CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;15 of 15 results for author: <span class="mathjax">Berg, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Berg%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Berg, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Berg%2C+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Berg, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00362">arXiv:2309.00362</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.00362">pdf</a>, <a href="https://arxiv.org/format/2309.00362">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> The impact of wettability on the co-moving velocity of two-fluid flow in porous media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Alzubaidi%2C+F">Fatimah Alzubaidi</a>, <a href="/search/physics?searchtype=author&amp;query=McClure%2C+J+E">James E. McClure</a>, <a href="/search/physics?searchtype=author&amp;query=Pedersen%2C+H">H氓kon Pedersen</a>, <a href="/search/physics?searchtype=author&amp;query=Hansen%2C+A">Alex Hansen</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+C+F">Carl Fredrik Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Mostaghimi%2C+P">Peyman Mostaghimi</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+R+T">Ryan T. Armstrong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00362v1-abstract-short" style="display: inline;"> The impact of wettability on the co-moving velocity of two-fluid flow in porous media is analyzed herein. The co-moving velocity, developed by Roy et al. (2022), is a novel representation of the flow behavior of two fluids through porous media. Our study aims to better understand the behavior of the co-moving velocity by analyzing simulation data under various wetting conditions. The simulations w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00362v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00362v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00362v1-abstract-full" style="display: none;"> The impact of wettability on the co-moving velocity of two-fluid flow in porous media is analyzed herein. The co-moving velocity, developed by Roy et al. (2022), is a novel representation of the flow behavior of two fluids through porous media. Our study aims to better understand the behavior of the co-moving velocity by analyzing simulation data under various wetting conditions. The simulations were conducted using the Lattice-Boltzmann color-fluid model and evaluated the relative permeability for different wetting conditions on the same rock. The analysis of the simulation data followed the methodology proposed by Roy et al. (2022) to reconstruct a constitutive equation for the co-moving velocity. Surprisingly, it was found that the coefficients of the constitutive equation were nearly the same for all wetting conditions. Based on these results, a simple approach was proposed to reconstruct the oil phase relative permeability using only the co-moving velocity relationship and water phase relative permeability. This proposed method provides new insights into the dependency of relative permeability curves, which has implications for the history matching of production data and solving the associated inverse problem. The research findings contribute to a better understanding of the impact of wettability on fluid flow in porous media and provide a practical approach for estimating relative permeability based on the co-moving velocity relationship, which has never been shown before. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00362v1-abstract-full').style.display = 'none'; document.getElementById('2309.00362v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00107">arXiv:2303.00107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00107">pdf</a>, <a href="https://arxiv.org/format/2303.00107">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Percolation and conductivity in evolving disordered media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Berg%2C+C+F">Carl Fredrik Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Sahimi%2C+M">Muhammad Sahimi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00107v3-abstract-short" style="display: inline;"> Percolation theory and the associated conductance networks have provided deep insights into the flow and transport properties of a vast number of heterogeneous materials and media. In practically all cases, however, the conductance of the networks&#39; bonds remains constant throughout the entire process. There are, however, many important problems in which the conductance of the bonds evolves over ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00107v3-abstract-full').style.display = 'inline'; document.getElementById('2303.00107v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00107v3-abstract-full" style="display: none;"> Percolation theory and the associated conductance networks have provided deep insights into the flow and transport properties of a vast number of heterogeneous materials and media. In practically all cases, however, the conductance of the networks&#39; bonds remains constant throughout the entire process. There are, however, many important problems in which the conductance of the bonds evolves over time and does not remain constant. Examples include clogging, dissolution and precipitation, catalytic processes in porous materials, as well as the deformation of a porous medium by applying an external pressure or stress to it that reduces the size of its pores. We introduce two percolation models to study the evolution of the conductivity of such networks. The two models are related to natural and industrial processes involving clogging, precipitation, and dissolution processes in porous media and materials. The effective conductivity of the models is shown to follow known power laws near the percolation threshold, despite radically different behavior both away from and even close to the percolation threshold. The behavior of the networks close to the percolation threshold is described by critical exponents, yielding bounds for traditional percolation exponents. We show that one of the two models belongs to the traditional universality class of percolation conductivity, while the second model yields non-universal scaling exponents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00107v3-abstract-full').style.display = 'none'; document.getElementById('2303.00107v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.00891">arXiv:2207.00891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.00891">pdf</a>, <a href="https://arxiv.org/format/2207.00891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0107149">10.1063/5.0107149 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relative permeability as a stationary process: energy fluctuations in immiscible displacement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=McClure%2C+J+E">James E. McClure</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+M">Ming Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+S">Steffen Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+R+T">Ryan T. