CINXE.COM
Search results for: demyelination
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: demyelination</title> <meta name="description" content="Search results for: demyelination"> <meta name="keywords" content="demyelination"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="demyelination" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="demyelination"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: demyelination</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Relevance of Brain Stem Evoked Potential in Diagnosis of Central Demyelination in Guillain Barre’ Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geetanjali%20Sharma">Geetanjali Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Guillain Barre’ syndrome (GBS) is an auto-immune mediated demyelination poly-radiculo-neuropathy. Clinical features include progressive symmetrical ascending muscle weakness of more than two limbs, areflexia with or without sensory, autonomic and brainstem abnormalities, the purpose of this study was to determine subclinical neurological changes of CNS with GBS and to establish the presence of central demyelination in GBS. The study was prospective and conducted in the Department of Physiology, Pt. B. D. Sharma Post-graduate Institute of Medical Sciences, University of Health Sciences, Rohtak, Haryana, India to find out early central demyelination in clinically diagnosed patients of GBS. These patients were referred from the department of Medicine of our Institute to our department for electro-diagnostic evaluation. The study group comprised of 40 subjects (20 clinically diagnosed GBS patients and 20 healthy individuals as controls) aged between 6-65 years. Brain Stem evoked Potential (BAEP) were done in both groups using RMS EMG EP mark II machine. BAEP parameters included the latencies of waves I to IV, inter peak latencies I-III, III-IV & I-V. Statistically significant increase in absolute peak and inter peak latencies in the GBS group as compared with control group was noted. Results of evoked potential reflect impairment of auditory pathways probably due to focal demyelination in Schwann cell derived myelin sheaths that cover the extramedullary portion of auditory nerves. Early detection of the sub-clinical abnormalities is important as timely intervention reduces morbidity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brainstem" title="brainstem">brainstem</a>, <a href="https://publications.waset.org/abstracts/search?q=demyelination" title=" demyelination"> demyelination</a>, <a href="https://publications.waset.org/abstracts/search?q=evoked%20potential" title=" evoked potential"> evoked potential</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillain%20Barre%E2%80%99" title=" Guillain Barre’"> Guillain Barre’</a> </p> <a href="https://publications.waset.org/abstracts/66591/relevance-of-brain-stem-evoked-potential-in-diagnosis-of-central-demyelination-in-guillain-barre-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Multi-Disciplinary Rehabilitation in Osmotic Demyelination Syndrome: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Qu">Wei Qu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassandra%20Agius"> Cassandra Agius</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikki%20Varvazovsky"> Nikki Varvazovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Meade"> Angela Meade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goals of the case study are to address the importance of early diagnosis of osmotic demyelination syndrome (ODS) and to analyse the types, duration, and intensities of the rehabilitation program to promote neurological and functional recovery. It can be associated with biphasic course of disease and severe neurological and neuropsychiatric symptoms. Although a few treatment modalities, such as plasmapheresis, immunoglobulin therapy, steroid, and thyrotrophin-releasing hormone, have been suggested, there is no effective treatment for ODS. The overall prognosis of established ODS is generally poor. A high proportion of patients have a severe permanent disability, which has led to social, economic, and emotional burdens to carers and societies. In this case, a 69-year-old retired pensioner with chronic alcoholism was admitted to the hospital with a reduced level of consciousness and tonic-clonic seizure. He had severe hyponatraemia (serum sodium 118 mmol/L) and hypokalemia (serum potassium 2.8 mmol/L). He was treated with anticonvulsants, 150ml 3% hypertonic saline over one hour, and 40 mmol potassium chloride over one hour, and his sodium was increased by 11 mmol/L in the first 24 hours. However, he had worsened neurological symptoms with quadriplegia, dysphagia, anarthria, and confusion, and the radiological features suggested the diagnosis of ODS. He had minimal neurological recovery during the first four weeks of hospital admission. He was treated with seven weeks of a multi-disciplinary intensive rehabilitation program. On discharge, he had made a significant