CINXE.COM

函数 - 维基百科,自由的百科全书

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="zh" dir="ltr"> <head> <meta charset="UTF-8"> <title>函数 - 维基百科,自由的百科全书</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )zhwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"zh", "wgMonthNames":["","1月","2月","3月","4月","5月","6月","7月","8月","9月","10月","11月","12月"],"wgRequestId":"77543efa-f18f-485c-b037-f841a2c90288","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"函数","wgTitle":"函数","wgCurRevisionId":86026104,"wgRevisionId":86026104,"wgArticleId":20811,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["有图表的页面","图表被禁用的页面","CS1英语来源 (en)","含有英語的條目","含有內容需登入查看的頁面","包含BNF标识符的维基百科条目","包含BNFdata标识符的维基百科条目","包含GND标识符的维基百科条目","包含J9U标识符的维基百科条目","包含LCCN标识符的维基百科条目","包含NDL标识符的维基百科条目","包含NKC标识符的维基百科条目","包含AAT标识符的维基百科条目","集合論基本概念","函数","初等数学", "数学关系"],"wgPageViewLanguage":"zh","wgPageContentLanguage":"zh","wgPageContentModel":"wikitext","wgRelevantPageName":"函数","wgRelevantArticleId":20811,"wgUserVariant":"zh","wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"zh","pageLanguageDir":"ltr","pageVariantFallbacks":["zh-hans","zh-hant","zh-cn","zh-tw","zh-hk","zh-sg","zh-mo","zh-my"]},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11348", "wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.large-font":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site", "mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.edit0","ext.gadget.WikiMiniAtlas","ext.gadget.UnihanTooltips","ext.gadget.Difflink","ext.gadget.pseudonamespace-UI","ext.gadget.SpecialWikitext","ext.gadget.switcher","ext.gadget.VariantAlly","ext.gadget.AdvancedSiteNotices","ext.gadget.hideConversionTab","ext.gadget.ilhpp","ext.gadget.noteTA","ext.gadget.NavFrame","ext.gadget.collapsibleTables","ext.gadget.scrollUpButton","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=zh&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=ext.gadget.large-font&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Function_machine2.svg/1200px-Function_machine2.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1187"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Function_machine2.svg/800px-Function_machine2.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="792"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Function_machine2.svg/640px-Function_machine2.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="633"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="函数 - 维基百科,自由的百科全书"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//zh.m.wikipedia.org/wiki/%E5%87%BD%E6%95%B0"> <link rel="alternate" type="application/x-wiki" title="编辑本页" href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (zh)"> <link rel="EditURI" type="application/rsd+xml" href="//zh.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://zh.wikipedia.org/wiki/%E5%87%BD%E6%95%B0"> <link rel="alternate" hreflang="zh" href="https://zh.wikipedia.org/wiki/%E5%87%BD%E6%95%B0"> <link rel="alternate" hreflang="zh-Hans" href="https://zh.wikipedia.org/zh-hans/%E5%87%BD%E6%95%B0"> <link rel="alternate" hreflang="zh-Hans-CN" href="https://zh.wikipedia.org/zh-cn/%E5%87%BD%E6%95%B0"> <link rel="alternate" hreflang="zh-Hans-MY" href="https://zh.wikipedia.org/zh-my/%E5%87%BD%E6%95%B0"> <link rel="alternate" hreflang="zh-Hans-SG" href="https://zh.wikipedia.org/zh-sg/%E5%87%BD%E6%95%B0"> <link rel="alternate" hreflang="zh-Hant" href="https://zh.wikipedia.org/zh-hant/%E5%87%BD%E6%95%B0"> <link rel="alternate" hreflang="zh-Hant-HK" href="https://zh.wikipedia.org/zh-hk/%E5%87%BD%E6%95%B0"> <link rel="alternate" hreflang="zh-Hant-MO" href="https://zh.wikipedia.org/zh-mo/%E5%87%BD%E6%95%B0"> <link rel="alternate" hreflang="zh-Hant-TW" href="https://zh.wikipedia.org/zh-tw/%E5%87%BD%E6%95%B0"> <link rel="alternate" hreflang="x-default" href="https://zh.wikipedia.org/wiki/%E5%87%BD%E6%95%B0"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.zh"> <link rel="alternate" type="application/atom+xml" title="Wikipedia的Atom feed" href="/w/index.php?title=Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-函数 rootpage-函数 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">跳转到内容</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="主菜单" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="主菜单" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">主菜单</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">主菜单</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">隐藏</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 导航 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" title="访问首页​[z]" accesskey="z"><span>首页</span></a></li><li id="n-indexpage" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%88%86%E7%B1%BB%E7%B4%A2%E5%BC%95" title="以分类索引搜寻中文维基百科"><span>分类索引</span></a></li><li id="n-Featured_content" class="mw-list-item"><a href="/wiki/Portal:%E7%89%B9%E8%89%B2%E5%85%A7%E5%AE%B9" title="查看中文维基百科的特色内容"><span>特色内容</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:%E6%96%B0%E8%81%9E%E5%8B%95%E6%85%8B" title="提供当前新闻事件的背景资料"><span>新闻动态</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9" title="列出维基百科中的最近修改​[r]" accesskey="r"><span>最近更改</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:%E9%9A%8F%E6%9C%BA%E9%A1%B5%E9%9D%A2" title="随机载入一个页面​[x]" accesskey="x"><span>随机条目</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:%E7%89%B9%E6%AE%8A%E9%A1%B5%E9%9D%A2"><span>特殊页面</span></a></li> </ul> </div> </div> <div id="p-help" class="vector-menu mw-portlet mw-portlet-help" > <div class="vector-menu-heading"> 帮助 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:%E7%9B%AE%E5%BD%95" title="寻求帮助"><span>帮助</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%A4%BE%E7%BE%A4%E9%A6%96%E9%A1%B5" title="关于本计划、你可以做什么、应该如何做"><span>维基社群</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/Wikipedia:%E6%96%B9%E9%87%9D%E8%88%87%E6%8C%87%E5%BC%95" title="查看维基百科的方针和指引"><span>方针与指引</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:%E4%BA%92%E5%8A%A9%E5%AE%A2%E6%A0%88" title="参与维基百科社群的讨论"><span>互助客栈</span></a></li><li id="n-Information_desk" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%9F%A5%E8%AF%86%E9%97%AE%E7%AD%94" title="解答任何与维基百科无关的问题的地方"><span>知识问答</span></a></li><li id="n-conversion" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%AD%97%E8%AF%8D%E8%BD%AC%E6%8D%A2" title="提出字词转换请求"><span>字词转换</span></a></li><li id="n-IRC" class="mw-list-item"><a href="/wiki/Wikipedia:IRC%E8%81%8A%E5%A4%A9%E9%A2%91%E9%81%93"><span>IRC即时聊天</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:%E8%81%94%E7%BB%9C%E6%88%91%E4%BB%AC" title="如何联络维基百科"><span>联络我们</span></a></li><li id="n-about" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E" title="查看维基百科的简介"><span>关于维基百科</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="维基百科" src="/static/images/mobile/copyright/wikipedia-wordmark-zh.svg" style="width: 6.5625em; height: 1.375em;"> <img class="mw-logo-tagline" alt="自由的百科全书" src="/static/images/mobile/copyright/wikipedia-tagline-zh.svg" width="103" height="14" style="width: 6.4375em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:%E6%90%9C%E7%B4%A2" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="搜索维基百科​[f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>搜索</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="搜索维基百科" aria-label="搜索维基百科" autocapitalize="sentences" title="搜索维基百科​[f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:搜索"> </div> <button class="cdx-button cdx-search-input__end-button">搜索</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="个人工具"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="更改页面字体大小、宽度和颜色的外观" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="外观" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">外观</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=zh.wikipedia.org&amp;uselang=zh" class=""><span>资助维基百科</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&amp;returnto=%E5%87%BD%E6%95%B0" title="我们推荐您创建账号并登录,但这不是强制性的" class=""><span>创建账号</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&amp;returnto=%E5%87%BD%E6%95%B0" title="建议你登录,尽管并非必须。​[o]" accesskey="o" class=""><span>登录</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="更多选项" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="个人工具" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">个人工具</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="用户菜单" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=zh.wikipedia.org&amp;uselang=zh"><span>资助维基百科</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&amp;returnto=%E5%87%BD%E6%95%B0" title="我们推荐您创建账号并登录,但这不是强制性的"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>创建账号</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&amp;returnto=%E5%87%BD%E6%95%B0" title="建议你登录,尽管并非必须。​[o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>登录</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 未登录编辑者的页面 <a href="/wiki/Help:%E6%96%B0%E6%89%8B%E5%85%A5%E9%97%A8" aria-label="了解有关编辑的更多信息"><span>了解详情</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%B4%A1%E7%8C%AE" title="来自此IP地址的编辑列表​[y]" accesskey="y"><span>贡献</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%AE%A8%E8%AE%BA%E9%A1%B5" title="对于来自此IP地址编辑的讨论​[n]" accesskey="n"><span>讨论</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="目录" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">目录</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">隐藏</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">序言</div> </a> </li> <li id="toc-簡介" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#簡介"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>簡介</span> </div> </a> <ul id="toc-簡介-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-历史" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#历史"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>历史</span> </div> </a> <ul id="toc-历史-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-正式定義" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#正式定義"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>正式定義</span> </div> </a> <button aria-controls="toc-正式定義-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关正式定義子章节</span> </button> <ul id="toc-正式定義-sublist" class="vector-toc-list"> <li id="toc-函數值的簡記" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#函數值的簡記"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>函數值的簡記</span> </div> </a> <ul id="toc-函數值的簡記-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-定義域與值域" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#定義域與值域"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>定義域與值域</span> </div> </a> <ul id="toc-定義域與值域-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-一對一" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#一對一"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>一對一</span> </div> </a> <ul id="toc-一對一-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-滿射" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#滿射"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>滿射</span> </div> </a> <ul id="toc-滿射-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-函數的簡記" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#函數的簡記"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>函數的簡記</span> </div> </a> <button aria-controls="toc-函數的簡記-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关函數的簡記子章节</span> </button> <ul id="toc-函數的簡記-sublist" class="vector-toc-list"> <li id="toc-函數記號" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#函數記號"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>函數記號</span> </div> </a> <ul id="toc-函數記號-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-箭號表示" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#箭號表示"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>箭號表示</span> </div> </a> <ul id="toc-箭號表示-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-間隔號表示" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#間隔號表示"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>間隔號表示</span> </div> </a> <ul id="toc-間隔號表示-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-函数图形" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#函数图形"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>函数图形</span> </div> </a> <button aria-controls="toc-函数图形-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关函数图形子章节</span> </button> <ul id="toc-函数图形-sublist" class="vector-toc-list"> <li id="toc-實函数的判别" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#實函数的判别"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>實函数的判别</span> </div> </a> <ul id="toc-實函数的判别-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-像和原像" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#像和原像"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>像和原像</span> </div> </a> <ul id="toc-像和原像-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-函數的限制及擴張" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#函數的限制及擴張"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>函數的限制及擴張</span> </div> </a> <ul id="toc-函數的限制及擴張-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-点态运算" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#点态运算"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>点态运算</span> </div> </a> <ul id="toc-点态运算-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-範例" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#範例"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>範例</span> </div> </a> <ul id="toc-範例-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-分類" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#分類"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>分類</span> </div> </a> <ul id="toc-分類-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-范畴論觀點" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#范畴論觀點"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>范畴論觀點</span> </div> </a> <ul id="toc-范畴論觀點-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-註釋" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#註釋"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>註釋</span> </div> </a> <ul id="toc-註釋-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-參考文獻" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#參考文獻"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>參考文獻</span> </div> </a> <ul id="toc-參考文獻-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-延伸閱讀" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#延伸閱讀"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>延伸閱讀</span> </div> </a> <ul id="toc-延伸閱讀-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-外部链接" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#外部链接"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>外部链接</span> </div> </a> <ul id="toc-外部链接-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="目录" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="目录" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="开关目录" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">开关目录</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">函数</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="前往另一种语言写成的文章。119种语言可用" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-119" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">119种语言</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Funksie" title="Funksie – 南非荷兰语" lang="af" hreflang="af" data-title="Funksie" data-language-autonym="Afrikaans" data-language-local-name="南非荷兰语" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Funktion_(Mathematik)" title="Funktion (Mathematik) – 瑞士德语" lang="gsw" hreflang="gsw" data-title="Funktion (Mathematik)" data-language-autonym="Alemannisch" data-language-local-name="瑞士德语" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8A%A0%E1%88%B5%E1%88%A8%E1%8A%AB%E1%89%A2" title="አስረካቢ – 阿姆哈拉语" lang="am" hreflang="am" data-title="አስረካቢ" data-language-autonym="አማርኛ" data-language-local-name="阿姆哈拉语" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Funci%C3%B3n_matematica" title="Función matematica – 阿拉贡语" lang="an" hreflang="an" data-title="Función matematica" data-language-autonym="Aragonés" data-language-local-name="阿拉贡语" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D8%A7%D9%84%D8%A9" title="دالة – 阿拉伯语" lang="ar" hreflang="ar" data-title="دالة" data-language-autonym="العربية" data-language-local-name="阿拉伯语" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D8%AF%D8%A7%D9%84%D8%A9" title="دالة – 摩洛哥阿拉伯文" lang="ary" hreflang="ary" data-title="دالة" data-language-autonym="الدارجة" data-language-local-name="摩洛哥阿拉伯文" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Funci%C3%B3n_matem%C3%A1tica" title="Función matemática – 阿斯图里亚斯语" lang="ast" hreflang="ast" data-title="Función matemática" data-language-autonym="Asturianu" data-language-local-name="阿斯图里亚斯语" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Funksiya_(riyaziyyat)" title="Funksiya (riyaziyyat) – 阿塞拜疆语" lang="az" hreflang="az" data-title="Funksiya (riyaziyyat)" data-language-autonym="Azərbaycanca" data-language-local-name="阿塞拜疆语" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – 巴什基尔语" lang="ba" hreflang="ba" data-title="Функция (математика)" data-language-autonym="Башҡортса" data-language-local-name="巴什基尔语" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Funkc%C4%97j%C4%97" title="Funkcėjė – 薩莫吉希亞文" lang="sgs" hreflang="sgs" data-title="Funkcėjė" data-language-autonym="Žemaitėška" data-language-local-name="薩莫吉希亞文" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%8F_(%D0%BC%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0)" title="Функцыя (матэматыка) – 白俄罗斯语" lang="be" hreflang="be" data-title="Функцыя (матэматыка)" data-language-autonym="Беларуская" data-language-local-name="白俄罗斯语" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%8F_(%D0%BC%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0)" title="Функцыя (матэматыка) – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Функцыя (матэматыка)" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Функция – 保加利亚语" lang="bg" hreflang="bg" data-title="Функция" data-language-autonym="Български" data-language-local-name="保加利亚语" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%AB%E0%A4%82%E0%A4%95%E0%A5%8D%E0%A4%B6%E0%A4%A8_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4)" title="फंक्शन (गणित) – Bhojpuri" lang="bh" hreflang="bh" data-title="फंक्शन (गणित)" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%85%E0%A6%AA%E0%A7%87%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%95_(%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4)" title="অপেক্ষক (গণিত) – 孟加拉语" lang="bn" hreflang="bn" data-title="অপেক্ষক (গণিত)" data-language-autonym="বাংলা" data-language-local-name="孟加拉语" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – 波斯尼亚语" lang="bs" hreflang="bs" data-title="Funkcija (matematika)" data-language-autonym="Bosanski" data-language-local-name="波斯尼亚语" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Funci%C3%B3" title="Funció – 加泰罗尼亚语" lang="ca" hreflang="ca" data-title="Funció" data-language-autonym="Català" data-language-local-name="加泰罗尼亚语" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%81%D8%A7%D9%86%DA%A9%D8%B4%D9%86_(%D9%85%D8%A7%D8%AA%D9%85%D8%A7%D8%AA%DB%8C%DA%A9)" title="فانکشن (ماتماتیک) – 中库尔德语" lang="ckb" hreflang="ckb" data-title="فانکشن (ماتماتیک)" data-language-autonym="کوردی" data-language-local-name="中库尔德语" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Funkce_(matematika)" title="Funkce (matematika) – 捷克语" lang="cs" hreflang="cs" data-title="Funkce (matematika)" data-language-autonym="Čeština" data-language-local-name="捷克语" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функци (математика) – 楚瓦什语" lang="cv" hreflang="cv" data-title="Функци (математика)" data-language-autonym="Чӑвашла" data-language-local-name="楚瓦什语" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Ffwythiant" title="Ffwythiant – 威尔士语" lang="cy" hreflang="cy" data-title="Ffwythiant" data-language-autonym="Cymraeg" data-language-local-name="威尔士语" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Funktion_(matematik)" title="Funktion (matematik) – 丹麦语" lang="da" hreflang="da" data-title="Funktion (matematik)" data-language-autonym="Dansk" data-language-local-name="丹麦语" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Funktion_(Mathematik)" title="Funktion (Mathematik) – 德语" lang="de" hreflang="de" data-title="Funktion (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="德语" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%85%CE%BD%CE%AC%CF%81%CF%84%CE%B7%CF%83%CE%B7" title="Συνάρτηση – 希腊语" lang="el" hreflang="el" data-title="Συνάρτηση" data-language-autonym="Ελληνικά" data-language-local-name="希腊语" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Function_(mathematics)" title="Function (mathematics) – 英语" lang="en" hreflang="en" data-title="Function (mathematics)" data-language-autonym="English" data-language-local-name="英语" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Funkcio_(matematiko)" title="Funkcio (matematiko) – 世界语" lang="eo" hreflang="eo" data-title="Funkcio (matematiko)" data-language-autonym="Esperanto" data-language-local-name="世界语" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Funci%C3%B3n_(matem%C3%A1tica)" title="Función (matemática) – 西班牙语" lang="es" hreflang="es" data-title="Función (matemática)" data-language-autonym="Español" data-language-local-name="西班牙语" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Funktsioon_(matemaatika)" title="Funktsioon (matemaatika) – 爱沙尼亚语" lang="et" hreflang="et" data-title="Funktsioon (matemaatika)" data-language-autonym="Eesti" data-language-local-name="爱沙尼亚语" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Funtzio_(matematika)" title="Funtzio (matematika) – 巴斯克语" lang="eu" hreflang="eu" data-title="Funtzio (matematika)" data-language-autonym="Euskara" data-language-local-name="巴斯克语" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D8%A8%D8%B9" title="تابع – 波斯语" lang="fa" hreflang="fa" data-title="تابع" data-language-autonym="فارسی" data-language-local-name="波斯语" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Funktio" title="Funktio – 芬兰语" lang="fi" hreflang="fi" data-title="Funktio" data-language-autonym="Suomi" data-language-local-name="芬兰语" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fj mw-list-item"><a href="https://fj.wikipedia.org/wiki/Cakacaka_(fika)" title="Cakacaka (fika) – 斐济语" lang="fj" hreflang="fj" data-title="Cakacaka (fika)" data-language-autonym="Na Vosa Vakaviti" data-language-local-name="斐济语" class="interlanguage-link-target"><span>Na Vosa Vakaviti</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Funksj%C3%B3n" title="Funksjón – 法罗语" lang="fo" hreflang="fo" data-title="Funksjón" data-language-autonym="Føroyskt" data-language-local-name="法罗语" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Fonction_(math%C3%A9matiques)" title="Fonction (mathématiques) – 法语" lang="fr" hreflang="fr" data-title="Fonction (mathématiques)" data-language-autonym="Français" data-language-local-name="法语" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Funksion" title="Funksion – 北弗里西亚语" lang="frr" hreflang="frr" data-title="Funksion" data-language-autonym="Nordfriisk" data-language-local-name="北弗里西亚语" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Feidhm_(matamaitic)" title="Feidhm (matamaitic) – 爱尔兰语" lang="ga" hreflang="ga" data-title="Feidhm (matamaitic)" data-language-autonym="Gaeilge" data-language-local-name="爱尔兰语" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E5%87%BD%E6%95%B8" title="函數 – 赣语" lang="gan" hreflang="gan" data-title="函數" data-language-autonym="贛語" data-language-local-name="赣语" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Fonksyon_(mat%C3%A9matik)" title="Fonksyon (matématik) – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Fonksyon (matématik)" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Funci%C3%B3n" title="Función – 加利西亚语" lang="gl" hreflang="gl" data-title="Función" data-language-autonym="Galego" data-language-local-name="加利西亚语" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%94" title="פונקציה – 希伯来语" lang="he" hreflang="he" data-title="פונקציה" data-language-autonym="עברית" data-language-local-name="希伯来语" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AB%E0%A4%B2%E0%A4%A8" title="फलन – 印地语" lang="hi" hreflang="hi" data-title="फलन" data-language-autonym="हिन्दी" data-language-local-name="印地语" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Function" title="Function – 斐濟印地文" lang="hif" hreflang="hif" data-title="Function" data-language-autonym="Fiji