CINXE.COM
Search results for: Maurizio Bettiga
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Maurizio Bettiga</title> <meta name="description" content="Search results for: Maurizio Bettiga"> <meta name="keywords" content="Maurizio Bettiga"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Maurizio Bettiga" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Maurizio Bettiga"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Maurizio Bettiga</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Comprehensive Profiling and Characterization of Untargeted Extracellular Metabolites in Fermentation Processes: Insights and Advances in Analysis and Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marianna%20Ciaccia">Marianna Ciaccia</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennaro%20Agrimi"> Gennaro Agrimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabella%20Pisano"> Isabella Pisano</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurizio%20Bettiga"> Maurizio Bettiga</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Rapacioli"> Silvia Rapacioli</a>, <a href="https://publications.waset.org/abstracts/search?q=Giulia%20Mensa"> Giulia Mensa</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20Marzagalli"> Monica Marzagalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Untargeted metabolomic analysis of extracellular metabolites is a powerful approach that focuses on comprehensively profiling in the extracellular space. In this study, we applied extracellular metabolomic analysis to investigate the metabolism of two probiotic microorganisms with health benefits that extend far beyond the digestive tract and the immune system. Methods: Analytical techniques employed in extracellular metabolomic analysis encompass various technologies, including mass spectrometry (MS), which enables the identification of metabolites present in the fermentation media, as well as the comparison of metabolic profiles under different experimental conditions. Multivariate statistical analysis techniques like principal component analysis (PCA) or partial least squares-discriminant analysis (PLS-DA) play a crucial role in uncovering metabolic signatures and understanding the dynamics of metabolic networks. Results: Different types of supernatants from fermentation processes, such as dairy-free, not dairy-free media and media with no cells or pasteurized, were subjected to metabolite profiling, which contained a complex mixture of metabolites, including substrates, intermediates, and end-products. This profiling provided insights into the metabolic activity of the microorganisms. The integration of advanced software tools has facilitated the identification and characterization of metabolites in different fermentation conditions and microorganism strains. Conclusions: In conclusion, untargeted extracellular metabolomic analysis, combined with software tools, allowed the study of the metabolites consumed and produced during the fermentation processes of probiotic microorganisms. Ongoing advancements in data analysis methods will further enhance the application of extracellular metabolomic analysis in fermentation research, leading to improved bioproduction and the advancement of sustainable manufacturing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title="biotechnology">biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20bacteria" title=" lactic bacteria"> lactic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=postbiotics" title=" postbiotics"> postbiotics</a> </p> <a href="https://publications.waset.org/abstracts/181567/comprehensive-profiling-and-characterization-of-untargeted-extracellular-metabolites-in-fermentation-processes-insights-and-advances-in-analysis-and-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Application of Italian Guidelines for Existing Bridge Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Menichini">Giovanni Menichini</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvatore%20Giacomo%20Morano"> Salvatore Giacomo Morano</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Terenzi"> Gloria Terenzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Salvatori"> Luca Salvatori</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurizio%20Orlando"> Maurizio Orlando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The “Guidelines for Risk Classification, Safety Assessment, and Structural Health Monitoring of Existing Bridges” were recently approved by the Italian Government to define technical standards for managing the national network of existing bridges. These guidelines provide a framework for risk mitigation and safety assessment of bridges, which are essential elements of the built environment and form the basis for the operation of transport systems. Within the guideline framework, a workflow based on three main points was proposed: (1) risk-based, i.e., based on typical parameters of hazard, vulnerability, and exposure; (2) multi-level, i.e., including six assessment levels of increasing complexity; and (3) multirisk, i.e., assessing structural/foundational, seismic, hydrological, and landslide risks. The paper focuses on applying the Italian Guidelines to specific case studies, aiming to identify the parameters that predominantly influence the determination of the “class of attention”. The significance of each parameter is determined via sensitivity analysis. Additionally, recommendations for enhancing the process of assigning the class of attention are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20safety%20assessment" title="bridge safety assessment">bridge safety assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Italian%20guidelines%20implementation" title=" Italian guidelines implementation"> Italian guidelines implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20classification" title=" risk classification"> risk classification</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a> </p> <a href="https://publications.waset.org/abstracts/184665/application-of-italian-guidelines-for-existing-bridge-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Energy