CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–34 of 34 results for author: <span class="mathjax">Lazaridou, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Lazaridou%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lazaridou, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lazaridou%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lazaridou, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12640">arXiv:2409.12640</a> <span> [<a href="https://arxiv.org/pdf/2409.12640">pdf</a>, <a href="https://arxiv.org/format/2409.12640">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Michelangelo: Long Context Evaluations Beyond Haystacks via Latent Structure Queries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Vodrahalli%2C+K">Kiran Vodrahalli</a>, <a href="/search/cs?searchtype=author&query=Ontanon%2C+S">Santiago Ontanon</a>, <a href="/search/cs?searchtype=author&query=Tripuraneni%2C+N">Nilesh Tripuraneni</a>, <a href="/search/cs?searchtype=author&query=Xu%2C+K">Kelvin Xu</a>, <a href="/search/cs?searchtype=author&query=Jain%2C+S">Sanil Jain</a>, <a href="/search/cs?searchtype=author&query=Shivanna%2C+R">Rakesh Shivanna</a>, <a href="/search/cs?searchtype=author&query=Hui%2C+J">Jeffrey Hui</a>, <a href="/search/cs?searchtype=author&query=Dikkala%2C+N">Nishanth Dikkala</a>, <a href="/search/cs?searchtype=author&query=Kazemi%2C+M">Mehran Kazemi</a>, <a href="/search/cs?searchtype=author&query=Fatemi%2C+B">Bahare Fatemi</a>, <a href="/search/cs?searchtype=author&query=Anil%2C+R">Rohan Anil</a>, <a href="/search/cs?searchtype=author&query=Dyer%2C+E">Ethan Dyer</a>, <a href="/search/cs?searchtype=author&query=Shakeri%2C+S">Siamak Shakeri</a>, <a href="/search/cs?searchtype=author&query=Vij%2C+R">Roopali Vij</a>, <a href="/search/cs?searchtype=author&query=Mehta%2C+H">Harsh Mehta</a>, <a href="/search/cs?searchtype=author&query=Ramasesh%2C+V">Vinay Ramasesh</a>, <a href="/search/cs?searchtype=author&query=Le%2C+Q">Quoc Le</a>, <a href="/search/cs?searchtype=author&query=Chi%2C+E">Ed Chi</a>, <a href="/search/cs?searchtype=author&query=Lu%2C+Y">Yifeng Lu</a>, <a href="/search/cs?searchtype=author&query=Firat%2C+O">Orhan Firat</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Lespiau%2C+J">Jean-Baptiste Lespiau</a>, <a href="/search/cs?searchtype=author&query=Attaluri%2C+N">Nithya Attaluri</a>, <a href="/search/cs?searchtype=author&query=Olszewska%2C+K">Kate Olszewska</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12640v2-abstract-short" style="display: inline;"> We introduce Michelangelo: a minimal, synthetic, and unleaked long-context reasoning evaluation for large language models which is also easy to automatically score. This evaluation is derived via a novel, unifying framework for evaluations over arbitrarily long contexts which measure the model's ability to do more than retrieve a single piece of information from its context. The central idea of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12640v2-abstract-full').style.display = 'inline'; document.getElementById('2409.12640v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12640v2-abstract-full" style="display: none;"> We introduce Michelangelo: a minimal, synthetic, and unleaked long-context reasoning evaluation for large language models which is also easy to automatically score. This evaluation is derived via a novel, unifying framework for evaluations over arbitrarily long contexts which measure the model's ability to do more than retrieve a single piece of information from its context. The central idea of the Latent Structure Queries framework (LSQ) is to construct tasks which require a model to ``chisel away'' the irrelevant information in the context, revealing a latent structure in the context. To verify a model's understanding of this latent structure, we query the model for details of the structure. Using LSQ, we produce three diagnostic long-context evaluations across code and natural-language domains intended to provide a stronger signal of long-context language model capabilities. We perform evaluations on several state-of-the-art models and demonstrate both that a) the proposed evaluations are high-signal and b) that there is significant room for improvement in synthesizing long-context information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12640v2-abstract-full').style.display = 'none'; document.getElementById('2409.12640v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00179">arXiv:2406.00179</a> <span> [<a href="https://arxiv.org/pdf/2406.00179">pdf</a>, <a href="https://arxiv.org/format/2406.00179">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bohnet%2C+B">Bernd Bohnet</a>, <a href="/search/cs?searchtype=author&query=Swersky%2C+K">Kevin Swersky</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+R">Rosanne Liu</a>, <a href="/search/cs?searchtype=author&query=Awasthi%2C+P">Pranjal Awasthi</a>, <a href="/search/cs?searchtype=author&query=Nova%2C+A">Azade Nova</a>, <a href="/search/cs?searchtype=author&query=Snaider%2C+J">Javier Snaider</a>, <a href="/search/cs?searchtype=author&query=Sedghi%2C+H">Hanie Sedghi</a>, <a href="/search/cs?searchtype=author&query=Parisi%2C+A+T">Aaron T Parisi</a>, <a href="/search/cs?searchtype=author&query=Collins%2C+M">Michael Collins</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Firat%2C+O">Orhan Firat</a>, <a href="/search/cs?searchtype=author&query=Fiedel%2C+N">Noah Fiedel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00179v1-abstract-short" style="display: inline;"> We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books. Previous efforts to construct such datasets relied on crowd-sourcing, but the emergence of transformers with a context size of 1 million or more tokens now enables entirely automatic approaches. Our objective is to test the capabilities of LLMs to analyze, unde… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00179v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00179v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00179v1-abstract-full" style="display: none;"> We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books. Previous efforts to construct such datasets relied on crowd-sourcing, but the emergence of transformers with a context size of 1 million or more tokens now enables entirely automatic approaches. Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text, such as questions involving character arcs, broader themes, or the consequences of early actions later in the story. We propose a holistic pipeline for automatic data generation including question generation, answering, and model scoring using an ``Evaluator''. We find that a relative approach, comparing answers between models in a pairwise fashion and ranking with a Bradley-Terry model, provides a more consistent and differentiating scoring mechanism than an absolute scorer that rates answers individually. We also show that LLMs from different model families produce moderate agreement in their ratings. We ground our approach using the manually curated NarrativeQA dataset, where our evaluator shows excellent agreement with human judgement and even finds errors in the dataset. Using our automatic evaluation approach, we show that using an entire book as context produces superior reading comprehension performance compared to baseline no-context (parametric knowledge only) and retrieval-based approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00179v1-abstract-full').style.display = 'none'; document.getElementById('2406.00179v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05530">arXiv:2403.05530</a> <span> [<a href="https://arxiv.org/pdf/2403.05530">pdf</a>, <a href="https://arxiv.org/format/2403.05530">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gemini+Team"> Gemini Team</a>, <a href="/search/cs?searchtype=author&query=Georgiev%2C+P">Petko Georgiev</a>, <a href="/search/cs?searchtype=author&query=Lei%2C+V+I">Ving Ian Lei</a>, <a href="/search/cs?searchtype=author&query=Burnell%2C+R">Ryan Burnell</a>, <a href="/search/cs?searchtype=author&query=Bai%2C+L">Libin Bai</a>, <a href="/search/cs?searchtype=author&query=Gulati%2C+A">Anmol Gulati</a>, <a href="/search/cs?searchtype=author&query=Tanzer%2C+G">Garrett Tanzer</a>, <a href="/search/cs?searchtype=author&query=Vincent%2C+D">Damien Vincent</a>, <a href="/search/cs?searchtype=author&query=Pan%2C+Z">Zhufeng Pan</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+S">Shibo Wang</a>, <a href="/search/cs?searchtype=author&query=Mariooryad%2C+S">Soroosh Mariooryad</a>, <a href="/search/cs?searchtype=author&query=Ding%2C+Y">Yifan Ding</a>, <a href="/search/cs?searchtype=author&query=Geng%2C+X">Xinyang Geng</a>, <a href="/search/cs?searchtype=author&query=Alcober%2C+F">Fred Alcober</a>, <a href="/search/cs?searchtype=author&query=Frostig%2C+R">Roy Frostig</a>, <a href="/search/cs?searchtype=author&query=Omernick%2C+M">Mark Omernick</a>, <a href="/search/cs?searchtype=author&query=Walker%2C+L">Lexi Walker</a>, <a href="/search/cs?searchtype=author&query=Paduraru%2C+C">Cosmin Paduraru</a>, <a href="/search/cs?searchtype=author&query=Sorokin%2C+C">Christina Sorokin</a>, <a href="/search/cs?searchtype=author&query=Tacchetti%2C+A">Andrea Tacchetti</a>, <a href="/search/cs?searchtype=author&query=Gaffney%2C+C">Colin Gaffney</a>, <a href="/search/cs?searchtype=author&query=Daruki%2C+S">Samira Daruki</a>, <a href="/search/cs?searchtype=author&query=Sercinoglu%2C+O">Olcan Sercinoglu</a>, <a href="/search/cs?searchtype=author&query=Gleicher%2C+Z">Zach Gleicher</a>, <a href="/search/cs?searchtype=author&query=Love%2C+J">Juliette Love</a> , et al. (1110 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05530v4-abstract-short" style="display: inline;"> In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05530v4-abstract-full').style.display = 'inline'; document.getElementById('2403.05530v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05530v4-abstract-full" style="display: none;"> In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05530v4-abstract-full').style.display = 'none'; document.getElementById('2403.05530v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11805">arXiv:2312.11805</a> <span> [<a href="https://arxiv.org/pdf/2312.11805">pdf</a>, <a href="https://arxiv.org/format/2312.11805">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Gemini: A Family of Highly Capable Multimodal Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gemini+Team"> Gemini Team</a>, <a href="/search/cs?searchtype=author&query=Anil%2C+R">Rohan Anil</a>, <a href="/search/cs?searchtype=author&query=Borgeaud%2C+S">Sebastian Borgeaud</a>, <a href="/search/cs?searchtype=author&query=Alayrac%2C+J">Jean-Baptiste Alayrac</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+J">Jiahui Yu</a>, <a href="/search/cs?searchtype=author&query=Soricut%2C+R">Radu Soricut</a>, <a href="/search/cs?searchtype=author&query=Schalkwyk%2C+J">Johan Schalkwyk</a>, <a href="/search/cs?searchtype=author&query=Dai%2C+A+M">Andrew M. Dai</a>, <a href="/search/cs?searchtype=author&query=Hauth%2C+A">Anja Hauth</a>, <a href="/search/cs?searchtype=author&query=Millican%2C+K">Katie Millican</a>, <a href="/search/cs?searchtype=author&query=Silver%2C+D">David Silver</a>, <a href="/search/cs?searchtype=author&query=Johnson%2C+M">Melvin Johnson</a>, <a href="/search/cs?searchtype=author&query=Antonoglou%2C+I">Ioannis Antonoglou</a>, <a href="/search/cs?searchtype=author&query=Schrittwieser%2C+J">Julian Schrittwieser</a>, <a href="/search/cs?searchtype=author&query=Glaese%2C+A">Amelia Glaese</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+J">Jilin Chen</a>, <a href="/search/cs?searchtype=author&query=Pitler%2C+E">Emily Pitler</a>, <a href="/search/cs?searchtype=author&query=Lillicrap%2C+T">Timothy Lillicrap</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Firat%2C+O">Orhan Firat</a>, <a href="/search/cs?searchtype=author&query=Molloy%2C+J">James Molloy</a>, <a