Hindi" data-language-local-name="斐濟印地文" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – 克罗地亚语" lang="hr" hreflang="hr" data-title="Funkcija (matematika)" data-language-autonym="Hrvatski" data-language-local-name="克罗地亚语" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/F%C3%BCggv%C3%A9ny_(matematika)" title="Függvény (matematika) – 匈牙利语" lang="hu" hreflang="hu" data-title="Függvény (matematika)" data-language-autonym="Magyar" data-language-local-name="匈牙利语" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%96%D5%B8%D6%82%D5%B6%D5%AF%D6%81%D5%AB%D5%A1_(%D5%B4%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1)" title="Ֆունկցիա (մաթեմատիկա) – 亚美尼亚语" lang="hy" hreflang="hy" data-title="Ֆունկցիա (մաթեմատիկա)" data-language-autonym="Հայերեն" data-language-local-name="亚美尼亚语" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Function_(mathematica)" title="Function (mathematica) – 国际语" lang="ia" hreflang="ia" data-title="Function (mathematica)" data-language-autonym="Interlingua" data-language-local-name="国际语" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Fungsi_(matematika)" title="Fungsi (matematika) – 印度尼西亚语" lang="id" hreflang="id" data-title="Fungsi (matematika)" data-language-autonym="Bahasa Indonesia" data-language-local-name="印度尼西亚语" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Funciono" title="Funciono – 伊多语" lang="io" hreflang="io" data-title="Funciono" data-language-autonym="Ido" data-language-local-name="伊多语" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Fall_(st%C3%A6r%C3%B0fr%C3%A6%C3%B0i)" title="Fall (stærðfræði) – 冰岛语" lang="is" hreflang="is" data-title="Fall (stærðfræði)" data-language-autonym="Íslenska" data-language-local-name="冰岛语" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Funzione_(matematica)" title="Funzione (matematica) – 意大利语" lang="it" hreflang="it" data-title="Funzione (matematica)" data-language-autonym="Italiano" data-language-local-name="意大利语" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%96%A2%E6%95%B0_(%E6%95%B0%E5%AD%A6)" title="関数 (数学) – 日语" lang="ja" hreflang="ja" data-title="関数 (数学)" data-language-autonym="日本語" data-language-local-name="日语" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Fongshan_(matimatix)" title="Fongshan (matimatix) – 牙買加克里奧爾英文" lang="jam" hreflang="jam" data-title="Fongshan (matimatix)" data-language-autonym="Patois" data-language-local-name="牙買加克里奧爾英文" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/fancu" title="fancu – 逻辑语" lang="jbo" hreflang="jbo" data-title="fancu" data-language-autonym="La .lojban." data-language-local-name="逻辑语" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A4%E1%83%A3%E1%83%9C%E1%83%A5%E1%83%AA%E1%83%98%E1%83%90_(%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%90)" title="ფუნქცია (მათემატიკა) – 格鲁吉亚语" lang="ka" hreflang="ka" data-title="ფუნქცია (მათემატიკა)" data-language-autonym="ქართული" data-language-local-name="格鲁吉亚语" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Tas%C9%A3ent_(tusnakt)" title="Tasɣent (tusnakt) – 卡拜尔语" lang="kab" hreflang="kab" data-title="Tasɣent (tusnakt)" data-language-autonym="Taqbaylit" data-language-local-name="卡拜尔语" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/K%C9%A9lab%C9%A9m" title="Kɩlabɩm – Kabiye" lang="kbp" hreflang="kbp" data-title="Kɩlabɩm" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – 哈萨克语" lang="kk" hreflang="kk" data-title="Функция (математика)" data-language-autonym="Қазақша" data-language-local-name="哈萨克语" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%95%A8%EC%88%98" title="함수 – 韩语" lang="ko" hreflang="ko" data-title="함수" data-language-autonym="한국어" data-language-local-name="韩语" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Functio" title="Functio – 拉丁语" lang="la" hreflang="la" data-title="Functio" data-language-autonym="Latina" data-language-local-name="拉丁语" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Funktioun_(Mathematik)" title="Funktioun (Mathematik) – 卢森堡语" lang="lb" hreflang="lb" data-title="Funktioun (Mathematik)" data-language-autonym="Lëtzebuergesch" data-language-local-name="卢森堡语" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Fonzion_(matematega)" title="Fonzion (matematega) – 伦巴第语" lang="lmo" hreflang="lmo" data-title="Fonzion (matematega)" data-language-autonym="Lombard" data-language-local-name="伦巴第语" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – 立陶宛语" lang="lt" hreflang="lt" data-title="Funkcija (matematika)" data-language-autonym="Lietuvių" data-language-local-name="立陶宛语" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Funkcija" title="Funkcija – 拉脱维亚语" lang="lv" hreflang="lv" data-title="Funkcija" data-language-autonym="Latviešu" data-language-local-name="拉脱维亚语" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функција (математика) – 马其顿语" lang="mk" hreflang="mk" data-title="Функција (математика)" data-language-autonym="Македонски" data-language-local-name="马其顿语" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AB%E0%B4%99%E0%B5%8D%E0%B4%B7%E0%B5%BB" title="ഫങ്ഷൻ – 马拉雅拉姆语" lang="ml" hreflang="ml" data-title="ഫങ്ഷൻ" data-language-autonym="മലയാളം" data-language-local-name="马拉雅拉姆语" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA)" title="Функц (математик) – 蒙古语" lang="mn" hreflang="mn" data-title="Функц (математик)" data-language-autonym="Монгол" data-language-local-name="蒙古语" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AB%E0%A4%B2_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4)" title="फल (गणित) – 马拉地语" lang="mr" hreflang="mr" data-title="फल (गणित)" data-language-autonym="मराठी" data-language-local-name="马拉地语" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Fungsi" title="Fungsi – 马来语" lang="ms" hreflang="ms" data-title="Fungsi" data-language-autonym="Bahasa Melayu" data-language-local-name="马来语" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Funzjonijiet_(matematika)" title="Funzjonijiet (matematika) – 马耳他语" lang="mt" hreflang="mt" data-title="Funzjonijiet (matematika)" data-language-autonym="Malti" data-language-local-name="马耳他语" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%96%E1%80%94%E1%80%BA%E1%80%9B%E1%80%BE%E1%80%84%E1%80%BA" title="ဖန်ရှင် – 缅甸语" lang="my" hreflang="my" data-title="ဖန်ရှင်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="缅甸语" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Afbillen_(Mathematik)" title="Afbillen (Mathematik) – 低地德语" lang="nds" hreflang="nds" data-title="Afbillen (Mathematik)" data-language-autonym="Plattdüütsch" data-language-local-name="低地德语" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Functie_(wiskunde)" title="Functie (wiskunde) – 荷兰语" lang="nl" hreflang="nl" data-title="Functie (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="荷兰语" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Matematisk_funksjon" title="Matematisk funksjon – 挪威尼诺斯克语" lang="nn" hreflang="nn" data-title="Matematisk funksjon" data-language-autonym="Norsk nynorsk" data-language-local-name="挪威尼诺斯克语" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Funksjon_(matematikk)" title="Funksjon (matematikk) – 书面挪威语" lang="nb" hreflang="nb" data-title="Funksjon (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="书面挪威语" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Aplicacion_(matematicas)" title="Aplicacion (matematicas) – 奥克语" lang="oc" hreflang="oc" data-title="Aplicacion (matematicas)" data-language-autonym="Occitan" data-language-local-name="奥克语" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Warroomii_(faankishinii)" title="Warroomii (faankishinii) – 奥罗莫语" lang="om" hreflang="om" data-title="Warroomii (faankishinii)" data-language-autonym="Oromoo" data-language-local-name="奥罗莫语" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AB%E0%A9%B0%E0%A8%95%E0%A8%B8%E0%A8%BC%E0%A8%A8_(%E0%A8%B9%E0%A8%BF%E0%A8%B8%E0%A8%BE%E0%A8%AC)" title="ਫੰਕਸ਼ਨ (ਹਿਸਾਬ) – 旁遮普语" lang="pa" hreflang="pa" data-title="ਫੰਕਸ਼ਨ (ਹਿਸਾਬ)" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="旁遮普语" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Funkcja" title="Funkcja – 波兰语" lang="pl" hreflang="pl" data-title="Funkcja" data-language-autonym="Polski" data-language-local-name="波兰语" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Fonsion" title="Fonsion – 皮埃蒙特文" lang="pms" hreflang="pms" data-title="Fonsion" data-language-autonym="Piemontèis" data-language-local-name="皮埃蒙特文" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%81%D9%86%DA%A9%D8%B4%D9%86" title="فنکشن – Western Punjabi" lang="pnb" hreflang="pnb" data-title="فنکشن" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3o_(matem%C3%A1tica)" title="Função (matemática) – 葡萄牙语" lang="pt" hreflang="pt" data-title="Função (matemática)" data-language-autonym="Português" data-language-local-name="葡萄牙语" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Kinraysuyu" title="Kinraysuyu – 克丘亚语" lang="qu" hreflang="qu" data-title="Kinraysuyu" data-language-autonym="Runa Simi" data-language-local-name="克丘亚语" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Func%C8%9Bie" title="Funcție – 罗马尼亚语" lang="ro" hreflang="ro" data-title="Funcție" data-language-autonym="Română" data-language-local-name="罗马尼亚语" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – 俄语" lang="ru" hreflang="ru" data-title="Функция (математика)" data-language-autonym="Русский" data-language-local-name="俄语" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F._%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D1%87%D1%8D%D1%80%D1%87%D0%B8%D1%82%D1%8D,_%D1%81%D1%83%D0%BE%D0%BB%D1%82%D0%B0%D0%BB%D0%B0%D1%80%D1%8B%D0%BD_%D1%82%D2%AF%D0%BC%D1%81%D1%8D%D1%8D%D0%BD%D1%8D" title="Функция. Функция чэрчитэ, суолталарын түмсээнэ – 萨哈语" lang="sah" hreflang="sah" data-title="Функция. Функция чэрчитэ, суолталарын түмсээнэ" data-language-autonym="Саха тыла" data-language-local-name="萨哈语" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Funzioni_(matim%C3%A0tica)" title="Funzioni (matimàtica) – 西西里语" lang="scn" hreflang="scn" data-title="Funzioni (matimàtica)" data-language-autonym="Sicilianu" data-language-local-name="西西里语" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Function_(mathematics)" title="Function (mathematics) – 苏格兰语" lang="sco" hreflang="sco" data-title="Function (mathematics)" data-language-autonym="Scots" data-language-local-name="苏格兰语" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – 塞尔维亚-克罗地亚语" lang="sh" hreflang="sh" data-title="Funkcija (matematika)" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="塞尔维亚-克罗地亚语" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Function_(mathematics)" title="Function (mathematics) – Simple English" lang="en-simple" hreflang="en-simple" data-title="Function (mathematics)" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Zobrazenie_(matematika)" title="Zobrazenie (matematika) – 斯洛伐克语" lang="sk" hreflang="sk" data-title="Zobrazenie (matematika)" data-language-autonym="Slovenčina" data-language-local-name="斯洛伐克语" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – 斯洛文尼亚语" lang="sl" hreflang="sl" data-title="Funkcija (matematika)" data-language-autonym="Slovenščina" data-language-local-name="斯洛文尼亚语" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Funktio" title="Funktio – 伊纳里萨米语" lang="smn" hreflang="smn" data-title="Funktio" data-language-autonym="Anarâškielâ" data-language-local-name="伊纳里萨米语" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Murimo_(Masvomhu)" title="Murimo (Masvomhu) – 绍纳语" lang="sn" hreflang="sn" data-title="Murimo (Masvomhu)" data-language-autonym="ChiShona" data-language-local-name="绍纳语" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Shaqada_(xisaabta)" title="Shaqada (xisaabta) – 索马里语" lang="so" hreflang="so" data-title="Shaqada (xisaabta)" data-language-autonym="Soomaaliga" data-language-local-name="索马里语" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Funksioni" title="Funksioni – 阿尔巴尼亚语" lang="sq" hreflang="sq" data-title="Funksioni" data-language-autonym="Shqip" data-language-local-name="阿尔巴尼亚语" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функција (математика) – 塞尔维亚语" lang="sr" hreflang="sr" data-title="Функција (математика)" data-language-autonym="Српски / srpski" data-language-local-name="塞尔维亚语" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Fungsi_(matematika)" title="Fungsi (matematika) – 巽他语" lang="su" hreflang="su" data-title="Fungsi (matematika)" data-language-autonym="Sunda" data-language-local-name="巽他语" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Funktion" title="Funktion – 瑞典语" lang="sv" hreflang="sv" data-title="Funktion" data-language-autonym="Svenska" data-language-local-name="瑞典语" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Funkcyjo" title="Funkcyjo – 西里西亚语" lang="szl" hreflang="szl" data-title="Funkcyjo" data-language-autonym="Ślůnski" data-language-local-name="西里西亚语" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%AA%E0%AF%81" title="சார்பு – 泰米尔语" lang="ta" hreflang="ta" data-title="சார்பு" data-language-autonym="தமிழ்" data-language-local-name="泰米尔语" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9F%E0%B8%B1%E0%B8%87%E0%B8%81%E0%B9%8C%E0%B8%8A%E0%B8%B1%E0%B8%99_(%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C)" title="ฟังก์ชัน (คณิตศาสตร์) – 泰语" lang="th" hreflang="th" data-title="ฟังก์ชัน (คณิตศาสตร์)" data-language-autonym="ไทย" data-language-local-name="泰语" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Punsiyon_(matematika)" title="Punsiyon (matematika) – 他加禄语" lang="tl" hreflang="tl" data-title="Punsiyon (matematika)" data-language-autonym="Tagalog" data-language-local-name="他加禄语" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Fonksiyon" title="Fonksiyon – 土耳其语" lang="tr" hreflang="tr" data-title="Fonksiyon" data-language-autonym="Türkçe" data-language-local-name="土耳其语" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – 鞑靼语" lang="tt" hreflang="tt" data-title="Функция (математика)" data-language-autonym="Татарча / tatarça" data-language-local-name="鞑靼语" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-udm mw-list-item"><a href="https://udm.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – 乌德穆尔特语" lang="udm" hreflang="udm" data-title="Функция (математика)" data-language-autonym="Удмурт" data-language-local-name="乌德穆尔特语" class="interlanguage-link-target"><span>Удмурт</span></a></li><li class="interlanguage-link interwiki-ug mw-list-item"><a href="https://ug.wikipedia.org/wiki/%D9%81%DB%87%D9%86%D9%83%D8%B3%D9%89%D9%8A%DB%95" title="فۇنكسىيە – 维吾尔语" lang="ug" hreflang="ug" data-title="فۇنكسىيە" data-language-autonym="ئۇيغۇرچە / Uyghurche" data-language-local-name="维吾尔语" class="interlanguage-link-target"><span>ئۇيغۇرچە / Uyghurche</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функція (математика) – 乌克兰语" lang="uk" hreflang="uk" data-title="Функція (математика)" data-language-autonym="Українська" data-language-local-name="乌克兰语" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AA%D9%81%D8%A7%D8%B9%D9%84_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA)" title="تفاعل (ریاضیات) – 乌尔都语" lang="ur" hreflang="ur" data-title="تفاعل (ریاضیات)" data-language-autonym="اردو" data-language-local-name="乌尔都语" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Funksiya_(matematika)" title="Funksiya (matematika) – 乌兹别克语" lang="uz" hreflang="uz" data-title="Funksiya (matematika)" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="乌兹别克语" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Funkcii_(matematik)" title="Funkcii (matematik) – 维普森语" lang="vep" hreflang="vep" data-title="Funkcii (matematik)" data-language-autonym="Vepsän kel’" data-language-local-name="维普森语" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%C3%A0m_s%E1%BB%91" title="Hàm số – 越南语" lang="vi" hreflang="vi" data-title="Hàm số" data-language-autonym="Tiếng Việt" data-language-local-name="越南语" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Funsiyon_(matematika)" title="Funsiyon (matematika) – 瓦瑞语" lang="war" hreflang="war" data-title="Funsiyon (matematika)" data-language-autonym="Winaray" data-language-local-name="瓦瑞语" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%87%BD%E6%95%B0" title="函数 – 吴语" lang="wuu" hreflang="wuu" data-title="函数" data-language-autonym="吴语" data-language-local-name="吴语" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Функция – 卡尔梅克语" lang="xal" hreflang="xal" data-title="Функция" data-language-autonym="Хальмг" data-language-local-name="卡尔梅克语" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%A2" title="פונקציע – 意第绪语" lang="yi" hreflang="yi" data-title="פונקציע" data-language-autonym="ייִדיש" data-language-local-name="意第绪语" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zgh mw-list-item"><a href="https://zgh.wikipedia.org/wiki/%E2%B5%9C%E2%B4%B0%E2%B5%99%E2%B5%96%E2%B5%8F%E2%B5%9C_(%E2%B5%9C%E2%B5%93%E2%B5%99%E2%B5%8F%E2%B4%B0%E2%B4%BD%E2%B5%9C)" title="ⵜⴰⵙⵖⵏⵜ (ⵜⵓⵙⵏⴰⴽⵜ) – 标准摩洛哥塔马塞特语" lang="zgh" hreflang="zgh" data-title="ⵜⴰⵙⵖⵏⵜ (ⵜⵓⵙⵏⴰⴽⵜ)" data-language-autonym="ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ" data-language-local-name="标准摩洛哥塔马塞特语" class="interlanguage-link-target"><span>ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E6%98%A0%E5%B0%84" title="映射 – 文言文" lang="lzh" hreflang="lzh" data-title="映射" data-language-autonym="文言" data-language-local-name="文言文" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/H%C3%A2m-s%C3%B2%CD%98" title="Hâm-sò͘ – 闽南语" lang="nan" hreflang="nan" data-title="Hâm-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="闽南语" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%87%BD%E6%95%B8" title="函數 – 粤语" lang="yue" hreflang="yue" data-title="函數" data-language-autonym="粵語" data-language-local-name="粤语" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11348#sitelinks-wikipedia" title="编辑跨语言链接" class="wbc-editpage">编辑链接</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="命名空间"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E5%87%BD%E6%95%B0" title="浏览条目正文​[c]" accesskey="c"><span>条目</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:%E5%87%BD%E6%95%B0" rel="discussion" title="关于此页面的讨论​[t]" accesskey="t"><span>讨论</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown " > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="更改语言变体" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">不转换</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-varlang-0" class="selected ca-variants-zh mw-list-item"><a href="/zh/%E5%87%BD%E6%95%B0" lang="zh" hreflang="zh"><span>不转换</span></a></li><li id="ca-varlang-1" class="ca-variants-zh-Hans mw-list-item"><a href="/zh-hans/%E5%87%BD%E6%95%B0" lang="zh-Hans" hreflang="zh-Hans"><span>简体</span></a></li><li id="ca-varlang-2" class="ca-variants-zh-Hant mw-list-item"><a href="/zh-hant/%E5%87%BD%E6%95%B0" lang="zh-Hant" hreflang="zh-Hant"><span>繁體</span></a></li><li id="ca-varlang-3" class="ca-variants-zh-Hans-CN mw-list-item"><a href="/zh-cn/%E5%87%BD%E6%95%B0" lang="zh-Hans-CN" hreflang="zh-Hans-CN"><span>大陆简体</span></a></li><li id="ca-varlang-4" class="ca-variants-zh-Hant-HK mw-list-item"><a href="/zh-hk/%E5%87%BD%E6%95%B0" lang="zh-Hant-HK" hreflang="zh-Hant-HK"><span>香港繁體</span></a></li><li id="ca-varlang-5" class="ca-variants-zh-Hant-MO mw-list-item"><a href="/zh-mo/%E5%87%BD%E6%95%B0" lang="zh-Hant-MO" hreflang="zh-Hant-MO"><span>澳門繁體</span></a></li><li id="ca-varlang-6" class="ca-variants-zh-Hans-MY mw-list-item"><a href="/zh-my/%E5%87%BD%E6%95%B0" lang="zh-Hans-MY" hreflang="zh-Hans-MY"><span>大马简体</span></a></li><li id="ca-varlang-7" class="ca-variants-zh-Hans-SG mw-list-item"><a href="/zh-sg/%E5%87%BD%E6%95%B0" lang="zh-Hans-SG" hreflang="zh-Hans-SG"><span>新加坡简体</span></a></li><li id="ca-varlang-8" class="ca-variants-zh-Hant-TW mw-list-item"><a href="/zh-tw/%E5%87%BD%E6%95%B0" lang="zh-Hant-TW" hreflang="zh-Hant-TW"><span>臺灣正體</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="查看"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E5%87%BD%E6%95%B0"><span>阅读</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit" title="编辑该页面​[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=history" title="本页面的早前版本。​[h]" accesskey="h"><span>查看历史</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="工具" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">工具</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">工具</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">隐藏</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="更多选项" > <div class="vector-menu-heading"> 操作 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%E5%87%BD%E6%95%B0"><span>阅读</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit" title="编辑该页面​[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=history"><span>查看历史</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 常规 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%85%A5%E9%A1%B5%E9%9D%A2/%E5%87%BD%E6%95%B0" title="列出所有与本页相链的页面​[j]" accesskey="j"><span>链入页面</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%87%BA%E6%9B%B4%E6%94%B9/%E5%87%BD%E6%95%B0" rel="nofollow" title="页面链出所有页面的更改​[k]" accesskey="k"><span>相关更改</span></a></li><li id="t-upload" class="mw-list-item"><a href="//zh.wikipedia.org/wiki/Project:上传" title="上传图像或多媒体文件​[u]" accesskey="u"><span>上传文件</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;oldid=86026104" title="此页面该修订版本的固定链接"><span>固定链接</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=info" title="关于此页面的更多信息"><span>页面信息</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:%E5%BC%95%E7%94%A8%E6%AD%A4%E9%A1%B5%E9%9D%A2&amp;page=%E5%87%BD%E6%95%B0&amp;id=86026104&amp;wpFormIdentifier=titleform" title="有关如何引用此页面的信息"><span>引用此页</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:URL%E7%BC%A9%E7%9F%AD%E7%A8%8B%E5%BA%8F&amp;url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E5%2587%25BD%25E6%2595%25B0"><span>获取短链接</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E5%2587%25BD%25E6%2595%25B0"><span>下载二维码</span></a></li> </ul> </div> </div> <div id="p-electronpdfservice-sidebar-portlet-heading" class="vector-menu mw-portlet mw-portlet-electronpdfservice-sidebar-portlet-heading" > <div class="vector-menu-heading"> 打印/导出 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="electron-print_pdf" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=%E5%87%BD%E6%95%B0&amp;action=show-download-screen"><span>下载为PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="javascript:print();" rel="alternate" title="本页面的可打印版本​[p]" accesskey="p"><span>打印页面</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 在其他项目中 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Functions_(mathematics)" hreflang="en"><span>维基共享资源</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11348" title="链接到连接的数据仓库项目​[g]" accesskey="g"><span>维基数据项目</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">外观</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">隐藏</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-noteTA-95c8d79a" class="mw-indicator"><div class="mw-parser-output"><span class="skin-invert" typeof="mw:File"><span title="本页使用了标题或全文手工转换"><img alt="本页使用了标题或全文手工转换" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/35px-Zh_conversion_icon_m.svg.png" decoding="async" width="35" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/53px-Zh_conversion_icon_m.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/70px-Zh_conversion_icon_m.svg.png 2x" data-file-width="32" data-file-height="20" /></span></span></div></div> </div> <div id="siteSub" class="noprint">维基百科,自由的百科全书</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="zh" dir="ltr"><div id="noteTA-95c8d79a" class="noteTA"><div class="noteTA-group"><div data-noteta-group-source="module" data-noteta-group="Math"></div></div><div class="noteTA-local"><div data-noteta-code="zh-cn:程序; zh-tw:程式;"></div><div data-noteta-code="zh-cn:數學對象;zh-tw:數學物件;"></div></div></div> <style data-mw-deduplicate="TemplateStyles:r85100532">.mw-parser-output .hatnote{font-size:small}.mw-parser-output div.hatnote{padding-left:2em;margin-bottom:0.8em;margin-top:0.8em}.mw-parser-output .hatnote-notice-img::after{content:"\202f \202f \202f \202f "}.mw-parser-output .hatnote-notice-img-small::after{content:"\202f \202f "}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}body.skin-minerva .mw-parser-output .hatnote-notice-img,body.skin-minerva .mw-parser-output .hatnote-notice-img-small{display:none}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable"><span class="noviewer hatnote-notice-img" typeof="mw:File"><a href="/wiki/Wikipedia:%E6%B6%88%E6%AD%A7%E4%B9%89" title="Wikipedia:消歧义"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Disambig_gray.svg/25px-Disambig_gray.svg.png" decoding="async" width="25" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Disambig_gray.svg/38px-Disambig_gray.