Deposited by Secondary Electrons Generated by Swift Proton Beams through Polymethylmethacrylate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maurizio%20Dapor">Maurizio Dapor</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Abril"> Isabel Abril</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20de%20Vera"> Pablo de Vera</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Garcia-Molina"> Rafael Garcia-Molina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ionization yield of ion tracks in polymers and bio-molecular systems reaches a maximum, known as the Bragg peak, close to the end of the ion trajectories. Along the path of the ions through the materials, many electrons are generated, which produce a cascade of further ionizations and, consequently, a shower of secondary electrons. Among these, very low energy secondary electrons can produce damage in the biomolecules by dissociative electron attachment. This work deals with the calculation of the energy distribution of electrons produced by protons in a sample of polymethylmethacrylate (PMMA), a material that is used as a phantom for living tissues in hadron therapy. PMMA is also of relevance for microelectronics in CMOS technologies and as a photoresist mask in electron beam lithography. We present a Monte Carlo code that, starting from a realistic description of the energy distribution of the electrons ejected by protons moving through PMMA, simulates the entire cascade of generated secondary electrons. By following in detail the motion of all these electrons, we find the radial distribution of the energy that they deposit in PMMA for several initial proton energies characteristic of the Bragg peak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20method" title="Monte Carlo method">Monte Carlo method</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20electrons" title=" secondary electrons"> secondary electrons</a>, <a href="https://publications.waset.org/abstracts/search?q=energetic%20ions" title=" energetic ions"> energetic ions</a>, <a href="https://publications.waset.org/abstracts/search?q=ion-beam%20cancer%20therapy" title=" ion-beam cancer therapy"> ion-beam cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=ionization%20cross%20section" title=" ionization cross section"> ionization cross section</a>, <a href="https://publications.waset.org/abstracts/search?q=polymethylmethacrylate" title=" polymethylmethacrylate"> polymethylmethacrylate</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20beams" title=" proton beams"> proton beams</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20electrons" title=" secondary electrons"> secondary electrons</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20energy%20distribution" title=" radial energy distribution"> radial energy distribution</a> </p> <a href="https://publications.waset.org/abstracts/48476/energy-deposited-by-secondary-electrons-generated-by-swift-proton-beams-through-polymethylmethacrylate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giuseppina%20Settanni">Giuseppina Settanni</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Panarese"> Antonio Panarese</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffaele%20Vaira"> Raffaele Vaira</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurizio%20Galiano"> Maurizio Galiano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=recommender%20system" title=" recommender system"> recommender system</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20platform" title=" software platform"> software platform</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/150813/design-and-implementation-of-a-software-platform-based-on-artificial-intelligence-for-product-recommendation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> The Second Column of Origen’s Hexapla and the Transcription of BGDKPT Consonants: A Confrontation with Transliterated Hebrew Names in Greek Documents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isabella%20Maurizio">Isabella Maurizio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research analyses the pronunciation of Hebrew consonants 'bgdkpt' in II- III C. E. in Palestine, through the confrontation of two kinds of data: the fragments of transliteration of Old Testament in the Greek alphabet, from the second column of Origen’s synopsis, called Hexapla, and Hebrew names transliterated in Greek documents, especially epigraphs. Origen is a very important author, not only for his bgdkpt theological and exegetic works: the Hexapla, synoptic six columns for a critical edition of Septuaginta, has a relevant role in attempting to reconstruct the pronunciation of Hebrew language before Masoretic punctuation. For this reason, at the beginning, it is important to analyze the column in order to study phonetic and linguistic phenomena. Among the most problematic data, there is the evidence from bgdkpt consonants, always represented as Greek aspirated graphemes. This transcription raised the question if their pronunciation was the only spirant, and consequently, the double one, that is, the stop/spirant contrast, was introduced by Masoretes. However, the phonetic and linguistic examination of the column alone is not enough to establish a real pronunciation of language: this paper is significant because a confrontation between the second column’s transliteration and Hebrew names found in Greek documents epigraphic ones mainly, is achieved. Palestine in II - III was a bilingual country: Greek and Aramaic language lived together, the first one like the official language, the second one as the principal mean of communication between people. For this reason, Hebrew names are often found in Greek documents of the same geographical area: a deep examination of bgdkpt’s transliteration can help to understand better which the real pronunciation of these consonants was, or at least it allows to evidence a phonetic tendency. As a consequence, the research considers the contemporary documents to