CINXE.COM
Endpoint layer pattern
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="description" content="Keras documentation"> <meta name="author" content="Keras Team"> <link rel="shortcut icon" href="https://keras.io/img/favicon.ico"> <link rel="canonical" href="https://keras.io/examples/keras_recipes/endpoint_layer_pattern/" /> <!-- Social --> <meta property="og:title" content="Keras documentation: Endpoint layer pattern"> <meta property="og:image" content="https://keras.io/img/logo-k-keras-wb.png"> <meta name="twitter:title" content="Keras documentation: Endpoint layer pattern"> <meta name="twitter:image" content="https://keras.io/img/k-keras-social.png"> <meta name="twitter:card" content="summary"> <title>Endpoint layer pattern</title> <!-- Bootstrap core CSS --> <link href="/css/bootstrap.min.css" rel="stylesheet"> <!-- Custom fonts for this template --> <link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600;700;800&display=swap" rel="stylesheet"> <!-- Custom styles for this template --> <link href="/css/docs.css" rel="stylesheet"> <link href="/css/monokai.css" rel="stylesheet"> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5DNGF4N'); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-175165319-128', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Tag Manager --> <script async defer src="https://buttons.github.io/buttons.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5DNGF4N" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class='k-page'> <div class="k-nav" id="nav-menu"> <a href='/'><img src='/img/logo-small.png' class='logo-small' /></a> <div class="nav flex-column nav-pills" role="tablist" aria-orientation="vertical"> <a class="nav-link" href="/about/" role="tab" aria-selected="">About Keras</a> <a class="nav-link" href="/getting_started/" role="tab" aria-selected="">Getting started</a> <a class="nav-link" href="/guides/" role="tab" aria-selected="">Developer guides</a> <a class="nav-link active" href="/examples/" role="tab" aria-selected="">Code examples</a> <a class="nav-sublink" href="/examples/vision/">Computer Vision</a> <a class="nav-sublink" href="/examples/nlp/">Natural Language Processing</a> <a class="nav-sublink" href="/examples/structured_data/">Structured Data</a> <a class="nav-sublink" href="/examples/timeseries/">Timeseries</a> <a class="nav-sublink" href="/examples/generative/">Generative Deep Learning</a> <a class="nav-sublink" href="/examples/audio/">Audio Data</a> <a class="nav-sublink" href="/examples/rl/">Reinforcement Learning</a> <a class="nav-sublink" href="/examples/graph/">Graph Data</a> <a class="nav-sublink active" href="/examples/keras_recipes/">Quick Keras Recipes</a> <a class="nav-sublink2" href="/examples/keras_recipes/parameter_efficient_finetuning_of_gemma_with_lora_and_qlora/">Parameter-efficient fine-tuning of Gemma with LoRA and QLoRA</a> <a class="nav-sublink2" href="/examples/keras_recipes/float8_training_and_inference_with_transformer/">Float8 training and inference with a simple Transformer model</a> <a class="nav-sublink2" href="/examples/keras_recipes/tf_serving/">Serving TensorFlow models with TFServing</a> <a class="nav-sublink2" href="/examples/keras_recipes/debugging_tips/">Keras debugging tips</a> <a class="nav-sublink2" href="/examples/keras_recipes/subclassing_conv_layers/">Customizing the convolution operation of a Conv2D layer</a> <a class="nav-sublink2" href="/examples/keras_recipes/trainer_pattern/">Trainer pattern</a> <a class="nav-sublink2 active" href="/examples/keras_recipes/endpoint_layer_pattern/">Endpoint layer pattern</a> <a class="nav-sublink2" href="/examples/keras_recipes/reproducibility_recipes/">Reproducibility in Keras Models</a> <a class="nav-sublink2" href="/examples/keras_recipes/tensorflow_numpy_models/">Writing Keras Models With TensorFlow NumPy</a> <a class="nav-sublink2" href="/examples/keras_recipes/antirectifier/">Simple custom layer example: Antirectifier</a> <a class="nav-sublink2" href="/examples/keras_recipes/sample_size_estimate/">Estimating required sample size for model training</a> <a class="nav-sublink2" href="/examples/keras_recipes/memory_efficient_embeddings/">Memory-efficient embeddings for recommendation systems</a> <a class="nav-sublink2" href="/examples/keras_recipes/creating_tfrecords/">Creating TFRecords</a> <a class="nav-sublink2" href="/examples/keras_recipes/packaging_keras_models_for_wide_distribution/">Packaging Keras models for wide distribution using Functional Subclassing</a> <a class="nav-sublink2" href="/examples/keras_recipes/approximating_non_function_mappings/">Approximating non-Function Mappings with Mixture Density Networks</a> <a class="nav-sublink2" href="/examples/keras_recipes/bayesian_neural_networks/">Probabilistic Bayesian Neural Networks</a> <a class="nav-sublink2" href="/examples/keras_recipes/better_knowledge_distillation/">Knowledge distillation recipes</a> <a class="nav-sublink2" href="/examples/keras_recipes/sklearn_metric_callbacks/">Evaluating and exporting scikit-learn metrics in a Keras callback</a> <a class="nav-sublink2" href="/examples/keras_recipes/tfrecord/">How to train a Keras model on TFRecord files</a> <a class="nav-link" href="/api/" role="tab" aria-selected="">Keras 3 API documentation</a> <a