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Disambig_gray.svg/50px-Disambig_gray.svg.png 2x" data-file-width="220" data-file-height="168" /></a></span>此條目介紹的是数学中的函数。关于程序设计中的函数,请见「<b><a href="/wiki/%E5%AD%90%E7%A8%8B%E5%BA%8F" title="子程序">子程序</a></b>」。</div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Function_machine2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Function_machine2.svg/220px-Function_machine2.svg.png" decoding="async" width="220" height="218" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Function_machine2.svg/330px-Function_machine2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Function_machine2.svg/440px-Function_machine2.svg.png 2x" data-file-width="191" data-file-height="189" /></a><figcaption>函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> 就像機器或<a href="/wiki/%E9%BB%91%E7%AE%B1" title="黑箱">黑箱</a>,给予输入值<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>便產生唯一输出值<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span></figcaption></figure> <p><b>函数</b>(英語:<span lang="en">function</span>)是<a href="/wiki/%E6%95%B0%E5%AD%A6" title="数学">數學</a>描述對應關係的一種特殊<a href="/wiki/%E9%9B%86%E5%90%88_(%E6%95%B0%E5%AD%A6)" title="集合 (数学)">集合</a>;粗略地說,從集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>到集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>的函數將<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>的一個元素恰好分配給<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>的每個元素<sup id="cite_ref-halmos_2-0" class="reference"><a href="#cite_note-halmos-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>。集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>稱為函數的<a href="/wiki/%E5%AE%9A%E4%B9%89%E5%9F%9F" title="定义域">定义域</a><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup>,集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>稱為函數的<a href="/wiki/%E5%88%B0%E8%BE%BE%E5%9F%9F" title="到达域">到达域</a>。<sup id="cite_ref-codomain_4-0" class="reference"><a href="#cite_note-codomain-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>函數最初是一個變化的量如何依賴另一個量的理想化。例如,特定時間行星的位置可以視為是行星的位置對時間的函數。“函数”一词作为数学概念是由<a href="/wiki/%E6%88%88%E7%89%B9%E5%BC%97%E9%87%8C%E5%BE%B7%C2%B7%E8%8E%B1%E5%B8%83%E5%B0%BC%E8%8C%A8" title="戈特弗里德·莱布尼茨">莱布尼茨</a>首先引入的。<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup>從歷史上看,這個概念是在17世紀末用無窮微積分來闡述的,直到19世紀,所考慮的函數都是可微的。函數的概念於19世紀末在集合論中被形式化,這大大擴展了這個概念的應用領域。 </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Function_color_example_3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Function_color_example_3.svg/220px-Function_color_example_3.svg.png" decoding="async" width="220" height="236" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Function_color_example_3.svg/330px-Function_color_example_3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Function_color_example_3.svg/440px-Function_color_example_3.svg.png 2x" data-file-width="321" data-file-height="345" /></a><figcaption>將形狀映射到其顏色的函數</figcaption></figure> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="簡介"><span id=".E7.B0.A1.E4.BB.8B"></span>簡介</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=1" title="编辑章节:簡介"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>若<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>是<a href="/wiki/%E5%AE%9E%E6%95%B0" title="实数">實數</a>,以<a href="/wiki/%E6%9C%89%E5%BA%8F%E5%AF%B9" title="有序对">有序對</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,\,x^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,\,x^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad7ded32455e2243589efa3cf4362edb44f0f94d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.944ex; height:3.176ex;" alt="{\displaystyle (x,\,x^{2})}"></span>為元素所構成的集合就是一個函数。直觀上代表「輸入」<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>就可以得到唯一值<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf0bf28fd28f45d07e1ceb909ce333c18c558c93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.676ex;" alt="{\displaystyle x^{2}}"></span>的對應關係。 </p><p>一般會以英文字母<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,\,g,\,h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>g</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,\,g,\,h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1b1973006bcbcc0d3d1a2a302e640c5bb5e184d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.576ex; height:2.509ex;" alt="{\displaystyle f,\,g,\,h}"></span>表示函数,並把<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>依據函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的對應規則所得到的值写作<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>,並讀作「<i>f of x</i>」。函数的概念不限於數之间的對應关系,例定义函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Capital} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Capital</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Capital} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70a76bcec00979dcb107c0db153e60007c30672d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.494ex; height:2.509ex;" alt="{\displaystyle \operatorname {Capital} }"></span>為世界上所有國家跟它現在的首都的對應關係,那輸入<a href="/wiki/%E8%8B%B1%E5%9B%BD" title="英国">英国</a>就會输出唯一值<a href="/wiki/%E4%BC%A6%E6%95%A6" title="伦敦">伦敦</a>:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Capital} (\mathrm {U.K.} )=\mathrm {London} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Capital</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">U</mi> <mo>.</mo> <mi mathvariant="normal">K</mi> <mo>.</mo> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Capital} (\mathrm {U.K.} )=\mathrm {London} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44b2522f29b1fe4a09daaa70f90d749ca3eb6b1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.289ex; height:2.843ex;" alt="{\displaystyle \operatorname {Capital} (\mathrm {U.K.} )=\mathrm {London} }"></span>。 </p><p>直觀上的「多變數函數」其實也可以概括到一般函數的定義裡。例如算式<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\times y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x00D7;<!-- × --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\times y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec85d07724b6213a6af69367b22f33502f44dc4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.326ex; height:2.009ex;" alt="{\displaystyle x\times y}"></span>有兩個實數參數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>。可以將這兩個參數看作一個實數<a href="/wiki/%E6%9C%89%E5%BA%8F%E5%AF%B9" title="有序对">有序对</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span>,然後定義一個以<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ((x,\,y),\,x\times y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thinmathspace" /> <mi>x</mi> <mo>&#x00D7;<!-- × --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ((x,\,y),\,x\times y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbf2e83574970bc648684d6a020f036a30881d62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.271ex; height:2.843ex;" alt="{\displaystyle ((x,\,y),\,x\times y)}"></span>為元素所構成的函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>,然後把<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[(x,\,y)]=x\times y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>=</mo> <mi>x</mi> <mo>&#x00D7;<!-- × --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[(x,\,y)]=x\times y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/051c520165328afe07bbb469d991726cd4008b55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.712ex; height:2.843ex;" alt="{\displaystyle f[(x,\,y)]=x\times y}"></span>簡記成符合直觀的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,\,y)=x\times y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>&#x00D7;<!-- × --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x,\,y)=x\times y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7114a2e4b13824ad5586ddb734792ae3772b3c88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.418ex; height:2.843ex;" alt="{\displaystyle f(x,\,y)=x\times y}"></span>。 </p><p>數學中,<a href="/wiki/%E5%B0%8D%E6%87%89" class="mw-redirect" title="對應">对应</a>、<a href="/wiki/%E6%98%A0%E5%B0%84" title="映射">映射</a>、<a href="/w/index.php?title=%E5%8F%98%E6%8D%A2&amp;action=edit&amp;redlink=1" class="new" title="变换(页面不存在)">变换</a>通常都是函数的別稱,但也可能有別的意思,如在<a href="/wiki/%E6%8B%93%E6%89%91%E5%AD%A6" title="拓扑学">拓扑學</a>的映射有时代表的是<a href="/wiki/%E8%BF%9E%E7%BB%AD%E5%87%BD%E6%95%B0" title="连续函数">连续函数</a>。 </p><p>在<a href="/wiki/%E9%A1%9E%E5%9E%8B%E8%AB%96" class="mw-redirect" title="類型論">類型論</a>的<a href="/wiki/%CE%9B%E6%BC%94%E7%AE%97" title="Λ演算">λ演算</a>中,「對應關係」可以是作為一個原始概念(也就是無定義名詞),而不像上述的定義把函數視為<a href="/wiki/%E9%9B%86%E5%90%88_(%E6%95%B0%E5%AD%A6)" title="集合 (数学)">集合</a>的衍伸物。 </p><p>函數的<a href="/wiki/%E5%80%BC%E5%9F%9F" title="值域">值域</a>或<a href="/wiki/%E5%83%8F_(%E6%95%B8%E5%AD%B8)" title="像 (數學)">像</a>是<a href="/wiki/%E5%AE%9A%E4%B9%89%E5%9F%9F" title="定义域">定义域</a>中所有元素的<a href="/wiki/%E5%83%8F_(%E6%95%B8%E5%AD%B8)" title="像 (數學)">像</a>之集合。<sup id="cite_ref-EOM_Function_6-0" class="reference"><a href="#cite_note-EOM_Function-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-T&amp;K_Calc_p.3_7-0" class="reference"><a href="#cite_note-T&amp;K_Calc_p.3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Trench_RA_pp.30-32_8-0" class="reference"><a href="#cite_note-Trench_RA_pp.30-32-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-TBB_RA_pp.A4-A5_9-0" class="reference"><a href="#cite_note-TBB_RA_pp.A4-A5-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="历史"><span id=".E5.8E.86.E5.8F.B2"></span>历史</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=2" title="编辑章节:历史"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>函数(function)这个数学名词是<a href="/wiki/%E8%8E%B1%E5%B8%83%E5%B0%BC%E5%85%B9" class="mw-redirect" title="莱布尼兹">莱布尼兹</a>在1694年开始使用的,用來描述跟<a href="/wiki/%E6%9B%B2%E7%BA%BF" title="曲线">曲线</a>相关的一個量,如曲线的<a href="/wiki/%E6%96%9C%E7%8E%87" title="斜率">斜率</a>或者曲线上的某一点。莱布尼兹所指的函数现在被称作<a href="/wiki/%E5%AF%BC%E6%95%B0" title="导数">可导函数</a>,数学家之外的普通人一般接触到的函数即属此类。对于可导函数可以讨论它的<a href="/wiki/%E5%87%BD%E6%95%B0%E6%9E%81%E9%99%90" class="mw-redirect" title="函数极限">极限</a>和<a href="/wiki/%E5%AF%BC%E6%95%B0" title="导数">导数</a>,此两者描述了函数输出值的变化同输入值变化的关系,是<a href="/wiki/%E5%BE%AE%E7%A7%AF%E5%88%86%E5%AD%A6" title="微积分学">微积分学</a>的基础。中文的「<b>函数</b>」一词由<a href="/wiki/%E6%B8%85%E6%9C%9D" title="清朝">清朝</a>数学家<a href="/wiki/%E6%9D%8E%E5%96%84%E5%85%B0" title="李善兰">李善兰</a>译出。其《代数学》书中解释:「凡此變數中函(包含)彼變數者,則此為彼之函數」。 </p> <ul><li>1718年,<a href="/wiki/%E7%BA%A6%E7%BF%B0%C2%B7%E4%BC%AF%E5%8A%AA%E5%88%A9" class="mw-redirect" title="约翰·伯努利">約翰·伯努利</a>把函数定义为「一个变量的函数是指由这个变量和常量以任何一种方式组成的一种量。」</li> <li>1748年,伯努利的学生<a href="/wiki/%E6%AC%A7%E6%8B%89" class="mw-redirect" title="欧拉">欧拉</a>在《无穷分析引论》一书中说:「一个<a href="/wiki/%E5%8F%98%E9%87%8F" class="mw-redirect" title="变量">变量</a>的函数是由该变量和一些数或<a href="/wiki/%E5%B8%B8%E9%87%8F" class="mw-redirect" title="常量">常量</a>以任何一种方式构成的<a href="/wiki/%E8%A7%A3%E6%9E%90%E8%A7%A3" class="mw-redirect" title="解析解">解析表达式</a>」,例如<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\sin(x)+x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\sin(x)+x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0cba2465cb3b055c703945cd06b33c71190aa15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.735ex; height:3.176ex;" alt="{\displaystyle f(x)=\sin(x)+x^{2}}"></span>。</li> <li>1775年,欧拉在《微分学原理》一书中又提出了函数的一个定义:「如果某些量以如下方式依赖于另一些量,即当后者变化时,前者本身也发生变化,则称前一些量是后一些量的函数。」</li> <li>19世纪的数学家开始对数学的各个分支進行形式化。<a href="/wiki/%E7%BB%B4%E5%B0%94%E6%96%AF%E7%89%B9%E6%8B%89%E6%96%AF" class="mw-redirect" title="维尔斯特拉斯">维尔斯特拉斯</a>倡議将微积分学建立在<a href="/wiki/%E7%AE%97%E6%9C%AF" title="算术">算术</a>,而不是<a href="/wiki/%E5%87%A0%E4%BD%95" class="mw-redirect" title="几何">几何</a>的基础上,這種主張較趋向于欧拉的定义。</li> <li>函数的定义得以擴展之後,数学家便能对一些「奇怪」的<a href="/wiki/%E6%95%B0%E5%AD%A6%E5%AF%B9%E8%B1%A1" title="数学对象">数学对象</a>进行研究,例如處處不可导的连续函数。这些函数曾经被认为只具有理论价值,迟至20世纪初时它们仍被视作「怪物」。稍后,人们发现这些函数在对如<a href="/wiki/%E5%B8%83%E6%9C%97%E8%BF%90%E5%8A%A8" title="布朗运动">布朗运动</a>之类的物理现象进行建模时有重要的作用。</li> <li>到19世纪末,数学家开始尝试利用<a href="/wiki/%E9%9B%86%E5%90%88%E8%AE%BA" title="集合论">集合论</a>来進行数学的形式化。他们试图将每一個数学对象都定义为<a href="/wiki/%E9%9B%86%E5%90%88_(%E6%95%B0%E5%AD%A6)" title="集合 (数学)">集合</a>。<a href="/wiki/%E7%8B%84%E5%88%A9%E5%85%8B%E9%9B%B7" class="mw-redirect" title="狄利克雷">狄利克雷</a>给出了现代正式的函数定义(参见下文<a href="#正式定義">#正式定義</a>)。在他的定義下,函数被视作<a href="/wiki/%E6%95%B0%E5%AD%A6%E5%85%B3%E7%B3%BB" class="mw-redirect" title="数学关系">数学关系</a>的特例。然而对于实际应用的情况,现代定义和欧拉定义的区别可以忽略不计。</li></ul> <div class="mw-heading mw-heading2"><h2 id="正式定義"><span id=".E6.AD.A3.E5.BC.8F.E5.AE.9A.E7.BE.A9"></span>正式定義</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=3" title="编辑章节:正式定義"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Cubicpoly.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Cubicpoly.svg/225px-Cubicpoly.svg.png" decoding="async" width="225" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Cubicpoly.svg/338px-Cubicpoly.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/33/Cubicpoly.svg/450px-Cubicpoly.svg.png 2x" data-file-width="1000" data-file-height="1000" /></a><figcaption>函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的部分图像。每个实数的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>都与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{3}-9x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>9</mn> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{3}-9x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a90fa690af40a063abff947f259ae4b302ed2764" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.232ex; height:3.176ex;" alt="{\displaystyle f(x)=x^{3}-9x}"></span>相联系</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r76704522">.mw-parser-output .math_theorem{margin:1em 2em;padding:0.5em 1em 0.4em;border:1px solid #aaa;overflow:hidden}@media(max-width:500px){.mw-parser-output .math_theorem{margin:1em 0em;padding:0.5em 0.5em 0.4em}}</style><div class="math_theorem" style=""> <p><strong class="theorem-name">定義</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span><br /> <a href="/wiki/%E4%BA%8C%E5%85%83%E5%85%B3%E7%B3%BB" title="二元关系">二元關係</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> 若滿足: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\forall x)(\forall y)(\forall y^{\prime })\{\,[\,(\langle x,\,y\rangle \in f)\wedge (\langle x,\,y^{\prime }\rangle \in f)\,]\Rightarrow (y=y^{\prime })\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\forall x)(\forall y)(\forall y^{\prime })\{\,[\,(\langle x,\,y\rangle \in f)\wedge (\langle x,\,y^{\prime }\rangle \in f)\,]\Rightarrow (y=y^{\prime })\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feb0e49c749d31216f0c6f103722cf8818d2d032" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:56.886ex; height:3.009ex;" alt="{\displaystyle (\forall x)(\forall y)(\forall y^{\prime })\{\,[\,(\langle x,\,y\rangle \in f)\wedge (\langle x,\,y^{\prime }\rangle \in f)\,]\Rightarrow (y=y^{\prime })\,\}}"></span></dd></dl> <p>則稱為 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> 為一函數。 </p> </div> <p>(為了避免<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,\,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,\,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e7afe5870de593e694568d1c4b0b95c6ac50777" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.716ex; height:2.843ex;" alt="{\displaystyle (x,\,y)}"></span>的括弧與<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91" title="一阶逻辑">逻辑</a>敘述的括弧混淆,也會用<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x,\,y\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x,\,y\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adc957374124d5ae71f5e65c7d00a0889740cebc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.716ex; height:2.843ex;" alt="{\displaystyle \langle x,\,y\rangle }"></span>來表示<a href="/wiki/%E6%9C%89%E5%BA%8F%E5%AF%B9" title="有序对">有序对</a>) </p><p>也就是直觀上,<a href="/wiki/%E6%9C%89%E5%BA%8F%E5%AF%B9" title="有序对">有序对</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,\,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,\,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e7afe5870de593e694568d1c4b0b95c6ac50777" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.716ex; height:2.843ex;" alt="{\displaystyle (x,\,y)}"></span>代表(<i>輸入值</i>, <i>輸出值</i>);而<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>本身是以窮舉所有(<i>輸入值</i>, <i>輸出值</i>)來詳盡定義的對應規則,且<b>每個輸入值只能對應一個輸出值</b>。 </p> <div class="mw-heading mw-heading3"><h3 id="函數值的簡記"><span id=".E5.87.BD.E6.95.B8.E5.80.BC.E7.9A.84.E7.B0.A1.E8.A8.98"></span>函數值的簡記</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=4" title="编辑章节:函數值的簡記"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>習慣上把<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,\,y)\in f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,\,y)\in f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42699a7734684ad5072a7f21ce4f6d3bac02a02b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.835ex; height:2.843ex;" alt="{\displaystyle (x,\,y)\in f}"></span>「等價地」記為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2311a6a75c54b0ea085a381ba472c31d59321514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle y=f(x)}"></span>。但嚴謹來說,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>是在<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91" title="一阶逻辑">一阶逻辑</a><a href="/wiki/%E5%85%AC%E7%90%86%E5%8C%96%E9%9B%86%E5%90%88%E8%AE%BA" title="公理化集合论">公理化集合论</a>下額外新增的雙元<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#函數符號" title="一阶逻辑">函數符號</a>(因為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>與<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>各為一個變數),而它的「定義」就是以下連帶額外增加的公理: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r76704522"><div class="math_theorem" style=""> <p><strong class="theorem-name">公理</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span><br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\,\neg ({\mathcal {B}}\wedge {\mathcal {C}})\wedge (f(x)=\varnothing )\,]\vee [\,({\mathcal {B}}\wedge {\mathcal {C}})\wedge (\langle x,\,f(x)\rangle \in f)\,]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\,\neg ({\mathcal {B}}\wedge {\mathcal {C}})\wedge (f(x)=\varnothing )\,]\vee [\,({\mathcal {B}}\wedge {\mathcal {C}})\wedge (\langle x,\,f(x)\rangle \in f)\,]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0218805d6da36b9d945595389f52acc561a9b959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:53.822ex; height:2.843ex;" alt="{\displaystyle [\,\neg ({\mathcal {B}}\wedge {\mathcal {C}})\wedge (f(x)=\varnothing )\,]\vee [\,({\mathcal {B}}\wedge {\mathcal {C}})\wedge (\langle x,\,f(x)\rangle \in f)\,]}"></span></dd> <dd>其中:</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}:=(\forall x)(\forall y)(\forall y^{\prime })\{\,[\,(\langle x,\,y\rangle \in f)\wedge (\langle x,\,y^{\prime }\rangle \in f)\,]\Rightarrow (y=y^{\prime })\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>:=</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}:=(\forall x)(\forall y)(\forall y^{\prime })\{\,[\,(\langle x,\,y\rangle \in f)\wedge (\langle x,\,y^{\prime }\rangle \in f)\,]\Rightarrow (y=y^{\prime })\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29f1bd046104550312151fd337ceff00efbd6b93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:62.174ex; height:3.009ex;" alt="{\displaystyle {\mathcal {B}}:=(\forall x)(\forall y)(\forall y^{\prime })\{\,[\,(\langle x,\,y\rangle \in f)\wedge (\langle x,\,y^{\prime }\rangle \in f)\,]\Rightarrow (y=y^{\prime })\,\}}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> 的每個輸入值只能對應一個輸出值)</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}:=(\exists y)(\langle x,\,y\rangle \in f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mo>:=</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}:=(\exists y)(\langle x,\,y\rangle \in f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a04af986a2191a48240fad183108303252260ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.886ex; height:2.843ex;" alt="{\displaystyle {\mathcal {C}}:=(\exists y)(\langle x,\,y\rangle \in f)}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> 在 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> 規定的輸入值範圍內)</dd></dl> </div> <table class="mw-collapsible mw-collapsed wikitable"> <tbody><tr> <th><b>新增公理的合理性</b> </th></tr> <tr> <td>假設有<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}\wedge {\mathcal {C}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}\wedge {\mathcal {C}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0377d8385f15b842881eb0f107a4762fce9740d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.365ex; height:2.176ex;" alt="{\displaystyle {\mathcal {B}}\wedge {\mathcal {C}}}"></span>,此時對<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#公式" title="一阶逻辑">公式</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5622de88a69f68340f8dcb43d0b8bd443ba9e13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.543ex; height:2.176ex;" alt="{\displaystyle {\mathcal {B}}}"></span>套用<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#量词公理" title="一阶逻辑">量词公理A4</a>有: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\forall y)(\forall y^{\prime })\{\,[\,(\langle x,\,y\rangle \in f)\wedge (\langle x,\,y^{\prime }\rangle \in f)\,]\Rightarrow (y=y^{\prime })\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\forall y)(\forall y^{\prime })\{\,[\,(\langle x,\,y\rangle \in f)\wedge (\langle x,\,y^{\prime }\rangle \in f)\,]\Rightarrow (y=y^{\prime })\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f444a40dd1ed29cb8709db407edc64c69347e653" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.454ex; height:3.009ex;" alt="{\displaystyle (\forall y)(\forall y^{\prime })\{\,[\,(\langle x,\,y\rangle \in f)\wedge (\langle x,\,y^{\prime }\rangle \in f)\,]\Rightarrow (y=y^{\prime })\,\}}"></span></dd></dl> <p>這樣綜合上式和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7b3edab7022ca9e2976651bc59c489513ee9019" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.239ex; height:2.176ex;" alt="{\displaystyle {\mathcal {C}}}"></span>就有: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\exists !y)(\langle x,\,y\rangle \in f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mo>!</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\exists !y)(\langle x,\,y\rangle \in f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f318fd8b5e36b061adf9b6a4ff5d91b7e1ae5066" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.548ex; height:2.843ex;" alt="{\displaystyle (\exists !y)(\langle x,\,y\rangle \in f)}"></span></dd></dl> <p>換句話說: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}\wedge {\mathcal {C}}\vdash (\exists !y)(\langle x,\,y\rangle \in f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mo>&#x22A2;<!-- ⊢ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mo>!</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}\wedge {\mathcal {C}}\vdash (\exists !y)(\langle x,\,y\rangle \in f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd23d0aaec67bf9e84caa8123dec28cd5103fc70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.624ex; height:2.843ex;" alt="{\displaystyle {\mathcal {B}}\wedge {\mathcal {C}}\vdash (\exists !y)(\langle x,\,y\rangle \in f)}"></span></dd></dl> <p>這樣根據<a href="/wiki/%E5%86%AF%E8%AF%BA%E4%BC%8A%E6%9B%BC-%E5%8D%9A%E5%86%85%E6%96%AF-%E5%93%A5%E5%BE%B7%E5%B0%94%E9%9B%86%E5%90%88%E8%AE%BA#特定條件下的存在性" title="冯诺伊曼-博内斯-哥德尔集合论">特定條件下的存在性</a>就有: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdash (\exists !y)\{\,[\,\neg ({\mathcal {B}}\wedge {\mathcal {C}})\wedge (y=\varnothing )\,]\vee [\,({\mathcal {B}}\wedge {\mathcal {C}})\wedge (\langle x,\,y\rangle \in f)\,]\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22A2;<!-- ⊢ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mo>!</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>=</mo> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdash (\exists !y)\{\,[\,\neg ({\mathcal {B}}\wedge {\mathcal {C}})\wedge (y=\varnothing )\,]\vee [\,({\mathcal {B}}\wedge {\mathcal {C}})\wedge (\langle x,\,y\rangle \in f)\,]\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c16bf10a44f9ae2cadfd82648deb900a99f2502" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:57.367ex; height:2.843ex;" alt="{\displaystyle \vdash (\exists !y)\{\,[\,\neg ({\mathcal {B}}\wedge {\mathcal {C}})\wedge (y=\varnothing )\,]\vee [\,({\mathcal {B}}\wedge {\mathcal {C}})\wedge (\langle x,\,y\rangle \in f)\,]\,\}}"></span></dd></dl> <p>這樣根據<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#函數符號與唯一性" title="一阶逻辑">函數符號與唯一性</a>的內容,就可以於<a href="/wiki/%E7%AD%96%E6%A2%85%E6%B4%9B-%E5%BC%97%E5%85%B0%E5%85%8B%E5%B0%94%E9%9B%86%E5%90%88%E8%AE%BA" title="策梅洛-弗兰克尔集合论">策梅洛-弗兰克尔集合论</a>增加上述的公理與雙元函數符號<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>,且新增這個公理的新理論等效於原來的理論。 </p> </td></tr></tbody></table> <p>直觀上,這個公理表示「若<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>為一函數且<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的輸入值範圍,則<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x,\,f(x)\rangle \in f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x,\,f(x)\rangle \in f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24f9126ee3ec6af8cd265458d1fc625dc0499b46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.097ex; height:2.843ex;" alt="{\displaystyle \langle x,\,f(x)\rangle \in f}"></span>;否則規定<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>為<a href="/wiki/%E7%A9%BA%E9%9B%86" title="空集">空集</a>」。 </p><p>這樣根據<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#新理論的假設" title="一阶逻辑">函數符號與唯一性的定理(E)</a>,就會有本節一開始所說的直觀性質: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}\land {\mathcal {C}}\vdash (\forall y)\{\,[\,y=f(x)\,]\Leftrightarrow [\,\langle x,\,y\rangle \in f\,]\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mo>&#x22A2;<!-- ⊢ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}\land {\mathcal {C}}\vdash (\forall y)\{\,[\,y=f(x)\,]\Leftrightarrow [\,\langle x,\,y\rangle \in f\,]\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1e62f49e2af8e48b0ce834bab48a443008b585e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.688ex; height:2.843ex;" alt="{\displaystyle {\mathcal {B}}\land {\mathcal {C}}\vdash (\forall y)\{\,[\,y=f(x)\,]\Leftrightarrow [\,\langle x,\,y\rangle \in f\,]\,\}}"></span></dd></dl> <p>也就是「若<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>為一函數且<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的輸入值範圍,則對所有的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x,\,y\rangle \in f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x,\,y\rangle \in f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13cccb84e6f732bcd4e2267064d3a3ffbb7b20ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.835ex; height:2.843ex;" alt="{\displaystyle \langle x,\,y\rangle \in f}"></span>等價於<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2311a6a75c54b0ea085a381ba472c31d59321514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle y=f(x)}"></span>」。 </p><p>對於「n變數」的函數,也就是以 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ((x_{1},\,\cdots ,\,x_{n}),\,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ((x_{1},\,\cdots ,\,x_{n}),\,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7ae2428116b220c137c147e3f7297898bdfa9ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.08ex; height:2.843ex;" alt="{\displaystyle ((x_{1},\,\cdots ,\,x_{n}),\,y)}"></span></dd></dl> <p>為元素的函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">f</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88807249e63916134a1dc2ffeb4f01d31c4fb0db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle {\mathcal {f}}}"></span>,習慣上會把以下的<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#項" title="一阶逻辑">項</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[(x_{1},\cdots ,\,x_{n})]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[(x_{1},\cdots ,\,x_{n})]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/690eba035fa57cbdedc75bca64a84eaa4dd10b15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.879ex; height:2.843ex;" alt="{\displaystyle f[(x_{1},\cdots ,\,x_{n})]}"></span></dd></dl> <p>進一步簡寫為 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1},\cdots ,\,x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1},\cdots ,\,x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f600180e6163e997c55877fb52375846df10f30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.585ex; height:2.843ex;" alt="{\displaystyle f(x_{1},\cdots ,\,x_{n})}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="定義域與值域"><span id=".E5.AE.9A.E7.BE.A9.E5.9F.9F.E8.88.87.E5.80.BC.E5.9F.9F"></span>定義域與值域</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=5" title="编辑章节:定義域與值域"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>如果能指出函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的「輸入值範圍」跟「輸出值範圍」,對數學的討論是相當方便的;事實上<a href="/wiki/%E5%85%AC%E7%90%86%E5%8C%96%E9%9B%86%E5%90%88%E8%AE%BA" title="公理化集合论">公理化集合論</a>中,<a href="/wiki/%E5%88%86%E7%B1%BB%E5%85%AC%E7%90%86" title="分类公理">分类公理</a>確保對任意<a href="/wiki/%E9%9B%86%E5%90%88_(%E6%95%B0%E5%AD%A6)" title="集合 (数学)">集合</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>有唯一的集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78af4a9d2d8aaec85ea4e6b0f997a31def04311" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle D_{A}}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fad11afeef762471a89c8a258282a40af27d6516" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.488ex; height:2.509ex;" alt="{\displaystyle I_{A}}"></span>(嚴格來說,單元<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#函數符號" title="一阶逻辑">函數符號</a>)分別滿足 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\forall x)\{(x\in D_{A})\Leftrightarrow (\exists y)[\,(x,\,y)\in A\,]\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\forall x)\{(x\in D_{A})\Leftrightarrow (\exists y)[\,(x,\,y)\in A\,]\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be6b5a3bf44c87d590273c181ddd03e0137f7dae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.364ex; height:2.843ex;" alt="{\displaystyle (\forall x)\{(x\in D_{A})\Leftrightarrow (\exists y)[\,(x,\,y)\in A\,]\}}"></span>(「輸入值範圍」)</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\forall y)\{(y\in I_{A})\Leftrightarrow (\exists x)[\,(x,\,y)\in A\,]\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\forall y)\{(y\in I_{A})\Leftrightarrow (\exists x)[\,(x,\,y)\in A\,]\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eacb3c9fa800bab536ed89e46e12652fe69917cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.288ex; height:2.843ex;" alt="{\displaystyle (\forall y)\{(y\in I_{A})\Leftrightarrow (\exists x)[\,(x,\,y)\in A\,]\}}"></span>(「輸出值範圍」)</dd></dl> <p>直觀上,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78af4a9d2d8aaec85ea4e6b0f997a31def04311" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle D_{A}}"></span>是蒐集所有<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>裡所有<a href="/wiki/%E6%9C%89%E5%BA%8F%E5%AF%B9" title="有序对">有序对</a>的第一個所構成的集合;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fad11afeef762471a89c8a258282a40af27d6516" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.488ex; height:2.509ex;" alt="{\displaystyle I_{A}}"></span>是蒐集所有<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>裡所有<a href="/wiki/%E6%9C%89%E5%BA%8F%E5%AF%B9" title="有序对">有序对</a>的第二個所構成的集合。這樣的話,如果<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>本身就是函數的話,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78af4a9d2d8aaec85ea4e6b0f997a31def04311" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle D_{A}}"></span>就是所謂的「輸入值範圍」,所以被稱為<a href="/wiki/%E5%AE%9A%E4%B9%89%E5%9F%9F" title="定义域">定義域</a>;類似地,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fad11afeef762471a89c8a258282a40af27d6516" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.488ex; height:2.509ex;" alt="{\displaystyle I_{A}}"></span>就是所謂的「輸出值範圍」,所以被稱為<a href="/wiki/%E5%80%BC%E5%9F%9F" title="值域">值域</a>。 </p><p>通常情況下,有以下慣用的記號 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y:=[\,(f{\text{ is a function}})\wedge (D_{f}=X)\wedge (I_{f}\subseteq Y)\,]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>:=</mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;is a function</mtext> </mrow> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>&#x2286;<!-- ⊆ --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y:=[\,(f{\text{ is a function}})\wedge (D_{f}=X)\wedge (I_{f}\subseteq Y)\,]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5fd1fc7f2311a66db39ed44ebaf93cd06ecb117" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:56.242ex; height:3.009ex;" alt="{\displaystyle f:X\to Y:=[\,(f{\text{ is a function}})\wedge (D_{f}=X)\wedge (I_{f}\subseteq Y)\,]}"></span></dd></dl> <p>也就是直觀上,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span>表示「<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>是函數且其<a href="/wiki/%E5%AE%9A%E4%B9%89%E5%9F%9F" title="定义域">定義域</a>為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>,且<a href="/wiki/%E5%80%BC%E5%9F%9F" title="值域">值域</a>包含於<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>。」。這種情況下,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>通常被俗稱為<a href="/wiki/%E5%88%B0%E8%BE%BE%E5%9F%9F" title="到达域">對應域</a>。 </p><p>屬於定義域<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13b8420d715315c8e8b57f178a1b3a8512bd0959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.061ex; height:2.843ex;" alt="{\displaystyle D_{f}}"></span>的元素<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>常被俗稱為<b>自變量</b>(independent variable),而項<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>則被俗稱為<b>因變量(</b>dependent variable),但是這跟實驗上的<a href="/wiki/%E8%87%AA%E5%8F%98%E9%87%8F%E5%92%8C%E5%9B%A0%E5%8F%98%E9%87%8F" title="自变量和因变量">自变量和因变量</a>是稍有不同的,因為前者是現實得到的實驗值之間的關聯,但另一個是源於集合論的概念。 </p> <div class="mw-heading mw-heading3"><h3 id="一對一"><span id=".E4.B8.80.E5.B0.8D.E4.B8.80"></span>一對一</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=6" title="编辑章节:一對一"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r76704522"><div class="math_theorem" style=""> <p><strong class="theorem-name">定義</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span><br /> 函數 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> 若滿足 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\forall y)(\forall x)(\forall x^{\prime })\{\,[\,(\langle x,\,y\rangle \in f)\wedge (\langle x^{\prime },\,y\rangle \in f)\,]\Rightarrow (x=x^{\prime })\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\forall y)(\forall x)(\forall x^{\prime })\{\,[\,(\langle x,\,y\rangle \in f)\wedge (\langle x^{\prime },\,y\rangle \in f)\,]\Rightarrow (x=x^{\prime })\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4be49f477df60724833a37416866a433b06a9d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:57.393ex; height:3.009ex;" alt="{\displaystyle (\forall y)(\forall x)(\forall x^{\prime })\{\,[\,(\langle x,\,y\rangle \in f)\wedge (\langle x^{\prime },\,y\rangle \in f)\,]\Rightarrow (x=x^{\prime })\,\}}"></span> </p><p>則被稱為<b>一對一的</b>(one-to-one)或是<a href="/wiki/%E5%8D%95%E5%B0%84" title="单射">单射</a>(injective function)。 </p> </div> <p>直觀上,若函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的輸出值都只能被唯一個輸入值對應,則稱<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>是一對一的。 </p><p>若<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>是單射,那(根據<a href="/wiki/%E5%88%86%E7%B1%BB%E5%85%AC%E7%90%86" title="分类公理">分类公理</a>所取的)以下的集合: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}:=\{\,p\,|\,(\exists x)(\exists y)[\,p=(y,\,x)\,\wedge \,y=f(x)\,]\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mi>p</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi>p</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>&#x2227;<!-- ∧ --></mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}:=\{\,p\,|\,(\exists x)(\exists y)[\,p=(y,\,x)\,\wedge \,y=f(x)\,]\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c98c482cef684eca46e2d6e58f4428914c1270c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.857ex; height:3.176ex;" alt="{\displaystyle f^{-1}:=\{\,p\,|\,(\exists x)(\exists y)[\,p=(y,\,x)\,\wedge \,y=f(x)\,]\,\}}"></span></dd></dl> <p>也是一個函數,被稱為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的<a href="/wiki/%E5%8F%8D%E5%87%BD%E6%95%B8" title="反函數">反函數</a>。 </p> <div class="mw-heading mw-heading3"><h3 id="滿射"><span id=".E6.BB.BF.E5.B0.84"></span>滿射</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=7" title="编辑章节:滿射"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span>這個簡記只能指出「輸出值不會超出<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>」,為了彌補這個簡記的缺陷,口語上會將<a href="/wiki/%E6%BB%A1%E5%B0%84" title="满射">满射</a>(surjective function)定義為「<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span>且<a href="/wiki/%E5%80%BC%E5%9F%9F" title="值域">值域</a>就是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>」的函數。 </p> <style data-mw-deduplicate="TemplateStyles:r70089473/mw-parser-output/.tmulti">.mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}</style><div class="thumb tmulti tnone center"><div class="thumbinner" style="width:762px;max-width:762px"><div class="trow"><div class="tsingle" style="width:252px;max-width:252px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Multivalued_function.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Multivalued_function.svg/250px-Multivalued_function.svg.png" decoding="async" width="250" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Multivalued_function.svg/375px-Multivalued_function.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/78/Multivalued_function.svg/500px-Multivalued_function.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span></div><div class="thumbcaption">(1)一對多。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>中的元素3与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>中的两个元素<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>相关。因此这是<b>多值函数</b>,而不是函数。</div></div><div class="tsingle" style="width:252px;max-width:252px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Partial_function.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Partial_function.svg/250px-Partial_function.svg.png" decoding="async" width="250" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Partial_function.svg/375px-Partial_function.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Partial_function.svg/500px-Partial_function.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span></div><div class="thumbcaption">(2)一對一但非完全對應。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>的元素1未与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>的任一元素相关。因此这是<b>偏函数</b>,而<i>不是</i>函数。</div></div><div class="tsingle" style="width:252px;max-width:252px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Total_function.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Total_function.svg/250px-Total_function.svg.png" decoding="async" width="250" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Total_function.svg/375px-Total_function.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/02/Total_function.svg/500px-Total_function.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span></div><div class="thumbcaption">(3)完全對應且多对一,因此这是从<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>到<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>的函数。此函数可以表示为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=\{\,(1,d),(2,d),(3,c)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=\{\,(1,d),(2,d),(3,c)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d93c23d7b873e71a5727d35d9f3ff9b56f2156e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.613ex; height:2.843ex;" alt="{\displaystyle f=\{\,(1,d),(2,d),(3,c)\}}"></span>,或<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\left\{{\begin{matrix}d,&amp;{\mbox{if }}x=1\\d,&amp;{\mbox{if }}x=2\\c,&amp;{\mbox{if }}x=3\end{matrix}}\right.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>d</mi> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if&#xA0;</mtext> </mstyle> </mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if&#xA0;</mtext> </mstyle> </mrow> <mi>x</mi> <mo>=</mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if&#xA0;</mtext> </mstyle> </mrow> <mi>x</mi> <mo>=</mo> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\left\{{\begin{matrix}d,&amp;{\mbox{if }}x=1\\d,&amp;{\mbox{if }}x=2\\c,&amp;{\mbox{if }}x=3\end{matrix}}\right.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4df92903ab24148685fe911ae89167566bd20545" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.049ex; height:9.176ex;" alt="{\displaystyle f(x)=\left\{{\begin{matrix}d,&amp;{\mbox{if }}x=1\\d,&amp;{\mbox{if }}x=2\\c,&amp;{\mbox{if }}x=3\end{matrix}}\right.}"></span></div></div></div></div></div> <div class="mw-heading mw-heading2"><h2 id="函數的簡記"><span id=".E5.87.BD.E6.95.B8.E7.9A.84.E7.B0.A1.E8.A8.98"></span>函數的簡記</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=8" title="编辑章节:函數的簡記"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>除了<a class="mw-selflink-fragment" href="#正式定義">正式定義</a>一節所規範的集合論表示法,一般的數學書籍會採用比較通俗的函數表記方法,下面將一一介紹。 </p> <div class="mw-heading mw-heading3"><h3 id="函數記號"><span id=".E5.87.BD.E6.95.B8.E8.A8.98.E8.99.9F"></span>函數記號</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=9" title="编辑章节:函數記號"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>很多函數都是取<a href="/wiki/%E5%AE%9E%E6%95%B0" title="实数">实数</a>為輸出值和輸入值,換句話說,都是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:A\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:A\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29b96eb73b42abe3f9b5fc1b9a94dece18f9abf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.251ex; height:2.509ex;" alt="{\displaystyle f:A\to \mathbb {R} }"></span>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subseteq \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subseteq \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e286ff36e0ad1e0e1e70be50b1cbcfe232b94867" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.52ex; height:2.343ex;" alt="{\displaystyle A\subseteq \mathbb {R} }"></span>),這些函數很多都是以實數的四則運算去定義的。但考慮到<a href="/wiki/%E5%8A%A0%E6%B3%95" title="加法">实数加法</a>可由<a href="/wiki/%E7%9A%AE%E4%BA%9A%E8%AF%BA%E5%85%AC%E7%90%86" title="皮亚诺公理">皮亚诺公理</a>裡的單元<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#函數符號" title="一阶逻辑">函數符號</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1886b5a535ed8f168a7c3a83afc8ca440edcdc6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.638ex; height:2.843ex;" alt="{\displaystyle S(x)}"></span>(直觀上解釋成「<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>的下一個」,或說「<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16df430ed7a23df9b160a5bbd957f306a0c3baa7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.333ex; height:2.343ex;" alt="{\displaystyle x+1}"></span>」)<b>建構出來</b>,或被視為<a href="/wiki/%E5%AE%9E%E6%95%B0#公理化方法" title="实数">实数公理系統</a>裡的雙元<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#函數符號" title="一阶逻辑">函數符號</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x,\,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x,\,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfdbaf2fc607db4118a00b2e5026494defcc43ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.461ex; height:2.843ex;" alt="{\displaystyle P(x,\,y)}"></span>(簡記為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffb4441dccedb5ede51a213408b17cf83eec9a27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.326ex; height:2.343ex;" alt="{\displaystyle x+y}"></span>),實數加法其實是<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91" title="一阶逻辑">一阶逻辑</a>下的<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#項" title="一阶逻辑">項</a>;類似地,其他四則運算也可以此類推,而得出他們都是<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#項" title="一阶逻辑">項</a>的結論。所以直觀上定義<a href="/wiki/%E5%AE%9E%E6%95%B0" title="实数">实数</a>函數的時候,都希望一條項(直觀上的運算式)能唯一決定一個函數,比如說,對於<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#項" title="一阶逻辑">項</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16df430ed7a23df9b160a5bbd957f306a0c3baa7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.333ex; height:2.343ex;" alt="{\displaystyle x+1}"></span></dd></dl> <p>以下的集合: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h:={\bigg \{}p\,{\bigg |}\,(\exists x\in \mathbb {R} )[p=(x,\,x+1)]{\bigg \}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">{</mo> </mrow> </mrow> <mi>p</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mi>p</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">}</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h:={\bigg \{}p\,{\bigg |}\,(\exists x\in \mathbb {R} )[p=(x,\,x+1)]{\bigg \}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2f0f99901091b32d8109b762e046ff253e70747" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.565ex; height:6.176ex;" alt="{\displaystyle h:={\bigg \{}p\,{\bigg |}\,(\exists x\in \mathbb {R} )[p=(x,\,x+1)]{\bigg \}}}"></span></dd></dl> <p>是一個函數。為了讓這類函數的表示更加簡潔,就衍伸出以下的表記方式: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r76704522"><div class="math_theorem" style=""> <p><strong class="theorem-name">符號定義</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\,\dots ,\,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\,\dots ,\,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff7a3f14454eb532edc14b9d8e5dba5007376405" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.074ex; height:2.509ex;" alt="{\displaystyle X_{1},\,\dots ,\,X_{n}}"></span> 都是<a href="/wiki/%E9%9B%86%E5%90%88_(%E6%95%B0%E5%AD%A6)" title="集合 (数学)">集合</a>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> 是含有變數 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1},\,\dots ,\,x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1},\,\dots ,\,x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d67ac4fcd251fe94822cfaa0da778afbc65a4b95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.884ex; height:2.009ex;" alt="{\displaystyle x_{1},\,\dots ,\,x_{n}}"></span> 的<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#項" title="一阶逻辑">項</a>,那在: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\forall x_{1}\in X_{1})\dots (\forall x_{n}\in X_{n})(\exists !y)(y=T)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mo>!</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>=</mo> <mi>T</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\forall x_{1}\in X_{1})\dots (\forall x_{n}\in X_{n})(\exists !y)(y=T)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c87d5f85727b13b54166ad1c31ea9cc039c8bde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.039ex; height:2.843ex;" alt="{\displaystyle (\forall x_{1}\in X_{1})\dots (\forall x_{n}\in X_{n})(\exists !y)(y=T)}"></span></dd></dl> <p>的前提下,則可做以下的符號定義: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1},\,\dots ,\,x_{n})=T\;\;(\langle x_{1},\,\dots ,\,x_{n}\rangle \in X_{1}\times \dots \times X_{n})\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>T</mi> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1},\,\dots ,\,x_{n})=T\;\;(\langle x_{1},\,\dots ,\,x_{n}\rangle \in X_{1}\times \dots \times X_{n})\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/206bb38cbf7c792d8688e4ef76083ddde8396a50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.254ex; height:2.843ex;" alt="{\displaystyle f(x_{1},\,\dots ,\,x_{n})=T\;\;(\langle x_{1},\,\dots ,\,x_{n}\rangle \in X_{1}\times \dots \times X_{n})\,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle :=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>:=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle :=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b9a320a04a814e22f58952141fd0d92cd5ac402" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.455ex; height:1.676ex;" alt="{\displaystyle :=}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f={\bigg \{}p\,{\bigg |}\,\exists x_{1}\dots \exists x_{n}[(\langle x_{1},\,\dots ,\,x_{n}\rangle \in X_{1}\times \dots \times X_{n})\wedge (p=\langle x_{1},\,\dots ,\,x_{n},\,T\rangle )]{\bigg \}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">{</mo> </mrow> </mrow> <mi>p</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mi>T</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">}</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f={\bigg \{}p\,{\bigg |}\,\exists x_{1}\dots \exists x_{n}[(\langle x_{1},\,\dots ,\,x_{n}\rangle \in X_{1}\times \dots \times X_{n})\wedge (p=\langle x_{1},\,\dots ,\,x_{n},\,T\rangle )]{\bigg \}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ea396e7f24aaa2c086ad0d6fe35128a44ae8850" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:79.042ex; height:6.176ex;" alt="{\displaystyle f={\bigg \{}p\,{\bigg |}\,\exists x_{1}\dots \exists x_{n}[(\langle x_{1},\,\dots ,\,x_{n}\rangle \in X_{1}\times \dots \times X_{n})\wedge (p=\langle x_{1},\,\dots ,\,x_{n},\,T\rangle )]{\bigg \}}}"></span></dd></dl> </div> <p>這個表記方式被稱為<b>函數記號</b>(functional notation),直觀上表示「若從<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af4a0955af42beb5f85aa05fb8c07abedc13990d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.724ex; height:2.509ex;" alt="{\displaystyle X_{i}}"></span>依序取出地<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}"></span>代入<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>裡,都可以得到唯一的輸出值,那可以定義一個<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1},\,\dots ,\,x_{n})=T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1},\,\dots ,\,x_{n})=T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08048ec59b595439d58c700f4dcd3f843376f1f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.707ex; height:2.843ex;" alt="{\displaystyle f(x_{1},\,\dots ,\,x_{n})=T}"></span>的函數」。