/format/2402.01568">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Doping Liquid Argon with Xenon in ProtoDUNE Single-Phase: Effects on Scintillation Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Es-sghir%2C+H+A">H. Amar Es-sghir</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1297 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01568v3-abstract-short" style="display: inline;"> Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUN… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01568v3-abstract-full').style.display = 'inline'; document.getElementById('2402.01568v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01568v3-abstract-full" style="display: none;"> Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01568v3-abstract-full').style.display = 'none'; document.getElementById('2402.01568v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 20 figures. Corrected author list; corrected typos across paper and polished text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-024; FERMILAB-PUB-23-0819-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01074">arXiv:2402.01074</a> <span> [<a href="https://arxiv.org/pdf/2402.01074">pdf</a>, <a href="https://arxiv.org/format/2402.01074">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Neural Models and Algorithms for Sensorimotor Control of an Octopus Arm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tixian Wang</a>, <a href="/search/physics?searchtype=author&query=Halder%2C+U">Udit Halder</a>, <a href="/search/physics?searchtype=author&query=Gribkova%2C+E">Ekaterina Gribkova</a>, <a href="/search/physics?searchtype=author&query=Gillette%2C+R">Rhanor Gillette</a>, <a href="/search/physics?searchtype=author&query=Gazzola%2C+M">Mattia Gazzola</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+G">Prashant G. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01074v2-abstract-short" style="display: inline;"> In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01074v2-abstract-full').style.display = 'inline'; document.getElementById('2402.01074v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01074v2-abstract-full" style="display: none;"> In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous). Several analytical results, including rest-state characterization and stability properties of the proposed sensing and motor control algorithms, are provided. Numerical simulations demonstrate the efficacy of our approach. Qualitative comparisons against observed arm rest shapes and target-oriented reaching motions are also reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01074v2-abstract-full').style.display = 'none'; document.getElementById('2402.01074v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.03130">arXiv:2312.03130</a> <span> [<a href="https://arxiv.org/pdf/2312.03130">pdf</a>, <a href="https://arxiv.org/format/2312.03130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The DUNE Far Detector Vertical Drift Technology, Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1304 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.03130v1-abstract-short" style="display: inline;"> DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precisi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03130v1-abstract-full').style.display = 'inline'; document.getElementById('2312.03130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.03130v1-abstract-full" style="display: none;"> DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03130v1-abstract-full').style.display = 'none'; document.getElementById('2312.03130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">425 pages; 281 figures Central editing team: A. Heavey, S. Kettell, A. Marchionni, S. Palestini, S. Rajogopalan, R. J. Wilson</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab Report no: TM-2813-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01798">arXiv:2311.01798</a> <span> [<a href="https://arxiv.org/pdf/2311.01798">pdf</a>, <a href="https://arxiv.org/format/2311.01798">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1242/jeb.247175">10.1242/jeb.247175 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Passive elasticity properties of $\textit{Octopus rubescens}$ arm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Halder%2C+U">Udit Halder</a>, <a href="/search/physics?searchtype=author&query=Gribkova%2C+E">Ekaterina Gribkova</a>, <a href="/search/physics?searchtype=author&query=Gillette%2C+R">Rhanor Gillette</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+G">Prashant G. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01798v1-abstract-short" style="display: inline;"> In this report, passive elasticity properties of $\textit{Octopus rubescens}$ arm tissue are investigated using a multidisciplinary approach encompassing biomechanical experiments, computational modeling, and analyses. Tensile tests are conducted to obtain stress-strain relationships of the arm under axial stretch. Rheological tests are also performed to probe into dynamic shear response of the ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01798v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01798v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01798v1-abstract-full" style="display: none;"> In this report, passive elasticity properties of $\textit{Octopus rubescens}$ arm tissue are investigated using a multidisciplinary approach encompassing biomechanical experiments, computational modeling, and analyses. Tensile tests are conducted to obtain stress-strain relationships of the arm under axial stretch. Rheological tests are also performed to probe into dynamic shear response of the arm tissue. Based on these tests, comparisons against three different viscoelasticity models are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01798v1-abstract-full').style.display = 'none'; document.getElementById('2311.01798v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15757">arXiv:2308.15757</a> <span> [<a href="https://arxiv.org/pdf/2308.15757">pdf</a>, <a href="https://arxiv.org/format/2308.15757">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.127401">10.1103/PhysRevLett.132.127401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase transition to chaos in complex ecosystems with non-reciprocal species-resource interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Blumenthal%2C+E">Emmy Blumenthal</a>, <a href="/search/physics?searchtype=author&query=Rocks%2C+J+W">Jason W. Rocks</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P">Pankaj Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15757v2-abstract-short" style="display: inline;"> Non-reciprocal interactions between microscopic constituents can profoundly shape the large-scale properties of complex systems. Here, we investigate the effects of non-reciprocity in the context of theoretical ecology by analyzing a generalization of MacArthur's consumer-resource model with asymmetric interactions between species and resources. Using a mixture of analytic cavity calculations and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15757v2-abstract-full').style.display = 'inline'; document.getElementById('2308.15757v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15757v2-abstract-full" style="display: none;"> Non-reciprocal interactions between microscopic constituents can profoundly shape the large-scale properties of complex systems. Here, we investigate the effects of non-reciprocity in the context of theoretical ecology by analyzing a generalization of MacArthur's consumer-resource model with asymmetric interactions between species and resources. Using a mixture of analytic cavity calculations and numerical simulations, we show that such ecosystems generically undergo a phase transition to chaotic dynamics as the amount of non-reciprocity is increased. We analytically construct the phase diagram for this model and show that the emergence of chaos is controlled by a single quantity: the ratio of surviving species to surviving resources. We also numerically calculate the Lyapunov exponents in the chaotic phase and carefully analyze finite-size effects. Our findings show how non-reciprocal interactions can give rise to complex and unpredictable dynamical behaviors even in the simplest ecological consumer-resource models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15757v2-abstract-full').style.display = 'none'; document.getElementById('2308.15757v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures; SI: 22 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 127401, 21 March 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02169">arXiv:2306.02169</a> <span> [<a href="https://arxiv.org/pdf/2306.02169">pdf</a>, <a href="https://arxiv.org/format/2306.02169">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Probabilistic Solar Proxy Forecasting with Neural Network Ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Daniell%2C+J+D">Joshua D. Daniell</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+M">Piyush M. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02169v1-abstract-short" style="display: inline;"> Space weather indices are used commonly to drive forecasts of thermosphere density, which directly affects objects in low-Earth orbit (LEO) through atmospheric drag. One of the most commonly used space weather proxies, $F_{10.7 cm}$, correlates well with solar extreme ultra-violet (EUV) energy deposition into the thermosphere. Currently, the USAF contracts Space Environment Technologies (SET), whi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02169v1-abstract-full').style.display = 'inline'; document.getElementById('2306.02169v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02169v1-abstract-full" style="display: none;"> Space weather indices are used commonly to drive forecasts of thermosphere density, which directly affects objects in low-Earth orbit (LEO) through atmospheric drag. One of the most commonly used space weather proxies, $F_{10.7 cm}$, correlates well with solar extreme ultra-violet (EUV) energy deposition into the thermosphere. Currently, the USAF contracts Space Environment Technologies (SET), which uses a linear algorithm to forecast $F_{10.7 cm}$. In this work, we introduce methods using neural network ensembles with multi-layer perceptrons (MLPs) and long-short term memory (LSTMs) to improve on the SET predictions. We make predictions only from historical $F_{10.7 cm}$ values, but also investigate data manipulation to improve forecasting. We investigate data manipulation methods (backwards averaging and lookback) as well as multi step and dynamic forecasting. This work shows an improvement over the baseline when using ensemble methods. The best models found in this work are ensemble approaches using multi step or a combination of multi step and dynamic predictions. Nearly all approaches offer an improvement, with the best models improving between 45 and 55\% on relative MSE. Other relative error metrics were shown to improve greatly when ensembles methods were used. We were also able to leverage the ensemble approach to provide a distribution of predicted values; allowing an investigation into forecast uncertainty. Our work found models that produced less biased predictions at elevated and high solar activity levels. Uncertainty was also investigated through the use of a calibration error score metric (CES), our best ensemble reached similar CES as other work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02169v1-abstract-full').style.display = 'none'; document.getElementById('2306.02169v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 12 figures, 5 Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05135">arXiv:2305.05135</a> <span> [<a href="https://arxiv.org/pdf/2305.05135">pdf</a>, <a href="https://arxiv.org/format/2305.05135">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acdc9e">10.3847/2041-8213/acdc9e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium-loaded water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Harada%2C+M">M. Harada</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&query=Sato%2C+K">K. Sato</a>, <a href="/search/physics?searchtype=author&query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&query=Shiba%2C+H">H. Shiba</a> , et al. (216 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05135v2-abstract-short" style="display: inline;"> We