CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 136 results for author: <span class="mathjax">Tian, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Tian%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tian, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tian%2C+W&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tian, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tian%2C+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tian%2C+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tian%2C+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tian%2C+W&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02952">arXiv:2502.02952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02952">pdf</a>, <a href="https://arxiv.org/format/2502.02952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dipolar and quadrupolar correlations in the $5d^2$ Re-based double perovskites Ba$_2$YReO$_6$ and Ba$_2$ScReO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Omar%2C+O">Otkur Omar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagotto%2C+E">Elbio Dagotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Gang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arima%2C+T">Taka-hisa Arima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianson%2C+A+D">Andrew D. Christianson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirai%2C+D">Daigorou Hirai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+S">Shang Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02952v1-abstract-short" style="display: inline;"> Double perovskites containing heavy transition metal ions are an important family of compounds for the study of the interplay between electron correlation and spin-orbit coupling. Here, by combining magnetic susceptibility, heat capacity, and neutron scattering measurements, we investigate the dipolar and quadrupolar correlations in two prototype rhenium-based double perovskite compounds, Ba$_2$YR&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02952v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02952v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02952v1-abstract-full" style="display: none;"> Double perovskites containing heavy transition metal ions are an important family of compounds for the study of the interplay between electron correlation and spin-orbit coupling. Here, by combining magnetic susceptibility, heat capacity, and neutron scattering measurements, we investigate the dipolar and quadrupolar correlations in two prototype rhenium-based double perovskite compounds, Ba$_2$YReO$_6$ and Ba$_2$ScReO$_6$. A type-I dipolar antiferromagnetic ground state with a propagation vector $\mathbf{q} = (0, 0, 1)$ is observed in both compounds. At temperatures above the magnetic transitions, a quadrupolar ordered phase is identified. Weak spin excitations, which are gapped at low temperatures and softened in the correlated paramagnetic phase, are explained using a minimal model that considers both the dipolar and quadrupolar interactions. At larger wavevectors, we observe dominant phonon excitations that are well described by density functional calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02952v1-abstract-full').style.display = 'none'; document.getElementById('2502.02952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05227">arXiv:2501.05227</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05227">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Correlation between Complex Spin Textures and the Magnetocaloric and Hall Effects in Eu(Ga$_{1-x}$Al$_x$)$_4$ ($x$ = 0.9, 1) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Neubauer%2C+K+J">Kelly J. Neubauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+K">Kevin Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moya%2C+J+M">Jaime M. Moya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klemm%2C+M+L">Mason L. Klemm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morgan%2C+Z">Zachary Morgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeBeer-Schmitt%2C+L">Lisa DeBeer-Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morosan%2C+E">Emilia Morosan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05227v1-abstract-short" style="display: inline;"> Determining the electronic phase diagram of a quantum material as a function of temperature (T) and applied magnetic field (H) forms the basis for understanding the microscopic origin of transport properties, such as the anomalous Hall effect (AHE) and topological Hall effect (THE). For many magnetic quantum materials, including EuAl$_4$, a THE arises from a topologically protected magnetic skyrmi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05227v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05227v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05227v1-abstract-full" style="display: none;"> Determining the electronic phase diagram of a quantum material as a function of temperature (T) and applied magnetic field (H) forms the basis for understanding the microscopic origin of transport properties, such as the anomalous Hall effect (AHE) and topological Hall effect (THE). For many magnetic quantum materials, including EuAl$_4$, a THE arises from a topologically protected magnetic skyrmion lattice with a non-zero scalar spin chirality. We identified a square skyrmion lattice (sSkL) peak in Eu(Ga$_{1-x}$Al$_x$)$_4$ ($x$ = 0.9) identical to the peak previously observed in EuAl$_4$ by performing neutron scattering measurements throughout the phase diagram. Comparing these neutron results with transport measurements, we found that in both compounds the maximal THE does not correspond to the sSkL area. Instead of the maximal THE, the maximal magnetocaloric effect (MCE) boundaries better identify the sSkL lattice phase observed by neutron scattering measurements. The maximal THE therefore arises from interactions of itinerant electrons with frustrated spin fluctuations in a topologically trivial magnetic state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05227v1-abstract-full').style.display = 'none'; document.getElementById('2501.05227v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10286">arXiv:2412.10286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.10286">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin density wave and van Hove singularity in the kagome metal CeTi3Bi4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+P">Pyeongjae Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortiz%2C+B+R">Brenden R. Ortiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sprague%2C+M">Milo Sprague</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakhya%2C+A+P">Anup Pradhan Sakhya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S+A">Si Athena Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frontzek%2C+M+D">Matthias. D. Frontzek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sibille%2C+R">Romain Sibille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzone%2C+D+G">Daniel G. Mazzone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tabata%2C+C">Chihiro Tabata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaneko%2C+K">Koji Kaneko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeBeer-Schmitt%2C+L+M">Lisa M. DeBeer-Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parker%2C+D+S">David S. Parker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samolyuk%2C+G+D">German D. Samolyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">Hu Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupane%2C+M">Madhab Neupane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianson%2C+A+D">Andrew D. Christianson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10286v1-abstract-short" style="display: inline;"> Kagome metals with van Hove singularities (VHSs) near the Fermi level can host intriguing quantum phenomena, including chiral loop currents, electronic nematicity, and unconventional superconductivity. However, unconventional magnetic states driven by VHSs, such as spin-density waves (SDWs), have yet to be observed experimentally in kagome metals. Here, we present a comprehensive investigation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10286v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10286v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10286v1-abstract-full" style="display: none;"> Kagome metals with van Hove singularities (VHSs) near the Fermi level can host intriguing quantum phenomena, including chiral loop currents, electronic nematicity, and unconventional superconductivity. However, unconventional magnetic states driven by VHSs, such as spin-density waves (SDWs), have yet to be observed experimentally in kagome metals. Here, we present a comprehensive investigation of the magnetic and electronic structure of the layered kagome metal CeTi3Bi4, where the Ti kagome electronic structure interacts with a magnetic sublattice of Ce3+ Jeff = 1/2 moments. Our neutron diffraction measurements reveal an incommensurate SDW ground state of the Ce3+ Jeff = 1/2 moments, which notably coexists with commensurate antiferromagnetic order across most of the temperature-field phase diagram. The commensurate component is preferentially suppressed by both thermal fluctuations and external magnetic fields, resulting in a rich phase diagram that includes an intermediate single-Q SDW phase. First-principles calculations and angle-resolved photoemission spectroscopy (ARPES) measurements identify VHSs near the Fermi level, with the observed magnetic propagation vectors connecting their high density of states, strongly suggesting a VHS-assisted SDW in CeTi3Bi4. These findings establish the rare-earth Kagome metals LnTi3Bi4 as a model platform where characteristic electronic structure of the kagome lattice plays a pivotal role in magnetic order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10286v1-abstract-full').style.display = 'none'; document.getElementById('2412.10286v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures, SI not included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13994">arXiv:2410.13994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13994">pdf</a>, <a href="https://arxiv.org/format/2410.13994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Vacancy-induced suppression of CDW order and its impact on magnetic order in kagome antiferromagnet FeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Klemm%2C+M+L">Mason L. Klemm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siddique%2C+S">Saif Siddique</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y">Yuan-Chun Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Sijie Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yaofeng Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legvold%2C+T">Tanner Legvold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kiani%2C+M+T">Mehrdad T. Kiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Y">Yiqing Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">Hubertus Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+M">Masaaki Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Natelson%2C+D">Douglas Natelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chien-Lung Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">Ming Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cha%2C+J+J">Judy J. Cha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13994v1-abstract-short" style="display: inline;"> Two-dimensional (2D) kagome lattice metals are interesting because they display flat electronic bands, Dirac points, Van Hove singularities, and can have interplay between charge density wave (CDW), magnetic order, and superconductivity. In kagome lattice antiferromagnet FeGe, a short-range CDW order was found deep within an antiferromagnetically ordered state, interacting with the magnetic order.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13994v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13994v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13994v1-abstract-full" style="display: none;"> Two-dimensional (2D) kagome lattice metals are interesting because they display flat electronic bands, Dirac points, Van Hove singularities, and can have interplay between charge density wave (CDW), magnetic order, and superconductivity. In kagome lattice antiferromagnet FeGe, a short-range CDW order was found deep within an antiferromagnetically ordered state, interacting with the magnetic order. Surprisingly, post-growth annealing of FeGe at 560$^{\circ}$C can suppress the CDW order while annealing at 320$^{\circ}$C induces a long-range CDW order, with the ability to cycle between the states repeatedly by annealing. Here we perform transport, neutron scattering, scanning transmission electron microscopy (STEM), and muon spin rotation ($渭$SR) experiments to unveil the microscopic mechanism of the annealing process and its impact on magneto-transport, CDW, and magnetic properties of FeGe. We find that 560$^{\circ}$C annealing creates germanium vacancies uniformly distributed throughout the FeGe kagome lattice, which prevent the formation of Ge-Ge dimers necessary for the CDW order. Upon annealing at 320$^{\circ}$C, the system segregates into stoichiometric FeGe regions with long-range CDW order and regions with stacking faults that act as nucleation sites for the CDW. The presence or absence of CDW order greatly affects the anomalous Hall effect, incommensurate magnetic order, and spin-lattice coupling in FeGe, thus placing FeGe as the only known kagome lattice material with a tunable CDW and magnetic order, potentially useful for sensing and information transmission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13994v1-abstract-full').style.display = 'none'; document.getElementById('2410.13994v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12624">arXiv:2410.12624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12624">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Field-free superconducting diode effect and magnetochiral anisotropy in FeTe0.7Se0.3 junctions with the inherent asymmetric barrier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shengyao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Ya Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+D">Dianyi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+C">Chao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zherui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wanghao Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xueyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+M">Ming Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qiong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+R">Xiao Renshaw Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12624v1-abstract-short" style="display: inline;"> Nonreciprocal electrical transport, characterized by an asymmetric relationship between current and voltage, plays a crucial role in modern electronic industries. Recent studies have extended this phenomenon to superconductors, introducing the concept of the superconducting diode effect (SDE). The SDE is characterized by unequal critical supercurrents along opposite directions. Due to the requirem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12624v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12624v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12624v1-abstract-full" style="display: none;"> Nonreciprocal electrical transport, characterized by an asymmetric relationship between current and voltage, plays a crucial role in modern electronic industries. Recent studies have extended this phenomenon to superconductors, introducing the concept of the superconducting diode effect (SDE). The SDE is characterized by unequal critical supercurrents along opposite directions. Due to the requirement on broken inversion symmetry, the SDE is commonly accompanied by electrical magnetochiral anisotropy (eMCA) in the resistive state. Achieving a magnetic field-free SDE with field tunability is pivotal for advancements in superconductor devices. Conventionally, the field-free SDE has been achieved in Josephson junctions by intentionally intercalating an asymmetric barrier layer. Alternatively, internal magnetism was employed. Both approaches pose challenges in the selection of superconductors and fabrication processes, thereby impeding the development of SDE. Here, we present a field-free SDE in FeTe0.7Se0.3 (FTS) junction with eMCA, a phenomenon absent in FTS single nanosheets. The field-free property is associated with the presence of a gradient oxide layer on the upper surface of each FTS nanosheet, while the eMCA is linked to spin-splitting arising from the absence of inversion symmetry. Both the SDE and eMCA respond to magnetic fields with distinct temperature dependencies. This work presents a versatile and straightforward strategy for advancing superconducting electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12624v1-abstract-full').style.display = 'none'; document.getElementById('2410.12624v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13743">arXiv:2408.13743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13743">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Desorption of an active Brownian polymer from a homogeneous attractive surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+G">Guo-qiang Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wen-de Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13743v1-abstract-short" style="display: inline;"> The interfacial behavior of active Brownian polymer (ABPO) is studied by Langevin dynamics simulations. On the dependence of adsorption strength and activity characterized by Peclet number (Pe), the polymer displays two typical states on the surface: adsorption and desorption states. We find the diffusion behavior of ABPO parallel to the surface yields the &#34;active Rouse model&#34; and activity causes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13743v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13743v1-abstract-full" style="display: none;"> The interfacial behavior of active Brownian polymer (ABPO) is studied by Langevin dynamics simulations. On the dependence of adsorption strength and activity characterized by Peclet number (Pe), the polymer displays two typical states on the surface: adsorption and desorption states. We find the diffusion behavior of ABPO parallel to the surface yields the &#34;active Rouse model&#34; and activity causes the adsorption-desorption transition at a certain adsorption strength. Particular attention is paid to how the desorption time changes with the activity. At intermediate activity, desorption time displays an exponential decay with the inverse of effective temperature. Further, we observed a non-monotonic dependence of desorption time on the rotation diffusion coefficient of the monomer and found it exists a scaling relation with chain length N. Our results highlight the activity can be used to regulate the polymer adsorption and desorption behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13743v1-abstract-full').style.display = 'none'; document.getElementById('2408.13743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10677">arXiv:2408.10677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10677">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> An