Origen and the previous ones: the first ones testify a specific stadium of pronunciation, the second ones reflect phonemes’ evolution. Alexandrian documents are also examined: Origen was from there, and the influence of Greek language, spoken in his native country, must be considered. The epigraphs have another implication: they are totally free from morphological criteria, probably used by Origen in his column, because of their popular origin. Thus, a confrontation between the hexaplaric transliteration and Hebrew names is absolutely required, in Hexapla’s studies: first of all, it can be the second clue of a pronunciation already noted in the column; then because, for documents’ specific nature, it has more probabilities to be real, reflecting a daily use of language. The examination of data shows a general tendency to employ the aspirated graphemes for bgdkpt consonants’ transliteration. This probably means that they were closer to Greek aspirated consonants rather than to the plosive ones. The exceptions are linked to a particular status of the name, i.e. its history and origin. In this way, this paper gives its contribution to onomastic studies, too: indeed, the research may contribute to verify the diffusion and the treatment of Jewish names in Hellenized world and in the koinè language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bgdkpt%20consonants" title="bgdkpt consonants">bgdkpt consonants</a>, <a href="https://publications.waset.org/abstracts/search?q=Greek%20epigraphs" title=" Greek epigraphs"> Greek epigraphs</a>, <a href="https://publications.waset.org/abstracts/search?q=Jewish%20names" title=" Jewish names"> Jewish names</a>, <a href="https://publications.waset.org/abstracts/search?q=origen%27s%20Hexapla" title=" origen's Hexapla"> origen's Hexapla</a> </p> <a href="https://publications.waset.org/abstracts/123374/the-second-column-of-origens-hexapla-and-the-transcription-of-bgdkpt-consonants-a-confrontation-with-transliterated-hebrew-names-in-greek-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Rise in Popularity of Online Islamic Fashion In Indonesia: An Economic, Political, and Socio-Anthropological Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cazadira%20Fediva%20Tamzil">Cazadira Fediva Tamzil</a>, <a href="https://publications.waset.org/abstracts/search?q=Agung%20Sulthonaulia%20Utama"> Agung Sulthonaulia Utama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rise in popularity of Indonesian Islamic fashion displayed and sold through social networking sites, especially Instagram, might seem at first glance like a commonplace and localized phenomenon. However, when analyzed critically, it actually reveals the relations between the global and local Indonesian economy, as well as a deep socio-anthropological dimension relating to religion, culture, class, work, identity. Conducted using a qualitative methodology, data collection technique of literature review, and observation of various social networking sites, this research finds four things that lead to the aforementioned conclusion. First, the rise of online Islamic fashion retailers was triggered by the shift in the structure of global and national Indonesian economy as well as the free access of information made possible by democratization in Indonesia and worldwide advances in terms of technology. All of those factors combined together gave birth to a large amount of middle-class Indonesians with high consumer culture and entrepreneurial flair. Second, online Islamic fashion retailers are the new cultural trendsetters in society. All these show how Indonesians are becoming increasingly pious, no longer only adhere to Western conception of luxury and that many are increasingly exploiting Islam commercial and status-acquiring purposes. Third, the online Islamic fashion retailers actually reveal a shift in the conception of ‘work’ – social media has made work no longer only confined to the toiling activities inside factories, but instead something that can be done from any location only through posting online words or pictures that can increase a fashion product’s capital value. Without realizing it, many celebrities and online retailers who promote Islamic fashion through social media on a daily basis are now also ‘semi-free immaterial labors’ – a slight reconceptualization to Tiziana Terranova’s concept of ‘free labor’ and Maurizio Lazzarato’s ‘immaterial labor’, which basically refer to people who create economic value and thus help out capitals from producing immaterial things with only little compensation in return. Fourth, this research also shows that the diversity of Islamic fashion styles being sold on Instagram reflects the polarized identity of Islam in Indonesia. In stark contrast with the theory which states that globalization always leads to the strengthening and unification of identity, this research shows how polarized the Islamic identity in Indonesia really is – even in the face of globalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20economy" title="global economy">global economy</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesian%20online%20Islamic%20fashion" title=" Indonesian online Islamic fashion"> Indonesian online Islamic fashion</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20relations" title=" political relations"> political relations</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-anthropology" title=" socio-anthropology"> socio-anthropology</a> </p> <a href="https://publications.waset.org/abstracts/38235/the-rise-in-popularity-of-online-islamic-fashion-in-indonesia-an-economic-political-and-socio-anthropological-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> A Quality Index Optimization Method for Non-Invasive Fetal ECG Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Billeci">Lucia Billeci</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennaro%20Tartarisco"> Gennaro Tartarisco</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurizio%20Varanini"> Maurizio Varanini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fetal