report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05135v2-abstract-full').style.display = 'inline'; document.getElementById('2305.05135v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05135v2-abstract-full" style="display: none;"> We report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay with efficient background rejection and higher signal efficiency thanks to the high efficiency of the neutron tagging technique. In this paper, we report the result for the initial stage of SK-Gd with a $22.5\times552$ $\rm kton\cdot day$ exposure at 0.01% Gd mass concentration. No significant excess over the expected background in the observed events is found for the neutrino energies below 31.3 MeV. Thus, the flux upper limits are placed at the 90% confidence level. The limits and sensitivities are already comparable with the previous SK result with pure-water ($22.5 \times 2970 \rm kton\cdot day$) owing to the enhanced neutron tagging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05135v2-abstract-full').style.display = 'none'; document.getElementById('2305.05135v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00770">arXiv:2305.00770</a> <span> [<a href="https://arxiv.org/pdf/2305.00770">pdf</a>, <a href="https://arxiv.org/format/2305.00770">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/14685248.2023.2274100">10.1080/14685248.2023.2274100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fractional and tempered fractional models for Reynolds-averaged Navier-Stokes equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mehta%2C+P+P">Pavan Pranjivan Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00770v2-abstract-short" style="display: inline;"> Turbulence is a non-local phenomenon and has multiple-scales. Non-locality can be addressed either implicitly or explicitly. Implicitly, by subsequent resolution of all spatio-temporal scales. However, if directly solved for the temporal or spatially averaged fields, a closure problem arises on account of missing information between two points. To solve the closure problem in Reynolds-averaged Nav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00770v2-abstract-full').style.display = 'inline'; document.getElementById('2305.00770v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00770v2-abstract-full" style="display: none;"> Turbulence is a non-local phenomenon and has multiple-scales. Non-locality can be addressed either implicitly or explicitly. Implicitly, by subsequent resolution of all spatio-temporal scales. However, if directly solved for the temporal or spatially averaged fields, a closure problem arises on account of missing information between two points. To solve the closure problem in Reynolds-averaged Navier-Stokes equations (RANS), an eddy-viscosity hypotheses has been a popular modelling choice, where it follows either a linear or non-linear stress-strain relationship. Here, a non-constant diffusivity is introduced. Such a non-constant diffusivity is also characteristic of non-Fickian diffusion equation addressing anomalous diffusion process. An alternative approach, is a fractional derivative based diffusion equations. Thus, in the paper, we formulate a fractional stress-strain relationship using variable-order Caputo fractional derivative. This provides new opportunities for future modelling effort. We pedagogically study of our model construction, starting from one-sided model and followed by two-sided model. Non-locality at a point is the amalgamation of all the effects, thus we find the two-sided model is physically consistent. Further, our construction can also addresses viscous effects, which is a local process. Thus, our fractional model addresses the amalgamation of local and non-local process. We also show its validity at infinite Reynolds number limit. This study is further extended to tempered fractional calculus, where tempering ensures finite jump lengths, this is an important remark for unbounded flows. Two tempered definitions are introduced with a smooth and sharp cutoff, by the exponential term and Heaviside function, respectively and we also define the horizon of non-local interactions. We further study the equivalence between the two definitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00770v2-abstract-full').style.display = 'none'; document.getElementById('2305.00770v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A part of this paper is also available as arXiv preprint arXiv:2105.03646v1. Tempered F-RANS result first presented at ICTAM 2020+1 held in Italy, 2021 chaired by Prof. A. Quarteroni (postponed by a year due to pandemic). Results submitted to ICTAM 2020 by Jan. 2020 (refer book of abstracts, Pages 1235-1236 : https://iutam.org/wp-content/uploads/2023/06/ABSTRACT_BOOK_ICTAM_2021.pdf)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 76F99; 26A33 (primary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08413">arXiv:2304.08413</a> <span> [<a href="https://arxiv.org/pdf/2304.08413">pdf</a>, <a href="https://arxiv.org/format/2304.08413">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Topology, dynamics, and control of an octopus-analog muscular hydrostat </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tekinalp%2C+A">Arman Tekinalp</a>, <a href="/search/physics?searchtype=author&query=Naughton%2C+N">Noel Naughton</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S">Seung-Hyun Kim</a>, <a href="/search/physics?searchtype=author&query=Halder%2C+U">Udit Halder</a>, <a href="/search/physics?searchtype=author&query=Gillette%2C+R">Rhanor Gillette</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+G">Prashant G. Mehta</a>, <a href="/search/physics?searchtype=author&query=Kier%2C+W">William Kier</a>, <a href="/search/physics?searchtype=author&query=Gazzola%2C+M">Mattia Gazzola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08413v1-abstract-short" style="display: inline;"> Muscular hydrostats, such as octopus arms or elephant trunks, lack bones entirely, endowing them with exceptional dexterity and reconfigurability. Key to their unmatched ability to control nearly infinite degrees of freedom is the architecture into which muscle fibers are weaved. Their arrangement is, effectively, the instantiation of a sophisticated mechanical program that mediates, and likely fa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08413v1-abstract-full').style.display = 'inline'; document.getElementById('2304.08413v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08413v1-abstract-full" style="display: none;"> Muscular hydrostats, such as octopus arms or elephant trunks, lack bones entirely, endowing them with exceptional dexterity and reconfigurability. Key to their unmatched ability to control nearly infinite degrees of freedom is the architecture into which muscle fibers are weaved. Their arrangement is, effectively, the instantiation of a sophisticated mechanical program that mediates, and likely facilitates, the control and realization of complex, dynamic morphological reconfigurations. Here, by combining medical imaging, biomechanical data, live behavioral experiments and numerical simulations, we synthesize a model octopus arm entailing ~200 continuous muscles groups, and begin to unravel its complexity. We show how 3D arm motions can be understood in terms of storage, transport, and conversion of topological quantities, effected by simple muscle activation templates. These, in turn, can be composed into higher-level control strategies that, compounded by the arm's compliance, are demonstrated in a range of object manipulation tasks rendered additionally challenging by the need to appropriately align suckers, to sense and grasp. Overall, our work exposes broad design and algorithmic principles pertinent to muscular hydrostats, robotics, and dynamics, while significantly advancing our ability to model muscular structures from medical imaging, with potential implications for human health and care. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08413v1-abstract-full').style.display = 'none'; document.getElementById('2304.08413v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02983">arXiv:2303.02983</a> <span> [<a href="https://arxiv.org/pdf/2303.02983">pdf</a>, <a href="https://arxiv.org/format/2303.02983">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergent competition shapes the ecological properties of multi-trophic ecosystems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Feng%2C+Z">Zhijie Feng</a>, <a href="/search/physics?searchtype=author&query=Marsland%2C+R">Robert Marsland III</a>, <a href="/search/physics?searchtype=author&query=Rocks%2C+J+W">Jason W. Rocks</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P">Pankaj Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02983v1-abstract-short" style="display: inline;"> Ecosystems are commonly organized into trophic levels -- organisms that occupy the same level in a food chain (e.g., plants, herbivores, carnivores). A fundamental question in theoretical ecology is how the interplay between trophic structure, diversity, and competition shapes the properties of ecosystems. To address this problem, we analyze a generalized Consumer Resource Model with three trophic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02983v1-abstract-full').style.display = 'inline'; document.getElementById('2303.02983v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02983v1-abstract-full" style="display: none;"> Ecosystems are commonly organized into trophic levels -- organisms that occupy the same level in a food chain (e.g., plants, herbivores, carnivores). A fundamental question in theoretical ecology is how the interplay between trophic structure, diversity, and competition shapes the properties of ecosystems. To address this problem, we analyze a generalized Consumer Resource Model with three trophic levels using the zero-temperature cavity method and numerical simulations. We find that intra-trophic diversity gives rise to ``emergent competition'' between species within a trophic level due to feedbacks mediated by other trophic levels. This emergent competition gives rise to a crossover from a regime of top-down control (populations are limited by predators) to a regime of bottom-up control (populations are limited by primary producers) and is captured by a simple order parameter related to the ratio of surviving species in different trophic levels. We show that our theoretical results agree with empirical observations, suggesting that the theoretical approach outlined here can be used to understand complex ecosystems with multiple trophic levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02983v1-abstract-full').style.display = 'none'; document.getElementById('2303.02983v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 10.5 pages, 7 figures (Total: 18 pages)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09807">arXiv:2212.09807</a> <span> [<a href="https://arxiv.org/pdf/2212.09807">pdf</a>, <a href="https://arxiv.org/format/2212.09807">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Highly-parallelized simulation of a pixelated LArTPC on a GPU </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a> , et al. (1282 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09807v3-abstract-short" style="display: inline;"> The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09807v3-abstract-full').style.display = 'inline'; document.getElementById('2212.09807v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09807v3-abstract-full" style="display: none;"> The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on $10^3$ pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09807v3-abstract-full').style.display = 'none'; document.getElementById('2212.09807v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-926-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.06767">arXiv:2211.06767</a> <span> [<a href="https://arxiv.org/pdf/2211.06767">pdf</a>, <a href="https://arxiv.org/format/2211.06767">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Modeling the Neuromuscular Control System of an Octopus Arm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tixian Wang</a>, <a href="/search/physics?searchtype=author&query=Halder%2C+U">Udit Halder</a>, <a href="/search/physics?searchtype=author&query=Gribkova%2C+E">Ekaterina Gribkova</a>, <a href="/search/physics?searchtype=author&query=Gazzola%2C+M">Mattia Gazzola</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+G">Prashant G. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.06767v1-abstract-short" style="display: inline;"> The octopus arm is a neuromechanical system that involves a complex interplay between peripheral nervous system (PNS) and arm musculature. This makes the arm capable of carrying out rich maneuvers. In this paper, we build a model for the PNS and integrate it with a muscular soft octopus arm. The proposed neuromuscular architecture is used to qualitatively reproduce several biophysical observations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06767v1-abstract-full').style.display = 'inline'; document.getElementById('2211.06767v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.06767v1-abstract-full" style="display: none;"> The octopus arm is a neuromechanical system that involves a complex interplay between peripheral nervous system (PNS) and arm musculature. This makes the arm capable of carrying out rich maneuvers. In this paper, we build a model for the PNS and integrate it with a muscular soft octopus arm. The proposed neuromuscular architecture is used to qualitatively reproduce several biophysical observations in real octopuses, including curled rest shapes and target-directed arm reaching motions. Two control laws are proposed for target-oriented arm motions, and their performance is compared against a benchmark. Several analytical results, including rest-state characterization and stability properties of the proposed control laws, are provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06767v1-abstract-full').style.display = 'none'; document.getElementById('2211.06767v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04392">arXiv:2211.04392</a> <span> [<a href="https://arxiv.org/pdf/2211.04392">pdf</a>, <a href="https://arxiv.org/format/2211.04392">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2022SW003345">10.1029/2022SW003345 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reduced Order Probabilistic Emulation for Physics-Based Thermosphere Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Licata%2C+R+J">Richard J. Licata</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+M">Piyush M. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04392v2-abstract-short" style="display: inline;"> The geospace environment is volatile and highly driven. Space weather has effects on Earth's magnetosphere that cause a dynamic and enigmatic response in the thermosphere, particularly on the evolution of neutral mass density. Many models exist that use space weather drivers to produce a density response, but these models are typically computationally expensive or inaccurate for certain space weat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04392v2-abstract-full').style.display = 'inline'; document.getElementById('2211.04392v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04392v2-abstract-full" style="display: none;"> The geospace environment is volatile and highly driven. Space weather has effects on Earth's magnetosphere that cause a dynamic and enigmatic response in the thermosphere, particularly on the evolution of neutral mass density. Many models exist that use space weather drivers to produce a density response, but these models are typically computationally expensive or inaccurate for certain space weather conditions. In response, this work aims to employ a probabilistic machine learning (ML) method to create an efficient surrogate for the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM), a physics-based thermosphere model. Our method leverages principal component analysis to reduce the dimensionality of TIE-GCM and recurrent neural networks to model the dynamic behavior of the thermosphere much quicker than the numerical model. The newly developed reduced order probabilistic emulator (ROPE) uses Long-Short Term Memory neural networks to perform time-series forecasting in the reduced state and provide distributions for future density. We show that across the available data, TIE-GCM ROPE has similar error to previous linear approaches while improving storm-time modeling. We also conduct a satellite propagation study for the significant November 2003 storm which shows that TIE-GCM ROPE can capture the position resulting from TIE-GCM density with < 5 km bias. Simultaneously, linear approaches provide point estimates that can result in biases of 7 - 18 km. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04392v2-abstract-full').style.display = 'none'; document.getElementById('2211.04392v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01166">arXiv:2211.01166</a> <span> [<a href="https://arxiv.org/pdf/2211.01166">pdf</a>, <a href="https://arxiv.org/format/2211.01166">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a> , et al. (1235 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01166v4-abstract-short" style="display: inline;"> Measurements of electrons from $谓_e$ interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01166v4-abstract-full').style.display = 'inline'; document.getElementById('2211.01166v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01166v4-abstract-full" style="display: none;"> Measurements of electrons from $谓_e$ interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01166v4-abstract-full').style.display = 'none'; document.getElementById('2211.01166v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-784, CERN-EP-DRAFT-MISC-2022-008 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 092012 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.16992">arXiv:2210.16992</a> <span> [<a href="https://arxiv.org/pdf/2210.16992">pdf</a>, <a href="https://arxiv.org/format/2210.16992">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Advanced ensemble modeling method for space object state prediction accounting for uncertainty in atmospheric density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Paul%2C+S+N">Smriti Nandan Paul</a>, <a href="/search/physics?searchtype=author&query=Licata%2C+R+J">Richard J. Licata</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+M">Piyush M. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.16992v1-abstract-short" style="display: inline;"> For objects in the low Earth orbit region, uncertainty in atmospheric density estimation is an important source of orbit prediction error, which is critical for space situational awareness activities such as the satellite conjunction analysis. This paper investigates the evolution of orbit error distribution in the presence of atmospheric density uncertainties, which are modeled using probabilisti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16992v1-abstract-full').style.display = 'inline'; document.getElementById('2210.16992v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.16992v1-abstract-full" style="display: none;"> For objects in the low Earth orbit region, uncertainty in atmospheric density estimation is an important source of orbit prediction error, which is critical for space situational awareness activities such as the satellite conjunction analysis. This paper investigates the evolution of orbit error distribution in the presence of atmospheric density uncertainties, which are modeled using probabilistic machine learning techniques. The recently proposed HASDM-ML, CHAMP-ML, and MSIS-UQ machine learning models for density estimation are used in this work. The investigation is convoluted because of the spatial and temporal correlation of the atmospheric density values. We develop several Monte Carlo methods, each capturing a different spatiotemporal density correlation, to study the effects of density uncertainty on orbit uncertainty propagation. However, Monte Carlo analysis is computationally expensive, so a faster method based on the Kalman filtering technique for orbit uncertainty propagation is also explored. It is difficult to translate the uncertainty in atmospheric density to the uncertainty in orbital states under a standard extended Kalman filter or unscented Kalman filter framework. This work uses the so-called consider covariance sigma point (CCSP) filter that can account for the density uncertainties during orbit propagation. As a test-bed for validation purposes, a comparison between CCSP and Monte Carlo methods of orbit uncertainty propagation is carried out. Finally, using the HASDM-ML, CHAMP-ML, and MSIS-UQ density models, we propose an ensemble approach for orbit uncertainty quantification for four different space weather conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16992v1-abstract-full').style.display = 'none'; document.getElementById('2210.16992v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12948">arXiv:2210.12948</a> <span> [<a href="https://arxiv.org/pdf/2210.12948">pdf</a>, <a href="https://arxiv.org/format/2210.12948">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Searching for neutrinos from solar flares across solar cycles 23 and 24 with the Super-Kamiokande detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&query=Kaneshima%2C+Y">Y. Kaneshima</a>, <a href="/search/physics?searchtype=author&query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/physics?searchtype=author&query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&query=Sato%2C+K">K. Sato</a>, <a href="/search/physics?searchtype=author&query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&query=Shimizu%2C+K">K. Shimizu</a>, <a href="/search/physics?searchtype=author&query=Shiozawa%2C+M">M. Shiozawa</a> , et al. (220 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12948v2-abstract-short" style="display: inline;"> Neutrinos associated with solar flares (solar-flare neutrinos) provide information on particle acceleration mechanisms during the impulsive phase of solar flares. We searched using the Super-Kamiokande detector for neutrinos from solar flares that occurred during solar cycles $23$ and $24$, including the largest solar flare (X28.0) on November 4th, 2003. In order to minimize the background rate we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12948v2-abstract-full').style.display = 'inline'; document.getElementById('2210.12948v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12948v2-abstract-full" style="display: none;"> Neutrinos associated with solar flares (solar-flare neutrinos) provide information on particle acceleration mechanisms during the impulsive phase of solar flares. We searched using the Super-Kamiokande detector for neutrinos from solar flares that occurred during solar cycles $23$ and $24$, including the largest solar flare (X28.0) on November 4th, 2003. In order to minimize the background rate we searched for neutrino interactions within narrow time windows coincident with $纬$-rays and soft X-rays recorded by satellites. In addition, we performed the first attempt to search for solar-flare neutrinos from solar flares on the invisible side of the Sun by using the emission time of coronal mass ejections (CMEs). By selecting twenty powerful solar flares above X5.0 on the visible side and eight CMEs whose emission speed exceeds $2000$ $\mathrm{km \, s^{-1}}$ on the invisible side from 1996 to 2018, we found two (six) neutrino events coincident with solar flares occurring on the visible (invisible) side of the Sun, with a typical background rate of $0.10$ ($0.62$) events per flare in the MeV-GeV energy range. No significant solar-flare neutrino signal above the estimated background rate was observed. As a result we set the following upper limit on neutrino fluence at the Earth $\mathit桅<1.1\times10^{6}$ $\mathrm{cm^{-2}}$ at the $90\%$ confidence level for the largest solar flare. The resulting fluence limits allow us to constrain some of the theoretical models for solar-flare neutrino emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12948v2-abstract-full').style.display = 'none'; document.getElementById('2210.12948v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 18 figures, 9 tables (Figure 12 was replaced because it was incorrect in version 1.)