CINXE.COM
Customizing the convolution operation of a Conv2D layer
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="description" content="Keras documentation"> <meta name="author" content="Keras Team"> <link rel="shortcut icon" href="https://keras.io/img/favicon.ico"> <link rel="canonical" href="https://keras.io/examples/keras_recipes/subclassing_conv_layers/" /> <!-- Social --> <meta property="og:title" content="Keras documentation: Customizing the convolution operation of a Conv2D layer"> <meta property="og:image" content="https://keras.io/img/logo-k-keras-wb.png"> <meta name="twitter:title" content="Keras documentation: Customizing the convolution operation of a Conv2D layer"> <meta name="twitter:image" content="https://keras.io/img/k-keras-social.png"> <meta name="twitter:card" content="summary"> <title>Customizing the convolution operation of a Conv2D layer</title> <!-- Bootstrap core CSS --> <link href="/css/bootstrap.min.css" rel="stylesheet"> <!-- Custom fonts for this template --> <link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600;700;800&display=swap" rel="stylesheet"> <!-- Custom styles for this template --> <link href="/css/docs.css" rel="stylesheet"> <link href="/css/monokai.css" rel="stylesheet"> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5DNGF4N'); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-175165319-128', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Tag Manager --> <script async defer src="https://buttons.github.io/buttons.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5DNGF4N" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class='k-page'> <div class="k-nav" id="nav-menu"> <a href='/'><img src='/img/logo-small.png' class='logo-small' /></a> <div class="nav flex-column nav-pills" role="tablist" aria-orientation="vertical"> <a class="nav-link" href="/about/" role="tab" aria-selected="">About Keras</a> <a class="nav-link" href="/getting_started/" role="tab" aria-selected="">Getting started</a> <a class="nav-link" href="/guides/" role="tab" aria-selected="">Developer guides</a> <a class="nav-link" href="/api/" role="tab" aria-selected="">Keras 3 API documentation</a> <a class="nav-link" href="/2.18/api/" role="tab" aria-selected="">Keras 2 API documentation</a> <a class="nav-link active" href="/examples/" role="tab" aria-selected="">Code examples</a> <a class="nav-sublink" href="/examples/vision/">Computer Vision</a> <a class="nav-sublink" href="/examples/nlp/">Natural Language Processing</a> <a class="nav-sublink" href="/examples/structured_data/">Structured Data</a> <a class="nav-sublink" href="/examples/timeseries/">Timeseries</a> <a class="nav-sublink" href="/examples/generative/">Generative Deep Learning</a> <a class="nav-sublink" href="/examples/audio/">Audio Data</a> <a class="nav-sublink" href="/examples/rl/">Reinforcement Learning</a> <a class="nav-sublink" href="/examples/graph/">Graph Data</a> <a class="nav-sublink active" href="/examples/keras_recipes/">Quick Keras Recipes</a> <a class="nav-sublink2" href="/examples/keras_recipes/parameter_efficient_finetuning_of_gemma_with_lora_and_qlora/">Parameter-efficient fine-tuning of Gemma with LoRA and QLoRA</a> <a class="nav-sublink2" href="/examples/keras_recipes/float8_training_and_inference_with_transformer/">Float8 training and inference with a simple Transformer model</a> <a class="nav-sublink2" href="/examples/keras_recipes/tf_serving/">Serving TensorFlow models with TFServing</a> <a class="nav-sublink2" href="/examples/keras_recipes/debugging_tips/">Keras debugging tips</a> <a class="nav-sublink2 active" href="/examples/keras_recipes/subclassing_conv_layers/">Customizing the convolution operation of a Conv2D layer</a> <a class="nav-sublink2" href="/examples/keras_recipes/trainer_pattern/">Trainer pattern</a> <a class="nav-sublink2" href="/examples/keras_recipes/endpoint_layer_pattern/">Endpoint layer pattern</a> <a class="nav-sublink2" href="/examples/keras_recipes/reproducibility_recipes/">Reproducibility in Keras Models</a> <a class="nav-sublink2" href="/examples/keras_recipes/tensorflow_numpy_models/">Writing Keras Models With TensorFlow NumPy</a> <a class="nav-sublink2" href="/examples/keras_recipes/antirectifier/">Simple custom layer example: Antirectifier</a> <a class="nav-sublink2" href="/examples/keras_recipes/sample_size_estimate/">Estimating required sample size for model training</a> <a class="nav-sublink2" href="/examples/keras_recipes/memory_efficient_embeddings/">Memory-efficient embeddings for recommendation systems</a> <a class="nav-sublink2" href="/examples/keras_recipes/creating_tfrecords/">Creating TFRecords</a> <a class="nav-sublink2" href="/examples/keras_recipes/packaging_keras_models_for_wide_distribution/">Packaging Keras models for wide distribution using Functional Subclassing</a> <a class="nav-sublink2" href="/examples/keras_recipes/approximating_non_function_mappings/">Approximating non-Function Mappings with Mixture Density Networks</a> <a class="nav-sublink2" href="/examples/keras_recipes/bayesian_neural_networks/">Probabilistic Bayesian