CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 229 results for author: <span class="mathjax">Fisher, I R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Fisher%2C+I+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fisher, I R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fisher%2C+I+R&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fisher, I R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Fisher%2C+I+R&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Fisher%2C+I+R&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Fisher%2C+I+R&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Fisher%2C+I+R&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Fisher%2C+I+R&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Fisher%2C+I+R&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16327">arXiv:2502.16327</a> <span> [<a href="https://arxiv.org/pdf/2502.16327">pdf</a>, <a href="https://arxiv.org/format/2502.16327">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Realization of discretized response in rare-earth vanadates accessed by AC susceptibility and magnetocaloric methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yuntian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Zic%2C+M+P">Mark P. Zic</a>, <a href="/search/cond-mat?searchtype=author&query=Ikeda%2C+M+S">Matthias S. Ikeda</a>, <a href="/search/cond-mat?searchtype=author&query=Shekhter%2C+A">Arkady Shekhter</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16327v1-abstract-short" style="display: inline;"> This report presents a new technique to probe the quantitative dynamical response of the magnetic field induced heating/cooling process in rare-earth vanadium materials. The approach combines AC susceptibility and AC caloric measurements to reveal the intrinsic timescale associated with the magnetic relaxation process of rare-earth ions at low temperatures. Utilizing the well-known crystal field e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16327v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16327v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16327v1-abstract-full" style="display: none;"> This report presents a new technique to probe the quantitative dynamical response of the magnetic field induced heating/cooling process in rare-earth vanadium materials. The approach combines AC susceptibility and AC caloric measurements to reveal the intrinsic timescale associated with the magnetic relaxation process of rare-earth ions at low temperatures. Utilizing the well-known crystal field effect in YbVO4, we prove and demonstrate a discretized thermal analysis through a common spin-lattice relaxation phenomenon. The demonstration experiment presented in this study provides a general approach to quantitatively address multiple measured quantities in one unified discretized thermal circuit analysis. It can be extended to study other magnetic, dielectric, and elastic materials exhibiting a complex response to an external driving field in the presence of intrinsic interactions and fluctuations, particularly when an energy dissipation process is within an accessible frequency regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16327v1-abstract-full').style.display = 'none'; document.getElementById('2502.16327v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20706">arXiv:2412.20706</a> <span> [<a href="https://arxiv.org/pdf/2412.20706">pdf</a>, <a href="https://arxiv.org/format/2412.20706">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effect of disorder on the strain-tuned charge density wave multicriticality in Pd$_x$ErTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A+G">Anisha G. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Krogstad%2C+M">Matthew Krogstad</a>, <a href="/search/cond-mat?searchtype=author&query=Bachmann%2C+M+D">Maja D. Bachmann</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+P">Paul Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenkranz%2C+S">Stephan Rosenkranz</a>, <a href="/search/cond-mat?searchtype=author&query=Osborn%2C+R">Ray Osborn</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+A">Alan Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Kapitulnik%2C+A">Aharon Kapitulnik</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J+W">Jong Woo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Ryan%2C+P+J">Philip J. Ryan</a>, <a href="/search/cond-mat?searchtype=author&query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20706v1-abstract-short" style="display: inline;"> We explore, through a combination of x-ray diffraction and elastoresistivity measurements, the effect of disorder on the strain-tuned charge density wave and associated multicriticality in Pd$_x$ErTe$_3$ (x = 0, 0.01, 0.02 and 0.026). We focus particularly on the behavior near the strain-tuned bicritical point that occurs in pristine ErTe$_3$ (x=0). Our study reveals that while Pd intercalation so… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20706v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20706v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20706v1-abstract-full" style="display: none;"> We explore, through a combination of x-ray diffraction and elastoresistivity measurements, the effect of disorder on the strain-tuned charge density wave and associated multicriticality in Pd$_x$ErTe$_3$ (x = 0, 0.01, 0.02 and 0.026). We focus particularly on the behavior near the strain-tuned bicritical point that occurs in pristine ErTe$_3$ (x=0). Our study reveals that while Pd intercalation somewhat broadens the signatures of the CDW phase transitions, the line of first-order transitions at which the CDW reorients as a function of applied strain persists in the presence of disorder and still seemingly terminates at a critical point. The critical point occurs at a lower temperature and a lower strain compared to pristine ErTe$_3$. Similarly, the nematic elastoresistance of Pd$_x$ErTe$_3$, though suppressed in magnitude and broadened relative to that of ErTe$_3$, has a markedly more symmetric response around the critical point. These observations point to disorder driving a reduction in the system's electronic orthorhombicity even while the material remains irrevocably orthorhombic due to the presence of a glide plane in the crystal structure. Disorder, it would appear, reinforces the emergence of a "pseudo-tetragonal" electronic response in this fundamentally orthorhombic material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20706v1-abstract-full').style.display = 'none'; document.getElementById('2412.20706v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13604">arXiv:2412.13604</a> <span> [<a href="https://arxiv.org/pdf/2412.13604">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Distinct amplitude mode dynamics upon resonant and off-resonant excitation across the charge density wave energy gap in LaTe3 investigated by time- and angle-resolved photoemission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kecheng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Suzuki%2C+T">Takeshi Suzuki</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+Y">Yigui Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Kanai%2C+T">Teruto Kanai</a>, <a href="/search/cond-mat?searchtype=author&query=Itatani%2C+J">Jiro Itatani</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Martinez%2C+M">Maya Martinez</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A">Anisha Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Bovensiepen%2C+U">Uwe Bovensiepen</a>, <a href="/search/cond-mat?searchtype=author&query=Okazaki%2C+K">Kozo Okazaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13604v1-abstract-short" style="display: inline;"> Non-equilibrium states generated by ultrafast laser pulses are characterized by specific phenomena that are not accessible in static measurements. Previous time- and angle-resolved photoemission spectroscopy (TARPES) studies on rare-earth tritelluride materials have revealed the laser-driven melting of the charge density wave order as well as its collective amplitude mode excitation. Variation of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13604v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13604v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13604v1-abstract-full" style="display: none;"> Non-equilibrium states generated by ultrafast laser pulses are characterized by specific phenomena that are not accessible in static measurements. Previous time- and angle-resolved photoemission spectroscopy (TARPES) studies on rare-earth tritelluride materials have revealed the laser-driven melting of the charge density wave order as well as its collective amplitude mode excitation. Variation of the excess energy deposited by optical pumping in the material promises pathways to control the dynamic material response. To this end, we use an optical parametric amplifier to generate a tunable pump photon energy. Studying LaTe3 we compare the dynamics driven by pumping resonantly across the charge density wave energy gap with the effect of pumping at a twice higher photon energy in a TARPES pump-probe experiment. We clearly identify a pump photon energy dependent behavior. At the larger pump photon energy, the excess electronic energy generates lattice heating mediated by e-ph coupling and softening of the amplitude mode frequency from 3 to 2 THz. Remarkably, the resonant pumping across the CDW gap results in a time-independent amplitude mode frequency. We conclude that the resonant excitation across the energy gap excites the amplitude mode selectively while additional electronic excess energy deposited at higher pump photon energy modifies the crystal properties transiently by incoherent dissipative processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13604v1-abstract-full').style.display = 'none'; document.getElementById('2412.13604v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14746">arXiv:2411.14746</a> <span> [<a href="https://arxiv.org/pdf/2411.14746">pdf</a>, <a href="https://arxiv.org/format/2411.14746">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the dynamic charge susceptibility near the charge density wave transition in ErTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chaudhuri%2C+D">Dipanjan Chaudhuri</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Q">Qianni Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+X">Xuefei Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Kengle%2C+C+S">Caitlin S. Kengle</a>, <a href="/search/cond-mat?searchtype=author&query=Hoveyda-Marashi%2C+F">Farzaneh Hoveyda-Marashi</a>, <a href="/search/cond-mat?searchtype=author&query=Bernal-Choban%2C+C">Camille Bernal-Choban</a>, <a href="/search/cond-mat?searchtype=author&query=de+Vries%2C+N">Niels de Vries</a>, <a href="/search/cond-mat?searchtype=author&query=Chiang%2C+T">Tai-Chang Chiang</a>, <a href="/search/cond-mat?searchtype=author&query=Fradkin%2C+E">Eduardo Fradkin</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Abbamonte%2C+P">Peter Abbamonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14746v2-abstract-short" style="display: inline;"> A charge density wave (CDW) is a phase of matter characterized by a periodic modulation of the valence electron density accompanied by a distortion of the lattice structure. The microscopic details of CDW formation are closely tied to the dynamic charge susceptibility, $蠂(q,蠅)$, which describes the behavior of electronic collective modes. Despite decades of extensive study, the behavior of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14746v2-abstract-full').style.display = 'inline'; document.getElementById('2411.14746v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14746v2-abstract-full" style="display: none;"> A charge density wave (CDW) is a phase of matter characterized by a periodic modulation of the valence electron density accompanied by a distortion of the lattice structure. The microscopic details of CDW formation are closely tied to the dynamic charge susceptibility, $蠂(q,蠅)$, which describes the behavior of electronic collective modes. Despite decades of extensive study, the behavior of $蠂(q,蠅)$ in the vicinity of a CDW transition has never been measured with high energy resolution ($\sim$meV). Here, we investigate the canonical CDW transition in ErTe$_3$ using momentum-resolved electron energy loss spectroscopy (M-EELS), a technique uniquely sensitive to valence band charge excitations. Unlike phonons in these materials, which undergo conventional softening due to the Kohn anomaly at the CDW wavevector, the electronic excitations display purely relaxational dynamics that are well described by a diffusive model. The diffusivity peaks around 250 K, just below the critical temperature. Additionally, we report, for the first time, a divergence in the real part of $蠂(q,蠅)$ in the static limit ($蠅\rightarrow 0$), a phenomenon predicted to characterize CDWs since the 1970s. These results highlight the importance of energy- and momentum-resolved measurements of electronic susceptibility and demonstrate the power of M-EELS as a versatile probe of charge dynamics in materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14746v2-abstract-full').style.display = 'none'; document.getElementById('2411.14746v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10522">arXiv:2411.10522</a> <span> [<a href="https://arxiv.org/pdf/2411.10522">pdf</a>, <a href="https://arxiv.org/format/2411.10522">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42254-024-00794-1">10.1038/s42254-024-00794-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydride superconductivity: here to stay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Boebinger%2C+G+S">Gregory S. Boebinger</a>, <a href="/search/cond-mat?searchtype=author&query=Chubukov%2C+A+V">Andrey V. Chubukov</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Grosche%2C+F+M">F. Malte Grosche</a>, <a href="/search/cond-mat?searchtype=author&query=Hirschfeld%2C+P+J">Peter J. Hirschfeld</a>, <a href="/search/cond-mat?searchtype=author&query=Julian%2C+S+R">Stephen R. Julian</a>, <a href="/search/cond-mat?searchtype=author&query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&query=Mackenzie%2C+A+P">Andrew P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&query=Maeno%2C+Y">Yoshiteru Maeno</a>, <a href="/search/cond-mat?searchtype=author&query=Orenstein%2C+J">Joseph Orenstein</a>, <a href="/search/cond-mat?searchtype=author&query=Ramshaw%2C+B+J">Brad J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&query=Sachdev%2C+S">Subir Sachdev</a>, <a href="/search/cond-mat?searchtype=author&query=Schmalian%2C+J">J枚rg Schmalian</a>, <a href="/search/cond-mat?searchtype=author&query=Vojta%2C+M">Matthias Vojta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10522v1-abstract-short" style="display: inline;"> The field of hydride superconductivity has recently been mired in a controversy that might divert attention from the question of central importance: do hydrides support genuine superconductivity or not? We examine some key papers from the field, and conclude that hydride superconductivity is real. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10522v1-abstract-full" style="display: none;"> The field of hydride superconductivity has recently been mired in a controversy that might divert attention from the question of central importance: do hydrides support genuine superconductivity or not? We examine some key papers from the field, and conclude that hydride superconductivity is real. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10522v1-abstract-full').style.display = 'none'; document.getElementById('2411.10522v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Reviews Physics 7, 2 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06909">arXiv:2409.06909</a> <span> [<a href="https://arxiv.org/pdf/2409.06909">pdf</a>, <a href="https://arxiv.org/format/2409.06909">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of giant elastocaloric cooling at cryogenic temperatures in TmVO$_4$ via a strain load/unload technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zic%2C+M+P">Mark P. Zic</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Martinez%2C+M+H">Maya H. Martinez</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06909v1-abstract-short" style="display: inline;"> The adiabatic elastocaloric effect relates changes in the strain that a material experiences to resulting changes in its temperature. While elastocaloric materials have been utilized for cooling in room temperature applications, the use of such materials for cryogenic cooling remains relatively unexplored. Here, we use a strain load/unload technique at low temperatures, similar to those employed a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06909v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06909v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06909v1-abstract-full" style="display: none;"> The adiabatic elastocaloric effect relates changes in the strain that a material experiences to resulting changes in its temperature. While elastocaloric materials have been utilized for cooling in room temperature applications, the use of such materials for cryogenic cooling remains relatively unexplored. Here, we use a strain load/unload technique at low temperatures, similar to those employed at room-temperature, to demonstrate a large cooling effect in TmVO$_4$. For strain changes of $1.8 \cdot 10^{-3}$, the inferred cooling reaches approximately 50% of the material's starting temperature at 5 K, justifying the moniker "giant". Beyond establishing the suitability of this class of material for cryogenic elastocaloric cooling, these measurements also provide additional insight to the entropy landscape in the material as a function of strain and temperature, including the behavior proximate to the quadrupolar phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06909v1-abstract-full').style.display = 'none'; document.getElementById('2409.06909v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12799">arXiv:2405.12799</a> <span> [<a href="https://arxiv.org/pdf/2405.12799">pdf</a>, <a href="https://arxiv.org/format/2405.12799">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Dark-Field X-Ray Microscopy with Structured Illumination for