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+C+F">Carl Fredrik Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhe Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ramstad%2C+T">Thomas Ramstad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.00891v1-abstract-short" style="display: inline;"> Relative permeability is commonly used to model immiscible fluid flow through porous materials. In this work we derive the relative permeability relationship from conservation of energy, assuming that the system to be non-ergodic at large length scales and relying on averaging in both space and time to homogenize the behavior. Explicit criteria are obtained to define stationary conditions: (1) the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00891v1-abstract-full').style.display = 'inline'; document.getElementById('2207.00891v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.00891v1-abstract-full" style="display: none;"> Relative permeability is commonly used to model immiscible fluid flow through porous materials. In this work we derive the relative permeability relationship from conservation of energy, assuming that the system to be non-ergodic at large length scales and relying on averaging in both space and time to homogenize the behavior. Explicit criteria are obtained to define stationary conditions: (1) there can be no net change for extensive measures of the system state over the time averaging interval; (2) the net energy inputs into the system are zero, meaning that the net rate of work done on the system must balance with the heat removed; and (3) there is no net work performed due to the contribution of internal energy fluctuations. Results are then evaluated based on direct numerical simulation. Dynamic connectivity is observed during steady-state flow, which is quantitatively assessed based the Euler characteristic. We show that even during steady-state flow at low capillary number ($\mathsf{Ca}\sim1\times10^5$), typical flow processes will explore multiple connectivity states. The residence time for each connectivity state is captured based on the time-and-space average. The distribution for energy fluctuations is shown to be multi-modal and non-Gaussian when terms are considered independently. However, we demonstrate that their sum is zero. Given an appropriate choice of the thermodynamic driving force, we show that the conventional relative permeability relationship is sufficient to model the energy dissipation in systems with complex pore-scale dynamics that routinely alter the structure of fluid connected pathways. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00891v1-abstract-full').style.display = 'none'; document.getElementById('2207.00891v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.02036">arXiv:2110.02036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.02036">pdf</a>, <a href="https://arxiv.org/format/2110.02036">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsaelm.1c00981">10.1021/acsaelm.1c00981 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic RESET speed limit of valence change memories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=von+Witzleben%2C+M">Moritz von Witzleben</a>, <a href="/search/physics?searchtype=author&amp;query=Wiefels%2C+S">Stefan Wiefels</a>, <a href="/search/physics?searchtype=author&amp;query=Kindsm%C3%BCller%2C+A">Andreas Kindsm眉ller</a>, <a href="/search/physics?searchtype=author&amp;query=Stasner%2C+P">Pascal Stasner</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+F">Fenja Berg</a>, <a href="/search/physics?searchtype=author&amp;query=C%C3%BCppers%2C+F">Felix C眉ppers</a>, <a href="/search/physics?searchtype=author&amp;query=Hoffmann-Eifert%2C+S">Susanne Hoffmann-Eifert</a>, <a href="/search/physics?searchtype=author&amp;query=Waser%2C+R">Rainer Waser</a>, <a href="/search/physics?searchtype=author&amp;query=Menzel%2C+S">Stephan Menzel</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%B6ttger%2C+U">Ulrich B枚ttger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.02036v2-abstract-short" style="display: inline;"> During the last decade, valence change memory (VCM) has been extensively studied due to its promising features, such as a high endurance and fast switching times. The information is stored in a high resistive state (logcial &#39;0&#39;, HRS) and a low resistive state (logcial &#39;1&#39;, LRS). It can also be operated in two different writing schemes, namely a unipolar switching mode (LRS and HRS are written at t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02036v2-abstract-full').style.display = 'inline'; document.getElementById('2110.02036v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.02036v2-abstract-full" style="display: none;"> During the last decade, valence change memory (VCM) has been extensively studied due to its promising features, such as a high endurance and fast switching times. The information is stored in a high resistive state (logcial &#39;0&#39;, HRS) and a low resistive state (logcial &#39;1&#39;, LRS). It can also be operated in two different writing schemes, namely a unipolar switching mode (LRS and HRS are written at the same voltage polarity) and a bipolar switching mode (LRS and HRS are written at opposite voltage polarities). VCM, however, still suffers from a large variability during writing operations and also faults occur, which are not yet fully understood and, therefore, require a better understanding of the underlying fault mechanisms. In this study, a new intrinsic failure mechanism is identified, which prohibits RESET times (transition from LRS to HRS) faster than 400 ps and possibly also limits the endurance. We demonstrate this RESET speed limitation by measuring the RESET kinetics of two valence