class="nav-link" href="/2.18/api/" role="tab" aria-selected="">Keras 2 API documentation</a> <a class="nav-link" href="/keras_tuner/" role="tab" aria-selected="">KerasTuner: Hyperparam Tuning</a> <a class="nav-link" href="/keras_hub/" role="tab" aria-selected="">KerasHub: Pretrained Models</a> </div> </div> <div class='k-main'> <div class='k-main-top'> <script> function displayDropdownMenu() { e = document.getElementById("nav-menu"); if (e.style.display == "block") { e.style.display = "none"; } else { e.style.display = "block"; document.getElementById("dropdown-nav").style.display = "block"; } } function resetMobileUI() { if (window.innerWidth <= 840) { document.getElementById("nav-menu").style.display = "none"; document.getElementById("dropdown-nav").style.display = "block"; } else { document.getElementById("nav-menu").style.display = "block"; document.getElementById("dropdown-nav").style.display = "none"; } var navmenu = document.getElementById("nav-menu"); var menuheight = navmenu.clientHeight; var kmain = document.getElementById("k-main-id"); kmain.style.minHeight = (menuheight + 100) + 'px'; } window.onresize = resetMobileUI; window.addEventListener("load", (event) => { resetMobileUI() }); </script> <div id='dropdown-nav' onclick="displayDropdownMenu();"> <svg viewBox="-20 -20 120 120" width="60" height="60"> <rect width="100" height="20"></rect> <rect y="30" width="100" height="20"></rect> <rect y="60" width="100" height="20"></rect> </svg> </div> <form class="bd-search d-flex align-items-center k-search-form" id="search-form"> <input type="search" class="k-search-input" id="search-input" placeholder="Search Keras documentation..." aria-label="Search Keras documentation..." autocomplete="off"> <button class="k-search-btn"> <svg width="13" height="13" viewBox="0 0 13 13"><title>search</title><path d="m4.8495 7.8226c0.82666 0 1.5262-0.29146 2.0985-0.87438 0.57232-0.58292 0.86378-1.2877 0.87438-2.1144 0.010599-0.82666-0.28086-1.5262-0.87438-2.0985-0.59352-0.57232-1.293-0.86378-2.0985-0.87438-0.8055-0.010599-1.5103 0.28086-2.1144 0.87438-0.60414 0.59352-0.8956 1.293-0.87438 2.0985 0.021197 0.8055 0.31266 1.5103 0.87438 2.1144 0.56172 0.60414 1.2665 0.8956 2.1144 0.87438zm4.4695 0.2115 3.681 3.6819-1.259 1.284-3.6817-3.7 0.0019784-0.69479-0.090043-0.098846c-0.87973 0.76087-1.92 1.1413-3.1207 1.1413-1.3553 0-2.5025-0.46363-3.4417-1.3909s-1.4088-2.0686-1.4088-3.4239c0-1.3553 0.4696-2.4966 1.4088-3.4239 0.9392-0.92727 2.0864-1.3969 3.4417-1.4088 1.3553-0.011889 2.4906 0.45771 3.406 1.4088 0.9154 0.95107 1.379 2.0924 1.3909 3.4239 0 1.2126-0.38043 2.2588-1.1413 3.1385l0.098834 0.090049z"></path></svg> </button> </form> <script> var form = document.getElementById('search-form'); form.onsubmit = function(e) { e.preventDefault(); var query = document.getElementById('search-input').value; window.location.href = '/search.html?query=' + query; return False } </script> </div> <div class='k-main-inner' id='k-main-id'> <div class='k-location-slug'> <span class="k-location-slug-pointer">►</span> <a href='/examples/'>Code examples</a> / <a href='/examples/keras_recipes/'>Quick Keras Recipes</a> / Endpoint layer pattern </div> <div class='k-content'> <h1 id="endpoint-layer-pattern">Endpoint layer pattern</h1> <p><strong>Author:</strong> <a href="https://twitter.com/fchollet">fchollet</a><br> <strong>Date created:</strong> 2019/05/10<br> <strong>Last modified:</strong> 2023/11/22<br> <strong>Description:</strong> Demonstration of the "endpoint layer" pattern (layer that handles loss management).</p> <div class='example_version_banner keras_3'>ⓘ This example uses Keras 3</div> <p><img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> <a href="https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/keras_recipes/ipynb/endpoint_layer_pattern.ipynb"><strong>View in Colab</strong></a> <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> <a href="https://github.com/keras-team/keras-io/blob/master/examples/keras_recipes/endpoint_layer_pattern.py"><strong>GitHub source</strong></a></p> <hr /> <h2 id="setup">Setup</h2> <div class="codehilite"><pre><span></span><code><span class="kn">import</span> <span class="nn">os</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">"KERAS_BACKEND"</span><span class="p">]</span> <span class="o">=</span> <span class="s2">"tensorflow"</span> <span class="kn">import</span> <span class="nn">tensorflow</span> <span class="k">as</span> <span class="nn">tf</span> <span class="kn">import</span> <span class="nn">keras</span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> </code></pre></div> <hr /> <h2 id="usage-of-endpoint-layers-in-the-functional-api">Usage of endpoint layers in the Functional API</h2> <p>An "endpoint layer" has access to the model's targets, and creates arbitrary losses in <code>call()</code> using <code>self.add_loss()</code> and <code>Metric.update_state()</code>. This enables you to define losses and metrics that don't match the usual signature <code>fn(y_true, y_pred, sample_weight=None)</code>.</p> <p>Note that you could have separate metrics for training and eval with this pattern.