cognitive and functional recovery and could mobilize independently without a walking aid. In conclusion, ODS can still occur despite correcting sodium following the current clinical guidelines. Patients with severe neurological deficits in the context of osmotic demyelination syndrome would benefit from intensive rehabilitation to facilitate their functional improvement and to promote their quality of life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osmotic%20demyelination%20syndrome" title="osmotic demyelination syndrome">osmotic demyelination syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=hyponatremia" title=" hyponatremia"> hyponatremia</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20pontine%20and%20extrapontine%20myelinolysis" title=" central pontine and extrapontine myelinolysis"> central pontine and extrapontine myelinolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/165292/multi-disciplinary-rehabilitation-in-osmotic-demyelination-syndrome-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Designing Stochastic Non-Invasively Applied DC Pulses to Suppress Tremors in Multiple Sclerosis by Computational Modeling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aamna%20Lawrence">Aamna Lawrence</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Mishra"> Ashutosh Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tremors occur in 60% of the patients who have Multiple Sclerosis (MS), the most common demyelinating disease that affects the central and peripheral nervous system, and are the primary cause of disability in young adults. While pharmacological agents provide minimal benefits, surgical interventions like Deep Brain Stimulation and Thalamotomy are riddled with dangerous complications which make non-invasive electrical stimulation an appealing treatment of choice for dealing with tremors. Hence, we hypothesized that if the non-invasive electrical stimulation parameters (mainly frequency) can be computed by mathematically modeling the nerve fibre to take into consideration the minutest details of the axon morphologies, tremors due to demyelination can be optimally alleviated. In this computational study, we have modeled the random demyelination pattern in a nerve fibre that typically manifests in MS using the High-Density Hodgkin-Huxley model with suitable modifications to account for the myelin. The internode of the nerve fibre in our model could have up to ten demyelinated regions each having random length and myelin thickness. The arrival time of action potentials traveling the demyelinated and the normally myelinated nerve fibre between two fixed points in space was noted, and its relationship with the nerve fibre radius ranging from 5µm to 12µm was analyzed. It was interesting to note that there were no overlaps between the arrival time for action potentials traversing the demyelinated and normally myelinated nerve fibres even when a single internode of the nerve fibre was demyelinated. The study gave us an opportunity to design DC pulses whose frequency of application would be a function of the random demyelination pattern to block only the delayed tremor-causing action potentials. The DC pulses could be delivered to the peripheral nervous system non-invasively by an electrode bracelet that would suppress any shakiness beyond it thus paving the way for wearable neuro-rehabilitative technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demyelination" title="demyelination">demyelination</a>, <a href="https://publications.waset.org/abstracts/search?q=Hodgkin-Huxley%20model" title=" Hodgkin-Huxley model"> Hodgkin-Huxley model</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive%20electrical%20stimulation" title=" non-invasive electrical stimulation"> non-invasive electrical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tremor" title=" tremor"> tremor</a> </p> <a href="https://publications.waset.org/abstracts/103509/designing-stochastic-non-invasively-applied-dc-pulses-to-suppress-tremors-in-multiple-sclerosis-by-computational-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> The Effects of Myelin Basic Protein Charge Isomers on the Methyl Cycle Metabolites in Glial Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elene%20Zhuravliova">Elene Zhuravliova</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Barbakadze"> Tamar Barbakadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Kalandadze"> Irina Kalandadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Elnari%20Zaalishvili"> Elnari Zaalishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Lali%20%20Shanshiashvili"> Lali Shanshiashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Mikeladze"> David Mikeladze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Multiple sclerosis (MS) is an inflammatory, neurodegenerative disease, which is accompanied by demyelination and autoimmune response to myelin proteins. Among post-translational modifications, which mediate the modulation of inflammatory pathways