Neural Networks</a> <a class="nav-sublink2" href="/examples/keras_recipes/better_knowledge_distillation/">Knowledge distillation recipes</a> <a class="nav-sublink2" href="/examples/keras_recipes/sklearn_metric_callbacks/">Evaluating and exporting scikit-learn metrics in a Keras callback</a> <a class="nav-sublink2" href="/examples/keras_recipes/tfrecord/">How to train a Keras model on TFRecord files</a> <a class="nav-link" href="/keras_tuner/" role="tab" aria-selected="">KerasTuner: Hyperparameter Tuning</a> <a class="nav-link" href="/keras_hub/" role="tab" aria-selected="">KerasHub: Pretrained Models</a> <a class="nav-link" href="/keras_cv/" role="tab" aria-selected="">KerasCV: Computer Vision Workflows</a> <a class="nav-link" href="/keras_nlp/" role="tab" aria-selected="">KerasNLP: Natural Language Workflows</a> </div> </div> <div class='k-main'> <div class='k-main-top'> <script> function displayDropdownMenu() { e = document.getElementById("nav-menu"); if (e.style.display == "block") { e.style.display = "none"; } else { e.style.display = "block"; document.getElementById("dropdown-nav").style.display = "block"; } } function resetMobileUI() { if (window.innerWidth <= 840) { document.getElementById("nav-menu").style.display = "none"; document.getElementById("dropdown-nav").style.display = "block"; } else { document.getElementById("nav-menu").style.display = "block"; document.getElementById("dropdown-nav").style.display = "none"; } var navmenu = document.getElementById("nav-menu"); var menuheight = navmenu.clientHeight; var kmain = document.getElementById("k-main-id"); kmain.style.minHeight = (menuheight + 100) + 'px'; } window.onresize = resetMobileUI; window.addEventListener("load", (event) => { resetMobileUI() }); </script> <div id='dropdown-nav' onclick="displayDropdownMenu();"> <svg viewBox="-20 -20 120 120" width="60" height="60"> <rect width="100" height="20"></rect> <rect y="30" width="100" height="20"></rect> <rect y="60" width="100" height="20"></rect> </svg> </div> <form class="bd-search d-flex align-items-center k-search-form" id="search-form"> <input type="search" class="k-search-input" id="search-input" placeholder="Search Keras documentation..." aria-label="Search Keras documentation..." autocomplete="off"> <button class="k-search-btn"> <svg width="13" height="13" viewBox="0 0 13 13"><title>search</title><path d="m4.8495 7.8226c0.82666 0 1.5262-0.29146 2.0985-0.87438 0.57232-0.58292 0.86378-1.2877 0.87438-2.1144 0.010599-0.82666-0.28086-1.5262-0.87438-2.0985-0.59352-0.57232-1.293-0.86378-2.0985-0.87438-0.8055-0.010599-1.5103 0.28086-2.1144 0.87438-0.60414 0.59352-0.8956 1.293-0.87438 2.0985 0.021197 0.8055 0.31266 1.5103 0.87438 2.1144 0.56172 0.60414 1.2665 0.8956 2.1144 0.87438zm4.4695 0.2115 3.681 3.6819-1.259 1.284-3.6817-3.7 0.0019784-0.69479-0.090043-0.098846c-0.87973 0.76087-1.92 1.1413-3.1207 1.1413-1.3553 0-2.5025-0.46363-3.4417-1.3909s-1.4088-2.0686-1.4088-3.4239c0-1.3553 0.4696-2.4966 1.4088-3.4239 0.9392-0.92727 2.0864-1.3969 3.4417-1.4088 1.3553-0.011889 2.4906 0.45771 3.406 1.4088 0.9154 0.95107 1.379 2.0924 1.3909 3.4239 0 1.2126-0.38043 2.2588-1.1413 3.1385l0.098834 0.090049z"></path></svg> </button> </form> <script> var form = document.getElementById('search-form'); form.onsubmit = function(e) { e.preventDefault(); var query = document.getElementById('search-input').value; window.location.href = '/search.html?query=' + query; return False } </script> </div> <div class='k-main-inner' id='k-main-id'> <div class='k-location-slug'> <span class="k-location-slug-pointer">►</span> <a href='/examples/'>Code examples</a> / <a href='/examples/keras_recipes/'>Quick Keras Recipes</a> / Customizing the convolution operation of a Conv2D layer </div> <div class='k-content'> <h1 id="customizing-the-convolution-operation-of-a-conv2d-layer">Customizing the convolution operation of a Conv2D layer</h1> <p><strong>Author:</strong> <a href="https://lukewood.xyz">lukewood</a><br> <strong>Date created:</strong> 11/03/2021<br> <strong>Last modified:</strong> 11/03/2021<br> <strong>Description:</strong> This example shows how to implement custom convolution layers using the <code>Conv.convolution_op()</code> API.</p> <div class='example_version_banner keras_3'>ⓘ This example uses Keras 3</div> <p><img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> <a href="https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/keras_recipes/ipynb/subclassing_conv_layers.ipynb"><strong>View in Colab</strong></a> <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> <a href="https://github.com/keras-team/keras-io/blob/master/examples/keras_recipes/subclassing_conv_layers.py"><strong>GitHub source</strong></a></p> <hr /> <h2 id="introduction">Introduction</h2> <p>You may sometimes need to implement custom versions of convolution layers like <code>Conv1D</code> and <code>Conv2D</code>. Keras enables you do this without implementing the entire layer from scratch: you can reuse most of the base convolution layer and just customize the convolution op itself via the <code>convolution_op()</code> method.