cardiac monitoring by fetal electrocardiogram (fECG) can provide significant clinical information about the healthy condition of the fetus. Despite this potentiality till now the use of fECG in clinical practice has been quite limited due to the difficulties in its measuring. The recovery of fECG from the signals acquired non-invasively by using electrodes placed on the maternal abdomen is a challenging task because abdominal signals are a mixture of several components and the fetal one is very weak. This paper presents an approach for fECG extraction from abdominal maternal recordings, which exploits the characteristics of pseudo-periodicity of fetal ECG. It consists of devising a quality index (fQI) for fECG and of finding the linear combinations of preprocessed abdominal signals, which maximize these fQI (quality index optimization - QIO). It aims at improving the performances of the most commonly adopted methods for fECG extraction, usually based on maternal ECG (mECG) estimating and canceling. The procedure for the fECG extraction and fetal QRS (fQRS) detection is completely unsupervised and based on the following steps: signal pre-processing; maternal ECG (mECG) extraction and maternal QRS detection; mECG component approximation and canceling by weighted principal component analysis; fECG extraction by fQI maximization and fetal QRS detection. The proposed method was compared with our previously developed procedure, which obtained the highest at the Physionet/Computing in Cardiology Challenge 2013. That procedure was based on removing the mECG from abdominal signals estimated by a principal component analysis (PCA) and applying the Independent component Analysis (ICA) on the residual signals. Both methods were developed and tuned using 69, 1 min long, abdominal measurements with fetal QRS annotation of the dataset A provided by PhysioNet/Computing in Cardiology Challenge 2013. The QIO-based and the ICA-based methods were compared in analyzing two databases of abdominal maternal ECG available on the Physionet site. The first is the Abdominal and Direct Fetal Electrocardiogram Database (ADdb) which contains the fetal QRS annotations thus allowing a quantitative performance comparison, the second is the Non-Invasive Fetal Electrocardiogram Database (NIdb), which does not contain the fetal QRS annotations so that the comparison between the two methods can be only qualitative. In particular, the comparison on NIdb was performed defining an index of quality for the fetal RR series. On the annotated database ADdb the QIO method, provided the performance indexes Sens=0.9988, PPA=0.9991, F1=0.9989 overcoming the ICA-based one, which provided Sens=0.9966, PPA=0.9972, F1=0.9969. The comparison on NIdb was performed defining an index of quality for the fetal RR series. The index of quality resulted higher for the QIO-based method compared to the ICA-based one in 35 records out 55 cases of the NIdb. The QIO-based method gave very high performances with both the databases. The results of this study foresees the application of the algorithm in a fully unsupervised way for the implementation in wearable devices for self-monitoring of fetal health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fetal%20electrocardiography" title="fetal electrocardiography">fetal electrocardiography</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20QRS%20detection" title=" fetal QRS detection"> fetal QRS detection</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20component%20analysis%20%28ICA%29" title=" independent component analysis (ICA)"> independent component analysis (ICA)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable" title=" wearable"> wearable</a> </p> <a href="https://publications.waset.org/abstracts/51208/a-quality-index-optimization-method-for-non-invasive-fetal-ecg-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Interplay of Material and Cycle Design in a Vacuum-Temperature Swing Adsorption Process for Biogas Upgrading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Federico%20Capra">Federico Capra</a>, <a href="https://publications.waset.org/abstracts/search?q=Emanuele%20Martelli"> Emanuele Martelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Matteo%20Gazzani"> Matteo Gazzani</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Mazzotti"> Marco Mazzotti</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurizio%20Notaro"> Maurizio Notaro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas is a major energy source in the current global economy, contributing to roughly 21% of the total primary energy consumption. Production of natural gas starting from renewable energy sources is key to limit the related CO2 emissions, especially for those sectors that heavily rely on natural gas use. In this context, biomethane produced via biogas upgrading represents a good candidate for partial substitution of fossil natural gas. The upgrading process of biogas to biomethane consists in (i) the removal of pollutants and impurities (e.g. H2S, siloxanes, ammonia, water), and (ii) the separation of carbon dioxide from methane. Focusing on the CO2 removal process, several technologies can be considered: chemical or physical absorption with solvents (e.g. water, amines), membranes, adsorption-based systems (PSA). However, none emerged as the leading technology, because of (i) the heterogeneity in plant size, ii) the heterogeneity in biogas composition, which is strongly related to the feedstock type (animal manure, sewage treatment, landfill products), (iii) the case-sensitive optimal tradeoff between purity and recovery of biomethane, and iv) the destination of the produced biomethane (grid injection, CHP applications, transportation sector). With this contribution, we explore the use of a technology for biogas upgrading and we compare the resulting performance with benchmark technologies. The proposed technology makes use of a chemical sorbent, which is engineered by RSE and consists of Di-Ethanol-Amine deposited on a solid support made of γ-Alumina, to chemically adsorb