</p> <div class="codehilite"><pre><span></span><code><span class="k">class</span> <span class="nc">LogisticEndpoint</span><span class="p">(</span><span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Layer</span><span class="p">):</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss_fn</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">losses</span><span class="o">.</span><span class="n">BinaryCrossentropy</span><span class="p">(</span><span class="n">from_logits</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">accuracy_metric</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">BinaryAccuracy</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">"accuracy"</span><span class="p">)</span> <span class="k">def</span> <span class="nf">call</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">logits</span><span class="p">,</span> <span class="n">targets</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span> <span class="k">if</span> <span class="n">targets</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span> <span class="c1"># Compute the training-time loss value and add it</span> <span class="c1"># to the layer using `self.add_loss()`.</span> <span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss_fn</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">logits</span><span class="p">,</span> <span class="n">sample_weight</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">add_loss</span><span class="p">(</span><span class="n">loss</span><span class="p">)</span> <span class="c1"># Log the accuracy as a metric (we could log arbitrary metrics,</span> <span class="c1"># including different metrics for training and inference.)</span> <span class="bp">self</span><span class="o">.</span><span class="n">accuracy_metric</span><span class="o">.</span><span class="n">update_state</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">logits</span><span class="p">,</span> <span class="n">sample_weight</span><span class="p">)</span> <span class="c1"># Return the inference-time prediction tensor (for `.predict()`).</span> <span class="k">return</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">logits</span><span class="p">)</span> <span class="n">inputs</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Input</span><span class="p">((</span><span class="mi">764</span><span class="p">,),</span> <span class="n">name</span><span class="o">=</span><span class="s2">"inputs"</span><span class="p">)</span> <span class="n">logits</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">1</span><span class="p">)(</span><span class="n">inputs</span><span class="p">)</span> <span class="n">targets</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Input</span><span class="p">((</span><span class="mi">1</span><span class="p">,),</span> <span class="n">name</span><span class="o">=</span><span class="s2">"targets"</span><span class="p">)</span> <span class="n">sample_weight</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Input</span><span class="p">((</span><span class="mi">1</span><span class="p">,),</span> <span class="n">name</span><span class="o">=</span><span class="s2">"sample_weight"</span><span class="p">)</span> <span class="n">preds</span> <span class="o">=</span> <span class="n">LogisticEndpoint</span><span class="p">()(</span><span class="n">logits</span><span class="p">,</span> <span class="n">targets</span><span class="p">,</span> <span class="n">sample_weight</span><span class="p">)</span> <span class="n">model</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Model</span><span class="p">([</span><span class="n">inputs</span><span class="p">,</span> <span class="n">targets</span><span class="p">,</span> <span class="n">sample_weight</span><span class="p">],</span> <span class="n">preds</span><span class="p">)</span> <span class="n">data</span> <span class="o">=</span> <span class="p">{</span> <span class="s2">"inputs"</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">1000</span><span class="p">,</span> <span class="mi">764</span><span class="p">)),</span> <span class="s2">"targets"</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">1000</span><span class="p">,</span> <span class="mi">1</span><span class="p">)),</span> <span class="s2">"sample_weight"</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">1000</span><span class="p">,</span> <span class="mi">1</span><span class="p">)),</span> <span class="p">}</span> <span class="n">model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">keras</span><span class="o">.</span><span class="n">optimizers</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="mf">1e-3</span><span class="p">))</span> <span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Epoch 1/2 27/32 ━━━━━━━━━━━━━━━━[37m━━━━ 0s 2ms/step - loss: 0.3664 WARNING: All log messages before absl::InitializeLog() is called are written to STDERR I0000 00:00:1700705222.380735 3351467 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process. 32/32 ━━━━━━━━━━━━━━━━━━━━ 2s 31ms/step - loss: 0.3663 Epoch 2/2 32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.3627 <keras.src.callbacks.history.History at 0x7f13401b1e10> </code></pre></div> </div> <hr /> <h2 id="exporting-an-inferenceonly-model">Exporting an inference-only model</h2> <p>Simply don't include <code>targets</code> in the model. The weights stay the same.