</p> <p>This method was introduced in Keras 2.7. So before using the <code>convolution_op()</code> API, ensure that you are running Keras version 2.7.0 or greater.</p> <hr /> <h2 id="a-simple-standardizedconv2d-implementation">A Simple <code>StandardizedConv2D</code> implementation</h2> <p>There are two ways to use the <code>Conv.convolution_op()</code> API. The first way is to override the <code>convolution_op()</code> method on a convolution layer subclass. Using this approach, we can quickly implement a <a href="https://arxiv.org/abs/1903.10520">StandardizedConv2D</a> as shown below.</p> <div class="codehilite"><pre><span></span><code><span class="kn">import</span> <span class="nn">os</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">"KERAS_BACKEND"</span><span class="p">]</span> <span class="o">=</span> <span class="s2">"tensorflow"</span> <span class="kn">import</span> <span class="nn">tensorflow</span> <span class="k">as</span> <span class="nn">tf</span> <span class="kn">import</span> <span class="nn">keras</span> <span class="kn">from</span> <span class="nn">keras</span> <span class="kn">import</span> <span class="n">layers</span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="k">class</span> <span class="nc">StandardizedConv2DWithOverride</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Conv2D</span><span class="p">):</span> <span class="k">def</span> <span class="nf">convolution_op</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">kernel</span><span class="p">):</span> <span class="n">mean</span><span class="p">,</span> <span class="n">var</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">moments</span><span class="p">(</span><span class="n">kernel</span><span class="p">,</span> <span class="n">axes</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="n">keepdims</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> <span class="k">return</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span> <span class="n">inputs</span><span class="p">,</span> <span class="p">(</span><span class="n">kernel</span> <span class="o">-</span> <span class="n">mean</span><span class="p">)</span> <span class="o">/</span> <span class="n">tf</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">var</span> <span class="o">+</span> <span class="mf">1e-10</span><span class="p">),</span> <span class="n">padding</span><span class="o">=</span><span class="s2">"VALID"</span><span class="p">,</span> <span class="n">strides</span><span class="o">=</span><span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">strides</span><span class="p">),</span> <span class="n">name</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span> <span class="p">)</span> </code></pre></div> <p>The other way to use the <code>Conv.convolution_op()</code> API is to directly call the <code>convolution_op()</code> method from the <code>call()</code> method of a convolution layer subclass. A comparable class implemented using this approach is shown below.</p> <div class="codehilite"><pre><span></span><code><span class="k">class</span> <span class="nc">StandardizedConv2DWithCall</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Conv2D</span><span class="p">):</span> <span class="k">def</span> <span class="nf">call</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">):</span> <span class="n">mean</span><span class="p">,</span> <span class="n">var</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">moments</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">kernel</span><span class="p">,</span> <span class="n">axes</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="n">keepdims</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> <span class="n">result</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">convolution_op</span><span class="p">(</span> <span class="n">inputs</span><span class="p">,</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">kernel</span> <span class="o">-</span> <span class="n">mean</span><span class="p">)</span> <span class="o">/</span> <span class="n">tf</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">var</span> <span class="o">+</span> <span class="mf">1e-10</span><span class="p">)</span> <span class="p">)</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_bias</span><span class="p">:</span> <span class="n">result</span> <span class="o">=</span> <span class="n">result</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">bias</span> <span class="k">return</span> <span class="n">result</span> </code></pre></div> <hr /> <h2 id="example-usage">Example Usage</h2> <p>Both of these layers work as drop-in replacements for <code>Conv2D</code>. The following demonstration performs classification on the MNIST dataset.