CINXE.COM

Jordi Casanovas | Universitat de Lleida - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Jordi Casanovas | Universitat de Lleida - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="2LZ6twer9qiS9fiR0jnzAneZBJWoxvbJdqg__QB0cfUAxi8Lnu9L9ATHYVtoDqA6KdTsspfAIdLsoyiVPrLqig" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas","sameAs":[]},"dateCreated":"2015-08-03T23:28:28-07:00","dateModified":"2020-12-17T23:01:15-08:00","name":"Jordi Casanovas","description":"","sameAs":[],"relatedLink":"https://www.academia.edu/62425769/Self_assembled_fibrillar_networks_of_a_multifaceted_chiral_squaramide_Supramolecular_multistimuli_responsive_alcogels"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" /> <meta name="author" content="jordi casanovas" /> <meta name="description" content="Jordi Casanovas, Universitat de Lleida: 20 Followers, 12 Following, 76 Research papers. Research interests: Electrospinning, Tribology (Engineering), and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '460741a90baa6cc32ed2104a8b9af0618ea97869'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13945,"monthly_visitors":"143 million","monthly_visitor_count":143959625,"monthly_visitor_count_in_millions":143,"user_count":285878288,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743099714000); window.Aedu.timeDifference = new Date().getTime() - 1743099714000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a16f2f63712f47da129db801247ecab11f5858a61d732c9434f2ae62a03a9458.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-08f4d2761301896e0b81ad24c59c899a459c9b72383f67316154df2737176402.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://lleida.academia.edu/JordiCasanovas" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-b94460767d572c2cdb82b120dcc6a5b9ddb80bf47276962990758b2685a0da74.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":372960,"name":"Chemistry","url":"https://lleida.academia.edu/Departments/Chemistry/Documents","university":{"id":3530,"name":"Universitat de Lleida","url":"https://lleida.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":12010,"name":"Electrospinning","url":"https://www.academia.edu/Documents/in/Electrospinning"},{"id":9338,"name":"Tribology (Engineering)","url":"https://www.academia.edu/Documents/in/Tribology_Engineering_"},{"id":16530,"name":"Close-range Photogrammetry","url":"https://www.academia.edu/Documents/in/Close-range_Photogrammetry"},{"id":11669,"name":"Lab On A Chip","url":"https://www.academia.edu/Documents/in/Lab_On_A_Chip"},{"id":33556,"name":"Photovoltaics Research","url":"https://www.academia.edu/Documents/in/Photovoltaics_Research"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://lleida.academia.edu/JordiCasanovas&quot;,&quot;location&quot;:&quot;/JordiCasanovas&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;lleida.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/JordiCasanovas&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-44772469-dbe1-4f33-b8e2-8d0ced6aac0a"></div> <div id="ProfileCheckPaperUpdate-react-component-44772469-dbe1-4f33-b8e2-8d0ced6aac0a"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Jordi Casanovas</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://lleida.academia.edu/">Universitat de Lleida</a>, <a class="u-tcGrayDarker" href="https://lleida.academia.edu/Departments/Chemistry/Documents">Chemistry</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Jordi" data-follow-user-id="33589671" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="33589671"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">20</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">12</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">10</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/RaquelHerrera7"><img class="profile-avatar u-positionAbsolute" alt="Raquel Herrera related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/RaquelHerrera7">Raquel Herrera</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://mgmahavidyalaya.academia.edu/BrajaBag"><img class="profile-avatar u-positionAbsolute" alt="Braja Gopal Bag related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/12756609/3648574/4278780/s200_braja_gopal.bag.