during MS, methylation is the main one. The methylation of DNA, also amino acids lysine and arginine, occurs in the cell. It was found that decreased trans-methylation is associated with neuroinflammatory diseases. Therefore, abnormal regulation of the methyl cycle could induce demyelination through the action on PAD (peptidyl-arginine-deiminase) gene promoter. PAD takes part in protein citrullination and targets myelin basic protein (MBP), which is affected during demyelination. To determine whether MBP charge isomers are changing the methyl cycle, we have estimated the concentrations of methyl cycle metabolites in MBP-activated primary astrocytes and oligodendrocytes. For this purpose, the action of the citrullinated MBP- C8 and the most cationic MBP-C1 isomers on the primary cells were investigated. Methods: Primary oligodendrocyte and astrocyte cell cultures were prepared from whole brains of 2-day-old Wistar rats. The methyl cycle metabolites, including homocysteine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH), were estimated by HPLC analysis using fluorescence detection and prior derivatization. Results: We found that the action of MBP-C8 and MBP-C1 induces a decrease in the concentration of both methyl cycle metabolites, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), in astrocytes compared to the control cells. As for oligodendrocytes, the concentration of SAM was increased by the addition of MBP-C1, while MBP-C8 has no significant effect. As for SAH, its concentration was increased compared to the control cells by the action of both MBP-C1 and MBP-C8. A significant increase in homocysteine concentration was observed by the action of the MBP-C8 isomer in both oligodendrocytes and astrocytes. Conclusion: These data suggest that MBP charge isomers change the concentration of methyl cycle metabolites. MBP-C8 citrullinated isomer causes elevation of homocysteine in astrocytes and oligodendrocytes, which may be the reason for decreased astrocyte proliferation and increased oligodendrocyte cell death which takes place in neurodegenerative processes. Elevated homocysteine levels and subsequent abnormal regulation of methyl cycles in oligodendrocytes possibly change the methylation of DNA that activates PAD gene promoter and induces the synthesis of PAD, which in turn provokes the process of citrullination, which is the accompanying process of demyelination. Acknowledgment: This research was supported by the SRNSF Georgia RF17_534 grant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=myelin%20basic%20protein" title="myelin basic protein">myelin basic protein</a>, <a href="https://publications.waset.org/abstracts/search?q=astrocytes" title=" astrocytes"> astrocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20cycle%20metabolites" title=" methyl cycle metabolites"> methyl cycle metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=homocysteine" title=" homocysteine"> homocysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=oligodendrocytes" title=" oligodendrocytes"> oligodendrocytes</a> </p> <a href="https://publications.waset.org/abstracts/137071/the-effects-of-myelin-basic-protein-charge-isomers-on-the-methyl-cycle-metabolites-in-glial-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Syndrome of Irreversible Lithium-Effectuated Neurotoxicity: Case Report and Review of Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20J.%20Thomson">David J. Thomson</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20C.%20J.%20Chew"> Joshua C. J. Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Syndrome of Irreversible Lithium-Effectuated Neurotoxicity (SILENT) is a rare complication of lithium toxicity that typically causes irreversible cerebellar dysfunction. These patients may require hemodialysis and extensive supports in the intensive care. Methods: A review was performed on the available literature of SILENT with a focus on current pathophysiological hypotheses and advances in treatment. Articles were restricted to the English language. Results: Although the exact mechanism is unclear, CNS demyelination, especially in the cerebellum, was seen on the brain biopsies of a proportion of patients. There is no definitive management of SILENT but instead current management is focused on primary and tertiary prevention – detection of those at risk, and rehabilitation post onset of neurological deficits. Conclusions: This review draws conclusions from a limited amount of available literature, most of which are isolated case reports. Greater awareness of SILENT and further investigation into the risk factors and pathogenesis are required so this serious and irreversible syndrome may be avoided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20toxicity" title="lithium toxicity">lithium toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenesis" title=" pathogenesis"> pathogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=SILENT" title=" SILENT"> SILENT</a>, <a