</p> <div class="codehilite"><pre><span></span><code><span class="n">inputs</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Input</span><span class="p">((</span><span class="mi">764</span><span class="p">,),</span> <span class="n">name</span><span class="o">=</span><span class="s2">"inputs"</span><span class="p">)</span> <span class="n">logits</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">1</span><span class="p">)(</span><span class="n">inputs</span><span class="p">)</span> <span class="n">preds</span> <span class="o">=</span> <span class="n">LogisticEndpoint</span><span class="p">()(</span><span class="n">logits</span><span class="p">,</span> <span class="n">targets</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span> <span class="n">inference_model</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Model</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">preds</span><span class="p">)</span> <span class="n">inference_model</span><span class="o">.</span><span class="n">set_weights</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">get_weights</span><span class="p">())</span> <span class="n">preds</span> <span class="o">=</span> <span class="n">inference_model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">1000</span><span class="p">,</span> <span class="mi">764</span><span class="p">)))</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code> 32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step </code></pre></div> </div> <hr /> <h2 id="usage-of-loss-endpoint-layers-in-subclassed-models">Usage of loss endpoint layers in subclassed models</h2> <div class="codehilite"><pre><span></span><code><span class="k">class</span> <span class="nc">LogReg</span><span class="p">(</span><span class="n">keras</span><span class="o">.</span><span class="n">Model</span><span class="p">):</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">logistic_endpoint</span> <span class="o">=</span> <span class="n">LogisticEndpoint</span><span class="p">()</span> <span class="k">def</span> <span class="nf">call</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">):</span> <span class="c1"># Note that all inputs should be in the first argument</span> <span class="c1"># since we want to be able to call `model.fit(inputs)`.</span> <span class="n">logits</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">inputs</span><span class="p">[</span><span class="s2">"inputs"</span><span class="p">])</span> <span class="n">preds</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">logistic_endpoint</span><span class="p">(</span> <span class="n">logits</span><span class="o">=</span><span class="n">logits</span><span class="p">,</span> <span class="n">targets</span><span class="o">=</span><span class="n">inputs</span><span class="p">[</span><span class="s2">"targets"</span><span class="p">],</span> <span class="n">sample_weight</span><span class="o">=</span><span class="n">inputs</span><span class="p">[</span><span class="s2">"sample_weight"</span><span class="p">],</span> <span class="p">)</span> <span class="k">return</span> <span class="n">preds</span> <span class="n">model</span> <span class="o">=</span> <span class="n">LogReg</span><span class="p">()</span> <span class="n">data</span> <span class="o">=</span> <span class="p">{</span> <span class="s2">"inputs"</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">1000</span><span class="p">,</span> <span class="mi">764</span><span class="p">)),</span> <span class="s2">"targets"</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">1000</span><span class="p">,</span> <span class="mi">1</span><span class="p">)),</span> <span class="s2">"sample_weight"</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">1000</span><span class="p">,</span> <span class="mi">1</span><span class="p">)),</span> <span class="p">}</span> <span class="n">model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">keras</span><span class="o">.</span><span class="n">optimizers</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="mf">1e-3</span><span class="p">))</span> <span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Epoch 1/2 32/32 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - loss: 0.3529 Epoch 2/2 32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - loss: 0.3509 <keras.src.callbacks.history.History at 0x7f132c1d1450> </code></pre></div> </div> </div> <div class='k-outline'> <div class='k-outline-depth-1'> <a href='#endpoint-layer-pattern'>Endpoint layer pattern</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#setup'>Setup</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#usage-of-endpoint-layers-in-the-functional-api'>Usage of endpoint layers in the Functional API</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#exporting-an-inferenceonly-model'>Exporting an inference-only model</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#usage-of-loss-endpoint-layers-in-subclassed-models'>Usage of loss endpoint layers in subclassed models</a> </div> </div> </div> </div> </div> </body> <footer style="float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb;"> <a href="https://policies.google.com/terms">Terms</a> | <a href="https://policies.google.com/privacy">Privacy</a> </footer> </html>