href="/search/cs?searchtype=author&query=Isard%2C+M">Michael Isard</a>, <a href="/search/cs?searchtype=author&query=Barham%2C+P+R">Paul R. Barham</a>, <a href="/search/cs?searchtype=author&query=Hennigan%2C+T">Tom Hennigan</a>, <a href="/search/cs?searchtype=author&query=Lee%2C+B">Benjamin Lee</a> , et al. (1325 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11805v4-abstract-short" style="display: inline;"> This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11805v4-abstract-full').style.display = 'inline'; document.getElementById('2312.11805v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11805v4-abstract-full" style="display: none;"> This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of the Gemini family in cross-modal reasoning and language understanding will enable a wide variety of use cases. We discuss our approach toward post-training and deploying Gemini models responsibly to users through services including Gemini, Gemini Advanced, Google AI Studio, and Cloud Vertex AI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11805v4-abstract-full').style.display = 'none'; document.getElementById('2312.11805v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05741">arXiv:2307.05741</a> <span> [<a href="https://arxiv.org/pdf/2307.05741">pdf</a>, <a href="https://arxiv.org/format/2307.05741">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Towards Robust and Efficient Continual Language Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Fisch%2C+A">Adam Fisch</a>, <a href="/search/cs?searchtype=author&query=Rannen-Triki%2C+A">Amal Rannen-Triki</a>, <a href="/search/cs?searchtype=author&query=Pascanu%2C+R">Razvan Pascanu</a>, <a href="/search/cs?searchtype=author&query=Bornschein%2C+J">J枚rg Bornschein</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Gribovskaya%2C+E">Elena Gribovskaya</a>, <a href="/search/cs?searchtype=author&query=Ranzato%2C+M">Marc'Aurelio Ranzato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05741v1-abstract-short" style="display: inline;"> As the application space of language models continues to evolve, a natural question to ask is how we can quickly adapt models to new tasks. We approach this classic question from a continual learning perspective, in which we aim to continue fine-tuning models trained on past tasks on new tasks, with the goal of "transferring" relevant knowledge. However, this strategy also runs the risk of doing m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05741v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05741v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05741v1-abstract-full" style="display: none;"> As the application space of language models continues to evolve, a natural question to ask is how we can quickly adapt models to new tasks. We approach this classic question from a continual learning perspective, in which we aim to continue fine-tuning models trained on past tasks on new tasks, with the goal of "transferring" relevant knowledge. However, this strategy also runs the risk of doing more harm than good, i.e., negative transfer. In this paper, we construct a new benchmark of task sequences that target different possible transfer scenarios one might face, such as a sequence of tasks with high potential of positive transfer, high potential for negative transfer, no expected effect, or a mixture of each. An ideal learner should be able to maximally exploit information from all tasks that have any potential for positive transfer, while also avoiding the negative effects of any distracting tasks that may confuse it. We then propose a simple, yet effective, learner that satisfies many of our desiderata simply by leveraging a selective strategy for initializing new models from past task checkpoints. Still, limitations remain, and we hope this benchmark can help the community to further build and analyze such learners. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05741v1-abstract-full').style.display = 'none'; document.getElementById('2307.05741v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.11747">arXiv:2211.11747</a> <span> [<a href="https://arxiv.org/pdf/2211.11747">pdf</a>, <a href="https://arxiv.org/format/2211.11747">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bornschein%2C+J">Jorg Bornschein</a>, <a href="/search/cs?searchtype=author&query=Galashov%2C+A">Alexandre Galashov</a>, <a href="/search/cs?searchtype=author&query=Hemsley%2C+R">Ross Hemsley</a>, <a href="/search/cs?searchtype=author&query=Rannen-Triki%2C+A">Amal Rannen-Triki</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+Y">Yutian Chen</a>, <a href="/search/cs?searchtype=author&query=Chaudhry%2C+A">Arslan Chaudhry</a>, <a href="/search/cs?searchtype=author&query=He%2C+X+O">Xu Owen He</a>, <a href="/search/cs?searchtype=author&query=Douillard%2C+A">Arthur Douillard</a>, <a href="/search/cs?searchtype=author&query=Caccia%2C+M">Massimo Caccia</a>, <a href="/search/cs?searchtype=author&query=Feng%2C+Q">Qixuang Feng</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+J">Jiajun Shen</a>, <a href="/search/cs?searchtype=author&query=Rebuffi%2C+S">Sylvestre-Alvise Rebuffi</a>, <a href="/search/cs?searchtype=author&query=Stacpoole%2C+K">Kitty Stacpoole</a>, <a href="/search/cs?searchtype=author&query=Casas%2C+D+d+l">Diego de las Casas</a>, <a href="/search/cs?searchtype=author&query=Hawkins%2C+W">Will Hawkins</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Teh%2C+Y+W">Yee Whye Teh</a>, <a href="/search/cs?searchtype=author&query=Rusu%2C+A+A">Andrei A. Rusu</a>, <a href="/search/cs?searchtype=author&query=Pascanu%2C+R">Razvan Pascanu</a>, <a href="/search/cs?searchtype=author&query=Ranzato%2C+M">Marc'Aurelio Ranzato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.11747v2-abstract-short" style="display: inline;"> A shared goal of several machine learning communities like continual learning, meta-learning and transfer learning, is to design algorithms and models that efficiently and robustly adapt to unseen tasks. An even more ambitious goal is to build models that never stop adapting, and that become increasingly more efficient through time by suitably transferring the accrued knowledge. Beyond the study o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11747v2-abstract-full').style.display = 'inline'; document.getElementById('2211.11747v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.11747v2-abstract-full" style="display: none;"> A shared goal of several machine learning communities like continual learning, meta-learning and transfer learning, is to design algorithms and models that efficiently and robustly adapt to unseen tasks. An even more ambitious goal is to build models that never stop adapting, and that become increasingly more efficient through time by suitably transferring the accrued knowledge. Beyond the study of the actual learning algorithm and model architecture, there are several hurdles towards our quest to build such models, such as the choice of learning protocol, metric of success and data needed to validate research hypotheses. In this work, we introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks, sorted chronologically and extracted from papers sampled uniformly from computer vision proceedings spanning the last three decades. The resulting stream reflects what the research community thought was meaningful at any point in time, and it serves as an ideal test bed to assess how well models can adapt to new tasks, and do so better and more efficiently as time goes by. Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth. The diversity is also reflected in the wide range of dataset sizes, spanning over four orders of magnitude. Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks, yet with a low entry barrier as it is limited to a single modality and well understood supervised learning problems. Moreover, we provide a reference implementation including strong baselines and an evaluation protocol to compare methods in terms of their trade-off between accuracy and compute. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11747v2-abstract-full').style.display = 'none'; document.getElementById('2211.11747v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.11388">arXiv:2205.11388</a> <span> [<a href="https://arxiv.org/pdf/2205.11388">pdf</a>, <a href="https://arxiv.org/format/2205.11388">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> StreamingQA: A Benchmark for Adaptation to New Knowledge over Time in Question Answering Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Li%C5%A1ka%2C+A">Adam Li拧ka</a>, <a href="/search/cs?searchtype=author&query=Ko%C4%8Disk%C3%BD%2C+T">Tom谩拧 Ko膷isk媒</a>, <a href="/search/cs?searchtype=author&query=Gribovskaya%2C+E">Elena Gribovskaya</a>, <a href="/search/cs?searchtype=author&query=Terzi%2C+T">Tayfun Terzi</a>, <a href="/search/cs?searchtype=author&query=Sezener%2C+E">Eren Sezener</a>, <a href="/search/cs?searchtype=author&query=Agrawal%2C+D">Devang Agrawal</a>, <a href="/search/cs?searchtype=author&query=d%27Autume%2C+C+d+M">Cyprien de Masson d'Autume</a>, <a href="/search/cs?searchtype=author&query=Scholtes%2C+T">Tim Scholtes</a>, <a href="/search/cs?searchtype=author&query=Zaheer%2C+M">Manzil Zaheer</a>, <a href="/search/cs?searchtype=author&query=Young%2C+S">Susannah Young</a>, <a href="/search/cs?searchtype=author&query=Gilsenan-McMahon%2C+E">Ellen Gilsenan-McMahon</a>, <a href="/search/cs?searchtype=author&query=Austin%2C+S">Sophia Austin</a>, <a href="/search/cs?searchtype=author&query=Blunsom%2C+P">Phil Blunsom</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.11388v1-abstract-short" style="display: inline;"> Knowledge and language understanding of models evaluated through question answering (QA) has been usually studied on static snapshots of knowledge, like Wikipedia. However, our world is dynamic, evolves over time, and our models' knowledge becomes outdated. To study how semi-parametric QA models and their underlying parametric language models (LMs) adapt to evolving knowledge, we construct a new l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11388v1-abstract-full').style.display = 'inline'; document.getElementById('2205.11388v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.11388v1-abstract-full" style="display: none;"> Knowledge and language understanding of models evaluated through question answering (QA) has been usually studied on static snapshots of knowledge, like Wikipedia. However, our world is dynamic, evolves over time, and our models' knowledge becomes outdated. To study how semi-parametric QA models and their underlying parametric language models (LMs) adapt to evolving knowledge, we construct a new large-scale dataset, StreamingQA, with human written and generated questions asked on a given date, to be answered from 14 years of time-stamped news articles. We evaluate our models quarterly as they read new articles not seen in pre-training. We show that parametric models can be updated without full retraining, while avoiding catastrophic forgetting. For semi-parametric models, adding new articles into the search space allows for rapid adaptation, however, models with an outdated underlying LM under-perform those with a retrained LM. For questions about higher-frequency named entities, parametric updates are particularly beneficial. In our dynamic world, the StreamingQA dataset enables a more realistic evaluation of QA models, and our experiments highlight several promising directions for future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11388v1-abstract-full').style.display = 'none'; document.getElementById('2205.11388v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05115">arXiv:2203.05115</a> <span> [<a href="https://arxiv.org/pdf/2203.05115">pdf</a>, <a href="https://arxiv.org/format/2203.05115">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Internet-augmented language models through few-shot prompting for open-domain question