Three-Dimensional Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=G%C3%BCrsoy%2C+D">Do臒a G眉rsoy</a>, <a href="/search/cond-mat?searchtype=author&query=Yay%2C+K+A">Kaan Alp Yay</a>, <a href="/search/cond-mat?searchtype=author&query=Kisiel%2C+E">Elliot Kisiel</a>, <a href="/search/cond-mat?searchtype=author&query=Wojcik%2C+M">Michael Wojcik</a>, <a href="/search/cond-mat?searchtype=author&query=Sheyfer%2C+D">Dina Sheyfer</a>, <a href="/search/cond-mat?searchtype=author&query=Last%2C+A">Arndt Last</a>, <a href="/search/cond-mat?searchtype=author&query=Highland%2C+M">Matthew Highland</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian Randal Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Hruszkewycz%2C+S">Stephan Hruszkewycz</a>, <a href="/search/cond-mat?searchtype=author&query=Islam%2C+Z">Zahir Islam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12799v2-abstract-short" style="display: inline;"> We introduce a structured illumination technique for dark-field x-ray microscopy optimized for three-dimensional imaging of ordered materials at sub-micrometer length scales. Our method utilizes a coded aperture to spatially modulate the incident x-ray beam on the sample, enabling the reconstruction of the sample's 3D structure from images captured at various aperture positions. Unlike common volu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12799v2-abstract-full').style.display = 'inline'; document.getElementById('2405.12799v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12799v2-abstract-full" style="display: none;"> We introduce a structured illumination technique for dark-field x-ray microscopy optimized for three-dimensional imaging of ordered materials at sub-micrometer length scales. Our method utilizes a coded aperture to spatially modulate the incident x-ray beam on the sample, enabling the reconstruction of the sample's 3D structure from images captured at various aperture positions. Unlike common volumetric imaging techniques such as tomography, our approach casts a scanning x-ray silhouette of a coded aperture for depth resolution along the axis of diffraction, eliminating any need for sample rotation or rastering, leading to a highly stable imaging modality. This modification provides robustness against geometric uncertainties during data acquisition, particularly for achieving sub-micrometer resolutions where geometric uncertainties typically limit resolution. We introduce the image reconstruction model and validate our results with experimental data on an isolated twin domain within a bulk single crystal of an iron pnictide obtained using a dark-field x-ray microscope. This timely advancement aligns with the enhanced brightness upgrade of the world's synchrotron radiation facilities, opening unprecedented opportunities in imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12799v2-abstract-full').style.display = 'none'; document.getElementById('2405.12799v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 78 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18519">arXiv:2402.18519</a> <span> [<a href="https://arxiv.org/pdf/2402.18519">pdf</a>, <a href="https://arxiv.org/format/2402.18519">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fphy.2024.1393229">10.3389/fphy.2024.1393229 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear magnetic resonance studies in a model transverse field Ising system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nian%2C+Y">Y-H. Nian</a>, <a href="/search/cond-mat?searchtype=author&query=Vinograd%2C+I">I. Vinograd</a>, <a href="/search/cond-mat?searchtype=author&query=Chaffey%2C+C">C. Chaffey</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zic%2C+M+P">M. P. Zic</a>, <a href="/search/cond-mat?searchtype=author&query=Massat%2C+P">P. Massat</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+R+R+P">R. R. P. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Curro%2C+N+J">N. J. Curro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18519v1-abstract-short" style="display: inline;"> The suppression of ferroquadrupolar order in TmVO$_4$ in a magnetic field is well-described by the transverse field Ising model, enabling detailed studies of critical dynamics near the quantum phase transition. We describe nuclear magnetic resonance measurements in pure and Y-doped single crystals. The non-Kramers nature of the ground state doublet leads to a unique form of the hyperfine coupling… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18519v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18519v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18519v1-abstract-full" style="display: none;"> The suppression of ferroquadrupolar order in TmVO$_4$ in a magnetic field is well-described by the transverse field Ising model, enabling detailed studies of critical dynamics near the quantum phase transition. We describe nuclear magnetic resonance measurements in pure and Y-doped single crystals. The non-Kramers nature of the ground state doublet leads to a unique form of the hyperfine coupling that exclusively probes the transverse field susceptibility. Our results show that this quantity diverges at the critical field, in contrast to the mean-field prediction. Furthermore, we find evidence for quantum critical fluctuations present near Tm-rich regions in Y-doped crystals at levels beyond which long-range order is suppressed, suggesting the presence of quantum Griffiths phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18519v1-abstract-full').style.display = 'none'; document.getElementById('2402.18519v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. vol 12 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17945">arXiv:2402.17945</a> <span> [<a href="https://arxiv.org/pdf/2402.17945">pdf</a>, <a href="https://arxiv.org/format/2402.17945">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Elastocaloric evidence for a multicomponent superconductor stabilized within the nematic state in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Sayak Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Ikeda%2C+M+S">Matthias S. Ikeda</a>, <a href="/search/cond-mat?searchtype=author&query=Chakraborty%2C+A+R">Anzumaan R. Chakraborty</a>, <a href="/search/cond-mat?searchtype=author&query=Worasaran%2C+T">Thanapat Worasaran</a>, <a href="/search/cond-mat?searchtype=author&query=Theuss%2C+F">Florian Theuss</a>, <a href="/search/cond-mat?searchtype=author&query=Peralta%2C+L+B">Luciano B. Peralta</a>, <a href="/search/cond-mat?searchtype=author&query=Lozano%2C+P+M">P. M. Lozano</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J">Jong-Woo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Ryan%2C+P+J">Philip J. Ryan</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Kapitulnik%2C+A">Aharon Kapitulnik</a>, <a href="/search/cond-mat?searchtype=author&query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17945v1-abstract-short" style="display: inline;"> The iron-based high-$T_c$ superconductors exhibit rich phase diagrams with intertwined phases, including magnetism, nematicity and superconductivity. The superconducting $T_c$ in many of these materials is maximized in the regime of strong nematic fluctuations, making the role of nematicity in influencing the superconductivity a topic of intense research. Here, we use the AC elastocaloric effect (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17945v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17945v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17945v1-abstract-full" style="display: none;"> The iron-based high-$T_c$ superconductors exhibit rich phase diagrams with intertwined phases, including magnetism, nematicity and superconductivity. The superconducting $T_c$ in many of these materials is maximized in the regime of strong nematic fluctuations, making the role of nematicity in influencing the superconductivity a topic of intense research. Here, we use the AC elastocaloric effect (ECE) to map out the phase diagram of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ near optimal doping. The ECE signature at $T_c$ on the overdoped side, where superconductivity condenses without any nematic order, is quantitatively consistent with other thermodynamic probes that indicate a single-component superconducting state. In contrast, on the slightly underdoped side, where superconductivity condenses within the nematic phase, ECE reveals a second thermodynamic transition proximate to and below $T_c$. We rule out magnetism and re-entrant tetragonality as the origin of this transition, and find that our observations strongly suggest a phase transition into a multicomponent superconducting state. This implies the existence of a sub-dominant pairing instability that competes strongly with the dominant $s^\pm$ instability. Our results thus motivate a re-examination of the pairing state and its interplay with nematicity in this extensively studied iron-based superconductor, while also demonstrating the power of ECE in uncovering strain-tuned phase diagrams of quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17945v1-abstract-full').style.display = 'none'; document.getElementById('2402.17945v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17049">arXiv:2402.17049</a> <span> [<a href="https://arxiv.org/pdf/2402.17049">pdf</a>, <a href="https://arxiv.org/format/2402.17049">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Disorder-induced local strain distribution in Y-substituted TmVO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yuntian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zic%2C+M+P">Mark P. Zic</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Meese%2C+W+J">W. Joe Meese</a>, <a href="/search/cond-mat?searchtype=author&query=Massat%2C+P">Pierre Massat</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yanbing Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17049v1-abstract-short" style="display: inline;"> We report an investigation of the effect of substitution of Y for Tm in $Tm_{1-x}Y_xVO4$ via low-temperature heat capacity measurements, with the yttrium content $x$ varying from $0$ to $0.997$. Because the Tm ions support a local quadrupolar (nematic) moment, they act as reporters of the local strain state in the material, with the splitting of the ion's non-Kramers crystal field groundstate prop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17049v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17049v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17049v1-abstract-full" style="display: none;"> We report an investigation of the effect of substitution of Y for Tm in $Tm_{1-x}Y_xVO4$ via low-temperature heat capacity measurements, with the yttrium content $x$ varying from $0$ to $0.997$. Because the Tm ions support a local quadrupolar (nematic) moment, they act as reporters of the local strain state in the material, with the splitting of the ion's non-Kramers crystal field groundstate proportional to the quadrature sum of the in-plane tetragonal symmetry-breaking transverse and longitudinal strains experienced by each ion individually. Analysis of the heat capacity therefore provides detailed insights into the distribution of local strains that arise as a consequence of the chemical substitution. These local strains suppress long-range quadrupole order for $x>0.22$, and result in a broad Schottky-like feature for higher concentrations. Heat capacity data are compared to expectations for a distribution of uncorrelated (random) strains. For dilute Tm concentrations, the heat capacity cannot be accounted for by randomly distributed strains, demonstrating the presence of significant strain correlations between sites. For intermediate Tm concentrations, these correlations must still exist, but the data cannot be distinguished from that which would be obtained from a 2D Gaussian distribution. The cross-over between these limits is discussed in terms of the interplay of key length scales in the substituted material. The central result of this work, that local strains arising from chemical substitution are not uncorrelated, has implications for the range of validity of theoretical models based on random effective fields that are used to describe such chemically substituted materials, particularly when electronic nematic correlations are present. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17049v1-abstract-full').style.display = 'none'; document.getElementById('2402.17049v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17437">arXiv:2401.17437</a> <span> [<a href="https://arxiv.org/pdf/2401.17437">pdf</a>, <a href="https://arxiv.org/format/2401.17437">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/ad71ee">10.1088/1361-6633/ad71ee <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast measurements under anisotropic strain reveal near equivalence of competing charge orders in TbTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S">Soyeun Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Orenstein%2C+G">Gal Orenstein</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A+G">Anisha G. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Reis%2C+D+A">David A. Reis</a>, <a href="/search/cond-mat?searchtype=author&query=Trigo%2C+M">Mariano Trigo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17437v2-abstract-short" style="display: inline;"> We report ultrafast reflectivity measurements of the dynamics of the order parameter of the charge density wave (CDW) in TbTe$_3$ under anisotropic strain. We observe an increase in the frequency of the amplitude mode with increasing tensile strain along the $a$-axis (which drives the lattice into $a>c$, with $a$ and $c$ the lattice constants), and similar behavior for tensile strain along $c$ (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17437v2-abstract-full').style.display = 'inline'; document.getElementById('2401.17437v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17437v2-abstract-full" style="display: none;"> We report ultrafast reflectivity measurements of the dynamics of the order parameter of the charge density wave (CDW) in TbTe$_3$ under anisotropic strain. We observe an increase in the frequency of the amplitude mode with increasing tensile strain along the $a$-axis (which drives the lattice into $a>c$, with $a$ and $c$ the lattice constants), and similar behavior for tensile strain along $c$ ($c>a$). This suggests that both strains stabilize the corresponding CDW order and further support the near equivalence of the CDW phases oriented in $a$- and $c$-axis, in spite of the orthorhombic space group. The results were analyzed within the time-dependent Ginzburg-Landau framework, which agrees well with the reflectivity dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17437v2-abstract-full').style.display = 'none'; document.getElementById('2401.17437v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16640">arXiv:2312.16640</a> <span> [<a href="https://arxiv.org/pdf/2312.16640">pdf</a>, <a href="https://arxiv.org/format/2312.16640">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thermal transport measurements of the charge density wave transition in CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kountz%2C+E+D">Erik D. Kountz</a>, <a href="/search/cond-mat?searchtype=author&query=Murthy%2C+C+R">Chaitanya R. Murthy</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Zic%2C+M">Mark Zic</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&query=Kapitulnik%2C+A">Aharon Kapitulnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16640v1-abstract-short" style="display: inline;"> We study thermalization and thermal transport in single crystals of CsV$_3$Sb$_5$ through the CDW transition by directly measuring thermal diffusivity ($D$), thermal conductivity ($魏$), resistivity ($蟻$), and specific heat ($c$). Commensurate with previous reports, we observe a sharp, narrow anomaly in specific heat associated with a first order transition that results in a CDW state below… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16640v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16640v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16640v1-abstract-full" style="display: none;"> We study thermalization and thermal transport in single crystals of CsV$_3$Sb$_5$ through the CDW transition by directly measuring thermal diffusivity ($D$), thermal conductivity ($魏$), resistivity ($蟻$), and specific heat ($c$). Commensurate with previous reports, we observe a sharp, narrow anomaly in specific heat associated with a first order transition that results in a CDW state below $\sim94$ K. While a corresponding sharp anomaly in thermal diffusivity is also observed, resistivity and thermal conductivity only exhibit small steps at the transition, where the feature is sharp for resistivity and broader for thermal conductivity. Scrutinizing the thermal Einstein relation $魏=cD$, we find that this relation is satisfied in the entire temperature range, except in a narrow range around the transition. The Wiedemann-Franz law seems to work outside the critical region as well. Below the transition and persisting below the two-phase regime we find strong resemblance between the resistivity anomaly and the specific heat, which may point to a secondary electronic order parameter that emerges continuously below the transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16640v1-abstract-full').style.display = 'none'; document.getElementById('2312.16640v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15155">arXiv:2312.15155</a> <span> [<a href="https://arxiv.org/pdf/2312.15155">pdf</a>, <a href="https://arxiv.org/ps/2312.15155">ps</a>, <a href="https://arxiv.org/format/2312.15155">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.036001">10.1103/PhysRevLett.133.036001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous superfluid density in a disordered charge density wave material: Pd-intercalated ErTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Iguchi%2C+Y">Yusuke Iguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Straquadine%2C+J+A">Joshua A. Straquadine</a>, <a href="/search/cond-mat?searchtype=author&query=Murthy%2C+C">Chaitanya Murthy</a>, <a href="/search/cond-mat?searchtype=author&query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A+G">Anisha G. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Moler%2C+K+A">Kathryn A. Moler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15155v1-abstract-short" style="display: inline;"> We image local superfluid density in single crystals of Pd-intercalated ErTe$_3$ below the superconducting critical temperature, $T_c$, well below the onset temperature, $T_{CDW}$, of (disordered) charge-density-wave order. We find no detectable inhomogeneities. We observe a rapid increase of the superfluid density below $T_c$, deviating from the behavior expected in conventional Bardeen-Cooper-Sc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15155v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15155v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15155v1-abstract-full" style="display: none;"> We image local superfluid density in single crystals of Pd-intercalated ErTe$_3$ below the superconducting critical temperature, $T_c$, well below the onset temperature, $T_{CDW}$, of (disordered) charge-density-wave order. We find no detectable inhomogeneities. We observe a rapid increase of the superfluid density below $T_c$, deviating from the behavior expected in conventional Bardeen-Cooper-Schrieffer, and show that the temperature dependence is qualitatively consistent with a combination of quantum and thermal phase fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15155v1-abstract-full').style.display = 'none'; document.getElementById('2312.15155v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 036001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10643">arXiv:2310.10643</a> <span> [<a href="https://arxiv.org/pdf/2310.10643">pdf</a>, <a href="https://arxiv.org/format/2310.10643">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.045144">10.1103/PhysRevB.110.045144 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of magnetic ions in the thermal Hall effect of the paramagnetic insulator TmVO$_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vallipuram%2C+A">Ashvini Vallipuram</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Campillo%2C+E">Emma Campillo</a>, <a href="/search/cond-mat?searchtype=author&query=Mezidi%2C+M">Manel Mezidi</a>, <a href="/search/cond-mat?searchtype=author&query=Grissonnanche%2C+G">Ga毛l Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&query=Boulanger%2C+M">Marie-Eve Boulanger</a>, <a href="/search/cond-mat?searchtype=author&query=Lefran%C3%A7ois%2C+%C3%89">脡tienne Lefran莽ois</a>, <a href="/search/cond-mat?searchtype=author&query=Zic%2C+M+P">Mark P. Zic</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yuntian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Baglo%2C+J">Jordan Baglo</a>, <a href="/search/cond-mat?searchtype=author&query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10643v5-abstract-short" style="display: inline;"> In a growing number of materials, phonons have been found to generate a thermal Hall effect, but the underlying mechanism remains unclear. Inspired by previous studies that revealed the importance of Tb$^{3+}$ ions in generating the thermal Hall effect in a family of pyrochlores, we investigated the role of Tm$^{3+}$ ions in TmVO$_{4}$, a paramagnetic insulator with a different crystal structure.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10643v5-abstract-full').style.display = 'inline'; document.getElementById('2310.10643v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10643v5-abstract-full" style="display: none;"> In a growing number of materials, phonons have been found to generate a thermal Hall effect, but the underlying mechanism remains unclear. Inspired by previous studies that revealed the importance of Tb$^{3+}$ ions in generating the thermal Hall effect in a family of pyrochlores, we investigated the role of Tm$^{3+}$ ions in TmVO$_{4}$, a paramagnetic insulator with a different crystal structure. We observe a negative thermal Hall conductivity in TmVO$_{4}$ with a magnitude such that the Hall angle, $|魏_{xy}$/$魏_{xx}|$, is approximately 1 x 10$^{-3}$ at $H$ = 15 T and $T$ = 20 K, typical for a phonon-generated thermal Hall effect. In contrast to the negligible $魏_{xy}$ found in the nonmagnetic pyrochlore analog (where the Tb$^{3+}$ ions are replaced with Y$^{3+}$), we observe a negative $魏_{xy}$ in YVO$_{4}$ with a Hall angle of magnitude comparable to that of TmVO$_{4}$. This shows that the Tm$^{3+}$ ions are not essential for the thermal Hall effect in this family of materials. Interestingly, at an intermediate Y concentration of $x$ = 0.3 in Tm$_{1-x}$Y$_{x}$VO$_{4}$, $魏_{xy}$ was found to have a positive sign, pointing to the importance of impurities in the thermal Hall effect of phonons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10643v5-abstract-full').style.display = 'none'; document.getElementById('2310.10643v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Figures modified and added, authors added, appendix added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04633">arXiv:2309.04633</a> <span> [<a href="https://arxiv.org/pdf/2309.04633">pdf</a>, <a href="https://arxiv.org/format/2309.04633">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the magnetic octupole susceptibility of PrV2Al20 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Sorensen%2C+M+E">Matthew E. Sorensen</a>, <a href="/search/cond-mat?searchtype=author&query=Bachmann%2C+M+D">Maja D. Bachmann</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04633v1-abstract-short" style="display: inline;"> In the electromagnetic multipole expansion, magnetic octupoles are the subsequent order of magnetic multipoles allowed in centrosymmetric systems, following the more commonly observed magnetic dipoles. As order parameters in condensed matter systems, magnetic octupoles have been experimentally elusive. In particular, the lack of simple external fields that directly couple to them makes their exper… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04633v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04633v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04633v1-abstract-full" style="display: none;"> In the electromagnetic multipole expansion, magnetic octupoles are the subsequent order of magnetic multipoles allowed in centrosymmetric systems, following the more commonly observed magnetic dipoles. As order parameters in condensed matter systems, magnetic octupoles have been experimentally elusive. In particular, the lack of simple external fields that directly couple to them makes their experimental detection challenging. Here, we demonstrate a methodology for probing the magnetic octupole susceptibility using a product of magnetic field $H_i$ and shear strain $蔚_{jk}$ to couple to the octupolar fluctuations, while using an adiabatic elastocaloric effect to probe the response to this composite effective field. We observe a Curie-Weiss behavior in the obtained octupolar susceptibility of \ce{PrV2Al20} up to temperatures approximately forty times the putative octupole ordering temperature. Our results demonstrate the presence of magnetic octupole fluctuations in the particular material system, and more broadly highlight how anisotropic strain can be combined with magnetic fields to formulate a versatile probe to observe otherwise elusive emergent `hidden' electronic orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04633v1-abstract-full').style.display = 'none'; document.getElementById('2309.04633v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15691">arXiv:2308.15691</a> <span> [<a href="https://arxiv.org/pdf/2308.15691">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00660-4">10.1038/s41535-024-00660-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic-Scale Visualization of a Cascade of Magnetic Orders in the Layered Antiferromagnet $GdTe_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Raghavan%2C+A">Arjun Raghavan</a>, <a href="/search/cond-mat?searchtype=author&query=Romanelli%2C+M">Marisa Romanelli</a>, <a href="/search/cond-mat?searchtype=author&query=May-Mann%2C+J">Julian May-Mann</a>, <a href="/search/cond-mat?searchtype=author&query=Aishwarya%2C+A">Anuva Aishwarya</a>, <a href="/search/cond-mat?searchtype=author&query=Aggarwal%2C+L">Leena Aggarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A+G">Anisha G. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Bachmann%2C+M+D">Maja D. Bachmann</a>, <a href="/search/cond-mat?searchtype=author&query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&query=Fradkin%2C+E">Eduardo Fradkin</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Madhavan%2C+V">Vidya Madhavan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15691v3-abstract-short" style="display: inline;"> $GdTe_{3}… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15691v3-abstract-full').style.display = 'inline'; document.getElementById('2308.15691v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15691v3-abstract-full" style="display: none;"> $GdTe_{3}$ is a layered antiferromagnet which has attracted attention due to its exceptionally high mobility, distinctive unidirectional incommensurate charge density wave (CDW), superconductivity under pressure, and a cascade of magnetic transitions between 7 and 12 K, with as yet unknown order parameters. Here, we use spin-polarized scanning tunneling microscopy to directly image the charge and magnetic orders in $GdTe_{3}$. Below 7 K, we find a striped antiferromagnetic phase with twice the periodicity of the Gd lattice and perpendicular to the CDW. As we heat the sample, we discover a spin density wave with the same periodicity as the CDW between 7 and 12 K; the viability of this phase is supported by our Landau free energy model. Our work reveals the order parameters of the magnetic phases in $GdTe_{3}$ and shows how the interplay between charge and spin can generate a cascade of magnetic orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15691v3-abstract-full').style.display = 'none'; document.getElementById('2308.15691v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pgs.; 4 main figures, 20 supplementary figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 9, 47 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15577">arXiv:2308.15577</a> <span> [<a href="https://arxiv.org/pdf/2308.15577">pdf</a>, <a href="https://arxiv.org/format/2308.15577">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2320052121">10.1073/pnas.2320052121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant elastocaloric effect at low temperatures in TmVO$_4$ and implications for cryogenic cooling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zic%2C+M+P">Mark P. Zic</a>, <a href="/search/cond-mat?searchtype=author&query=Ikeda%2C+M+S">Matthias S. Ikeda</a>, <a href="/search/cond-mat?searchtype=author&query=Massat%2C+P">Pierre Massat</a>, <a href="/search/cond-mat?searchtype=author&query=Hollister%2C+P+M">Patrick M. Hollister</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E+W">Elliott W. Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Straquadine%2C+J+A+W">Joshua A. W. Straquadine</a>, <a href="/search/cond-mat?searchtype=author&query=Ramshaw%2C+B+J">Brad J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15577v1-abstract-short" style="display: inline;"> Adiabatic decompression of para-quadrupolar materials has significant potential as a cryogenic cooling technology. We focus on TmVO$_4$, an archetypal material that undergoes a continuous phase transition to a ferroquadrupole-ordered state at 2.15 K. Above the phase transition, each Tm ion contributes an entropy of $k_B \ln{2}$ due to the degeneracy of the crystal electric field groundstate. Owing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15577v1-abstract-full').style.display = 'inline'; document.getElementById('2308.15577v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15577v1-abstract-full" style="display: none;"> Adiabatic decompression of para-quadrupolar materials has significant potential as a cryogenic cooling technology. We focus on TmVO$_4$, an archetypal material that undergoes a continuous phase transition to a ferroquadrupole-ordered state at 2.15 K. Above the phase transition, each Tm ion contributes an entropy of $k_B \ln{2}$ due to the degeneracy of the crystal electric field groundstate. Owing to the large magnetoelastic coupling, which is a prerequisite for a material to undergo a phase transition via the cooperative Jahn-Teller effect, this level splitting, and hence the entropy, can be readily tuned by externally-induced strain. Using a dynamic technique in which the strain is rapidly oscillated, we measure the adiabatic elastocaloric coefficient of single-crystal TmVO$_4$, and thus experimentally obtain the entropy landscape as a function of strain and temperature. The measurement confirms the suitability of this class of materials for cryogenic cooling applications, and provides insight to the dynamic quadrupole strain susceptibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15577v1-abstract-full').style.display = 'none'; document.getElementById('2308.15577v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14345">arXiv:2308.14345</a> <span> [<a href="https://arxiv.org/pdf/2308.14345">pdf</a>, <a href="https://arxiv.org/format/2308.14345">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.033140">10.1103/PhysRevResearch.5.033140 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of disorder in the charge-density-wave state of Pd-intercalated ErTe$_3$ revealed by the electrodynamic response </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Corasaniti%2C+M">M. Corasaniti</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Straquadine%2C+J+A+W">J. A. W. Straquadine</a>, <a href="/search/cond-mat?searchtype=author&query=Kapitulnik%2C+A">A. Kapitulnik</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Degiorgi%2C+L">L. Degiorgi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14345v1-abstract-short" style="display: inline;"> It is a general notion that disorder, introduced by either chemical substitution or intercalation as well as by electron-irradiation, is detrimental to the realisation of long-range charge-density-wave (CDW) order. We study the disorder-induced suppression of the in-plane CDW orders in the two-dimensional Pd-intercalated ErTe$_3$ compositions, by exploring the real part of the optical conductivity… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14345v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14345v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14345v1-abstract-full" style="display: none;"> It is a general notion that disorder, introduced by either chemical substitution or intercalation as well as by electron-irradiation, is detrimental to the realisation of long-range charge-density-wave (CDW) order. We study the disorder-induced suppression of the in-plane CDW orders in the two-dimensional Pd-intercalated ErTe$_3$ compositions, by exploring the real part of the optical conductivity with light polarised along the in-plane $a$ and $c$ axes. Our findings reveal an anisotropic charge dynamics with respect to both incommensurate unidirectional CDW phases of ErTe$_3$, occurring within the $ac$-plane. The anisotropic optical response gets substantially washed out with Pd-intercalation, hand-in-hand with the suppression of both CDW orders. The spectral weight analysis though advances the scenario, for which the CDW phases evolve from a (partially) depleted Fermi surface already above their critical onset temperatures. We therefore argue that the long-range CDW orders of ErTe$_3$ tend to be progressively dwarfed by Pd-intercalation, which favours the presence of short-range CDW segments for both crystallographic directions persisting in a broad temperature ($T$) interval up to the normal state, and being suggestive of precursor effects of the CDW orders as well as possibly coexisting with superconductivity at low $T$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14345v1-abstract-full').style.display = 'none'; document.getElementById('2308.14345v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 033140 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13181">arXiv:2308.13181</a> <span> [<a href="https://arxiv.org/pdf/2308.13181">pdf</a>, <a href="https://arxiv.org/format/2308.13181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.205141">10.1103/PhysRevB.108.205141 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent $\mathbb{Z}_2$ symmetry near a CDW multicritical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&query=Pandey%2C+A">Akshat Pandey</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A+G">Anisha G. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Kapitulnik%2C+A">Aharon Kapitulnik</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13181v2-abstract-short" style="display: inline;"> We consider the critical behavior associated with incommensurate unidirectional charge-density-wave ordering in a weakly orthorhombic system subject to uniaxial strain as an experimentally significant example of $U(1)\times U(1)$ multicriticality. We show that, depending on microscopic details, the phase diagram can have qualitatively different structures which can involve a vestigial meta-nematic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13181v2-abstract-full').style.display = 'inline'; document.getElementById('2308.13181v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13181v2-abstract-full" style="display: none;"> We consider the critical behavior associated with incommensurate unidirectional charge-density-wave ordering in a weakly orthorhombic system subject to uniaxial strain as an experimentally significant example of $U(1)\times U(1)$ multicriticality. We show that, depending on microscopic details, the phase diagram can have qualitatively different structures which can involve a vestigial meta-nematic critical point, a pair of tricritical points, a decoupled tetracritical point, or (at least at mean-field level) a bicritical point. We analyze the emergent symmetries in the critical regime and find that these can -- at least in some cases -- involve an emergent $\mathbb{Z}_2$ order parameter symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13181v2-abstract-full').style.display = 'none'; document.getElementById('2308.13181v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 205141 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05312">arXiv:2308.05312</a> <span> [<a href="https://arxiv.org/pdf/2308.05312">pdf</a>, <a href="https://arxiv.org/format/2308.05312">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> The nematic susceptibility of the ferroquadrupolar metal TmAg2 measured via the elastocaloric effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E+W">Elliott W. Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Ikeda%2C+M">Matthias Ikeda</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05312v1-abstract-short" style="display: inline;"> Elastocaloric measurements of the ferroquadrupolar/nematic rare-earth intermetallic TmAg$_2$ are presented. TmAg$_2$ undergoes a cooperative Jahn-Teller-like ferroquadrupolar phase transition at 5K, in which the Tm$^{3+}$ ion's local $4f$ electronic ground state doublet spontaneously splits and develops an electric quadrupole moment which breaks the rotational symmetry of the tetragonal lattice. T… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05312v1-abstract-full').style.display = 'inline'; document.getElementById('2308.05312v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05312v1-abstract-full" style="display: none;"> Elastocaloric measurements of the ferroquadrupolar/nematic rare-earth intermetallic TmAg$_2$ are presented. TmAg$_2$ undergoes a cooperative Jahn-Teller-like ferroquadrupolar phase transition at 5K, in which the Tm$^{3+}$ ion's local $4f$ electronic ground state doublet spontaneously splits and develops an electric quadrupole moment which breaks the rotational symmetry of the tetragonal lattice. The elastocaloric effect, which is the temperature change in the sample induced by adiabatic strains the sample experiences, is sensitive to quadrupolar fluctuations in the paranematic phase which couple to the induced strain. We show that elastocaloric measurements of this material reveal a Curie-Weiss like nematic susceptibility with a Weiss temperature of $\approx 2.7K$, in agreement with previous elastic constant measurements. Furthermore, we establish that a magnetic field along the c-axis acts as an effective transverse field for the quadrupole moments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05312v1-abstract-full').style.display = 'none'; document.getElementById('2308.05312v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14755">arXiv:2306.14755</a> <span> [<a href="https://arxiv.org/pdf/2306.14755">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adk3321">10.1126/sciadv.adk3321 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent Tetragonality in a Fundamentally Orthorhombic Material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A+G">Anisha G. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Bachmann%2C+M+D">Maja D. Bachmann</a>, <a href="/search/cond-mat?searchtype=author&query=Sanchez%2C+J+J">Joshua J. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&query=Pandey%2C+A">Akshat Pandey</a>, <a href="/search/cond-mat?searchtype=author&query=Kapitulnik%2C+A">Aharon Kapitulnik</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J+W">Jong Woo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Ryan%2C+P+J">Philip J. Ryan</a>, <a href="/search/cond-mat?searchtype=author&query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14755v2-abstract-short" style="display: inline;"> Symmetry plays a key role in determining the physical properties of materials. By Neumann's principle, the properties of a material are invariant under the symmetry operations of the space group to which the material belongs. Continuous phase transitions are associated with a spontaneous reduction in symmetry. (For example, the onset of ferromagnetism spontaneously breaks time reversal symmetry.)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14755v2-abstract-full').style.display = 'inline'; document.getElementById('2306.14755v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14755v2-abstract-full" style="display: none;"> Symmetry plays a key role in determining the physical properties of materials. By Neumann's principle, the properties of a material are invariant under the symmetry operations of the space group to which the material belongs. Continuous phase transitions are associated with a spontaneous reduction in symmetry. (For example, the onset of ferromagnetism spontaneously breaks time reversal symmetry.) Much less common are examples where proximity to a continuous phase transition leads to an increase in symmetry. Here, we find an emergent tetragonal symmetry close to an apparent charge density wave (CDW) bicritical point in a fundamentally orthorhombic material, ErTe$_3$, for which the CDW phase transitions are tuned via anisotropic strain. The underlying structure of the material remains orthorhombic for all applied strains, including at the bicritical point, due to a glide plane symmetry in the crystal structure. Nevertheless, the observation of a divergence in the anisotropy of the in-plane elastoresistivity reveals an emergent electronic tetragonality near the bicritical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14755v2-abstract-full').style.display = 'none'; document.getElementById('2306.14755v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13297">arXiv:2306.13297</a> <span> [<a href="https://arxiv.org/pdf/2306.13297">pdf</a>, <a href="https://arxiv.org/format/2306.13297">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.144507">10.1103/PhysRevB.109.144507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vortex phase diagram of kagome superconductor CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xinyang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zic%2C+M">Mark Zic</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Kapitulnik%2C+A">Aharon Kapitulnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13297v1-abstract-short" style="display: inline;"> The screening response of vortices in kagome superconductor CsV$_3$Sb$_5$ was measured using the ac mutual inductance technique. Besides confirming the absence of gapless quasiparticles in zero external magnetic field, we observe the peak effect, manifested in enhanced vortex pinning strength and critical current, in a broad intermediate range of magnetic field. The peaks are followed by another c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13297v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13297v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13297v1-abstract-full" style="display: none;"> The screening response of vortices in kagome superconductor CsV$_3$Sb$_5$ was measured using the ac mutual inductance technique. Besides confirming the absence of gapless quasiparticles in zero external magnetic field, we observe the peak effect, manifested in enhanced vortex pinning strength and critical current, in a broad intermediate range of magnetic field. The peaks are followed by another crossover from strong to weak pinning, unlike the usual peak effect that diminishes smoothly at $H_{c2}$. Hysteresis in the screening response allows the identification of a vortex glass phase which strongly correlates with the onset of the peaks. A variety of features in the temperature- and field-dependence of the screening response, corroborated by resistance and dc magnetization measurements, have allowed us to extract an $H$-$T$ phase diagram of the vortex states and to infer the irreversibility line $H_\text{irr}(T)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13297v1-abstract-full').style.display = 'none'; document.getElementById('2306.13297v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 6 pages, 4 figures; supplementary: 10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 144507 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13244">arXiv:2306.13244</a> <span> [<a href="https://arxiv.org/pdf/2306.13244">pdf</a>, <a href="https://arxiv.org/format/2306.13244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.216502">10.1103/PhysRevLett.132.216502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-echo and quantum versus classical critical fluctuations in TmVO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nian%2C+Y">Y-H. Nian</a>, <a href="/search/cond-mat?searchtype=author&query=Vinograd%2C+I">I. Vinograd</a>, <a href="/search/cond-mat?searchtype=author&query=Green%2C+T">T. Green</a>, <a href="/search/cond-mat?searchtype=author&query=Chaffey%2C+C">C. Chaffey</a>, <a href="/search/cond-mat?searchtype=author&query=Massat%2C+P">P. Massat</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+R+R+P">R. R. P. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Zic%2C+M+P">M. P. Zic</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Curro%2C+N+J">N. J. Curro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13244v1-abstract-short" style="display: inline;"> Using spin-echo Nuclear Magnetic Resonance in the model Transverse-Field Ising system TmVO$_4$, we show that low frequency quantum fluctuations at the quantum critical point have a very different effect on $^{51}$V nuclear-spins than classical low-frequency noise or fluctuations that arise at a finite temperature critical point. Spin-echos filter out the low frequency classical noise but not the q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13244v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13244v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13244v1-abstract-full" style="display: none;"> Using spin-echo Nuclear Magnetic Resonance in the model Transverse-Field Ising system TmVO$_4$, we show that low frequency quantum fluctuations at the quantum critical point have a very different effect on $^{51}$V nuclear-spins than classical low-frequency noise or fluctuations that arise at a finite temperature critical point. Spin-echos filter out the low frequency classical noise but not the quantum fluctuations. This allows us to directly visualize the quantum critical fan and demonstrate the persistence of quantum fluctuations at the critical coupling strength in TmVO$_4$ to high temperatures in an experiment that remains transparent to finite temperature classical phase transitions. These results show that while dynamical decoupling schemes can be quite effective in eliminating classical noise in a qubit, a quantum critical environment may lead to rapid entanglement and decoherence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13244v1-abstract-full').style.display = 'none'; document.getElementById('2306.13244v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 216502 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00839">arXiv:2304.00839</a> <span> [<a href="https://arxiv.org/pdf/2304.00839">pdf</a>, <a href="https://arxiv.org/format/2304.00839">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2649985">10.1117/12.2649985 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast spatiotemporal dynamics of a charge-density wave using femtosecond dark-field momentum microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Maklar%2C+J">J. Maklar</a>, <a href="/search/cond-mat?searchtype=author&query=Walmsley%2C+P">P. Walmsley</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Rettig%2C+L">L. Rettig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00839v1-abstract-short" style="display: inline;"> Understanding phase competition and phase separation in quantum materials requires access to the spatiotemporal dynamics of electronic ordering phenomena on a micro- to nanometer length- and femtosecond timescale. While time- and angle-resolved photoemission (trARPES) experiments provide sensitivity to the femtosecond dynamics of electronic ordering, they typically lack the required spatial resolu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00839v1-abstract-full').style.display = 'inline'; document.getElementById('2304.00839v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00839v1-abstract-full" style="display: none;"> Understanding phase competition and phase separation in quantum materials requires access to the spatiotemporal dynamics of electronic ordering phenomena on a micro- to nanometer length- and femtosecond timescale. While time- and angle-resolved photoemission (trARPES) experiments provide sensitivity to the femtosecond dynamics of electronic ordering, they typically lack the required spatial resolution. Here, we demonstrate ultrafast dark-field photoemission microscopy (PEEM) using a momentum microscope, providing access to ultrafast electronic order on the microscale. We investigate the prototypical charge-density wave (CDW) compound TbTe3 in the vicinity of a buried crystal defect, demonstrating real- and reciprocal-space configurations combined with a pump-probe approach. We find CDW order to be suppressed in the region covered by the crystal defect, most likely due to locally imposed strain. Comparing the ultrafast dynamics in different areas of the sample reveals a substantially smaller response to optical excitation and faster relaxation of excited carriers in the defect area, which we attribute to enhanced particle-hole scattering and defect-induced relaxation channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00839v1-abstract-full').style.display = 'none'; document.getElementById('2304.00839v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 12419, Ultrafast Phenomena and Nanophotonics XXVII, 1241903 (15 March 2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00168">arXiv:2304.00168</a> <span> [<a href="https://arxiv.org/pdf/2304.00168">pdf</a>, <a href="https://arxiv.org/format/2304.00168">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dynamical Scaling Reveals Topological Defects and Anomalous Evolution of a Photoinduced Phase Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Orenstein%2C+G">Gal Orenstein</a>, <a href="/search/cond-mat?searchtype=author&query=Duncan%2C+R+A">Ryan A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&query=Munoz%2C+G+A+d+l+P">Gilberto A. de la Pena Munoz</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yijing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Krapivin%2C+V">Viktor Krapivin</a>, <a href="/search/cond-mat?searchtype=author&query=Nguyen%2C+Q+L">Quynh Le Nguyen</a>, <a href="/search/cond-mat?searchtype=author&query=Teitelbaum%2C+S">Samuel Teitelbaum</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A+G">Anisha G. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Mankowsky%2C+R">Roman Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&query=Lemke%2C+H">Henrik Lemke</a>, <a href="/search/cond-mat?searchtype=author&query=Sander%2C+M">Mathias Sander</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+Y">Yunpei Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Arrell%2C+C">Christopher Arrell</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Reis%2C+D+A">David A. Reis</a>, <a href="/search/cond-mat?searchtype=author&query=Trigo%2C+M">Mariano Trigo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00168v2-abstract-short" style="display: inline;"> Nonequilibrium states of quantum materials can exhibit exotic properties and enable unprecedented functionality and applications. These transient states are inherently inhomogeneous, characterized by the formation of topologically protected structures, requiring nanometer spatial resolution on femtosecond timescales to resolve their evolution. Using ultrafast total x-ray scattering at a free elect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00168v2-abstract-full').style.display = 'inline'; document.getElementById('2304.00168v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00168v2-abstract-full" style="display: none;"> Nonequilibrium states of quantum materials can exhibit exotic properties and enable unprecedented functionality and applications. These transient states are inherently inhomogeneous, characterized by the formation of topologically protected structures, requiring nanometer spatial resolution on femtosecond timescales to resolve their evolution. Using ultrafast total x-ray scattering at a free electron laser and a sophisticated scaling analysis, we gain unique access to the dynamics on the relevant mesoscopic lengthscales. Our results provide direct evidence that ultrafast excitation of LaTe$_3$ leads to formation of topological vortex strings of the charge density wave. These dislocations of the charge density wave exhibit anomalous, subdiffusive dynamics, slowing the equilibration process, providing rare insight into the nonequilibrium mesoscopic response in a quantum material. Our findings establish a general framework to investigate properties of topological defects, which are expected to be ubiquitous in nonequilibrium phase transitions and may arrest equilibration and enhance competing orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00168v2-abstract-full').style.display = 'none'; document.getElementById('2304.00168v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12453">arXiv:2211.12453</a> <span> [<a href="https://arxiv.org/pdf/2211.12453">pdf</a>, <a href="https://arxiv.org/format/2211.12453">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2302800120">10.1073/pnas.2302800120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elastocaloric signatures of symmetric and antisymmetric strain-tuning of quadrupolar and magnetic phases in DyB2C2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yue Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Sunko%2C+V">Veronika Sunko</a>, <a href="/search/cond-mat?searchtype=author&query=Rodriguez-Nieva%2C+J+F">Joaquin F. Rodriguez-Nieva</a>, <a href="/search/cond-mat?searchtype=author&query=Ikeda%2C+M+S">Matthias S. Ikeda</a>, <a href="/search/cond-mat?searchtype=author&query=Worasaran%2C+T">Thanapat Worasaran</a>, <a href="/search/cond-mat?searchtype=author&query=Sorensen%2C+M+E">Matthew E. Sorensen</a>, <a href="/search/cond-mat?searchtype=author&query=Bachmann%2C+M+D">Maja D. Bachmann</a>, <a href="/search/cond-mat?searchtype=author&query=Orenstein%2C+J">Joseph Orenstein</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12453v1-abstract-short" style="display: inline;"> The adiabatic elastocaloric effect measures the temperature change of given systems with strain and probes the entropic landscape in the temperature-strain space. In this study we demonstrate that the DC bias strain-dependence of AC elastocaloric effect can be used to decompose the latter into contributions from symmetric (rotation-symmetry-preserving) and