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://mgmahavidyalaya.academia.edu/BrajaBag">Braja Gopal Bag</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Vidyasagar University, WB, India</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/DnyaneshwarRasale"><img class="profile-avatar u-positionAbsolute" alt="Dnyaneshwar Rasale related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/DnyaneshwarRasale">Dnyaneshwar Rasale</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uni-augsburg.academia.edu/HanaBunzen"><img class="profile-avatar u-positionAbsolute" alt="Hana Bunzen related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/35201272/14615130/15466964/s200_hana.bunzen.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uni-augsburg.academia.edu/HanaBunzen">Hana Bunzen</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Augsburg</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/RenatoNoto"><img class="profile-avatar u-positionAbsolute" alt="Renato Noto related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/RenatoNoto">Renato Noto</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://davuniverity.academia.edu/AhmadHusain"><img class="profile-avatar u-positionAbsolute" alt="Ahmad Husain related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/385130/120020/1301860/s200_ahmad.husain.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://davuniverity.academia.edu/AhmadHusain">Ahmad Husain</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">DAV University Jalandhar, Punjab, India</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://jyu.academia.edu/RajendhraprasadTatikonda"><img class="profile-avatar u-positionAbsolute" alt="Rajendhraprasad Tatikonda related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/25395328/6929216/17319439/s200_rajendhraprasad.tatikonda.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://jyu.academia.edu/RajendhraprasadTatikonda">Rajendhraprasad Tatikonda</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Jyväskylä</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/JerryAtwood"><img class="profile-avatar u-positionAbsolute" alt="Jerry Atwood related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/JerryAtwood">Jerry Atwood</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/BrajaGopalBag"><img class="profile-avatar u-positionAbsolute" alt="Braja Gopal Bag related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/BrajaGopalBag">Braja Gopal Bag</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/GuodongTang"><img class="profile-avatar u-positionAbsolute" alt="Guodong Tang related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/GuodongTang">Guodong Tang</a></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33589671" href="https://www.academia.edu/Documents/in/Tribology_Engineering_"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://lleida.academia.edu/JordiCasanovas&quot;,&quot;location&quot;:&quot;/JordiCasanovas&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;lleida.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/JordiCasanovas&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Tribology (Engineering)&quot;]}" data-trace="false" data-dom-id="Pill-react-component-97388fe7-45b8-4494-8900-480eea31133f"></div> <div id="Pill-react-component-97388fe7-45b8-4494-8900-480eea31133f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33589671" href="https://www.academia.edu/Documents/in/Lab_On_A_Chip"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Lab On A Chip&quot;]}" data-trace="false" data-dom-id="Pill-react-component-16911465-6a1b-44c7-a888-5848d6af320a"></div> <div id="Pill-react-component-16911465-6a1b-44c7-a888-5848d6af320a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33589671" href="https://www.academia.edu/Documents/in/Photovoltaics_Research"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Photovoltaics Research&quot;]}" data-trace="false" data-dom-id="Pill-react-component-5c3ea68d-9907-49f6-8568-6b36dc2c9f5c"></div> <div id="Pill-react-component-5c3ea68d-9907-49f6-8568-6b36dc2c9f5c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33589671" href="https://www.academia.edu/Documents/in/Chemistry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Chemistry&quot;]}" data-trace="false" data-dom-id="Pill-react-component-ab5adbc5-083b-417d-9ee4-b6add5107466"></div> <div id="Pill-react-component-ab5adbc5-083b-417d-9ee4-b6add5107466"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Jordi Casanovas</h3></div><div class="js-work-strip