(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>有可能不滿足前提,從而無法定義這樣的一個函數,如取<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T:=x_{1}+z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>:=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T:=x_{1}+z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/649d091b82974783448ed1fce03ce706ece24608" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.694ex; height:2.509ex;" alt="{\displaystyle T:=x_{1}+z}"></span>就無法得到唯一輸出值) </p><p>像是取<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16df430ed7a23df9b160a5bbd957f306a0c3baa7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.333ex; height:2.343ex;" alt="{\displaystyle x+1}"></span>的話,因為實數加法的性質而有: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\forall x\in \mathbb {R} )(\exists !y)(y=x+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mo>!</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\forall x\in \mathbb {R} )(\exists !y)(y=x+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85dc2c78e0175394a9b3d9b2394ab76ca689ad7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.25ex; height:2.843ex;" alt="{\displaystyle (\forall x\in \mathbb {R} )(\exists !y)(y=x+1)}"></span></dd></dl> <p>因為單元對被規定成: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x\rangle :=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>:=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x\rangle :=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c049abbafd052ce4e9ba2d75700cece0bb9976e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.214ex; height:2.843ex;" alt="{\displaystyle \langle x\rangle :=x}"></span></dd></dl> <p>這樣就可以把前面的函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>簡記為: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x)=x+1\;(x\in \mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x)=x+1\;(x\in \mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64f1d22e91de0832b18d8b304eb62e667f6f62a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.212ex; height:2.843ex;" alt="{\displaystyle h(x)=x+1\;(x\in \mathbb {R} )}"></span></dd></dl> <p>如果定義域可以從上下文推斷出來,函數記號可以更不正式的寫為: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1},\,\dots ,\,x_{n})=T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1},\,\dots ,\,x_{n})=T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08048ec59b595439d58c700f4dcd3f843376f1f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.707ex; height:2.843ex;" alt="{\displaystyle f(x_{1},\,\dots ,\,x_{n})=T}"></span></dd></dl> <p>比如說函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>就可以進一步簡記為: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x)=x+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x)=x+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43e157f6791922fd360da174cbc20ecdeffe2628" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.909ex; height:2.843ex;" alt="{\displaystyle h(x)=x+1}"></span></dd></dl> <p>這個記號是1734年第一次被<a href="/wiki/%E8%90%8A%E6%98%82%E5%93%88%E5%BE%B7%C2%B7%E6%AD%90%E6%8B%89" title="萊昂哈德·歐拉">萊昂哈德·歐拉</a>所採用<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup>。但當時並沒有清楚地區分函數、<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#項" title="一阶逻辑">項</a>與<a href="/wiki/%E5%B9%82%E7%BA%A7%E6%95%B0" title="幂级数">幂级数</a>,因為當時並沒有<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91" title="一阶逻辑">一阶逻辑</a>這種清楚研究語言推理的系統;也並不知道有些<a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%A6" title="物理学">物理</a>應用的函數不能用<a href="/wiki/%E5%B9%82%E7%BA%A7%E6%95%B0" title="幂级数">幂级数</a>展開<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading3"><h3 id="箭號表示"><span id=".E7.AE.AD.E8.99.9F.E8.A1.A8.E7.A4.BA"></span>箭號表示</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=10" title="编辑章节:箭號表示"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>以上的函數記號也可以稍作修改,來明確的指出「輸出值」的範圍: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r76704522"><div class="math_theorem" style=""> <p><strong class="theorem-name">符號定義</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\,\dots ,\,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\,\dots ,\,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff7a3f14454eb532edc14b9d8e5dba5007376405" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.074ex; height:2.509ex;" alt="{\displaystyle X_{1},\,\dots ,\,X_{n}}"></span> 與 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> 都是<a href="/wiki/%E9%9B%86%E5%90%88_(%E6%95%B0%E5%AD%A6)" title="集合 (数学)">集合</a>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> 是含有變數 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1},\,\dots ,\,x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1},\,\dots ,\,x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d67ac4fcd251fe94822cfaa0da778afbc65a4b95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.884ex; height:2.009ex;" alt="{\displaystyle x_{1},\,\dots ,\,x_{n}}"></span> 的<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#項" title="一阶逻辑">項</a>,在: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\forall x_{1}\in X_{1})\dots (\forall x_{n}\in X_{n})(\exists !y)[\,(y\in Y)\wedge (y=T)\,]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mo>!</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>=</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\forall x_{1}\in X_{1})\dots (\forall x_{n}\in X_{n})(\exists !y)[\,(y\in Y)\wedge (y=T)\,]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfcb7856433a72334794b10ccdce819328cf86b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.269ex; height:2.843ex;" alt="{\displaystyle (\forall x_{1}\in X_{1})\dots (\forall x_{n}\in X_{n})(\exists !y)[\,(y\in Y)\wedge (y=T)\,]}"></span></dd></dl> <p>的前提下,可做以下的符號定義: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X_{1}\times \dots \times X_{n}\to Y;\;\langle x_{1},\,\dots ,\,x_{n}\rangle \mapsto T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>;</mo> <mspace width="thickmathspace" /> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X_{1}\times \dots \times X_{n}\to Y;\;\langle x_{1},\,\dots ,\,x_{n}\rangle \mapsto T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75c00d646d6cd424e6365a2f2d69741cfb71f9bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.752ex; height:2.843ex;" alt="{\displaystyle f:X_{1}\times \dots \times X_{n}\to Y;\;\langle x_{1},\,\dots ,\,x_{n}\rangle \mapsto T}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle :=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>:=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle :=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b9a320a04a814e22f58952141fd0d92cd5ac402" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.455ex; height:1.676ex;" alt="{\displaystyle :=}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f={\bigg \{}p\,{\bigg |}\,\exists x_{1}\dots \exists x_{n}[(\langle x_{1},\,\dots ,\,x_{n}\rangle \in X_{1}\times \dots \times X_{n})\wedge (p=\langle x_{1},\,\dots ,\,x_{n},\,T\rangle )\wedge (T\in Y)]{\bigg \}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">{</mo> </mrow> </mrow> <mi>p</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mi>T</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">}</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f={\bigg \{}p\,{\bigg |}\,\exists x_{1}\dots \exists x_{n}[(\langle x_{1},\,\dots ,\,x_{n}\rangle \in X_{1}\times \dots \times X_{n})\wedge (p=\langle x_{1},\,\dots ,\,x_{n},\,T\rangle )\wedge (T\in Y)]{\bigg \}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37edc0f7e0a1f90a100313ec347a2589679eb87c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:89.684ex; height:6.176ex;" alt="{\displaystyle f={\bigg \{}p\,{\bigg |}\,\exists x_{1}\dots \exists x_{n}[(\langle x_{1},\,\dots ,\,x_{n}\rangle \in X_{1}\times \dots \times X_{n})\wedge (p=\langle x_{1},\,\dots ,\,x_{n},\,T\rangle )\wedge (T\in Y)]{\bigg \}}}"></span></dd></dl> </div> <p>這個表記方式被稱為<b>箭號表示</b>(arrow notation),直觀上表示「若把從<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af4a0955af42beb5f85aa05fb8c07abedc13990d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.724ex; height:2.509ex;" alt="{\displaystyle X_{i}}"></span>依序取出地<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}"></span>代入<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>裡,都可以得到<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>裡的某唯一輸出,那可以定義一個從<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>到<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>,對應規則為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x_{1},\,\dots ,\,x_{n}\rangle \mapsto T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x_{1},\,\dots ,\,x_{n}\rangle \mapsto T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b003ec9d791f9d2035ccc29fc97c0bfbb5b6be9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.944ex; height:2.843ex;" alt="{\displaystyle \langle x_{1},\,\dots ,\,x_{n}\rangle \mapsto T}"></span>的函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>」 </p><p>上述符號也可以比較通俗地記為: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X_{1}\times \dots \times X_{n}\to Y;\;f(x_{1},\,\dots ,\,x_{n})=T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>;</mo> <mspace width="thickmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X_{1}\times \dots \times X_{n}\to Y;\;f(x_{1},\,\dots ,\,x_{n})=T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04559fba15a7614fb1f8b7294747fd5ee4d40482" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.515ex; height:2.843ex;" alt="{\displaystyle f:X_{1}\times \dots \times X_{n}\to Y;\;f(x_{1},\,\dots ,\,x_{n})=T}"></span></dd></dl> <p>比如說,取<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4339a8d96e6bf8706d6ba8b56c5349417b712ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.53ex; height:2.509ex;" alt="{\displaystyle T_{x}}"></span>為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16df430ed7a23df9b160a5bbd957f306a0c3baa7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.333ex; height:2.343ex;" alt="{\displaystyle x+1}"></span>的話,因為實數加法的性質而有: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\forall x\in \mathbb {R} )(\exists !y)[(y\in \mathbb {R} )\wedge (y=x+1)]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mo>!</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\forall x\in \mathbb {R} )(\exists !y)[(y\in \mathbb {R} )\wedge (y=x+1)]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d8b1cad20d5537f2c8a5a9ad7c1ff42474c2884" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.61ex; height:2.843ex;" alt="{\displaystyle (\forall x\in \mathbb {R} )(\exists !y)[(y\in \mathbb {R} )\wedge (y=x+1)]}"></span></dd></dl> <p>因為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c6d458566aec47a7259762034790c8981aefab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle x\in \mathbb {R} }"></span>可以推出<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+1\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+1\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5df0e2a62f74dcbbd6259f5cd5fab2e4535b20b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.851ex; height:2.343ex;" alt="{\displaystyle x+1\in \mathbb {R} }"></span>,所以可把函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>表示成: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h:\mathbb {R} \to \mathbb {R} ;\;h(x)=x+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>;</mo> <mspace width="thickmathspace" /> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h:\mathbb {R} \to \mathbb {R} ;\;h(x)=x+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8669d65edcd9ef76bfa4cde7de759f6cb083b262" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.834ex; height:2.843ex;" alt="{\displaystyle h:\mathbb {R} \to \mathbb {R} ;\;h(x)=x+1}"></span></dd></dl> <p>箭號表示常用來「固定」某個變數,來得到新的函數;假設<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{xt}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{xt}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e426f70118aa9315a5aa8ab65821c7375581ec0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.124ex; height:2.509ex;" alt="{\displaystyle T_{xt}}"></span>是含有變數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>的<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#項" title="一阶逻辑">項</a>,如果: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\times T\to Y;\;(x,t)\mapsto T_{xt}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo>&#x00D7;<!-- × --></mo> <mi>T</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>;</mo> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\times T\to Y;\;(x,t)\mapsto T_{xt}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8172612461e6fff61aeac700b3618a242723839" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.489ex; height:2.843ex;" alt="{\displaystyle f:X\times T\to Y;\;(x,t)\mapsto T_{xt}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau \in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau \in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d763f9568f2c303a03ed2304be9731d99e41166" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.679ex; height:2.176ex;" alt="{\displaystyle \tau \in T}"></span></dd></dl> <p>那根據: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\forall x)(\forall y)(\forall x^{\prime })(\forall y^{\prime })\{(\langle x,y\rangle =\langle x^{\prime },y^{\prime }\rangle )\Leftrightarrow [(x=x)\wedge (y^{\prime }=y^{\prime })]\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>,</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\forall x)(\forall y)(\forall x^{\prime })(\forall y^{\prime })\{(\langle x,y\rangle =\langle x^{\prime },y^{\prime }\rangle )\Leftrightarrow [(x=x)\wedge (y^{\prime }=y^{\prime })]\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa1681c0724cae3298cf58872bd4c6338607817" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:61.672ex; height:3.009ex;" alt="{\displaystyle (\forall x)(\forall y)(\forall x^{\prime })(\forall y^{\prime })\{(\langle x,y\rangle =\langle x^{\prime },y^{\prime }\rangle )\Leftrightarrow [(x=x)\wedge (y^{\prime }=y^{\prime })]\}}"></span></dd></dl> <p>若假設<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{x\tau }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{x\tau }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02922a6160a7344264680d096ded017906df3145" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.38ex; height:2.509ex;" alt="{\displaystyle T_{x\tau }}"></span>是將<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{xt}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{xt}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e426f70118aa9315a5aa8ab65821c7375581ec0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.124ex; height:2.509ex;" alt="{\displaystyle T_{xt}}"></span>裡的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>都代換成<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span>所形成的新<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#項" title="一阶逻辑">項</a>,那以下的符號簡寫也是可行的: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\tau }:X\to Y;\;x\mapsto T_{x\tau }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C4;<!-- τ --></mi> </mrow> </msub> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>;</mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\tau }:X\to Y;\;x\mapsto T_{x\tau }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e955b17222198b04214bf9106b76b0d86a391ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.529ex; height:2.509ex;" alt="{\displaystyle f_{\tau }:X\to Y;\;x\mapsto T_{x\tau }}"></span></dd></dl> <p>直觀上來說,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\tau }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C4;<!-- τ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\tau }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6432701bf3139c04f4d7194789b1937e3043581c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.221ex; height:2.509ex;" alt="{\displaystyle f_{\tau }}"></span>是把<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>第二個變數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>「固定」成特定的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span>所得到的新函數,英文上也可稱為<span lang="en">partial applied function</span>。 </p> <div class="mw-heading mw-heading3"><h3 id="間隔號表示"><span id=".E9.96.93.E9.9A.94.E8.99.9F.E8.A1.A8.E7.A4.BA"></span>間隔號表示</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=11" title="编辑章节:間隔號表示"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>可以把箭號表示裡的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>都取代成<a href="/wiki/%E9%97%B4%E9%9A%94%E5%8F%B7" title="间隔号">间隔号</a>,變成更通俗直觀的<b>間隔號表示</b>,比如說: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} \to \mathbb {R} ;\;x\mapsto x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>;</mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} \to \mathbb {R} ;\;x\mapsto x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1661b3394aad4944f35019919afffdc1467d24c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.193ex; height:3.009ex;" alt="{\displaystyle f:\mathbb {R} \to \mathbb {R} ;\;x\mapsto x^{2}}"></span></dd></dl> <p>可以記為: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {(\cdot )}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {(\cdot )}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9488581a0d44801b91de0dcaf26e75df52cc4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.51ex; height:3.343ex;" alt="{\displaystyle {(\cdot )}^{2}}"></span></dd></dl> <p>或是對於<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,\,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,\,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6403d6efced230f17c4b47aaf58879b629b048f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.942ex; height:2.843ex;" alt="{\displaystyle [a,\,b]}"></span><a href="/wiki/%E9%BB%8E%E6%9B%BC%E7%A7%AF%E5%88%86" title="黎曼积分">可積</a>的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:[a,\,b]\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>b</mi> <mo stretchy="false">]</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:[a,\,b]\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab904c8e15fe9ff81887ca14195f2712316da9c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.45ex; height:2.843ex;" alt="{\displaystyle f:[a,\,b]\to \mathbb {R} }"></span>,作如下定義的話: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:[a,\,b]\to \mathbb {R} ;\;x\mapsto \int _{a}^{x}f(u)\,du}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>b</mi> <mo stretchy="false">]</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>;</mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:[a,\,b]\to \mathbb {R} ;\;x\mapsto \int _{a}^{x}f(u)\,du}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34de17cb8fd55bbbe4aceb146d99964811843199" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.284ex; height:5.843ex;" alt="{\displaystyle g:[a,\,b]\to \mathbb {R} ;\;x\mapsto \int _{a}^{x}f(u)\,du}"></span></dd></dl> <p>函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>的定義亦可不正式的記為: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{(\cdot )}f(u)\,du}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{(\cdot )}f(u)\,du}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd369dda5da8295f2848291f9ccc175f25a48ad8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:12.17ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{(\cdot )}f(u)\,du}"></span></dd></dl> <p>但這個表記方法的明顯缺點是無法指出定義域,因為函數於哪個<a href="/wiki/%E5%8D%80%E9%96%93" title="區間">區間</a><a href="/wiki/%E9%BB%8E%E6%9B%BC%E7%A7%AF%E5%88%86" title="黎曼积分">可積</a>會決定以上的函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>的定義可不可行。 </p> <div class="mw-heading mw-heading2"><h2 id="函数图形"><span id=".E5.87.BD.E6.95.B0.E5.9B.BE.E5.BD.A2"></span>函数图形</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=12" title="编辑章节:函数图形"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="thumb tright"><div class="thumbinner" style="width:344px"><div class="thumbimage noresize" style="width:342px;"> <div style="background-color: #F9F9F9; padding-left: 5px; margin: 0;"> <div style="font-size: 0.8em; text-align: left;"> <style data-mw-deduplicate="TemplateStyles:r83732972">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .ambox{border-left-color:#36c!important}html.skin-theme-clientpref-night .mw-parser-output .ambox-speedy,html.skin-theme-clientpref-night .mw-parser-output .ambox-delete{border-left-color:#b32424!important}html.skin-theme-clientpref-night .mw-parser-output .ambox-speedy{background-color:#300!important}html.skin-theme-clientpref-night .mw-parser-output .ambox-content{border-left-color:#f28500!important}html.skin-theme-clientpref-night .mw-parser-output .ambox-style{border-left-color:#fc3!important}html.skin-theme-clientpref-night .mw-parser-output .ambox-move{border-left-color:#9932cc!important}html.skin-theme-clientpref-night .mw-parser-output .ambox-protection{border-left-color:#a2a9b1!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .ambox{border-left-color:#36c!important}html.skin-theme-clientpref-os .mw-parser-output .ambox-speedy,html.skin-theme-clientpref-os .mw-parser-output .ambox-delete{border-left-color:#b32424!important}html.skin-theme-clientpref-os .mw-parser-output .ambox-speedy{background-color:#300!important}html.skin-theme-clientpref-os .mw-parser-output .ambox-content{border-left-color:#f28500!important}html.skin-theme-clientpref-os .mw-parser-output .ambox-style{border-left-color:#fc3!important}html.skin-theme-clientpref-os .mw-parser-output .ambox-move{border-left-color:#9932cc!important}html.skin-theme-clientpref-os .mw-parser-output .ambox-protection{border-left-color:#a2a9b1!important}}</style><table class="box-Notice plainlinks metadata ambox ambox-notice" role="presentation"><tbody><tr><td class="mbox-image"><div style="width:52px"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Information_icon4.svg/40px-Information_icon4.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Information_icon4.svg/60px-Information_icon4.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Information_icon4.svg/80px-Information_icon4.svg.png 2x" data-file-width="620" data-file-height="620" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">由于已知的技术原因,图表暂时不可用。带来不便,我们深表歉意。<span class="hide-when-compact"></span><span class="hide-when-compact"></span></div></td></tr></tbody></table> </div></div></div><div class="thumbcaption">sin(x)等函數的圖形</div></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r85100532"><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E5%87%BD%E6%95%B0%E5%9B%BE%E5%BD%A2" title="函数图形">函数图形</a></div> <p>如果函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的值域跟定義域都是實數集合(俗稱<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>為<b>實函数</b>),可以x軸代表定義域的範圍;y軸代表值域的範圍,把函數的每個元素標示在平面<a href="/wiki/%E7%AC%9B%E5%8D%A1%E5%B0%94%E5%9D%90%E6%A0%87%E7%B3%BB" title="笛卡尔坐标系">直角坐標</a>上,這被稱為實函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>在平面上的<b>函數圖形</b>。 </p><p>對於「雙變數」的實函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>,也就是以(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,\,y,\,z\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,\,y,\,z\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91b7f4712ef60790ac318f99b385110c2df337d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.934ex; height:2.509ex;" alt="{\displaystyle x,\,y,\,z\in \mathbb {R} }"></span>) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ((x,\,y),\,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thinmathspace" /> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ((x,\,y),\,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb7bf0887be3334cc612b2788d40cf32cf7ca51e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.034ex; height:2.843ex;" alt="{\displaystyle ((x,\,y),\,z)}"></span></dd></dl> <p>為元素的函數,可以取 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{x}=\{\,x\,|\,(\exists y)(\exists z)[\,g(x,\,y)=z\,]\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mi>x</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{x}=\{\,x\,|\,(\exists y)(\exists z)[\,g(x,\,y)=z\,]\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9dddbd942ba946433d604d83c67676cfa21bd5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.578ex; height:2.843ex;" alt="{\displaystyle D_{x}=\{\,x\,|\,(\exists y)(\exists z)[\,g(x,\,y)=z\,]\,\}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{y}=\{\,x\,|\,(\exists x)(\exists z)[\,g(x,\,y)=z\,]\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mi>x</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{y}=\{\,x\,|\,(\exists x)(\exists z)[\,g(x,\,y)=z\,]\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/351b4bd689937b8a74fe68d440a6a71a62d98ce2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:33.629ex; height:3.009ex;" alt="{\displaystyle D_{y}=\{\,x\,|\,(\exists x)(\exists z)[\,g(x,\,y)=z\,]\,\}}"></span></dd></dl> <p>然後以x軸為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15427ff95343d483864e9ad5f2f836de676312d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.097ex; height:2.509ex;" alt="{\displaystyle D_{x}}"></span>變化範圍;y軸為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a95004ec6d8f49f4ba24d128be75b682bd85847" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.974ex; height:2.843ex;" alt="{\displaystyle D_{y}}"></span>變化範圍;最後取z軸為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>的值域變化範圍,這樣就可以在三維<a href="/wiki/%E7%AC%9B%E5%8D%A1%E5%B0%94%E5%9D%90%E6%A0%87%E7%B3%BB" title="笛卡尔坐标系">直角坐標</a>繪出<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>的<b>函數圖形</b>。 </p> <div class="mw-heading mw-heading3"><h3 id="實函数的判别"><span id=".E5.AF.A6.E5.87.BD.E6.95.B0.E7.9A.84.E5.88.A4.E5.88.AB"></span>實函数的判别</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=13" title="编辑章节:實函数的判别"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>平面上的任意圖形可用<b>豎直判别法</b>判斷是否為<b>實函数</b>的圖形,即图形与任何一条平行于y轴的直线不能有一个以上的交點。但實際上這僅僅是函數正式定義的一種應用,因為平行于y轴的直线代表的是形如 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\,p\in {\mathbb {R} }^{2}\,|\,(\exists y\in \mathbb {R} )[\,p=(c,\,y)\,]\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi>p</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\,p\in {\mathbb {R} }^{2}\,|\,(\exists y\in \mathbb {R} )[\,p=(c,\,y)\,]\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3cab4f2ea350717f6ceecd749e509469bb84ce1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.767ex; height:3.176ex;" alt="{\displaystyle \{\,p\in {\mathbb {R} }^{2}\,|\,(\exists y\in \mathbb {R} )[\,p=(c,\,y)\,]\,\}}"></span></dd></dl> <p>的集合,也就是此直線交x軸於<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (c,\,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (c,\,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21f68286402c820877c4be1ca3e0e02f4d9be445" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.4ex; height:2.843ex;" alt="{\displaystyle (c,\,0)}"></span>,那這樣直線與實函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的交集就是 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\,p\in {\mathbb {R} }^{2}\,|\,(\exists y\in \mathbb {R} )[\,p=(c,\,y)\wedge y=f(c)\,]\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi>p</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\,p\in {\mathbb {R} }^{2}\,|\,(\exists y\in \mathbb {R} )[\,p=(c,\,y)\wedge y=f(c)\,]\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa36ecb068d98412730298623c0693f4196404b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.698ex; height:3.176ex;" alt="{\displaystyle \{\,p\in {\mathbb {R} }^{2}\,|\,(\exists y\in \mathbb {R} )[\,p=(c,\,y)\wedge y=f(c)\,]\,\}}"></span></dd></dl> <p>而屬於這個交集裡的平面點<b>最多只能有一個</b>,否則就會跟每個<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in D_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in D_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3029cdd2f249918d8f7c504343853c821fd480f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.231ex; height:2.843ex;" alt="{\displaystyle x\in D_{f}}"></span>只能對應一個<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>的基本定義矛盾。 </p> <div class="mw-heading mw-heading2"><h2 id="像和原像"><span id=".E5.83.8F.E5.92.8C.E5.8E.9F.E5.83.8F"></span>像和原像</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=14" title="编辑章节:像和原像"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%E5%83%8F_(%E6%95%B8%E5%AD%B8)" title="像 (數學)"><b>像</b></a>可以指兩種不同的概念 </p><p>第一種是形如<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>的<a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91#項" title="一阶逻辑">項</a>,直觀上代表的是依照函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的對應規則,使<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>能對應到的那個「值」。(嚴謹的意義請回去參考<a class="mw-selflink-fragment" href="#函數值的簡記">函數值的簡記</a>) </p><p>第二種指的是集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>在函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>下定義的集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2711c647e5397c7016ee21bbcea53565480bd5e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.831ex; height:2.843ex;" alt="{\displaystyle f(A)}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(A):=\{\,y\,|\,(\exists x\in A)[\,y=f(x)\,]\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(A):=\{\,y\,|\,(\exists x\in A)[\,y=f(x)\,]\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e9d8b1aabbf585554b6bc4f1e1ac95a97d1a01b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.007ex; height:2.843ex;" alt="{\displaystyle f(A):=\{\,y\,|\,(\exists x\in A)[\,y=f(x)\,]\,\}}"></span></dd></dl> <p>注意<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的值域就是定義域<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13b8420d715315c8e8b57f178a1b3a8512bd0959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.061ex; height:2.843ex;" alt="{\displaystyle D_{f}}"></span>的像<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(D_{f})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(D_{f})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2138fe2c7859269d9c99f85a86337bfc239afebd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.149ex; height:3.009ex;" alt="{\displaystyle f(D_{f})}"></span>。在<a href="#正式定義">正式定義</a>一節的最後例子中,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{2,3\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{2,3\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d118b286f8bcc9dad1b4f5f37d5a7342d95f2e2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.684ex; height:2.843ex;" alt="{\displaystyle \{2,3\}}"></span>在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的像是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\{2,3\})=\{c,d\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\{2,3\})=\{c,d\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f64b98e3f395dc9e50ab5ad1baea93de8c0a8011" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.452ex; height:2.843ex;" alt="{\displaystyle f(\{2,3\})=\{c,d\}}"></span>,而<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的值域是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{c,d\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{c,d\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/163be9d4f1d7c50b0db1f934f6b8709b9ea9fd32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.582ex; height:2.843ex;" alt="{\displaystyle \{c,d\}}"></span>。 </p><p>類似的,集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>在函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>下的<b>原像</b>(或<i>逆像</i>)定義為: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(B):=\{\,x\,|\,(\exists y)[\,y=f(x)\wedge y\in B\,]\,\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mi>x</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(B):=\{\,x\,|\,(\exists y)[\,y=f(x)\wedge y\in B\,]\,\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac489453bbd5720b984a69f3bdd9b56cb17cfc46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.161ex; height:3.176ex;" alt="{\displaystyle f^{-1}(B):=\{\,x\,|\,(\exists y)[\,y=f(x)\wedge y\in B\,]\,\}}"></span></dd></dl> <p>沿用同一例子,可以看到<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{a,b\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{a,b\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8127b44bf0e5a64fdc9301e188852ab9b97a1fe8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.586ex; height:2.843ex;" alt="{\displaystyle \{a,b\}}"></span>的原像是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(\{a,b\})=\varnothing }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(\{a,b\})=\varnothing }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7ada38cfabc1d1e9a930780f31e634685fc2ed5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.955ex; height:3.176ex;" alt="{\displaystyle f^{-1}(\{a,b\})=\varnothing }"></span>,即<a href="/wiki/%E7%A9%BA%E9%9B%86" title="空集">空集</a>。 </p><p>以下是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>及<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e5cfa2f5c08d6fe7d046b73faa6e3f213acc802" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.653ex; height:3.009ex;" alt="{\displaystyle f^{-1}}"></span>的一些特性: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(A_{1}\cup A_{2})=f(A_{1})\cup f(A_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x222A;<!-- ∪ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x222A;<!-- ∪ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(A_{1}\cup A_{2})=f(A_{1})\cup f(A_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbcb42c8abc7abbedfc53c5c5cc3a5b913d70117" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.717ex; height:2.843ex;" alt="{\displaystyle f(A_{1}\cup A_{2})=f(A_{1})\cup f(A_{2})}"></span>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(A_{1}\cap A_{2})\subseteq f(A_{1})\cap f(A_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2229;<!-- ∩ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(A_{1}\cap A_{2})\subseteq f(A_{1})\cap f(A_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c240242110946953836bd16a3236dec89a06292" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.717ex; height:2.843ex;" alt="{\displaystyle f(A_{1}\cap A_{2})\subseteq f(A_{1})\cap f(A_{2})}"></span>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(B_{1}\cup B_{2})=f^{-1}(B_{1})\cup f^{-1}(B_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x222A;<!-- ∪ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x222A;<!-- ∪ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(B_{1}\cup B_{2})=f^{-1}(B_{1})\cup f^{-1}(B_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a918515524eda17a5bd50a93cf3c15180ee3698f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.55ex; height:3.176ex;" alt="{\displaystyle f(B_{1}\cup B_{2})=f^{-1}(B_{1})\cup f^{-1}(B_{2})}"></span>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(B_{1}\cap B_{2})=f^{-1}(B_{1})\cap f^{-1}(B_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2229;<!-- ∩ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(B_{1}\cap B_{2})=f^{-1}(B_{1})\cap f^{-1}(B_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4e4839f1ab97a1f5e3cf1b1ba7a99e0c00b9040" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.924ex; height:3.176ex;" alt="{\displaystyle f^{-1}(B_{1}\cap B_{2})=f^{-1}(B_{1})\cap f^{-1}(B_{2})}"></span>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(f(B))\subseteq B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(f(B))\subseteq B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fea82c2dc0002b3c073e1bdfee3808e34f83718a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.177ex; height:3.176ex;" alt="{\displaystyle f^{-1}(f(B))\subseteq B}"></span>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(f(A))\supseteq A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2287;<!-- ⊇ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(f(A))\supseteq A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30f77fb712462c68175539d2cf23dda40f58a70f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.135ex; height:3.176ex;" alt="{\displaystyle f^{-1}(f(A))\supseteq A}"></span>。</li></ul> <p>這些特性適合定義域的任意子集<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,A_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,A_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1e0a2ac3ab4c36fd999dfcba0a04af6217bc1fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.574ex; height:2.509ex;" alt="{\displaystyle A,A_{1}}"></span>及<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ec73b8bc9abc3efb934f5a6ec2803713771f4bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.797ex; height:2.509ex;" alt="{\displaystyle A_{2}}"></span>和到達域的任意<a href="/wiki/%E5%AD%90%E9%9B%86" title="子集">子集</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B,B_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B,B_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaf42e5d1199c6a13574b5ed01c4caba5d9214a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.616ex; height:2.509ex;" alt="{\displaystyle B,B_{1}}"></span>及<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/199944d59dcc18842dfd1deab6000a1d1dadcbae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.818ex; height:2.509ex;" alt="{\displaystyle B_{2}}"></span>,甚至可推廣到任意子集群的<a href="/wiki/%E4%BA%A4%E9%9B%86" title="交集">交集</a>和<a href="/wiki/%E5%B9%B6%E9%9B%86" title="并集">并集</a>。 </p> <div class="mw-heading mw-heading2"><h2 id="函數的限制及擴張"><span id=".E5.87.BD.E6.95.B8.E7.9A.84.E9.99.90.E5.88.B6.E5.8F.8A.E6.93.B4.E5.BC.B5"></span>函數的限制及擴張</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=15" title="编辑章节:函數的限制及擴張"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>若<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span>且<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{\prime }\subset X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>&#x2282;<!-- ⊂ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{\prime }\subset X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f3954b426356e728a86052377d7249a859b1c13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.76ex; height:2.509ex;" alt="{\displaystyle X^{\prime }\subset X}"></span>,那以下定義的集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f|_{X^{\prime }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f|_{X^{\prime }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f77747432768fab9f24299b373c93e1732df5ee8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.101ex; height:2.843ex;" alt="{\displaystyle f|_{X^{\prime }}}"></span>(注意到<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \times }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x00D7;<!-- × --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \times }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ffafff1ad26cbe49045f19a67ce532116a32703" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.019ex; margin-bottom: -0.19ex; width:1.808ex; height:1.509ex;" alt="{\displaystyle \times }"></span>代表<a href="/wiki/%E7%AC%9B%E5%8D%A1%E5%84%BF%E7%A7%AF" title="笛卡儿积">笛卡儿积</a>) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f|_{X^{\prime }}:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X^{\prime })\wedge [\,y=f(x)\,]\,{\bigg \}}=f\cap (X^{\prime }\times Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mrow> </msub> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">{</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">}</mo> </mrow> </mrow> <mo>=</mo> <mi>f</mi> <mo>&#x2229;<!-- ∩ --></mo> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>&#x00D7;<!-- × --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f|_{X^{\prime }}:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X^{\prime })\wedge [\,y=f(x)\,]\,{\bigg \}}=f\cap (X^{\prime }\times Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9326c2b80dccd3706cb754e74217e3318eafbc20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:57.291ex; height:6.176ex;" alt="{\displaystyle f|_{X^{\prime }}:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X^{\prime })\wedge [\,y=f(x)\,]\,{\bigg \}}=f\cap (X^{\prime }\times Y)}"></span></dd></dl> <p>顯然為一函數,稱為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{\prime }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{\prime }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7a3a5819cc45f097de14b3ac5a8bedd902bc66d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.682ex; height:2.509ex;" alt="{\displaystyle X^{\prime }}"></span>的<b><a href="/wiki/%E9%99%90%E5%88%B6_(%E6%95%B8%E5%AD%B8)" title="限制 (數學)">限制</a></b>。 </p><p>反之,若<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:X\to Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:X\to Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25b02f8ef0f9e54184931b9fb3f4ab87c3101dbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.328ex; height:2.509ex;" alt="{\displaystyle g:X\to Z}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\subseteq Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\subseteq Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/894a17f6bbae8bb911fb08785e051b353e832ea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.852ex; height:2.343ex;" alt="{\displaystyle X\subseteq Y}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:Y\to Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>Y</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:Y\to Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2d5a35de429ebf7809eccaac9c99aa87d511ac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.284ex; height:2.509ex;" alt="{\displaystyle f:Y\to Z}"></span>且<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f|_{X}=g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>=</mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f|_{X}=g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a12705360feaf153cea95f7d9c59c102cc0ad1d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.772ex; height:2.843ex;" alt="{\displaystyle f|_{X}=g}"></span>,那<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>稱為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>的<b><a href="/w/index.php?title=%E5%87%BD%E6%95%B8%E7%9A%84%E6%93%B4%E5%BC%B5&amp;action=edit&amp;redlink=1" class="new" title="函數的擴張(页面不存在)">擴張</a></b>。 </p> <div class="mw-heading mw-heading2"><h2 id="点态运算"><span id=".E7.82.B9.E6.80.81.E8.BF.90.E7.AE.97"></span>点态运算</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=16" title="编辑章节:点态运算"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>設<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08ed9e02e498dee575b1cdb8f9afedf3b4cd4851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.574ex; height:2.509ex;" alt="{\displaystyle f:X\to R}"></span>且<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:X\to R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:X\to R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61920bcfaabfb6daa0dcc056e987b91c9a9c8975" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.411ex; height:2.509ex;" alt="{\displaystyle g:X\to R}"></span>且<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R,\,+,\,\times )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>R</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mo>+</mo> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R,\,+,\,\times )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b6536ae382a84dd30b9ae9b138df187a7b1def8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.032ex; height:2.843ex;" alt="{\displaystyle (R,\,+,\,\times )}"></span>為<a href="/wiki/%E7%8E%AF_(%E4%BB%A3%E6%95%B0)" title="环 (代数)">環</a>。這樣可以定義「函數和」<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f+g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>+</mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f+g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d94a24abd865f6f9fd67a7df7e531cae1c769b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.235ex; height:2.509ex;" alt="{\displaystyle f+g}"></span>與「函數積」<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\times g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x00D7;<!-- × --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\times g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/173e64c38905633d16e671ea4436592d280d5c6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.235ex; height:2.509ex;" alt="{\displaystyle f\times g}"></span>如下: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f+g:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X)\wedge [\,y=f(x)+g(x)\,]\,{\bigg \}}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> <mo>+</mo> <mi>g</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">{</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">}</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f+g:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X)\wedge [\,y=f(x)+g(x)\,]\,{\bigg \}}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24cd44696743f359b814eaa20bcaaa58f683ea18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:49.506ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}f+g:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X)\wedge [\,y=f(x)+g(x)\,]\,{\bigg \}}\\\end{aligned}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f+g:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X)\wedge [\,y=f(x)\times g(x)\,]\,{\bigg \}}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> <mo>+</mo> <mi>g</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">{</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">}</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f+g:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X)\wedge [\,y=f(x)\times g(x)\,]\,{\bigg \}}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e80221abfd7bf96f7b0c48b31cbe785b7158f908" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:49.506ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}f+g:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X)\wedge [\,y=f(x)\times g(x)\,]\,{\bigg \}}\\\end{aligned}}}"></span></dd></dl> <p>很容易證明以上兩者也是函數,類似的對任意的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca49c66b5e9b5f32249a737e4429c3df136c33f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.653ex; height:2.176ex;" alt="{\displaystyle r\in R}"></span>可以定義下面這兩個集合 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}r_{R}:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X)\wedge (y=r)\,{\bigg \}}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">{</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">}</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}r_{R}:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X)\wedge (y=r)\,{\bigg \}}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c79594e0dd5e425b20853ac50ec0ca5ba9bfa148" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:36.076ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}r_{R}:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X)\wedge (y=r)\,{\bigg \}}\\\end{aligned}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}r\cdot f:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X)\wedge [\,y=r\times f(x)\,]\,{\bigg \}}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>r</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>f</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">{</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mo>&#x00D7;<!-- × --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">}</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}r\cdot f:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X)\wedge [\,y=r\times f(x)\,]\,{\bigg \}}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d1a6a187fe46aab48c5b1d6460d8f54210ffb94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.071ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}r\cdot f:={\bigg \{}\,(x,\,y)\,{\bigg |}\,(x\in X)\wedge [\,y=r\times f(x)\,]\,{\bigg \}}\\\end{aligned}}}"></span></dd></dl> <p>也是函數,其中<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{R}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{R}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/024f7278656cfcdd8ea5db19a5b2d8ea54355183" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.528ex; height:2.009ex;" alt="{\displaystyle r_{R}}"></span>被稱為<b>常數函數</b>。 </p> <div class="mw-heading mw-heading2"><h2 id="範例"><span id=".E7.AF.84.E4.BE.8B"></span>範例</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=17" title="编辑章节:範例"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r85100532"><div role="note" class="hatnote navigation-not-searchable">参见:<a href="/wiki/%E5%87%BD%E6%95%B0%E5%88%97%E8%A1%A8" title="函数列表">函数列表</a></div> <ul><li>首都之於国家(若不把多首都国<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>註 1<span class="cite-bracket">&#93;</span></a></sup>计算在内)。