antisymmetric (rotation-symmetry-breaking… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12453v1-abstract-full').style.display = 'inline'; document.getElementById('2211.12453v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12453v1-abstract-full" style="display: none;"> The adiabatic elastocaloric effect measures the temperature change of given systems with strain and probes the entropic landscape in the temperature-strain space. In this study we demonstrate that the DC bias strain-dependence of AC elastocaloric effect can be used to decompose the latter into contributions from symmetric (rotation-symmetry-preserving) and antisymmetric (rotation-symmetry-breaking) strains, using a tetragonal f-electron system DyB2C2--whose antiferroquadrupolar order locally breaks four-fold rotational site symmetries while globally remaining tetragonal--as a showcase example. We capture the strain evolution of the quadrupolar and magnetic phase transitions in the system using both singularities in the elastocaloric coefficient and its jump at the transitions, and the latter we show follows a modified Ehrenfest relation. We find that antisymmetric strain couples to the underlying order parameter in a bi-quadratic manner in the antiferroquadrupolar (AFQ) phase but in a linear-quadratic manner in the canted antiferromagnetic (CAFM) phase; the contrast is attributed to a preserved (broken) tetragonal symmetry in the AFQ (CAFM) phase, respectively. The broken tetragonal symmetry in the CAFM phase is further supported by elastocaloric strain-hysteresis and observation of two sets of domains with mutually perpendicular principal axes in optical birefringence. Additionally, when the quadrupolar moments are ordered in a staggered fashion, we uncover an elastocaloric response that reflects a quadratic increase of entropy with antisymmetric strain, analogous to the role magnetic field plays for Ising antiferromagnets by promoting pseudospin flips. Our results show that AC elastocaloric effect is a compact and incisive thermodynamic probe into the coupling between electronic degrees of freedom and strain, which can potentially be applied to broader classes of quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12453v1-abstract-full').style.display = 'none'; document.getElementById('2211.12453v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Natl. Acad. Sci. 120 (35), e2302800120 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14795">arXiv:2207.14795</a> <span> [<a href="https://arxiv.org/pdf/2207.14795">pdf</a>, <a href="https://arxiv.org/format/2207.14795">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02380-1">10.1038/s41567-023-02380-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bragg glass signatures in Pd$_x$ErTe$_3$ with X-ray diffraction Temperature Clustering (X-TEC) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mallayya%2C+K">Krishnanand Mallayya</a>, <a href="/search/cond-mat?searchtype=author&query=Straquadine%2C+J">Joshua Straquadine</a>, <a href="/search/cond-mat?searchtype=author&query=Krogstad%2C+M">Matthew Krogstad</a>, <a href="/search/cond-mat?searchtype=author&query=Bachmann%2C+M">Maja Bachmann</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A">Anisha Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Osborn%2C+R">Raymond Osborn</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenkranz%2C+S">Stephan Rosenkranz</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+E">Eun-Ah Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14795v2-abstract-short" style="display: inline;"> The Bragg glass phase is a nearly perfect crystal with glassy features predicted to occur in vortex lattices and charge density wave systems in the presence of disorder. Detecting it has been challenging despite its sharp theoretical definition in terms of diverging correlation lengths. Here, we present evidence supporting a Bragg glass phase in the systematically disordered charge density wave ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14795v2-abstract-full').style.display = 'inline'; document.getElementById('2207.14795v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14795v2-abstract-full" style="display: none;"> The Bragg glass phase is a nearly perfect crystal with glassy features predicted to occur in vortex lattices and charge density wave systems in the presence of disorder. Detecting it has been challenging despite its sharp theoretical definition in terms of diverging correlation lengths. Here, we present evidence supporting a Bragg glass phase in the systematically disordered charge density wave material PdxErTe3. We do this using comprehensive x-ray data and a machine learning analysis tool called X-ray temperature clustering, or X-TEC. We establish a diverging correlation length in samples with moderate intercalation over a wide temperature range. To enable this analysis, we introduced a high-throughput measure of inverse correlation length that we call peak spread. The detection of Bragg glass order and the resulting phase diagram advance our understanding of the complex interplay between disorder and fluctuations significantly. Moreover, the use of our analysis technique to target fluctuations through a high-throughput measure of peak spread can revolutionize the study of fluctuations in scattering experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14795v2-abstract-full').style.display = 'none'; document.getElementById('2207.14795v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main figures: 4</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15355">arXiv:2205.15355</a> <span> [<a href="https://arxiv.org/pdf/2205.15355">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Rare-Earth Control of the Superconducting Upper Critical Field in Infinite-Layer Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T+C">Tiffany C. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hsu%2C+Y">Yu-Te Hsu</a>, <a href="/search/cond-mat?searchtype=author&query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Duffy%2C+C">Caitlin Duffy</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&query=Beasley%2C+M+R">Malcolm R. Beasley</a>, <a href="/search/cond-mat?searchtype=author&query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Hussey%2C+N+E">Nigel E. Hussey</a>, <a href="/search/cond-mat?searchtype=author&query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15355v1-abstract-short" style="display: inline;"> The consequences of varying the rare-earth element in the superconducting infinite-layer nickelates have been much debated. Here we show striking differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates. These 5 distinctions originate from the 4f electron characteristics of the rare-earth ions in the lattice: they are absent for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15355v1-abstract-full').style.display = 'inline'; document.getElementById('2205.15355v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15355v1-abstract-full" style="display: none;"> The consequences of varying the rare-earth element in the superconducting infinite-layer nickelates have been much debated. Here we show striking differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates. These 5 distinctions originate from the 4f electron characteristics of the rare-earth ions in the lattice: they are absent for La3+, nonmagnetic for the Pr3+ singlet ground state, and magnetic for the Nd3+ Kramer's doublet. The unique polar and azimuthal angle-dependent magnetoresistance found in the Nd-nickelates can be understood to arise from the magnetic contribution of the Nd3+ 4f moments. In the absence of rare-earth effects, we find that the nickelates broadly violate the Pauli limit. Such robust and tunable superconductivity suggests potential in future high-field applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15355v1-abstract-full').style.display = 'none'; document.getElementById('2205.15355v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 1 supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00079">arXiv:2203.00079</a> <span> [<a href="https://arxiv.org/pdf/2203.00079">pdf</a>, <a href="https://arxiv.org/format/2203.00079">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.045120">10.1103/PhysRevB.107.045120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of discommensurate charge density wave modulation in the quasi-1D Weyl semimetal candidate NbTe$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Galvis%2C+J+A">J. A. Galvis</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+A">A. Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Jimenez-Guerrero%2C+D">D. Jimenez-Guerrero</a>, <a href="/search/cond-mat?searchtype=author&query=Rojas-Castillo%2C+J">J. Rojas-Castillo</a>, <a href="/search/cond-mat?searchtype=author&query=Casas%2C+J">J. Casas</a>, <a href="/search/cond-mat?searchtype=author&query=Herrera%2C+O">O. Herrera</a>, <a href="/search/cond-mat?searchtype=author&query=Garcia-Castro%2C+A+C">A. C. Garcia-Castro</a>, <a href="/search/cond-mat?searchtype=author&query=Bousquet%2C+E">E. Bousquet</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Kapitulnik%2C+A">A. Kapitulnik</a>, <a href="/search/cond-mat?searchtype=author&query=Giraldo-Gallo%2C+P">P. Giraldo-Gallo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00079v1-abstract-short" style="display: inline;"> The transition-metal tetrachalcogenides are a model system to explore the conjunction of correlated electronic states such as charge density waves (CDW), with topological phases of matter. Understanding the connection between these phases requires a thorough understanding of the individual states, which for the case of the CDW in this system, is still missing. In this paper we combine phonon-struc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00079v1-abstract-full').style.display = 'inline'; document.getElementById('2203.00079v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00079v1-abstract-full" style="display: none;"> The transition-metal tetrachalcogenides are a model system to explore the conjunction of correlated electronic states such as charge density waves (CDW), with topological phases of matter. Understanding the connection between these phases requires a thorough understanding of the individual states, which for the case of the CDW in this system, is still missing. In this paper we combine phonon-structure calculations and scanning tunneling microscopy measurements of NbTe$_4$ in order to provide a full characterization of the CDW state. We find that, at short range, the superstructure formed by the CDW is fully commensurate with the lattice parameters. Moreover, our data reveals the presence of phase-slip domain-walls separating regions of commensurate-CDW in the nanoscale, indicating that the CDW in this compound is discommensurate at long-range. Our results solve a long-standing discussion about the nature of the CDW in these materials, and provide a strong basis for the study of the interplay between this state and other novel quantum electronic states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00079v1-abstract-full').style.display = 'none'; document.getElementById('2203.00079v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures (5 in main, 3 in appendix)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 045120 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02095">arXiv:2201.02095</a> <span> [<a href="https://arxiv.org/pdf/2201.02095">pdf</a>, <a href="https://arxiv.org/format/2201.02095">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-04073-2">10.1038/s41586-021-04073-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ironing out the details of unconventional superconductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&query=Coldea%2C+A+I">Amalia I. Coldea</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+H">Hong Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Hirschfeld%2C+P+J">P. J. Hirschfeld</a>, <a href="/search/cond-mat?searchtype=author&query=Kotliar%2C+G">Gabriel Kotliar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02095v1-abstract-short" style="display: inline;"> Superconductivity is a remarkably widespread phenomenon observed in most metals cooled down to very low temperatures. The ubiquity of such conventional superconductors, and the wide range of associated critical temperatures, is readily understood in terms of the celebrated Bardeen-Cooper-Schrieffer (BCS) theory. Occasionally, however, unconventional superconductors are found, such as the iron-base… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02095v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02095v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02095v1-abstract-full" style="display: none;"> Superconductivity is a remarkably widespread phenomenon observed in most metals cooled down to very low temperatures. The ubiquity of such conventional superconductors, and the wide range of associated critical temperatures, is readily understood in terms of the celebrated Bardeen-Cooper-Schrieffer (BCS) theory. Occasionally, however, unconventional superconductors are found, such as the iron-based materials, which extend and defy this understanding in new and unexpected ways. In the case of the iron-based superconductors, this includes a new appreciation of the ways in which the presence of multiple atomic orbitals can manifest in unconventional superconductivity, giving rise to a rich landscape of gap structures that share the same dominant pairing mechanism. Besides superconductivity, these materials have also led to new insights into the unusual metallic state governed by the Hund's interaction, the control and mechanisms of electronic nematicity, the impact of magnetic fluctuations and quantum criticality, and the significance of topology in correlated states. Over the thirteen years since their discovery, they have proven to be an incredibly fruitful testing ground for the development of new experimental tools and theoretical approaches, both of which have extensively influenced the wider field of quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02095v1-abstract-full').style.display = 'none'; document.getElementById('2201.02095v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Review paper. This is the submitted version. A revised version was published under the revised title: "Iron pnictides and chalcogenides: a new paradigm for superconductivity."</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 601, 35-44 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05859">arXiv:2112.05859</a> <span> [<a href="https://arxiv.org/pdf/2112.05859">pdf</a>, <a href="https://arxiv.org/format/2112.05859">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-022-00475-1">10.1038/s41535-022-00475-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Second order Zeeman interaction and ferroquadrupolar order in TmVO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vinograd%2C+I">I. Vinograd</a>, <a href="/search/cond-mat?searchtype=author&query=Shirer%2C+K+R">K. R. Shirer</a>, <a href="/search/cond-mat?searchtype=author&query=Massat%2C+P">P. Massat</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Z. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Kissikov%2C+T">T. Kissikov</a>, <a href="/search/cond-mat?searchtype=author&query=Garcia%2C+D">D. Garcia</a>, <a href="/search/cond-mat?searchtype=author&query=Bachmann%2C+M+D">M. D. Bachmann</a>, <a href="/search/cond-mat?searchtype=author&query=Horvati%C4%87%2C+M">M. Horvati膰</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Curro%2C+N+J">N. J. Curro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05859v1-abstract-short" style="display: inline;"> TmVO$_{4}$ exhibits ferroquadrupolar order of the Tm 4f electronic orbitals at low temperatures, and is a model system for Ising nematicity that can be tuned continuously to a quantum phase transition via magnetic fields along the $c$-axis. Here we present $^{51}$V nuclear magnetic resonance data in magnetic fields perpendicular to the $c$-axis in a single crystal that has been carefully cut by a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05859v1-abstract-full').style.display = 'inline'; document.getElementById('2112.05859v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05859v1-abstract-full" style="display: none;"> TmVO$_{4}$ exhibits ferroquadrupolar order of the Tm 4f electronic orbitals at low temperatures, and is a model system for Ising nematicity that can be tuned continuously to a quantum phase transition via magnetic fields along the $c$-axis. Here we present $^{51}$V nuclear magnetic resonance data in magnetic fields perpendicular to the $c$-axis in a single crystal that has been carefully cut by a plasma focused ion beam to an ellipsoidal shape to minimize the inhomogeneity of the internal demagnetization field. The resulting dramatic increase in spectral resolution enabled us to resolve the anisotropy of the electric field gradient and to measure the magnetic and quadrupolar relaxation channels separately. Perpendicular magnetic fields nominally do not couple to the low energy degrees of freedom, but we find a significant nonlinear contribution for sufficiently large fields that give rise to a rich phase diagram. The in-plane magnetic field can act either as an effective transverse or longitudinal field to the Ising nematic order, depending on the orientation relative to the principle axes of the quadrupole order, and leads to a marked in-plane anisotropy in both relaxation channels. We find that the small in-plane transverse fields initially enhance the ferroquadrupolar ordering temperature but eventually suppress the long-range order. We tentatively ascribe this behavior to the competing effects of field-induced mixing of higher energy crystal field states and the destabilizing effects of field-induced quantum fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05859v1-abstract-full').style.display = 'none'; document.getElementById('2112.05859v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 7, 68 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.07521">arXiv:2111.07521</a> <span> [<a href="https://arxiv.org/pdf/2111.07521">pdf</a>, <a href="https://arxiv.org/format/2111.07521">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-022-00981-5">10.1038/s42005-022-00981-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum critical fluctuations in an Fe-based superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jost%2C+D">Daniel Jost</a>, <a href="/search/cond-mat?searchtype=author&query=Peis%2C+L">Leander Peis</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+G">Ge He</a>, <a href="/search/cond-mat?searchtype=author&query=Baum%2C+A">Andreas Baum</a>, <a href="/search/cond-mat?searchtype=author&query=Gepr%C3%A4gs%2C+S">Stephan Gepr盲gs</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+J+C">Johanna C. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Ikeda%2C+M+S">Matthias S. Ikeda</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Wolf%2C+T">Thomas Wolf</a>, <a href="/search/cond-mat?searchtype=author&query=Lederer%2C+S">Samuel Lederer</a>, <a href="/search/cond-mat?searchtype=author&query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&query=Hackl%2C+R">Rudi Hackl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.07521v2-abstract-short" style="display: inline;"> Quantum critical fluctuations may prove to play an instrumental role in the formation of unconventional superconductivity. Here, we show that the characteristic scaling of a marginal Fermi liquid is present in inelastic light scattering data of an Fe-based superconductor tuned through a quantum critical point (QCP) by chemical substitution or doping. From the doping dependence of the imaginary tim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07521v2-abstract-full').style.display = 'inline'; document.getElementById('2111.07521v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.07521v2-abstract-full" style="display: none;"> Quantum critical fluctuations may prove to play an instrumental role in the formation of unconventional superconductivity. Here, we show that the characteristic scaling of a marginal Fermi liquid is present in inelastic light scattering data of an Fe-based superconductor tuned through a quantum critical point (QCP) by chemical substitution or doping. From the doping dependence of the imaginary time dynamics we are able to distinguish regions dominated by quantum critical behavior from those having classical critical responses. This dichotomy reveals a connection between the marginal Fermi liquid behavior and quantum criticality. In particular, the overlap between regions of high superconducting transition temperatures and quantum critical scaling suggests a contribution from quantum fluctuations to the formation of superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07521v2-abstract-full').style.display = 'none'; document.getElementById('2111.07521v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 5, 201 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.03791">arXiv:2110.03791</a> <span> [<a href="https://arxiv.org/pdf/2110.03791">pdf</a>, <a href="https://arxiv.org/format/2110.03791">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2119942119">10.1073/pnas.2119942119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-tuned ferroquadrupolar quantum phase transition in the insulator TmVO$_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Massat%2C+P">Pierre Massat</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+J">Jiajia Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+J+M">Jack M. Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Hristov%2C+A+T">Alexander T. Hristov</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yaohua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Smaha%2C+R+W">Rebecca W. Smaha</a>, <a href="/search/cond-mat?searchtype=author&query=Feigelson%2C+R+S">Robert S. Feigelson</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y+S">Young S. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.03791v2-abstract-short" style="display: inline;"> We report results of low-temperature heat capacity, magnetocaloric effect and neutron diffraction measurements of TmVO$_{4}$, an insulator that undergoes a continuous ferroquadrupolar phase transition associated with local partially-filled $4f$ orbitals of the thulium (Tm$^{3+}$) ions. The ferroquadrupolar transition, a realization of Ising nematicity, can be tuned to a quantum critical point usin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03791v2-abstract-full').style.display = 'inline'; document.getElementById('2110.03791v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.03791v2-abstract-full" style="display: none;"> We report results of low-temperature heat capacity, magnetocaloric effect and neutron diffraction measurements of TmVO$_{4}$, an insulator that undergoes a continuous ferroquadrupolar phase transition associated with local partially-filled $4f$ orbitals of the thulium (Tm$^{3+}$) ions. The ferroquadrupolar transition, a realization of Ising nematicity, can be tuned to a quantum critical point using a magnetic field oriented along the $c$-axis of the tetragonal crystal lattice, which acts as an effective transverse field for the Ising-nematic order. In small magnetic fields, the thermal phase transition can be well-described using a semi-classical mean field treatment of the transverse field Ising model. However, in higher magnetic fields, closer to the field-tuned quantum phase transition, subtle deviations from this semi-classical behavior are observed due to quantum fluctuations. Although the phase transition is driven by the local $4f$ degrees of freedom, the crystal lattice still plays a crucial role, both in terms of mediating the interactions between the local quadrupoles, and in determining the critical scaling exponents, even though the phase transition itself can be described via mean field. In particular, bilinear coupling of the nematic order parameter to acoustic phonons changes the spatial and temporal fluctuations of the former in a fundamental way, resulting in different critical behavior of the nematic transverse-field Ising model as compared to the usual case of the magnetic transverse-field Ising model. Our results establish TmVO$_{4}$ as a model material, and electronic nematicity as a paradigmatic example, for quantum criticality in insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03791v2-abstract-full').style.display = 'none'; document.getElementById('2110.03791v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.00865">arXiv:2110.00865</a> <span> [<a href="https://arxiv.org/pdf/2110.00865">pdf</a>, <a href="https://arxiv.org/format/2110.00865">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.227401">10.1103/PhysRevLett.127.227401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of equilibrium fluctuations in light-induced order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zong%2C+A">Alfred Zong</a>, <a href="/search/cond-mat?searchtype=author&query=Dolgirev%2C+P+E">Pavel E. Dolgirev</a>, <a href="/search/cond-mat?searchtype=author&query=Kogar%2C+A">Anshul Kogar</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+Y">Yifan Su</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Straquadine%2C+J+A+W">Joshua A. W. Straquadine</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xirui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+D">Duan Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Kozina%2C+M+E">Michael E. Kozina</a>, <a href="/search/cond-mat?searchtype=author&query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+R">Renkai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Weathersby%2C+S+P">Stephen P. Weathersby</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+S">Suji Park</a>, <a href="/search/cond-mat?searchtype=author&query=Sie%2C+E+J">Edbert J. Sie</a>, <a href="/search/cond-mat?searchtype=author&query=Jarillo-Herrero%2C+P">Pablo Jarillo-Herrero</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xijie Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Demler%2C+E">Eugene Demler</a>, <a href="/search/cond-mat?searchtype=author&query=Gedik%2C+N">Nuh Gedik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.00865v1-abstract-short" style="display: inline;"> Engineering novel states of matter with light is at the forefront of materials research. An intensely studied direction is to realize broken-symmetry phases that are "hidden" under equilibrium conditions but can be unleashed by an ultrashort laser pulse. Despite a plethora of experimental discoveries, the nature of these orders and how they transiently appear remain unclear. To this end, we invest… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00865v1-abstract-full').style.display = 'inline'; document.getElementById('2110.00865v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.00865v1-abstract-full" style="display: none;"> Engineering novel states of matter with light is at the forefront of materials research. An intensely studied direction is to realize broken-symmetry phases that are "hidden" under equilibrium conditions but can be unleashed by an ultrashort laser pulse. Despite a plethora of experimental discoveries, the nature of these orders and how they transiently appear remain unclear. To this end, we investigate a nonequilibrium charge density wave (CDW) in rare-earth tritellurides, which is suppressed in equilibrium but emerges after photoexcitation. Using a pump-pump-probe protocol implemented in ultrafast electron diffraction, we demonstrate that the light-induced CDW consists solely of order parameter fluctuations, which bear striking similarities to critical fluctuations in equilibrium despite differences in the length scale. By calculating the dynamics of CDW fluctuations in a nonperturbative model, we further show that the strength of the light-induced order is governed by the amplitude of equilibrium fluctuations. These findings highlight photoinduced fluctuations as an important ingredient for the emergence of transient orders out of equilibrium. Our results further suggest that materials with strong fluctuations in equilibrium are promising platforms to host "hidden" orders after laser excitation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00865v1-abstract-full').style.display = 'none'; document.getElementById('2110.00865v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 227401 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.12323">arXiv:2108.12323</a> <span> [<a href="https://arxiv.org/pdf/2108.12323">pdf</a>, <a href="https://arxiv.org/format/2108.12323">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.026406">10.1103/PhysRevLett.128.026406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent Modulation of Quasiparticle Scattering Rates in a Photoexcited Charge-Density-Wave System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Maklar%2C+J">J. Maklar</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%BCler%2C+M">M. Sch眉ler</a>, <a href="/search/cond-mat?searchtype=author&query=Windsor%2C+Y+W">Y. W. Windsor</a>, <a href="/search/cond-mat?searchtype=author&query=Nicholson%2C+C+W">C. W. Nicholson</a>, <a href="/search/cond-mat?searchtype=author&query=Puppin%2C+M">M. Puppin</a>, <a href="/search/cond-mat?searchtype=author&query=Walmsley%2C+P">P. Walmsley</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Wolf%2C+M">M. Wolf</a>, <a href="/search/cond-mat?searchtype=author&query=Ernstorfer%2C+R">R. Ernstorfer</a>, <a href="/search/cond-mat?searchtype=author&query=Sentef%2C+M+A">M. A. Sentef</a>, <a href="/search/cond-mat?searchtype=author&query=Rettig%2C+L">L. Rettig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.12323v2-abstract-short" style="display: inline;"> We present a complementary experimental and theoretical investigation of relaxation dynamics in the charge-density-wave (CDW) system TbTe$_3$ after ultrafast optical excitation. Using time- and angle-resolved photoemission spectroscopy, we observe an unusual transient modulation of the relaxation rates of excited photocarriers. A detailed analysis of the electron self-energy based on a nonequilibr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.12323v2-abstract-full').style.display = 'inline'; document.getElementById('2108.12323v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.12323v2-abstract-full" style="display: none;"> We present a complementary experimental and theoretical investigation of relaxation dynamics in the charge-density-wave (CDW) system TbTe$_3$ after ultrafast optical excitation. Using time- and angle-resolved photoemission spectroscopy, we observe an unusual transient modulation of the relaxation rates of excited photocarriers. A detailed analysis of the electron self-energy based on a nonequilibrium Green's function formalism reveals that the phase space of electron-electron scattering is critically modulated by the photoinduced collective CDW excitation, providing an intuitive microscopic understanding of the observed dynamics and revealing the impact of the electronic band structure on the self-energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.12323v2-abstract-full').style.display = 'none'; document.getElementById('2108.12323v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.10393">arXiv:2108.10393</a> <span> [<a href="https://arxiv.org/pdf/2108.10393">pdf</a>, <a href="https://arxiv.org/format/2108.10393">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.205137">10.1103/PhysRevB.104.205137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic nematic fluctuations above the ferroquadrupolar transition in TmVO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Z. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Vinograd%2C+I">I. Vinograd</a>, <a href="/search/cond-mat?searchtype=author&query=Mei%2C+Z">Z. Mei</a>, <a href="/search/cond-mat?searchtype=author&query=Menegasso%2C+P">P. Menegasso</a>, <a href="/search/cond-mat?searchtype=author&query=Garcia%2C+D">D. Garcia</a>, <a href="/search/cond-mat?searchtype=author&query=Massat%2C+P">P. Massat</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Curro%2C+N+J">N. J. Curro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.10393v1-abstract-short" style="display: inline;"> TmVO$_4$ exhibits ferroquadrupolar order below 2.15 K with a well-isolated non-Kramers ground state doublet, and is a model system to understand Ising nematic order. We present $^{51}$V nuclear magnetic resonance data as a function of field orientation in a single crystal. Although the spectra are well understood in terms of direct dipolar hyperfine couplings, the spin lattice relaxation rate exhi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10393v1-abstract-full').style.display = 'inline'; document.getElementById('2108.10393v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.10393v1-abstract-full" style="display: none;"> TmVO$_4$ exhibits ferroquadrupolar order below 2.15 K with a well-isolated non-Kramers ground state doublet, and is a model system to understand Ising nematic order. We present $^{51}$V nuclear magnetic resonance data as a function of field orientation in a single crystal. Although the spectra are well understood in terms of direct dipolar hyperfine couplings, the spin lattice relaxation rate exhibits strong anisotropy that cannot be understood in terms of magnetic fluctuations. We find that the spin lattice relaxation rate scales with the shear elastic constant associated with the ferroquadrupole phase transition, suggesting that quadrupole (nematic) fluctuations dominate the spin lattice relaxation for in-plane fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10393v1-abstract-full').style.display = 'none'; document.getElementById('2108.10393v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 205137 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.08772">arXiv:2108.08772</a> <span> [<a href="https://arxiv.org/pdf/2108.08772">pdf</a>, <a href="https://arxiv.org/format/2108.08772">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0053479">10.1063/5.0053479 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Expanding the momentum field of view in angle-resolved photoemission systems with hemispherical analyzers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gauthier%2C+N">Nicolas Gauthier</a>, <a href="/search/cond-mat?searchtype=author&query=Sobota%2C+J+A">Jonathan A. Sobota</a>, <a href="/search/cond-mat?searchtype=author&query=Pfau%2C+H">Heike Pfau</a>, <a href="/search/cond-mat?searchtype=author&query=Gauthier%2C+A">Alexandre Gauthier</a>, <a href="/search/cond-mat?searchtype=author&query=Soifer%2C+H">Hadas Soifer</a>, <a href="/search/cond-mat?searchtype=author&query=Bachmann%2C+M+D">Maja D. Bachmann</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Kirchmann%2C+P+S">Patrick S. Kirchmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.08772v2-abstract-short" style="display: inline;"> In photoelectron spectroscopy, the measured electron momentum range is intrinsically related to the excitation photon energy. Low photon energies $<10$ eV are commonly encountered in laser-based photoemission and lead to a momentum range that is smaller than the Brillouin zones of most materials. This can become a limiting factor when studying condensed matter with laser-based photoemission. An ad… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08772v2-abstract-full').style.display = 'inline'; document.getElementById('2108.08772v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.08772v2-abstract-full" style="display: none;"> In photoelectron spectroscopy, the measured electron momentum range is intrinsically related to the excitation photon energy. Low photon energies $<10$ eV are commonly encountered in laser-based photoemission and lead to a momentum range that is smaller than the Brillouin zones of most materials. This can become a limiting factor when studying condensed matter with laser-based photoemission. An additional restriction is introduced by widely used hemispherical analyzers that record only electrons photoemitted in a solid angle set by the aperture size at the analyzer entrance. Here, we present an upgrade to increase the effective solid angle that is measured with a hemispherical analyzer. We achieve this by accelerating the photoelectrons towards the analyzer with an electric field that is generated by a bias voltage on the sample. Our experimental geometry is comparable to a parallel plate capacitor and, therefore, we approximate the electric field to be uniform along the photoelectron trajectory. With this assumption, we developed an analytic, parameter-free model that relates the measured angles to the electron momenta in the solid and verify its validity by comparing with experimental results on the charge density wave material TbTe$_3$. By providing a larger field of view in momentum space, our approach using a bias potential considerably expands the flexibility of laser-based photoemission setups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08772v2-abstract-full').style.display = 'none'; document.getElementById('2108.08772v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 92, 123907 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.04873">arXiv:2104.04873</a> <span> [<a href="https://arxiv.org/pdf/2104.04873">pdf</a>, <a href="https://arxiv.org/format/2104.04873">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.165136">10.1103/PhysRevB.103.165136 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic quasiparticle coherence in nematic BaFe$_2$As$_2$ studied with strain-dependent ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pfau%2C+H">H. Pfau</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S+D">S. D. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Gauthier%2C+N">N. Gauthier</a>, <a href="/search/cond-mat?searchtype=author&query=Rotundu%2C+C+R">C. R. Rotundu</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+J+C">J. C. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Mo%2C+S+-">S. -K. Mo</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">D. Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.04873v1-abstract-short" style="display: inline;"> The hallmark of nematic order in iron-based superconductors is a resistivity anisotropy but it is unclear to which extent quasiparticle dispersions, lifetimes and coherence contribute. While the lifted degeneracy of the Fe $d_{xz}$ and $d_{yz}$ dispersions has been studied extensively, only little is known about the two other factors. Here, we combine in situ strain tuning with ARPES and study the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.04873v1-abstract-full').style.display = 'inline'; document.getElementById('2104.04873v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.04873v1-abstract-full" style="display: none;"> The hallmark of nematic order in iron-based superconductors is a resistivity anisotropy but it is unclear to which extent quasiparticle dispersions, lifetimes and coherence contribute. While the lifted degeneracy of the Fe $d_{xz}$ and $d_{yz}$ dispersions has been studied extensively, only little is known about the two other factors. Here, we combine in situ strain tuning with ARPES and study the nematic response of the spectral weight in BaFe$_2$As$_2$. The symmetry analysis of the ARPES spectra demonstrates that the $d_{xz}$ band gains quasiparticle spectral weight compared to the $d_{yz}$ band for negative antisymmetric strain $螖蔚_{yy}$ suggesting the same response inside the nematic phase. Our results are compatible with a different coherence of the $d_{xz}$ and $d_{yz}$ orbital within a Hund's metal picture. We also discuss the influence of orbital mixing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.04873v1-abstract-full').style.display = 'none'; document.getElementById('2104.04873v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 165136 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.00080">arXiv:2101.00080</a> <span> [<a href="https://arxiv.org/pdf/2101.00080">pdf</a>, <a href="https://arxiv.org/ps/2101.00080">ps</a>, <a href="https://arxiv.org/format/2101.00080">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2105911118">10.1073/pnas.2105911118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elastocaloric signature of nematic fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ikeda%2C+M+S">Matthias S. Ikeda</a>, <a href="/search/cond-mat?searchtype=author&query=Worasaran%2C+T">Thanapat Worasaran</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E+W">Elliott W. Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+J+C">Johanna C. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.00080v1-abstract-short" style="display: inline;"> The elastocaloric effect (ECE) is a thermodynamic quantity relating changes in entropy to changes in strain experienced by a material. As such, ECE measurements can provide valuable information about the entropy landscape proximate to strain-tuned phase transitions. For ordered states that break only point symmetries, bilinear coupling of the order parameter with strain implies that the ECE can al… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00080v1-abstract-full').style.display = 'inline'; document.getElementById('2101.00080v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.00080v1-abstract-full" style="display: none;"> The elastocaloric effect (ECE) is a thermodynamic quantity relating changes in entropy to changes in strain experienced by a material. As such, ECE measurements can provide valuable information about the entropy landscape proximate to strain-tuned phase transitions. For ordered states that break only point symmetries, bilinear coupling of the order parameter with strain implies that the ECE can also provide a window on fluctuations above the critical temperature, and hence, in principle, can also provide a thermodynamic measure of the associated susceptibility. To demonstrate this, we use the ECE to sensitively reveal the presence of nematic fluctuations in the archetypal Fe-based superconductor Ba(Fe$_{1-x}$Co$_{x}$)$_2$As$_2$. By performing these measurements simultaneously with elastoresistivity in a multimodal fashion, we are able to make a direct and unambiguous comparison of these closely related thermodynamic and transport properties, both of which are sensitive to nematic fluctuations. As a result, we have uncovered an unanticipated doping-dependence of the nemato-elastic coupling and of the magnitude of the scattering of low energy quasi-particles by nematic fluctuations -- while the former weakens, the latter increases dramatically with increasing doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00080v1-abstract-full').style.display = 'none'; document.getElementById('2101.00080v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.15048">arXiv:2012.15048</a> <span> [<a href="https://arxiv.org/pdf/2012.15048">pdf</a>, <a href="https://arxiv.org/format/2012.15048">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.L241109">10.1103/PhysRevB.104.L241109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous thermal transport and violation of Wiedemann-Franz law in the critical regime of a charge density wave transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kountz%2C+E+D">Erik D. Kountz</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jiecheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Straquadine%2C+J+A+W">Joshua A. W. Straquadine</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A+G">Anisha G. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Bachmann%2C+M+D">Maja D. Bachmann</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&query=Kapitulnik%2C+A">Aharon Kapitulnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.15048v1-abstract-short" style="display: inline;"> ErTe$_3$ is studied as a model system to explore thermal transport in a layered charge density wave (CDW) material. We present data from thermal diffusivity, resistivity, and specific heat measurements: There is a sharp decrease in thermal conductivity both parallel and perpendicular to the primary CDW at the CDW transition temperature. At the same time, the resistivity changes more gradually. Cor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.15048v1-abstract-full').style.display = 'inline'; document.getElementById('2012.15048v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.15048v1-abstract-full" style="display: none;"> ErTe$_3$ is studied as a model system to explore thermal transport in a layered charge density wave (CDW) material. We present data from thermal diffusivity, resistivity, and specific heat measurements: There is a sharp decrease in thermal conductivity both parallel and perpendicular to the primary CDW at the CDW transition temperature. At the same time, the resistivity changes more gradually. Correspondingly, while well above and below $T_c$, a consistent description of the thermal transport applies with essentially independent electron and phonon contributions (estimated using the Wiedemann Franz law), in the critical regime no such description is possible; the observed behavior corresponds to a strongly coupled electron-phonon critical `soup.' <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.15048v1-abstract-full').style.display = 'none'; document.getElementById('2012.15048v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text 7 pages and 7 figures, supplementary text 2 pages and 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.03230">arXiv:2011.03230</a> <span> [<a href="https://arxiv.org/pdf/2011.03230">pdf</a>, <a href="https://arxiv.org/format/2011.03230">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-22778-w">10.1038/s41467-021-22778-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonequilibrium Charge-Density-Wave Order Beyond the Thermal Limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Maklar%2C+J">J. Maklar</a>, <a href="/search/cond-mat?searchtype=author&query=Windsor%2C+Y+W">Y. W. Windsor</a>, <a href="/search/cond-mat?searchtype=author&query=Nicholson%2C+C+W">C. W. Nicholson</a>, <a href="/search/cond-mat?searchtype=author&query=Puppin%2C+M">M. Puppin</a>, <a href="/search/cond-mat?searchtype=author&query=Walmsley%2C+P">P. Walmsley</a>, <a href="/search/cond-mat?searchtype=author&query=Esposito%2C+V">V. Esposito</a>, <a href="/search/cond-mat?searchtype=author&query=Porer%2C+M">M. Porer</a>, <a href="/search/cond-mat?searchtype=author&query=Rittmann%2C+J">J. Rittmann</a>, <a href="/search/cond-mat?searchtype=author&query=Leuenberger%2C+D">D. Leuenberger</a>, <a href="/search/cond-mat?searchtype=author&query=Kubli%2C+M">M. Kubli</a>, <a href="/search/cond-mat?searchtype=author&query=Savoini%2C+M">M. Savoini</a>, <a href="/search/cond-mat?searchtype=author&query=Abreu%2C+E">E. Abreu</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+S+L">S. L. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Beaud%2C+P">P. Beaud</a>, <a href="/search/cond-mat?searchtype=author&query=Ingold%2C+G">G. Ingold</a>, <a href="/search/cond-mat?searchtype=author&query=Staub%2C+U">U. Staub</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Ernstorfer%2C+R">R. Ernstorfer</a>, <a href="/search/cond-mat?searchtype=author&query=Wolf%2C+M">M. Wolf</a>, <a href="/search/cond-mat?searchtype=author&query=Rettig%2C+L">L. Rettig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.03230v2-abstract-short" style="display: inline;"> The interaction of many-body systems with intense light pulses may lead to novel emergent phenomena far from equilibrium. Recent discoveries, such as the optical enhancement of the critical temperature in certain superconductors and the photo-stabilization of hidden phases, have turned this field into an important research frontier. Here, we demonstrate nonthermal charge-density-wave (CDW) order a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03230v2-abstract-full').style.display = 'inline'; document.getElementById('2011.03230v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.03230v2-abstract-full" style="display: none;"> The interaction of many-body systems with intense light pulses may lead to novel emergent phenomena far from equilibrium. Recent discoveries, such as the optical enhancement of the critical temperature in certain superconductors and the photo-stabilization of hidden phases, have turned this field into an important research frontier. Here, we demonstrate nonthermal charge-density-wave (CDW) order at electronic temperatures far greater than the thermodynamic transition temperature. Using time- and angle-resolved photoemission spectroscopy and time-resolved X-ray diffraction, we investigate the electronic and structural order parameters of an ultrafast photoinduced CDW-to-metal transition. Tracking the dynamical CDW recovery as a function of electronic temperature reveals a behaviour markedly different from equilibrium, which we attribute to the suppression of lattice fluctuations in the transient nonthermal phonon distribution. A complete description of the system's coherent and incoherent order-parameter dynamics is given by a time-dependent Ginzburg-Landau framework, providing access to the transient potential energy surfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03230v2-abstract-full').style.display = 'none'; document.getElementById('2011.03230v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01975">arXiv:2009.01975</a> <span> [<a href="https://arxiv.org/pdf/2009.01975">pdf</a>, <a href="https://arxiv.org/ps/2009.01975">ps</a>, <a href="https://arxiv.org/format/2009.01975">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.155106">10.1103/PhysRevB.103.155106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proposal for methods to measure the octupole susceptibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sorensen%2C+M+E">M. E. Sorensen</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01975v2-abstract-short" style="display: inline;"> Direct means of measuring the susceptibility towards an octupole order parameter are proposed via a sixth-rank tensor property. Equivalent derivatives of more conventionally measured tensor properties, including elastic stiffness, magnetic susceptibility, and elastoresistivity, are written in full, as constrained by the symmetry of the experimentally-motivated $O_h$ point group. For simplicity, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01975v2-abstract-full').style.display = 'inline'; document.getElementById('2009.01975v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01975v2-abstract-full" style="display: none;"> Direct means of measuring the susceptibility towards an octupole order parameter are proposed via a sixth-rank tensor property. Equivalent derivatives of more conventionally measured tensor properties, including elastic stiffness, magnetic susceptibility, and elastoresistivity, are written in full, as constrained by the symmetry of the experimentally-motivated $O_h$ point group. For simplicity, we consider the specific case of $Pr^{3+}$ ions in a cubic point symmetry with a $螕_3$ crystal field ground state, but the ideas are somewhat general. Experimental feasibility of measuring these various derivatives of tensor quantities is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01975v2-abstract-full').style.display = 'none'; document.getElementById('2009.01975v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 155106 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.04050">arXiv:2008.04050</a> <span> [<a href="https://arxiv.org/pdf/2008.04050">pdf</a>, <a href="https://arxiv.org/format/2008.04050">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-28790-y">10.1038/s41467-022-28790-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the Non-linear Meissner Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wilcox%2C+J+A">J. A. Wilcox</a>, <a href="/search/cond-mat?searchtype=author&query=Grant%2C+M+J">M. J. Grant</a>, <a href="/search/cond-mat?searchtype=author&query=Malone%2C+L">L. Malone</a>, <a href="/search/cond-mat?searchtype=author&query=Putzke%2C+C">C. Putzke</a>, <a href="/search/cond-mat?searchtype=author&query=Kaczorowski%2C+D">D. Kaczorowski</a>, <a href="/search/cond-mat?searchtype=author&query=Wolf%2C+T">T. Wolf</a>, <a href="/search/cond-mat?searchtype=author&query=Hardy%2C+F">F. Hardy</a>, <a href="/search/cond-mat?searchtype=author&query=Meingast%2C+C">C. Meingast</a>, <a href="/search/cond-mat?searchtype=author&query=Analytis%2C+J+G">J. G. Analytis</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+J+-">J. -H. Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Carrington%2C+A">A. Carrington</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.04050v3-abstract-short" style="display: inline;"> A long-standing theoretical prediction is that in clean, nodal unconventional superconductors the magnetic penetration depth $位$, at zero temperature, varies linearly with magnetic field. This non-linear Meissner effect is an equally important manifestation of the nodal state as the well studied linear-in-$T$ dependence of $位$, but has never been convincingly experimentally observed. Here we prese… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04050v3-abstract-full').style.display = 'inline'; document.getElementById('2008.04050v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.04050v3-abstract-full" style="display: none;"> A long-standing theoretical prediction is that in clean, nodal unconventional superconductors the magnetic penetration depth $位$, at zero temperature, varies linearly with magnetic field. This non-linear Meissner effect is an equally important manifestation of the nodal state as the well studied linear-in-$T$ dependence of $位$, but has never been convincingly experimentally observed. Here we present measurements of the nodal superconductors CeCoIn$_5$ and LaFePO which clearly show this non-linear Meissner effect. We further show how the effect of a small dc magnetic field on $位(T)$ can be used to distinguish gap nodes from non-nodal deep gap minima. Our measurements of KFe$_2$As$_2$ suggest that this material has such a non-nodal state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04050v3-abstract-full').style.display = 'none'; document.getElementById('2008.04050v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.14191">arXiv:2006.14191</a> <span> [<a href="https://arxiv.org/pdf/2006.14191">pdf</a>, <a href="https://arxiv.org/format/2006.14191">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.043221">10.1103/PhysRevResearch.2.043221 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust superconductivity intertwined with charge density wave and disorder in Pd-intercalated ErTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fang%2C+A">Alan Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A+G">Anisha G. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Straquadine%2C+J+A+W">Joshua A. W. Straquadine</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&query=Kapitulnik%2C+A">Aharon Kapitulnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.14191v1-abstract-short" style="display: inline;"> Pd-intercalated ErTe$_3$ is studied as a model system to explore the effect of "intertwined" superconducting and charge density wave (CDW) orders. Despite the common wisdom that superconductivity emerges only when CDW is suppressed, we present data from STM and AC susceptibility measurements that show no direct competition between CDW order and superconductivity. Both coexist over most of the inte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14191v1-abstract-full').style.display = 'inline'; document.getElementById('2006.14191v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.14191v1-abstract-full" style="display: none;"> Pd-intercalated ErTe$_3$ is studied as a model system to explore the effect of "intertwined" superconducting and charge density wave (CDW) orders. Despite the common wisdom that superconductivity emerges only when CDW is suppressed, we present data from STM and AC susceptibility measurements that show no direct competition between CDW order and superconductivity. Both coexist over most of the intercalation range, with uniform superconductivity over length scales that exceed the superconducting coherence length. This is despite persisting short-range CDW order and increased scattering from the Pd intercalation. While superconductivity is insensitive to local defects in either of the bi-directional CDWs, vestiges of the Fermi-level distortions are observed in the properties of the superconducting state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14191v1-abstract-full').style.display = 'none'; document.getElementById('2006.14191v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 043221 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.08879">arXiv:2006.08879</a> <span> [<a href="https://arxiv.org/pdf/2006.08879">pdf</a>, <a href="https://arxiv.org/format/2006.08879">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.054109">10.1103/PhysRevB.103.054109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation of buried domain walls in the ultrafast transition of SmTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Trigo%2C+M">M. Trigo</a>, <a href="/search/cond-mat?searchtype=author&query=Giraldo-Gallo%2C+P">P. Giraldo-Gallo</a>, <a href="/search/cond-mat?searchtype=author&query=Clark%2C+J+N">J. N. Clark</a>, <a href="/search/cond-mat?searchtype=author&query=Kozina%2C+M+E">M. E. Kozina</a>, <a href="/search/cond-mat?searchtype=author&query=Henighan%2C+T">T. Henighan</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+M+P">M. P. Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Chollet%2C+M">M. Chollet</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Glownia%2C+J+M">J. M. Glownia</a>, <a href="/search/cond-mat?searchtype=author&query=Katayama%2C+T">T. Katayama</a>, <a href="/search/cond-mat?searchtype=author&query=Kirchmann%2C+P+S">P. S. Kirchmann</a>, <a href="/search/cond-mat?searchtype=author&query=Leuenberger%2C+D">D. Leuenberger</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">H. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Reis%2C+D+A">D. A. Reis</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+D">D. Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.08879v1-abstract-short" style="display: inline;"> We study ultrafast x-ray diffraction on the charge density wave (CDW) of SmTe$_3$ using an x-ray free electron laser. The CDW peaks show that photoexcitation with near-infrared pump centered at 800 nm generates domain walls of the order parameter propagating perpendicular to the sample surface. These domain walls break the CDW long range order and suppress the diffraction intensity of the CDW for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08879v1-abstract-full').style.display = 'inline'; document.getElementById('2006.08879v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.08879v1-abstract-full" style="display: none;"> We study ultrafast x-ray diffraction on the charge density wave (CDW) of SmTe$_3$ using an x-ray free electron laser. The CDW peaks show that photoexcitation with near-infrared pump centered at 800 nm generates domain walls of the order parameter propagating perpendicular to the sample surface. These domain walls break the CDW long range order and suppress the diffraction intensity of the CDW for times much longer than the $\sim 1$~ps recovery of the local electronic gap. We reconstruct the spatial and temporal dependence of the order parameter using a simple Ginzburg-Landau model and find good agreement between the experimental and model fluence dependences. Based on the model we find that at long times, depending on the pump fluence, multiple domain walls remain at distances of few nm from the surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08879v1-abstract-full').style.display = 'none'; document.getElementById('2006.08879v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 054109 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.01291">arXiv:2006.01291</a> <span> [<a href="https://arxiv.org/pdf/2006.01291">pdf</a>, <a href="https://arxiv.org/format/2006.01291">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0019553">10.1063/5.0019553 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frequency-dependent sensitivity of AC elastocaloric effect measurements explored through analytical and numerical models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Straquadine%2C+J+A+W">J. A. W. Straquadine</a>, <a href="/search/cond-mat?searchtype=author&query=Ikeda%2C+M+S">M. S. Ikeda</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.01291v1-abstract-short" style="display: inline;"> We present a comprehensive study of the frequency-dependent sensitivity for measurements of the AC elastocaloric effect by applying both exactly soluble models and numerical methods to the oscillating heat flow problem. These models reproduce the finer details of the thermal transfer functions observed in experiments, considering here representative data for single-crystal Ba(Fe$_{1-x}$Co$_x$)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01291v1-abstract-full').style.display = 'inline'; document.getElementById('2006.01291v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.01291v1-abstract-full" style="display: none;"> We present a comprehensive study of the frequency-dependent sensitivity for measurements of the AC elastocaloric effect by applying both exactly soluble models and numerical methods to the oscillating heat flow problem. These models reproduce the finer details of the thermal transfer functions observed in experiments, considering here representative data for single-crystal Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. Based on our results, we propose a set of practical guidelines for experimentalists using this technique. This work establishes a baseline against which the frequency response of the AC elastocaloric technique can be compared and provides intuitive explanations of the detailed structure observed in experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01291v1-abstract-full').style.display = 'none'; document.getElementById('2006.01291v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10461">arXiv:2005.10461</a> <span> [<a href="https://arxiv.org/pdf/2005.10461">pdf</a>, <a href="https://arxiv.org/format/2005.10461">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.12.021046">10.1103/PhysRevX.12.021046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for realignment of the charge density wave state in ErTe$_3$ and TmTe$_3$ under uniaxial stress via elastocaloric and elastoresistivity measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Straquadine%2C+J+A+W">J. A. W. Straquadine</a>, <a href="/search/cond-mat?searchtype=author&query=Ikeda%2C+M+S">M. S. Ikeda</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10461v2-abstract-short" style="display: inline;"> We report the evolution of a charge density wave (CDW) state in the quasi-2D rare-earth tritellurides ($R$Te$_3$ for $R$=Er,Tm) as a function of in-plane uniaxial stress. Measurements of the elastocaloric effect, resistivity, and elastoresistivity allow us to demonstrate the importance of in-plane antisymmetric strain on the CDW and to establish a phase diagram. We show that modest tensile stress… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10461v2-abstract-full').style.display = 'inline'; document.getElementById('2005.10461v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10461v2-abstract-full" style="display: none;"> We report the evolution of a charge density wave (CDW) state in the quasi-2D rare-earth tritellurides ($R$Te$_3$ for $R$=Er,Tm) as a function of in-plane uniaxial stress. Measurements of the elastocaloric effect, resistivity, and elastoresistivity allow us to demonstrate the importance of in-plane antisymmetric strain on the CDW and to establish a phase diagram. We show that modest tensile stress parallel to the in-plane $a$-axis can reversibly switch the direction of the ordering wavevector between the two in-plane directions. This work establishes $R$Te$_3$ as a promising model system for the study of strain-CDW interactions in a quasi-2D square lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10461v2-abstract-full').style.display = 'none'; document.getElementById('2005.10461v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12202">arXiv:2003.12202</a> <span> [<a href="https://arxiv.org/pdf/2003.12202">pdf</a>, <a href="https://arxiv.org/format/2003.12202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abb9280">10.1126/science.abb9280 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nematic quantum criticality in an Fe-based superconductor revealed by strain-tuning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Worasaran%2C+T">Thanapat Worasaran</a>, <a href="/search/cond-mat?searchtype=author&query=Ikeda%2C+M+S">Matthias S. Ikeda</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+J+C">Johanna C. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Straquadine%2C+J+A+W">Joshua A. W. Straquadine</a>, <a href="/search/cond-mat?searchtype=author&query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12202v1-abstract-short" style="display: inline;"> Quantum criticality has been invoked as being essential to the understanding of a wide range of exotic electronic behavior, including heavy Fermion and unconventional superconductivity, but conclusive evidence of quantum critical fluctuations has been elusive in many materials of current interest. An expected characteristic feature of quantum criticality is power law behavior of thermodynamic quan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12202v1-abstract-full').style.display = 'inline'; document.getElementById('2003.12202v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12202v1-abstract-full" style="display: none;"> Quantum criticality has been invoked as being essential to the understanding of a wide range of exotic electronic behavior, including heavy Fermion and unconventional superconductivity, but conclusive evidence of quantum critical fluctuations has been elusive in many materials of current interest. An expected characteristic feature of quantum criticality is power law behavior of thermodynamic quantities as a function of a non-thermal tuning parameter close to the quantum critical point (QCP). In the present work, we observe power law behavior of the critical temperature of the coupled nematic/structural phase transition as a function of uniaxial stress in a representative family of Fe-based superconductors. Our measurements provide direct evidence of quantum critical nematic fluctuations in this material. Furthermore, these quantum critical fluctuations are not confined within a narrow regime around the QCP, but extend over a wide range of temperatures and tuning parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12202v1-abstract-full').style.display = 'none'; document.getElementById('2003.12202v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.09657">arXiv:2003.09657</a> <span> [<a href="https://arxiv.org/pdf/2003.09657">pdf</a>, <a href="https://arxiv.org/format/2003.09657">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.045150">10.1103/PhysRevB.102.045150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic breakdown and charge density wave formation: a quantum oscillation study of the rare-earth tritellurides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Walmsley%2C+P">P. Walmsley</a>, <a href="/search/cond-mat?searchtype=author&query=Aeschlimann%2C+S">S. Aeschlimann</a>, <a href="/search/cond-mat?searchtype=author&query=Straquadine%2C+J+A+W">J. A. W. Straquadine</a>, <a href="/search/cond-mat?searchtype=author&query=Giraldo-Gallo%2C+P">P. Giraldo-Gallo</a>, <a href="/search/cond-mat?searchtype=author&query=Riggs%2C+S+C">S. C. Riggs</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+M+K">M. K. Chan</a>, <a href="/search/cond-mat?searchtype=author&query=McDonald%2C+R+D">R. D. McDonald</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.09657v2-abstract-short" style="display: inline;"> The rare-earth tritellurides ($R$Te$_3$, where $R$ = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y) form a charge density wave state consisting of a single unidirectional charge density wave for lighter $R$, with a second unidirectional charge density wave, perpendicular and in addition to the first, also present at low temperatures for heavier $R$. We present a quantum oscillation study in magnet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09657v2-abstract-full').style.display = 'inline'; document.getElementById('2003.09657v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.09657v2-abstract-full" style="display: none;"> The rare-earth tritellurides ($R$Te$_3$, where $R$ = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y) form a charge density wave state consisting of a single unidirectional charge density wave for lighter $R$, with a second unidirectional charge density wave, perpendicular and in addition to the first, also present at low temperatures for heavier $R$. We present a quantum oscillation study in magnetic fields up to 65T that compares the single charge density wave state with the double charge density wave state both above and below the magnetic breakdown field of the second charge density wave. In the double charge density wave state it is observed that there remain several small, light pockets with the largest occupying around 0.5% of the Brillouin zone. By applying magnetic fields above the independently determined magnetic breakown field, the quantum oscillation frequencies of the single charge density wave state are recovered, as expected in a magnetic breakdown scenario. Measurements of the electronic effective mass do not show any divergence or significant increase on the pockets of Fermi surface observed here as the putative quantum phase transition between the single and double charge density wave states is approached. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09657v2-abstract-full').style.display = 'none'; document.getElementById('2003.09657v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 045150 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.07924">arXiv:2002.07924</a> <span> [<a href="https://arxiv.org/pdf/2002.07924">pdf</a>, <a href="https://arxiv.org/format/2002.07924">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.034801">10.1103/PhysRevMaterials.4.034801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low work function in the 122-family of iron-based superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pfau%2C+H">H. Pfau</a>, <a href="/search/cond-mat?searchtype=author&query=Soifer%2C+H">H. Soifer</a>, <a href="/search/cond-mat?searchtype=author&query=Sobota%2C+J+A">J. A. Sobota</a>, <a href="/search/cond-mat?searchtype=author&query=Gauthier%2C+A">A. Gauthier</a>, <a href="/search/cond-mat?searchtype=author&query=Rotundu%2C+C+R">C. R. Rotundu</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstrom%2C+J+C">J. C. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G+-">G. -Y. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+H+-">H. -H. Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Kirchmann%2C+P+S">P. S. Kirchmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.07924v1-abstract-short" style="display: inline;"> We determine the work functions of the iron arsenic compounds $A$Fe$_2$As$_2$ ($A=\mathrm{Ca, Ba, Cs}$) using photoemission spectroscopy to be 2.7 eV for CaFe$_2$As$_2$, 1.8 eV for BaFe$_2$As$_2$, and 1.3 eV for CsFe$_2$As$_2$. The work functions of these 122 iron-based superconductors track those of the elementary metal $A$ but are substantially smaller. The most likely explanation of this observ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07924v1-abstract-full').style.display = 'inline'; document.getElementById('2002.07924v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.07924v1-abstract-full" style="display: none;"> We determine the work functions of the iron arsenic compounds $A$Fe$_2$As$_2$ ($A=\mathrm{Ca, Ba, Cs}$) using photoemission spectroscopy to be 2.7 eV for CaFe$_2$As$_2$, 1.8 eV for BaFe$_2$As$_2$, and 1.3 eV for CsFe$_2$As$_2$. The work functions of these 122 iron-based superconductors track those of the elementary metal $A$ but are substantially smaller. The most likely explanation of this observation is that the cleaving surface exposes only half an $A$-layer. The low work function and good photoemission cross section of BaFe$_2$As$_2$ and CsFe$_2$As$_2$ enable photoemission even from a common white LED light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07924v1-abstract-full').style.display = 'none'; document.getElementById('2002.07924v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 034801 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Fisher%2C+I+R&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Fisher%2C+I+R&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Fisher%2C+I+R&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Fisher%2C+I+R&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Fisher%2C+I+R&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Fisher%2C+I+R&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>