active filament on a cylindrical surface: morphologies and dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Chen Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+C">Chao-ran Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Tian-liang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wen-de Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10677v1-abstract-short" style="display: inline;"> Structure and dynamics of an active polymer on a smooth cylindrical surface are studied by Brownian dynamics simulations. The effect of active force on the polymer adsorption behavior and the combined effect of chain mobility, length N, rigidity \k{appa}, and cylinder radius, R, on phase diagrams are systemically investigated. We find that complete adsorption is replaced by irregular alternative a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10677v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10677v1-abstract-full" style="display: none;"> Structure and dynamics of an active polymer on a smooth cylindrical surface are studied by Brownian dynamics simulations. The effect of active force on the polymer adsorption behavior and the combined effect of chain mobility, length N, rigidity \k{appa}, and cylinder radius, R, on phase diagrams are systemically investigated. We find that complete adsorption is replaced by irregular alternative adsorption/desorption process at a large driving force. Three typical (spiral, helix-like, rod-like) conformations of the active polymer are observed, dependent on N, \k{appa}, and R. Dynamically, the polymer shows rotational motion in spiral state, snake-like motion in the intermediate state, and straight translational motion without turning back in the rod-like state. In the spiral state, we find that rotation velocity 蠅 and chain length follows a power-law relation 蠅~N^(-0.42), consistent with the torque-balance theory of general Archimedean spirals. And the polymer shows super-diffusive behavior along the cylinder at long time in the helix-like and rod-like states. Our results highlight the mobility, rigidity, as well as curvature of surface can be used to regulate the polymer behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10677v1-abstract-full').style.display = 'none'; document.getElementById('2408.10677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20613">arXiv:2407.20613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20613">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Escape of an Active Ring from an Attractive Surface: Behaving Like a Self-Propelled Brownian Particle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+B">Bin Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jin-cheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T+H">Tian Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wen-de Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20613v2-abstract-short" style="display: inline;"> Escape of active agents from metastable states is of great interest in statistical and biological physics. In this study, we investigate the escape of a flexible active ring, composed of active Brownian particles, from a flat attractive surface using Brownian dynamics simulations. To systematically explore the effects of activity, persistence time, and the shape of attractive potentials, we calcul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20613v2-abstract-full').style.display = 'inline'; document.getElementById('2407.20613v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20613v2-abstract-full" style="display: none;"> Escape of active agents from metastable states is of great interest in statistical and biological physics. In this study, we investigate the escape of a flexible active ring, composed of active Brownian particles, from a flat attractive surface using Brownian dynamics simulations. To systematically explore the effects of activity, persistence time, and the shape of attractive potentials, we calculate escape time and effective temperature. We observe two distinct escape mechanisms: Kramers-like thermal activation at small persistence times and the maximal force problem at large persistence time, where escape time is determined by persistence time. The escape time explicitly depends on the shape of the potential barrier at high activity and large persistence time. Moreover, when the propulsion force is biased along the ring&#39;s contour, escape becomes more difficult and is primarily driven by thermal noise. Our findings highlight that, despite its intricate configuration, the active ring can be effectively modeled as a self-propelled Brownian particle when studying its escape from a smooth surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20613v2-abstract-full').style.display = 'none'; document.getElementById('2407.20613v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20610">arXiv:2407.20610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20610">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Constrained motion of self-propelling eccentric disks linked by a spring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Tian-liang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+C">Chao-ran Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+B">Bin Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jin-cheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jiankang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T+H">Tian Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wen-de Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20610v1-abstract-short" style="display: inline;"> It has been supposed that the interplay of elasticity and activity plays a key role in triggering the non-equilibrium behaviors in biological systems. However, the experimental model system is missing to investigate the spatiotemporally dynamical phenomena. Here, a model system of an active chain, where active eccentric-disks are linked by a spring, is designed to study the interplay of activity,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20610v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20610v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20610v1-abstract-full" style="display: none;"> It has been supposed that the interplay of elasticity and activity plays a key role in triggering the non-equilibrium behaviors in biological systems. However, the experimental model system is missing to investigate the spatiotemporally dynamical phenomena. Here, a model system of an active chain, where active eccentric-disks are linked by a spring, is designed to study the interplay of activity, elasticity, and friction. Individual active chain exhibits longitudinal and transverse motion, however, it starts to self-rotate when pinning one end, and self-beats when clamping one end. Additionally, our eccentric-disk model can qualitatively reproduce such behaviors and explain the unusual self-rotation of the first disk around its geometric center. Further, the structure and dynamics of long chains were studied via simulations without steric interactions. It was found that hairpin conformation emerges in free motion, while in the constrained motions, the rotational and beating frequencies scale with the flexure number (the ratio of self-propelling force to bending rigidity), ~4/3. Scaling analysis suggests that it results from the balance between activity and energy dissipation. Our findings show that topological constraints play a vital role in non-equilibrium synergy behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20610v1-abstract-full').style.display = 'none'; document.getElementById('2407.20610v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17559">arXiv:2407.17559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17559">pdf</a>, <a href="https://arxiv.org/format/2407.17559">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pulling order back from the brink of disorder: Observation of a nodal line spin liquid and fluctuation stabilized order in K$_2$IrCl$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qiaochu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+la+Torre%2C+A">Alberto de la Torre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez-Rivera%2C+J+A">Jose A. Rodriguez-Rivera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Podlesnyak%2C+A+A">Andrey A. Podlesnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">Adam A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+M">Masaaki Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryan%2C+P+J">Philip J. Ryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jong-Woo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rau%2C+J+G">Jeffrey G. Rau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+K+W">Kemp W. Plumb</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17559v1-abstract-short" style="display: inline;"> Competing interactions in frustrated magnets can give rise to highly degenerate ground states from which correlated liquid-like states of matter often emerge. The scaling of this degeneracy influences the ultimate ground state, with extensive degeneracies potentially yielding quantum spin liquids, while sub-extensive or smaller degeneracies yield static orders. A longstanding problem is to underst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17559v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17559v1-abstract-full" style="display: none;"> Competing interactions in frustrated magnets can give rise to highly degenerate ground states from which correlated liquid-like states of matter often emerge. The scaling of this degeneracy influences the ultimate ground state, with extensive degeneracies potentially yielding quantum spin liquids, while sub-extensive or smaller degeneracies yield static orders. A longstanding problem is to understand how ordered states precipitate from this degenerate manifold and what echoes of the degeneracy survive ordering. Here, we use neutron scattering to experimentally demonstrate a new &#34;nodal line&#34; spin liquid, where spins collectively fluctuate within a sub-extensive manifold spanning one-dimensional lines in reciprocal space. Realized in the spin-orbit coupled, face-centered cubic iridate K$_2$IrCl$_6$, we show that the sub-extensive degeneracy is robust, but remains susceptible to fluctuations or longer range interactions which cooperate to select a magnetic order at low temperatures. Proximity to the nodal line spin liquid influences the ordered state, enhancing the effects of quantum fluctuations and stabilizing it through the opening of a large spin-wave gap. Our results demonstrate quantum fluctuations can act counter-intuitively in frustrated materials: instead of destabilizing ordering, at the brink of the nodal spin liquid they can act to stabilize it and dictate its low-energy physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17559v1-abstract-full').style.display = 'none'; document.getElementById('2407.17559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main article: 9 pages, 3 figures. Supplemental material: 22 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18256">arXiv:2405.18256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.18256">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.4c00422">10.1021/acsnano.4c00422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrical Control Grain Dimensionality with Multilevel Magnetic Anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shengyao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhatti%2C+S">Sabpreet Bhatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teo%2C+S+L">Siew Lang Teo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M">Ming Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+X">Xinyue Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zherui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+P">Peng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wanghao Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">Xinyu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+J">Jianwei Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loh%2C+X+J">Xian Jun Loh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Q">Qiang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piramanayagam%2C+S+N">S. N. Piramanayagam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+R">Xiao Renshaw Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18256v2-abstract-short" style="display: inline;"> In alignment with the increasing demand for larger storage capacity and longer data retention, electrical control of magnetic anisotropy has been a research focus in the realm of spintronics. Typically, magnetic anisotropy is determined by grain dimensionality, which is set during the fabrication of magnetic thin films. Despite the intrinsic correlation between magnetic anisotropy and grain dimens&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18256v2-abstract-full').style.display = 'inline'; document.getElementById('2405.18256v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18256v2-abstract-full" style="display: none;"> In alignment with the increasing demand for larger storage capacity and longer data retention, electrical control of magnetic anisotropy has been a research focus in the realm of spintronics. Typically, magnetic anisotropy is determined by grain dimensionality, which is set during the fabrication of magnetic thin films. Despite the intrinsic correlation between magnetic anisotropy and grain dimensionality, there is a lack of experimental evidence for electrically controlling grain dimensionality, thereby impeding the efficiency of magnetic anisotropy modulation. Here, we demonstrate an electric field control of grain dimensionality and prove it as the active mechanism for tuning interfacial magnetism. The reduction in grain dimensionality is associated with a transition from ferromagnetic to superparamagnetic behavior. We achieve a non-volatile and reversible modulation of the coercivity in both the ferromagnetic and superparamagnetic regimes. Subsequent electrical and elemental analysis confirms the variation in grain dimensionality upon the application of gate voltages, revealing a transition from a multidomain to a single-domain state accompanied by a reduction in grain dimensionality. Furthermore, we exploit the influence of grain dimensionality on domain wall motion, extending its applicability to multilevel magnetic memory and synaptic devices. Our results provide a strategy for tuning interfacial magnetism through grain size engineering for advancements in high-performance spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18256v2-abstract-full').style.display = 'none'; document.getElementById('2405.18256v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09517">arXiv:2403.09517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09517">pdf</a>, <a href="https://arxiv.org/format/2403.09517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of quantum thermalization restricted to Hilbert space fragments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Luheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Datla%2C+P+R">Prithvi Raj Datla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Weikun Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aliyu%2C+M+M">Mohammad Mujahid Aliyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loh%2C+H">Huanqian Loh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09517v2-abstract-short" style="display: inline;"> Quantum thermalization occurs in a broad class of systems from elementary particles to complex materials. Out-of-equilibrium quantum systems have long been understood to either thermalize or retain memory of their initial states, but not both. Here we achieve the first coexistence of thermalization and memory in a quantum system, where we use both Rydberg blockade and facilitation in an atom array&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09517v2-abstract-full').style.display = 'inline'; document.getElementById('2403.09517v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09517v2-abstract-full" style="display: none;"> Quantum thermalization occurs in a broad class of systems from elementary particles to complex materials. Out-of-equilibrium quantum systems have long been understood to either thermalize or retain memory of their initial states, but not both. Here we achieve the first coexistence of thermalization and memory in a quantum system, where we use both Rydberg blockade and facilitation in an atom array to engineer a fragmentation of the Hilbert space into exponentially many disjointed subspaces. We find that the kinetically constrained system yields quantum many-body scars arising from the $\mathbb{Z}_{2k}$ class of initial states, which generalizes beyond the $\mathbb{Z}_{2}$ scars previously reported in other quantum systems. When bringing multiple long-range interactions into resonance, we observe quantum thermalization restricted to Hilbert space fragments, where the thermalized system retains characteristics of the initial configuration. Intriguingly, states belonging to different subspaces do not thermalize with each other even when they have the same energy. Our work challenges established ideas of quantum thermalization while experimentally resolving the longstanding tension between thermalization and memory. These results may be applied to control entanglement dynamics in quantum processors and quantum sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09517v2-abstract-full').style.display = 'none'; document.getElementById('2403.09517v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17808">arXiv:2401.17808</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17808">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Giant third-order nonlinear Hall effect in misfit layer compound (SnS)${1.17}$(NbS$_2$)$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shengyao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xueyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zherui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lijuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teo%2C+S+L">Siew Lang Teo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M">Ming Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Ri He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+P">Peng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wanghao Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loh%2C+X+J">Xian Jun Loh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Q">Qiang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+B">Bo Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+R">X. Renshaw Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17808v1-abstract-short" style="display: inline;"> Nonlinear Hall effect (NLHE) holds immense significance in recognizing the band geometry and its potential applications in current rectification. Recent discoveries have expanded the study from second-order to third-order nonlinear Hall effect (THE), which is governed by an intrinsic band geometric quantity called the Berry Connection Polarizability (BCP) tensor. Here we demonstrate a giant THE in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17808v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17808v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17808v1-abstract-full" style="display: none;"> Nonlinear Hall effect (NLHE) holds immense significance in recognizing the band geometry and its potential applications in current rectification. Recent discoveries have expanded the study from second-order to third-order nonlinear Hall effect (THE), which is governed by an intrinsic band geometric quantity called the Berry Connection Polarizability (BCP) tensor. Here we demonstrate a giant THE in a misfit layer compound, (SnS)${1.17}$(NbS$_2$)$_3$. While the THE is prohibited in individual NbS$_2$ and SnS due to the constraints imposed by the crystal symmetry and their band structures, a remarkable THE emerges when a superlattice is formed by introducing a monolayer of SnS. The angular-dependent THE and its scaling relationship indicate that the phenomenon could be correlated to the band geometry modulation, concurrently with the symmetry breaking. The resulting strength of THE is orders of magnitude higher compared to recent studies. Our work illuminates the modulation of structural and electronic geometries for novel quantum phenomena through interface engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17808v1-abstract-full').style.display = 'none'; document.getElementById('2401.17808v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18218">arXiv:2310.18218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.18218">pdf</a>, <a href="https://arxiv.org/format/2310.18218">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Random Fields from Quenched Disorder in an Archetype for Correlated Electrons: the Parallel Spin Stripe Phase of La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ at the 1/8 Anomaly </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+H+-">S. H. -Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Q. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+E+M">E. M. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharron%2C+H">H. Sharron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaulin%2C+B+D">B. D. Gaulin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18218v1-abstract-short" style="display: inline;"> The parallel stripe phase is remarkable both in its own right, and in relation to the other phases it co-exists with. Its inhomogeneous nature makes such states susceptible to random fields from quenched magnetic vacancies. We argue this is the case by introducing low concentrations of nonmagnetic Zn impurities (0-10%) into La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO) with $x$ = 0.125 in single c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18218v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18218v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18218v1-abstract-full" style="display: none;"> The parallel stripe phase is remarkable both in its own right, and in relation to the other phases it co-exists with. Its inhomogeneous nature makes such states susceptible to random fields from quenched magnetic vacancies. We argue this is the case by introducing low concentrations of nonmagnetic Zn impurities (0-10%) into La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO) with $x$ = 0.125 in single crystal form, well below the percolation threshold of $\sim$ 41% for two-dimensional (2D) square lattice. Elastic neutron scattering measurements on these crystals show clear magnetic quasi-Bragg peaks at all Zn dopings. While all the Zn-doped crystals display order parameters that merge into each other and the background at $\sim$ 68 K, the temperature dependence of the order parameter as a function of Zn concentration is drastically different. This result is consistent with meandering charge stripes within the parallel stripe phase, which are pinned in the presence of quenched magnetic vacancies. In turn it implies vacancies that preferentially occupy sites within the charge stripes, and hence that can be very effective at disrupting superconductivity in Nd-LSCO ($x$ = 0.125), and, by extension, in all systems exhibiting parallel stripes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18218v1-abstract-full').style.display = 'none'; document.getElementById('2310.18218v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13206">arXiv:2306.13206</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.13206">pdf</a>, <a href="https://arxiv.org/format/2306.13206">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00656-0">10.1038/s41535-024-00656-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New insight into tuning magnetic phases of $R$Mn$_6$Sn$_6$ kagome metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Riberolles%2C+S+X+M">Simon X. M. Riberolles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+T">Tianxiong Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slade%2C+T+J">Tyler J. Slade</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilde%2C+J+M">J. M. Wilde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sapkota%2C+A">A. Sapkota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abernathy%2C+D+L">D. L. Abernathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanjeewa%2C+L+D">L. D. Sanjeewa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">S. L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">R. J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueland%2C+B+G">B. G. Ueland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13206v3-abstract-short" style="display: inline;"> Predicting magnetic ordering in kagome compounds offers the possibility of harnessing topological or flat-band physical properties through tuning of the magnetism. Here, we examine the magnetic interactions and phases of ErMn$_6$Sn$_6$ which belongs to a family of $R$Mn$_6$Sn$_6$, $R=$ Sc, Y, Gd--Lu, compounds with magnetic kagome Mn layers, triangular $R$ layers, and signatures of topological pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13206v3-abstract-full').style.display = 'inline'; document.getElementById('2306.13206v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13206v3-abstract-full" style="display: none;"> Predicting magnetic ordering in kagome compounds offers the possibility of harnessing topological or flat-band physical properties through tuning of the magnetism. Here, we examine the magnetic interactions and phases of ErMn$_6$Sn$_6$ which belongs to a family of $R$Mn$_6$Sn$_6$, $R=$ Sc, Y, Gd--Lu, compounds with magnetic kagome Mn layers, triangular $R$ layers, and signatures of topological properties. Using results from single-crystal neutron diffraction and mean-field analysis, we find that ErMn$_6$Sn$_6$ sits close to the critical boundary separating the spiral-magnetic and ferrimagnetic ordered states typical for nonmagnetic versus magnetic $R$ layers, respectively. Finding interlayer magnetic interactions and easy-plane Mn magnetic anisotropy consistent with other members of the family, we predict the existence of a number of temperature and field dependent collinear, noncollinear, and noncoplanar magnetic phases. We show that thermal fluctuations of the Er magnetic moment, which act to weaken the Mn-Er interlayer magnetic interaction and quench the Er magnetic anisotropy, dictate magnetic phase stability. Our results provide a starting point and outline a multitude of possibilities for studying the behavior of Dirac fermions in $R$Mn$_6$Sn$_6$ compounds with control of the Mn spin orientation and real-space spin chirality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13206v3-abstract-full').style.display = 'none'; document.getElementById('2306.13206v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary Information included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 9, 42 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05802">arXiv:2306.05802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.05802">pdf</a>, <a href="https://arxiv.org/format/2306.05802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Static and dynamical properties of the spin-5/2 nearly ideal triangular lattice antiferromagnet Ba3MnSb2O9 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+M">Mingfang Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+W">Weicen Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+J">Jinlong Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jiangtao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=lin%2C+G">Gaoting lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+T">Tao Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+M">Masaaki Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Songxue Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehlers%2C+G">Georg Ehlers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouyang%2C+Z">Zhongwen Ouyang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongwei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Youming Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+Z">Zhe Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Qing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Haidong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamiya%2C+Y">Yoshitomo Kamiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05802v2-abstract-short" style="display: inline;"> We study the ground state and spin excitations in Ba3MnSb2O9, an easy-plane S = 5/2 triangular lattice antiferromagnet. By combining single-crystal neutron scattering, electric spin resonance (ESR), and spin wave calculations, we determine the frustrated quasi-two-dimensional spin Hamiltonian parameters describing the material. While the material has a slight monoclinic structural distortion, whic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05802v2-abstract-full').style.display = 'inline'; document.getElementById('2306.05802v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05802v2-abstract-full" style="display: none;"> We study the ground state and spin excitations in Ba3MnSb2O9, an easy-plane S = 5/2 triangular lattice antiferromagnet. By combining single-crystal neutron scattering, electric spin resonance (ESR), and spin wave calculations, we determine the frustrated quasi-two-dimensional spin Hamiltonian parameters describing the material. While the material has a slight monoclinic structural distortion, which could allow for isosceles-triangular exchanges and biaxial anisotropy by symmetry, we observe no deviation from the behavior expected for spin waves in the in-plane 120o state. Even the easy-plane anisotropy is so small that it can only be detected by ESR in our study. In conjunction with the quasi-two-dimensionality, our study establishes that Ba3MnSb2O9 is a nearly ideal triangular lattice antiferromagnet with the quasi-classical spin S = 5/2, which suggests that it has the potential for an experimental study of Z- or Z2-vortex excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05802v2-abstract-full').style.display = 'none'; document.getElementById('2306.05802v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10768">arXiv:2303.10768</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.10768">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D3NR06540E">10.1039/D3NR06540E <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 2D MXene Electrochemical Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shakya%2C+J">Jyoti Shakya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">Min-A Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=VahidMohammadi%2C+A">Armin VahidMohammadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Weiqian Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeglio%2C+E">Erica Zeglio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamedi%2C+M+M">Mahiar Max Hamedi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10768v2-abstract-short" style="display: inline;"> In the past two decades another transistor based on conducting polymers, called the organic electrochemical transistor (ECT) was shown and largely studied. The main difference between organic ECTs and FETs is the mode and extent of channel doping: while in FETs the channel only has surface doping through dipoles, the mixed ionic-electronic conductivity of the channel material in Organic ECTs enabl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10768v2-abstract-full').style.display = 'inline'; document.getElementById('2303.10768v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10768v2-abstract-full" style="display: none;"> In the past two decades another transistor based on conducting polymers, called the organic electrochemical transistor (ECT) was shown and largely studied. The main difference between organic ECTs and FETs is the mode and extent of channel doping: while in FETs the channel only has surface doping through dipoles, the mixed ionic-electronic conductivity of the channel material in Organic ECTs enables bulk electrochemical doping. As a result, the organic ECT maximizes conductance modulation at the expense of speed. Until now ECTs have been based on conducting polymers, but here we show that MXenes, a class of 2D materials beyond graphene, have mixed ionic-electronic properties that enable the realization of electrochemical transistors (ECTs). We show that the formulas for organic ECTs can be applied to these 2D ECTs and used to extract parameters like mobility. These MXene ECTs have high transconductance values but low on-off ratios. We further show that conductance switching data measured using ECT, in combination with other in-situ ex-situ electrochemical measurements, is a powerful tool for correlating the change in conductance to that of redox state: to our knowledge, this is the first report of this important correlation for MXene films. Many future possibilities exist for MXenes ECTs, and we think other 2D materials with bandgaps can also form ECTs with single or heterostructured 2D materials. 2D ECTs can draw great inspiration and theoretical tools from the field of organic ECTs and have the potential to considerably extend the capabilities of transistors beyond that of conducting polymer ECTs, with added properties such as extreme heat resistance, tolerance for solvents, and higher conductivity for both electrons and ions than conducting polymers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10768v2-abstract-full').style.display = 'none'; document.getElementById('2303.10768v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 82D37 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.06809">arXiv:2303.06809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.06809">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.macromol.2c02157">10.1021/acs.macromol.2c02157 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Capillary filling of polymer chains in nanopores </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jianwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+J">Jinyu Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wenzhang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guangzhao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Floudas%2C+G">George Floudas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jiajia Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.06809v1-abstract-short" style="display: inline;"> We performed molecular dynamics simulations with a coarse-grained model to investigate the capillary filling dynamics of polymer chains in nanopores. Short chains fill slower than predicted by the Lucas-Washburn equation but long chains fill faster. The analysis shows that the combination of the confinement effect on the free energy of chains and the reduction of the effective radius due to the &#34;d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06809v1-abstract-full').style.display = 'inline'; document.getElementById('2303.06809v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.06809v1-abstract-full" style="display: none;"> We performed molecular dynamics simulations with a coarse-grained model to investigate the capillary filling dynamics of polymer chains in nanopores. Short chains fill slower than predicted by the Lucas-Washburn equation but long chains fill faster. The analysis shows that the combination of the confinement effect on the free energy of chains and the reduction of the effective radius due to the &#34;dead zone&#34; slow down the imbibition. Reduction of the entanglements is the main factor behind the reversing dynamics because of the lower effective viscosity, which leads to a faster filling. This effect is enhanced in the smaller capillary and more profound for longer chains. The observed increase in the mean square radius of gyration during capillary filling provides a clear evidence of chain orientation, which leads to the decrease in the number of entanglements. For the scaling relation between the effective viscosity and the degree of polymerization, we find the exponent will increase in the larger nanopore. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06809v1-abstract-full').style.display = 'none'; document.getElementById('2303.06809v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 12 figures, SI included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.05596">arXiv:2302.05596</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.05596">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.224414">10.1103/PhysRevB.107.224414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-k magnetic structure and large anomalous Hall effect in candidate magnetic Weyl semimetal NdAlGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dhital%2C+C">C. Dhital</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dally%2C+R+L">R. L. Dally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruvalcaba%2C+R">R. Ruvalcaba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzalez-Hernandez%2C+R">R. Gonzalez-Hernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guerrero-Sanchez%2C+J">J. Guerrero-Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Q. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frontzek%2C+M+D">M. D. Frontzek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karna%2C+S+K">S. K. Karna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meads%2C+A">A. Meads</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+B">B. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chapai%2C+R">R. Chapai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bacsa%2C+J">J. Bacsa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+R">R. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DiTusa%2C+J+F">J. F. DiTusa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.05596v2-abstract-short" style="display: inline;"> The magnetic structure, magnetoresistance, and Hall effect of non-centrosymmetric magnetic semimetal NdAlGe are investigated revealing an unusual magnetic state and anomalous transport properties that are associated with the electronic structure of this non-centrosymmetric compound. The magnetization and magnetoresistance measurements are both highly anisotropic and indicate an Ising-like magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05596v2-abstract-full').style.display = 'inline'; document.getElementById('2302.05596v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.05596v2-abstract-full" style="display: none;"> The magnetic structure, magnetoresistance, and Hall effect of non-centrosymmetric magnetic semimetal NdAlGe are investigated revealing an unusual magnetic state and anomalous transport properties that are associated with the electronic structure of this non-centrosymmetric compound. The magnetization and magnetoresistance measurements are both highly anisotropic and indicate an Ising-like magnetic system. The magnetic structure is complex in that it involves three magnetic ordering vectors including an incommensurate spin density wave and commensurate ferrimagnetic state in zero field. We have discovered a large anomalous Hall conductivity that reaches = 430 惟-1cm-1 implying that it originates from an intrinsic Berry curvature effect stemming from Weyl nodes found in the electronic structure. These electronic structure calculations indicate the presence of nested Fermi surface pockets with nesting wave vectors similar to the measured magnetic ordering wavevector and the presence of Weyl nodes in proximity to the Fermi surface. We associate the incommensurate magnetic structure with the large anomalous Hall response to be the result of the combination of Fermi surface nesting and the Berry curvature associated with Weyl nodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05596v2-abstract-full').style.display = 'none'; document.getElementById('2302.05596v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRB 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06336">arXiv:2301.06336</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06336">pdf</a>, <a href="https://arxiv.org/format/2301.06336">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ace093">10.1088/1361-648X/ace093 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic order and its interplay with superconductivity in CaK(Fe$_{1-x}$Mn$_x$)$_4$As$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wilde%2C+J+M">J. M. Wilde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sapkota%2C+A">A. Sapkota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Q+-">Q. -P. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">M. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">S. L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Furukawa%2C+Y">Y. Furukawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kreyssig%2C+A">A. Kreyssig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06336v1-abstract-short" style="display: inline;"> The magnetic order for several compositions of CaK(Fe$_{1-x}$Mn$_x$)$_4$As$_4$ has been studied by nuclear magnetic resonance (NMR), M枚ssbauer spectroscopy, and neutron diffraction. Our observations for the Mn-doped 1144 compound are consistent with the hedgehog spin vortex crystal (hSVC) order which has previously been found for Ni-doped $\text{Ca}\text{K}\text{Fe}_4\text{As}_4$. The hSVC state i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06336v1-abstract-full').style.display = 'inline'; document.getElementById('2301.06336v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06336v1-abstract-full" style="display: none;"> The magnetic order for several compositions of CaK(Fe$_{1-x}$Mn$_x$)$_4$As$_4$ has been studied by nuclear magnetic resonance (NMR), M枚ssbauer spectroscopy, and neutron diffraction. Our observations for the Mn-doped 1144 compound are consistent with the hedgehog spin vortex crystal (hSVC) order which has previously been found for Ni-doped $\text{Ca}\text{K}\text{Fe}_4\text{As}_4$. The hSVC state is characterized by the stripe-type propagation vectors $(蟺\,0)$ and $(0\,蟺)$ just as in the doped 122 compounds. The hSVC state preserves tetragonal symmetry at the Fe site, and only this SVC motif with simple AFM stacking along $\textbf{c}$ is consistent with all our observations using NMR, M枚ssbauer spectroscopy, and neutron diffraction. We find that the hSVC state in the Mn-doped 1144 compound coexists with superconductivity (SC), and by combining the neutron scattering and M枚ssbauer spectroscopy data we can infer a quantum phase transition, hidden under the superconducting dome, associated with the suppression of the AFM transition temperature ($T_\text{N}$) to zero for $x\approx0.01$. In addition, unlike several 122 compounds and Ni-doped 1144, the ordered magnetic moment is not observed to decrease at temperatures below the superconducting transition temperature ($T_\text{c}$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06336v1-abstract-full').style.display = 'none'; document.getElementById('2301.06336v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages and 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 35 395801 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10694">arXiv:2209.10694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10694">pdf</a>, <a href="https://arxiv.org/format/2209.10694">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202209951">10.1002/adma.202209951 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of Magnetic Defects and Defect-engineering of Magnetic Topological Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+F">Farhan Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yongbin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajerowski%2C+D+M">Daniel M. Pajerowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+L">Liqin Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">Robert J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaknin%2C+D">David Vaknin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10694v1-abstract-short" style="display: inline;"> Magnetic defects play an important, but poorly understood, role in magnetic topological insulators (TIs). For example, topological surface transport and bulk magnetic properties are controlled by magnetic defects in Bi$_2$Se$_3$-based dilute ferromagnetic (FM) TIs and MnBi$_2$Te$_4$ (MBT)-based antiferromagnetic (AFM) TIs. Despite its nascent ferromagnetism, our inelastic neutron scattering data s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10694v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10694v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10694v1-abstract-full" style="display: none;"> Magnetic defects play an important, but poorly understood, role in magnetic topological insulators (TIs). For example, topological surface transport and bulk magnetic properties are controlled by magnetic defects in Bi$_2$Se$_3$-based dilute ferromagnetic (FM) TIs and MnBi$_2$Te$_4$ (MBT)-based antiferromagnetic (AFM) TIs. Despite its nascent ferromagnetism, our inelastic neutron scattering data show that a fraction of the Mn defects in Sb$_2$Te$_3$ form strong AFM dimer singlets within a quintuple block. The AFM superexchange coupling occurs via Mn-Te-Mn linear bonds and is identical to the AFM coupling between antisite defects and the FM Mn layer in MBT, establishing common interactions in the two materials classes. We also find that the FM correlations in (Sb$_{1-x}$Mn$_x$)$_2$Te$_3$ are likely driven by magnetic defects in adjacent quintuple blocks across the van der Waals gap. In addition to providing answers to long-standing questions about the evolution of FM order in dilute TI, these results also show that the evolution of global magnetic order from AFM to FM in Sb-substituted MBT is controlled by defect engineering of the intrablock and interblock coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10694v1-abstract-full').style.display = 'none'; document.getElementById('2209.10694v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08038">arXiv:2209.08038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.08038">pdf</a>, <a href="https://arxiv.org/ps/2209.08038">ps</a>, <a href="https://arxiv.org/format/2209.08038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.19.034048">10.1103/PhysRevApplied.19.034048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parallel assembly of arbitrary defect-free atom arrays with a multi-tweezer algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Weikun Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wee%2C+W+J">Wen Jun Wee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+A">An Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+B+J+M">Billy Jun Ming Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Datla%2C+P+R">Prithvi Raj Datla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koh%2C+V+P+W">Vanessa Pei Wen Koh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loh%2C+H">Huanqian Loh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08038v2-abstract-short" style="display: inline;"> Defect-free atom arrays are an important precursor for quantum information processing and quantum simulation. Yet, large-scale defect-free atom arrays can be challenging to realize, due to the losses encountered when rearranging stochastically loaded atoms to achieve a desired target array. Here, we demonstrate a novel parallel rearrangement algorithm that uses multiple mobile tweezers to independ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08038v2-abstract-full').style.display = 'inline'; document.getElementById('2209.08038v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08038v2-abstract-full" style="display: none;"> Defect-free atom arrays are an important precursor for quantum information processing and quantum simulation. Yet, large-scale defect-free atom arrays can be challenging to realize, due to the losses encountered when rearranging stochastically loaded atoms to achieve a desired target array. Here, we demonstrate a novel parallel rearrangement algorithm that uses multiple mobile tweezers to independently sort and compress atom arrays in a way that naturally avoids atom collisions. With a high degree of parallelism, our algorithm offers a reduced move complexity compared to both single-tweezer algorithms and existing multi-tweezer algorithms. We further determine the optimal degree of parallelism to be a balance between an algorithmic speedup and multi-tweezer inhomogeneity effects. The defect-free probability for a 225-atom array is demonstrated to be as high as 33(1)% in a room temperature setup after multiple cycles of rearrangement. The algorithm presented here can be implemented for any target array geometry with an underlying periodic structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08038v2-abstract-full').style.display = 'none'; document.getElementById('2209.08038v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 19, 034048 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.04560">arXiv:2209.04560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.04560">pdf</a>, <a href="https://arxiv.org/format/2209.04560">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.044411">10.1103/PhysRevMaterials.7.044411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal cycling induced alteration of the stacking order and spin-flip in the room temperature van der Waals magnet Fe$_5$GeTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hongrui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Werner%2C+T+L">Tyler L. Werner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lapidus%2C+S">Saul Lapidus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruff%2C+J+P+C">Jacob P. C. Ruff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramesh%2C+R">Ramamoorthy Ramesh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birgeneau%2C+R+J">Robert J. Birgeneau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.04560v1-abstract-short" style="display: inline;"> The magnetic properties of the quasi-two-dimensional van der Waals magnet Fe$_{5-未}$GeTe$_2$ (F5GT), which has a high ferromagnetic ordering temperature $T_{\text{C}}$ $\sim$ 315 K, remains to be better understood. It has been demonstrated that the magnetization of F5GT is sensitive to both the Fe deficiency $未$ and the thermal cycling history. Here, we investigate the structural and magnetic prop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04560v1-abstract-full').style.display = 'inline'; document.getElementById('2209.04560v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.04560v1-abstract-full" style="display: none;"> The magnetic properties of the quasi-two-dimensional van der Waals magnet Fe$_{5-未}$GeTe$_2$ (F5GT), which has a high ferromagnetic ordering temperature $T_{\text{C}}$ $\sim$ 315 K, remains to be better understood. It has been demonstrated that the magnetization of F5GT is sensitive to both the Fe deficiency $未$ and the thermal cycling history. Here, we investigate the structural and magnetic properties of F5GT with a minimal Fe deficiency ($|未|$ $\le$ 0.1), utilizing combined x-ray and neutron scattering techniques. Our study reveals that the quenched F5GT single crystals experience an irreversible, first-order transition at $T_{\text{S}}$ $\sim$ 110 K upon first cooling, where the stacking order partly or entirely converts from ABC-stacking to AA-stacking order. Importantly, the magnetic properties, including the magnetic moment direction and the enhanced $T_{\text{C}}$ after the thermal cycling, are intimately related to the alteration of the stacking order. Our work highlights the significant influence of the lattice symmetry to the magnetism in F5GT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04560v1-abstract-full').style.display = 'none'; document.getElementById('2209.04560v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages with 5 figures. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater. 7.044411 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02634">arXiv:2207.02634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02634">pdf</a>, <a href="https://arxiv.org/format/2207.02634">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Nanometric modulations of the magnetic structure of the element Nd </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Arachchige%2C+H+S">H. Suriya Arachchige</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeBeer-Schmitt%2C+L+M">L. M. DeBeer-Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kish%2C+L+L">L. L. Kish</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rai%2C+B+K">Binod K. Rai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=May%2C+A+F">A. F. May</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parker%2C+D+S">D. S. Parker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pokharel%2C+G">G. Pokharel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D+G">D. G. Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bleuel%2C+M">M. Bleuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+Z">Z. Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H+X">H. X. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+S">S. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianson%2C+A+D">A. D. Christianson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02634v1-abstract-short" style="display: inline;"> The rare earth neodymium arguably exhibits the most complex magnetic ordering and series of magnetic phase transitions of the elements. Here we report the results of small-angle neutron scattering (SANS) measurements as a function of temperature and applied magnetic field to study magnetic correlations on nanometer length scales in Nd. The SANS measurements reveal the presence of previously unrepo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02634v1-abstract-full').style.display = 'inline'; document.getElementById('2207.02634v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02634v1-abstract-full" style="display: none;"> The rare earth neodymium arguably exhibits the most complex magnetic ordering and series of magnetic phase transitions of the elements. Here we report the results of small-angle neutron scattering (SANS) measurements as a function of temperature and applied magnetic field to study magnetic correlations on nanometer length scales in Nd. The SANS measurements reveal the presence of previously unreported modulation vectors characterizing the ordered spin configuration which exhibit changes in magnitude and direction that are phase dependent. Between 5.9 and 7.6 K the additional modulation vector has a magnitude $Q$ =0.12 脜$^{-1}$ and is primarily due to order of the Nd layers which contain a center of inversion. In this region of the phase diagram, the SANS measurements also identify a phase boundary at $\approx$1 T. An important feature of these modulation vectors is that they indicate the presence of nanometer length scale spin textures which are likely stabilized by frustrated Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions rather than a Dzyaloshinskii-Moriya (DM) exchange interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02634v1-abstract-full').style.display = 'none'; document.getElementById('2207.02634v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.08231">arXiv:2206.08231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.08231">pdf</a>, <a href="https://arxiv.org/format/2206.08231">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.245111">10.1103/PhysRevB.105.245111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure dependence of the magnetic ground state in CePtSi2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dissanayake%2C+S+E">S. E. Dissanayake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">F. Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+M">M. Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muto%2C+H">H. Muto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suzuki%2C+S">S. Suzuki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakano%2C+T">T. Nakano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+S">S. Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gouchi%2C+J">J. Gouchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uwatoko%2C+Y">Y. Uwatoko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.08231v1-abstract-short" style="display: inline;"> CePtSi2 was reported to exhibit an antiferromagnetic order below T*=1.8 K at ambient pressure, a valence state change at ~1.2 GPa, and superconductivity in the range between 1.4 and 2.1 GPa with the maximum transition temperature of 0.14 K [T. Nakano et al., Phys. Rev. B 79, 172507 (2009)]. We have performed polycrystalline and single crystal neutron diffraction experiments to determine the magnet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08231v1-abstract-full').style.display = 'inline'; document.getElementById('2206.08231v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.08231v1-abstract-full" style="display: none;"> CePtSi2 was reported to exhibit an antiferromagnetic order below T*=1.8 K at ambient pressure, a valence state change at ~1.2 GPa, and superconductivity in the range between 1.4 and 2.1 GPa with the maximum transition temperature of 0.14 K [T. Nakano et al., Phys. Rev. B 79, 172507 (2009)]. We have performed polycrystalline and single crystal neutron diffraction experiments to determine the magnetic structure under ambient and high pressures. We found that incommensurate magnetic peaks with the magnetic propagation vector of (0.32, 0, 0.11) at ambient pressure below T_{SDW}~1.25 K. Those magnetic peaks which originate from a spin-density-wave order with the easy axis along the c axis and an averaged ordered moment of 0.45(5) mu_B, suggesting that there may be an intermediate phase between T* and T_{SDW}. Applying pressures, the magnetic propagation vector shows no change and the magnetic order disappears around 1.0 GPa, which is much lower than the critical pressure for the superconducting phase. The results suggest that other than magnetic fluctuations may play a primary role in the superconducting pairing mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08231v1-abstract-full').style.display = 'none'; document.getElementById('2206.08231v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 105, 245111 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06341">arXiv:2203.06341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.06341">pdf</a>, <a href="https://arxiv.org/ps/2203.06341">ps</a>, <a href="https://arxiv.org/format/2203.06341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.075118">10.1103/PhysRevB.106.075118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak itinerant magnetic phases of La2Ni7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wilde%2C+J+M">John M. Wilde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sapkota%2C+A">Aashish Sapkota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Budko%2C+S+L">Sergey L. Budko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ribeiro%2C+R+A">Raquel A. Ribeiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kreyssig%2C+A">Andreas Kreyssig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06341v2-abstract-short" style="display: inline;"> La2Ni7 is an intermetallic compound that is thought to have itinerant magnetism with a small moment ordering below 65 K. A recent study of single crystal samples by Ribeiro et. al. [Phys. Rev. B 105, 014412 (2022)] determined detailed anisotropic H-T phase diagrams and revealed three zero-field magnetic phase transitions at T1 ~ 61.0 K, T2 ~ 56.5K, and T3 ~ 42 K. In that study only the highest tem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06341v2-abstract-full').style.display = 'inline'; document.getElementById('2203.06341v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06341v2-abstract-full" style="display: none;"> La2Ni7 is an intermetallic compound that is thought to have itinerant magnetism with a small moment ordering below 65 K. A recent study of single crystal samples by Ribeiro et. al. [Phys. Rev. B 105, 014412 (2022)] determined detailed anisotropic H-T phase diagrams and revealed three zero-field magnetic phase transitions at T1 ~ 61.0 K, T2 ~ 56.5K, and T3 ~ 42 K. In that study only the highest temperature phase is shown to have a clear ferromagnetic component. Here we present a single crystal neutron diffraction study determining the propagation vector and magnetic moment direction of the three magnetically ordered phases, two incommensurate and one commensurate, as a function of temperature. The higher temperature phases have similar, incommensurate propagation vectors, but with different ordered moment directions. At lower temperatures the magnetic order becomes commensurate with magnetic moments along the c direction as part of a first-order magnetic phase transition. We find that the low-temperature commensurate magnetic order is consistent with a proposal from earlier DFT calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06341v2-abstract-full').style.display = 'none'; document.getElementById('2203.06341v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures Updated magnetic moment size based on data. Discussion is expanded to discuss origin of multiple phase transitions. Several other small changes/additions made throughout the text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 075118(2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.08893">arXiv:2108.08893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.08893">pdf</a>, <a href="https://arxiv.org/format/2108.08893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ac5703">10.1088/1361-648X/ac5703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-magnetic ion site disorder effects on the quantum magnetism of a spin-1/2 equilateral triangular lattice antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rawl%2C+R">R. Rawl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W+W">W. W. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+E+S">E. S. Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zapf%2C+V+S">V. S. Zapf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X+X">X. X. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauws%2C+C">C. Mauws</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiebe%2C+C+R">C. R. Wiebe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+E+X">E. X. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Y">Y. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butch%2C+N">N. Butch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.08893v1-abstract-short" style="display: inline;"> With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba3CoSb2O9, a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba2.87Sr0.13CoSb2O9 with Sr doping on non-magnetic Ba2+ ion sites. The results show that Ba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08893v1-abstract-full').style.display = 'inline'; document.getElementById('2108.08893v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.08893v1-abstract-full" style="display: none;"> With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba3CoSb2O9, a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba2.87Sr0.13CoSb2O9 with Sr doping on non-magnetic Ba2+ ion sites. The results show that Ba2.87Sr0.13CoSb2O9 exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120-degree spin structure at zero field with reduced ordered moment as 1.24渭B/Co; (iii) a series of spin state transitions for both H // ab-plane and H // c-axis. For H // ab-plane, the magnetization plateau feature related to the up-up-down phase is significantly suppressed; (iv) an inelastic neutron scattering spectrum with only one gapped mode at zero field, which splits to one gapless and one gapped mode at 9 T. All these features are distinctly different from those observed for the parent compound Ba3CoSb2O9, which demonstrates that the non-magnetic ion site disorder (the Sr doping) plays a complex role on the magnetic properties beyond the conventionally expected randomization of the exchange interactions. We propose the additional effects including the enhancement of quantum spin fluctuations and introduction of a possible spatial anisotropy through the local structural distortions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08893v1-abstract-full').style.display = 'none'; document.getElementById('2108.08893v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10264">arXiv:2107.10264</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.10264">pdf</a>, <a href="https://arxiv.org/format/2107.10264">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01753-z">10.1038/s42005-024-01753-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tilted stripes origin in ${\mathrm{La}}_{1.88}{\mathrm{Sr}}_{0.12}{\mathrm{CuO}}_{4}$ revealed by anisotropic next-nearest neighbor hopping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">Wei He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jiajia Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hong-Chen Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">Guangyong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takanori Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ikeda%2C+Y">Yoichi Ikeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujita%2C+M">Masaki Fujita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+S">Young S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10264v2-abstract-short" style="display: inline;"> Spin- and charge- stripe order has been extensively studied in the superconducting cuprates, among which underdoped ${\mathrm{La}}_{2-x}{\mathrm{Sr}}_{x}{\mathrm{CuO}}_{4}$ (LSCO) is an archetype with static spin stripes at low temperatures. An intriguing, but not completely understood, phenomenon in LSCO is that the stripes are tilted away from the high-symmetry Cu-Cu directions. Using high-resol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10264v2-abstract-full').style.display = 'inline'; document.getElementById('2107.10264v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10264v2-abstract-full" style="display: none;"> Spin- and charge- stripe order has been extensively studied in the superconducting cuprates, among which underdoped ${\mathrm{La}}_{2-x}{\mathrm{Sr}}_{x}{\mathrm{CuO}}_{4}$ (LSCO) is an archetype with static spin stripes at low temperatures. An intriguing, but not completely understood, phenomenon in LSCO is that the stripes are tilted away from the high-symmetry Cu-Cu directions. Using high-resolution neutron scattering on LSCO with $x=0.12$, we find two coexisting phases at low temperatures, one with static spin stripes and the other with fluctuating ones, both sharing the same tilt angle. Our numerical calculations using the doped Hubbard model elucidate the tilting&#39;s origin, attributing it to anisotropic next-nearest neighbor hopping $t^{\prime}$, consistent with the material&#39;s slight orthorhombicity. Our results underscore the model&#39;s success in describing specific details of the ground state of this real material and highlight the role of $t^\prime$ in the Hamiltonian, revealing the delicate interplay between stripes and superconductivity across theoretical and experimental contexts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10264v2-abstract-full').style.display = 'none'; document.getElementById('2107.10264v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics 7, 257 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06629">arXiv:2105.06629</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.06629">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.064417">10.1103/PhysRevMaterials.5.064417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding Magnetic Phase Coexistence in Ru$_2$Mn$_{1-x}$Fe$_x$Sn Heusler Alloys: A Neutron Scattering, Thermodynamic, and Phenomenological Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McCalla%2C+E">Eric McCalla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levin%2C+E+E">Emily E. Levin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Douglas%2C+J+E">Jason E. Douglas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barker%2C+J+G">John G. Barker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frontzek%2C+M">Matthias Frontzek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seshadri%2C+R">Ram Seshadri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leighton%2C+C">Chris Leighton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06629v1-abstract-short" style="display: inline;"> The random substitutional solid solution between the antiferromagnetic (AFM) full-Heusler alloy Ru$_2$MnSn and the ferromagnetic (FM) full-Heusler alloy Ru$_2$FeSn provides a rare opportunity to study FM-AFM phase competition in a near-lattice-matched, cubic system, with full solubility. At intermediate $x$ in Ru$_2$Mn$_{1-x}$Fe$_x$Sn this system displays suppressed magnetic ordering temperatures,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06629v1-abstract-full').style.display = 'inline'; document.getElementById('2105.06629v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06629v1-abstract-full" style="display: none;"> The random substitutional solid solution between the antiferromagnetic (AFM) full-Heusler alloy Ru$_2$MnSn and the ferromagnetic (FM) full-Heusler alloy Ru$_2$FeSn provides a rare opportunity to study FM-AFM phase competition in a near-lattice-matched, cubic system, with full solubility. At intermediate $x$ in Ru$_2$Mn$_{1-x}$Fe$_x$Sn this system displays suppressed magnetic ordering temperatures, spatially coexisting FM and AFM order, and strong coercivity enhancement, despite rigorous chemical homogeneity. Here, we construct the most detailed temperature- and $x$-dependent understanding of the magnetic phase competition and coexistence in this system to date, combining wide-temperature-range neutron diffraction and small-angle neutron scattering with magnetometry and specific heat measurements on thoroughly characterized polycrystals. A complete magnetic phase diagram is generated, showing FM-AFM coexistence between $x \approx 0.30$ and $x \approx 0.70$. Important new insight is gained from the extracted length scales for magnetic phase coexistence (25-100 nm), the relative magnetic volume fractions and ordering temperatures, in addition to remarkable $x$-dependent trends in magnetic and electronic contributions to specific heat. An unusual feature in the magnetic phase diagram (an intermediate FM phase) is also shown to arise from an extrinsic effect related to a minor Ru-rich secondary phase. The established magnetic phase diagram is then discussed with the aid of phenomenological modeling, clarifying the nature of the mesoscale phase coexistence with respect to the understanding of disordered Heisenberg models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06629v1-abstract-full').style.display = 'none'; document.getElementById('2105.06629v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 064417 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.05396">arXiv:2104.05396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.05396">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-speed ionic synaptic memory based on two-dimensional titanium carbide MXene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Melianas%2C+A">Armantas Melianas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">Min-A Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=VahidMohammadi%2C+A">Armin VahidMohammadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Weiqian Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gogotsi%2C+Y">Yury Gogotsi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salleo%2C+A">Alberto Salleo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamedi%2C+M+M">Mahiar Max Hamedi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.05396v4-abstract-short" style="display: inline;"> Synaptic devices with linear high-speed switching can accelerate learning in artificial neural networks (ANNs) embodied in hardware. Conventional resistive memories however suffer from high write noise and asymmetric conductance tuning, preventing parallel programming of ANN arrays as needed to surpass conventional computing efficiency. Electrochemical random-access memories (ECRAMs), where resist&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05396v4-abstract-full').style.display = 'inline'; document.getElementById('2104.05396v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.05396v4-abstract-full" style="display: none;"> Synaptic devices with linear high-speed switching can accelerate learning in artificial neural networks (ANNs) embodied in hardware. Conventional resistive memories however suffer from high write noise and asymmetric conductance tuning, preventing parallel programming of ANN arrays as needed to surpass conventional computing efficiency. Electrochemical random-access memories (ECRAMs), where resistive switching occurs by ion insertion into a redox-active channel address these challenges due to their linear switching and low noise. ECRAMs using two-dimensional (2D) materials and metal oxides suffer from slow ion kinetics, whereas organic ECRAMs enable high-speed operation but face significant challenges towards on-chip integration due to poor temperature stability of polymers. Here, we demonstrate ECRAMs using 2D titanium carbide (Ti3C2Tx) MXene that combines the high speed of organics and the integration compatibility of inorganic materials in a single high-performance device. Our ECRAMs combine the speed, linearity, write noise, switching energy and endurance metrics essential for parallel acceleration of ANNs, and importantly, they are stable after heat treatment needed for back-end-of-line integration with Si electronics. The high speed and performance of these ECRAMs introduces MXenes, a large family of 2D carbides and nitrides with more than 30 compositions synthesized to date, as very promising candidates for devices operating at the nexus of electrochemistry and electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05396v4-abstract-full').style.display = 'none'; document.getElementById('2104.05396v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Fig. 4 now shows film stability up to 400C (replacing earlier 300C data). Section headings were also added to the main text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.03157">arXiv:2103.03157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.03157">pdf</a>, <a href="https://arxiv.org/ps/2103.03157">ps</a>, <a href="https://arxiv.org/format/2103.03157">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.184413">10.1103/PhysRevB.103.184413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Canted antiferromagnetic order and spin dynamics in the honeycomb-lattice Tb2Ir3Ga9 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morgan%2C+Z">Zachary Morgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Songxue Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manley%2C+M+E">Michael E. Manley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parker%2C+D">David Parker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+M+A">Mojammel A. Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitchell%2C+J+F">J. F. Mitchell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fishman%2C+R">Randy Fishman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.03157v1-abstract-short" style="display: inline;"> Single crystal neutron diffraction, inelastic neutron scattering, bulk magnetization measurements, and first-principles calculations are used to investigate the magnetic properties of the honeycomb lattice $\rm Tb_2Ir_3Ga_9$. While the $R\ln2$ magnetic contribution to the low-temperature entropy indicates a $\rm J_{eff}=1/2$ moment for the lowest-energy crystal-field doublet, the Tb$^{3+}$ ions fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03157v1-abstract-full').style.display = 'inline'; document.getElementById('2103.03157v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.03157v1-abstract-full" style="display: none;"> Single crystal neutron diffraction, inelastic neutron scattering, bulk magnetization measurements, and first-principles calculations are used to investigate the magnetic properties of the honeycomb lattice $\rm Tb_2Ir_3Ga_9$. While the $R\ln2$ magnetic contribution to the low-temperature entropy indicates a $\rm J_{eff}=1/2$ moment for the lowest-energy crystal-field doublet, the Tb$^{3+}$ ions form a canted antiferromagnetic structure below 12.5 K. Due to the Dzyalloshinskii-Moriya interactions, the Tb moments in the $ab$ plane are slightly canted towards $b$ by $6^\circ$ with a canted moment of 1.22 $渭_{\rm B} $ per formula unit. A minimal $xxz$ spin Hamiltonian is used to simultaneously fit the spin-wave frequencies along the high symmetry directions and the field dependence of the magnetization along the three crystallographic axes. Long-range magnetic interactions for both in-plane and out-of-plane couplings up to the second nearest neighbors are needed to account for the observed static and dynamic properties. The $z$ component of the exchange interactions between Tb moments are larger than the $x$ and $y$ components. This compound also exhibits bond-dependent exchange with negligible nearest exchange coupling between moments parallel and perpendicular to the 4$f$ orbitals. Despite the $J_{\rm eff}=1/2$ moments, the spin Hamiltonian is denominated by a large in-plane anisotropy $K_z \sim -1$ meV. DFT calculations confirm the antiferromagnetic ground state and the substantial inter-plane coupling at larger Tb-Tb distances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03157v1-abstract-full').style.display = 'none'; document.getElementById('2103.03157v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 184413 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.02795">arXiv:2101.02795</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.02795">pdf</a>, <a href="https://arxiv.org/format/2101.02795">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Reentrance of spin-driven ferroelectricity through rotational tunneling of ammonium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+L">Lei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+N">Na Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yinina Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K">Kun Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+X">Xiaojian Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakoumakos%2C+B+C">Bryan C. Chakoumakos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Young Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yongqiang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.02795v1-abstract-short" style="display: inline;"> Quantum effects fundamentally engender exotic physical phenomena in macroscopic systems, which advance next-generation technological applications. Rotational tunneling that represents the quantum phenomenon of the librational motion of molecules is ubiquitous in hydrogen-contained materials. However, its direct manifestation in realizing macroscopic physical properties is elusive. Here we report a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.02795v1-abstract-full').style.display = 'inline'; document.getElementById('2101.02795v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.02795v1-abstract-full" style="display: none;"> Quantum effects fundamentally engender exotic physical phenomena in macroscopic systems, which advance next-generation technological applications. Rotational tunneling that represents the quantum phenomenon of the librational motion of molecules is ubiquitous in hydrogen-contained materials. However, its direct manifestation in realizing macroscopic physical properties is elusive. Here we report an observation of reentrant ferroelectricity under low pressure that is mediated by the rotational tunneling of ammonium ions in molecule-based (NH$_4$)$_2$FeCl$_5 \cdot$H$_2$O. Applying a small pressure leads to a transition from spin-driven ferroelectricity to paraelectricity coinciding with the stabilization of a collinear magnetic phase. Such a transition is attributed to the hydrogen bond fluctuations via the rotational tunneling of ammonium groups as supported by theoretical calculations. Higher pressure lifts the quantum fluctuations and leads to a reentrant ferroelectric phase concomitant with another incommensurate magnetic phase. These results demonstrate that the rotational tunneling emerges as a new route to control magnetic-related properties in soft magnets, opening avenues for designing multi-functional materials and realizing potential quantum control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.02795v1-abstract-full').style.display = 'none'; document.getElementById('2101.02795v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures. Supplemental Material available on request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14387">arXiv:2009.14387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14387">pdf</a>, <a href="https://arxiv.org/format/2009.14387">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.014443">10.1103/PhysRevB.103.014443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Helical magnetic order and Fermi surface nesting in non-centrosymmetric ScFeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Karna%2C+S+K">Sunil K. Karna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tristant%2C+D">D. Tristant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hebert%2C+J+K">J. K. Hebert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">G. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chapai%2C+R">R. Chapai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phelan%2C+W+A">W. A. Phelan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Q. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhital%2C+C">C. Dhital</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cruz%2C+C+R+D">C. R. Dela Cruz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+A">A. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">M. A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+A">A. Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">W. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Browne%2C+D+A">D. A. Browne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vekhter%2C+I">I. Vekhter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meunier%2C+V">V. Meunier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shelton%2C+W+A">W. A. Shelton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adams%2C+P+W">P. W. Adams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sprunger%2C+P+T">P. T. Sprunger</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14387v1-abstract-short" style="display: inline;"> An investigation of the structural, magnetic, thermodynamic, and charge transport properties of non-centrosymmetric hexagonal ScFeGe reveals it to be an anisotropic metal with a transition to a weak itinerant incommensurate helimagnetic state below $T_N = 36$ K. Neutron diffraction measurements discovered a temperature and field independent helical wavevector \textbf{\textit{k}} = (0 0 0.193) with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14387v1-abstract-full').style.display = 'inline'; document.getElementById('2009.14387v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14387v1-abstract-full" style="display: none;"> An investigation of the structural, magnetic, thermodynamic, and charge transport properties of non-centrosymmetric hexagonal ScFeGe reveals it to be an anisotropic metal with a transition to a weak itinerant incommensurate helimagnetic state below $T_N = 36$ K. Neutron diffraction measurements discovered a temperature and field independent helical wavevector \textbf{\textit{k}} = (0 0 0.193) with magnetic moments of 0.53 $渭_{B}$ per formula unit confined to the {\it ab}-plane. Density functional theory calculations are consistent with these measurements and find several bands that cross the Fermi level along the {\it c}-axis with a nearly degenerate set of flat bands just above the Fermi energy. The anisotropy found in the electrical transport is reflected in the calculated Fermi surface, which consists of several warped flat sheets along the $c$-axis with two regions of significant nesting, one of which has a wavevector that closely matches that found in the neutron diffraction. The electronic structure calculations, along with a strong anomaly in the {\it c}-axis conductivity at $T_N$, signal a Fermi surface driven magnetic transition, similar to that found in spin density wave materials. Magnetic fields applied in the {\it ab}-plane result in a metamagnetic transition with a threshold field of $\approx$ 6.7 T along with a sharp, strongly temperature dependent, discontinuity and a change in sign of the magnetoresistance for in-plane currents. Thus, ScFeGe is an ideal system to investigate the effect of in-plane magnetic fields on an easy-plane magnetic system, where the relative strength of the magnetic interactions and anisotropies determine the topology and magnetic structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14387v1-abstract-full').style.display = 'none'; document.getElementById('2009.14387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 014443 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.12355">arXiv:2008.12355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.12355">pdf</a>, <a href="https://arxiv.org/ps/2008.12355">ps</a>, <a href="https://arxiv.org/format/2008.12355">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.115120">10.1103/PhysRevB.102.115120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pseudospin-lattice coupling and electric control of the square-lattice iridate Sr2IrO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+C">Christina Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Hengdi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">G. Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.12355v1-abstract-short" style="display: inline;"> $\rm Sr_2IrO_4&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12355v1-abstract-full').style.display = 'inline'; document.getElementById('2008.12355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.12355v1-abstract-full" style="display: none;"> $\rm Sr_2IrO_4$ is an archetypal spin-orbit-coupled Mott insulator and has been extensively studied in part because of a wide range of predicted novel states. Limited experimental characterization of these states thus far brings to light the extraordinary susceptibility of the physical properties to the lattice, particularly, the Ir-O-Ir bond angle. Here, we report a newly observed microscopic rotation of the IrO$_6$ octahedra below 50~K measured by single crystal neutron diffraction. This sharp lattice anomaly provides keys to understanding the anomalous low-temperature physics and a direct confirmation of a crucial role that the Ir-O-Ir bond angle plays in determining the ground state. Indeed, as also demonstrated in this study, applied electric current readily weakens the antiferromagnetic order via the straightening of the Ir-O-Ir bond angle, highlighting that even slight change in the local structure can disproportionately affect the physical properties in the spin-orbit-coupled system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12355v1-abstract-full').style.display = 'none'; document.getElementById('2008.12355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11345">arXiv:2008.11345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.11345">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.094424">10.1103/PhysRevB.102.094424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-induced magnetic phase transitions and the resultant giant anomalous Hall effect in antiferromagnetic half-Heusler DyPtBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y+L">Y. L. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Y">Y. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z+Q">Z. Q. Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+X">X. Ke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11345v1-abstract-short" style="display: inline;"> We report field-induced magnetic phase transitions and transport properties of antiferromagnetic DyPtBi. We show that DyPtBi hosts a delicate balance between two different magnetic ground states, which can be controlled by a moderate magnetic field. Furthermore, it exhibits giant anomalous Hall effect (蟽_A=1540 (ohm cm)^{-1},胃_{AHE} = 24%) in a field-induced Type-I spin structure, presumably attri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11345v1-abstract-full').style.display = 'inline'; document.getElementById('2008.11345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11345v1-abstract-full" style="display: none;"> We report field-induced magnetic phase transitions and transport properties of antiferromagnetic DyPtBi. We show that DyPtBi hosts a delicate balance between two different magnetic ground states, which can be controlled by a moderate magnetic field. Furthermore, it exhibits giant anomalous Hall effect (蟽_A=1540 (ohm cm)^{-1},胃_{AHE} = 24%) in a field-induced Type-I spin structure, presumably attributed to the enhanced Berry curvature associated with avoided band-crossings near the Fermi energy and / or non-zero spin chirality. The latter mechanism points DyPtBi towards a rare potential realization of anomalous Hall effect in an antiferromagnet with face-center-cubic lattice that was proposed in [Physical Review Letters 87, 116801 (2001)]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11345v1-abstract-full').style.display = 'none'; document.getElementById('2008.11345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 094424 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.06827">arXiv:2008.06827</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.06827">pdf</a>, <a href="https://arxiv.org/format/2008.06827">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.224411">10.1103/PhysRevB.103.224411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Excitations of the Hybrid Multiferroic (ND4)2FeCl5D2O </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+X">Xiaojian Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fishman%2C+R+S">Randy S. Fishman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+G">Gabriele Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajerowski%2C+D+M">Daniel M. Pajerowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garlea%2C+V+O">V. Ovidiu Garlea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+T">Tao Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">Minseong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandez-Baca%2C+J+A">Jaime A. Fernandez-Baca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.06827v2-abstract-short" style="display: inline;"> We report a comprehensive inelastic neutron scattering study of the hybrid molecule-based multiferroic compound (ND4)2FeCl5D2O in the zero-field incommensurate cycloidal phase and the high-field quasi-collinear phase. The spontaneous electric polarization changes its direction concurrently with the field-induced magnetic transition, from mostly aligned with the crystallographic a-axis to the c-axi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06827v2-abstract-full').style.display = 'inline'; document.getElementById('2008.06827v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.06827v2-abstract-full" style="display: none;"> We report a comprehensive inelastic neutron scattering study of the hybrid molecule-based multiferroic compound (ND4)2FeCl5D2O in the zero-field incommensurate cycloidal phase and the high-field quasi-collinear phase. The spontaneous electric polarization changes its direction concurrently with the field-induced magnetic transition, from mostly aligned with the crystallographic a-axis to the c-axis. To account for such change of polarization direction, the underlying multiferroic mechanism was proposed to switch from the spin-current model induced via the inverse Dzyalloshinskii-Moriya interaction to the p-d hybridization model. We perform a detailed analysis of the inelastic neutron data of (ND4)2FeCl5D2O using linear spin-wave theory to quantify magnetic interaction strengths and investigate possible impact of different multiferroic mechanisms on the magnetic couplings. Our result reveals that the spin dynamics of both multiferroic phases can be well-described by a Heisenberg Hamiltonian with an easy-plane anisotropy. We do not find notable differences between the optimal model parameters of the two phases. The hierarchy of exchange couplings and the balance among frustrated interactions remain the same between two phases, suggesting that magnetic interactions in (ND4)2FeCl5D2O are much more robust than the electric polarization in response to delicate reorganizations of the electronic degrees of freedom in an applied magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06827v2-abstract-full').style.display = 'none'; document.getElementById('2008.06827v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 main figures, 1 Table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 224411 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.12468">arXiv:2005.12468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.12468">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.094424">10.1103/PhysRevB.101.094424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic-field-induced nontrivial electronic state in the Kondo-lattice semimetal CeSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Y. Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+F">F. Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+Y+R">Y. R. Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J+M">J. M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+H">H. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W+Y">W. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z+D">Z. D. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+B">B. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X+F">X. F. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X+M">X. M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+X">X. Ke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.12468v2-abstract-short" style="display: inline;"> Synergic effect of electronic correlation and spin-orbit coupling is an emerging topic in topological materials. Central to this rapidly developing area are the prototypes of strongly correlated heavy-fermion systems. Recently, some Ce-based compounds are proposed to host intriguing topological nature, among which the electronic properties of CeSb are still under debate. In this paper, we report a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12468v2-abstract-full').style.display = 'inline'; document.getElementById('2005.12468v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.12468v2-abstract-full" style="display: none;"> Synergic effect of electronic correlation and spin-orbit coupling is an emerging topic in topological materials. Central to this rapidly developing area are the prototypes of strongly correlated heavy-fermion systems. Recently, some Ce-based compounds are proposed to host intriguing topological nature, among which the electronic properties of CeSb are still under debate. In this paper, we report a comprehensive study combining magnetic and electronic transport measurements, and electronic band structure calculations of this compound to identify its topological nature. Quantum oscillations are clearly observed in both magnetization and magnetoresistance at high fields, from which one pocket with a nontrivial Berry phase is recognized. Angular-dependent magnetoresistance shows that this pocket is elongated in nature and corresponds to the electron pocket as observed in LaBi. Nontrivial electronic structure of CeSb is further confirmed by first-principle calculations, which arises from spin splitting in the fully polarized ferromagnetic state. These features indicate that magnetic-field can induce nontrivial topological electronic states in this prototypical Kondo semimetal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12468v2-abstract-full').style.display = 'none'; document.getElementById('2005.12468v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12476">arXiv:1907.12476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.12476">pdf</a>, <a href="https://arxiv.org/format/1907.12476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.014437">10.1103/PhysRevB.100.014437 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hole Doping and Antiferromagnetic Correlations above the N{茅}el temperature of the Topological Semimetal (Sr$_{1-x}$K$_x$)MnSb$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+F">Farhan Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dennis%2C+K+W">Kevin W. Dennis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueland%2C+B+G">Benjamin G. Ueland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">Robert J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaknin%2C+D">David Vaknin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12476v1-abstract-short" style="display: inline;"> Neutron diffraction and magnetic susceptibility studies of orthorhombic single crystal {\Ksub} confirm the three dimensional (3D) C-type antiferromagnetic (AFM) ordering of the Mn$^{2+}$ moments at $T_{\rm N}=305 \pm 3$ K which is slightly higher than that of the parent SrMnSb$_2$ with $T_{\rm N}=297 \pm 3$ K. Susceptibility measurements of the K-doped and parent crystals above $T_{\rm N}$ are cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12476v1-abstract-full').style.display = 'inline'; document.getElementById('1907.12476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12476v1-abstract-full" style="display: none;"> Neutron diffraction and magnetic susceptibility studies of orthorhombic single crystal {\Ksub} confirm the three dimensional (3D) C-type antiferromagnetic (AFM) ordering of the Mn$^{2+}$ moments at $T_{\rm N}=305 \pm 3$ K which is slightly higher than that of the parent SrMnSb$_2$ with $T_{\rm N}=297 \pm 3$ K. Susceptibility measurements of the K-doped and parent crystals above $T_{\rm N}$ are characteristic of 2D AFM systems. This is consistent with high temperature neutron diffraction of the parent compound that display persisting 2D AFM correlations well above $T_{\rm N}$ to at least $\sim 560$ K with no evidence of a ferromagnetic phase. Analysis of the de Haas van Alphen magnetic oscillations of the K-doped crystal is consistent with hole doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12476v1-abstract-full').style.display = 'none'; document.getElementById('1907.12476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 014437 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.11676">arXiv:1907.11676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.11676">pdf</a>, <a href="https://arxiv.org/format/1907.11676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.161113">10.1103/PhysRevB.100.161113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Helical magnetic ordering in Sr(Co1-xNix)2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wilde%2C+J+M">J. M. Wilde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kreyssig%2C+A">A. Kreyssig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaknin%2C+D">D. Vaknin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangeetha%2C+N+S">N. S. Sangeetha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orth%2C+P+P">P. P. Orth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+D+C">D. C. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueland%2C+B+G">B. G. Ueland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">R. J. McQueeney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.11676v2-abstract-short" style="display: inline;"> SrCo2As2 is a peculiar itinerant magnetic system that does not order magnetically, but inelastic neutron scattering experiments observe the same stripe-type antiferromagnetic (AF) fluctuations found in many of the Fe-based superconductors along with evidence of magnetic frustration. Here we present results from neutron diffraction measurements on single crystals of Sr(Co1-xNix)2As2 that show the d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11676v2-abstract-full').style.display = 'inline'; document.getElementById('1907.11676v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.11676v2-abstract-full" style="display: none;"> SrCo2As2 is a peculiar itinerant magnetic system that does not order magnetically, but inelastic neutron scattering experiments observe the same stripe-type antiferromagnetic (AF) fluctuations found in many of the Fe-based superconductors along with evidence of magnetic frustration. Here we present results from neutron diffraction measurements on single crystals of Sr(Co1-xNix)2As2 that show the development of long-range AF order with Ni-doping. However, the AF order is not stripe-type. Rather, the magnetic structure consists of ferromagnetically-aligned (FM) layers (with moments laying in the layer) that are AF arranged along c with an incommensurate propagation vector of (0 0 tau), i.e. a helix. Using high-energy x-ray diffraction, we find no evidence for a temperature-induced structural phase transition that would indicate a collinear AF order. This finding supports a picture of competing FM and AF interactions within the square transition-metal layers due to flat-band magnetic instabilities. However, the composition dependence of the propagation vector suggests that far more subtle Fermi surface and orbital effects control the interlayer magnetic correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11676v2-abstract-full').style.display = 'none'; document.getElementById('1907.11676v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 161113 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.06444">arXiv:1904.06444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.06444">pdf</a>, <a href="https://arxiv.org/format/1904.06444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.024415">10.1103/PhysRevB.100.024415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic Stacking of Ferromagnetic Layers and Doping Controlled Phase Competition in Ca$_{1-x}$Sr$_{x}$Co$_{2-y}$As$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sizyuk%2C+Y">Y. Sizyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangeetha%2C+N+S">N. S. Sangeetha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilde%2C+J+M">J. M. Wilde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+P">P. Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+D+C">D. C. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldman%2C+A+I">A. I. Goldman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kreyssig%2C+A">A. Kreyssig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orth%2C+P+P">P. P. Orth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">R. J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueland%2C+B+G">B. G. Ueland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.06444v2-abstract-short" style="display: inline;"> In search of a quantum phase transition between the two-dimensional ($2$D) ferromagnetism of CaCo$_{2-y}$As$_{2}$ and stripe-type antiferromagnetism in SrCo$_{2}$As$_{2}$, we rather find evidence for $1$D magnetic frustration between magnetic square Co layers. We present neutron diffraction data for Ca$_{1-x}$Sr$_{x}$Co$_{2-y}$As$_{2}$ that reveal a sequence of $x$-dependent magnetic transitions w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.06444v2-abstract-full').style.display = 'inline'; document.getElementById('1904.06444v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.06444v2-abstract-full" style="display: none;"> In search of a quantum phase transition between the two-dimensional ($2$D) ferromagnetism of CaCo$_{2-y}$As$_{2}$ and stripe-type antiferromagnetism in SrCo$_{2}$As$_{2}$, we rather find evidence for $1$D magnetic frustration between magnetic square Co layers. We present neutron diffraction data for Ca$_{1-x}$Sr$_{x}$Co$_{2-y}$As$_{2}$ that reveal a sequence of $x$-dependent magnetic transitions which involve different stacking of $2$D ferromagnetically-aligned layers with different magnetic anisotropy. We explain the $x$-dependent changes to the magnetic order by utilizing classical analytical calculations of a $1$D Heisenberg model where single-ion magnetic anisotropy and frustration of antiferromagnetic nearest- and next-nearest-layer exchange are all composition dependent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.06444v2-abstract-full').style.display = 'none'; document.getElementById('1904.06444v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 024415 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.07233">arXiv:1903.07233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.07233">pdf</a>, <a href="https://arxiv.org/ps/1903.07233">ps</a>, <a href="https://arxiv.org/format/1903.07233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/122/67006">10.1209/0295-5075/122/67006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of Vanadium doping on BaFe2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xing-Guang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+J">Jie-Ming Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+C">Cong-Kuan Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yi-Yan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+T">Tian-Long Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Le Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jin-Chen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Juan-Juan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hong-Xia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+W">Wei Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+P">Peng Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.07233v1-abstract-short" style="display: inline;"> We report an investigation of the structural, magnetic and electronic properties of Ba(Fe(1-x)V(x))2As2 using x-ray, transport, magnetic susceptibility and neutron scattering measurements. The vanadium substitutions in Fe sites are possible up to 40\%. Hall effect measurements indicate strong hole-doping effect through V doping, while no superconductivity is observed in all samples down to 2K. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.07233v1-abstract-full').style.display = 'inline'; document.getElementById('1903.07233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.07233v1-abstract-full" style="display: none;"> We report an investigation of the structural, magnetic and electronic properties of Ba(Fe(1-x)V(x))2As2 using x-ray, transport, magnetic susceptibility and neutron scattering measurements. The vanadium substitutions in Fe sites are possible up to 40\%. Hall effect measurements indicate strong hole-doping effect through V doping, while no superconductivity is observed in all samples down to 2K. The antiferromagnetic and structural transition temperature of BaFe2As2 is gradually suppressed to finite temperature then vanishes at x=0.245 with the emergence of spin glass behavior, suggesting an avoided quantum critical point (QCP). Our results demonstrate that the avoided QCP and spin glass state which were previously reported in the superconducting phase of Co/Ni-doped BaFe2As2 can also be realized in non-superconducting Ba(Fe(1-x)V(x))2As2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.07233v1-abstract-full').style.display = 'none'; document.getElementById('1903.07233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Europhys. Lett. 122, 67006 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.04948">arXiv:1902.04948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.04948">pdf</a>, <a href="https://arxiv.org/format/1902.04948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.054435">10.1103/PhysRevB.99.054435 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal growth, microstructure and physical properties of SrMnSb$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+T">Tao Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Lin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Straszheim%2C+W+E">Warren E. Straszheim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+F">Farhan Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jensen%2C+B+A">Brandt A. Jensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heitmann%2C+T">Thomas Heitmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+R+A">R. A. Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilde%2C+J+M">J. M. Wilde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kreyssig%2C+A">Andreas Kreyssig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldman%2C+A+I">Alan I. Goldman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueland%2C+B+G">B. G. Ueland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">Robert J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaknin%2C+D">David Vaknin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.04948v1-abstract-short" style="display: inline;"> We report on the crystal and magnetic structures, magnetic, and transport properties of SrMnSb$_2$ single crystals grown by the self-flux method. Magnetic susceptibility measurements reveal an antiferromagnetic (AFM) transition at $T_{\rm N} = 295(3)$ K. Above $T_{\rm N}$, the susceptibility slightly increases and forms a broad peak at $T \sim 420$ K, which is a typical feature of two-dimensional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04948v1-abstract-full').style.display = 'inline'; document.getElementById('1902.04948v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.04948v1-abstract-full" style="display: none;"> We report on the crystal and magnetic structures, magnetic, and transport properties of SrMnSb$_2$ single crystals grown by the self-flux method. Magnetic susceptibility measurements reveal an antiferromagnetic (AFM) transition at $T_{\rm N} = 295(3)$ K. Above $T_{\rm N}$, the susceptibility slightly increases and forms a broad peak at $T \sim 420$ K, which is a typical feature of two-dimensional magnetic systems. Neutron diffraction measurements on single crystals confirm the previously reported C-type AFM structure below $T_{\rm N}$. Both de Haas-van Alphen (dHvA) and Shubnikov-de Haas (SdH) effects are observed in SrMnSb$_2$ single crystals. Analysis of the oscillatory component by a Fourier transform shows that the prominent frequencies obtained by the two different techniques are practically the same within error regardless of sample size or saturated magnetic moment. Transmission electron microscopy (TEM) reveals the existence of stacking faults in the crystals, which result from a horizontal shift of Sb atomic layers suggesting possible ordering of Sb vacancies in the crystals. Increase of temperature in susceptibility measurements leads to the formation of a strong peak at $T \sim {570}$ K that upon cooling under magnetic field the susceptibility shows a ferromagnetic transition at $T_{\rm C} \sim 580$ K. Neutron powder diffraction on crushed single-crystals does not support an FM phase above $T_{\rm N}$. Furthermore, X-ray magnetic circular dichroism (XMCD) measurements of a single crystal at the $L_{2,3}$ edge of Mn shows a signal due to induced canting of AFM moments by the applied magnetic field. All evidence strongly suggests that a chemical transformation at the surface of single crystals occurs above 500 K concurrently producing a minute amount of ferromagnetic impurity phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04948v1-abstract-full').style.display = 'none'; document.getElementById('1902.04948v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 054435 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.10688">arXiv:1811.10688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.10688">pdf</a>, <a href="https://arxiv.org/format/1811.10688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.4310/CIS.2019.v19.n1.a3">10.4310/CIS.2019.v19.n1.a3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stochastic Evolution of Coagulation-Fragmentation processes using the Accurate Chemical Master Equation approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Manuchehrfar%2C+F">Farid Manuchehrfar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+T">Tom Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jie Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.10688v1-abstract-short" style="display: inline;"> Coagulation and fragmentation (CF) is a fundamental process by which particles attach to each other to form clusters while existing clusters break up into smaller ones. It is a ubiquitous process that plays a key role in many physical and biological phenomena. CF is typically a stochastic process that often occurs in confined spaces with a limited number of available particles. In this study, we u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.10688v1-abstract-full').style.display = 'inline'; document.getElementById('1811.10688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.10688v1-abstract-full" style="display: none;"> Coagulation and fragmentation (CF) is a fundamental process by which particles attach to each other to form clusters while existing clusters break up into smaller ones. It is a ubiquitous process that plays a key role in many physical and biological phenomena. CF is typically a stochastic process that often occurs in confined spaces with a limited number of available particles. In this study, we use the discrete Chemical Master Equation (dCME) to describe the CF process. Using the newly developed Accurate Chemical Master Equation (ACME) method, we calculate the time-dependent behavior of the CF system. We investigate the effects of a number important factors that influence the overall behavior of the system, including the dimensionality, the ratio of attachment to detachment rates among clusters, and the initial conditions. By comparing CF in one and three dimensions we conclude that systems in higher dimensions are more likely to form large clusters. We also demonstrate how the ratio of the attachment to detachment rates affect the dynamics and the steady-state of the system. Finally, we demonstrate the relationship between the formation of large clusters and the initial condition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.10688v1-abstract-full').style.display = 'none'; document.getElementById('1811.10688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.03360">arXiv:1809.03360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.03360">pdf</a>, <a href="https://arxiv.org/format/1809.03360">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.184423">10.1103/PhysRevB.100.184423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice distortion in the spin-orbital entangled state in RVO3 perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J+-">J. -Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">S. Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">F. Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Llobet%2C+A">A. Llobet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Y. Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J+-">J. -G. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">M. A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">R. J. McQueeney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.03360v1-abstract-short" style="display: inline;"> We report a thorough study of Y$_{0.7}$La$_{0.3}$VO$_3$ single crystals by measuring magnetic properties, specific heat, thermal conductivity, x-ray and neutron diffraction with the motivation of revealing the lattice response to the spin-orbital entanglement in \textit{R}VO$_3$. Upon cooling from room temperature, the orbitally disordered paramagnetic state changes around T*$\sim$220\,K to spin-o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.03360v1-abstract-full').style.display = 'inline'; document.getElementById('1809.03360v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.03360v1-abstract-full" style="display: none;"> We report a thorough study of Y$_{0.7}$La$_{0.3}$VO$_3$ single crystals by measuring magnetic properties, specific heat, thermal conductivity, x-ray and neutron diffraction with the motivation of revealing the lattice response to the spin-orbital entanglement in \textit{R}VO$_3$. Upon cooling from room temperature, the orbitally disordered paramagnetic state changes around T*$\sim$220\,K to spin-orbital entangled state which is then followed by a transition at T$_N$=116\,K to C-type orbital ordered (OO) and G-type antiferromagnetic ordered (AF) ground state. In the temperature interval T$_N&lt;T&lt;T^*$, the VO$_{6/2}$ octahedra have two comparable in-plane V-O bonds which are longer than the out-of-plane V-O1 bond. This local structural distortion supports the spin-orbital entanglement of partially filled and degenerate yz/zx orbitals. However, this distortion is incompatible with the steric octahedral site distortion intrinsic to orthorhombic perovskites. Their competition induces a second order transition from the spin-orbital entangled state to C-OO/G-AF ground state where the long range OO suppresses the spin-orbital entanglement. Our analysis suggests that the spin-orbital entangled state and G-OO are comparable in energy and compete with each other. Rare earth site disorder favors the spin-orbital entanglement rather than a cooperative Jahn-Teller distortion. The results also indicate for LaVO$_3$ a C-OO/G-AF state in T$_t$\,$\leq$\,T\,$\leq$T$_N$ and an orbital flipping transition at T$_t$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.03360v1-abstract-full').style.display = 'none'; document.getElementById('1809.03360v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 184423 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05153">arXiv:1808.05153</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.05153">pdf</a>, <a href="https://arxiv.org/format/1808.05153">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-018-0122-3">10.1038/s41535-018-0122-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> c-axis pressure induced antiferromagnetic order in optimally P-doped BaFe2(As0.70P0.30)2 superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+D">Ding Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+D">Dongliang Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tam%2C+D+W">David W. Tam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+P">Panpan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+G">Guotai Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Yu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georgii%2C+R">Robert Georgii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersen%2C+B">Bjorn Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roessli%2C+B">Bertrand Roessli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05153v1-abstract-short" style="display: inline;"> Superconductivity in BaFe2(As1-xPx)2 iron pnictides emerges when its in-plane two-dimensional (2D) orthorhombic lattice distortion associated with nematic phase at Ts and three-dimensional (3D) collinear antiferromagnetic (AF) order at TN (Ts = TN) are gradually suppressed with increasing x, reaching optimal superconductivity around x = 0.30 with Tc $\approx$ 30 K. Here we show that a moderate uni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05153v1-abstract-full').style.display = 'inline'; document.getElementById('1808.05153v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05153v1-abstract-full" style="display: none;"> Superconductivity in BaFe2(As1-xPx)2 iron pnictides emerges when its in-plane two-dimensional (2D) orthorhombic lattice distortion associated with nematic phase at Ts and three-dimensional (3D) collinear antiferromagnetic (AF) order at TN (Ts = TN) are gradually suppressed with increasing x, reaching optimal superconductivity around x = 0.30 with Tc $\approx$ 30 K. Here we show that a moderate uniaxial pressure along the c-axis in BaFe2(As0.70P0.30)2 spontaneously induces a 3D collinear AF order with TN = Ts &gt; 30 K, while only slightly suppresses Tc. Although a ~ 400 MPa pressure compresses the c-axis lattice while expanding the in-plane lattice and increasing the nearest-neighbor Fe-Fe distance, it barely changes the average iron-pnictogen height in BaFe2(As0.70P0.30)2. Therefore, the pressure- induced AF order must arise from a strong in-plane magnetoelastic coupling, suggesting that the 2D nematic phase is a competing state with superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05153v1-abstract-full').style.display = 'none'; document.getElementById('1808.05153v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quant Mater 3, 47 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.05315">arXiv:1807.05315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.05315">pdf</a>, <a href="https://arxiv.org/ps/1807.05315">ps</a>, <a href="https://arxiv.org/format/1807.05315">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-018-05529-2">10.1038/s41467-018-05529-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local orthorhombic lattice distortions in the paramagnetic tetragonal phase of superconducting NaFe$_{1-x}$Ni$_x$As </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Yu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+C">Chongde Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+K">Kuo-Feng Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+T">Thomas Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harriger%2C+L+W">L. W. Harriger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Songxue Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nevidomskyy%2C+A+H">Andriy H. Nevidomskyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.05315v1-abstract-short" style="display: inline;"> Understanding the interplay between nematicity, magnetism and superconductivity is pivotal for elucidating the physics of iron-based superconductors. Here we use neutron scattering to probe magnetic and nematic orders throughout the phase diagram of NaFe$_{1-x}$Ni$_x$As, finding that while both static antiferromagnetic and nematic orders compete with superconductivity, the onset temperatures for t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05315v1-abstract-full').style.display = 'inline'; document.getElementById('1807.05315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.05315v1-abstract-full" style="display: none;"> Understanding the interplay between nematicity, magnetism and superconductivity is pivotal for elucidating the physics of iron-based superconductors. Here we use neutron scattering to probe magnetic and nematic orders throughout the phase diagram of NaFe$_{1-x}$Ni$_x$As, finding that while both static antiferromagnetic and nematic orders compete with superconductivity, the onset temperatures for these two orders remain well-separated approaching the putative quantum critical points. We uncover local orthorhombic distortions that persist well above the tetragonal-to-orthorhombic structural transition temperature $T_{\rm s}$ in underdoped samples and extend well into the overdoped regime that exhibits neither magnetic nor structural phase transitions. These unexpected local orthorhombic distortions display Curie-Weiss temperature dependence and become suppressed below the superconducting transition temperature $T_{\rm c}$, suggesting they result from a large nematic susceptibility near optimal superconductivity. Our results account for observations of rotational symmetry-breaking above $T_{\rm s}$, and attest to the presence of significant nematic fluctuations near optimal superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05315v1-abstract-full').style.display = 'none'; document.getElementById('1807.05315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary Information available upon request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 9, 3128 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.01489">arXiv:1806.01489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.01489">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5095850">10.1063/1.5095850 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unfolding of a diblock chain and its anomalous diffusion induced by active particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Y">Yi-qi Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhuang-lin Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wen-de Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yu-qiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.01489v1-abstract-short" style="display: inline;"> We study the structural and dynamical behaviors of a diblock copolymer chain in a bath of active Brownian particles (ABPs) by extensive Brownian dynamics simulation in a two-dimensional model system. Specifically, the A block of chain is self-attractive, while the B block is self-repulsive. We find, beyond a threshold, the A block unfolds with a pattern like extracting a woolen string from a ball.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.01489v1-abstract-full').style.display = 'inline'; document.getElementById('1806.01489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.01489v1-abstract-full" style="display: none;"> We study the structural and dynamical behaviors of a diblock copolymer chain in a bath of active Brownian particles (ABPs) by extensive Brownian dynamics simulation in a two-dimensional model system. Specifically, the A block of chain is self-attractive, while the B block is self-repulsive. We find, beyond a threshold, the A block unfolds with a pattern like extracting a woolen string from a ball. The critical force decreases with the increase of the B block length,NB, for short cases, then keeps a constant with further increase of NB. In addition, we find a power law exists between the unfolding time of chain and active force, Fa, as well as NB. Finally, we focus on the translational and rotational diffusion of chain, and find that both of them remain supper-diffusive at the long time limit for small active forces due to an asymmetry distribution of ABPs. Our results open new routes for manipulating polymer&#39;s behaviors with ABPs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.01489v1-abstract-full').style.display = 'none'; document.getElementById('1806.01489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.01328">arXiv:1806.01328</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.01328">pdf</a>, <a href="https://arxiv.org/ps/1806.01328">ps</a>, <a href="https://arxiv.org/format/1806.01328">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.224521">10.1103/PhysRevB.97.224521 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic order in CaK(Fe[1-x]Ni[x])4As4 and its interplay with superconductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kreyssig%2C+A">A. Kreyssig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilde%2C+J+M">J. M. Wilde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%B6hmer%2C+A+E">A. E. B枚hmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meier%2C+W+R">W. R. Meier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueland%2C+B+G">B. G. Ueland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">Mingyu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">S. L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">R. J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldman%2C+A+I">A. I. Goldman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.01328v1-abstract-short" style="display: inline;"> The magnetic order in CaK(Fe[1-x]Ni[x])4As4 (1144) single crystals (x = 0.051 and 0.033) has been studied by neutron diffraction. We observe magnetic Bragg peaks associated to the same propagation vectors as found for the collinear stripe antiferromagnetic (AFM) order in the related BaFe2As2 (122) compound. The AFM state in 1144 preserves tetragonal symmetry and only a commensurate, non-collinear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.01328v1-abstract-full').style.display = 'inline'; document.getElementById('1806.01328v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.01328v1-abstract-full" style="display: none;"> The magnetic order in CaK(Fe[1-x]Ni[x])4As4 (1144) single crystals (x = 0.051 and 0.033) has been studied by neutron diffraction. We observe magnetic Bragg peaks associated to the same propagation vectors as found for the collinear stripe antiferromagnetic (AFM) order in the related BaFe2As2 (122) compound. The AFM state in 1144 preserves tetragonal symmetry and only a commensurate, non-collinear structure with a hedgehog spin-vortex crystal (SVC) arrangement in the Fe plane and simple AFM stacking along the c direction is consistent with our observations. The SVC order is promoted by the reduced symmetry in the FeAs layer in the 1144 structure. The long-range SVC order coexists with superconductivity, however, similar to the doped 122 compounds, the ordered magnetic moment is gradually suppressed with the developing superconducting order parameter. This supports the notion that both collinear and non-collinear magnetism and superconductivity are competing for the same electrons coupled by Fermi surface nesting in iron arsenide superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.01328v1-abstract-full').style.display = 'none'; document.getElementById('1806.01328v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">(5 pages, 5 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.12292">arXiv:1805.12292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.12292">pdf</a>, <a href="https://arxiv.org/format/1805.12292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C8CP05976D">10.1039/C8CP05976D <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transition between globule and stretch states of a self-attracting chain in the repulsive active particle bath </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Y">Yi-qi Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+W">Wen-jie Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wen-de Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yu-qiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.12292v1-abstract-short" style="display: inline;"> Folding and unfolding of biopolymers are often manipulated in experiment by tuning pH, temperature, single-molecule force or shear field. Here we carry out Brownian dynamics simulations to explore the behavior of a single self-attracting chain in the suspension of self-propelling particles (SPPs). As the propelling force increases, globule-stretch (G-S) transition of the chain happens due to the e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12292v1-abstract-full').style.display = 'inline'; document.getElementById('1805.12292v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.12292v1-abstract-full" style="display: none;"> Folding and unfolding of biopolymers are often manipulated in experiment by tuning pH, temperature, single-molecule force or shear field. Here we carry out Brownian dynamics simulations to explore the behavior of a single self-attracting chain in the suspension of self-propelling particles (SPPs). As the propelling force increases, globule-stretch (G-S) transition of the chain happens due to the enhanced disturbance from SPPs. Two distinct mechanisms of the transition in the limits of low and high rotational diffusion rates of SPPs have been observed: shear effect at low rate and collision-induced melting at high rate. The G-S and S-G (stretch-globule) curves form hysteresis loop at low rate, while they merge at high rate. Besides, we find two competing effects result in the non-monotonic dependence of the G-S transition on the SPP density at low rate. Our results suggest an alternative approach to manipulating the folding and unfolding of (bio)polymers by utilizing active agents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12292v1-abstract-full').style.display = 'none'; document.getElementById('1805.12292v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7pages, 4figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.06708">arXiv:1805.06708</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.06708">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5029967">10.1063/1.5029967 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Beating of grafted chains induced by active Brownian particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qiu-song Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Q">Qing-wei Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhuang-lin Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Y">Yi-qi Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wen-de Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.06708v1-abstract-short" style="display: inline;"> We study the interplay between active Brownian particles (ABPs) and a hairy surface in two dimensional geometry. We find that the increase of propelling force leads to and enhances inhomogeneous accumulation of ABPs inside the brush region. Oscillation of chain bundles (beating like cilia) is found in company with the formation and disassembly of dynamic cluster of ABPs at large propelling forces.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.06708v1-abstract-full').style.display = 'inline'; document.getElementById('1805.06708v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.06708v1-abstract-full" style="display: none;"> We study the interplay between active Brownian particles (ABPs) and a hairy surface in two dimensional geometry. We find that the increase of propelling force leads to and enhances inhomogeneous accumulation of ABPs inside the brush region. Oscillation of chain bundles (beating like cilia) is found in company with the formation and disassembly of dynamic cluster of ABPs at large propelling forces. Meanwhile chains are stretched and pushed down due to the effective shear force by ABPs. The decrease of the average brush thickness with propelling force reflects the growth of the beating amplitude of chain bundles. Furthermore, the beating phenomenon is investigated in a simple single-chain system. We find that the chain swings regularly with a major oscillatory period, which increases with chain length and decreases with the increase of propelling force. We build a theory to describe the phenomenon and the predictions on the relationship between period and amplitude for various chain lengths and propelling forces agree very well with simulation data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.06708v1-abstract-full').style.display = 'none'; document.getElementById('1805.06708v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15pages,8figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tian%2C+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tian%2C+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tian%2C+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tian%2C+W&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10