profile--work_container" data-work-id="62425769"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/62425769/Self_assembled_fibrillar_networks_of_a_multifaceted_chiral_squaramide_Supramolecular_multistimuli_responsive_alcogels"><img alt="Research paper thumbnail of Self-assembled fibrillar networks of a multifaceted chiral squaramide: Supramolecular multistimuli-responsive alcogels" class="work-thumbnail" src="https://attachments.academia-assets.com/75195501/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/62425769/Self_assembled_fibrillar_networks_of_a_multifaceted_chiral_squaramide_Supramolecular_multistimuli_responsive_alcogels">Self-assembled fibrillar networks of a multifaceted chiral squaramide: Supramolecular multistimuli-responsive alcogels</a></div><div class="wp-workCard_item"><span>Soft Matter</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Chiral N,N 0-disubstituted squaramide 1 has been found to undergo self-assembly in a variety of a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Chiral N,N 0-disubstituted squaramide 1 has been found to undergo self-assembly in a variety of alcoholic solvents at low concentrations leading to the formation of novel nanostructured supramolecular alcogels. The gels responded to thermal, mechanical, optical and chemical stimuli. Solubility studies, gelation ability tests and computer modeling of a series of structurally related squaramides proved the existence of a unique combination of non-covalent molecular interactions and favorable hydrophobic/hydrophilic balance in 1 that drive the anisotropic growth of alcogel networks. The results have also revealed a remarkable effect of ultrasound on both the gelation kinetics and the properties of the alcogels.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a2369330b3aca847d4f99d438da2a988" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:75195501,&quot;asset_id&quot;:62425769,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/75195501/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62425769"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62425769"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62425769; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62425769]").text(description); $(".js-view-count[data-work-id=62425769]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62425769; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62425769']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a2369330b3aca847d4f99d438da2a988" } } $('.js-work-strip[data-work-id=62425769]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62425769,"title":"Self-assembled fibrillar networks of a multifaceted chiral squaramide: Supramolecular multistimuli-responsive alcogels","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry (RSC)","ai_title_tag":"Multifaceted Chiral Squaramide Alcogels with Responsive Properties","grobid_abstract":"Chiral N,N 0-disubstituted squaramide 1 has been found to undergo self-assembly in a variety of alcoholic solvents at low concentrations leading to the formation of novel nanostructured supramolecular alcogels. The gels responded to thermal, mechanical, optical and chemical stimuli. Solubility studies, gelation ability tests and computer modeling of a series of structurally related squaramides proved the existence of a unique combination of non-covalent molecular interactions and favorable hydrophobic/hydrophilic balance in 1 that drive the anisotropic growth of alcogel networks. The results have also revealed a remarkable effect of ultrasound on both the gelation kinetics and the properties of the alcogels.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Soft Matter","grobid_abstract_attachment_id":75195501},"translated_abstract":null,"internal_url":"https://www.academia.edu/62425769/Self_assembled_fibrillar_networks_of_a_multifaceted_chiral_squaramide_Supramolecular_multistimuli_responsive_alcogels","translated_internal_url":"","created_at":"2021-11-25T23:37:11.463-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":75195501,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75195501/thumbnails/1.jpg","file_name":"308e716d7126e984bbb3e9d6768e5e724cb9.pdf","download_url":"https://www.academia.edu/attachments/75195501/download_file","bulk_download_file_name":"Self_assembled_fibrillar_networks_of_a_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75195501/308e716d7126e984bbb3e9d6768e5e724cb9-libre.pdf?1637914412=\u0026response-content-disposition=attachment%3B+