CINXE.COM

Search results for: post-biotic metabolites

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: post-biotic metabolites</title> <meta name="description" content="Search results for: post-biotic metabolites"> <meta name="keywords" content="post-biotic metabolites"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="post-biotic metabolites" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="post-biotic metabolites"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 432</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: post-biotic metabolites</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Bifidobacterial Postbiotics as Health-Promoting Agents in Dairy Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Kamalledin%20Moghadam">Saba Kamalledin Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20M.%20Mortazavian"> Amir M. Mortazavian</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Homayouni-Rad"> Aziz Homayouni-Rad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent decade, bioactive-enriched foods, as well as natural health products, have caught the intention of the general and health-conscious population. In this regard, naturally occurring beneficial microorganisms have been successfully added to various dairy products during fermentation. Bifidobacteria, known as probiotics with a broad range of bioactivities, are commonly used in the dairy industry to naturally enrich dairy products. These bioactive metabolites are industrially and commercially important due to health-promoting activities on the consumers (e.g., anti-hypertensive, anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation, etcetera). This review aims to discuss the potential of bifidobacteria for the elaboration of dairy foods with functional properties and added value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy" title="dairy">dairy</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=postbiotic" title=" postbiotic"> postbiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=bifidobacteria" title="bifidobacteria">bifidobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bifidobacterial%20postbiotic" title=" bifidobacterial postbiotic"> bifidobacterial postbiotic</a> </p> <a href="https://publications.waset.org/abstracts/145131/bifidobacterial-postbiotics-as-health-promoting-agents-in-dairy-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Microencapsulation of Probiotic and Evaluation for Viability, Antimicrobial Property and Cytotoxic Activities of its Postbiotic Metabolites on MCF-7 Breast Cancer Cell Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nkechi%20V.%20Enwuru">Nkechi V. Enwuru</a>, <a href="https://publications.waset.org/abstracts/search?q=Bullum%20Nkeki"> Bullum Nkeki</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20A.%20Adekoya"> Elizabeth A. Adekoya</a>, <a href="https://publications.waset.org/abstracts/search?q=Olumide%20A.%20Adebesin"> Olumide A. Adebesin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20F.%20Peters"> Rebecca F. Peters</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20A.%20Aikhomu"> Victoria A. Aikhomu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mendie%20E.%20U.">Mendie E. U.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Probiotics are live microbial feed supplement beneficial for host. Probiotics and their postbiotic products have been used to prevent or treat various health conditions. However, the products cell viability is often low due to harsh conditions subjected during processing, handling, storage, and gastrointestinal transit. These strongly influence probiotics’ benefits; thus, viability is essential for probiotics to produce health benefits for the host. Microencapsulation is a promising technique with considerable effects on probiotic survival. The study is aimed to formulate a microencapsulated probiotic and evaluate its viability, antimicrobial efficacy, and cytotoxic activity of its postbiotic on the MCF-7 breast cancer cell line. Method: Human and animal raw milk were sampled for lactic acid bacteria. The isolated bacteria were identified using conventional and VITEK 2 systems. The identified lactic acid bacterium was encapsulated using spray-dried and extrusion methods. The free, encapsulated, and chitosan-coated encapsulated probiotics were tested for viability in simulated-gastric intestinal (SGI) fluid and different storage conditions at refrigerated (4oC) and room (25oC) temperatures. The disintegration time and weight uniformity of the spray-dried hard gelatin capsules were tested. The antimicrobial property of free and encapsulated probiotics was tested against enteric pathogenic isolates from antiretroviral therapy (ART) treated HIV-positive patients. The postbiotic of the free cells was extracted, and its cytotoxic effect on the MCF-7 breast cancer cell line was tested through an MTT assay. Result: The Lactobacillus plantarum was isolated from animal raw milk. Zero-size hard gelatin L. plantarum capsules with granules within a size range of 0.71–1.00 mm diameter was formulated. The disintegration time ranges from 2.14±0.045 to 2.91±0.293 minutes, while the average weight is 502.1mg. Simulated gastric solution significantly affected viability of both free and microcapsules. However, the encapsulated cells were more protected and viable due to impermeability in the microcapsules. Furthermore, the viability of free cells stored at 4oC and 25oC were less than 4 log CFU/g and 6 log CFU/g respectively after 12 weeks. However, the microcapsules stored at 4oC achieved the highest viability among the free and microcapsules stored at 25oC and the free cells stored at 4oC. Encapsulated cells were released in the simulated gastric fluid, viable and effective against the enteric pathogens tested. However, chitosan-coated calcium alginate encapsulated probiotics significantly inhibited Shigella flexneri, Candida albicans, and Escherichia coli. The Postbiotic Metabolites (PM) of L. plantarum produced a cytotoxic effect on the MCF-7 breast cancer cell line. The postbiotic showed significant cytotoxic activity similar to 5FU, a standard antineoplastic agent. The inhibition concentration of 50% growth (IC50) of postbiotic metabolite K3 is low and consistent with the IC50 of the positive control (Cisplatin). Conclusions: Lactobacillus plantarum postbiotic exhibited a cytotoxic effect on the MCF-7 breast cancer cell line and could be used as combined adjuvant therapy in breast cancer management. The microencapsulation technique protects the probiotics, improving their viability and delivery to the gastrointestinal tract. Chitosan enhances antibacterial efficacy; thus, chitosan-coated microencapsulated L. plantarum probiotics could be more effective and used as a combined therapy in HIV management of opportunistic enteric infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probiotics" title="probiotics">probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20conditions" title=" gastrointestinal conditions"> gastrointestinal conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20effect" title=" antimicrobial effect"> antimicrobial effect</a>, <a href="https://publications.waset.org/abstracts/search?q=postbiotic" title=" postbiotic"> postbiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity%20effect" title=" cytotoxicity effect"> cytotoxicity effect</a> </p> <a href="https://publications.waset.org/abstracts/164746/microencapsulation-of-probiotic-and-evaluation-for-viability-antimicrobial-property-and-cytotoxic-activities-of-its-postbiotic-metabolites-on-mcf-7-breast-cancer-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Gut Metabolite Profiling of the Ethnic Groups from Assam, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhusmita%20Dehingia">Madhusmita Dehingia</a>, <a href="https://publications.waset.org/abstracts/search?q=Supriyo%20Sen"> Supriyo Sen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhuwan%20Bhaskar"> Bhuwan Bhaskar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tulsi%20Joishy"> Tulsi Joishy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojibur%20R.%20Khan"> Mojibur R. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human gut microbes and their metabolites are important for maintaining homeostasis in the gut and are responsible for many metabolic and immune mediated diseases. In the present study, we determined the profiles of the gut metabolites of five different ethnic groups (Bodo, Tai-Phake, Karbi, Tea tribe and Tai-Aiton) of Assam. Fecal metabolite profiling of the 39 individuals belonging to the ethnic groups was carried out using Gas chromatography – Mass spectrometry (GC-MS), and comparison was performed among the tribes for common and unique metabolites produced within their gut. Partial Least Squares Discriminant Analysis (PLS-DA) of the metabolites suggested that the individuals grouped according to their ethnicity. Among the 66 abundant metabolites, 12 metabolites were found to be common among the five ethnic groups. Additionally, ethnicity wise some unique metabolites were also detected. For example, the tea tribe of Assam contained the tea components, Aniline and Benzoate more in their gut in comparison to others. Metabolites of microbial origin were also correlated with the already published metagenomic data of the same ethnic group and functional analysis were carried out based on human metabolome database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethnicity" title="ethnicity">ethnicity</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a> </p> <a href="https://publications.waset.org/abstracts/60440/gut-metabolite-profiling-of-the-ethnic-groups-from-assam-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Secondary Metabolites from Turkish Marine-Derived Fungi Hypocrea nigricans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Heydari">H. Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Konuklugil"> B. Konuklugil</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Proksch"> P. Proksch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marine-derived fungi can produce interesting bioactive secondary metabolites that can be considered the potential for drug development. Turkey is a country of a peninsula surrounded by the Black Sea at the north, the Aegean Sea at the west, and the Mediterranean Sea at the south. Despite the approximately 8400 km of coastline, studies on marine secondary metabolites and their biological activity are limited. In our ongoing search for new natural products with different bioactivities produced by the marine-derived fungi, we have investigated secondary metabolites of Turkish collection of the marine sea slug (Peltodoris atromaculata) associated fungi Hypocrea nigricans collected from Seferihisar in the Egean sea. According to the author’s best knowledge, no study was found on this fungal species in terms of secondary metabolites. Isolated from ethyl acetate extract of the culture of Hypocrea nigricans were (isodihydroauroglaucin,tetrahydroauroglaucin and dihydroauroglaucin. The structures of the compounds were established based on an NMR and MS analysis. Structural elucidation of another isolated secondary metabolite/s continues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hypocrea%20nigricans" title="Hypocrea nigricans">Hypocrea nigricans</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20fungi" title=" marine fungi"> marine fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a> </p> <a href="https://publications.waset.org/abstracts/113549/secondary-metabolites-from-turkish-marine-derived-fungi-hypocrea-nigricans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Heroin and Opiates Metabolites Tracing by Gas-Chromatography Isotope Ratio Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao-Te%20Yen">Yao-Te Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Hsin%20Cheng"> Chao-Hsin Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Shun%20Huang"> Meng-Shun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shan-Zong%20Cyue"> Shan-Zong Cyue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 'Poppy-seed defense' has been a serious problem all over the world, that is because the opiates metabolites in urine are difficult to distinguish where they come from precisely. In this research, a powerful analytic method has been developed to trace the opiates metabolites in urine by Gas-Chromatography Isotope Ratio Mass Spectrometry (GC-IRMS). In order to eliminate the interference of synthesis to heroin or metabolism through human body, opiates metabolites in urine and sized heroin were hydrolyzed to morphine. Morphine is the key compound for tracing between opiates metabolites and seized heroin in this research. By matching δ13C and δ15N values through morphine, it is successful to distinguish the opiates metabolites coming from heroin or medicine. We tested seven heroin abuser’s metabolites and seized heroin in crime sites, the result showed that opiates metabolites coming from seized heroin, the variation of δ13C and δ15N for morphine are within 0.2 and 2.5‰, respectively. The variation of δ13C and δ15N for morphine are reasonable with the result of matrix match experiments. Above all, the uncertainty of 'Poppy-seed defense' can be solved easily by this analytic method, it provides the direct evidence for judge to make accurate conviction without hesitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poppy-seed%20defense" title="poppy-seed defense">poppy-seed defense</a>, <a href="https://publications.waset.org/abstracts/search?q=heroin" title=" heroin"> heroin</a>, <a href="https://publications.waset.org/abstracts/search?q=opiates%20metabolites" title=" opiates metabolites"> opiates metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=isotope%20ratio%20mass%20spectrometry" title=" isotope ratio mass spectrometry"> isotope ratio mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/74236/heroin-and-opiates-metabolites-tracing-by-gas-chromatography-isotope-ratio-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> The Order Russulales of Basidiomycota: Systematics, Ecology and Chemotaxonomy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Clericuzio">Marco Clericuzio</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Vizzini"> Alfredo Vizzini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The secondary metabolites of Russulales (one of the main orders of phylum Basidiomycota), have been studied. They are mainly terpenoids, with sesquiterpenes being the most common ones, but also triterpenoids and prenylated phenols have been isolated. We found that classes of specific compounds seem to be often allied to systematic groupings, so that they may have chemotaxonomic significance. Moreover, the ecological implications of such metabolites, as well as their biological activities, are discussed. Lately, we have focused our attention on the anti-arthropod activity of Russula metabolites, in particular on the toxicity against mites and other crop pests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemotaxonomy" title="chemotaxonomy">chemotaxonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity" title=" insecticidal activity"> insecticidal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=russulales" title=" russulales"> russulales</a>, <a href="https://publications.waset.org/abstracts/search?q=terpenoids" title=" terpenoids"> terpenoids</a> </p> <a href="https://publications.waset.org/abstracts/123286/the-order-russulales-of-basidiomycota-systematics-ecology-and-chemotaxonomy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> The Impact of Ramadan Fasting on Blood Pressure: Observational Study and a Meta-Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rami%20Al%20Jafar">Rami Al Jafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Elliott"> Paul Elliott</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20K.%20Tsilidis"> Konstantinos K. Tsilidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Dehghan"> Abbas Dehghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although Ramadan fasting is a ritual that is practiced every year by millions of Muslims, studies on Ramadan fasting are still scarce. To the best of our knowledge, none of the previous studies comprehensively explored the effect on the metabolic profile. In London Ramadan Fasting Study, blood samples were collected from 81 participants before and 10-14 days after Ramadan. Blood samples were analysed using nuclear magnetic resonance (NMR) spectroscopy which covers 249 metabolites. Mixed-effects models were used to analyse collected data and assess the effect of Ramadan fasting on the metabolic profile. Our observational study involved 85 individuals with a mean age of 45.2 years, and 53.1% of them were males. After Ramadan, forty metabolites were affected significantly by Ramadan fasting. Most of these metabolites were metabolites ratios (24), and the rest were three Glycolysis, three ketone bodies, nine Lipoprotein subclasses and one inflammation marker. This study suggests that Ramadan fasting is significantly associated with changes in the metabolic profile. However, the changes are assumed to be temporary, and the long-term effect of these changes is unknown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metabolic%20profile" title="metabolic profile">metabolic profile</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramadan%20fasting" title=" Ramadan fasting"> Ramadan fasting</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=intermittent%20fasting" title=" intermittent fasting"> intermittent fasting</a> </p> <a href="https://publications.waset.org/abstracts/148317/the-impact-of-ramadan-fasting-on-blood-pressure-observational-study-and-a-meta-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> Nutraceutical Potential of Mushroom Bioactive Metabolites and Their Food Functionality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jackson%20Ishara">Jackson Ishara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariel%20Buzera"> Ariel Buzera</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustave%20N.%20Mushagalusa"> Gustave N. Mushagalusa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20R.%20A.