the CO2 contained in the gas. The material is packed into fixed beds that cyclically undergo adsorption and regeneration steps. CO2 is adsorbed at low temperature and ambient pressure (or slightly above) while the regeneration is carried out by pulling vacuum and increasing the temperature of the bed (vacuum-temperature swing adsorption - VTSA). Dynamic adsorption tests were performed by RSE and were used to tune the mathematical model of the process, including material and transport parameters (i.e. Langmuir isotherms data and heat and mass transport). Based on this set of data, an optimal VTSA cycle was designed. The results enabled a better understanding of the interplay between material and cycle tuning. As exemplary application, the upgrading of biogas for grid injection, produced by an anaerobic digester (60-70% CO2, 30-40% CH4), for an equivalent size of 1 MWel was selected. A plant configuration is proposed to maximize heat recovery and minimize the energy consumption of the process. The resulting performances are very promising compared to benchmark solutions, which make the VTSA configuration a valuable alternative for biomethane production starting from biogas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas%20upgrading" title="biogas upgrading">biogas upgrading</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas%20upgrading%20energetic%20cost" title=" biogas upgrading energetic cost"> biogas upgrading energetic cost</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20adsorption" title=" CO2 adsorption"> CO2 adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=VTSA%20process%20modelling" title=" VTSA process modelling"> VTSA process modelling</a> </p> <a href="https://publications.waset.org/abstracts/59584/interplay-of-material-and-cycle-design-in-a-vacuum-temperature-swing-adsorption-process-for-biogas-upgrading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Solar Power Forecasting for the Bidding Zones of the Italian Electricity Market with an Analog Ensemble Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Collino">Elena Collino</a>, <a href="https://publications.waset.org/abstracts/search?q=Dario%20A.%20Ronzio"> Dario A. Ronzio</a>, <a href="https://publications.waset.org/abstracts/search?q=Goffredo%20Decimi"> Goffredo Decimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurizio%20Riva"> Maurizio Riva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid increase of renewable energy in Italy is led by wind and solar installations. The 2017 Italian energy strategy foresees a further development of these sustainable technologies, especially solar. This fact has resulted in new opportunities, challenges, and different problems to deal with. The growth of renewables allows to meet the European requirements regarding energy and environmental policy, but these types of sources are difficult to manage because they are intermittent and non-programmable. Operationally, these characteristics can lead to instability on the voltage profile and increasing uncertainty on energy reserve scheduling. The increasing renewable production must be considered with more and more attention especially by the Transmission System Operator (TSO). The TSO, in fact, every day provides orders on energy dispatch, once the market outcome has been determined, on extended areas, defined mainly on the basis of power transmission limitations. In Italy, six market zone are defined: Northern-Italy, Central-Northern Italy, Central-Southern Italy, Southern Italy, Sardinia, and Sicily. An accurate hourly renewable power forecasting for the day-ahead on these extended areas brings an improvement both in terms of dispatching and reserve management. In this study, an operational forecasting tool of the hourly solar output for the six Italian market zones is presented, and the performance is analysed. The implementation is carried out by means of a numerical weather prediction model, coupled with a statistical post-processing in order to derive the power forecast on the basis of the meteorological projection. The weather forecast is obtained from the limited area model RAMS on the Italian territory, initialized with IFS-ECMWF boundary conditions. The post-processing calculates the solar power production with the Analog Ensemble technique (AN). This statistical approach forecasts the production using a probability distribution of the measured production registered in the past when the weather scenario looked very similar to the forecasted one. The similarity is evaluated for the components of the solar radiation: global (GHI), diffuse (DIF) and direct normal (DNI) irradiation, together with the corresponding azimuth and zenith solar angles. These are, in fact, the main factors that affect the solar production. Considering that the AN performance is strictly related to the length and quality of the historical data a training period of more than one year has been used. The training set is made by historical Numerical Weather Prediction (NWP) forecasts at 12 UTC for the GHI, DIF and DNI variables over the Italian territory together with corresponding hourly measured production for each of the six zones. The AN technique makes it possible to estimate the aggregate solar production in the area, without information about the technologic characteristics of the all solar parks present in each area. Besides, this information is often only partially available. Every day, the hourly solar power forecast for the six Italian market zones is made publicly available through a website. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analog%20ensemble" title="analog ensemble">analog ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20market" title=" electricity market"> electricity market</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20forecast" title=" PV forecast"> PV forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/89217/solar-power-forecasting-for-the-bidding-zones-of-the-italian-electricity-market-with-an-analog-ensemble-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>