filename%3DSelf_assembled_fibrillar_networks_of_a_m.pdf\u0026Expires=1743103313\u0026Signature=EmSZ6fzt4Jkofoivn~ijdr-GPG2rEplb1CtmVANaCU2Z3OHQ~KyObLuybu-a5INfsQGFvyNVTtF4dLQoI~dR4QLVFlVpgMlhGrY9SOXHFXs0JqzZiGM2IMrnVaQqkXy2E~7NtY5jxonTuqf0BCuFzi3WzAvs0iH-FACheGj3h37aA7~uf5~N~USZAC3C-QqQdiPRenImD79Wa~WTbSWIF2QaA5EZ5r6oPoRPBjGggEDBe8plsR3jE5NpINAcKy5VvDZyy9uu9gXziKSDv0zXih7QUpPz17ASdni3dwrWQNUHJRCZFGd0YjAn4pV7qfhmDNPaeQSI-ZJAozM4zqiA5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Self_assembled_fibrillar_networks_of_a_multifaceted_chiral_squaramide_Supramolecular_multistimuli_responsive_alcogels","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Chiral N,N 0-disubstituted squaramide 1 has been found to undergo self-assembly in a variety of alcoholic solvents at low concentrations leading to the formation of novel nanostructured supramolecular alcogels. The gels responded to thermal, mechanical, optical and chemical stimuli. Solubility studies, gelation ability tests and computer modeling of a series of structurally related squaramides proved the existence of a unique combination of non-covalent molecular interactions and favorable hydrophobic/hydrophilic balance in 1 that drive the anisotropic growth of alcogel networks. The results have also revealed a remarkable effect of ultrasound on both the gelation kinetics and the properties of the alcogels.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":75195501,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75195501/thumbnails/1.jpg","file_name":"308e716d7126e984bbb3e9d6768e5e724cb9.pdf","download_url":"https://www.academia.edu/attachments/75195501/download_file","bulk_download_file_name":"Self_assembled_fibrillar_networks_of_a_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75195501/308e716d7126e984bbb3e9d6768e5e724cb9-libre.pdf?1637914412=\u0026response-content-disposition=attachment%3B+filename%3DSelf_assembled_fibrillar_networks_of_a_m.pdf\u0026Expires=1743103313\u0026Signature=EmSZ6fzt4Jkofoivn~ijdr-GPG2rEplb1CtmVANaCU2Z3OHQ~KyObLuybu-a5INfsQGFvyNVTtF4dLQoI~dR4QLVFlVpgMlhGrY9SOXHFXs0JqzZiGM2IMrnVaQqkXy2E~7NtY5jxonTuqf0BCuFzi3WzAvs0iH-FACheGj3h37aA7~uf5~N~USZAC3C-QqQdiPRenImD79Wa~WTbSWIF2QaA5EZ5r6oPoRPBjGggEDBe8plsR3jE5NpINAcKy5VvDZyy9uu9gXziKSDv0zXih7QUpPz17ASdni3dwrWQNUHJRCZFGd0YjAn4pV7qfhmDNPaeQSI-ZJAozM4zqiA5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":5481,"name":"Soft Matter","url":"https://www.academia.edu/Documents/in/Soft_Matter"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":128132,"name":"Nanostructures","url":"https://www.academia.edu/Documents/in/Nanostructures"},{"id":205584,"name":"Solubility","url":"https://www.academia.edu/Documents/in/Solubility"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":284907,"name":"Gels","url":"https://www.academia.edu/Documents/in/Gels"},{"id":878506,"name":"Quinine","url":"https://www.academia.edu/Documents/in/Quinine"},{"id":1745595,"name":"Solvents","url":"https://www.academia.edu/Documents/in/Solvents"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62425767"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/62425767/Dinaphtho_2_3_5_6_1_4_dithiino_2_3_b_2_3_e_pyridine_its_16_butyl_derivative_and_dinaphtho_2_3_5_6_1_4_dioxo_2_3_b_2_3_e_pyridine_novel_heterocycles_as_electron_donor_compounds"><img alt="Research paper thumbnail of Dinaphtho[2???,3???:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine, its 16-butyl derivative and dinaphtho[2???,3???:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine: novel heterocycles as electron donor compounds" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Dinaphtho[2???,3???:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine, its 16-butyl derivative and dinaphtho[2???,3???:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine: novel heterocycles as electron donor compounds</div><div class="wp-workCard_item"><span>New Journal of Chemistry</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Dinaphtho[2′,3′:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine (4a), its 16-butyl derivative (4b...