%20Hammam"> Ahmed R. A. Hammam</a>, <a href="https://publications.waset.org/abstracts/search?q=Judith%20Munga"> Judith Munga</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Karanja"> Paul Karanja</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Kinyuru"> John Kinyuru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous mushroom bioactive metabolites, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been studied in life-threatening conditions and diseases such as diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity attempting to identify natural therapies. These bioactive metabolites have shown potential as antiviral and immune system strengthener natural agents through diverse cellular and physiological pathways modulation with no toxicity evidence, widely available, and affordable. In light of the emerging literature, this paper compiles the most recent information describing the molecular mechanisms that underlie the nutraceutical potentials of these mushroom metabolites suggesting their effectiveness if combined with existing drug therapies. The findings raise hope that these mushroom bioactive metabolites may be utilized as natural therapies considering their therapeutic potential while anticipating further research designing clinical trials and developing new drug therapies while encouraging their consumption as a natural adjuvant in preventing and controlling life-threatening conditions and diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20metabolites" title="bioactive metabolites">bioactive metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20functionality" title=" food functionality"> food functionality</a>, <a href="https://publications.waset.org/abstracts/search?q=health-threatening%20conditions" title=" health-threatening conditions"> health-threatening conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=mushrooms" title=" mushrooms"> mushrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=nutraceutical" title=" nutraceutical"> nutraceutical</a> </p> <a href="https://publications.waset.org/abstracts/151778/nutraceutical-potential-of-mushroom-bioactive-metabolites-and-their-food-functionality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Identification and Characterization of in Vivo, in Vitro and Reactive Metabolites of Zorifertinib Using Liquid Chromatography Lon Trap Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20A.%20Kadi">Adnan A. Kadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20S.%20Al-Shakliah"> Nasser S. Al-Shakliah</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitham%20Al-Rabiah"> Haitham Al-Rabiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zorifertinib is a novel, potent, oral, a small molecule used to treat non-small cell lung cancer (NSCLC). zorifertinib is an Epidermal Growth Factor Receptor (EGFR) inhibitor and has good blood–brain barrier permeability for (NSCLC) patients with EGFR mutations. zorifertinibis currently at phase II/III clinical trials. The current research reports the characterization and identification of in vitro, in vivo and reactive intermediates of zorifertinib. Prediction of susceptible sites of metabolism and reactivity pathways (cyanide and GSH) of zorifertinib were performed by the Xenosite web predictor tool. In-vitro metabolites of zorifertinib were performed by incubation with rat liver microsomes (RLMs) and isolated perfused rat liver hepatocytes. Extraction of zorifertinib and it's in vitro metabolites from the incubation mixtures were done by protein precipitation. In vivo metabolism was done by giving a single oral dose of zorifertinib(10 mg/Kg) to Sprague Dawely rats in metabolic cages by using oral gavage. Urine was gathered and filtered at specific time intervals (0, 6, 12, 18, 24, 48, 72,96and 120 hr) from zorifertinib dosing. A similar volume of ACN was added to each collected urine sample. Both layers (organic and aqueous) were injected into liquid chromatography ion trap mass spectrometry(LC-IT-MS) to detect vivozorifertinib metabolites. N-methyl piperizine ring and quinazoline group of zorifertinib undergoe metabolism forming iminium and electro deficient conjugated system respectively, which are very reactive toward nucleophilic macromolecules. Incubation of zorifertinib with RLMs in the presence of 1.0 mM KCN and 1.0 Mm glutathione were made to check reactive metabolites as it is often responsible for toxicities associated with this drug. For in vitro metabolites there were nine in vitro phase I metabolites, four in vitro phase II metabolites, eleven reactive metabolites(three cyano adducts, five GSH conjugates metabolites, and three methoxy metabolites of zorifertinib were detected by LC-IT-MS. For in vivo metabolites, there were eight in vivo phase I, tenin vivo phase II metabolitesofzorifertinib were detected by LC-IT-MS. In vitro and in vivo phase I metabolic pathways wereN- demthylation, O-demethylation, hydroxylation, reduction, defluorination, and dechlorination. In vivo phase II metabolic reaction was direct conjugation of zorifertinib with glucuronic acid and sulphate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20metabolites" title="in vivo metabolites">in vivo metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20metabolites" title=" in vitro metabolites"> in vitro metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=cyano%20adducts" title=" cyano adducts"> cyano adducts</a>, <a href="https://publications.waset.org/abstracts/search?q=GSH%20conjugate" title="GSH conjugate">GSH conjugate</a> </p> <a href="https://publications.waset.org/abstracts/140683/identification-and-characterization-of-in-vivo-in-vitro-and-reactive-metabolites-of-zorifertinib-using-liquid-chromatography-lon-trap-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Parabens, Paraben Metabolites and Triclocarban in Sediment Samples from the Trondheim Fjord, Norway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kristine%20Vike-Jonas">Kristine Vike-Jonas</a>, <a href="https://publications.waset.org/abstracts/search?q=Susana%20V.%20Gonzalez"> Susana V. Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Olav%20L.%20Bakkerud"> Olav L. Bakkerud</a>, <a href="https://publications.waset.org/abstracts/search?q=Karoline%20S.%20Gjelstad"> Karoline S. Gjelstad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shazia%20N.%20Aslam"> Shazia N. Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%98yvind%20Mikkelsen"> Øyvind Mikkelsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandros%20Asimakopoulos"> Alexandros Asimakopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> P-hydrobenzoic acid esters (parabens), paraben metabolites, and triclocarban (TCC) are a group of synthetic antimicrobials classified as endocrine disrupting chemicals (EDCs) and emerging pollutants. The aim of this study was to investigate the levels of these compounds in sediment near the effluent of a wastewater treatment plant (WWTP) in the Trondheim Fjord, Norway. Paraben, paraben metabolites, and TCC are high volume production chemicals that are found in a range of consumer products, especially pharmaceuticals and personal care products (PCPs). In this study, six parabens (methyl paraben; MeP, ethyl paraben; EtP, propyl paraben; PrP, butyl paraben; BuP, benzyl paraben; BezP, heptyl paraben; HeP), four paraben metabolites (4-hydroxybenzoic acid; 4-HB, 3,4-dihydroxybenzoic acid; 3,4-DHB, methyl protocatechuic acid; OH-MeP, ethyl protocatechuic acid; OH-EtP) and TCC were determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in 64 sediment samples from 10 different locations outside Trondheim, Norway. Of these 11 target analytes, four were detected in 40 % or more of the samples. The sum of six parabens (∑Parabens), four paraben metabolites (∑Metabolites) and TCC in sediment ranged from 4.88 to 11.56 (mean 6.81) ng/g, 52.16 to 368.28 (mean 93.89) ng/g and 0.53 to 3.65 (mean 1.50) ng/g dry sediment, respectively. Pearson correlation coefficients indicated that TCC was positively correlated with OH-MeP, but negatively correlated with 4-HB. To the best of the author’s knowledge, this is the first time parabens, paraben metabolites and TCC have been reported in the Trondheim Fjord. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parabens" title="parabens">parabens</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20mass%20spectrometry" title=" tandem mass spectrometry"> tandem mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/113904/parabens-paraben-metabolites-and-triclocarban-in-sediment-samples-from-the-trondheim-fjord-norway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Detection of Heroin and Its Metabolites in Urine Samples: A Chemiluminescence Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonu%20Gandhi">Sonu Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Neena%20Capalash"> Neena Capalash</a>, <a href="https://publications.waset.org/abstracts/search?q=Prince%20Sharma"> Prince Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Raman%20Suri"> C. Raman Suri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sensitive chemiluminescence immunoassay (CIA) for heroin and its major metabolites is reported. The method is based on the competitive reaction of horseradish peroxidase (HRP)-labeled anti-MAM antibody and free drug in spiked urine samples. A hapten-protein conjugate was synthesized by using acidic derivative of monoacetyl morphine (MAM) coupled to carrier protein BSA and was used as an immunogen for the generation of anti-MAM (monoacetyl morphine) antibody. A high titer of antibody (1:64,0000) was obtained and the relative affinity constant (Kaff) of antibody was 3.1×107 l/mol. Under the optimal conditions, linear range and reactivity for heroin, mono acetyl morphine (MAM), morphine and codeine were 0.08, 0.09, 0.095 and 0.092 ng/mL respectively. The developed chemiluminescence inhibition assay could detect heroin and its metabolites in standard and urine samples up to 0.01 ng/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heroin" title="heroin">heroin</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=chemiluminescence%20immunoassay" title=" chemiluminescence immunoassay"> chemiluminescence