change memory devices (namely Pt/TaO$_\mathrm{x}$/Ta and Pt/ZrO$_\mathrm{x}$/Ta) in the time regime from 50 ns to 50 ps, corresponding to the fastest writing time reported for VCM. Faster RESET times were achieved by increasing the applied pulse voltage. Above a voltage threshold it was, however, no longer possible to reset both types of devices. Instead a unipolar SET (transition from HRS to LRS) event occurred, preventing faster RESET times. The occurrence of the unipolar SET is attributed to an oxygen exchange at the interface to the Pt~electrode, which can be suppressed by introducing an oxygen blocking layer at this interface, which also allowed for 50 ps fast RESET times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02036v2-abstract-full').style.display = 'none'; document.getElementById('2110.02036v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 18 figures and 69 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Appl. Electron. Mater. 2021, 3, 12, 5563-5572 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11690">arXiv:2009.11690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.11690">pdf</a>, <a href="https://arxiv.org/format/2009.11690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165679">10.1016/j.nima.2021.165679 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Technical design of the phase I Mu3e experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Arndt%2C+K">K. Arndt</a>, <a href="/search/physics?searchtype=author&amp;query=Augustin%2C+H">H. Augustin</a>, <a href="/search/physics?searchtype=author&amp;query=Baesso%2C+P">P. Baesso</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+F">F. Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Betancourt%2C+C">C. Betancourt</a>, <a href="/search/physics?searchtype=author&amp;query=Bortoletto%2C+D">D. Bortoletto</a>, <a href="/search/physics?searchtype=author&amp;query=Bravar%2C+A">A. Bravar</a>, <a href="/search/physics?searchtype=author&amp;query=Briggl%2C+K">K. Briggl</a>, <a href="/search/physics?searchtype=author&amp;query=Bruch%2C+D+v">D. vom Bruch</a>, <a href="/search/physics?searchtype=author&amp;query=Buonaura%2C+A">A. Buonaura</a>, <a href="/search/physics?searchtype=author&amp;query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&amp;query=Barajas%2C+C+C">C. Chavez Barajas</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+K">K. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Cooke%2C+P">P. Cooke</a>, <a href="/search/physics?searchtype=author&amp;query=Corrodi%2C+S">S. Corrodi</a>, <a href="/search/physics?searchtype=author&amp;query=Damyanova%2C+A">A. Damyanova</a>, <a href="/search/physics?searchtype=author&amp;query=Demets%2C+Y">Y. Demets</a>, <a href="/search/physics?searchtype=author&amp;query=Dittmeier%2C+S">S. Dittmeier</a>, <a href="/search/physics?searchtype=author&amp;query=Eckert%2C+P">P. Eckert</a>, <a href="/search/physics?searchtype=author&amp;query=Ehrler%2C+F">F. Ehrler</a>, <a href="/search/physics?searchtype=author&amp;query=Fahrni%2C+D">D. Fahrni</a>, <a href="/search/physics?searchtype=author&amp;query=Gagneur%2C+S">S. Gagneur</a>, <a href="/search/physics?searchtype=author&amp;query=Gerritzen%2C+L">L. Gerritzen</a> , et al. (80 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11690v3-abstract-short" style="display: inline;"> The Mu3e experiment aims to find or exclude the lepton flavour violating decay $渭\rightarrow eee$ at branching fractions above $10^{-16}$. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of $2\cdot 10^{-15}$. We present an overview of all aspects of the technical design and expected performance of the p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11690v3-abstract-full').style.display = 'inline'; document.getElementById('2009.11690v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11690v3-abstract-full" style="display: none;"> The Mu3e experiment aims to find or exclude the lepton flavour violating decay $渭\rightarrow eee$ at branching fractions above $10^{-16}$. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of $2\cdot 10^{-15}$. We present an overview of all aspects of the technical design and expected performance of the phase~I Mu3e detector. The high rate of up to $10^{8}$ muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11690v3-abstract-full').style.display = 'none'; document.getElementById('2009.11690v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">117 pages. Minor corrections to the author list. Replaced with published version. Editor: Frank Meier Aeschbacher</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Instruments and Methods in Physics Research Section A: Vol. 1014 (2021) 165679 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02815">arXiv:2005.02815</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.02815">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.petrol.2017.06.074">10.1016/j.petrol.2017.06.074 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Industrial applications of digital rock technology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Berg%2C+C+F">Carl Fredrik Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Lopez%2C+O">Olivier Lopez</a>, <a href="/search/physics?searchtype=author&amp;query=Berland%2C+H">H氓vard Berland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02815v1-abstract-short" style="display: inline;"> This article provides an overview of the current state of digital rock technology, with emphasis on industrial applications. We show how imaging and image analysis can be applied for rock typing and modeling of end-point saturations. Different methods to obtain a digital model of the pore space from pore scale images are presented, and the strengths and weaknesses of the different methods are disc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02815v1-abstract-full').style.display = 'inline'; document.getElementById('2005.02815v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02815v1-abstract-full" style="display: none;"> This article provides an overview of the current state of digital rock technology, with emphasis on industrial applications. We show how imaging and image analysis can be applied for rock typing and modeling of end-point saturations. Different methods to obtain a digital model of the pore space from pore scale images are presented, and the strengths and weaknesses of the different methods are discussed. We also show how imaging