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Dinaphtho[2′,3′:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine (4a), its 16-butyl derivative (4b), and dinaphtho[2′,3′:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine (5) have been prepared and fully characterized. The electrochemical properties of 4a, 4b and 5 have been studied by cyclic voltammetry in CH2Cl2∶trifluoroacetic acid (1∶1); in agreement with their donor character, they exhibit a first reversible oxidation wave to their radical cations with very similar potential peak values and a second irreversible wave to their dications, the lowest potential peak value of this second oxidation corresponding to 5. Their radical cations, generated by oxidation of the parent compounds, are relatively stable and have been analyzed in liquid solution by electron paramagnetic resonance (EPR). Spin density distributions in the SOMO have been calculated by the semiempirical MNDO method. Electronic spectra of 4a and 4b in trifluoroacetic acid show peaks at 417 and 401 nm, respectively, and in the presence of thallium(III) trifluoroacetate two characteristic peaks at λmax 411 and 868 nm for 4a˙+, and at 411 and 872 nm for 4b˙+. X-Ray analysis of 4b shows a molecular structure with a stable chair-shaped conformation with interplanar angles between naphthalenes and the pyridine ring of 139.0(1) and 146.4(1)°.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62425767"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62425767"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62425767; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62425767]").text(description); $(".js-view-count[data-work-id=62425767]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62425767; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62425767']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=62425767]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62425767,"title":"Dinaphtho[2???,3???:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine, its 16-butyl derivative and dinaphtho[2???,3???:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine: novel heterocycles as electron donor compounds","translated_title":"","metadata":{"abstract":"ABSTRACT Dinaphtho[2′,3′:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine (4a), its 16-butyl derivative (4b), and dinaphtho[2′,3′:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine (5) have been prepared and fully characterized. The electrochemical properties of 4a, 4b and 5 have been studied by cyclic voltammetry in CH2Cl2∶trifluoroacetic acid (1∶1); in agreement with their donor character, they exhibit a first reversible oxidation wave to their radical cations with very similar potential peak values and a second irreversible wave to their dications, the lowest potential peak value of this second oxidation corresponding to 5. Their radical cations, generated by oxidation of the parent compounds, are relatively stable and have been analyzed in liquid solution by electron paramagnetic resonance (EPR). Spin density distributions in the SOMO have been calculated by the semiempirical MNDO method. Electronic spectra of 4a and 4b in trifluoroacetic acid show peaks at 417 and 401 nm, respectively, and in the presence of thallium(III) trifluoroacetate two characteristic peaks at λmax 411 and 868 nm for 4a˙+, and at 411 and 872 nm for 4b˙+. X-Ray analysis of 4b shows a molecular structure with a stable chair-shaped conformation with interplanar angles between naphthalenes and the pyridine ring of 139.0(1) and 146.4(1)°.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"New Journal of Chemistry"},"translated_abstract":"ABSTRACT Dinaphtho[2′,3′:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine (4a), its 16-butyl derivative (4b), and dinaphtho[2′,3′:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine (5) have been prepared and fully characterized. The electrochemical properties of 4a, 4b and 5 have been studied by cyclic voltammetry in CH2Cl2∶trifluoroacetic acid (1∶1); in agreement with their donor character, they exhibit a first reversible oxidation wave to their radical cations with very similar potential peak values and a second irreversible wave to their dications, the lowest potential peak value of this second oxidation corresponding to 5. Their radical cations, generated by oxidation of the parent compounds, are relatively stable and have been analyzed in liquid solution by electron paramagnetic resonance (EPR). Spin density distributions in the SOMO have been calculated by the semiempirical MNDO method. Electronic spectra of 4a and 4b in trifluoroacetic acid show peaks at 417 and 401 nm, respectively, and in the presence of thallium(III) trifluoroacetate two