immunoassay</a>, <a href="https://publications.waset.org/abstracts/search?q=horse%20radish%20peroxidase" title=" horse radish peroxidase "> horse radish peroxidase </a> </p> <a href="https://publications.waset.org/abstracts/44063/detection-of-heroin-and-its-metabolites-in-urine-samples-a-chemiluminescence-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> Biosynthesis of Healthy Secondary Metabolites in Olive Fruit in Response to Different Agronomic Treatments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Perrone">Anna Perrone</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Martinelli"> Federico Martinelli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Olive fruit is well-known for the high content in secondary metabolites with high interest at nutritional, nutraceutical, antioxidant, and healthy levels. The content of secondary metabolites in olive at harvest may be affected by different water regimes, with significant effects on olive oil composition and quality and, consequently, on its healthy and nutritional features. In this work, a summary of several research studies dealing with the biosynthesis of healthy and nutraceutical metabolites of the secondary metabolism in olive fruit will be reported. The phytochemical findings have been correlated with the expression of key genes involved in polyphenol, terpenoid, and carotenoid biosynthesis and metabolism in response to different development stages and water regimes. Flavonoids were highest in immature fruits, while anthocyanins increased at ripening. In epicarp tissue, this was clearly associated with an up-regulation of the UFGT gene. Olive fruits cultivated under different water regimes were analyzed by metabolomics. This method identified several hundred metabolites in the ripe mesocarp. Among them, 46 were differentially accumulated in the comparison between rain-fed and irrigated conditions. Well-known healthy metabolites were more abundant at a higher level of water regimes. Increased content of polyphenols was observed in the rain-fed fruit; particularly, anthocyanin concentration was higher at ripening. Several secondary metabolites were differentially accumulated between different irrigation conditions. These results showed that these metabolic approaches could be efficiently used to determine the effects of agronomic treatments on olive fruit physiology and, consequently, on nutritional and healthy properties of the obtained extra-virgin olive oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olea%20europea" title="olea europea">olea europea</a>, <a href="https://publications.waset.org/abstracts/search?q=anthocyanins" title=" anthocyanins"> anthocyanins</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20regimes" title=" water regimes"> water regimes</a> </p> <a href="https://publications.waset.org/abstracts/130074/biosynthesis-of-healthy-secondary-metabolites-in-olive-fruit-in-response-to-different-agronomic-treatments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Employing a Knime-based and Open-source Tools to Identify AMI and VER Metabolites from UPLC-MS Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouf%20Alourfi">Nouf Alourfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the metabolism of amitriptyline (AMI) and verapamil (VER) using a KNIME-based method. KNIME improved workflow is an open-source data-analytics platform that integrates a number of open-source metabolomics tools such as CFMID and MetFrag to provide standard data visualisations, predict candidate metabolites, assess them against experimental data, and produce reports on identified metabolites. The use of this workflow is demonstrated by employing three types of liver microsomes (human, rat, and Guinea pig) to study the in vitro metabolism of the two drugs (AMI and VER). This workflow is used to create and treat UPLC-MS (Orbitrap) data. The formulas and structures of these drugs' metabolites can be assigned automatically. The key metabolic routes for amitriptyline are hydroxylation, N-dealkylation, N-oxidation, and conjugation, while N-demethylation, O-demethylation and N-dealkylation, and conjugation are the primary metabolic routes for verapamil. The identified metabolites are compatible to the published, clarifying the solidity of the workflow technique and the usage of computational tools like KNIME in supporting the integration and interoperability of emerging novel software packages in the metabolomics area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KNIME" title="KNIME">KNIME</a>, <a href="https://publications.waset.org/abstracts/search?q=CFMID" title=" CFMID"> CFMID</a>, <a href="https://publications.waset.org/abstracts/search?q=MetFrag" title=" MetFrag"> MetFrag</a>, <a href="https://publications.waset.org/abstracts/search?q=Data%20Analysis" title=" Data Analysis"> Data Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Metabolomics" title=" Metabolomics"> Metabolomics</a> </p> <a href="https://publications.waset.org/abstracts/147907/employing-a-knime-based-and-open-source-tools-to-identify-ami-and-ver-metabolites-from-uplc-ms-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Efficacy of Microbial Metabolites Obtained from Saccharomyces cerevisiae as Supplement for Quality Milk Production in Dairy Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20ur%20Rahman">Sajjad ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Azam"> Mariam Azam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukarram%20Bashir"> Mukarram Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemal%20Javaid"> Seemal Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoun%20Muhammad"> Aoun Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad"> Jawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannan%20Khan"> Hannan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zohaib"> Muhammad Zohaib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partially fermented soya hulls and wheat bran through Saccharomyces cerevisiae (DL-22 S/N) substantiated as a natural source for quality milk production. Saccharomyces cerevisiae (DL-22 S/N) were grown under in-vivo conditions and processed through two-step fermentation with substrates. The extra pure metabolites (XPM) were dried and processed for maintaining 1mm mesh size particles for supplementation of pelleted feed. Two groups of a cow (Holstein Friesian) having 8 animals of similar age and lactation were given the experimental concentrates. Group A was fed daily with 12gm of XPM and 22% protein-pelleted feed, while Group B was provided with no metabolites in their feed. In thirty-nine days of trial, improvement in the overall health, body score, milk protein, milk fat, ash, and solid not fat (SNF), yield, and incidence rate of mastitis was observed. The collected data revealed an improvement in milk production of 2.02 liter/h/d. However, a reduction (3.75%) in the milk fats and an increase in the milk SNF was around 0.58%. The ash content ranged between 6.4-7.5%. The incidence of mastitis was reduced to less than 2%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20metabolites" title="microbial metabolites">microbial metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title=" milk production"> milk production</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites" title=" post-biotic metabolites"> post-biotic metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a> </p> <a href="https://publications.waset.org/abstracts/165949/efficacy-of-microbial-metabolites-obtained-from-saccharomyces-cerevisiae-as-supplement-for-quality-milk-production-in-dairy-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Metabolomics Profile Recognition for Cancer Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentina%20L.%20Kouznetsova">Valentina L. Kouznetsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20W.%20Wang"> Jonathan W. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20F.%20Tsigelny"> Igor F. Tsigelny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metabolomics has become a rising field of research for various diseases, particularly cancer. Increases or decreases in metabolite concentrations in the human body are indicative of various cancers. Further elucidation of metabolic pathways and their significance in cancer research may greatly spur medicinal discovery. We analyzed the metabolomics profiles of lung cancer. Thirty-three metabolites were selected as significant. These metabolites are involved in 37 metabolic pathways delivered by MetaboAnalyst software. The top pathways are glyoxylate and dicarboxylate pathway (its hubs are formic acid and glyoxylic acid) along with Citrate cycle pathway followed by Taurine and hypotaurine pathway (the hubs in the latter are taurine and sulfoacetaldehyde) and Glycine, serine, and threonine pathway (the hubs are glycine and L-serine). We studied interactions of the metabolites with the proteins involved in cancer-related signaling networks, and developed an approach to metabolomics biomarker use in cancer diagnostics. Our analysis showed that a significant part of lung-cancer-related metabolites interacts with main cancer-related signaling pathways present in this network: PI3K&ndash;mTOR&ndash;AKT pathway, RAS&ndash;RAF&ndash;ERK1/2 pathway, and NFKB pathway. These results can be employed for use of metabolomics profiles in elucidation of the related cancer proteins signaling networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20pathway" title=" metabolic