bridges the different subjects of geology, petrophysics and reservoir simulations, by being a common denominator for results in all these subjects. Network modeling is compared to direct simulations on grid models, and their respective strengths are discussed. Finally we present an example of digital rock technology applied to a sandstone oil reservoir. Results from digital rock modeling are compared to results from traditional laboratory experiments. We highlight the mutual benefits from conducting both traditional experiments and digital rock modeling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02815v1-abstract-full').style.display = 'none'; document.getElementById('2005.02815v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Petroleum Science and Engineering, Volume 157, August 2017, Pages 131-147 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.11865">arXiv:1905.11865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.11865">pdf</a>, <a href="https://arxiv.org/format/1905.11865">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2019.163298">10.1016/j.nima.2019.163298 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A non-invasive ultra-thin luminophore foil detector system for secondary beam monitoring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Berg%2C+F">F. Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Grigoriev%2C+D+N">D. N. Grigoriev</a>, <a href="/search/physics?searchtype=author&amp;query=Hodge%2C+Z">Z. Hodge</a>, <a href="/search/physics?searchtype=author&amp;query=Kettle%2C+P+-">P. -R. Kettle</a>, <a href="/search/physics?searchtype=author&amp;query=Kozyrev%2C+E+A">E. A. Kozyrev</a>, <a href="/search/physics?searchtype=author&amp;query=Lemzyakov%2C+A+G">A. G. Lemzyakov</a>, <a href="/search/physics?searchtype=author&amp;query=Petrozhitsky%2C+A+V">A. V. Petrozhitsky</a>, <a href="/search/physics?searchtype=author&amp;query=Popov%2C+A">A. Popov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.11865v1-abstract-short" style="display: inline;"> High-intensity secondary beams play a vital role in today&#39;s particle physics and materials science research and require suitable detection techniques to adjust beam characteristics to optimally match experimental conditions. To this end we have developed a non-invasive, ultra-thin, CsI(Tl) luminophore foil detector system, based on CCD-imaging. We have used this to quantify the beam characteristic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11865v1-abstract-full').style.display = 'inline'; document.getElementById('1905.11865v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.11865v1-abstract-full" style="display: none;"> High-intensity secondary beams play a vital role in today&#39;s particle physics and materials science research and require suitable detection techniques to adjust beam characteristics to optimally match experimental conditions. To this end we have developed a non-invasive, ultra-thin, CsI(Tl) luminophore foil detector system, based on CCD-imaging. We have used this to quantify the beam characteristics of an intensity-frontier surface muon beam used for next-generation charged lepton-flavour violation (cLFV) search experiments at the Paul Scherrer Institut (PSI) and to assess the possible use for a future High-intensity Muon Beam (HiMB-project), currently under study at PSI. An overview of the production and intrinsic characteristics of such foils is given and their application in a high-intensity beam environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11865v1-abstract-full').style.display = 'none'; document.getElementById('1905.11865v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 21 figures and 4 Tables. Submitted to NIMA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.04688">arXiv:1801.04688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.04688">pdf</a>, <a href="https://arxiv.org/format/1801.04688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-018-5845-6">10.1140/epjc/s10052-018-5845-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The design of the MEG II experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+A+M">A. M. Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Baracchini%2C+E">E. Baracchini</a>, <a href="/search/physics?searchtype=author&amp;query=Bemporad%2C+C">C. Bemporad</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+F">F. Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Biasotti%2C+M">M. Biasotti</a>, <a href="/search/physics?searchtype=author&amp;query=Boca%2C+G">G. Boca</a>, <a href="/search/physics?searchtype=author&amp;query=Cattaneo%2C+P+W">P. W. Cattaneo</a>, <a href="/search/physics?searchtype=author&amp;query=Cavoto%2C+G">G. Cavoto</a>, <a href="/search/physics?searchtype=author&amp;query=Cei%2C+F">F. Cei</a>, <a href="/search/physics?searchtype=author&amp;query=Chiappini%2C+M">M. Chiappini</a>, <a href="/search/physics?searchtype=author&amp;query=Chiarello%2C+G">G. Chiarello</a>, <a href="/search/physics?searchtype=author&amp;query=Chiri%2C+C">C. Chiri</a>, <a href="/search/physics?searchtype=author&amp;query=Cocciolo%2C+G">G. Cocciolo</a>, <a href="/search/physics?searchtype=author&amp;query=Corvaglia%2C+A">A. Corvaglia</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=De+Gerone%2C+M">M. De Gerone</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Onofrio%2C+A">A. D&#39;Onofrio</a>, <a href="/search/physics?searchtype=author&amp;query=Francesconi%2C+M">M. Francesconi</a>, <a href="/search/physics?searchtype=author&amp;query=Fujii%2C+Y">Y. Fujii</a>, <a href="/search/physics?searchtype=author&amp;query=Galli%2C+L">L. Galli</a>, <a href="/search/physics?searchtype=author&amp;query=Gatti%2C+F">F. Gatti</a>, <a href="/search/physics?searchtype=author&amp;query=Grancagnolo%2C+F">F. Grancagnolo</a>, <a href="/search/physics?searchtype=author&amp;query=Grassi%2C+M">M. Grassi</a>, <a href="/search/physics?searchtype=author&amp;query=Grigoriev%2C+D+N">D. N. Grigoriev</a>, <a href="/search/physics?searchtype=author&amp;query=Hildebrandt%2C+M">M. Hildebrandt</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.04688v1-abstract-short" style="display: inline;"> The MEG experiment, designed to search for the mu+-&gt;e+ gamma decay at a 10^-13 sensitivity level, completed data taking in 2013. In order to increase the sensitivity reach of the experiment by an order of magnitude to the level of 6 x 10-14 for the branching ratio, a total