answering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Gribovskaya%2C+E">Elena Gribovskaya</a>, <a href="/search/cs?searchtype=author&query=Stokowiec%2C+W">Wojciech Stokowiec</a>, <a href="/search/cs?searchtype=author&query=Grigorev%2C+N">Nikolai Grigorev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05115v2-abstract-short" style="display: inline;"> In this work, we aim to capitalize on the unique few-shot capabilities of large-scale language models (LSLMs) to overcome some of their challenges with respect to grounding to factual and up-to-date information. Motivated by semi-parametric language models (LMs), which ground their decisions in external retrieved evidence, we use few-shot prompting to learn to condition LMs on information returned… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05115v2-abstract-full').style.display = 'inline'; document.getElementById('2203.05115v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05115v2-abstract-full" style="display: none;"> In this work, we aim to capitalize on the unique few-shot capabilities of large-scale language models (LSLMs) to overcome some of their challenges with respect to grounding to factual and up-to-date information. Motivated by semi-parametric language models (LMs), which ground their decisions in external retrieved evidence, we use few-shot prompting to learn to condition LMs on information returned from the web using Google Search, a broad and constantly updated knowledge source. Our approach does not involve fine-tuning or learning additional parameters, thus making it applicable to any LM, offering therefore a strong baseline. Indeed, we find that LMs conditioned on the web surpass performance of closed-book models of similar, or even larger, model sizes in open-domain question answering. Finally, we find that increasing the inference-time compute of models, achieved via using multiple retrieved evidences to generate multiple answers followed by a reranking stage that uses scores generated by the same LMs, leads to better performance and alleviates lower performance of smaller few-shot LMs. All in all, our findings suggest that it might be beneficial to slow down the race towards the biggest model and instead shift attention towards finding more effective ways to use models, including but not limited to, better prompting or increasing inference-time compute. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05115v2-abstract-full').style.display = 'none'; document.getElementById('2203.05115v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11446">arXiv:2112.11446</a> <span> [<a href="https://arxiv.org/pdf/2112.11446">pdf</a>, <a href="https://arxiv.org/format/2112.11446">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Scaling Language Models: Methods, Analysis & Insights from Training Gopher </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Rae%2C+J+W">Jack W. Rae</a>, <a href="/search/cs?searchtype=author&query=Borgeaud%2C+S">Sebastian Borgeaud</a>, <a href="/search/cs?searchtype=author&query=Cai%2C+T">Trevor Cai</a>, <a href="/search/cs?searchtype=author&query=Millican%2C+K">Katie Millican</a>, <a href="/search/cs?searchtype=author&query=Hoffmann%2C+J">Jordan Hoffmann</a>, <a href="/search/cs?searchtype=author&query=Song%2C+F">Francis Song</a>, <a href="/search/cs?searchtype=author&query=Aslanides%2C+J">John Aslanides</a>, <a href="/search/cs?searchtype=author&query=Henderson%2C+S">Sarah Henderson</a>, <a href="/search/cs?searchtype=author&query=Ring%2C+R">Roman Ring</a>, <a href="/search/cs?searchtype=author&query=Young%2C+S">Susannah Young</a>, <a href="/search/cs?searchtype=author&query=Rutherford%2C+E">Eliza Rutherford</a>, <a href="/search/cs?searchtype=author&query=Hennigan%2C+T">Tom Hennigan</a>, <a href="/search/cs?searchtype=author&query=Menick%2C+J">Jacob Menick</a>, <a href="/search/cs?searchtype=author&query=Cassirer%2C+A">Albin Cassirer</a>, <a href="/search/cs?searchtype=author&query=Powell%2C+R">Richard Powell</a>, <a href="/search/cs?searchtype=author&query=Driessche%2C+G+v+d">George van den Driessche</a>, <a href="/search/cs?searchtype=author&query=Hendricks%2C+L+A">Lisa Anne Hendricks</a>, <a href="/search/cs?searchtype=author&query=Rauh%2C+M">Maribeth Rauh</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+P">Po-Sen Huang</a>, <a href="/search/cs?searchtype=author&query=Glaese%2C+A">Amelia Glaese</a>, <a href="/search/cs?searchtype=author&query=Welbl%2C+J">Johannes Welbl</a>, <a href="/search/cs?searchtype=author&query=Dathathri%2C+S">Sumanth Dathathri</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+S">Saffron Huang</a>, <a href="/search/cs?searchtype=author&query=Uesato%2C+J">Jonathan Uesato</a>, <a href="/search/cs?searchtype=author&query=Mellor%2C+J">John Mellor</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11446v2-abstract-short" style="display: inline;"> Language modelling provides a step towards intelligent communication systems by harnessing large repositories of written human knowledge to better predict and understand the world. In this paper, we present an analysis of Transformer-based language model performance across a wide range of model scales -- from models with tens of millions of parameters up to a 280 billion parameter model called Gop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11446v2-abstract-full').style.display = 'inline'; document.getElementById('2112.11446v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11446v2-abstract-full" style="display: none;"> Language modelling provides a step towards intelligent communication systems by harnessing large repositories of written human knowledge to better predict and understand the world. In this paper, we present an analysis of Transformer-based language model performance across a wide range of model scales -- from models with tens of millions of parameters up to a 280 billion parameter model called Gopher. These models are evaluated on 152 diverse tasks, achieving state-of-the-art performance across the majority. Gains from scale are largest in areas such as reading comprehension, fact-checking, and the identification of toxic language, but logical and mathematical reasoning see less benefit. We provide a holistic analysis of the training dataset and model's behaviour, covering the intersection of model scale with bias and toxicity. Finally we discuss the application of language models to AI safety and the mitigation of downstream harms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11446v2-abstract-full').style.display = 'none'; document.getElementById('2112.11446v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">120 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.14241">arXiv:2110.14241</a> <span> [<a href="https://arxiv.org/pdf/2110.14241">pdf</a>, <a href="https://arxiv.org/format/2110.14241">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Dynamic population-based meta-learning for multi-agent communication with natural language </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gupta%2C+A">Abhinav Gupta</a>, <a href="/search/cs?searchtype=author&query=Lanctot%2C+M">Marc Lanctot</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.14241v1-abstract-short" style="display: inline;"> In this work, our goal is to train agents that can coordinate with seen, unseen as well as human partners in a multi-agent communication environment involving natural language. Previous work using a single set of agents has shown great progress in generalizing to known partners, however it struggles when coordinating with unfamiliar agents. To mitigate that, recent work explored the use of populat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14241v1-abstract-full').style.display = 'inline'; document.getElementById('2110.14241v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.14241v1-abstract-full" style="display: none;"> In this work, our goal is to train agents that can coordinate with seen, unseen as well as human partners in a multi-agent communication environment involving natural language. Previous work using a single set of agents has shown great progress in generalizing to known partners, however it struggles when coordinating with unfamiliar agents. To mitigate that, recent work explored the use of population-based approaches, where multiple agents interact with each other with the goal of learning more generic protocols. These methods, while able to result in good coordination between unseen partners, still only achieve so in cases of simple languages, thus failing to adapt to human partners using natural language. We attribute this to the use of static populations and instead propose a dynamic population-based meta-learning approach that builds such a population in an iterative manner. We perform a holistic evaluation of our method on two different referential games, and show that our agents outperform all prior work when communicating with seen partners and humans. Furthermore, we analyze the natural language generation skills of our agents, where we find that our agents also outperform strong baselines. Finally, we test the robustness of our agents when communicating with out-of-population agents and carefully test the importance of each component of our method through ablation studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14241v1-abstract-full').style.display = 'none'; document.getElementById('2110.14241v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at NeurIPS 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.01951">arXiv:2102.01951</a> <span> [<a href="https://arxiv.org/pdf/2102.01951">pdf</a>, <a href="https://arxiv.org/format/2102.01951">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Mind the Gap: Assessing Temporal Generalization in Neural Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Kuncoro%2C+A">Adhiguna Kuncoro</a>, <a href="/search/cs?searchtype=author&query=Gribovskaya%2C+E">Elena Gribovskaya</a>, <a href="/search/cs?searchtype=author&query=Agrawal%2C+D">Devang Agrawal</a>, <a href="/search/cs?searchtype=author&query=Liska%2C+A">Adam Liska</a>, <a href="/search/cs?searchtype=author&query=Terzi%2C+T">Tayfun Terzi</a>, <a href="/search/cs?searchtype=author&query=Gimenez%2C+M">Mai Gimenez</a>, <a href="/search/cs?searchtype=author&query=d%27Autume%2C+C+d+M">Cyprien de Masson d'Autume</a>, <a href="/search/cs?searchtype=author&query=Kocisky%2C+T">Tomas Kocisky</a>, <a href="/search/cs?searchtype=author&query=Ruder%2C+S">Sebastian Ruder</a>, <a href="/search/cs?searchtype=author&query=Yogatama%2C+D">Dani Yogatama</a>, <a href="/search/cs?searchtype=author&query=Cao%2C+K">Kris Cao</a>, <a href="/search/cs?searchtype=author&query=Young%2C+S">Susannah Young</a>, <a href="/search/cs?searchtype=author&query=Blunsom%2C+P">Phil Blunsom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.01951v2-abstract-short" style="display: inline;"> Our world is open-ended, non-stationary, and constantly evolving; thus what we talk about and how we talk about it change over time. This inherent dynamic nature of language contrasts with the current static language modelling paradigm, which trains and evaluates models on utterances from overlapping time periods. Despite impressive recent progress, we demonstrate that Transformer-XL language mode… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01951v2-abstract-full').style.display = 'inline'; document.getElementById('2102.01951v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.01951v2-abstract-full" style="display: none;"> Our world is open-ended, non-stationary, and constantly evolving; thus what we talk about and how we talk about it change over time. This inherent dynamic nature of language contrasts with the current static language modelling paradigm, which trains and evaluates models on utterances from overlapping time periods. Despite impressive recent progress, we demonstrate that Transformer-XL language models perform worse in the realistic setup of predicting future utterances from beyond their training period, and that model performance becomes increasingly worse with time. We find that, while increasing model size alone -- a key driver behind recent progress -- does not solve this problem, having models that continually update their knowledge with new information can indeed mitigate this performance degradation over time. Hence, given the compilation of ever-larger language modelling datasets, combined with the growing list of language-model-based NLP applications that require up-to-date factual knowledge about the world, we argue that now is the right time to rethink the static way in which we currently train and evaluate our language models, and develop adaptive language models that can remain up-to-date with respect to our ever-changing and non-stationary world. We publicly release our dynamic, streaming language modelling benchmarks for WMT and arXiv to facilitate language model evaluation that takes temporal dynamics into account. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01951v2-abstract-full').style.display = 'none'; document.getElementById('2102.01951v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear as a Spotlight at NeurIPS 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.10276">arXiv:2101.10276</a> <span> [<a href="https://arxiv.org/pdf/2101.10276">pdf</a>, <a href="https://arxiv.org/format/2101.10276">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Emergent Communication under Competition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Noukhovitch%2C+M">Michael Noukhovitch</a>, <a href="/search/cs?searchtype=author&query=LaCroix%2C+T">Travis LaCroix</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Courville%2C+A">Aaron Courville</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.10276v1-abstract-short" style="display: inline;"> The literature in modern machine learning has only negative results for learning to communicate between competitive agents using standard RL. We introduce a modified sender-receiver game to study the spectrum of partially-competitive scenarios and show communication can indeed emerge in a competitive setting. We empirically demonstrate three key takeaways for future research. First, we show that c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10276v1-abstract-full').style.display = 'inline'; document.getElementById('2101.10276v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.10276v1-abstract-full" style="display: none;"> The literature in modern machine learning has only negative results for learning to communicate between competitive agents using standard RL. We introduce a modified sender-receiver game to study the spectrum of partially-competitive scenarios and show communication can indeed emerge in a competitive setting. We empirically demonstrate three key takeaways for future research. First, we show that communication is proportional to cooperation, and it can occur for partially competitive scenarios using standard learning algorithms. Second, we highlight the difference between communication and manipulation and extend previous metrics of communication to the competitive case. Third, we investigate the negotiation game where previous work failed to learn communication between independent agents (Cao et al., 2018). We show that, in this setting, both agents must benefit from communication for it to emerge; and, with a slight modification to the game, we demonstrate successful communication between competitive agents. We hope this work overturns misconceptions and inspires more research in competitive emergent communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10276v1-abstract-full').style.display = 'none'; document.getElementById('2101.10276v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be presented at AAMAS 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.10380">arXiv:2010.10380</a> <span> [<a href="https://arxiv.org/pdf/2010.10380">pdf</a>, <a href="https://arxiv.org/format/2010.10380">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Negotiating Team Formation Using Deep Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bachrach%2C+Y">Yoram Bachrach</a>, <a href="/search/cs?searchtype=author&query=Everett%2C+R">Richard Everett</a>, <a href="/search/cs?searchtype=author&query=Hughes%2C+E">Edward Hughes</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Leibo%2C+J+Z">Joel Z. Leibo</a>, <a href="/search/cs?searchtype=author&query=Lanctot%2C+M">Marc Lanctot</a>, <a href="/search/cs?searchtype=author&query=Johanson%2C+M">Michael Johanson</a>, <a href="/search/cs?searchtype=author&query=Czarnecki%2C+W+M">Wojciech M. Czarnecki</a>, <a href="/search/cs?searchtype=author&query=Graepel%2C+T">Thore Graepel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.10380v1-abstract-short" style="display: inline;"> When autonomous agents interact in the same environment, they must often cooperate to achieve their goals. One way for agents to cooperate effectively is to form a team, make a binding agreement on a joint plan, and execute it. However, when agents are self-interested, the gains from team formation must be allocated appropriately to incentivize agreement. Various approaches for multi-agent negotia… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10380v1-abstract-full').style.display = 'inline'; document.getElementById('2010.10380v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.10380v1-abstract-full" style="display: none;"> When autonomous agents interact in the same environment, they must often cooperate to achieve their goals. One way for agents to cooperate effectively is to form a team, make a binding agreement on a joint plan, and execute it. However, when agents are self-interested, the gains from team formation must be allocated appropriately to incentivize agreement. Various approaches for multi-agent negotiation have been proposed, but typically only work for particular negotiation protocols. More general methods usually require human input or domain-specific data, and so do not scale. To address this, we propose a framework for training agents to negotiate and form teams using deep reinforcement learning. Importantly, our method makes no assumptions about the specific negotiation protocol, and is instead completely experience driven. We evaluate our approach on both non-spatial and spatially extended team-formation negotiation environments, demonstrating that our agents beat hand-crafted bots and reach negotiation outcomes consistent with fair solutions predicted by cooperative game theory. Additionally, we investigate how the physical location of agents influences negotiation outcomes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10380v1-abstract-full').style.display = 'none'; document.getElementById('2010.10380v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.6 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Artificial Intelligence 288 (2020): 103356 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.02419">arXiv:2006.02419</a> <span> [<a href="https://arxiv.org/pdf/2006.02419">pdf</a>, <a href="https://arxiv.org/format/2006.02419">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Emergent Multi-Agent Communication in the Deep Learning Era </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Baroni%2C+M">Marco Baroni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.02419v2-abstract-short" style="display: inline;"> The ability to cooperate through language is a defining feature of humans. As the perceptual, motory and planning capabilities of deep artificial networks increase, researchers are studying whether they also can develop a shared language to interact. From a scientific perspective, understanding the conditions under which language evolves in communities of deep agents and its emergent features can… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02419v2-abstract-full').style.display = 'inline'; document.getElementById('2006.02419v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.02419v2-abstract-full" style="display: none;"> The ability to cooperate through language is a defining feature of humans. As the perceptual, motory and planning capabilities of deep artificial networks increase, researchers are studying whether they also can develop a shared language to interact. From a scientific perspective, understanding the conditions under which language evolves in communities of deep agents and its emergent features can shed light on human language evolution. From an applied perspective, endowing deep networks with the ability to solve problems interactively by communicating with each other and with us should make them more flexible and useful in everyday life. This article surveys representative recent language emergence studies from both of these two angles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02419v2-abstract-full').style.display = 'none'; document.getElementById('2006.02419v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Added some more references and discussion</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.07064">arXiv:2005.07064</a> <span> [<a href="https://arxiv.org/pdf/2005.07064">pdf</a>, <a href="https://arxiv.org/format/2005.07064">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Multi-agent Communication meets Natural Language: Synergies between Functional and Structural Language Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Potapenko%2C+A">Anna Potapenko</a>, <a href="/search/cs?searchtype=author&query=Tieleman%2C+O">Olivier Tieleman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.07064v1-abstract-short" style="display: inline;"> We present a method for combining multi-agent communication and traditional data-driven approaches to natural language learning, with an end goal of teaching agents to communicate with humans in natural language. Our starting point is a language model that has been trained on generic, not task-specific language data. We then place this model in a multi-agent self-play environment that generates ta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07064v1-abstract-full').style.display = 'inline'; document.getElementById('2005.07064v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.07064v1-abstract-full" style="display: none;"> We present a method for combining multi-agent communication and traditional data-driven approaches to natural language learning, with an end goal of teaching agents to communicate with humans in natural language. Our starting point is a language model that has been trained on generic, not task-specific language data. We then place this model in a multi-agent self-play environment that generates task-specific rewards used to adapt or modulate the model, turning it into a task-conditional language model. We introduce a new way for combining the two types of learning based on the idea of reranking language model samples, and show that this method outperforms others in communicating with humans in a visual referential communication task. Finally, we present a taxonomy of different types of language drift that can occur alongside a set of measures to detect them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07064v1-abstract-full').style.display = 'none'; document.getElementById('2005.07064v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear at ACL 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.10151">arXiv:2004.10151</a> <span> [<a href="https://arxiv.org/pdf/2004.10151">pdf</a>, <a href="https://arxiv.org/format/2004.10151">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Experience Grounds Language </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bisk%2C+Y">Yonatan Bisk</a>, <a href="/search/cs?searchtype=author&query=Holtzman%2C+A">Ari Holtzman</a>, <a href="/search/cs?searchtype=author&query=Thomason%2C+J">Jesse Thomason</a>, <a href="/search/cs?searchtype=author&query=Andreas%2C+J">Jacob Andreas</a>, <a href="/search/cs?searchtype=author&query=Bengio%2C+Y">Yoshua