</p> <div class="codehilite"><pre><span></span><code><span class="c1"># Model / data parameters</span> <span class="n">num_classes</span> <span class="o">=</span> <span class="mi">10</span> <span class="n">input_shape</span> <span class="o">=</span> <span class="p">(</span><span class="mi">28</span><span class="p">,</span> <span class="mi">28</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># the data, split between train and test sets</span> <span class="p">(</span><span class="n">x_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">),</span> <span class="p">(</span><span class="n">x_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">)</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">mnist</span><span class="o">.</span><span class="n">load_data</span><span class="p">()</span> <span class="c1"># Scale images to the [0, 1] range</span> <span class="n">x_train</span> <span class="o">=</span> <span class="n">x_train</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s2">"float32"</span><span class="p">)</span> <span class="o">/</span> <span class="mi">255</span> <span class="n">x_test</span> <span class="o">=</span> <span class="n">x_test</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s2">"float32"</span><span class="p">)</span> <span class="o">/</span> <span class="mi">255</span> <span class="c1"># Make sure images have shape (28, 28, 1)</span> <span class="n">x_train</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span><span class="n">x_train</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="n">x_test</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span><span class="n">x_test</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="s2">"x_train shape:"</span><span class="p">,</span> <span class="n">x_train</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="n">x_train</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="s2">"train samples"</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="n">x_test</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="s2">"test samples"</span><span class="p">)</span> <span class="c1"># convert class vectors to binary class matrices</span> <span class="n">y_train</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">to_categorical</span><span class="p">(</span><span class="n">y_train</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">)</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">to_categorical</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">)</span> <span class="n">model</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span> <span class="p">[</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Input</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="n">input_shape</span><span class="p">),</span> <span class="n">StandardizedConv2DWithCall</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">activation</span><span class="o">=</span><span class="s2">"relu"</span><span class="p">),</span> <span class="n">layers</span><span class="o">.</span><span class="n">MaxPooling2D</span><span class="p">(</span><span class="n">pool_size</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)),</span> <span class="n">StandardizedConv2DWithOverride</span><span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">activation</span><span class="o">=</span><span class="s2">"relu"</span><span class="p">),</span> <span class="n">layers</span><span class="o">.</span><span class="n">MaxPooling2D</span><span class="p">(</span><span class="n">pool_size</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)),</span> <span class="n">layers</span><span class="o">.</span><span class="n">Flatten</span><span class="p">(),</span> <span class="n">layers</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="mf">0.5</span><span class="p">),</span> <span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="s2">"softmax"</span><span class="p">),</span> <span class="p">]</span> <span class="p">)</span> <span class="n">model</span><span class="o">.</span><span class="n">summary</span><span class="p">()</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>x_train shape: (60000, 28, 28, 1) 60000 train samples 10000 test samples </code></pre></div> </div> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold">Model: "sequential"</span> </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓ ┃<span style="font-weight: bold"> Layer (type) </span>┃<span style="font-weight: bold"> Output Shape </span>┃<span style="font-weight: bold"> Param # </span>┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩ │ standardized_conv2d_with_call │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">26</span>, <span style="color: #00af00; text-decoration-color: #00af00">26</span>, <span style="color: #00af00; text-decoration-color: #00af00">32</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">320</span> │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">StandardizedConv2DWithCall</span>) │ │ │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ max_pooling2d (<span style="color: #0087ff; text-decoration-color: #0087ff">MaxPooling2D</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">13</span>, <span style="color: #00af00; text-decoration-color: #00af00">13</span>, <span style="color: #00af00; text-decoration-color: #00af00">32</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ standardized_conv2d_with_overr… │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">11</span>, <span style="color: #00af00; text-decoration-color: #00af00">11</span>, <span style="color: #00af00; text-decoration-color: #00af00">64</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">18,496</span> │ │ (<span style="color: #0087ff; text-decoration-color: #0087ff">StandardizedConv2DWithOverrid…</span> │ │ │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ max_pooling2d_1 (<span style="color: #0087ff; text-decoration-color: #0087ff">MaxPooling2D</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">5</span>, <span style="color: #00af00; text-decoration-color: #00af00">5</span>, <span style="color: #00af00; text-decoration-color: #00af00">64</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ flatten (<span style="color: #0087ff; text-decoration-color: #0087ff">Flatten</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">1600</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dropout (<span style="color: #0087ff; text-decoration-color: #0087ff">Dropout</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">1600</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">0</span> │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dense (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) │ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">10</span>) │ <span style="color: #00af00; text-decoration-color: #00af00">16,010</span> │ └─────────────────────────────────┴───────────────────────────┴────────────┘ </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Total params: </span><span style="color: #00af00; text-decoration-color: #00af00">34,826</span> (136.04 KB) </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Trainable params: </span><span style="color: #00af00; text-decoration-color: #00af00">34,826</span> (136.04 KB) </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Non-trainable params: </span><span style="color: #00af00; text-decoration-color: #00af00">0</span> (0.00 B) </pre> <div class="codehilite"><pre><span></span><code><span class="n">batch_size</span> <span class="o">=</span> <span class="mi">128</span> <span class="n">epochs</span> <span class="o">=</span> <span class="mi">5</span> <span class="n">model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">loss</span><span class="o">=</span><span class="s2">"categorical_crossentropy"</span><span class="p">,</span> <span class="n">optimizer</span><span class="o">=</span><span class="s2">"adam"</span><span class="p">,</span> <span class="n">metrics</span><span class="o">=</span><span class="p">[</span><span class="s2">"accuracy"</span><span class="p">])</span> <span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">x_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">validation_split</span><span class="o">=</span><span class="mf">0.1</span><span class="p">)</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Epoch 1/5 64/422 ━━━[37m━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.4439 - loss: 13.1274 WARNING: All log messages before absl::InitializeLog() is called are written to STDERR I0000 00:00:1699557098.952525 26800 device_compiler.h:187] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process. 422/422 ━━━━━━━━━━━━━━━━━━━━ 10s 14ms/step - accuracy: 0.7277 - loss: 4.5649 - val_accuracy: 0.9690 - val_loss: 0.1140 Epoch 2/5 422/422 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - accuracy: 0.9311 - loss: 0.2493 - val_accuracy: 0.9798 - val_loss: 0.0795 Epoch 3/5 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9531 - loss: 0.1655 - val_accuracy: 0.9838 - val_loss: 0.0610 Epoch 4/5 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9652 - loss: 0.1201 - val_accuracy: 0.9847 - val_loss: 0.0577 Epoch 5/5 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9687 - loss: 0.1059 - val_accuracy: 0.9870 - val_loss: 0.0525 <keras.src.callbacks.history.History at 0x7fed258da200> </code></pre></div> </div> <hr /> <h2 id="conclusion">Conclusion</h2> <p>The <code>Conv.convolution_op()</code> API provides an easy and readable way to implement custom convolution layers. A <code>StandardizedConvolution</code> implementation using the API is quite terse, consisting of only four lines of code.</p> </div> <div class='k-outline'> <div class='k-outline-depth-1'> <a href='#customizing-the-convolution-operation-of-a-conv2d-layer'>Customizing the convolution operation of a Conv2D layer</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#introduction'>Introduction</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#a-simple-standardizedconv2d-implementation'>A Simple <code>StandardizedConv2D</code> implementation</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#example-usage'>Example Usage</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#conclusion'>Conclusion</a> </div> </div> </div> </div> </div> </body> <footer style="float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb;"> <a href="https://policies.google.com/terms">Terms</a> | <a href="https://policies.google.com/privacy">Privacy</a> </footer> </html>