characteristic peaks at λmax 411 and 868 nm for 4a˙+, and at 411 and 872 nm for 4b˙+. X-Ray analysis of 4b shows a molecular structure with a stable chair-shaped conformation with interplanar angles between naphthalenes and the pyridine ring of 139.0(1) and 146.4(1)°.","internal_url":"https://www.academia.edu/62425767/Dinaphtho_2_3_5_6_1_4_dithiino_2_3_b_2_3_e_pyridine_its_16_butyl_derivative_and_dinaphtho_2_3_5_6_1_4_dioxo_2_3_b_2_3_e_pyridine_novel_heterocycles_as_electron_donor_compounds","translated_internal_url":"","created_at":"2021-11-25T23:37:11.212-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Dinaphtho_2_3_5_6_1_4_dithiino_2_3_b_2_3_e_pyridine_its_16_butyl_derivative_and_dinaphtho_2_3_5_6_1_4_dioxo_2_3_b_2_3_e_pyridine_novel_heterocycles_as_electron_donor_compounds","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT Dinaphtho[2′,3′:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine (4a), its 16-butyl derivative (4b), and dinaphtho[2′,3′:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine (5) have been prepared and fully characterized. The electrochemical properties of 4a, 4b and 5 have been studied by cyclic voltammetry in CH2Cl2∶trifluoroacetic acid (1∶1); in agreement with their donor character, they exhibit a first reversible oxidation wave to their radical cations with very similar potential peak values and a second irreversible wave to their dications, the lowest potential peak value of this second oxidation corresponding to 5. Their radical cations, generated by oxidation of the parent compounds, are relatively stable and have been analyzed in liquid solution by electron paramagnetic resonance (EPR). Spin density distributions in the SOMO have been calculated by the semiempirical MNDO method. Electronic spectra of 4a and 4b in trifluoroacetic acid show peaks at 417 and 401 nm, respectively, and in the presence of thallium(III) trifluoroacetate two characteristic peaks at λmax 411 and 868 nm for 4a˙+, and at 411 and 872 nm for 4b˙+. X-Ray analysis of 4b shows a molecular structure with a stable chair-shaped conformation with interplanar angles between naphthalenes and the pyridine ring of 139.0(1) and 146.4(1)°.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[],"research_interests":[{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62425763"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/62425763/1_Amino_2_Phenylcyclopentane_1_carboxylic_Acid_A_Conformationally_Restricted_Phenylalanine_Analogue"><img alt="Research paper thumbnail of 1-Amino-2-Phenylcyclopentane-1-carboxylic Acid:  A Conformationally Restricted Phenylalanine Analogue" class="work-thumbnail" src="https://attachments.academia-assets.com/75195503/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/62425763/1_Amino_2_Phenylcyclopentane_1_carboxylic_Acid_A_Conformationally_Restricted_Phenylalanine_Analogue">1-Amino-2-Phenylcyclopentane-1-carboxylic Acid:  A Conformationally Restricted Phenylalanine Analogue</a></div><div class="wp-workCard_item"><span>The Journal of Organic Chemistry</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1cde881e47d24f9c6e750a08433b747b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:75195503,&quot;asset_id&quot;:62425763,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/75195503/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62425763"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62425763"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62425763; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62425763]").text(description); $(".js-view-count[data-work-id=62425763]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62425763; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62425763']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1cde881e47d24f9c6e750a08433b747b" } } $('.js-work-strip[data-work-id=62425763]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62425763,"title":"1-Amino-2-Phenylcyclopentane-1-carboxylic Acid:  A Conformationally Restricted Phenylalanine Analogue","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","ai_abstract":"This study explores the conformational characteristics and energetic profiles of 1-Amino-2-Phenylcyclopentane-1-carboxylic acid, a conformationally restricted analogue of phenylalanine. Detailed atomic coordinates and calculations of energies and free energies associated with minimum energy conformations for two derivatives, Ac-c-Lc5Phe-NHMe and Ac-t-Lc5Phe-NHMe, are presented.