Bengio</a>, <a href="/search/cs?searchtype=author&query=Chai%2C+J">Joyce Chai</a>, <a href="/search/cs?searchtype=author&query=Lapata%2C+M">Mirella Lapata</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=May%2C+J">Jonathan May</a>, <a href="/search/cs?searchtype=author&query=Nisnevich%2C+A">Aleksandr Nisnevich</a>, <a href="/search/cs?searchtype=author&query=Pinto%2C+N">Nicolas Pinto</a>, <a href="/search/cs?searchtype=author&query=Turian%2C+J">Joseph Turian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.10151v3-abstract-short" style="display: inline;"> Language understanding research is held back by a failure to relate language to the physical world it describes and to the social interactions it facilitates. Despite the incredible effectiveness of language processing models to tackle tasks after being trained on text alone, successful linguistic communication relies on a shared experience of the world. It is this shared experience that makes utt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10151v3-abstract-full').style.display = 'inline'; document.getElementById('2004.10151v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.10151v3-abstract-full" style="display: none;"> Language understanding research is held back by a failure to relate language to the physical world it describes and to the social interactions it facilitates. Despite the incredible effectiveness of language processing models to tackle tasks after being trained on text alone, successful linguistic communication relies on a shared experience of the world. It is this shared experience that makes utterances meaningful. Natural language processing is a diverse field, and progress throughout its development has come from new representational theories, modeling techniques, data collection paradigms, and tasks. We posit that the present success of representation learning approaches trained on large, text-only corpora requires the parallel tradition of research on the broader physical and social context of language to address the deeper questions of communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10151v3-abstract-full').style.display = 'none'; document.getElementById('2004.10151v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Empirical Methods in Natural Language Processing (EMNLP), 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.06208">arXiv:1912.06208</a> <span> [<a href="https://arxiv.org/pdf/1912.06208">pdf</a>, <a href="https://arxiv.org/format/1912.06208">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Shaping representations through communication: community size effect in artificial learning systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Tieleman%2C+O">Olivier Tieleman</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Mourad%2C+S">Shibl Mourad</a>, <a href="/search/cs?searchtype=author&query=Blundell%2C+C">Charles Blundell</a>, <a href="/search/cs?searchtype=author&query=Precup%2C+D">Doina Precup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.06208v1-abstract-short" style="display: inline;"> Motivated by theories of language and communication that explain why communities with large numbers of speakers have, on average, simpler languages with more regularity, we cast the representation learning problem in terms of learning to communicate. Our starting point sees the traditional autoencoder setup as a single encoder with a fixed decoder partner that must learn to communicate. Generalizi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06208v1-abstract-full').style.display = 'inline'; document.getElementById('1912.06208v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.06208v1-abstract-full" style="display: none;"> Motivated by theories of language and communication that explain why communities with large numbers of speakers have, on average, simpler languages with more regularity, we cast the representation learning problem in terms of learning to communicate. Our starting point sees the traditional autoencoder setup as a single encoder with a fixed decoder partner that must learn to communicate. Generalizing from there, we introduce community-based autoencoders in which multiple encoders and decoders collectively learn representations by being randomly paired up on successive training iterations. We find that increasing community sizes reduce idiosyncrasies in the learned codes, resulting in representations that better encode concept categories and correlate with human feature norms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06208v1-abstract-full').style.display = 'none'; document.getElementById('1912.06208v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS 2019 workshop on visually grounded interaction and language</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.05676">arXiv:1912.05676</a> <span> [<a href="https://arxiv.org/pdf/1912.05676">pdf</a>, <a href="https://arxiv.org/format/1912.05676">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Biases for Emergent Communication in Multi-agent Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Eccles%2C+T">Tom Eccles</a>, <a href="/search/cs?searchtype=author&query=Bachrach%2C+Y">Yoram Bachrach</a>, <a href="/search/cs?searchtype=author&query=Lever%2C+G">Guy Lever</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Graepel%2C+T">Thore Graepel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.05676v1-abstract-short" style="display: inline;"> We study the problem of emergent communication, in which language arises because speakers and listeners must communicate information in order to solve tasks. In temporally extended reinforcement learning domains, it has proved hard to learn such communication without centralized training of agents, due in part to a difficult joint exploration problem. We introduce inductive biases for positive sig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.05676v1-abstract-full').style.display = 'inline'; document.getElementById('1912.05676v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.05676v1-abstract-full" style="display: none;"> We study the problem of emergent communication, in which language arises because speakers and listeners must communicate information in order to solve tasks. In temporally extended reinforcement learning domains, it has proved hard to learn such communication without centralized training of agents, due in part to a difficult joint exploration problem. We introduce inductive biases for positive signalling and positive listening, which ease this problem. In a simple one-step environment, we demonstrate how these biases ease the learning problem. We also apply our methods to a more extended environment, showing that agents with these inductive biases achieve better performance, and analyse the resulting communication protocols. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.05676v1-abstract-full').style.display = 'none'; document.getElementById('1912.05676v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at NeurIPS 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.11373">arXiv:1901.11373</a> <span> [<a href="https://arxiv.org/pdf/1901.11373">pdf</a>, <a href="https://arxiv.org/format/1901.11373">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Learning and Evaluating General Linguistic Intelligence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Yogatama%2C+D">Dani Yogatama</a>, <a href="/search/cs?searchtype=author&query=d%27Autume%2C+C+d+M">Cyprien de Masson d'Autume</a>, <a href="/search/cs?searchtype=author&query=Connor%2C+J">Jerome Connor</a>, <a href="/search/cs?searchtype=author&query=Kocisky%2C+T">Tomas Kocisky</a>, <a href="/search/cs?searchtype=author&query=Chrzanowski%2C+M">Mike Chrzanowski</a>, <a href="/search/cs?searchtype=author&query=Kong%2C+L">Lingpeng Kong</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Ling%2C+W">Wang Ling</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+L">Lei Yu</a>, <a href="/search/cs?searchtype=author&query=Dyer%2C+C">Chris Dyer</a>, <a href="/search/cs?searchtype=author&query=Blunsom%2C+P">Phil Blunsom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.11373v1-abstract-short" style="display: inline;"> We define general linguistic intelligence as the ability to reuse previously acquired knowledge about a language's lexicon, syntax, semantics, and pragmatic conventions to adapt to new tasks quickly. Using this definition, we analyze state-of-the-art natural language understanding models and conduct an extensive empirical investigation to evaluate them against these criteria through a series of ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.11373v1-abstract-full').style.display = 'inline'; document.getElementById('1901.11373v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.11373v1-abstract-full" style="display: none;"> We define general linguistic intelligence as the ability to reuse previously acquired knowledge about a language's lexicon, syntax, semantics, and pragmatic conventions to adapt to new tasks quickly. Using this definition, we analyze state-of-the-art natural language understanding models and conduct an extensive empirical investigation to evaluate them against these criteria through a series of experiments that assess the task-independence of the knowledge being acquired by the learning process. In addition to task performance, we propose a new evaluation metric based on an online encoding of the test data that quantifies how quickly an existing agent (model) learns a new task. Our results show that while the field has made impressive progress in terms of model architectures that generalize to many tasks, these models still require a lot of in-domain training examples (e.g., for fine tuning, training task-specific modules), and are prone to catastrophic forgetting. Moreover, we find that far from solving general tasks (e.g., document question answering), our models are overfitting to the quirks of particular datasets (e.g., SQuAD). We discuss missing components and conjecture on how to make progress toward general linguistic intelligence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.11373v1-abstract-full').style.display = 'none'; document.getElementById('1901.11373v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.08647">arXiv:1810.08647</a> <span> [<a href="https://arxiv.org/pdf/1810.08647">pdf</a>, <a href="https://arxiv.org/format/1810.08647">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jaques%2C+N">Natasha Jaques</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Hughes%2C+E">Edward Hughes</a>, <a href="/search/cs?searchtype=author&query=Gulcehre%2C+C">Caglar Gulcehre</a>, <a href="/search/cs?searchtype=author&query=Ortega%2C+P+A">Pedro A. Ortega</a>, <a href="/search/cs?searchtype=author&query=Strouse%2C+D">DJ Strouse</a>, <a href="/search/cs?searchtype=author&query=Leibo%2C+J+Z">Joel Z. Leibo</a>, <a href="/search/cs?searchtype=author&query=de+Freitas%2C+N">Nando de Freitas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.08647v4-abstract-short" style="display: inline;"> We propose a unified mechanism for achieving coordination and communication in Multi-Agent Reinforcement Learning (MARL), through rewarding agents for having causal influence over other agents' actions. Causal influence is assessed using counterfactual reasoning. At each timestep, an agent simulates alternate actions that it could have taken, and computes their effect on the behavior of other agen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08647v4-abstract-full').style.display = 'inline'; document.getElementById('1810.08647v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.08647v4-abstract-full" style="display: none;"> We propose a unified mechanism for achieving coordination and communication in Multi-Agent Reinforcement Learning (MARL), through rewarding agents for having causal influence over other agents' actions. Causal influence is assessed using counterfactual reasoning. At each timestep, an agent simulates alternate actions that it could have taken, and computes their effect on the behavior of other agents. Actions that lead to bigger changes in other agents' behavior are considered influential and are rewarded. We show that this is equivalent to rewarding agents for having high mutual information between their actions. Empirical results demonstrate that influence leads to enhanced coordination and communication in challenging social dilemma environments, dramatically increasing the learning curves of the deep RL agents, and leading to more meaningful learned communication protocols. The influence rewards for all agents can be computed in a decentralized way by enabling agents to learn a model of other agents using deep neural networks. In contrast, key previous works on emergent communication in the MARL setting were unable to learn diverse policies in a decentralized manner and had to resort to centralized training. Consequently, the influence reward opens up a window of new opportunities for research in this area. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08647v4-abstract-full').style.display = 'none'; document.getElementById('1810.08647v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.03984">arXiv:1804.03984</a> <span> [<a href="https://arxiv.org/pdf/1804.03984">pdf</a>, <a href="https://arxiv.org/format/1804.03984">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Emergence of Linguistic Communication from Referential Games with Symbolic and Pixel Input </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Hermann%2C+K+M">Karl Moritz Hermann</a>, <a href="/search/cs?searchtype=author&query=Tuyls%2C+K">Karl Tuyls</a>, <a href="/search/cs?searchtype=author&query=Clark%2C+S">Stephen Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.03984v1-abstract-short" style="display: inline;"> The ability of algorithms to evolve or learn (compositional) communication protocols has traditionally been studied in the language evolution literature through the use of emergent communication tasks. Here we scale up this research by using contemporary deep learning methods and by training reinforcement-learning neural network agents on referential communication games. We extend previous work, i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.03984v1-abstract-full').style.display = 'inline'; document.getElementById('1804.03984v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.03984v1-abstract-full" style="display: none;"> The ability of algorithms to evolve or learn (compositional) communication protocols has traditionally been studied in the language evolution literature through the use of emergent communication tasks. Here we scale up this research by using contemporary deep learning methods and by training reinforcement-learning neural network agents on referential communication games. We extend previous work, in which agents were trained in symbolic environments, by developing agents which are able to learn from raw pixel data, a more challenging and realistic input representation. We find that the degree of structure found in the input data affects the nature of the emerged protocols, and thereby corroborate the hypothesis that structured compositional language is most likely to emerge when agents perceive the world as being structured. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.03984v1-abstract-full').style.display = 'none'; document.getElementById('1804.03984v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear at ICLR 2018</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.03980">arXiv:1804.03980</a> <span> [<a href="https://arxiv.org/pdf/1804.03980">pdf</a>, <a href="https://arxiv.org/format/1804.03980">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Emergent Communication through Negotiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Cao%2C+K">Kris Cao</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Lanctot%2C+M">Marc Lanctot</a>, <a href="/search/cs?searchtype=author&query=Leibo%2C+J+Z">Joel Z Leibo</a>, <a href="/search/cs?searchtype=author&query=Tuyls%2C+K">Karl Tuyls</a>, <a href="/search/cs?searchtype=author&query=Clark%2C+S">Stephen Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.03980v1-abstract-short" style="display: inline;"> Multi-agent reinforcement learning offers a way to study how communication could emerge in communities of agents needing to solve specific problems. In this paper, we study the emergence of communication in the negotiation environment, a semi-cooperative model of agent interaction. We introduce two communication protocols -- one grounded in the semantics of the game, and one which is \textit{a pri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.03980v1-abstract-full').style.display = 'inline'; document.getElementById('1804.03980v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.03980v1-abstract-full" style="display: none;"> Multi-agent reinforcement learning offers a way to study how communication could emerge in communities of agents needing to solve specific problems. In this paper, we study the emergence of communication in the negotiation environment, a semi-cooperative model of agent interaction. We introduce two communication protocols -- one grounded in the semantics of the game, and one which is \textit{a priori} ungrounded and is a form of cheap talk. We show that self-interested agents can use the pre-grounded communication channel to negotiate fairly, but are unable to effectively use the ungrounded channel. However, prosocial agents do learn to use cheap talk to find an optimal negotiating strategy, suggesting that cooperation is necessary for language to emerge. We also study communication behaviour in a setting where one agent interacts with agents in a community with different levels of prosociality and show how agent identifiability can aid negotiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.03980v1-abstract-full').style.display = 'none'; document.getElementById('1804.03980v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published as a conference paper at ICLR 2018</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.02341">arXiv:1804.02341</a> <span> [<a href="https://arxiv.org/pdf/1804.02341">pdf</a>, <a href="https://arxiv.org/format/1804.02341">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Compositional Obverter Communication Learning From Raw Visual Input </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Choi%2C+E">Edward Choi</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=de+Freitas%2C+N">Nando de Freitas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.02341v1-abstract-short" style="display: inline;"> One of the distinguishing aspects of human language is its compositionality, which allows us to describe complex environments with limited vocabulary. Previously, it has been shown that neural network agents can learn to communicate in a highly structured, possibly compositional language based on disentangled input (e.g. hand- engineered features). Humans, however, do not learn to communicate base… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02341v1-abstract-full').style.display = 'inline'; document.getElementById('1804.02341v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.02341v1-abstract-full" style="display: none;"> One of the distinguishing aspects of human language is its compositionality, which allows us to describe complex environments with limited vocabulary. Previously, it has been shown that neural network agents can learn to communicate in a highly structured, possibly compositional language based on disentangled input (e.g. hand- engineered features). Humans, however, do not learn to communicate based on well-summarized features. In this work, we train neural agents to simultaneously develop visual perception from raw image pixels, and learn to communicate with a sequence of discrete symbols. The agents play an image description game where the image contains factors such as colors and shapes. We train the agents using the obverter technique where an agent introspects to generate messages that maximize its own understanding. Through qualitative analysis, visualization and a zero-shot test, we show that the agents can develop, out of raw image pixels, a language with compositional properties, given a proper pressure from the environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02341v1-abstract-full').style.display = 'none'; document.getElementById('1804.02341v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published as a conference paper at ICLR 2018</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.00832">arXiv:1711.00832</a> <span> [<a href="https://arxiv.org/pdf/1711.00832">pdf</a>, <a href="https://arxiv.org/format/1711.00832">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lanctot%2C+M">Marc Lanctot</a>, <a href="/search/cs?searchtype=author&query=Zambaldi%2C+V">Vinicius Zambaldi</a>, <a href="/search/cs?searchtype=author&query=Gruslys%2C+A">Audrunas Gruslys</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Tuyls%2C+K">Karl Tuyls</a>, <a href="/search/cs?searchtype=author&query=Perolat%2C+J">Julien Perolat</a>, <a href="/search/cs?searchtype=author&query=Silver%2C+D">David Silver</a>, <a href="/search/cs?searchtype=author&query=Graepel%2C+T">Thore Graepel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.00832v2-abstract-short" style="display: inline;"> To achieve general intelligence, agents must learn how to interact with others in a shared environment: this is the challenge of multiagent reinforcement learning (MARL). The simplest form is independent reinforcement learning (InRL), where each agent treats its experience as part of its (non-stationary) environment. In this paper, we first observe that policies learned using InRL can overfit to t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00832v2-abstract-full').style.display = 'inline'; document.getElementById('1711.00832v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.00832v2-abstract-full" style="display: none;"> To achieve general intelligence, agents must learn how to interact with others in a shared environment: this is the challenge of multiagent reinforcement learning (MARL). The simplest form is independent reinforcement learning (InRL), where each agent treats its experience as part of its (non-stationary) environment. In this paper, we first observe that policies learned using InRL can overfit to the other agents' policies during training, failing to sufficiently generalize during execution. We introduce a new metric, joint-policy correlation, to quantify this effect. We describe an algorithm for general MARL, based on approximate best responses to mixtures of policies generated using deep reinforcement learning, and empirical game-theoretic analysis to compute meta-strategies for policy selection. The algorithm generalizes previous ones such as InRL, iterated best response, double oracle, and fictitious play. Then, we present a scalable implementation which reduces the memory requirement using decoupled meta-solvers. Finally, we demonstrate the generality of the resulting policies in two partially observable settings: gridworld coordination games and poker. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00832v2-abstract-full').style.display = 'none'; document.getElementById('1711.00832v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Camera-ready copy of NIPS 2017 paper, including appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.08172">arXiv:1707.08172</a> <span> [<a href="https://arxiv.org/pdf/1707.08172">pdf</a>, <a href="https://arxiv.org/format/1707.08172">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> The RepEval 2017 Shared Task: Multi-Genre Natural Language Inference with Sentence Representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Nangia%2C+N">Nikita Nangia</a>, <a href="/search/cs?searchtype=author&query=Williams%2C+A">Adina Williams</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Bowman%2C+S+R">Samuel R. Bowman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.08172v1-abstract-short" style="display: inline;"> This paper presents the results of the RepEval 2017 Shared Task, which evaluated neural network sentence representation learning models on the Multi-Genre Natural Language Inference corpus (MultiNLI) recently introduced by Williams et al. (2017). All of the five participating teams beat the bidirectional LSTM (BiLSTM) and continuous bag of words baselines reported in Williams et al.. The best sing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08172v1-abstract-full').style.display = 'inline'; document.getElementById('1707.08172v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.08172v1-abstract-full" style="display: none;"> This paper presents the results of the RepEval 2017 Shared Task, which evaluated neural network sentence representation learning models on the Multi-Genre Natural Language Inference corpus (MultiNLI) recently introduced by Williams et al. (2017). All of the five participating teams beat the bidirectional LSTM (BiLSTM) and continuous bag of words baselines reported in Williams et al.. The best single model used stacked BiLSTMs with residual connections to extract sentence features and reached 74.5% accuracy on the genre-matched test set. Surprisingly, the results of the competition were fairly consistent across the genre-matched and genre-mismatched test sets, and across subsets of the test data representing a variety of linguistic phenomena, suggesting that all of the submitted systems learned reasonably domain-independent representations for sentence meaning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08172v1-abstract-full').style.display = 'none'; document.getElementById('1707.08172v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 1 figure, 6 tables, in Proceedings of The Second Workshop on Evaluating Vector Space Representations for NLP (RepEval 2017)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.08954">arXiv:1701.08954</a> <span> [<a href="https://arxiv.org/pdf/1701.08954">pdf</a>, <a href="https://arxiv.org/ps/1701.08954">ps</a>, <a href="https://arxiv.org/format/1701.08954">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> CommAI: Evaluating the first steps towards a useful general AI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Baroni%2C+M">Marco Baroni</a>, <a href="/search/cs?searchtype=author&query=Joulin%2C+A">Armand Joulin</a>, <a href="/search/cs?searchtype=author&query=Jabri%2C+A">Allan Jabri</a>, <a href="/search/cs?searchtype=author&query=Kruszewski%2C+G">Germ脿n Kruszewski</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Simonic%2C+K">Klemen Simonic</a>, <a href="/search/cs?searchtype=author&query=Mikolov%2C+T">Tomas Mikolov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.08954v2-abstract-short" style="display: inline;"> With machine learning successfully applied to new daunting problems almost every day, general AI starts looking like an attainable goal. However, most current research focuses instead on important but narrow applications, such as image classification or machine translation. We believe this to be largely due to the lack of objective ways to measure progress towards broad machine intelligence. In or… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.08954v2-abstract-full').style.display = 'inline'; document.getElementById('1701.08954v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.08954v2-abstract-full" style="display: none;"> With machine learning successfully applied to new daunting problems almost every day, general AI starts looking like an attainable goal. However, most current research focuses instead on important but narrow applications, such as image classification or machine translation. We believe this to be largely due to the lack of objective ways to measure progress towards broad machine intelligence. In order to fill this gap, we propose here a set of concrete desiderata for general AI, together with a platform to test machines on how well they satisfy such desiderata, while keeping all further complexities to a minimum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.08954v2-abstract-full').style.display = 'none'; document.getElementById('1701.08954v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in ICLR 2017 Workshop Track</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.07182">arXiv:1612.07182</a> <span> [<a href="https://arxiv.org/pdf/1612.07182">pdf</a>, <a href="https://arxiv.org/format/1612.07182">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Multi-Agent Cooperation and the Emergence of (Natural) Language </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Peysakhovich%2C+A">Alexander Peysakhovich</a>, <a href="/search/cs?searchtype=author&query=Baroni%2C+M">Marco Baroni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.07182v2-abstract-short" style="display: inline;"> The current mainstream approach to train natural language systems is to expose them to large amounts of text. This passive learning is problematic if we are interested in developing interactive machines, such as conversational agents. We propose a framework for language learning that relies on multi-agent communication. We study this learning in the context of referential games. In these games, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.07182v2-abstract-full').style.display = 'inline'; document.getElementById('1612.07182v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.07182v2-abstract-full" style="display: none;"> The current mainstream approach to train natural language systems is to expose them to large amounts of text. This passive learning is problematic if we are interested in developing interactive machines, such as conversational agents. We propose a framework for language learning that relies on multi-agent communication. We study this learning in the context of referential games. In these games, a sender and a receiver see a pair of images. The sender is told one of them is the target and is allowed to send a message from a fixed, arbitrary vocabulary to the receiver. The receiver must rely on this message to identify the target. Thus, the agents develop their own language interactively out of the need to communicate. We show that two networks with simple configurations are able to learn to coordinate in the referential game. We further explore how to make changes to the game environment to cause the "word meanings" induced in the game to better reflect intuitive semantic properties of the images. In addition, we present a simple strategy for grounding the agents' code into natural language. Both of these are necessary steps towards developing machines that are able to communicate with humans productively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.07182v2-abstract-full').style.display = 'none'; document.getElementById('1612.07182v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at ICLR 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.06031">arXiv:1606.06031</a> <span> [<a href="https://arxiv.org/pdf/1606.06031">pdf</a>, <a href="https://arxiv.org/format/1606.06031">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> The LAMBADA dataset: Word prediction requiring a broad discourse context </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Paperno%2C+D">Denis Paperno</a>, <a href="/search/cs?searchtype=author&query=Kruszewski%2C+G">Germ谩n Kruszewski</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Pham%2C+Q+N">Quan Ngoc Pham</a>, <a href="/search/cs?searchtype=author&query=Bernardi%2C+R">Raffaella Bernardi</a>, <a href="/search/cs?searchtype=author&query=Pezzelle%2C+S">Sandro Pezzelle</a>, <a href="/search/cs?searchtype=author&query=Baroni%2C+M">Marco Baroni</a>, <a href="/search/cs?searchtype=author&query=Boleda%2C+G">Gemma Boleda</a>, <a href="/search/cs?searchtype=author&query=Fern%C3%A1ndez%2C+R">Raquel Fern谩ndez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.06031v1-abstract-short" style="display: inline;"> We introduce LAMBADA, a dataset to evaluate the capabilities of computational models for text understanding by means of a word prediction task. LAMBADA is a collection of narrative passages sharing the characteristic that human subjects are able to guess their last word if they are exposed to the whole passage, but not if they only see the last sentence preceding the target word. To succeed on LAM… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.06031v1-abstract-full').style.display = 'inline'; document.getElementById('1606.06031v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.06031v1-abstract-full" style="display: none;"> We introduce LAMBADA, a dataset to evaluate the capabilities of computational models for text understanding by means of a word prediction task. LAMBADA is a collection of narrative passages sharing the characteristic that human subjects are able to guess their last word if they are exposed to the whole passage, but not if they only see the last sentence preceding the target word. To succeed on LAMBADA, computational models cannot simply rely on local context, but must be able to keep track of information in the broader discourse. We show that LAMBADA exemplifies a wide range of linguistic phenomena, and that none of several state-of-the-art language models reaches accuracy above 1% on this novel benchmark. We thus propose LAMBADA as a challenging test set, meant to encourage the development of new models capable of genuine understanding of broad context in natural language text. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.06031v1-abstract-full').style.display = 'none'; document.getElementById('1606.06031v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, Accepted as a long paper for ACL 2016</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.07133">arXiv:1605.07133</a> <span> [<a href="https://arxiv.org/pdf/1605.07133">pdf</a>, <a href="https://arxiv.org/format/1605.07133">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Towards Multi-Agent Communication-Based Language Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Pham%2C+N+T">Nghia The Pham</a>, <a href="/search/cs?searchtype=author&query=Baroni%2C+M">Marco Baroni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.07133v1-abstract-short" style="display: inline;"> We propose an interactive multimodal framework for language learning. Instead of being passively exposed to large amounts of natural text, our learners (implemented as feed-forward neural networks) engage in cooperative referential games starting from a tabula rasa setup, and thus develop their own language from the need to communicate in order to succeed at the game. Preliminary experiments provi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07133v1-abstract-full').style.display = 'inline'; document.getElementById('1605.07133v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.07133v1-abstract-full" style="display: none;"> We propose an interactive multimodal framework for language learning. Instead of being passively exposed to large amounts of natural text, our learners (implemented as feed-forward neural networks) engage in cooperative referential games starting from a tabula rasa setup, and thus develop their own language from the need to communicate in order to succeed at the game. Preliminary experiments provide promising results, but also suggest that it is important to ensure that agents trained in this way do not develop an adhoc communication code only effective for the game they are playing <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07133v1-abstract-full').style.display = 'none'; document.getElementById('1605.07133v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, manuscript under submission</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.02618">arXiv:1603.02618</a> <span> [<a href="https://arxiv.org/pdf/1603.02618">pdf</a>, <a