upgrade, involving substantial changes to the experiment, has been undertaken, known as MEG II. We present both the motivation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.04688v1-abstract-full').style.display = 'inline'; document.getElementById('1801.04688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.04688v1-abstract-full" style="display: none;"> The MEG experiment, designed to search for the mu+-&gt;e+ gamma decay at a 10^-13 sensitivity level, completed data taking in 2013. In order to increase the sensitivity reach of the experiment by an order of magnitude to the level of 6 x 10-14 for the branching ratio, a total upgrade, involving substantial changes to the experiment, has been undertaken, known as MEG II. We present both the motivation for the upgrade and a detailed overview of the design of the experiment and of the expected detector performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.04688v1-abstract-full').style.display = 'none'; document.getElementById('1801.04688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">61 pages and 97 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 78 (380) (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.09743">arXiv:1707.09743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.09743">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11242-015-0573-y">10.1007/s11242-015-0573-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rate Dependency in Steady-State Upscaling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ods%C3%A6ter%2C+L+H">Lars Hov Ods忙ter</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+C+F">Carl Fredrik Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Rustad%2C+A+B">Alf Birger Rustad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.09743v1-abstract-short" style="display: inline;"> Steady-state upscaling of relative permeability is studied for a range of reservoir models. Both rate-dependent upscaling and upscaling in the capillary and viscous limits are considered. In particular, we study fluvial depositional systems, which represent a large and important class of reservoirs. Numerical examples show that steady-state upscaling is rate dependent, in accordance with previous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.09743v1-abstract-full').style.display = 'inline'; document.getElementById('1707.09743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.09743v1-abstract-full" style="display: none;"> Steady-state upscaling of relative permeability is studied for a range of reservoir models. Both rate-dependent upscaling and upscaling in the capillary and viscous limits are considered. In particular, we study fluvial depositional systems, which represent a large and important class of reservoirs. Numerical examples show that steady-state upscaling is rate dependent, in accordance with previous work. In this respect we introduce a scale-dependent capillary number to estimate the balance between viscous and capillary forces. The difference between the limit solutions can be large, and we show that the intermediate flow rates can span several orders of magnitude. This substantiate the need for rate-dependent steady-state upscaling in a range of flow scenarios. We demonstrate that steady-state upscaling converges from the capillary to the viscous limit solution as the flow rate increases, and we identify a simple synthetic model where the convergence fails to be monotone. Two different sets of boundary conditions were tested, but had only minor effects on the presented reservoir models. Finally, we demonstrate the applicability of steady-state upscaling by performing dynamic flow simulation at the reservoir scale, both on fine-scaled and on upscaled models. The considered model is viscous dominated for realistic flow rates, and the simulation results indicate that viscous limit upscaling is appropriate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.09743v1-abstract-full').style.display = 'none'; document.getElementById('1707.09743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 18 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Transp Porous Med (2015) 110:565-589 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.01525">arXiv:1606.01525</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.01525">pdf</a>, <a href="https://arxiv.org/format/1606.01525">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4953888">10.1063/1.4953888 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Cryogenic Storage Ring CSR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=von+Hahn%2C+R">Robert von Hahn</a>, <a href="/search/physics?searchtype=author&amp;query=Becker%2C+A">Arno Becker</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+F">Felix Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Blaum%2C+K">Klaus Blaum</a>, <a href="/search/physics?searchtype=author&amp;query=Breitenfeldt%2C+C">Christian Breitenfeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Fadil%2C+H">Hisham Fadil</a>, <a href="/search/physics?searchtype=author&amp;query=Fellenberger%2C+F">Florian Fellenberger</a>, <a href="/search/physics?searchtype=author&amp;query=Froese%2C+M">Michael Froese</a>, <a href="/search/physics?searchtype=author&amp;query=George%2C+S">Sebastian George</a>, <a href="/search/physics?searchtype=author&amp;query=G%C3%B6ck%2C+J">J眉rgen G枚ck</a>, <a href="/search/physics?searchtype=author&amp;query=Grieser%2C+M">Manfred Grieser</a>, <a href="/search/physics?searchtype=author&amp;query=Grussie%2C+F">Florian Grussie</a>, <a href="/search/physics?searchtype=author&amp;query=Guerin%2C+E+A">Elisabeth A. Guerin</a>, <a href="/search/physics?searchtype=author&amp;query=Heber%2C+O">Oded Heber</a>, <a href="/search/physics?searchtype=author&amp;query=Herwig%2C+P">Philipp Herwig</a>, <a href="/search/physics?searchtype=author&amp;query=Karthein%2C+J">Jonas Karthein</a>, <a href="/search/physics?searchtype=author&amp;query=Krantz%2C+C">Claude Krantz</a>, <a href="/search/physics?searchtype=author&amp;query=Kreckel%2C+H">Holger Kreckel</a>, <a href="/search/physics?searchtype=author&amp;query=Lange%2C+M">Michael Lange</a>, <a href="/search/physics?searchtype=author&amp;query=Laux%2C+F">Felix Laux</a>, <a href="/search/physics?searchtype=author&amp;query=Lohmann%2C+S">Svenja Lohmann</a>, <a href="/search/physics?searchtype=author&amp;query=Menk%2C+S">Sebastian Menk</a>, <a href="/search/physics?searchtype=author&amp;query=Meyer%2C+C">Christian