</li> <li>每个<a href="/wiki/%E8%87%AA%E7%84%B6%E6%95%B0" title="自然数">自然数</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>的平方<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac9810bbdafe4a6a8061338db0f74e25b7952620" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.676ex;" alt="{\displaystyle n^{2}}"></span>是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>的函數。</li> <li><a href="/wiki/%E5%AF%B9%E6%95%B0%E5%87%BD%E6%95%B0" class="mw-redirect" title="对数函数">對數函數</a>。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed172b0f5195382a3500c713941f945ad4db3898" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.656ex; height:2.176ex;" alt="{\displaystyle \ln x}"></span>是<a href="/wiki/%E6%AD%A3%E6%95%B0" class="mw-redirect" title="正数">正</a><a href="/wiki/%E5%AE%9E%E6%95%B0" title="实数">实数</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>的函數。注意,雖然可以把對數函數推廣到複數情況,但結果就不是函數了,而是多值函數。</li> <li>對每个在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span>平面上的点,其和<a href="/wiki/%E5%8E%9F%E9%BB%9E" title="原點">原点</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d630d3e781a53b0a3559ae7e5b45f9479a3141a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="{\displaystyle (0,0)}"></span>的距离是確定的。</li></ul> <p>常用的数学函数包括<a href="/wiki/%E5%A4%9A%E9%A1%B9%E5%BC%8F%E5%87%BD%E6%95%B0" class="mw-redirect" title="多项式函数">多项式函數</a>、<a href="/w/index.php?title=%E6%A0%B9%E5%BC%8F%E5%87%BD%E6%95%B8&amp;action=edit&amp;redlink=1" class="new" title="根式函數(页面不存在)">根式函數</a>、<a href="/wiki/%E5%B9%82%E5%87%BD%E6%95%B0" title="幂函数">冪函數</a>、<a href="/wiki/%E5%AF%B9%E6%95%B0%E5%87%BD%E6%95%B0" class="mw-redirect" title="对数函数">对数函數</a>、<a href="/wiki/%E6%9C%89%E7%90%86%E5%87%BD%E6%95%B8" title="有理函數">有理函数</a>、<a href="/wiki/%E4%B8%89%E8%A7%92%E5%87%BD%E6%95%B0" title="三角函数">三角函数</a>、<a href="/wiki/%E5%8F%8D%E4%B8%89%E8%A7%92%E5%87%BD%E6%95%B0" title="反三角函数">反三角函數</a>等。它们都是<a href="/wiki/%E5%88%9D%E7%AD%89%E5%87%BD%E6%95%B0" title="初等函数">初等函数</a>。非初等函数(或<a href="/wiki/%E7%89%B9%E6%AE%8A%E5%87%BD%E6%95%B0" title="特殊函数">特殊函数</a>)包括<a href="/wiki/%E4%BC%BD%E9%A9%AC%E5%87%BD%E6%95%B0" class="mw-redirect" title="伽马函数">伽马函數</a>和<a href="/wiki/%E8%B4%9D%E5%A1%9E%E5%B0%94%E5%87%BD%E6%95%B0" title="贝塞尔函数">贝塞尔函数</a>等。 </p> <div class="mw-heading mw-heading2"><h2 id="分類"><span id=".E5.88.86.E9.A1.9E"></span>分類</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=18" title="编辑章节:分類"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>函數可分為 </p> <ul><li><a href="/wiki/%E5%A5%87%E5%87%BD%E6%95%B8" class="mw-redirect" title="奇函數">奇函數</a>或<a href="/wiki/%E5%81%B6%E5%87%BD%E6%95%B8" class="mw-redirect" title="偶函數">偶函數</a></li> <li><a href="/wiki/%E9%80%A3%E7%BA%8C%E5%87%BD%E6%95%B8" class="mw-redirect" title="連續函數">連續函數</a>或<a href="/wiki/%E4%B8%8D%E9%80%A3%E7%BA%8C%E5%87%BD%E6%95%B8" class="mw-redirect" title="不連續函數">不連續函數</a></li> <li><a href="/wiki/%E5%AE%9E%E5%87%BD%E6%95%B0" title="实函数">實函數</a>或<a href="/wiki/%E8%99%9B%E5%87%BD%E6%95%B8" class="mw-redirect" title="虛函數">虛函數</a></li> <li><a href="/w/index.php?title=%E7%B4%94%E9%87%8F%E5%87%BD%E6%95%B8&amp;action=edit&amp;redlink=1" class="new" title="純量函數(页面不存在)">純量函數</a>或<a href="/wiki/%E5%90%91%E9%87%8F%E5%87%BD%E6%95%B8" class="mw-redirect" title="向量函數">向量函數</a></li> <li><a href="/w/index.php?title=%E5%8D%95%E8%B0%83%E5%A2%9E%E5%87%BD%E6%95%B0&amp;action=edit&amp;redlink=1" class="new" title="单调增函数(页面不存在)">单调增函数</a>或<a href="/w/index.php?title=%E5%8D%95%E8%B0%83%E5%87%8F%E5%87%BD%E6%95%B0&amp;action=edit&amp;redlink=1" class="new" title="单调减函数(页面不存在)">单调减函数</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="范畴論觀點"><span id=".E8.8C.83.E7.95.B4.E8.AB.96.E8.A7.80.E9.BB.9E"></span>范畴論觀點</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=19" title="编辑章节:范畴論觀點"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r85100532"><div role="note" class="hatnote navigation-not-searchable">参见:<a href="/wiki/%E8%8C%83%E7%95%B4%E8%AE%BA" title="范畴论">范畴论</a>和<a href="/wiki/%E6%80%81%E5%B0%84" title="态射">态射</a></div> <p>在<a href="/wiki/%E8%8C%83%E7%95%B4%E8%AE%BA" title="范畴论">范畴论</a>中,函数的槪念被推廣為<a href="/wiki/%E6%80%81%E5%B0%84" title="态射">態射</a>的槪念。 </p><p>一個<a href="/wiki/%E7%AF%84%E7%96%87_(%E6%95%B8%E5%AD%B8)" title="範疇 (數學)">范畴</a>包括一組物件與一組態射,每一個態射是個三元组(<i>X</i>, <i>Y</i>, <i>f</i>),<i>X</i>稱為源物件(定義域的類比),<i>Y</i>稱為目標物件(到達域的類比),而源物件与目標物件是范畴內的物件。基于这种解释,可以把函数看作<a href="/wiki/%E9%9B%86%E5%90%88%E8%8C%83%E7%95%B4" title="集合范畴">集合范畴</a>裡面的態射。 </p> <div class="mw-heading mw-heading2"><h2 id="註釋"><span id=".E8.A8.BB.E9.87.8B"></span>註釋</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=20" title="编辑章节:註釋"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist" style="list-style-type: decimal;"> <ol class="references"> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20051222162004/http://geography.about.com/library/misc/bl2capitals.htm">Countries With Multiple Capital Cities</a>. geography.about.com. <span class="reference-accessdate"> &#91;<span class="nowrap">2004-04-05</span>&#93;</span>. (<a rel="nofollow" class="external text" href="http://geography.about.com/library/misc/bl2capitals.htm">原始内容</a>存档于2005-12-22).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.atitle=Countries+With+Multiple+Capital+Cities&amp;rft.genre=unknown&amp;rft.jtitle=geography.about.com&amp;rft_id=http%3A%2F%2Fgeography.about.com%2Flibrary%2Fmisc%2Fbl2capitals.htm&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="參考文獻"><span id=".E5.8F.83.E8.80.83.E6.96.87.E7.8D.BB"></span>參考文獻</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=21" title="编辑章节:參考文獻"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r80540462">.mw-parser-output .refbegin{font-size:90%;margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .refbegin-100{font-size:100%}</style><div class="refbegin columns references-column-count references-column-count-2" style="-moz-column-count: 2; -webkit-column-count: 2; column-count: 2;"> <ul><li><cite class="citation web">Lawrence S. Husch. <a rel="nofollow" class="external text" href="http://archives.math.utk.edu/visual.calculus/">Visual Calculus</a>. <a href="/wiki/%E7%94%B0%E7%B4%8D%E8%A5%BF%E5%A4%A7%E5%AD%B8" title="田納西大學">田納西大學</a>. 2001年 <span class="reference-accessdate"> &#91;<span class="nowrap">2004-04-05</span>&#93;</span>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20110924071226/http://archives.math.utk.edu/visual.calculus/">存档</a>于2011-09-24).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.au=Lawrence+S.+Husch&amp;rft.btitle=Visual+Calculus&amp;rft.date=2001&amp;rft.genre=unknown&amp;rft.pub=%E7%94%B0%E7%B4%8D%E8%A5%BF%E5%A4%A7%E5%AD%B8&amp;rft_id=http%3A%2F%2Farchives.math.utk.edu%2Fvisual.calculus%2F&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book"><a href="/w/index.php?title=Robert_G._Bartle&amp;action=edit&amp;redlink=1" class="new" title="Robert G. Bartle(页面不存在)">Bartle, Robert</a>. The Elements of Real Analysis 2nd. Wiley. 1976. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-471-05465-8" title="Special:网络书源/978-0-471-05465-8"><span title="国际标准书号">ISBN</span>&#160;978-0-471-05465-8</a>. <a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/465115030"><span title="OCLC">OCLC&#160;465115030</span></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=Robert&amp;rft.aulast=Bartle&amp;rft.btitle=The+Elements+of+Real+Analysis&amp;rft.date=1976&amp;rft.edition=2nd&amp;rft.genre=book&amp;rft.isbn=978-0-471-05465-8&amp;rft.pub=Wiley&amp;rft_id=info%3Aoclcnum%2F465115030&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Bloch, Ethan D. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QJ_537n8zKYC">Proofs and Fundamentals: A First Course in Abstract Mathematics</a>. Springer. 2011. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-1-4419-7126-5" title="Special:网络书源/978-1-4419-7126-5"><span title="国际标准书号">ISBN</span>&#160;978-1-4419-7126-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=Ethan+D.&amp;rft.aulast=Bloch&amp;rft.btitle=Proofs+and+Fundamentals%3A+A+First+Course+in+Abstract+Mathematics&amp;rft.date=2011&amp;rft.genre=book&amp;rft.isbn=978-1-4419-7126-5&amp;rft.pub=Springer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQJ_537n8zKYC&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Cunningham, Daniel W. Set theory: A First Course. Cambridge University Press. 2016. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-1-107-12032-7" title="Special:网络书源/978-1-107-12032-7"><span title="国际标准书号">ISBN</span>&#160;978-1-107-12032-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=Daniel+W.&amp;rft.aulast=Cunningham&amp;rft.btitle=Set+theory%3A+A+First+Course&amp;rft.date=2016&amp;rft.genre=book&amp;rft.isbn=978-1-107-12032-7&amp;rft.pub=Cambridge+University+Press&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book"><a href="/wiki/Kurt_G%C3%B6del" class="mw-redirect" title="Kurt Gödel">Gödel, Kurt</a>. The Consistency of the Continuum Hypothesis. Princeton University Press. 1940. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-691-07927-1" title="Special:网络书源/978-0-691-07927-1"><span title="国际标准书号">ISBN</span>&#160;978-0-691-07927-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=Kurt&amp;rft.aulast=G%C3%B6del&amp;rft.btitle=The+Consistency+of+the+Continuum+Hypothesis&amp;rft.date=1940&amp;rft.genre=book&amp;rft.isbn=978-0-691-07927-1&amp;rft.pub=Princeton+University+Press&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book"><a href="/wiki/Thomas_Jech" class="mw-redirect" title="Thomas Jech">Jech, Thomas</a>. <a rel="nofollow" class="external text" href="https://archive.org/details/settheory0000jech_f7i4">Set theory</a> 3rd. <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. 2003. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-3-540-44085-7" title="Special:网络书源/978-3-540-44085-7"><span title="国际标准书号">ISBN</span>&#160;978-3-540-44085-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=Thomas&amp;rft.aulast=Jech&amp;rft.btitle=Set+theory&amp;rft.date=2003&amp;rft.edition=3rd&amp;rft.genre=book&amp;rft.isbn=978-3-540-44085-7&amp;rft.pub=Springer-Verlag&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsettheory0000jech_f7i4&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book"><a href="/wiki/Michael_Spivak" class="mw-redirect" title="Michael Spivak">Spivak, Michael</a>. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7JKVu_9InRUC">Calculus</a> 4th. Publish or Perish. 2008. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-914098-91-1" title="Special:网络书源/978-0-914098-91-1"><span title="国际标准书号">ISBN</span>&#160;978-0-914098-91-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=Michael&amp;rft.aulast=Spivak&amp;rft.btitle=Calculus&amp;rft.date=2008&amp;rft.edition=4th&amp;rft.genre=book&amp;rft.isbn=978-0-914098-91-1&amp;rft.pub=Publish+or+Perish&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7JKVu_9InRUC&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li></ul> <div class="reflist" style="list-style-type: decimal;"> <ol class="references"> <li id="cite_note-halmos_1970-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-halmos_1970_1-0"><sup><b>1.0</b></sup></a> <a href="#cite_ref-halmos_1970_1-1"><sup><b>1.1</b></sup></a></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/Paul_Halmos" class="mw-redirect" title="Paul Halmos">Halmos, Paul R.</a> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=x6cZBQ9qtgoC">Naive Set Theory</a>. Springer-Verlag. 1970. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-387-90092-6" title="Special:网络书源/978-0-387-90092-6"><span title="国际标准书号">ISBN</span>&#160;978-0-387-90092-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=Paul+R.&amp;rft.aulast=Halmos&amp;rft.btitle=Naive+Set+Theory&amp;rft.date=1970&amp;rft.genre=book&amp;rft.isbn=978-0-387-90092-6&amp;rft.pub=Springer-Verlag&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dx6cZBQ9qtgoC&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-halmos-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-halmos_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1970">Halmos 1970</a>,第30頁<sup id="cite_ref-halmos_1970_1-0" class="reference"><a href="#cite_note-halmos_1970-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>; the words <i>map</i>, <i>mapping</i>, <i>transformation</i>, <i>correspondence</i>, and <i>operator</i> are often used synonymously.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1970">Halmos 1970</a><sup id="cite_ref-halmos_1970_1-1" class="reference"><a href="#cite_note-halmos_1970-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-codomain-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-codomain_4-0">^</a></b></span> <span class="reference-text"><cite id="CITEREFHazewinkel2001" class="citation">Hazewinkel, Michiel (编), <a rel="nofollow" class="external text" href="http://www.encyclopediaofmath.org/index.php?title=Main_Page">Mapping</a>, <a href="/wiki/%E6%95%B0%E5%AD%A6%E7%99%BE%E7%A7%91%E5%85%A8%E4%B9%A6" title="数学百科全书">数学百科全书</a>, <a href="/wiki/Springer_Science%2BBusiness_Media" class="mw-redirect" title="Springer Science+Business Media">Springer</a>, 2001, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-1-55608-010-4" title="Special:网络书源/978-1-55608-010-4"><span title="国际标准书号">ISBN</span>&#160;978-1-55608-010-4</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.atitle=Mapping&amp;rft.aufirst=Michiel&amp;rft.aulast=Hazewinkel&amp;rft.btitle=%E6%95%B0%E5%AD%A6%E7%99%BE%E7%A7%91%E5%85%A8%E4%B9%A6&amp;rft.date=2001&amp;rft.genre=bookitem&amp;rft.isbn=978-1-55608-010-4&amp;rft.pub=Springer&amp;rft_id=http%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DMain_Page&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><cite class="citation book">普通高中教科书 数学 必修 第一册. 上海市: 上海教育出版社. 2020: 114. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-5720-0183-3" title="Special:网络书源/978-7-5720-0183-3"><span title="国际标准书号">ISBN</span>&#160;978-7-5720-0183-3</a>. <q>“函数”(function)一词作为数学概念首先由莱布尼茨引入</q></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.btitle=%E6%99%AE%E9%80%9A%E9%AB%98%E4%B8%AD%E6%95%99%E7%A7%91%E4%B9%A6+%E6%95%B0%E5%AD%A6+%E5%BF%85%E4%BF%AE+%E7%AC%AC%E4%B8%80%E5%86%8C&amp;rft.date=2020&amp;rft.genre=book&amp;rft.isbn=978-7-5720-0183-3&amp;rft.pages=114&amp;rft.place=%E4%B8%8A%E6%B5%B7%E5%B8%82&amp;rft.pub=%E4%B8%8A%E6%B5%B7%E6%95%99%E8%82%B2%E5%87%BA%E7%89%88%E7%A4%BE&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-EOM_Function-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-EOM_Function_6-0">^</a></b></span> <span class="reference-text"><cite id="CITEREFHazewinkel2001" class="citation">Hazewinkel, Michiel (编), <a rel="nofollow" class="external text" href="http://www.encyclopediaofmath.org/index.php?title=Main_Page">Function</a>, <a href="/wiki/%E6%95%B0%E5%AD%A6%E7%99%BE%E7%A7%91%E5%85%A8%E4%B9%A6" title="数学百科全书">数学百科全书</a>, <a href="/wiki/Springer_Science%2BBusiness_Media" class="mw-redirect" title="Springer Science+Business Media">Springer</a>, 2001, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-1-55608-010-4" title="Special:网络书源/978-1-55608-010-4"><span title="国际标准书号">ISBN</span>&#160;978-1-55608-010-4</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.atitle=Function&amp;rft.aufirst=Michiel&amp;rft.aulast=Hazewinkel&amp;rft.btitle=%E6%95%B0%E5%AD%A6%E7%99%BE%E7%A7%91%E5%85%A8%E4%B9%A6&amp;rft.date=2001&amp;rft.genre=bookitem&amp;rft.isbn=978-1-55608-010-4&amp;rft.pub=Springer&amp;rft_id=http%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DMain_Page&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-T&amp;K_Calc_p.3-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-T&amp;K_Calc_p.3_7-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Taalman, Laura; Kohn, Peter. <a rel="nofollow" class="external text" href="https://archive.org/details/calculusiwithint0000taal">Calculus</a>. <a href="/wiki/New_York_City" class="mw-redirect" title="New York City">New York City</a>: <a href="/w/index.php?title=W._H._Freeman_and_Company&amp;action=edit&amp;redlink=1" class="new" title="W. H. Freeman and Company(页面不存在)">W. H. Freeman and Company</a>. 2014. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-1-4292-4186-1" title="Special:网络书源/978-1-4292-4186-1"><span title="国际标准书号">ISBN</span>&#160;978-1-4292-4186-1</a>. <a rel="nofollow" class="external text" href="http://lccn.loc.gov/2012947365"><span title="美国国会图书馆控制码">LCCN&#160;2012947365</span></a>. <a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/856545590"><span title="OCLC">OCLC&#160;856545590</span></a>. <a rel="nofollow" class="external text" href="//openlibrary.org/books/OL27544563M"><span title="开放图书馆">OL&#160;27544563M</span></a> <span style="font-family: sans-serif; cursor: default; color:var(--color-subtle, #54595d); font-size: 0.8em; bottom: 0.1em; font-weight: bold;" title="连接到英语网页">(英语)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.au=Kohn%2C+Peter&amp;rft.au=Taalman%2C+Laura&amp;rft.btitle=Calculus&amp;rft.date=2014&amp;rft.genre=book&amp;rft.isbn=978-1-4292-4186-1&amp;rft.place=New+York+City&amp;rft.pub=W.+H.+Freeman+and+Company&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculusiwithint0000taal&amp;rft_id=info%3Alccn%2F2012947365&amp;rft_id=info%3Aoclcnum%2F856545590&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Trench_RA_pp.30-32-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Trench_RA_pp.30-32_8-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Trench, William F. <a rel="nofollow" class="external text" href="https://digitalcommons.trinity.edu/mono/7/">Introduction to Real Analysis</a> 2.04th. <a href="/wiki/Pearson_Education" class="mw-redirect" title="Pearson Education">Pearson Education</a> (originally; self-republished by the author). 2013 <span class="reference-accessdate"> &#91;<span class="nowrap">2023-12-08</span>&#93;</span>. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-13-045786-8" title="Special:网络书源/0-13-045786-8"><span title="国际标准书号">ISBN</span>&#160;0-13-045786-8</a>. <a rel="nofollow" class="external text" href="http://lccn.loc.gov/2002032369"><span title="美国国会图书馆控制码">LCCN&#160;2002032369</span></a>. <a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/953799815"><span title="OCLC">OCLC&#160;953799815</span></a>. <a rel="nofollow" class="external text" href="//zbmath.org/?format=complete&amp;q=an:1204.00023"><span title="Zentralblatt MATH">Zbl&#160;1204.00023</span></a>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20231123045459/https://digitalcommons.trinity.edu/mono/7/">存档</a>于2023-11-23) <span style="font-family: sans-serif; cursor: default; color:var(--color-subtle, #54595d); font-size: 0.8em; bottom: 0.1em; font-weight: bold;" title="连接到英语网页">(英语)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.au=Trench%2C+William+F.&amp;rft.btitle=Introduction+to+Real+Analysis&amp;rft.date=2013&amp;rft.edition=2.04th&amp;rft.genre=book&amp;rft.isbn=0-13-045786-8&amp;rft.pub=Pearson+Education+%28originally%3B+self-republished+by+the+author%29&amp;rft_id=%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1204.00023&amp;rft_id=https%3A%2F%2Fdigitalcommons.trinity.edu%2Fmono%2F7%2F&amp;rft_id=info%3Alccn%2F2002032369&amp;rft_id=info%3Aoclcnum%2F953799815&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-TBB_RA_pp.A4-A5-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-TBB_RA_pp.A4-A5_9-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Thomson, Brian S.; Bruckner, Judith B.; Bruckner, Andrew M. <a rel="nofollow" class="external text" href="https://www.classicalrealanalysis.info/com/documents/TBB-AllChapters-Portrait.pdf">Elementary Real Analysis</a> <span style="font-size:85%;">(PDF)</span> 2nd. <a href="/wiki/Prentice_Hall" class="mw-redirect" title="Prentice Hall">Prentice Hall</a> (originally; 2nd ed. self-republished by the authors). 2008 <span class="reference-accessdate"> &#91;<span class="nowrap">2023-12-08</span>&#93;</span>. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-1-4348-4367-8" title="Special:网络书源/978-1-4348-4367-8"><span title="国际标准书号">ISBN</span>&#160;978-1-4348-4367-8</a>. <a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/1105855173"><span title="OCLC">OCLC&#160;1105855173</span></a>. <a rel="nofollow" class="external text" href="//openlibrary.org/books/OL31844948M"><span title="开放图书馆">OL&#160;31844948M</span></a>. <a rel="nofollow" class="external text" href="//zbmath.org/?format=complete&amp;q=an:0872.26001"><span title="Zentralblatt MATH">Zbl&#160;0872.26001</span></a>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20230526153017/http://classicalrealanalysis.info/com/documents/TBB-AllChapters-Portrait.pdf">存档</a> <span style="font-size:85%;">(PDF)</span>于2023-05-26) <span style="font-family: sans-serif; cursor: default; color:var(--color-subtle, #54595d); font-size: 0.8em; bottom: 0.1em; font-weight: bold;" title="连接到英语网页">(英语)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.au=Bruckner%2C+Andrew+M.&amp;rft.au=Bruckner%2C+Judith+B.&amp;rft.au=Thomson%2C+Brian+S.&amp;rft.btitle=Elementary+Real+Analysis&amp;rft.date=2008&amp;rft.edition=2nd&amp;rft.genre=book&amp;rft.isbn=978-1-4348-4367-8&amp;rft.pub=Prentice+Hall+%28originally%3B+2nd+ed.+self-republished+by+the+authors%29&amp;rft_id=%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0872.26001&amp;rft_id=https%3A%2F%2Fwww.classicalrealanalysis.info%2Fcom%2Fdocuments%2FTBB-AllChapters-Portrait.pdf&amp;rft_id=info%3Aoclcnum%2F1105855173&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><cite class="citation book">Larson, Ron; Edwards, Bruce H. Calculus of a Single Variable. Cengage Learning. 2010: 19. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-538-73552-0" title="Special:网络书源/978-0-538-73552-0"><span title="国际标准书号">ISBN</span>&#160;978-0-538-73552-0</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.au=Edwards%2C+Bruce+H.&amp;rft.aufirst=Ron&amp;rft.aulast=Larson&amp;rft.btitle=Calculus+of+a+Single+Variable&amp;rft.date=2010&amp;rft.genre=book&amp;rft.isbn=978-0-538-73552-0&amp;rft.pages=19&amp;rft.pub=Cengage+Learning&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><cite class="citation book">曹, 亮吉. 數學導論. 科學月科社. 1988: 270–270, 277–277.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=%E4%BA%AE%E5%90%89&amp;rft.aulast=%E6%9B%B9&amp;rft.btitle=%E6%95%B8%E5%AD%B8%E5%B0%8E%E8%AB%96&amp;rft.date=1988&amp;rft.genre=book&amp;rft.pages=270-270%2C+277-277&amp;rft.pub=%E7%A7%91%E5%AD%B8%E6%9C%88%E7%A7%91%E7%A4%BE&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> </ol></div> </div> <div class="mw-heading mw-heading2"><h2 id="延伸閱讀"><span id=".E5.BB.B6.E4.BC.B8.E9.96.B1.E8.AE.80"></span>延伸閱讀</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=22" title="编辑章节:延伸閱讀"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r80540462"><div class="refbegin" style=""> <ul><li><cite class="citation book">Anton, Howard. <a rel="nofollow" class="external text" href="https://archive.org/details/studentssolution00anto">Calculus with Analytical Geometry</a><span typeof="mw:File"><span title="需要免费注册"><img alt="需要免费注册" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">Wiley</a>. 1980. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-471-03248-9" title="Special:网络书源/978-0-471-03248-9"><span title="国际标准书号">ISBN</span>&#160;978-0-471-03248-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=Howard&amp;rft.aulast=Anton&amp;rft.btitle=Calculus+with+Analytical+Geometry&amp;rft.date=1980&amp;rft.genre=book&amp;rft.isbn=978-0-471-03248-9&amp;rft.pub=Wiley&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fstudentssolution00anto&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span><span class="citation-comment" style="display:none; color:#33aa33"> 含有內容需登入查看的頁面 (<a href="/wiki/Category:%E5%90%AB%E6%9C%89%E5%85%A7%E5%AE%B9%E9%9C%80%E7%99%BB%E5%85%A5%E6%9F%A5%E7%9C%8B%E7%9A%84%E9%A0%81%E9%9D%A2" title="Category:含有內容需登入查看的頁面">link</a>)</span></li> <li><cite class="citation book">Bartle, Robert G. <a rel="nofollow" class="external text" href="https://archive.org/details/elementsofrealan0000bart_s1b5">The Elements of Real Analysis</a> 2nd. Wiley. 1976. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-471-05464-1" title="Special:网络书源/978-0-471-05464-1"><span title="国际标准书号">ISBN</span>&#160;978-0-471-05464-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=Robert+G.