href="https://arxiv.org/format/1603.02618">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> The red one!: On learning to refer to things based on their discriminative properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Pham%2C+N+T">Nghia The Pham</a>, <a href="/search/cs?searchtype=author&query=Baroni%2C+M">Marco Baroni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.02618v2-abstract-short" style="display: inline;"> As a first step towards agents learning to communicate about their visual environment, we propose a system that, given visual representations of a referent (cat) and a context (sofa), identifies their discriminative attributes, i.e., properties that distinguish them (has_tail). Moreover, despite the lack of direct supervision at the attribute level, the model learns to assign plausible attributes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.02618v2-abstract-full').style.display = 'inline'; document.getElementById('1603.02618v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.02618v2-abstract-full" style="display: none;"> As a first step towards agents learning to communicate about their visual environment, we propose a system that, given visual representations of a referent (cat) and a context (sofa), identifies their discriminative attributes, i.e., properties that distinguish them (has_tail). Moreover, despite the lack of direct supervision at the attribute level, the model learns to assign plausible attributes to objects (sofa-has_cushion). Finally, we present a preliminary experiment confirming the referential success of the predicted discriminative attributes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.02618v2-abstract-full').style.display = 'none'; document.getElementById('1603.02618v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted as an ACL-short sumbmission</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.03500">arXiv:1506.03500</a> <span> [<a href="https://arxiv.org/pdf/1506.03500">pdf</a>, <a href="https://arxiv.org/format/1506.03500">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Unveiling the Dreams of Word Embeddings: Towards Language-Driven Image Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Nguyen%2C+D+T">Dat Tien Nguyen</a>, <a href="/search/cs?searchtype=author&query=Bernardi%2C+R">Raffaella Bernardi</a>, <a href="/search/cs?searchtype=author&query=Baroni%2C+M">Marco Baroni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.03500v2-abstract-short" style="display: inline;"> We introduce language-driven image generation, the task of generating an image visualizing the semantic contents of a word embedding, e.g., given the word embedding of grasshopper, we generate a natural image of a grasshopper. We implement a simple method based on two mapping functions. The first takes as input a word embedding (as produced, e.g., by the word2vec toolkit) and maps it onto a high-l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03500v2-abstract-full').style.display = 'inline'; document.getElementById('1506.03500v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.03500v2-abstract-full" style="display: none;"> We introduce language-driven image generation, the task of generating an image visualizing the semantic contents of a word embedding, e.g., given the word embedding of grasshopper, we generate a natural image of a grasshopper. We implement a simple method based on two mapping functions. The first takes as input a word embedding (as produced, e.g., by the word2vec toolkit) and maps it onto a high-level visual space (e.g., the space defined by one of the top layers of a Convolutional Neural Network). The second function maps this abstract visual representation to pixel space, in order to generate the target image. Several user studies suggest that the current system produces images that capture general visual properties of the concepts encoded in the word embedding, such as color or typical environment, and are sufficient to discriminate between general categories of objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03500v2-abstract-full').style.display = 'none'; document.getElementById('1506.03500v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A 6-page version to appear at the Multimodal Machine Learning NIPS 2015 Workshop</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.02714">arXiv:1501.02714</a> <span> [<a href="https://arxiv.org/pdf/1501.02714">pdf</a>, <a href="https://arxiv.org/format/1501.02714">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> From Visual Attributes to Adjectives through Decompositional Distributional Semantics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Dinu%2C+G">Georgiana Dinu</a>, <a href="/search/cs?searchtype=author&query=Liska%2C+A">Adam Liska</a>, <a href="/search/cs?searchtype=author&query=Baroni%2C+M">Marco Baroni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.02714v2-abstract-short" style="display: inline;"> As automated image analysis progresses, there is increasing interest in richer linguistic annotation of pictures, with attributes of objects (e.g., furry, brown...) attracting most attention. By building on the recent "zero-shot learning" approach, and paying attention to the linguistic nature of attributes as noun modifiers, and specifically adjectives, we show that it is possible to tag images w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02714v2-abstract-full').style.display = 'inline'; document.getElementById('1501.02714v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.02714v2-abstract-full" style="display: none;"> As automated image analysis progresses, there is increasing interest in richer linguistic annotation of pictures, with attributes of objects (e.g., furry, brown...) attracting most attention. By building on the recent "zero-shot learning" approach, and paying attention to the linguistic nature of attributes as noun modifiers, and specifically adjectives, we show that it is possible to tag images with attribute-denoting adjectives even when no training data containing the relevant annotation are available. Our approach relies on two key observations. First, objects can be seen as bundles of attributes, typically expressed as adjectival modifiers (a dog is something furry, brown, etc.), and thus a function trained to map visual representations of objects to nominal labels can implicitly learn to map attributes to adjectives. Second, objects and attributes come together in pictures (the same thing is a dog and it is brown). We can thus achieve better attribute (and object) label retrieval by treating images as "visual phrases", and decomposing their linguistic representation into an attribute-denoting adjective and an object-denoting noun. Our approach performs comparably to a method exploiting manual attribute annotation, it outperforms various competitive alternatives in both attribute and object annotation, and it automatically constructs attribute-centric representations that significantly improve performance in supervised object recognition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02714v2-abstract-full').style.display = 'none'; document.getElementById('1501.02714v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted at Transactions of the Association for Computational Linguistics (TACL), 3/2015</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.02598">arXiv:1501.02598</a> <span> [<a href="https://arxiv.org/pdf/1501.02598">pdf</a>, <a href="https://arxiv.org/format/1501.02598">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Combining Language and Vision with a Multimodal Skip-gram Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Pham%2C+N+T">Nghia The Pham</a>, <a href="/search/cs?searchtype=author&query=Baroni%2C+M">Marco Baroni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.02598v3-abstract-short" style="display: inline;"> We extend the SKIP-GRAM model of Mikolov et al. (2013a) by taking visual information into account. Like SKIP-GRAM, our multimodal models (MMSKIP-GRAM) build vector-based word representations by learning to predict linguistic contexts in text corpora. However, for a restricted set of words, the models are also exposed to visual representations of the objects they denote (extracted from natural imag… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02598v3-abstract-full').style.display = 'inline'; document.getElementById('1501.02598v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.02598v3-abstract-full" style="display: none;"> We extend the SKIP-GRAM model of Mikolov et al. (2013a) by taking visual information into account. Like SKIP-GRAM, our multimodal models (MMSKIP-GRAM) build vector-based word representations by learning to predict linguistic contexts in text corpora. However, for a restricted set of words, the models are also exposed to visual representations of the objects they denote (extracted from natural images), and must predict linguistic and visual features jointly. The MMSKIP-GRAM models achieve good performance on a variety of semantic benchmarks. Moreover, since they propagate visual information to all words, we use them to improve image labeling and retrieval in the zero-shot setup, where the test concepts are never seen during model training. Finally, the MMSKIP-GRAM models discover intriguing visual properties of abstract words, paving the way to realistic implementations of embodied theories of meaning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02598v3-abstract-full').style.display = 'none'; document.getElementById('1501.02598v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted at NAACL 2015, camera ready version, 11 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.6568">arXiv:1412.6568</a> <span> [<a href="https://arxiv.org/pdf/1412.6568">pdf</a>, <a href="https://arxiv.org/format/1412.6568">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Improving zero-shot learning by mitigating the hubness problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Dinu%2C+G">Georgiana Dinu</a>, <a href="/search/cs?searchtype=author&query=Lazaridou%2C+A">Angeliki Lazaridou</a>, <a href="/search/cs?searchtype=author&query=Baroni%2C+M">Marco Baroni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.6568v3-abstract-short" style="display: inline;"> The zero-shot paradigm exploits vector-based word representations extracted from text corpora with unsupervised methods to learn general mapping functions from other feature spaces onto word space, where the words associated to the nearest neighbours of the mapped vectors are used as their linguistic labels. We show that the neighbourhoods of the mapped elements are strongly polluted by hubs, vect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6568v3-abstract-full').style.display = 'inline'; document.getElementById('1412.6568v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.6568v3-abstract-full" style="display: none;"> The zero-shot paradigm exploits vector-based word representations extracted from text corpora with unsupervised methods to learn general mapping functions from other feature spaces onto word space, where the words associated to the nearest neighbours of the mapped vectors are used as their linguistic labels. We show that the neighbourhoods of the mapped elements are strongly polluted by hubs, vectors that tend to be near a high proportion of items, pushing their correct labels down the neighbour list. After illustrating the problem empirically, we propose a simple method to correct it by taking the proximity distribution of potential neighbours across many mapped vectors into account. We show that this correction leads to consistent improvements in realistic zero-shot experiments in the cross-lingual, image labeling and image retrieval domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6568v3-abstract-full').style.display = 'none'; document.getElementById('1412.6568v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>