href="https://publications.waset.org/abstracts/search?q=syndrome%20of%20irreversible%20lithium-effectuated%20neurotoxicity" title=" syndrome of irreversible lithium-effectuated neurotoxicity"> syndrome of irreversible lithium-effectuated neurotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/34033/syndrome-of-irreversible-lithium-effectuated-neurotoxicity-case-report-and-review-of-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> SLAMF5 Regulates Myeloid Cells Activation in the Eae Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Bellassen">Laura Bellassen</a>, <a href="https://publications.waset.org/abstracts/search?q=Idit%20Shachar"> Idit Shachar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple sclerosis (MS) is a chronic neurological disorder characterized by demyelination of the central nervous system (CNS), leading to a wide range of physical and cognitive impairments. Myeloid cells in the CNS, such microglia and border associated macrophage cells, participate in the neuroinflammation in MS. Activation of those cells in MS contributes to the inflammatory response in the CNS and recruitment of immune cells in the this compartment. SLAMF5 is a cell surface receptor that functions as a homophilic adhesion molecule, whose signaling can activate or inhibit leukocyte function. In the current study we followed the expression and function of SLAMF5 in myeloid cells in the CNS and in the periphery in the murine model for MS, the experimental autoimmune encephalomyelitis model (EAE). Our results show that SLAMF5 deficiency or blocking decreases the expression of activation molecules and costimulatory molecules such as MHCII and CD80, resulting in delayed onset and reduced progression of the disease. Moreover, blocking SLAMF5 in peripheral monocytes derived from MS patients and iPSC-derived microglia cells, controls the expression of HLA-DR and CD80. Thus, SLAMF5 is a regulator of myeloid cells function and can serve as a therapeutic target in autoimmune disorders as Multiple Sclerosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=EAE%20model" title=" EAE model"> EAE model</a>, <a href="https://publications.waset.org/abstracts/search?q=myeloid%20cells" title=" myeloid cells"> myeloid cells</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20antibody" title=" new antibody"> new antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroimmunology" title=" neuroimmunology"> neuroimmunology</a> </p> <a href="https://publications.waset.org/abstracts/182133/slamf5-regulates-myeloid-cells-activation-in-the-eae-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Epileptic Seizures in Patients with Multiple Sclerosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anat%20Achiron">Anat Achiron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system in young adults. It involves the immune system attacking the protective covering of nerve fibers (myelin), leading to inflammation and damage. MS can result in various neurological symptoms, such as muscle weakness, coordination problems, and sensory disturbances. Seizures are not common in MS, and the frequency is estimated between 0.4 to 6.4% over the disease course. Objective: Investigate the frequency of seizures in individuals with multiple sclerosis and to identify associated risk factors. Methods: We evaluated the frequency of seizures in a large cohort of 5686 MS patients followed at the Sheba Multiple Sclerosis Center and studied associated risk factors and comorbidities. Our research was based on data collection using a cohort study design. We applied logistic regression analysis to assess the strength of associations. Results: We found that younger age at onset, longer disease duration, and prolonged time to immunomodulatory treatment initiation were associated with increased risk for seizures. Conclusions: Our findings suggest that seizures in people with MS are directly related to the demyelination process and not associated with other factors like medication side effects or comorbid conditions. Therefore, initiating immunomodulatory treatment early in the disease course could reduce not only disease activity but also decrease seizure risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epilepsy" title="epilepsy">epilepsy</a>, <a href="https://publications.waset.org/abstracts/search?q=seizures" title=" seizures"> seizures</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title=" multiple sclerosis"> multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20matter" title=" white matter"> white matter</a>, <a href="https://publications.waset.org/abstracts/search?q=age" title=" age"> age</a> </p> <a href="https://publications.waset.org/abstracts/179077/epileptic-seizures-in-patients-with-multiple-sclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> The Multiple Sclerosis and the Role of Human Herpesvirus 6 in Its Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Mahdavi">Sina Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objective: Multiple sclerosis (MS) is an inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially Human Herpesvirus 6 (HHV-6), and MS is one potential cause that is not well understood. In this study, we aim to summarize the available data on HHV-6 infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", " Human Herpesvirus 6 ", and "central nervous system" in the databases PubMed and Google Scholar between 2017 and 2022 were searched, and 12 articles were chosen, studied, and analyzed. Results: HHV 6 tends towards TCD 4+ lymphocytes and enters the CNS due to the weakening of the blood-brain barrier due to inflammatory damage. Following the observation that the HHV-6 U24 protein has a seven amino acid sequence with myelin basic protein, which is one of the main components of the myelin sheath, it could cause a molecular mimicry mechanism followed by cross-reactivity. Reactivation of HHV-6 in the CNS can cause the release of proinflammatory cytokines, including TNF-α, leading to immune-mediated demyelination in patients with MS. Conclusion: There is a high expression of endogenous retroviruses during the course of MS, which indicates the relationship between HHV-6 and MS, and that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of HHV-6 may be effective in reducing inflammatory processes in demyelinated areas of MS patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20herpesvirus%206" title=" human herpesvirus 6"> human herpesvirus 6</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=autoimmunity" title=" autoimmunity"> autoimmunity</a> </p> <a href="https://publications.waset.org/abstracts/159261/the-multiple-sclerosis-and-the-role-of-human-herpesvirus-6-in-its-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Link of the Human Immunodeficiency Virus With the Progression of Multiple Sclerosis Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Mahdavi">Sina Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human immunodeficiency virus (HIV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on human HIV infection in MS disease progression. In this study, the keywords "Multiple sclerosis", "Human immunodeficiency virus ", and "Central nervous system" in the databases PubMed, and Google Scholar between 2017 and 2022 were searched and 15 articles were chosen, studied, and analyzed. Revealed histologic signs of "MS-like illness" in the setting of HIV, which comprised widespread demyelination with reactive astrocytes, foamy macrophages, and perivascular infiltration with inflammatory cells, all of which are compatible with MS lesions. Human immunodeficiency virus causes dysfunction of the immune system, especially characterized by hypergammaglobulinemia and chronic activation of B cells. Activation of B cells leads to increased synthesis of immunoglobulin and finally to an excess of free light chains. Free light chains may be involved in autoimmune responses against neurons. There is a high expression of HIV during the course of MS, which indicates the relationship between HIV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of HIV may be effective in reducing inflammatory processes in demyelinated areas of MS patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20immunodeficiency%20virus" title=" human immunodeficiency virus"> human immunodeficiency virus</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=autoimmunity" title=" autoimmunity"> autoimmunity</a> </p> <a href="https://publications.waset.org/abstracts/159411/the-link-of-the-human-immunodeficiency-virus-with-the-progression-of-multiple-sclerosis-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Effectiveness of Cognitive and Supportive-Expressive Group Therapies on Self-Efficiency and Life Style in MS Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Yazdanbakhsh">Kamran Yazdanbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Mahmoudi"> Somayeh Mahmoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple sclerosis is the most common chronic disease of the central nervous system associated with demyelination of neurons and several demyelinated parts of the disease encompasses throughout the white matter and affects the sensory and motor function. This study compared the effectiveness of two methods of cognitive therapy and supportive-expressive therapy on the efficacy and quality of life in MS patients. This is an experimental project which has used developed group pretest - posttest and follow-up with 3 groups. The study included all patients with multiple sclerosis in 2013 that were members of the MS Society of Iran in Tehran. The sample included 45 patients with MS that were selected volunteerily of members of the MS society of Iran and randomly divided into three groups and pretest, posttest, and follow-up (three months) for the three groups had been done.The dimensions of quality of life in patients with multiple sclerosis scale, and general self-efficiency scale of Schwarzer and Jerusalem was used for collecting data. The results showed that there was a significant difference between the mean of