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"The Journal of Organic Chemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/62425763/1_Amino_2_Phenylcyclopentane_1_carboxylic_Acid_A_Conformationally_Restricted_Phenylalanine_Analogue","translated_internal_url":"","created_at":"2021-11-25T23:37:10.645-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":75195503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75195503/thumbnails/1.jpg","file_name":"4661422.pdf","download_url":"https://www.academia.edu/attachments/75195503/download_file","bulk_download_file_name":"1_Amino_2_Phenylcyclopentane_1_carboxyli.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75195503/4661422-libre.pdf?1637914407=\u0026response-content-disposition=attachment%3B+filename%3D1_Amino_2_Phenylcyclopentane_1_carboxyli.pdf\u0026Expires=1743103313\u0026Signature=Qklm5XXd~sVh7ZAP-ovxORJJkmZ8HJsmyUr11pw0NJjGqvLAqHMb0wLJAfMwfi0eubSc~sMznw0H4hz~4RBUYAIHZB5afZ23wWdfbgfNSknt~Fo1k3ZJ3uTPCSOJn0P9m73j0gblurDxplmef4Jt1JY-5enpjvwrBhlx6FrS0YQfilEbmwN7~hpyUPj3u3JmCbMuWeVR1Z-57pApfFeZoJjb7ERm0uZvQN2NON~FKL3v8BVKzDMXj9DJkj--CalNVO~FQiXbiZAFt5vMwOTf0DzO~4B0nlojEF1ztFawB3K8oVJlzey1VHQeOmiLf52IXOiByfeZFmoVg9HiKGL8jQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"1_Amino_2_Phenylcyclopentane_1_carboxylic_Acid_A_Conformationally_Restricted_Phenylalanine_Analogue","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":null,"owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":75195503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75195503/thumbnails/1.jpg","file_name":"4661422.pdf","download_url":"https://www.academia.edu/attachments/75195503/download_file","bulk_download_file_name":"1_Amino_2_Phenylcyclopentane_1_carboxyli.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75195503/4661422-libre.pdf?1637914407=\u0026response-content-disposition=attachment%3B+filename%3D1_Amino_2_Phenylcyclopentane_1_carboxyli.pdf\u0026Expires=1743103313\u0026Signature=Qklm5XXd~sVh7ZAP-ovxORJJkmZ8HJsmyUr11pw0NJjGqvLAqHMb0wLJAfMwfi0eubSc~sMznw0H4hz~4RBUYAIHZB5afZ23wWdfbgfNSknt~Fo1k3ZJ3uTPCSOJn0P9m73j0gblurDxplmef4Jt1JY-5enpjvwrBhlx6FrS0YQfilEbmwN7~hpyUPj3u3JmCbMuWeVR1Z-57pApfFeZoJjb7ERm0uZvQN2NON~FKL3v8BVKzDMXj9DJkj--CalNVO~FQiXbiZAFt5vMwOTf0DzO~4B0nlojEF1ztFawB3K8oVJlzey1VHQeOmiLf52IXOiByfeZFmoVg9HiKGL8jQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":172024,"name":"Analog","url":"https://www.academia.edu/Documents/in/Analog"},{"id":247485,"name":"Solvent Effect","url":"https://www.academia.edu/Documents/in/Solvent_Effect"},{"id":296798,"name":"Hydrogen Bonding","url":"https://www.academia.edu/Documents/in/Hydrogen_Bonding"},{"id":382339,"name":"Phenylalanine","url":"https://www.academia.edu/Documents/in/Phenylalanine"},{"id":596681,"name":"Carboxylic Acids","url":"https://www.academia.edu/Documents/in/Carboxylic_Acids"},{"id":649537,"name":"Molecular Conformation","url":"https://www.academia.edu/Documents/in/Molecular_Conformation"},{"id":1489379,"name":"Amine","url":"https://www.academia.edu/Documents/in/Amine"},{"id":3889175,"name":"stereoisomerism","url":"https://www.academia.edu/Documents/in/stereoisomerism"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62425758"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/62425758/Solvation_of_2_2_bithiophene_Influence_of_the_first_solvation_shell_in_the_properties_of_%CF%80_conjugated_systems"><img alt="Research paper thumbnail of Solvation of 2,2′-bithiophene: Influence of the first solvation shell in the properties of π-conjugated systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Solvation of 2,2′-bithiophene: Influence of the first solvation shell in the properties of π-conjugated systems</div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The internal rotation of 2,2′-bithiophene has been investigated in aqueous and acetonitr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The internal rotation of 2,2′-bithiophene has been investigated in aqueous and acetonitrile solutions using three different solvation models: the discrete, the continuum self-consistent reaction-field and the combined discrete/self-consistent reaction-field, the polarizable continuum model being chosen for continuum calculations. Results indicate that the polarizable continuum model provides a satisfactory description of the solvent effects in acetonitrile solution. However, combined discrete/self-consistent reaction-field calculations are more appropriated in aqueous solution, where both the first-solvation shell effects and the polarization induced by the bulk solvent affect the rotational profile of 2,2′-bithiophene. These results indicate that combined calculations are needed to model water soluble thiophene-derivatives.