pathway"> metabolic pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=signaling%20pathway" title=" signaling pathway"> signaling pathway</a> </p> <a href="https://publications.waset.org/abstracts/54096/metabolomics-profile-recognition-for-cancer-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Efficiency of Microbial Metabolites on Quality Milk Production in Nili Ravi Breed of Buffalos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ur%20Rahman">Sajjad Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukarram%20Bashir"> Mukarram Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad"> Jawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoun%20Muhammad"> Aoun Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zohaib"> Muhammad Zohaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannan%20Khan"> Hannan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemal%20Javaid"> Seemal Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Azam"> Mariam Azam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of natural metabolites obtained from partially fermented soya hulls and wheat bran using Saccharomyces cerevisiae (DL-22 S/N) ensures a potential impact on the total milk yield and quality of milk production. On attaining a moderate number of Saccharomyces cerevisiae cells around 1×10⁹ CFU/ml, the concentrate was further elevated under in-vivo conditions to study the quality of milk production in lactating buffalo. Ten lactating buffalos of the Nili Ravi breed having the same physical factors were given 12 gm of microbial metabolites daily, along with the palleted feed having 22 % proteins. Another group of 10 lactating animals with the same characteristics was maintained without metabolites. The body score, overall health, incidence of mastitis, milk fat, milk proteins, ash and solid not fat (SNF) were elevated on a weekly basis up to thirty days of trial. It was recorded that the average total increase in quality milk production was 0.9 liter/h/d, whereas SNF in the milk was enhanced to 0.71, and fats were decreased to 0.09 %. Moreover, during all periods of the trial, the overall non-specific immunity of buffalo was increased, as indicated by less than 0.2 % of mastitis incidence compared to 1.8% in the untreated buffalos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20metabolites" title="natural metabolites">natural metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20milk" title=" quality milk"> quality milk</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20yield" title=" milk yield"> milk yield</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonspecific%20immunity" title=" nonspecific immunity"> nonspecific immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=better%20performing%20animals" title=" better performing animals"> better performing animals</a> </p> <a href="https://publications.waset.org/abstracts/164255/efficiency-of-microbial-metabolites-on-quality-milk-production-in-nili-ravi-breed-of-buffalos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Phthalate Exposure among Roma Population in Slovakia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslava%20%C5%A0idlovsk%C3%A1">Miroslava Šidlovská</a>, <a href="https://publications.waset.org/abstracts/search?q=Ida%20Petrovi%C4%8Dov%C3%A1"> Ida Petrovičová</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Pilka"> Tomáš Pilka</a>, <a href="https://publications.waset.org/abstracts/search?q=Branislav%20Kolena"> Branislav Kolena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phthalates are ubiquitous environmental pollutants well-known because of their endocrine disrupting activity in human organism. The aim of our study was, by biological monitoring, investigate exposure to phthalates of Roma ethnicity group i.e. children and adults from 5 families (n=29, average age 11.8 ± 7.6 years) living in western Slovakia. Additionally, we analysed some associations between anthropometric measures, questionnaire data i.e. socio-economic status, eating and drinking habits, practise of personal care products and household conditions in comparison with concentrations of phthalate metabolites. We used for analysis of urine samples high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) to determine concentrations of phthalate metabolites monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP) and mono(2-etylhexyl) phthalate (MEHP). Our results indicate that ethnicity, lower socioeconomic status and different housing conditions in Roma population can affect urinary concentration of phthalate metabolites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomonitoring" title="biomonitoring">biomonitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnicity" title=" ethnicity"> ethnicity</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20exposure" title=" human exposure"> human exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=phthalate%20metabolites" title=" phthalate metabolites"> phthalate metabolites</a> </p> <a href="https://publications.waset.org/abstracts/27331/phthalate-exposure-among-roma-population-in-slovakia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Efficiency of Natural Metabolites on Quality Milk Production in Mixed Breed Cows.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Azam">Mariam Azam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ur%20Rahman"> Sajjad Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukarram%20Bashir"> Mukarram Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemal%20Javaid"> Seemal Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad"> Jawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoun%20Muhammad"> Aoun Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zohaib"> Muhammad Zohaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannan%20Khan"> Hannan Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Products of microbial origin are of great importance as they have proved their value in healthcare and nutrition, use of these microbial metabolites acquired from partially fermented soya hulls and wheat bran along with Saccharomyces cerevisiae (DL-22 S/N) substantiates to be a great source for an increase in the total milk production and quality yield.1×109 CFU/ml cells of Saccharomyces cerevisiae (DL-22 S/N) were further grown under in-vivo conditions for the assessment of quality milk production. Two groups with twelve cows, each having the same physical characteristics (Group A and Group B), were under study, Group A was daily fed with 12gm of biological metabolites and 22% protein-pelleted feed. On the other hand, the animals of Group B were provided with no metabolites in their feed. In thirty days of trial, improvement in the overall health, body score, milk protein, milk fat, yield, incidence rate of mastitis, ash, and solid not fat (SNF) was observed. The collected data showed that the average quality milk production was elevated up to 0.45 liter/h/d. However, a reduction in the milk fats up to 0.45% and uplift in the SNF value up to 0.53% of cow milk was also observed. At the same time, the incidence rate of mastitis recorded for the animals under trial was reduced to half, and improved non specific immunity was reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20metabolites" title="microbial metabolites">microbial metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=post-biotics" title=" post-biotics"> post-biotics</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20supplements" title=" animal supplements"> animal supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20nutrition" title=" animal nutrition"> animal nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=proteins" title=" proteins"> proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20production" title=" animal production"> animal production</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/164404/efficiency-of-natural-metabolites-on-quality-milk-production-in-mixed-breed-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> Epicatechin Metabolites and Its Effect on ROS Production in Bovine Aortic Endothelial Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasiruddin%20Khan">Nasiruddin Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The action of (-)-epicatechin, a cocoa (Theobroma cacao) flavanol that modulates redox/oxidative stress are contributed mainly to their antioxidant properties. The present study investigates the concentration and time dependent effect of (-)-epicatechin metabolites 3MeEc, 4MeEc, and 4SulEc on the production of ROS on BAEC using L-012, Lucigenin as chemiluminescence dye and XO/HX system. Our result demonstrates that 3MeEc shows significant (P <0.05) lowering effect of ROS production in BAEC with increasing concentration of metabolite while L-012 was used as chemiluminescence dye but not in the case of Lucigenin. In XO/HX system, using L-012 as chemiluminescence dye, 3MeEc and 4MeEc showed significant lowering effect on ROS production with increasing concentration from 100-500nM as compared to the positive control (SOD). When Lucigenin was used as chemiluminescence dye, 3MeEc exerted significant lowering effect with increasing concentration when compared to the positive control (SOD) whereas 4MeEc showed significant lowering effect in ROS production from 250 nM on as compared to positive control. For 4SulEc, a significant lowering effect of ROS production was only observed at 100 and 250 nM. Overall, although each metabolite shows considerable effect, 3MeEc exhibited more pronounced effect on decreasing the production of ROS as compared to other two metabolites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epicatechin%20metabolites" title="epicatechin metabolites">epicatechin metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=HO-1" title=" HO-1"> HO-1</a>, <a href="https://publications.waset.org/abstracts/search?q=Nrf2" title=" Nrf2"> Nrf2</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a> </p> <a href="https://publications.waset.org/abstracts/54268/epicatechin-metabolites-and-its-effect-on-ros-production-in-bovine-aortic-endothelial-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Evaluation of DNA Oxidation and Chemical DNA Damage Using Electrochemiluminescent Enzyme/DNA Microfluidic Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Itti%20Bist">Itti Bist</a>, <a href="https://publications.waset.org/abstracts/search?q=Snehasis%20Bhakta"> Snehasis Bhakta</a>, <a href="https://publications.waset.org/abstracts/search?q=Di%20Jiang"> Di Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tia%20E.