quality of life scores at pretest, posttest, and follow-up of the experimental groups. There was no significant difference between the mean of quality of life of the experimental groups which means that both groups were effective and had the same effect. There was no significant difference between the mean of self-efficiency scores in control and experimental group in pretest, posttest and follow-up. Thus, by using cognitive and supportive-expressive group therapy we can improve quality of life in MS patients and make great strides in their mental health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20group%20therapy" title="cognitive group therapy">cognitive group therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20style" title=" life style"> life style</a>, <a href="https://publications.waset.org/abstracts/search?q=MS" title=" MS"> MS</a>, <a href="https://publications.waset.org/abstracts/search?q=self-efficiency" title=" self-efficiency"> self-efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=supportive-expressive%20group%20therapy" title=" supportive-expressive group therapy"> supportive-expressive group therapy</a> </p> <a href="https://publications.waset.org/abstracts/20050/effectiveness-of-cognitive-and-supportive-expressive-group-therapies-on-self-efficiency-and-life-style-in-ms-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Skull Extraction for Quantification of Brain Volume in Magnetic Resonance Imaging of Multiple Sclerosis Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcela%20De%20Oliveira">Marcela De Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20P.%20Da%20Silva"> Marina P. Da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20C.%20G.%20Da%20Rocha"> Fernando C. G. Da Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20M.%20Santos"> Jorge M. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20S.%20Cardoso"> Jaime S. Cardoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20N.%20Lisboa-Filho"> Paulo N. Lisboa-Filho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by neurodegeneration, inflammation, demyelination, and axonal loss. Magnetic resonance imaging (MRI), due to the richness in the information details provided, is the gold standard exam for diagnosis and follow-up of neurodegenerative diseases, such as MS. Brain atrophy, the gradual loss of brain volume, is quite extensive in multiple sclerosis, nearly 0.5-1.35% per year, far off the limits of normal aging. Thus, the brain volume quantification becomes an essential task for future analysis of the occurrence atrophy. The analysis of MRI has become a tedious and complex task for clinicians, who have to manually extract important information. This manual analysis is prone to errors and is time consuming due to various intra- and inter-operator variability. Nowadays, computerized methods for MRI segmentation have been extensively used to assist doctors in quantitative analyzes for disease diagnosis and monitoring. Thus, the purpose of this work was to evaluate the brain volume in MRI of MS patients. We used MRI scans with 30 slices of the five patients diagnosed with multiple sclerosis according to the McDonald criteria. The computational methods for the analysis of images were carried out in two steps: segmentation of the brain and brain volume quantification. The first image processing step was to perform brain extraction by skull stripping from the original image. In the skull stripper for MRI images of the brain, the algorithm registers a grayscale atlas image to the grayscale patient image. The associated brain mask is propagated using the registration transformation. Then this mask is eroded and used for a refined brain extraction based on level-sets (edge of the brain-skull border with dedicated expansion, curvature, and advection terms). In the second step, the brain volume quantification was performed by counting the voxels belonging to the segmentation mask and converted in cc. We observed an average brain volume of 1469.5 cc. We concluded that the automatic method applied in this work can be used for the brain extraction process and brain volume quantification in MRI. The development and use of computer programs can contribute to assist health professionals in the diagnosis and monitoring of patients with neurodegenerative diseases. In future works, we expect to implement more automated methods for the assessment of cerebral atrophy and brain lesions quantification, including machine-learning approaches. Acknowledgements: This work was supported by a grant from Brazilian agency Fundação de Amparo à Pesquisa do Estado de São Paulo (number 2019/16362-5). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20volume" title="brain volume">brain volume</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title=" multiple sclerosis"> multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=skull%20stripper" title=" skull stripper"> skull stripper</a> </p> <a href="https://publications.waset.org/abstracts/127935/skull-extraction-for-quantification-of-brain-volume-in-magnetic-resonance-imaging-of-multiple-sclerosis-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Impact of Transgenic Adipose Derived Stem Cells in the Healing of Spinal Cord Injury of Dogs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imdad%20Ullah%20Khan">Imdad Ullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongseok%20Yoon"> Yongseok Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyeung%20Uk%20Choi"> Kyeung Uk Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Rae%20Jo"> Kwang Rae Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Namyul%20Kim"> Namyul Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunbee%20Lee"> Eunbee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Hee%20Kim"> Wan Hee Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh-Kyeong%20Kweon"> Oh-Kyeong Kweon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary spinal cord injury (SCI) causes mechanical damage to the neurons and blood vessels. It leads to secondary SCI, which activates multiple pathological pathways, which expand neuronal damage at the injury site. It is characterized by vascular disruption, ischemia, excitotoxicity, oxidation, inflammation, and apoptotic cell death. It causes nerve demyelination and disruption of axons, which perpetuate a loss of impulse conduction through the injured spinal cord. It also leads to the production of myelin inhibitory molecules, which with a concomitant formation of an astroglial scar, impede axonal regeneration. The pivotal role regarding the neuronal necrosis is played by oxidation and inflammation. During an early stage of spinal cord injury, there occurs an abundant expression of reactive oxygen species (ROS) due to defective mitochondrial metabolism and abundant migration of phagocytes (macrophages, neutrophils). ROS cause lipid peroxidation of the cell membrane, and cell death. Abundant migration of neutrophils, macrophages, and lymphocytes collectively produce pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β), matrix metalloproteinase, superoxide dismutase, and myeloperoxidases which synergize neuronal apoptosis. Therefore, it is crucial to control inflammation and oxidation injury to minimize the nerve cell death during secondary spinal cord injury. Therefore, in response to oxidation and inflammation, heme oxygenase-1 (HO-1) is induced by the resident cells to ameliorate the milieu. In the meanwhile, neurotrophic factors are induced to promote neuroregeneration. However, it seems that anti-stress enzyme (HO-1) and neurotrophic factor (BDNF) do not significantly combat the pathological events during secondary spinal cord injury. Therefore, optimum healing can be induced if anti-inflammatory and neurotrophic factors are administered in a higher amount through an exogenous source. During the first experiment, the inflammation and neuroregeneration were selectively targeted. HO-1 expressing MSCs (HO-1 MSCs) and BDNF expressing MSCs (BDNF MSC) were co-transplanted in one group (combination group) of dogs with subacute spinal cord injury to selectively control the expression of inflammatory cytokines by HO-1 and induce neuroregeneration by BDNF. We compared the combination group with the HO-1 MSCs group, BDNF MSCs group, and GFP MSCs group. We found that the combination group showed significant improvement in functional recovery. It showed increased expression of neural markers and growth-associated proteins (GAP-43) than in other groups, which depicts enhanced neuroregeneration/neural sparing due to reduced expression of pro-inflammatory cytokines such as TNF-alpha, IL-6 and COX-2; and increased expression of anti-inflammatory markers such as IL-10 and HO-1. Histopathological study revealed reduced intra-parenchymal fibrosis in the injured spinal cord segment in the combination group than in other groups. Thus it was concluded that selectively targeting the inflammation and neuronal growth with the combined use of HO-1 MSCs and BDNF MSCs more favorably promote healing of the SCI. HO-1 MSCs play a role in controlling the inflammation, which favors the BDNF induced neuroregeneration at the injured spinal cord segment of dogs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HO-1%20MSCs" title="HO-1 MSCs">HO-1 MSCs</a>, <a href="https://publications.waset.org/abstracts/search?q=BDNF%20MSCs" title=" BDNF MSCs"> BDNF MSCs</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroregeneration" title=" neuroregeneration"> neuroregeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammation" title=" anti-inflammation"> anti-inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20cord%20injury" title=" spinal cord injury"> spinal cord injury</a>, <a href="https://publications.waset.org/abstracts/search?q=dogs" title=" dogs"> dogs</a> </p> <a href="https://publications.waset.org/abstracts/115125/impact-of-transgenic-adipose-derived-stem-cells-in-the-healing-of-spinal-cord-injury-of-dogs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>