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08364">arXiv:2210.08364</a> <span> [<a href="https://arxiv.org/pdf/2210.08364">pdf</a>, <a href="https://arxiv.org/format/2210.08364">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Stochastic modeling of physical drag coefficient -- its impact on orbit prediction and space traffic management </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Paul%2C+S+N">Smriti Nandan Paul</a>, <a href="/search/physics?searchtype=author&query=Sheridan%2C+P+L">Phillip Logan Sheridan</a>, <a href="/search/physics?searchtype=author&query=Licata%2C+R+J">Richard J. Licata</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+M">Piyush M. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08364v2-abstract-short" style="display: inline;"> Ambitious satellite constellation projects by commercial entities and the ease of access to space in recent times have led to a dramatic proliferation of low-Earth space traffic. It jeopardizes space safety and long-term sustainability, necessitating better space traffic management (STM). Correct modeling of uncertainties in force models and orbital states, among other things, is an essential part… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08364v2-abstract-full').style.display = 'inline'; document.getElementById('2210.08364v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08364v2-abstract-full" style="display: none;"> Ambitious satellite constellation projects by commercial entities and the ease of access to space in recent times have led to a dramatic proliferation of low-Earth space traffic. It jeopardizes space safety and long-term sustainability, necessitating better space traffic management (STM). Correct modeling of uncertainties in force models and orbital states, among other things, is an essential part of STM. For objects in the low-Earth orbit (LEO) region, the uncertainty in the orbital dynamics mainly emanate from limited knowledge of the atmospheric drag-related parameters and variables. In this paper, which extends the work by Paul et al. [2021], we develop a feed-forward deep neural network model for the prediction of the satellite drag coefficient for the full range of satellite attitude (i.e., satellite pitch $\in$ ($-90^0$, $+90^0$) and satellite yaw $\in$ ($0^0$, $+360^0$)). The model simultaneously predicts the mean and the standard deviation and is well-calibrated. We use numerically simulated physical drag coefficient data for training our neural network. The numerical simulations are carried out using the test particle Monte Carlo method using the diffuse reflection with incomplete accommodation gas-surface interaction model. Modeling is carried out for the well-known CHAllenging Minisatellite Payload (CHAMP) satellite. Finally, we use the Monte Carlo approach to propagate CHAMP over a three-day period under various modeling scenarios to investigate the distribution of radial, in-track, and cross-track orbital errors caused by drag coefficient uncertainty. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08364v2-abstract-full').style.display = 'none'; document.getElementById('2210.08364v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08609">arXiv:2209.08609</a> <span> [<a href="https://arxiv.org/pdf/2209.08609">pdf</a>, <a href="https://arxiv.org/format/2209.08609">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/10/P10029">10.1088/1748-0221/17/10/P10029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron Tagging following Atmospheric Neutrino Events in a Water Cherenkov Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Haga%2C+Y">Y. Haga</a>, <a href="/search/physics?searchtype=author&query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&query=Imaizumi%2C+S">S. Imaizumi</a>, <a href="/search/physics?searchtype=author&query=Iyogi%2C+K">K. Iyogi</a>, <a href="/search/physics?searchtype=author&query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&query=Kato%2C+Y">Y. Kato</a>, <a href="/search/physics?searchtype=author&query=Kishimoto%2C+Y">Y. Kishimoto</a>, <a href="/search/physics?searchtype=author&query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&query=Mochizuki%2C+T">T. Mochizuki</a>, <a href="/search/physics?searchtype=author&query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/physics?searchtype=author&query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&query=Nakajima%2C+T">T. Nakajima</a>, <a href="/search/physics?searchtype=author&query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&query=Okada%2C+T">T. Okada</a>, <a href="/search/physics?searchtype=author&query=Okamoto%2C+K">K. Okamoto</a> , et al. (281 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08609v2-abstract-short" style="display: inline;"> We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08609v2-abstract-full').style.display = 'inline'; document.getElementById('2209.08609v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08609v2-abstract-full" style="display: none;"> We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 \pm 9 渭s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08609v2-abstract-full').style.display = 'none'; document.getElementById('2209.08609v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 17 P10029 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.05597">arXiv:2209.05597</a> <span> [<a href="https://arxiv.org/pdf/2209.05597">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Understanding variability in HASDM to support space traffic management </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tobiska%2C+W+K">W. Kent Tobiska</a>, <a href="/search/physics?searchtype=author&query=Pilinski%2C+M+D">Marcin D. Pilinski</a>, <a href="/search/physics?searchtype=author&query=Mutschler%2C+S">Shaylah Mutschler</a>, <a href="/search/physics?searchtype=author&query=Wahl%2C+K">Kaiya Wahl</a>, <a href="/search/physics?searchtype=author&query=Yoshii%2C+J">Jean Yoshii</a>, <a href="/search/physics?searchtype=author&query=Bouwer%2C+D">Dave Bouwer</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P">Piyush Mehta</a>, <a href="/search/physics?searchtype=author&query=Licata%2C+R">Richard Licata</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.05597v1-abstract-short" style="display: inline;"> With more commercial constellations planned, the number of Low Earth Orbit (LEO) objects is set to TRIPLE in two years. The growth in LEO objects directly increases the probability of unintentional collisions between objects due to accumulating space debris. Effective space traffic management needs accurate knowledge of the variability in upper atmosphere densities. Data assimilative modeling, whe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05597v1-abstract-full').style.display = 'inline'; document.getElementById('2209.05597v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.05597v1-abstract-full" style="display: none;"> With more commercial constellations planned, the number of Low Earth Orbit (LEO) objects is set to TRIPLE in two years. The growth in LEO objects directly increases the probability of unintentional collisions between objects due to accumulating space debris. Effective space traffic management needs accurate knowledge of the variability in upper atmosphere densities. Data assimilative modeling, where physics-based models are informed by measurements, supplies the best capability today for specifying and predicting space weather. The foundation for this modeling comes from the SET High Accuracy Satellite Drag Model (HASDM) density database. We report on studies to understand the variabilities in HASDM. We identify two thermospheric features from the SET HASDM density database. First, we have confirmed that the time scale is very rapid (1-hour) for molecular conduction above 200 km to transfer energy vertically in the thermosphere. This results couples with a longer timescale for conduction in the 100-200 km region where it takes up to 2 days for energy to transition across that region via molecular conduction. We now have an excellent picture of the timescales of energy change throughout the thermosphere. Second, the SET HASDM density data display a common range of variability despite the level of daily averaged geomagnetic activity as represented by Ap. During higher levels of daily averaged geomagnetic activity, the density mean and median values increase at all altitude levels. However, the relative range of variability is consistent from one daily average of Ap to the next. The reason is likely to be that the underlying pre-storm density of the thermosphere is determined by the solar EUV and FUV irradiances that create a thermal foundation of the upper atmosphere. The daily averaged geomagnetic activity is a perturbation upon that foundation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05597v1-abstract-full').style.display = 'none'; document.getElementById('2209.05597v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.04089">arXiv:2209.04089</a> <span> [<a href="https://arxiv.org/pdf/2209.04089">pdf</a>, <a href="https://arxiv.org/format/2209.04089">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rspa.2022.0593">10.1098/rspa.2022.0593 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy Shaping Control of a Muscular Octopus Arm Moving in Three Dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chang%2C+H">Heng-Sheng Chang</a>, <a href="/search/physics?searchtype=author&query=Halder%2C+U">Udit Halder</a>, <a href="/search/physics?searchtype=author&query=Shih%2C+C">Chia-Hsien Shih</a>, <a href="/search/physics?searchtype=author&query=Naughton%2C+N">Noel Naughton</a>, <a href="/search/physics?searchtype=author&query=Gazzola%2C+M">Mattia Gazzola</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+G">Prashant G. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.04089v1-abstract-short" style="display: inline;"> Flexible octopus arms exhibit an exceptional ability to coordinate large numbers of degrees of freedom and perform complex manipulation tasks. As a consequence, these systems continue to attract the attention of biologists and roboticists alike. In this paper, we develop a three-dimensional model of a soft octopus arm, equipped with biomechanically realistic muscle actuation. Internal forces and c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04089v1-abstract-full').style.display = 'inline'; document.getElementById('2209.04089v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.04089v1-abstract-full" style="display: none;"> Flexible octopus arms exhibit an exceptional ability to coordinate large numbers of degrees of freedom and perform complex manipulation tasks. As a consequence, these systems continue to attract the attention of biologists and roboticists alike. In this paper, we develop a three-dimensional model of a soft octopus arm, equipped with biomechanically realistic muscle actuation. Internal forces and couples exerted by all major muscle groups are considered. An energy shaping control method is described to coordinate muscle activity so as to grasp and reach in 3D space. Key contributions of this paper are: (i) modeling of major muscle groups to elicit three-dimensional movements; (ii) a mathematical formulation for muscle activations based on a stored energy function; and (iii) a computationally efficient procedure to design task-specific equilibrium configurations, obtained by solving an optimization problem in the Special Euclidean group SE(3). Muscle controls are then iteratively computed based on the co-state variable arising from the solution of the optimization problem. The approach is numerically demonstrated in the physically accurate software environment Elastica. Results of numerical experiments mimicking observed octopus behaviors are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04089v1-abstract-full').style.display = 'none'; document.getElementById('2209.04089v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11619">arXiv:2208.11619</a> <span> [<a href="https://arxiv.org/pdf/2208.11619">pdf</a>, <a href="https://arxiv.org/format/2208.11619">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2022SW003267">10.1029/2022SW003267 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibrated and Enhanced NRLMSIS 2.0 Model with Uncertainty Quantification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Licata%2C+R+J">Richard J. Licata</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+M">Piyush M. Mehta</a>, <a href="/search/physics?searchtype=author&query=Weimer%2C+D+R">Daniel R. Weimer</a>, <a href="/search/physics?searchtype=author&query=Tobiska%2C+W+K">W. Kent Tobiska</a>, <a href="/search/physics?searchtype=author&query=Yoshii%2C+J">Jean