&amp;rft.aulast=Bartle&amp;rft.btitle=The+Elements+of+Real+Analysis&amp;rft.date=1976&amp;rft.edition=2nd&amp;rft.genre=book&amp;rft.isbn=978-0-471-05464-1&amp;rft.pub=Wiley&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Felementsofrealan0000bart_s1b5&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Dubinsky, Ed; Harel, Guershon. The Concept of Function: Aspects of Epistemology and Pedagogy. Mathematical Association of America. 1992. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-88385-081-7" title="Special:网络书源/978-0-88385-081-7"><span title="国际标准书号">ISBN</span>&#160;978-0-88385-081-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.au=Harel%2C+Guershon&amp;rft.aufirst=Ed&amp;rft.aulast=Dubinsky&amp;rft.btitle=The+Concept+of+Function%3A+Aspects+of+Epistemology+and+Pedagogy&amp;rft.date=1992&amp;rft.genre=book&amp;rft.isbn=978-0-88385-081-7&amp;rft.pub=Mathematical+Association+of+America&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Hammack, Richard. <a rel="nofollow" class="external text" href="https://www.people.vcu.edu/~rhammack/BookOfProof/Main.pdf#page=235">12. Functions</a> <span style="font-size:85%;">(PDF)</span>. <a rel="nofollow" class="external text" href="https://www.people.vcu.edu/~rhammack/BookOfProof/">Book of Proof</a>. <a href="/w/index.php?title=Virginia_Commonwealth_University&amp;action=edit&amp;redlink=1" class="new" title="Virginia Commonwealth University(页面不存在)">Virginia Commonwealth University</a>. 2009 <span class="reference-accessdate"> &#91;<span class="nowrap">2012-08-01</span>&#93;</span>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20240608054057/http://www.people.vcu.edu/~rhammack/BookOfProof/">存档</a>于2024-06-08).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.atitle=12.+Functions&amp;rft.aufirst=Richard&amp;rft.aulast=Hammack&amp;rft.btitle=Book+of+Proof&amp;rft.date=2009&amp;rft.genre=bookitem&amp;rft.pub=Virginia+Commonwealth+University&amp;rft_id=https%3A%2F%2Fwww.people.vcu.edu%2F~rhammack%2FBookOfProof%2FMain.pdf%23page%3D235&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Husch, Lawrence S. <a rel="nofollow" class="external text" href="http://archives.math.utk.edu/visual.calculus/">Visual Calculus</a>. <a href="/w/index.php?title=University_of_Tennessee&amp;action=edit&amp;redlink=1" class="new" title="University of Tennessee(页面不存在)">University of Tennessee</a>. 2001 <span class="reference-accessdate"> &#91;<span class="nowrap">2007-09-27</span>&#93;</span>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20110924071226/http://archives.math.utk.edu/visual.calculus/">存档</a>于2011-09-24).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=Lawrence+S.&amp;rft.aulast=Husch&amp;rft.btitle=Visual+Calculus&amp;rft.date=2001&amp;rft.genre=book&amp;rft.pub=University+of+Tennessee&amp;rft_id=http%3A%2F%2Farchives.math.utk.edu%2Fvisual.calculus%2F&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Katz, Robert. Axiomatic Analysis. <a href="/w/index.php?title=D._C._Heath_and_Company&amp;action=edit&amp;redlink=1" class="new" title="D. C. Heath and Company(页面不存在)">D. C. Heath and Company</a>. 1964.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=Robert&amp;rft.aulast=Katz&amp;rft.btitle=Axiomatic+Analysis&amp;rft.date=1964&amp;rft.genre=book&amp;rft.pub=D.+C.+Heath+and+Company&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation journal">Kleiner, Israel. <a rel="nofollow" class="external text" href="https://archive.org/details/sim_college-mathematics-journal_1989-09_20_4/page/282">Evolution of the Function Concept: A Brief Survey</a>. The College Mathematics Journal. 1989, <b>20</b> (4): 282–300. <span class="plainlinks"><a rel="nofollow" class="external text" href="//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.6352"><span title="CiteSeerX">CiteSeerX&#160;10.1.1.113.6352</span></a>&#8239;<span typeof="mw:File"><span title="可免费查阅"><img alt="可免费查阅" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span>. <a rel="nofollow" class="external text" href="//www.jstor.org/stable/2686848"><span title="JSTOR">JSTOR&#160;2686848</span></a>. <a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2686848"><span title="數位物件識別號">doi:10.2307/2686848</span></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.atitle=Evolution+of+the+Function+Concept%3A+A+Brief+Survey&amp;rft.aufirst=Israel&amp;rft.aulast=Kleiner&amp;rft.date=1989&amp;rft.genre=article&amp;rft.issue=4&amp;rft.jtitle=The+College+Mathematics+Journal&amp;rft.pages=282-300&amp;rft.volume=20&amp;rft_id=%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.113.6352&amp;rft_id=%2F%2Fwww.jstor.org%2Fstable%2F2686848&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsim_college-mathematics-journal_1989-09_20_4%2Fpage%2F282&amp;rft_id=info%3Adoi%2F10.2307%2F2686848&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Lützen, Jesper. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=B3WvWhJTTX8C&amp;pg=PA468">Between rigor and applications: Developments in the concept of function in mathematical analysis</a>. Porter, Roy (编). The Cambridge History of Science: The modern physical and mathematical sciences. Cambridge University Press. 2003. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-521-57199-9" title="Special:网络书源/978-0-521-57199-9"><span title="国际标准书号">ISBN</span>&#160;978-0-521-57199-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.atitle=Between+rigor+and+applications%3A+Developments+in+the+concept+of+function+in+mathematical+analysis&amp;rft.aufirst=Jesper&amp;rft.aulast=L%C3%BCtzen&amp;rft.btitle=The+Cambridge+History+of+Science%3A+The+modern+physical+and+mathematical+sciences&amp;rft.date=2003&amp;rft.genre=bookitem&amp;rft.isbn=978-0-521-57199-9&amp;rft.pub=Cambridge+University+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DB3WvWhJTTX8C%26pg%3DPA468&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span> An approachable and diverting historical presentation.</li> <li><cite class="citation journal">Malik, M. A. Historical and pedagogical aspects of the definition of function. International Journal of Mathematical Education in Science and Technology. 1980, <b>11</b> (4): 489–492. <a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F0020739800110404"><span title="數位物件識別號">doi:10.1080/0020739800110404</span></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.atitle=Historical+and+pedagogical+aspects+of+the+definition+of+function&amp;rft.aufirst=M.+A.&amp;rft.aulast=Malik&amp;rft.date=1980&amp;rft.genre=article&amp;rft.issue=4&amp;rft.jtitle=International+Journal+of+Mathematical+Education+in+Science+and+Technology&amp;rft.pages=489-492&amp;rft.volume=11&amp;rft_id=info%3Adoi%2F10.1080%2F0020739800110404&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Reichenbach, Hans. Elements of Symbolic Logic. Dover. 1947. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-486-24004-5" title="Special:网络书源/0-486-24004-5"><span title="国际标准书号">ISBN</span>&#160;0-486-24004-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.aufirst=Hans&amp;rft.aulast=Reichenbach&amp;rft.btitle=Elements+of+Symbolic+Logic&amp;rft.date=1947&amp;rft.genre=book&amp;rft.isbn=0-486-24004-5&amp;rft.pub=Dover&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation journal">Ruthing, D. <a rel="nofollow" class="external text" href="https://archive.org/details/sim_mathematical-intelligencer_1984_6_4/page/71">Old Intelligencer: Some definitions of the concept of function from Bernoulli, Joh. to Bourbaki, N.</a>. Mathematical Intelligencer. 1984, <b>6</b> (4): 71–78. <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189883712"><span title="Semantic Scholar">S2CID&#160;189883712</span></a>. <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF03026743"><span title="數位物件識別號">doi:10.1007/BF03026743</span></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.atitle=Old+Intelligencer%3A+Some+definitions+of+the+concept+of+function+from+Bernoulli%2C+Joh.+to+Bourbaki%2C+N.&amp;rft.aufirst=D.&amp;rft.aulast=Ruthing&amp;rft.date=1984&amp;rft.genre=article&amp;rft.issue=4&amp;rft.jtitle=Mathematical+Intelligencer&amp;rft.pages=71-78&amp;rft.volume=6&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189883712&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsim_mathematical-intelligencer_1984_6_4%2Fpage%2F71&amp;rft_id=info%3Adoi%2F10.1007%2FBF03026743&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Thomas, George B.; Finney, Ross L. <a rel="nofollow" class="external text" href="https://archive.org/details/calculusanalytic00geor_0">Calculus and Analytic Geometry</a><span typeof="mw:File"><span title="需要免费注册"><img alt="需要免费注册" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span> 9th. <a href="/wiki/Addison-Wesley" class="mw-redirect" title="Addison-Wesley">Addison-Wesley</a>. 1995. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-201-53174-9" title="Special:网络书源/978-0-201-53174-9"><span title="国际标准书号">ISBN</span>&#160;978-0-201-53174-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%87%BD%E6%95%B0&amp;rft.au=Finney%2C+Ross+L.&amp;rft.aufirst=George+B.&amp;rft.aulast=Thomas&amp;rft.btitle=Calculus+and+Analytic+Geometry&amp;rft.date=1995&amp;rft.edition=9th&amp;rft.genre=book&amp;rft.isbn=978-0-201-53174-9&amp;rft.pub=Addison-Wesley&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculusanalytic00geor_0&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span><span class="citation-comment" style="display:none; color:#33aa33"> 含有內容需登入查看的頁面 (<a href="/wiki/Category:%E5%90%AB%E6%9C%89%E5%85%A7%E5%AE%B9%E9%9C%80%E7%99%BB%E5%85%A5%E6%9F%A5%E7%9C%8B%E7%9A%84%E9%A0%81%E9%9D%A2" title="Category:含有內容需登入查看的頁面">link</a>)</span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="外部链接"><span id=".E5.A4.96.E9.83.A8.E9.93.BE.E6.8E.A5"></span>外部链接</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%87%BD%E6%95%B0&amp;action=edit&amp;section=23" title="编辑章节:外部链接"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://dlmf.nist.gov/">NIST數學函數</a>(<a rel="nofollow" class="external text" href="//web.archive.org/web/20100610075107/http://dlmf.nist.gov/">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080923201632/http://www.mysuc.com/?tag=%E5%87%BD%E6%95%B0">mysuc.com</a>,经典函数示例</li> <li><a rel="nofollow" class="external text" href="http://functions.wolfram.com/">Wolfram函数网站</a>(<a rel="nofollow" class="external text" href="//web.archive.org/web/20071010025724/http://functions.wolfram.com/">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>),汇集了各数学函数的公式和图像</li> <li><a rel="nofollow" class="external text" href="https://de.serlo.org/mathe/funktionen/funktionsbegriff/funktionen-relationen-ist-funktion">Was ist eine Funktion?</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20200111212630/https://de.serlo.org/mathe/funktionen/funktionsbegriff/funktionen-relationen-ist-funktion">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</li> <li><a rel="nofollow" class="external text" href="http://math.hws.edu/xFunctions/">xFunctions</a>(<a rel="nofollow" class="external text" href="//web.archive.org/web/20071010084601/http://math.hws.edu/xFunctions/">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)一个多功能的Java小程序,可以显示函数的图像,既可以在线使用,也可以下载运行。</li> <li><a rel="nofollow" class="external text" href="http://fooplot.com/">FooPlot</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20201216203352/http://fooplot.com/">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</li> <li><a rel="nofollow" class="external text" href="http://curvas21.blogspot.com/">Curvas</a>(<a rel="nofollow" class="external text" href="//web.archive.org/web/20190502025947/http://curvas21.blogspot.com/">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r84265675">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:" :"}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist-pipe dd::after,.mw-parser-output .hlist-pipe li::after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd::after,.mw-parser-output .hlist-hyphen li::after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd::after,.mw-parser-output .hlist-comma li::after{content:"、";font-weight:normal}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:"("counter(listitem)"\a0 "}.mw-parser-output ul.cslist,.mw-parser-output ul.sslist{margin:0;padding:0;display:inline-block;list-style:none}.mw-parser-output .cslist li,.mw-parser-output .sslist li{margin:0;display:inline-block}.mw-parser-output .cslist li::after{content:","}.mw-parser-output .sslist li::after{content:";"}.mw-parser-output .cslist li:last-child::after,.mw-parser-output .sslist li:last-child::after{content:none}</style><style data-mw-deduplicate="TemplateStyles:r84261037">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{text-align:center;padding-left:1em;padding-right:1em}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf;position:relative}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em;width:auto;padding-left:0.2em;position:absolute;left:1em}.mw-parser-output .navbox .mw-collapsible-toggle{margin-left:0.5em;position:absolute;right:1em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r79005747">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r79005747"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r79005747"></div><div role="navigation" class="navbox authority-control" aria-labelledby="-&amp;#123;zh-cn:规范控制;zh-tw:權威控制;&amp;#125;--&amp;#123;zh-cn:数据库;zh-tw:資料庫&amp;#125;-_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=編輯維基數據鏈接&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q11348#identifiers&amp;#124;class=noprint&amp;#124;編輯維基數據鏈接" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="collapsible-title navbox-title" colspan="2"><div id="-&amp;#123;zh-cn:规范控制;zh-tw:權威控制;&amp;#125;--&amp;#123;zh-cn:数据库;zh-tw:資料庫&amp;#125;-_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=編輯維基數據鏈接&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q11348#identifiers&amp;#124;class=noprint&amp;#124;編輯維基數據鏈接" style="font-size:110%;margin:0 5em"><a href="/wiki/Help:%E8%A7%84%E8%8C%83%E6%8E%A7%E5%88%B6" title="Help:规范控制">规范控制数据库</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q11348#identifiers" title="編輯維基數據鏈接"><img alt="編輯維基數據鏈接" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">各地</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Fonctions (mathématiques)"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11946892t">法国</a></span></span></li> <li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Fonctions (mathématiques)"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11946892t">BnF data</a></span></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4071510-3">德国</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007553160705171">以色列</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85052327">美国</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00564960">日本</a></span></li> <li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="funkce"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph114594&amp;CON_LNG=ENG">捷克</a></span></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">学术</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://vocab.getty.edu/page/aat/300055662">AAT</a></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐b766959bd‐6qpd6 Cached time: 20250217103808 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.964 seconds Real time usage: 1.202 seconds Preprocessor visited node count: 3966/1000000 Post‐expand include size: 113101/2097152 bytes Template argument size: 4678/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 42542/5000000 bytes Lua time usage: 0.603/10.000 seconds Lua memory usage: 15559836/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 907.500 1 -total 41.01% 372.133 8 Template:Yesno 40.99% 371.982 1 Template:函數圖形 40.71% 369.418 1 Template:Image_frame 12.29% 111.514 1 Template:Authority_control 10.13% 91.966 2 Template:Reflist 9.42% 85.467 1 Template:Lang-en 8.91% 80.843 22 Template:Cite_book 4.15% 37.651 2 Template:Cite_web 3.88% 35.196 1 Template:NoteTA --> <!-- Saved in parser cache with key zhwiki:pcache:20811:|#|:idhash:canonical!zh and timestamp 20250217103808 and revision id 86026104. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">检索自“<a dir="ltr" href="https://zh.wikipedia.org/w/index.php?title=函数&amp;oldid=86026104">https://zh.wikipedia.org/w/index.php?title=函数&amp;oldid=86026104</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:%E9%A1%B5%E9%9D%A2%E5%88%86%E7%B1%BB" title="Special:页面分类">分类</a>:​<ul><li><a href="/wiki/Category:%E9%9B%86%E5%90%88%E8%AB%96%E5%9F%BA%E6%9C%AC%E6%A6%82%E5%BF%B5" title="Category:集合論基本概念">集合論基本概念</a></li><li><a href="/wiki/Category:%E5%87%BD%E6%95%B0" title="Category:函数">函数</a></li><li><a href="/wiki/Category:%E5%88%9D%E7%AD%89%E6%95%B0%E5%AD%A6" title="Category:初等数学">初等数学</a></li><li><a href="/wiki/Category:%E6%95%B0%E5%AD%A6%E5%85%B3%E7%B3%BB" title="Category:数学关系">数学关系</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">隐藏分类:​<ul><li><a href="/wiki/Category:%E6%9C%89%E5%9B%BE%E8%A1%A8%E7%9A%84%E9%A1%B5%E9%9D%A2" title="Category:有图表的页面">有图表的页面</a></li><li><a href="/wiki/Category:%E5%9B%BE%E8%A1%A8%E8%A2%AB%E7%A6%81%E7%94%A8%E7%9A%84%E9%A1%B5%E9%9D%A2" title="Category:图表被禁用的页面">图表被禁用的页面</a></li><li><a href="/wiki/Category:CS1%E8%8B%B1%E8%AF%AD%E6%9D%A5%E6%BA%90_(en)" title="Category:CS1英语来源 (en)">CS1英语来源 (en)</a></li><li><a href="/wiki/Category:%E5%90%AB%E6%9C%89%E8%8B%B1%E8%AA%9E%E7%9A%84%E6%A2%9D%E7%9B%AE" title="Category:含有英語的條目">含有英語的條目</a></li><li><a href="/wiki/Category:%E5%90%AB%E6%9C%89%E5%85%A7%E5%AE%B9%E9%9C%80%E7%99%BB%E5%85%A5%E6%9F%A5%E7%9C%8B%E7%9A%84%E9%A0%81%E9%9D%A2" title="Category:含有內容需登入查看的頁面">含有內容需登入查看的頁面</a></li><li><a href="/wiki/Category:%E5%8C%85%E5%90%ABBNF%E6%A0%87%E8%AF%86%E7%AC%A6%E7%9A%84%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91%E6%9D%A1%E7%9B%AE" title="Category:包含BNF标识符的维基百科条目">包含BNF标识符的维基百科条目</a></li><li><a href="/wiki/Category:%E5%8C%85%E5%90%ABBNFdata%E6%A0%87%E8%AF%86%E7%AC%A6%E7%9A%84%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91%E6%9D%A1%E7%9B%AE" title="Category:包含BNFdata标识符的维基百科条目">包含BNFdata标识符的维基百科条目</a></li><li><a href="/wiki/Category:%E5%8C%85%E5%90%ABGND%E6%A0%87%E8%AF%86%E7%AC%A6%E7%9A%84%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91%E6%9D%A1%E7%9B%AE" title="Category:包含GND标识符的维基百科条目">包含GND标识符的维基百科条目</a></li><li><a href="/wiki/Category:%E5%8C%85%E5%90%ABJ9U%E6%A0%87%E8%AF%86%E7%AC%A6%E7%9A%84%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91%E6%9D%A1%E7%9B%AE" title="Category:包含J9U标识符的维基百科条目">包含J9U标识符的维基百科条目</a></li><li><a href="/wiki/Category:%E5%8C%85%E5%90%ABLCCN%E6%A0%87%E8%AF%86%E7%AC%A6%E7%9A%84%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91%E6%9D%A1%E7%9B%AE" title="Category:包含LCCN标识符的维基百科条目">包含LCCN标识符的维基百科条目</a></li><li><a href="/wiki/Category:%E5%8C%85%E5%90%ABNDL%E6%A0%87%E8%AF%86%E7%AC%A6%E7%9A%84%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91%E6%9D%A1%E7%9B%AE" title="Category:包含NDL标识符的维基百科条目">包含NDL标识符的维基百科条目</a></li><li><a href="/wiki/Category:%E5%8C%85%E5%90%ABNKC%E6%A0%87%E8%AF%86%E7%AC%A6%E7%9A%84%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91%E6%9D%A1%E7%9B%AE" title="Category:包含NKC标识符的维基百科条目">包含NKC标识符的维基百科条目</a></li><li><a href="/wiki/Category:%E5%8C%85%E5%90%ABAAT%E6%A0%87%E8%AF%86%E7%AC%A6%E7%9A%84%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91%E6%9D%A1%E7%9B%AE" title="Category:包含AAT标识符的维基百科条目">包含AAT标识符的维基百科条目</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 本页面最后修订于2025年2月9日 (星期日) 03:54。</li> <li id="footer-info-copyright">本站的全部文字在<a href="/wiki/Wikipedia:CC_BY-SA_4.0%E5%8D%8F%E8%AE%AE%E6%96%87%E6%9C%AC" title="Wikipedia:CC BY-SA 4.0协议文本">知识共享 署名-相同方式共享 4.0协议</a>之条款下提供,附加条款亦可能应用。(请参阅<a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">使用条款</a>)<br /> Wikipedia&#174;和维基百科标志是<a rel="nofollow" class="external text" href="https://wikimediafoundation.org/zh">维基媒体基金会</a>的注册商标;维基&#8482;是维基媒体基金会的商标。<br /> 维基媒体基金会是按美国国內稅收法501(c)(3)登记的<a class="external text" href="https://donate.wikimedia.org/wiki/Special:MyLanguage/Tax_deductibility">非营利慈善机构</a>。<br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">隐私政策</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E">关于维基百科</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:%E5%85%8D%E8%B4%A3%E5%A3%B0%E6%98%8E">免责声明</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">行为准则</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">开发者</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/zh.wikipedia.org">统计</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie声明</a></li> <li id="footer-places-mobileview"><a href="//zh.m.wikipedia.org/w/index.php?title=%E5%87%BD%E6%95%B0&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">手机版视图</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>搜索</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="搜索维基百科"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:搜索"> </div> <button class="cdx-button cdx-search-input__end-button">搜索</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="目录" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="开关目录" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">开关目录</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">函数</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>119种语言</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>添加话题</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-54bc5bdf84-flxr9","wgBackendResponseTime":184,"wgPageParseReport":{"limitreport":{"cputime":"0.964","walltime":"1.202","ppvisitednodes":{"value":3966,"limit":1000000},"postexpandincludesize":{"value":113101,"limit":2097152},"templateargumentsize":{"value":4678,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":42542,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 907.500 1 -total"," 41.01% 372.133 8 Template:Yesno"," 40.99% 371.982 1 Template:函數圖形"," 40.71% 369.418 1 Template:Image_frame"," 12.29% 111.514 1 Template:Authority_control"," 10.13% 91.966 2 Template:Reflist"," 9.42% 85.467 1 Template:Lang-en"," 8.91% 80.843 22 Template:Cite_book"," 4.15% 37.651 2 Template:Cite_web"," 3.88% 35.196 1 Template:NoteTA"]},"scribunto":{"limitreport-timeusage":{"value":"0.603","limit":"10.000"},"limitreport-memusage":{"value":15559836,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAnton1980\"] = 1,\n [\"CITEREFBartle1976\"] = 2,\n [\"CITEREFBloch2011\"] = 1,\n [\"CITEREFCunningham2016\"] = 1,\n [\"CITEREFDubinskyHarel1992\"] = 1,\n [\"CITEREFGödel1940\"] = 1,\n [\"CITEREFHalmos1970\"] = 1,\n [\"CITEREFHammack2009\"] = 1,\n [\"CITEREFHusch2001\"] = 1,\n [\"CITEREFJech2003\"] = 1,\n [\"CITEREFKatz1964\"] = 1,\n [\"CITEREFKleiner1989\"] = 1,\n [\"CITEREFLarsonEdwards2010\"] = 1,\n [\"CITEREFLawrence_S._Husch2001\"] = 1,\n [\"CITEREFLützen2003\"] = 1,\n [\"CITEREFMalik1980\"] = 1,\n [\"CITEREFReichenbach1947\"] = 1,\n [\"CITEREFRuthing1984\"] = 1,\n [\"CITEREFSpivak2008\"] = 1,\n [\"CITEREFTaalman,_LauraKohn,_Peter2014\"] = 1,\n [\"CITEREFThomasFinney1995\"] = 1,\n [\"CITEREFThomson,_Brian_S.Bruckner,_Judith_B.Bruckner,_Andrew_M.2008\"] = 1,\n [\"CITEREFTrench,_William_F.2013\"] = 1,\n [\"CITEREF曹1988\"] = 1,\n}\ntemplate_list = table#1 {\n [\"About\"] = 1,\n [\"Authority control\"] = 1,\n [\"Cite book\"] = 22,\n [\"Cite journal\"] = 3,\n [\"Cite web\"] = 2,\n [\"Eom\"] = 2,\n [\"Harvnb\"] = 2,\n [\"Lang\"] = 1,\n [\"Lang-en\"] = 1,\n [\"Main\"] = 1,\n [\"Math_theorem\"] = 5,\n [\"NoteTA\"] = 1,\n [\"Refbegin\"] = 2,\n [\"Refend\"] = 2,\n [\"Reflist\"] = 2,\n [\"Seealso\"] = 2,\n [\"Wayback\"] = 6,\n [\"函數圖形\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-b766959bd-6qpd6","timestamp":"20250217103808","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u51fd\u6570","url":"https:\/\/zh.wikipedia.org\/wiki\/%E5%87%BD%E6%95%B0","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11348","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11348","author":{"@type":"Organization","name":"\u7ef4\u57fa\u5a92\u4f53\u9879\u76ee\u8d21\u732e\u8005"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-04-05T10:35:02Z","dateModified":"2025-02-09T03:54:44Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/3b\/Function_machine2.svg","headline":"\u6570\u5b66\u4e8c\u5143\u5173\u7cfb\uff0c\u8f93\u5165\u503c\u96c6\u5408\u4e2d\u7684\u6bcf\u9879\u5143\u7d20\u7686\u80fd\u5bf9\u5e94\u200b\u200b\u552f\u4e00\u4e00\u9879\u8f93\u51fa\u503c\u96c6\u5408\u4e2d\u7684\u5143\u7d20"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10