%20Keyes"> Tia E. Keyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Martin"> Aaron Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20J.%20Forster"> Robert J. Forster</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20F.%20Rusling"> James F. Rusling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DNA damage from metabolites of lipophilic drugs and pollutants, generated by enzymes, represents a major toxicity pathway in humans. These metabolites can react with DNA to form either 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), which is the oxidative product of DNA or covalent DNA adducts, both of which are genotoxic and hence considered important biomarkers to detect cancer in humans. Therefore, detecting reactions of metabolites with DNA is an effective approach for the safety assessment of new chemicals and drugs. Here we describe a novel electrochemiluminescent (ECL) sensor array which can detect DNA oxidation and chemical DNA damage in a single array, facilitating a more accurate diagnostic tool for genotoxicity screening. Layer-by-layer assembly of DNA and enzyme are assembled on the pyrolytic graphite array which is housed in a microfluidic device for sequential detection of two type of the DNA damages. Multiple enzyme reactions are run on test compounds using the array, generating toxic metabolites in situ. These metabolites react with DNA in the films to cause DNA oxidation and chemical DNA damage which are detected by ECL generating osmium compound and ruthenium polymer, respectively. The method is further validated by the formation of 8-oxodG and DNA adduct using similar films of DNA/enzyme on magnetic bead biocolloid reactors, hydrolyzing the DNA, and analyzing by liquid chromatography-mass spectrometry (LC-MS). Hence, this combined DNA/enzyme array/LC-MS approach can efficiently explore metabolic genotoxic pathways for drugs and environmental chemicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemiluminescence" title=" electrochemiluminescence"> electrochemiluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage" title=" DNA damage"> DNA damage</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20array" title=" microfluidic array"> microfluidic array</a> </p> <a href="https://publications.waset.org/abstracts/65139/evaluation-of-dna-oxidation-and-chemical-dna-damage-using-electrochemiluminescent-enzymedna-microfluidic-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Molecular Profiling of an Oleaginous Trebouxiophycean Alga Parachlorella kessleri Subjected to Nutrient Deprivation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pannaga%20Pavan%20Jutur">Pannaga Pavan Jutur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parachlorella kessleri, a marine unicellular green alga belonging to class Trebouxiophyceae, accumulates large amounts of oil, i.e., lipids under nutrient-deprived (-N, -P, and -S) conditions. Understanding their metabolic imprints is important for elucidating the physiological mechanisms of lipid accumulations in this microalga subjected to nutrient deprivation. Metabolic and lipidomic profiles were obtained respectively using gas chromatography-mass spectrometry (GC-MS) of P. kessleri under nutrient starvation (-N, -P and -S) conditions. Relative quantities of more than 100 metabolites were systematically compared in all these three starvation conditions. Our results demonstrate that in lipid metabolism, the quantities of neutral lipids increased significantly followed by the decrease in other metabolites involved in photosynthesis, nitrogen assimilation, etc. In conclusion, the metabolomics and lipidomic profiles have identified a few common metabolites such as citric acid, valine, and trehalose to play a significant role in the overproduction of oil by this microalga subjected to nutrient deprivation. Understanding the entire system through untargeted metabolome profiling will lead to identifying relevant metabolites involved in the biosynthesis and degradation of precursor molecules that may have the potential for biofuel production, aiming towards the vision of tomorrow’s bioenergy needs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuels" title=" biofuels"> biofuels</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20stress" title=" nutrient stress"> nutrient stress</a>, <a href="https://publications.waset.org/abstracts/search?q=omics" title=" omics"> omics</a> </p> <a href="https://publications.waset.org/abstracts/82900/molecular-profiling-of-an-oleaginous-trebouxiophycean-alga-parachlorella-kessleri-subjected-to-nutrient-deprivation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Alterations of Gut Microbiota and Its Metabolomics in Child with 6PPDQ, PBDE, PCB, and Metal (Loid) Exposure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xia%20Huo">Xia Huo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu and 34 children from Haojiang. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and both the alpha diversity index and specific metabolites in single-element models. The study found that the Bayesian kernel machine regression (BKMR) model showed a negative correlation between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the Chao 1 index, particularly beyond the 55th percentile. Furthermore, the EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our research suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the gut microbiota and its metabolites. These alterations may be associated with neurodevelopmental abnormalities in children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title="gut microbiota">gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=6PPDQ" title=" 6PPDQ"> 6PPDQ</a>, <a href="https://publications.waset.org/abstracts/search?q=PBDEs" title=" PBDEs"> PBDEs</a>, <a href="https://publications.waset.org/abstracts/search?q=PCBs" title=" PCBs"> PCBs</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%28loid%29s" title=" metal(loid)s"> metal(loid)s</a>, <a href="https://publications.waset.org/abstracts/search?q=BKMR" title=" BKMR"> BKMR</a> </p> <a href="https://publications.waset.org/abstracts/184571/alterations-of-gut-microbiota-and-its-metabolomics-in-child-with-6ppdq-pbde-pcb-and-metal-loid-exposure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Identification of Bioactive Metabolites from Ficus carica and Their Neuroprotective Effects of Alzheimer&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Khojah">Hanan Khojah</a>, <a href="https://publications.waset.org/abstracts/search?q=RuAngelie%20Edrada-Ebel"> RuAngelie Edrada-Ebel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neurodegenerative disease including Alzheimer’s disease is a major cause of long-term disability. Oxidative stress is frequently implicated as one of the key contributing factors to neurodegenerative diseases. Protection against neuronal damage remains a great challenge for researchers. Ficus carica (commonly known as fig) is a species of great antioxidant nutritional value comprising a protective mechanism against innumerable health disorders related to oxidative stress as well as Alzheimer’s disease. The purpose of this work was to characterize the non-polar active metabolites in Ficus carica endocarp, mesocarp, and exocarp. Crude extracts were prepared using several extraction solvents, which included 1:1 water: ethylacetate, acetone and methanol. The dried extracts were then solvent partitioned between equivalent amounts of water and ethylacetate. Purification and fractionation were accomplished by high-throughput chromatography. The isolated metabolites were tested on their effect on human neuroblastoma cell line by cell viability test and cell cytotoxicity assay with acrolein. Molecular weights of the active metabolites were determined via LC–HRESIMS and GC-EIMS. Metabolomic profiling was performed to identify the active metabolites by using differential expression analysis software (Mzmine) and SIMCA for multivariate analysis. Structural elucidation and identification of the interested active metabolites were studied by 1-D and 2-D NMR. Significant differences in bioactivity against a concentration-dependent assay on acrolein radicals were observed between the three fruit parts. However, metabolites obtained from mesocarp and the endocarp demonstrated bioactivity to scavenge ROS radical. NMR profiling demonstrated that aliphatic compounds such as γ-sitosterol tend to induce neuronal bioactivity and exhibited bioactivity on the cell viability assay. γ-Sitosterol was found in higher concentrations in the mesocarp and was considered as one of the major phytosterol in Ficus carica. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alzheimer" title="alzheimer">alzheimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ficus%20carica" title=" Ficus carica"> Ficus carica</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-Sitosterol" title=" γ-Sitosterol"> γ-Sitosterol</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a> </p> <a href="https://publications.waset.org/abstracts/61797/identification-of-bioactive-metabolites-from-ficus-carica-and-their-neuroprotective-effects-of-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> Implementation of Metabolomics in Conjunction with Chemometrics for the Dentification of the Differential Chemical Markers of Different Grades of Sri Lankan White, Green and Black Tea: Camellia Sinenesis L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dina%20A.%20Selim">Dina A. Selim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Shawky"> Eman Shawky</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20M.%20Abu%20El-Khair"> Rasha M. Abu El-Khair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, UPLC-MS/MS combined to chemometrics were applied on seven Sri Lankan tea grades; Orange Pekoe, Flowery Pekoe, Broken Orange Pekoe Fannings, Broken Orange Pekoe black tea, green tea, silver tips and golden tips white tea grades for their comprehensive metabolic profiling. Certain metabolites, namely, Theasensinin C and E, theaflavin and theacitrin appeared to be the main chemical markers of black tea type, catechin, epicatechin, epigallocatechin, methyl epigallocatechin were the main discriminatory markers of green tea type, while theanine, oolongotheanine and quercetin glycosides were the main chemical markers of white tea type. Theogalloflavin, epigallocatechin and flavonoid glycosides were the main down-accumulated metabolites while theaflavin gallate, and N-ethyl pyrrolidinone epicatechin were the chief up- accumulated metabolites between whole and broken black tea leave grades while puerin A and C and gallic acid was the main down- accumulated metabolites and N-ethyl pyrrolidinone epicatechin gallate was the main up-accumulated one between broken and fanning black tea grades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tea%20grading" title="tea grading">tea grading</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Lankan%20tea" title=" Sri Lankan tea"> Sri Lankan tea</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title=" chemometrics"> chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20markers" title=" chemical markers"> chemical markers</a> </p> <a href="https://publications.waset.org/abstracts/147524/implementation-of-metabolomics-in-conjunction-with-chemometrics-for-the-dentification-of-the-differential-chemical-markers-of-different-grades-of-sri-lankan-white-green-and-black-tea-camellia-sinenesis-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> Association between Levels of Volatile Organic Compound Metabolites and Cigarette Smoking-Related Urothelial Carcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Jung%20Chung">Chi-Jung Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Hsiang%20Chang"> Chao-Hsiang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiu-Shong%20Liu"> Chiu-Shong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Wei%20Li"> Sheng-Wei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu-Chi%20Chung"> Mu-Chi Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting-Jie%20Wen"> Ting-Jie Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Ling%20Lee"> Hui-Ling Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cigarette smoke contains volatile organic compounds (VOCs), such as acrylamide, 1,3-butadiene, and benzene. This study aimed to explore the associations between the urinary levels of cotinine and VOC metabolites and the risk of urothelial carcinoma (UC). A hospital-based case–control study involving two groups matched on the basis of age ( ± 3 years) and gender was designed. UC was clinically diagnosed through urological examinations and pathologically verified. Smoking-related information was collected through questionnaires and face-to-face interviews with all study participants. Urine samples were collected for the analysis of the urinary levels of VOC metabolites, cotinine, and 8-hydroxydeoxygua- nosine (8-OHdG), which was selected as a proxy of oxidative stress. Multiple logistic regressions were applied to estimate the risk of UC. The urinary cotinine and 8-OHdG levels of the UC group were higher than those of the control group. The urinary levels of VOC metabolites, including N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), N- acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine, N-acetyl-S- (4- hydroxy-2-buten-1-yl)-Lcysteine-3, trans, trans-muconic acid (t,t- MA), and S-phenylmercapturic acid (SPMA) increased as the urinary levels of cotinine increased. Relevant dose-response relationships between the risk of UC risk and the urinary levels of AAMA , t,t-MA, SPMA, and 8-OHdG were found after adjusting for potential risk factors. The UC risk of participants with high urinary levels of cotinine, AAMA, t,t-MA, SPMA, and 8-OHdG were 3.5–6-fold higher than those of other participants. Increased urinary levels of VOC metabolites were associated with smoking-related UC risk. The development of UC should be explored in large-scale in vitro or in vivo studies with the repeated measurement of VOC metabolites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compound" title="volatile organic compound">volatile organic compound</a>, <a href="https://publications.waset.org/abstracts/search?q=urothelial%20carcinoma" title=" urothelial carcinoma"> urothelial carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=cotinine" title=" cotinine"> cotinine</a>, <a href="https://publications.waset.org/abstracts/search?q=8-hydroxydeoxyguanosine" title=" 8-hydroxydeoxyguanosine"> 8-hydroxydeoxyguanosine</a> </p> <a href="https://publications.waset.org/abstracts/102848/association-between-levels-of-volatile-organic-compound-metabolites-and-cigarette-smoking-related-urothelial-carcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">407</span> Microbial Metabolites with Ability of Anti-Free Radicals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Pu">Yu Pu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Ping%20Hsiao"> Chien-Ping Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chang%20Huang"> Chien-Chang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chieh-Lun%20Cheng"> Chieh-Lun Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Free radicals can accelerate aging on human skin by causing lipid oxidation, protein denaturation, and even DNA mutation. Substances with the ability of anti-free radicals can be used as functional components in cosmetic products. Research are attracted to develop new anti-free radical components for cosmetic application. This study was aimed to evaluate the microbial metabolites on free radical scavenging ability. Two microorganisms, PU-01 and PU-02, were isolated from soil of hot spring environment and grew in LB agar at 50°C for 24 h. The suspension was collected by centrifugation at 4800 g for 3 min, The anti-free radical activity was determined by DPPH (1,1-diphenyl-2-picrylhydrazyl) scavenging assay. The result showed that the growth medium of PU-01 presented a higher DPPH scavenging effect than that of PU-02. This study presented potential anti-free radical components from microbial metabolites that might be applied in anti-aging cosmetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-ageing" title="anti-ageing">anti-ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-free%20radical" title=" anti-free radical"> anti-free radical</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganism" title=" microorganism"> microorganism</a> </p> <a href="https://publications.waset.org/abstracts/122637/microbial-metabolites-with-ability-of-anti-free-radicals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">406</span> Plasmonic Nanoshells Based Metabolite Detection for in-vitro Metabolic Diagnostics and Therapeutic Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepanjali%20Gurav">Deepanjali Gurav</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Qian"> Kun Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-vitro metabolic diagnosis relies on designed materials-based analytical platforms for detection of selected metabolites in biological samples, which has a key role in disease detection and therapeutic evaluation in clinics. However, the basic challenge deals with developing a simple approach for metabolic analysis in bio-samples with high sample complexity and low molecular abundance. In this work, we report a designer plasmonic nanoshells based platform for direct detection of small metabolites in clinical samples for in-vitro metabolic diagnostics. We first synthesized a series of plasmonic core-shell particles with tunable nanoshell structures. The optimized plasmonic nanoshells as new matrices allowed fast, multiplex, sensitive, and selective LDI MS (Laser desorption/ionization mass spectrometry) detection of small metabolites in 0.5 μL of bio-fluids without