Meyer</a>, <a href="/search/physics?searchtype=author&amp;query=Mishra%2C+P+M">Preeti M. Mishra</a>, <a href="/search/physics?searchtype=author&amp;query=Novotn%C3%BD%2C+O">Old艡ich Novotn媒</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.01525v1-abstract-short" style="display: inline;"> An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 $\pm$ 1) K inside the ring, storage ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.01525v1-abstract-full').style.display = 'inline'; document.getElementById('1606.01525v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.01525v1-abstract-full" style="display: none;"> An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 $\pm$ 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion) and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm$^{-3}$ is derived, equivalent to a room-temperature pressure below 10$^{-14}$ mbar. Fast atomic, molecular and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.01525v1-abstract-full').style.display = 'none'; document.getElementById('1606.01525v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PDFLaTeX with 17 pages, 16 figures, 2 tables. This article has been accepted by Review of Scientific Instruments. After it is published, it will be found at http://scitation.aip.org/content/aip/journal/rsi</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.01288">arXiv:1511.01288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.01288">pdf</a>, <a href="https://arxiv.org/format/1511.01288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.19.024701">10.1103/PhysRevAccelBeams.19.024701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Target Studies for Surface Muon Production </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Berg%2C+F">F. Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Desorgher%2C+L">L. Desorgher</a>, <a href="/search/physics?searchtype=author&amp;query=Fuchs%2C+A">A. Fuchs</a>, <a href="/search/physics?searchtype=author&amp;query=Hajdas%2C+W">W. Hajdas</a>, <a href="/search/physics?searchtype=author&amp;query=Hodge%2C+Z">Z. Hodge</a>, <a href="/search/physics?searchtype=author&amp;query=Kettle%2C+P+-">P. -R. Kettle</a>, <a href="/search/physics?searchtype=author&amp;query=Knecht%2C+A">A. Knecht</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCscher%2C+R">R. L眉scher</a>, <a href="/search/physics?searchtype=author&amp;query=Papa%2C+A">A. Papa</a>, <a href="/search/physics?searchtype=author&amp;query=Rutar%2C+G">G. Rutar</a>, <a href="/search/physics?searchtype=author&amp;query=Wohlmuther%2C+M">M. Wohlmuther</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.01288v2-abstract-short" style="display: inline;"> Meson factories are powerful drivers of diverse physics programmes. With beam powers already in the MW-regime attention has to be turned to target and beam line design to further significantly increase surface muon rates available for experiments. For this reason we have explored the possibility of using a neutron spallation target as a source of surface muons by performing detailed Geant4 simulat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.01288v2-abstract-full').style.display = 'inline'; document.getElementById('1511.01288v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.01288v2-abstract-full" style="display: none;"> Meson factories are powerful drivers of diverse physics programmes. With beam powers already in the MW-regime attention has to be turned to target and beam line design to further significantly increase surface muon rates available for experiments. For this reason we have explored the possibility of using a neutron spallation target as a source of surface muons by performing detailed Geant4 simulations with pion production cross sections based on a parametrization of existing data. While the spallation target outperforms standard targets in the backward direction by more than a factor 7 it is not more efficient than standard targets viewed under 90掳. Not surprisingly, the geometry of the target plays a large role in the generation of surface muons. Through careful optimization, a gain in surface muon rate of between 30 - 60% over the standard &#34;box-like&#34; target used at the Paul Scherrer Institute could be achieved by employing a rotated slab target. An additional 10% gain could also be possible by utilizing novel target materials such as, e.g., boron carbide. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.01288v2-abstract-full').style.display = 'none'; document.getElementById('1511.01288v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Accelerator and Beams 19, 024701 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.04743">arXiv:1510.04743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.04743">pdf</a>, <a href="https://arxiv.org/ps/1510.04743">ps</a>, <a href="https://arxiv.org/format/1510.04743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-016-4047-3">10.1140/epjc/s10052-016-4047-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Muon polarization in the MEG experiment: predictions and measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+A+M">A. M. Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+Y">Y. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Baracchini%2C+E">E. Baracchini</a>, <a href="/search/physics?searchtype=author&amp;query=Bemporad%2C+C">C. Bemporad</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+F">F. Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Biasotti%2C+M">M. Biasotti</a>, <a href="/search/physics?searchtype=author&amp;query=Boca%2C+G">G. Boca</a>, <a href="/search/physics?searchtype=author&amp;query=Cattaneo%2C+P+W">P. W. Cattaneo</a>, <a href="/search/physics?searchtype=author&amp;query=Cavoto%2C+G">G. Cavoto</a>, <a href="/search/physics?searchtype=author&amp;query=Cei%2C+F">F. Cei</a>, <a href="/search/physics?searchtype=author&amp;query=Chiarello%2C+G">G. Chiarello</a>, <a href="/search/physics?searchtype=author&amp;query=Chiri%2C+C">C. Chiri</a>, <a href="/search/physics?searchtype=author&amp;query=De+Bari%2C+A">A. De Bari</a>, <a href="/search/physics?searchtype=author&amp;query=De+Gerone%2C+M">M. De Gerone</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%93nofrio%2C+A">A. D脫nofrio</a>, <a href="/search/physics?searchtype=author&amp;query=Dussoni%2C+S">S. Dussoni</a>, <a href="/search/physics?searchtype=author&amp;query=Fujii%2C+Y">Y. Fujii</a>, <a