Yoshii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11619v1-abstract-short" style="display: inline;"> The Mass Spectrometer and Incoherent Scatter radar (MSIS) model family has been developed and improved since the early 1970's. The most recent version of MSIS is the Naval Research Laboratory (NRL) MSIS 2.0 empirical atmospheric model. NRLMSIS 2.0 provides species density, mass density, and temperature estimates as function of location and space weather conditions. MSIS models have long been a pop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11619v1-abstract-full').style.display = 'inline'; document.getElementById('2208.11619v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11619v1-abstract-full" style="display: none;"> The Mass Spectrometer and Incoherent Scatter radar (MSIS) model family has been developed and improved since the early 1970's. The most recent version of MSIS is the Naval Research Laboratory (NRL) MSIS 2.0 empirical atmospheric model. NRLMSIS 2.0 provides species density, mass density, and temperature estimates as function of location and space weather conditions. MSIS models have long been a popular choice of atmosphere model in the research and operations community alike, but - like many models - does not provide uncertainty estimates. In this work, we develop an exospheric temperature model based in machine learning (ML) that can be used with NRLMSIS 2.0 to calibrate it relative to high-fidelity satellite density estimates. Instead of providing point estimates, our model (called MSIS-UQ) outputs a distribution which is assessed using a metric called the calibration error score. We show that MSIS-UQ debiases NRLMSIS 2.0 resulting in reduced differences between model and satellite density of 25% and is 11% closer to satellite density than the Space Force's High Accuracy Satellite Drag Model. We also show the model's uncertainty estimation capabilities by generating altitude profiles for species density, mass density, and temperature. This explicitly demonstrates how exospheric temperature probabilities affect density and temperature profiles within NRLMSIS 2.0. Another study displays improved post-storm overcooling capabilities relative to NRLMSIS 2.0 alone, enhancing the phenomena that it can capture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11619v1-abstract-full').style.display = 'none'; document.getElementById('2208.11619v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14521">arXiv:2206.14521</a> <span> [<a href="https://arxiv.org/pdf/2206.14521">pdf</a>, <a href="https://arxiv.org/format/2206.14521">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11733-2">10.1140/epjc/s10052-023-11733-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a> , et al. (1203 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14521v2-abstract-short" style="display: inline;"> The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a char… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14521v2-abstract-full').style.display = 'inline'; document.getElementById('2206.14521v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14521v2-abstract-full" style="display: none;"> The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/$c$ charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1$\pm0.6$% and 84.1$\pm0.6$%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14521v2-abstract-full').style.display = 'none'; document.getElementById('2206.14521v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 20 figures. Accepted version. Published version available in Eur. Phys. J. C 83, 618 (2023) https://doi.org/10.1140/epjc/s10052-023-11733-2</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-488-AD-ESH-LBNF-ND-SCD, CERN-EP-DRAFT-MISC-2022-007 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 83, 618 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05824">arXiv:2206.05824</a> <span> [<a href="https://arxiv.org/pdf/2206.05824">pdf</a>, <a href="https://arxiv.org/format/2206.05824">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2022SW003189">10.1029/2022SW003189 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Science through Machine Learning: Quantification of Poststorm Thermospheric Cooling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Licata%2C+R+J">Richard J. Licata</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+M">Piyush M. Mehta</a>, <a href="/search/physics?searchtype=author&query=Weimer%2C+D+R">Daniel R. Weimer</a>, <a href="/search/physics?searchtype=author&query=Drob%2C+D+P">Douglas P. Drob</a>, <a href="/search/physics?searchtype=author&query=Tobiska%2C+W+K">W. Kent Tobiska</a>, <a href="/search/physics?searchtype=author&query=Yoshii%2C+J">Jean Yoshii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05824v1-abstract-short" style="display: inline;"> Machine learning (ML) is often viewed as a black-box regression technique that is unable to provide considerable scientific insight. ML models are universal function approximators and - if used correctly - can provide scientific information related to the ground-truth dataset used for fitting. A benefit to ML over parametric models is that there are no predefined basis functions limiting the pheno… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05824v1-abstract-full').style.display = 'inline'; document.getElementById('2206.05824v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05824v1-abstract-full" style="display: none;"> Machine learning (ML) is often viewed as a black-box regression technique that is unable to provide considerable scientific insight. ML models are universal function approximators and - if used correctly - can provide scientific information related to the ground-truth dataset used for fitting. A benefit to ML over parametric models is that there are no predefined basis functions limiting the phenomena that can be modeled. In this work, we develop ML models on three datasets: the Space Environment Technologies (SET) High Accuracy Satellite Drag Model (HASDM) density database, a spatiotemporally matched dataset of outputs from the Jacchia-Bowman 2008 Empirical Thermospheric Density Model (JB2008), and an accelerometer-derived density dataset from CHAllenging Minisatellite Payload (CHAMP). These ML models are compared to the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar (NRLMSIS 2.0) model to study the presence of post-storm cooling in the middle-thermosphere. We find that both NRLMSIS 2.0 and JB2008-ML do not account for post-storm cooling and consequently perform poorly in periods following strong geomagnetic storms (e.g. the 2003 Halloween storms). Conversely, HASDM-ML and CHAMP-ML do show evidence of post-storm cooling indicating that this phenomenon is present in the original datasets. Results show that density reductions up to 40% can occur 1--3 days post-storm depending on location and the strength of the storm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05824v1-abstract-full').style.display = 'none'; document.getElementById('2206.05824v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09881">arXiv:2205.09881</a> <span> [<a href="https://arxiv.org/pdf/2205.09881">pdf</a>, <a href="https://arxiv.org/format/2205.09881">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac7f9c">10.3847/1538-4357/ac7f9c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pre-Supernova Alert System for Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Machado%2C+L+N">L. N. Machado</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&query=Sato%2C+K">K. Sato</a>, <a href="/search/physics?searchtype=author&query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&query=Shiba%2C+H">H. Shiba</a> , et al. (202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09881v2-abstract-short" style="display: inline;"> In 2020, the Super-Kamiokande (SK) experiment moved to a new stage (SK-Gd) in which gadolinium (Gd) sulfate octahydrate was added to the water in the detector, enhancing the efficiency to detect thermal neutrons and consequently improving the sensitivity to low energy electron anti-neutrinos from inverse beta decay (IBD) interactions. SK-Gd has the potential to provide early alerts of incipient co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09881v2-abstract-full').style.display = 'inline'; document.getElementById('2205.09881v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09881v2-abstract-full" style="display: none;"> In 2020, the Super-Kamiokande (SK) experiment moved to a new stage (SK-Gd) in which gadolinium (Gd) sulfate octahydrate was added to the water in the detector, enhancing the efficiency to detect thermal neutrons and consequently improving the sensitivity to low energy electron anti-neutrinos from inverse beta decay (IBD) interactions. SK-Gd has the potential to provide early alerts of incipient core-collapse supernovae through detection of electron anti-neutrinos from thermal and nuclear processes responsible for the cooling of massive stars before the gravitational collapse of their cores. These pre-supernova neutrinos emitted during the silicon burning phase can exceed the energy threshold for IBD reactions. We present the sensitivity of SK-Gd to pre-supernova stars and the techniques used for the development of a pre-supernova alarm based on the detection of these neutrinos in SK, as well as prospects for future SK-Gd phases with higher concentrations of Gd. For the current SK-Gd phase, high-confidence alerts for Betelgeuse could be issued up to nine hours in advance of the core-collapse itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09881v2-abstract-full').style.display = 'none'; document.getElementById('2205.09881v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 935, Number 1 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00717">arXiv:2204.00717</a> <span> [<a href="https://arxiv.org/pdf/2204.00717">pdf</a>, <a href="https://arxiv.org/format/2204.00717">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/CDC51059.2022.9993021">10.1109/CDC51059.2022.9993021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Sensory Feedback Control Law for Octopus Arm Movements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tixian Wang</a>, <a href="/search/physics?searchtype=author&query=Halder%2C+U">Udit Halder</a>, <a href="/search/physics?searchtype=author&query=Gribkova%2C+E">Ekaterina Gribkova</a>, <a href="/search/physics?searchtype=author&query=Gillette%2C+R">Rhanor Gillette</a>, <a href="/search/physics?searchtype=author&query=Gazzola%2C+M">Mattia Gazzola</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+G">Prashant G. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00717v1-abstract-short" style="display: inline;"> The main contribution of this paper is a novel sensory feedback control law for an octopus arm. The control law is inspired by, and helps integrate, several observations made by biologists. The proposed control law is distinct from prior work which has mainly focused on open-loop control strategies. Several analytical results are described including characterization of the equilibrium and its stab… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00717v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00717v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00717v1-abstract-full" style="display: none;"> The main contribution of this paper is a novel sensory feedback control law for an octopus arm. The control law is inspired by, and helps integrate, several observations made by biologists. The proposed control law is distinct from prior work which has mainly focused on open-loop control strategies. Several analytical results are described including characterization of the equilibrium and its stability analysis. Numerical simulations demonstrate life-like motion of the soft octopus arm, qualitatively matching behavioral experiments. Quantitative comparison with bend propagation experiments helps provide the first explanation of such canonical motion using a sensory feedback control law. Several remarks are included that help draw parallels with natural pursuit strategies such as motion camouflage or classical pursuit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00717v1-abstract-full').style.display = 'none'; document.getElementById('2204.00717v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.17053">arXiv:2203.17053</a> <span> [<a href="https://arxiv.org/pdf/2203.17053">pdf</a>, <a href="https://arxiv.org/format/2203.17053">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10791-2">10.1140/epjc/s10052-022-10791-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a> , et al. (1204 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.17053v2-abstract-short" style="display: inline;"> Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the det… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17053v2-abstract-full').style.display = 'inline'; document.getElementById('2203.17053v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.17053v2-abstract-full" style="display: none;"> Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17053v2-abstract-full').style.display = 'none'; document.getElementById('2203.17053v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-240-AD-ESH-LBNF-ND-SCD, CERN-EP-2022-077 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C 82 (2022) 10, 903 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16134">arXiv:2203.16134</a> <span> [<a href="https://arxiv.org/pdf/2203.16134">pdf</a>, <a href="https://arxiv.org/format/2203.16134">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a> , et al. (1202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16134v4-abstract-short" style="display: inline;"> DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16134v4-abstract-full').style.display = 'inline'; document.getElementById('2203.16134v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16134v4-abstract-full" style="display: none;"> DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16134v4-abstract-full').style.display = 'none'; document.getElementById('2203.16134v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-DRAFT-MISC-2022-003; FERMILAB-PUB-22-242-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00740">arXiv:2203.00740</a> <span> [<a href="https://arxiv.org/pdf/2203.00740">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Low-Energy Physics in Neutrino LArTPCs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&query=Foreman%2C+W">W. Foreman</a>, <a href="/search/physics?searchtype=author&query=Friedland%2C+A">A. Friedland</a>, <a href="/search/physics?searchtype=author&query=Gardiner%2C+S">S. Gardiner</a>, <a href="/search/physics?searchtype=author&query=Gil-Botella%2C+I">I. Gil-Botella</a>, <a href="/search/physics?searchtype=author&query=Karagiorgi%2C+G">G. Karagiorgi</a>, <a href="/search/physics?searchtype=author&query=Kirby%2C+M">M. Kirby</a>, <a href="/search/physics?searchtype=author&query=Miotto%2C+G+L">G. Lehmann Miotto</a>, <a href="/search/physics?searchtype=author&query=Littlejohn%2C+B+R">B. R. Littlejohn</a>, <a href="/search/physics?searchtype=author&query=Mooney%2C+M">M. Mooney</a>, <a href="/search/physics?searchtype=author&query=Reichenbacher%2C+J">J. Reichenbacher</a>, <a href="/search/physics?searchtype=author&query=Sousa%2C+A">A. Sousa</a>, <a href="/search/physics?searchtype=author&query=Scholberg%2C+K">K. Scholberg</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+J">J. Yu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+T">T. Yang</a>, <a href="/search/physics?searchtype=author&query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Bezerra%2C+T+J+C">T. J. C. Bezerra</a>, <a href="/search/physics?searchtype=author&query=Capozzi%2C+F">F. Capozzi</a>, <a href="/search/physics?searchtype=author&query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&query=Church%2C+E">E. Church</a>, <a href="/search/physics?searchtype=author&query=Himmel%2C+A">A. Himmel</a>, <a href="/search/physics?searchtype=author&query=Junk%2C+T">T. Junk</a>, <a href="/search/physics?searchtype=author&query=Klein%2C+J">J. Klein</a>, <a href="/search/physics?searchtype=author&query=Lepetic%2C+I">I. Lepetic</a> , et al. (264 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00740v1-abstract-short" style="display: inline;"> In this white paper, we outline some of the scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) detectors. Key takeaways are summarized as follows. 1) LArTPCs have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00740v1-abstract-full').style.display = 'inline'; document.getElementById('2203.00740v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00740v1-abstract-full" style="display: none;"> In this white paper, we outline some of the scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) detectors. Key takeaways are summarized as follows. 1) LArTPCs have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. 2) Low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. 3) BSM signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of BSM scenarios accessible in LArTPC-based searches. 4) Neutrino interaction cross sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood. Improved theory and experimental measurements are needed. Pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for experimentally improving this understanding. 5) There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. 6) Novel ideas for future LArTPC technology that enhance low-energy capabilities should be explored. These include novel charge enhancement and readout systems, enhanced photon detection, low radioactivity argon, and xenon doping. 7) Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00740v1-abstract-full').style.display = 'none'; document.getElementById('2203.00740v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02067">arXiv:2201.02067</a> <span> [<a href="https://arxiv.org/pdf/2201.02067">pdf</a>, <a href="https://arxiv.org/format/2201.02067">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Uncertainty Quantification Techniques for Space Weather Modeling: Thermospheric Density Application </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Licata%2C+R+J">Richard J. Licata</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+M">Piyush M. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02067v1-abstract-short" style="display: inline;"> Machine learning (ML) has often been applied to space weather (SW) problems in recent years. SW originates from solar perturbations and is comprised of the resulting complex variations they cause within the systems between the Sun and Earth. These systems are tightly coupled and not well understood. This creates a need for skillful models with knowledge about the confidence of their predictions. O… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02067v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02067v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02067v1-abstract-full" style="display: none;"> Machine learning (ML) has often been applied to space weather (SW) problems in recent years. SW originates from solar perturbations and is comprised of the resulting complex variations they cause within the systems between the Sun and Earth. These systems are tightly coupled and not well understood. This creates a need for skillful models with knowledge about the confidence of their predictions. One example of such a dynamical system is the thermosphere, the neutral region of Earth's upper atmosphere. Our inability to forecast it has severe repercussions in the context of satellite drag and collision avoidance operations for objects in low Earth orbit. Even with (assumed) perfect driver forecasts, our incomplete knowledge of the system results in often inaccurate neutral mass density predictions. Continuing efforts are being made to improve model accuracy, but density models rarely provide estimates of uncertainty. In this work, we propose two techniques to develop nonlinear ML models to predict thermospheric density while providing calibrated uncertainty estimates: Monte Carlo (MC) dropout and direct prediction of the probability distribution, both using the negative logarithm of predictive density (NLPD) loss function. We show the performance for models trained on local and global datasets. This shows that NLPD provides similar results for both techniques but the direct probability method has a much lower computational cost. For the global model regressed on the SET HASDM density database, we achieve errors of 11% on independent test data with well-calibrated uncertainty estimates. Using an in-situ CHAMP density dataset, both techniques provide test error on the order of 13%. The CHAMP models (on independent data) are within 2% of perfect calibration for all prediction intervals tested. This model can also be used to obtain global predictions with uncertainties at a given epoch. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02067v1-abstract-full').style.display = 'none'; document.getElementById('2201.02067v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.07211">arXiv:2110.07211</a> <span> [<a href="https://arxiv.org/pdf/2110.07211">pdf</a>, <a href="https://arxiv.org/format/2110.07211">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.23919/ACC53348.2022.9867689">10.23919/ACC53348.2022.9867689 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Control-oriented Modeling of Bend Propagation in an Octopus Arm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tixian Wang</a>, <a href="/search/physics?searchtype=author&query=Halder%2C+U">Udit Halder</a>, <a href="/search/physics?searchtype=author&query=Gribkova%2C+E">Ekaterina Gribkova</a>, <a href="/search/physics?searchtype=author&query=Gazzola%2C+M">Mattia Gazzola</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+G">Prashant G. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.07211v1-abstract-short" style="display: inline;"> Bend propagation in an octopus arm refers to a stereotypical maneuver whereby an octopus pushes a bend (localized region of large curvature) from the base to the tip of the arm. Bend propagation arises from the complex interplay between mechanics of the flexible arm, forces generated by internal muscles, and environmental effects (buoyancy and drag) from of the surrounding fluid. In part due to th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07211v1-abstract-full').style.display = 'inline'; document.getElementById('2110.07211v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.07211v1-abstract-full" style="display: none;"> Bend propagation in an octopus arm refers to a stereotypical maneuver whereby an octopus pushes a bend (localized region of large curvature) from the base to the tip of the arm. Bend propagation arises from the complex interplay between mechanics of the flexible arm, forces generated by internal muscles, and environmental effects (buoyancy and drag) from of the surrounding fluid. In part due to this complexity, much of prior modeling and analysis work has relied on the use of high dimensional computational models. The contribution of this paper is to present a control-oriented reduced order model based upon a novel parametrization of the curvature of the octopus arm. The parametrization is motivated by the experimental results. The reduced order model is related to and derived from a computational model which is also presented. The results from the two sets of models are compared using numerical simulations which is shown to lead to useful qualitative insights into bend propagation. A comparison between the reduced order model and experimental data is also reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07211v1-abstract-full').style.display = 'none'; document.getElementById('2110.07211v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.04360">arXiv:2110.04360</a> <span> [<a href="https://arxiv.org/pdf/2110.04360">pdf</a>, <a href="https://arxiv.org/format/2110.04360">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fspas.2021.764144">10.3389/fspas.2021.764144 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The current state and future directions of modeling thermosphere density enhancements during extreme magnetic storms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Oliveira%2C+D+M">Denny M. Oliveira</a>, <a href="/search/physics?searchtype=author&query=Zesta%2C+E">Eftyhia Zesta</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+M">Piyush M. Mehta</a>, <a href="/search/physics?searchtype=author&query=Licata%2C+R+J">Richard J. Licata</a>, <a href="/search/physics?searchtype=author&query=Pilinski%2C+M+D">Marcin D. Pilinski</a>, <a href="/search/physics?searchtype=author&query=Tobiska%2C+W+K">W. Kent Tobiska</a>, <a href="/search/physics?searchtype=author&query=Hayakawa%2C+H">Hisashi Hayakawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.04360v1-abstract-short" style="display: inline;"> Satellites, crewed spacecraft and stations in low-Earth orbit (LEO) are very sensitive to atmospheric drag. A satellite's lifetime and orbital tracking become increasingly inaccurate or uncertain during magnetic storms. Given the planned increase of government and private satellite presence in LEO, the need for accurate density predictions for collision avoidance and lifetime optimization, particu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04360v1-abstract-full').style.display = 'inline'; document.getElementById('2110.04360v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.04360v1-abstract-full" style="display: none;"> Satellites, crewed spacecraft and stations in low-Earth orbit (LEO) are very sensitive to atmospheric drag. A satellite's lifetime and orbital tracking become increasingly inaccurate or uncertain during magnetic storms. Given the planned increase of government and private satellite presence in LEO, the need for accurate density predictions for collision avoidance and lifetime optimization, particularly during extreme events, has become an urgent matter and requires comprehensive international collaboration. Additionally, long-term solar activity models and historical data suggest that solar activity will significantly increase in the following years and decades. In this article, we briefly summarize the main achievements in the research of thermosphere response to extreme magnetic storms occurring particularly after the launching of many satellites with state-of-the-art accelerometers from which high-accuracy density can be determined. We find that the performance of an empirical model with data assimilation is higher than its performance without data assimilation during all extreme storm phases. We discuss how forecasting models can be improved by looking into two directions: first, to the past, by adapting historical extreme storm datasets for density predictions, and second, to the future, by facilitating the assimilation of large-scale thermosphere data sets that will be collected in future events. Therefore, this topic is relevant to the scientific community, government agencies that operate satellites, and the private sector with assets operating in LEO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04360v1-abstract-full').style.display = 'none'; document.getElementById('2110.04360v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Published in Frontiers in Astronomy and Space Sciences (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.07651">arXiv:2109.07651</a> <span> [<a href="https://arxiv.org/pdf/2109.07651">pdf</a>, <a href="https://arxiv.org/format/2109.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Machine-Learned HASDM Model with Uncertainty Quantification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Licata%2C+R+J">Richard J. Licata</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+P+M">Piyush M. Mehta</a>, <a href="/search/physics?searchtype=author&query=Tobiska%2C+W+K">W. Kent Tobiska</a>, <a href="/search/physics?searchtype=author&query=Huzurbazar%2C+S">S. Huzurbazar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.07651v1-abstract-short" style="display: inline;"> The first thermospheric neutral mass density model with robust and reliable uncertainty estimates is developed based on the SET HASDM density database. This database, created by Space Environment Technologies (SET), contains 20 years of outputs from the U.S. Space Force's High Accuracy Satellite Drag Model (HASDM), which represents the state-of-the-art for density and drag modeling. We utilize pri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2109.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.07651v1-abstract-full" style="display: none;"> The first thermospheric neutral mass density model with robust and reliable uncertainty estimates is developed based on the SET HASDM density database. This database, created by Space Environment Technologies (SET), contains 20 years of outputs from the U.S. Space Force's High Accuracy Satellite Drag Model (HASDM), which represents the state-of-the-art for density and drag modeling. We utilize principal component analysis (PCA) for dimensionality reduction, creating the coefficients upon which nonlinear machine-learned (ML) regression models are trained. These models use three unique loss functions: mean square error (MSE), negative logarithm of predictive density (NLPD), and continuous ranked probability score (CRPS). Three input sets are also tested, showing improved performance when introducing time histories for geomagnetic indices. These models leverage Monte Carlo (MC) dropout to provide uncertainty estimates, and the use of the NLPD loss function results in well-calibrated uncertainty estimates without sacrificing model accuracy (<10% mean absolute error). By comparing the best HASDM-ML model to the HASDM database along satellite orbits, we found that the model provides robust and reliable uncertainties in the density space over all space weather conditions. A storm-time comparison shows that HASDM-ML also supplies meaningful uncertainty measurements during extreme events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.07651v1-abstract-full').style.display = 'none'; document.getElementById('2109.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01304">arXiv:2109.01304</a> <span> [<a href="https://arxiv.org/pdf/2109.01304">pdf</a>, <a href="https://arxiv.org/format/2109.01304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1132 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01304v1-abstract-short" style="display: inline;"> The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01304v1-abstract-full').style.display = 'inline'; document.getElementById('2109.01304v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01304v1-abstract-full" style="display: none;"> The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3$蟽$ (5$蟽$) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3$蟽$ level with a 100 kt-MW-yr exposure for the maximally CP-violating values $未_{\rm CP}} = \pm蟺/2$. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01304v1-abstract-full').style.display = 'none'; document.getElementById('2109.01304v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-391-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00360">arXiv:2109.00360</a> <span> [<a href="https://arxiv.org/pdf/2109.00360">pdf</a>, <a href="https://arxiv.org/format/2109.00360">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.166248">10.1016/j.nima.2021.166248 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Gadolinium Loading to Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&query=Imaizumi%2C+S">S. Imaizumi</a>, <a href="/search/physics?searchtype=author&query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/physics?searchtype=author&query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&query=Okada%2C+T">T. Okada</a>, <a href="/search/physics?searchtype=author&query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&query=Orii%2C+A">A. Orii</a>, <a href="/search/physics?searchtype=author&query=Pronost%2C+G">G. Pronost</a>, <a href="/search/physics?searchtype=author&query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&query=Shiozawa%2C+M">M. Shiozawa</a>, <a href="/search/physics?searchtype=author&query=Sonoda%2C+Y">Y. Sonoda</a>, <a href="/search/physics?searchtype=author&query=Suzuki%2C+Y">Y. Suzuki</a>, <a href="/search/physics?searchtype=author&query=Takeda%2C+A">A. Takeda</a>, <a href="/search/physics?searchtype=author&query=Takemoto%2C+Y">Y. Takemoto</a> , et al. (192 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00360v3-abstract-short" style="display: inline;"> In order to improve Super-Kamiokande's neutron detection efficiency and to thereby increase its sensitivity to the diffuse supernova neutrino background flux, 13 tons of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ (gadolinium sulfate octahydrate) was dissolved into the detector's otherwise ultrapure water from July 14 to August 17, 2020, marking the start of the SK-Gd phase of operations. During the loa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00360v3-abstract-full').style.display = 'inline'; document.getElementById('2109.00360v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00360v3-abstract-full" style="display: none;"> In order to improve Super-Kamiokande's neutron detection efficiency and to thereby increase its sensitivity to the diffuse supernova neutrino background flux, 13 tons of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ (gadolinium sulfate octahydrate) was dissolved into the detector's otherwise ultrapure water from July 14 to August 17, 2020, marking the start of the SK-Gd phase of operations. During the loading, water was continuously recirculated at a rate of 60 m$^3$/h, extracting water from the top of the detector and mixing it with concentrated $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ solution to create a 0.02% solution of the Gd compound before injecting it into the bottom of the detector. A clear boundary between the Gd-loaded and pure water was maintained through the loading, enabling monitoring of the loading itself and the spatial uniformity of the Gd concentration over the 35 days it took to reach the top of the detector. During the subsequent commissioning the recirculation rate was increased to 120 m$^3$/h, resulting in a constant and uniform distribution of Gd throughout the detector and water transparency equivalent to that of previous pure-water operation periods. Using an Am-Be neutron calibration source the mean neutron capture time was measured to be $115\pm1$ $渭$s, which corresponds to a Gd concentration of $111\pm2$ ppm, as expected for this level of Gd loading. This paper describes changes made to the water circulation system for this detector upgrade, the Gd loading procedure, detector commissioning, and the first neutron calibration measurements in SK-Gd. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00360v3-abstract-full').style.display = 'none'; document.getElementById('2109.00360v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 19 Figures, Accepted for publication in Nucl. Instrum. Meth. A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 1027 (2022) 166248 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01902">arXiv:2108.01902</a> <span> [<a href="https://arxiv.org/pdf/2108.01902">pdf</a>, <a href="https://arxiv.org/format/2108.01902">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a>, <a href="/search/physics?searchtype=author&query=Andrews%2C+M+P">M. P. Andrews</a> , et al. (1158 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01902v3-abstract-short" style="display: inline;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, USA.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01902v3-abstract-full').style.display = 'inline'; document.getElementById('2108.01902v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01902v3-abstract-full" style="display: none;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, USA. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of $7\times 6\times 7.2$~m$^3$. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01902v3-abstract-full').style.display = 'none'; document.getElementById('2108.01902v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.07586">arXiv:2106.07586</a> <span> [<a href="https://arxiv.org/pdf/2106.07586">pdf</a>, <a href="https://arxiv.org/format/2106.07586">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.023308">10.1103/PhysRevA.104.023308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scattering of two particles in a 1D lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rittenhouse%2C+S+T">Seth T. Rittenhouse</a>, <a href="/search/physics?searchtype=author&query=Giannakeas%2C+P">P. Giannakeas</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+N+P">Nirav P. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.07586v1-abstract-short" style="display: inline;"> This study concerns the two-body scattering of particles in a one-dimensional periodic potential. A convenient ansatz allows for the separation of center-of-mass and relative motion, leading to a discrete Schr枚dinger equation in the relative motion that resembles a tight-binding model. A lattice Green's function is used to develop the Lippmann-Schwinger equation, and ultimately derive a multi-band… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07586v1-abstract-full').style.display = 'inline'; document.getElementById('2106.07586v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.07586v1-abstract-full" style="display: none;"> This study concerns the two-body scattering of particles in a one-dimensional periodic potential. A convenient ansatz allows for the separation of center-of-mass and relative motion, leading to a discrete Schr枚dinger equation in the relative motion that resembles a tight-binding model. A lattice Green's function is used to develop the Lippmann-Schwinger equation, and ultimately derive a multi-band scattering K-matrix which is described in detail in the two-band approximation. Two distinct scattering lengths are defined according the limits of zero relative quasi-momentum at the top and bottom edges of the two-body collision band. Scattering resonances occur in the collision band when the energy is coincident with a bound state attached to another higher or lower band. Notably, repulsive on-site interactions in an energetically closed lower band lead to collision resonances in an excited band. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07586v1-abstract-full').style.display = 'none'; document.getElementById('2106.07586v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 023308 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.03646">arXiv:2105.03646</a> <span> [<a href="https://arxiv.org/pdf/2105.03646">pdf</a>, <a href="https://arxiv.org/format/2105.03646">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Fractional models of Reynolds-averaged Navier-Stokes equations for Turbulent flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mehta%2C+P+P">Pavan Pranjivan Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.03646v1-abstract-short" style="display: inline;"> Its is a well known fact that Turbulence exhibits non-locality, however, modeling has largely received local treatment following the work of Prandl over mixing-length model. Thus, in this article we report our findings by formulating a non-local closure model for Reynolds-averaged Navier-Stokes (RANS) equation using Fractional Calculus. Two model formulations are studied, namely one- and two-sided… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03646v1-abstract-full').style.display = 'inline'; document.getElementById('2105.03646v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.03646v1-abstract-full" style="display: none;"> Its is a well known fact that Turbulence exhibits non-locality, however, modeling has largely received local treatment following the work of Prandl over mixing-length model. Thus, in this article we report our findings by formulating a non-local closure model for Reynolds-averaged Navier-Stokes (RANS) equation using Fractional Calculus. Two model formulations are studied, namely one- and two-sided for Channel, Pipe and Couette flow, where the results shown have less 1% error. The motivation of two-sided model lies in recognising the fact that non-locality at a given spatial location is an aggregate of all directions. Furthermore, scaling laws and asymptotic relationship for Couette, Channel and Pipe flow is reported. It is to be noted that modeling in wall units, no additional coefficient appears, thus there models could be applied to complex flows with ease. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03646v1-abstract-full').style.display = 'none'; document.getElementById('2105.03646v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.13910">arXiv:2103.13910</a> <span> [<a href="https://arxiv.org/pdf/2103.13910">pdf</a>, <a href="https://arxiv.org/format/2103.13910">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&query=Anfimov%2C+N">N. Anfimov</a>, <a href="/search/physics?searchtype=author&query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&query=Antusch%2C+S">S. Antusch</a> , et al. (1041 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.13910v1-abstract-short" style="display: inline;"> This report describes the conceptual design of the DUNE near detector </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.13910v1-abstract-full" style="display: none;"> This report describes the conceptual design of the DUNE near detector <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13910v1-abstract-full').style.display = 'none'; document.getElementById('2103.13910v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">314 pages, 185 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-067-E-LBNF-PPD-SCD-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05269">arXiv:2101.05269</a> <span> [<a href="https://arxiv.org/pdf/2101.05269">pdf</a>, <a href="https://arxiv.org/format/2101.05269">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abf7c4">10.3847/1538-4357/abf7c4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supernova Model Discrimination with Hyper-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+H">Hyper-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Adrich%2C+P">P. Adrich</a>, <a href="/search/physics?searchtype=author&query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&query=Akutsu%2C+R">R. Akutsu</a>, <a href="/search/physics?searchtype=author&query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/physics?searchtype=author&query=Ali%2C+A">A. Ali</a>, <a href="/search/physics?searchtype=author&query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&query=Anghel%2C+I">I. Anghel</a>, <a href="/search/physics?searchtype=author&query=Anthony%2C+L+H+V">L. H. V. Anthony</a>, <a href="/search/physics?searchtype=author&query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&query=Araya%2C+A">A. Araya</a>, <a href="/search/physics?searchtype=author&query=Asaoka%2C+Y">Y. Asaoka</a>, <a href="/search/physics?searchtype=author&query=Ashida%2C+Y">Y. Ashida</a>, <a href="/search/physics?searchtype=author&query=Aushev%2C+V">V. Aushev</a>, <a href="/search/physics?searchtype=author&query=Ballester%2C+F">F. Ballester</a>, <a href="/search/physics?searchtype=author&query=Bandac%2C+I">I. Bandac</a>, <a href="/search/physics?searchtype=author&query=Barbi%2C+M">M. Barbi</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Batkiewicz-Kwasniak%2C+M">M. Batkiewicz-Kwasniak</a>, <a href="/search/physics?searchtype=author&query=Bellato%2C+M">M. Bellato</a>, <a href="/search/physics?searchtype=author&query=Berardi%2C+V">V. Berardi</a>, <a href="/search/physics?searchtype=author&query=Bergevin%2C+M">M. Bergevin</a> , et al. (478 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05269v2-abstract-short" style="display: inline;"> Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants -- neutron stars and black holes -- are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-colla… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05269v2-abstract-full').style.display = 'inline'; document.getElementById('2101.05269v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05269v2-abstract-full" style="display: none;"> Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants -- neutron stars and black holes -- are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-collapse supernovae is not yet well understood. Hyper-Kamiokande is a next-generation neutrino detector that will be able to observe the neutrino flux from the next galactic core-collapse supernova in unprecedented detail. We focus on the first 500 ms of the neutrino burst, corresponding to the accretion phase, and use a newly-developed, high-precision supernova event generator to simulate Hyper-Kamiokande's response to five different supernova models. We show that Hyper-Kamiokande will be able to distinguish between these models with high accuracy for a supernova at a distance of up to 100 kpc. Once the next galactic supernova happens, this ability will be a powerful tool for guiding simulations towards a precise reproduction of the explosion mechanism observed in nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05269v2-abstract-full').style.display = 'none'; document.getElementById('2101.05269v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures. Article based on thesis published as arXiv:2002.01649. v2: added references and some explanations in response to reviewer comments</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys.J. 916 (2021) 15 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.03807">arXiv:2012.03807</a> <span> [<a href="https://arxiv.org/pdf/2012.03807">pdf</a>, <a href="https://arxiv.org/ps/2012.03807">ps</a>, <a href="https://arxiv.org/format/2012.03807">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2022.102702">10.1016/j.astropartphys.2022.102702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for solar electron anti-neutrinos due to spin-flavor precession in the Sun with Super-Kamiokande-IV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&query=Imaizumi%2C+S">S. Imaizumi</a>, <a href="/search/physics?searchtype=author&query=Ito%2C+H">H. Ito</a>, <a href="/search/physics?searchtype=author&query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/physics?searchtype=author&query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&query=Nakajima%2C+Y">Y. Nakajima</a>, <a href="/search/physics?searchtype=author&query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&query=Okada%2C+T">T. Okada</a>, <a href="/search/physics?searchtype=author&query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&query=Orii%2C+A">A. Orii</a>, <a href="/search/physics?searchtype=author&query=Pronost%2C+G">G. Pronost</a>, <a href="/search/physics?searchtype=author&query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&query=Shiozawa%2C+M">M. Shiozawa</a>, <a href="/search/physics?searchtype=author&query=Sonoda%2C+Y">Y. Sonoda</a>, <a href="/search/physics?searchtype=author&query=Suzuki%2C+Y">Y. Suzuki</a>, <a href="/search/physics?searchtype=author&query=Takeda%2C+A">A. Takeda</a> , et al. (177 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.03807v3-abstract-short" style="display: inline;"> Due to a very low production rate of electron anti-neutrinos ($\bar谓_e$) via nuclear fusion in the Sun, a flux of solar $\bar谓_e$ is unexpected. An appearance of $\bar谓_e$ in solar neutrino flux opens a new window for the new physics beyond the standard model. In particular, a spin-flavor precession process is expected to convert an electron neutrino into an electron anti-neutrino (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.03807v3-abstract-full').style.display = 'inline'; document.getElementById('2012.03807v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.03807v3-abstract-full" style="display: none;"> Due to a very low production rate of electron anti-neutrinos ($\bar谓_e$) via nuclear fusion in the Sun, a flux of solar $\bar谓_e$ is unexpected. An appearance of $\bar谓_e$ in solar neutrino flux opens a new window for the new physics beyond the standard model. In particular, a spin-flavor precession process is expected to convert an electron neutrino into an electron anti-neutrino (${谓_e\to\bar谓_e}$) when neutrino has a finite magnetic moment. In this work, we have searched for solar $\bar谓_e$ in the Super-Kamiokande experiment, using neutron tagging to identify their inverse beta decay signature. We identified 78 $\bar谓_e$ candidates for neutrino energies of 9.3 to 17.3 MeV in 2970.1 live days with a fiducial volume of 22.5 kiloton water (183.0 kton$\cdot$year exposure). The energy spectrum has been consistent with background predictions and we thus derived a 90% confidence level upper limit of ${4.7\times10^{-4}}$ on the $谓_e\to\bar谓_e$ conversion probability in the Sun. We used this result to evaluate the sensitivity of future experiments, notably the Super-Kamiokande Gadolinium (SK-Gd) upgrade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.03807v3-abstract-full').style.display = 'none'; document.getElementById('2012.03807v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures, 7 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astroparticle Physics 139 (2022) 102702 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Mehta%2C+P&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Mehta%2C+P&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Mehta%2C+P&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>