enrichment or purification. Furthermore, coupling with isotopic quantification of selected metabolites, we demonstrated the use of these plasmonic nanoshells for disease detection and therapeutic evaluation in clinics. For disease detection, we identified patients with postoperative brain infection through glucose quantitation and daily monitoring by cerebrospinal fluid (CSF) analysis. For therapeutic evaluation, we investigated drug distribution in blood and CSF systems and validated the function and permeability of blood-brain/CSF-barriers, during therapeutic treatment of patients with cerebral edema for pharmacokinetic study. Our work sheds light on the design of materials for high-performance metabolic analysis and precision diagnostics in real cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmonic%20nanoparticles" title="plasmonic nanoparticles">plasmonic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprinting" title=" fingerprinting"> fingerprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=in-vitro%20diagnostics" title=" in-vitro diagnostics"> in-vitro diagnostics</a> </p> <a href="https://publications.waset.org/abstracts/91905/plasmonic-nanoshells-based-metabolite-detection-for-in-vitro-metabolic-diagnostics-and-therapeutic-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">405</span> Comprehensive Profiling and Characterization of Untargeted Extracellular Metabolites in Fermentation Processes: Insights and Advances in Analysis and Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marianna%20Ciaccia">Marianna Ciaccia</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennaro%20Agrimi"> Gennaro Agrimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabella%20Pisano"> Isabella Pisano</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurizio%20Bettiga"> Maurizio Bettiga</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Rapacioli"> Silvia Rapacioli</a>, <a href="https://publications.waset.org/abstracts/search?q=Giulia%20Mensa"> Giulia Mensa</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20Marzagalli"> Monica Marzagalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Untargeted metabolomic analysis of extracellular metabolites is a powerful approach that focuses on comprehensively profiling in the extracellular space. In this study, we applied extracellular metabolomic analysis to investigate the metabolism of two probiotic microorganisms with health benefits that extend far beyond the digestive tract and the immune system. Methods: Analytical techniques employed in extracellular metabolomic analysis encompass various technologies, including mass spectrometry (MS), which enables the identification of metabolites present in the fermentation media, as well as the comparison of metabolic profiles under different experimental conditions. Multivariate statistical analysis techniques like principal component analysis (PCA) or partial least squares-discriminant analysis (PLS-DA) play a crucial role in uncovering metabolic signatures and understanding the dynamics of metabolic networks. Results: Different types of supernatants from fermentation processes, such as dairy-free, not dairy-free media and media with no cells or pasteurized, were subjected to metabolite profiling, which contained a complex mixture of metabolites, including substrates, intermediates, and end-products. This profiling provided insights into the metabolic activity of the microorganisms. The integration of advanced software tools has facilitated the identification and characterization of metabolites in different fermentation conditions and microorganism strains. Conclusions: In conclusion, untargeted extracellular metabolomic analysis, combined with software tools, allowed the study of the metabolites consumed and produced during the fermentation processes of probiotic microorganisms. Ongoing advancements in data analysis methods will further enhance the application of extracellular metabolomic analysis in fermentation research, leading to improved bioproduction and the advancement of sustainable manufacturing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title="biotechnology">biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20bacteria" title=" lactic bacteria"> lactic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=postbiotics" title=" postbiotics"> postbiotics</a> </p> <a href="https://publications.waset.org/abstracts/181567/comprehensive-profiling-and-characterization-of-untargeted-extracellular-metabolites-in-fermentation-processes-insights-and-advances-in-analysis-and-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">404</span> Biological Organic or Inorganic Sulfur Sources Feeding Effects on Intake and Some Blood Metabolites of Close-Up Holstein Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Kazemi-Bonchenari">Mehdi Kazemi-Bonchenari</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Manidari"> Esmaeil Manidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Keshavarz"> Vahid Keshavarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to investigate the effects of increased level of sulfur by supplementing magnesium sulfate with or without biologically organic source in dairy cow close-up diets on dry matter intake (DMI) and some blood metabolites. The 24 multiparous close-up Holstein cows averaging body weight 687.94 kg and days until expected calving date 21.89 d were allocated in three different treatments (8 cows per each) in a completely randomized design. The first treatment (T1) has contained 0.21% sulfur (DM basis), the second treatment (T2) has contained 0.41% sulfur which entirely supplied through magnesium sulfate and the third treatment (T3) has contained 0.41% sulfur which supplied through combination of magnesium sulfate and an organic source of sulfur. All the cows were fed same diet after parturition until 21 d. The DMI for both pre-calving (P < 0.001) and post-calving was affected by treatments (P < 0.004) and T2 showed the lowest DMI among treatments. Among the blood metabolites, glucose, calcium, and copper were decreased in T2 (P < 0.05). However, blood concentrations of BHBA, NEFA, urea, CPK, and AST were increased in T2 (P < 0.05). The results of the present study indicate that although magnesium sulfate has negative effect on dairy cow health and performance, a combination of magnesium sulfate and biological organic source of sulfur in close-up diets could have positive effects on DMI and performance of Holstein dairy cows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20sulfur" title="organic sulfur">organic sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20cow" title=" dairy cow"> dairy cow</a>, <a href="https://publications.waset.org/abstracts/search?q=intake" title=" intake"> intake</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20metabolites" title=" blood metabolites"> blood metabolites</a> </p> <a href="https://publications.waset.org/abstracts/10692/biological-organic-or-inorganic-sulfur-sources-feeding-effects-on-intake-and-some-blood-metabolites-of-close-up-holstein-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">403</span> Simple Modified Method for DNA Isolation from Lyophilised Cassava Storage Roots (Manihot esculenta Crantz.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Telengech">P. K. Telengech</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Monjero"> K. Monjero</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Maling%E2%80%99a"> J. Maling’a</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nyende"> A. Nyende</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gichuki"> S. Gichuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is need to identify an efficient protocol for use in extraction of high quality DNA for purposes of molecular work. Cassava roots are known for their high starch content, polyphenols and other secondary metabolites which interfere with the quality of the DNA. These factors have negative interference on the various methodologies for DNA extraction. There is need to develop a simple, fast and inexpensive protocol that yields high quality DNA. In this improved Dellaporta method, the storage roots are lyophilized to reduce the water content; the extraction buffer is modified to eliminate the high polyphenols, starch and wax. This simple protocol was compared to other protocols intended for plants with similar secondary metabolites. The method gave high yield (300-950ng) and pure DNA for use in PCR analysis. This improved Dellaporta protocol allows isolation of pure DNA from starchy cassava storage roots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cassava%20storage%20roots" title="cassava storage roots">cassava storage roots</a>, <a href="https://publications.waset.org/abstracts/search?q=dellaporta" title=" dellaporta"> dellaporta</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20extraction" title=" DNA extraction"> DNA extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lyophilisation" title=" lyophilisation"> lyophilisation</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols%20secondary%20metabolites" title=" polyphenols secondary metabolites"> polyphenols secondary metabolites</a> </p> <a href="https://publications.waset.org/abstracts/4940/simple-modified-method-for-dna-isolation-from-lyophilised-cassava-storage-roots-manihot-esculenta-crantz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites&amp;page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10