href="/search/physics?searchtype=author&amp;query=Galli%2C+L">L. Galli</a>, <a href="/search/physics?searchtype=author&amp;query=Gatti%2C+F">F. Gatti</a>, <a href="/search/physics?searchtype=author&amp;query=Grancagnolo%2C+F">F. Grancagnolo</a>, <a href="/search/physics?searchtype=author&amp;query=Grassi%2C+M">M. Grassi</a>, <a href="/search/physics?searchtype=author&amp;query=Graziosi%2C+A">A. Graziosi</a>, <a href="/search/physics?searchtype=author&amp;query=Grigoriev%2C+D+N">D. N. Grigoriev</a>, <a href="/search/physics?searchtype=author&amp;query=Haruyama%2C+T">T. Haruyama</a>, <a href="/search/physics?searchtype=author&amp;query=Hildebrandt%2C+M">M. Hildebrandt</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.04743v2-abstract-short" style="display: inline;"> The MEG experiment makes use of one of the world&#39;s most intense low energy muon beams, in order to search for the lepton flavour violating process $渭^{+} \rightarrow {\rm e}^{+} 纬$. We determined the residual beam polarization at the thin stopping target, by measuring the asymmetry of the angular distribution of Michel decay positrons as a function of energy. The initial muon beam polarization at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04743v2-abstract-full').style.display = 'inline'; document.getElementById('1510.04743v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.04743v2-abstract-full" style="display: none;"> The MEG experiment makes use of one of the world&#39;s most intense low energy muon beams, in order to search for the lepton flavour violating process $渭^{+} \rightarrow {\rm e}^{+} 纬$. We determined the residual beam polarization at the thin stopping target, by measuring the asymmetry of the angular distribution of Michel decay positrons as a function of energy. The initial muon beam polarization at the production is predicted to be $P_渭 = -1$ by the Standard Model (SM) with massless neutrinos. We estimated our residual muon polarization to be $P_渭 = -0.85 \pm 0.03 ~ {\rm (stat)} ~ { }^{+ 0.04}_{-0.05} ~ {\rm (syst)}$ at the stopping target, which is consistent with the SM predictions when the depolarizing effects occurring during the muon production, propagation and moderation in the target are taken into account. The knowledge of beam polarization is of fundamental importance in order to model the background of our ${\megsign}$ search induced by the muon radiative decay: $渭^{+} \rightarrow {\rm e}^{+} \bar谓_渭 谓_{\rm e} 纬$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04743v2-abstract-full').style.display = 'none'; document.getElementById('1510.04743v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2016) 76:223 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.02424">arXiv:1505.02424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.02424">pdf</a>, <a href="https://arxiv.org/ps/1505.02424">ps</a>, <a href="https://arxiv.org/format/1505.02424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11242-014-0307-6">10.1007/s11242-014-0307-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Berg%2C+C+F">Carl Fredrik Berg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.02424v1-abstract-short" style="display: inline;"> In this article we investigate the permeability of a porous medium as given in Darcy&#39;s law. The permeability is described by an effective hydraulic pore radius in the porous medium, the fluctuation in local hydraulic pore radii, the length of streamlines, and the fractional volume conducting flow. The effective hydraulic pore radius is related to a characteristic hydraulic length, the fluctuation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02424v1-abstract-full').style.display = 'inline'; document.getElementById('1505.02424v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.02424v1-abstract-full" style="display: none;"> In this article we investigate the permeability of a porous medium as given in Darcy&#39;s law. The permeability is described by an effective hydraulic pore radius in the porous medium, the fluctuation in local hydraulic pore radii, the length of streamlines, and the fractional volume conducting flow. The effective hydraulic pore radius is related to a characteristic hydraulic length, the fluctuation in local hydraulic radii is related to a constriction factor, the length of streamlines is characterized by a tortuosity, and the fractional volume conducting flow from inlet to outlet is described by an effective porosity. The characteristic length, the constriction factor, the tortuosity and the effective porosity are thus intrinsic descriptors of the pore structure relative to direction. We show that the combined effect of our pore structure description fully describes the permeability of a porous medium. The theory is applied to idealized porous media, where it reproduces Darcy&#39;s law for fluid flow derived from the Hagen-Poiseuille equation. We also apply this theory to full network models of Fontainebleau sandstone, where we show how the pore structure and permeability correlate with porosity for such natural porous media. This work establishes how the permeability can be related to porosity, in the sense of Kozeny-Carman, through fundamental and well-defined pore structure parameters: characteristic length, constriction, and tortuosity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02424v1-abstract-full').style.display = 'none'; document.getElementById('1505.02424v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Transport in porous media 103.3 (2014): 381-400 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.04466">arXiv:1503.04466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.04466">pdf</a>, <a href="https://arxiv.org/ps/1503.04466">ps</a>, <a href="https://arxiv.org/format/1503.04466">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.86.046314">10.1103/PhysRevE.86.046314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Re-examining Archie&#39;s law: Conductance description by tortuosity and constriction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Berg%2C+C+F">Carl Fredrik Berg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.04466v1-abstract-short" style="display: inline;"> In this article we investigate the electrical conductance of an insulating porous medium (e.g., a sedimentary rock) filled with an electrolyte (e.g., brine), usually described using the Archie cementation exponent. We show how the electrical conductance depends on changes in the drift velocity and the length of the electric field lines, in addition to the porosity and the conductance of the electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04466v1-abstract-full').style.display = 'inline'; document.getElementById('1503.04466v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.04466v1-abstract-full" style="display: none;"> In this article we investigate the electrical conductance of an insulating porous medium (e.g., a sedimentary rock) filled with an electrolyte (e.g., brine), usually described using the Archie cementation exponent. We show how the electrical conductance depends on changes in the drift velocity and the length of the electric field lines, in addition to the porosity and the conductance of the electrolyte. We characterized the length of the electric field lines by a tortuosity and the changes in drift velocity by a constriction factor. Both the tortuosity and the constriction factor are descriptors of the pore microstructure. We define a conductance reduction factor to measure the local contributions of the pore microstructure to the global conductance. It is shown that the global conductance reduction factor is the product of the tortuosity squared divided by the constriction factor, thereby proving that the combined effect of tortuosity and constriction, in addition to the porosity and conductance of the electrolyte, fully describes the effective electrical conductance of a porous medium. We show that our tortuosity, constriction factor, and conductance reduction factor reproduce the electrical conductance for idealized porous media. They are also applied to Bentheimer sandstone, where we describe a microstructure-related correlation between porosity and conductivity using both the global conductance reduction factor and the distinct contributions from tortuosity and constriction. Overall, this work shows how the empirical Archie cementation exponent can be substituted by more descriptive, physical parameters, either by the global conductance reduction factor or by tortuosity and constriction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04466v1-abstract-full').style.display = 'none'; document.getElementById('1503.04466v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 86, 046-314 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.3217">arXiv:1312.3217</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.3217">pdf</a>, <a href="https://arxiv.org/format/1312.3217">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-016-3947-6">10.1140/epjc/s10052-016-3947-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the radiative decay of polarized muons in the MEG experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MEG+Collaboration"> MEG Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+A+M">A. M. Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+Y">Y. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Baracchini%2C+E">E. Baracchini</a>, <a href="/search/physics?searchtype=author&amp;query=Bemporad%2C+C">C. Bemporad</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+F">F. Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Biasotti%2C+M">M. Biasotti</a>, <a href="/search/physics?searchtype=author&amp;query=Boca%2C+G">G. Boca</a>, <a href="/search/physics?searchtype=author&amp;query=Cattaneo%2C+P+W">P. W. Cattaneo</a>, <a href="/search/physics?searchtype=author&amp;query=Cavoto%2C+G">G. Cavoto</a>, <a href="/search/physics?searchtype=author&amp;query=Cei%2C+F">F. Cei</a>, <a href="/search/physics?searchtype=author&amp;query=Chiarello%2C+G">G. Chiarello</a>, <a href="/search/physics?searchtype=author&amp;query=Chiri%2C+C">C. Chiri</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=De+Gerone%2C+M">M. De Gerone</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Onofrio%2C+A">A. D&#39;Onofrio</a>, <a href="/search/physics?searchtype=author&amp;query=Dussoni%2C+S">S. Dussoni</a>, <a href="/search/physics?searchtype=author&amp;query=Fujii%2C+Y">Y. Fujii</a>, <a href="/search/physics?searchtype=author&amp;query=Galli%2C+L">L. Galli</a>, <a href="/search/physics?searchtype=author&amp;query=Gatti%2C+F">F. Gatti</a>, <a href="/search/physics?searchtype=author&amp;query=Grancagnolo%2C+F">F. Grancagnolo</a>, <a href="/search/physics?searchtype=author&amp;query=Grassi%2C+M">M. Grassi</a>, <a href="/search/physics?searchtype=author&amp;query=Graziosi%2C+A">A. Graziosi</a>, <a href="/search/physics?searchtype=author&amp;query=Grigoriev%2C+D+N">D. N. Grigoriev</a>, <a href="/search/physics?searchtype=author&amp;query=Haruyama%2C+T">T. Haruyama</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.3217v3-abstract-short" style="display: inline;"> We studied the radiative muon decay $渭^+ \to e^+谓\bar谓纬$ by using for the first time an almost fully polarized muon source. We identified a large sample (~13000) of these decays in a total sample of 1.8x10^14 positive muon decays collected in the MEG experiment in the years 2009--2010 and measured the branching ratio B($渭^+ \to e^+谓\bar谓纬$) = (6.03+-0.14(stat.)+-0.53(sys.))x10^-8 for E_e &gt; 45 MeV&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3217v3-abstract-full').style.display = 'inline'; document.getElementById('1312.3217v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.3217v3-abstract-full" style="display: none;"> We studied the radiative muon decay $渭^+ \to e^+谓\bar谓纬$ by using for the first time an almost fully polarized muon source. We identified a large sample (~13000) of these decays in a total sample of 1.8x10^14 positive muon decays collected in the MEG experiment in the years 2009--2010 and measured the branching ratio B($渭^+ \to e^+谓\bar谓纬$) = (6.03+-0.14(stat.)+-0.53(sys.))x10^-8 for E_e &gt; 45 MeV and E_纬 &gt; 40 MeV, consistent with the Standard Model prediction. The precise measurement of this decay mode provides a basic tool for the timing calibration, a normalization channel, and a strong quality check of the complete MEG experiment in the search for $渭^+ \to e^+纬$ process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3217v3-abstract-full').style.display = 'none'; document.getElementById('1312.3217v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures. Added an introduction to NLO calculation which was recently calculated. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2016) 76:108 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10