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62425758"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62425758"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62425758; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62425758]").text(description); $(".js-view-count[data-work-id=62425758]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62425758; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62425758']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=62425758]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62425758,"title":"Solvation of 2,2′-bithiophene: Influence of the first solvation shell in the properties of π-conjugated systems","translated_title":"","metadata":{"abstract":"ABSTRACT The internal rotation of 2,2′-bithiophene has been investigated in aqueous and acetonitrile solutions using three different solvation models: the discrete, the continuum self-consistent reaction-field and the combined discrete/self-consistent reaction-field, the polarizable continuum model being chosen for continuum calculations. Results indicate that the polarizable continuum model provides a satisfactory description of the solvent effects in acetonitrile solution. However, combined discrete/self-consistent reaction-field calculations are more appropriated in aqueous solution, where both the first-solvation shell effects and the polarization induced by the bulk solvent affect the rotational profile of 2,2′-bithiophene. These results indicate that combined calculations are needed to model water soluble thiophene-derivatives.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Chemical Physics Letters"},"translated_abstract":"ABSTRACT The internal rotation of 2,2′-bithiophene has been investigated in aqueous and acetonitrile solutions using three different solvation models: the discrete, the continuum self-consistent reaction-field and the combined discrete/self-consistent reaction-field, the polarizable continuum model being chosen for continuum calculations. Results indicate that the polarizable continuum model provides a satisfactory description of the solvent effects in acetonitrile solution. However, combined discrete/self-consistent reaction-field calculations are more appropriated in aqueous solution, where both the first-solvation shell effects and the polarization induced by the bulk solvent affect the rotational profile of 2,2′-bithiophene. These results indicate that combined calculations are needed to model water soluble thiophene-derivatives.","internal_url":"https://www.academia.edu/62425758/Solvation_of_2_2_bithiophene_Influence_of_the_first_solvation_shell_in_the_properties_of_%CF%80_conjugated_systems","translated_internal_url":"","created_at":"2021-11-25T23:37:10.070-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Solvation_of_2_2_bithiophene_Influence_of_the_first_solvation_shell_in_the_properties_of_π_conjugated_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT The internal rotation of 2,2′-bithiophene has been investigated in aqueous and acetonitrile solutions using three different solvation models: the discrete, the continuum self-consistent reaction-field and the combined discrete/self-consistent reaction-field, the polarizable continuum model being chosen for continuum calculations. Results indicate that the polarizable continuum model provides a satisfactory description of the solvent effects in acetonitrile solution. However, combined discrete/self-consistent reaction-field calculations are more appropriated in aqueous solution, where both the first-solvation shell effects and the polarization induced by the bulk solvent affect the rotational profile of 2,2′-bithiophene. These results indicate that combined calculations are needed to model water soluble thiophene-derivatives.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[],"research_interests":[{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":247485,"name":"Solvent Effect","url":"https://www.academia.edu/Documents/in/Solvent_Effect"},{"id":248184,"name":"Polarizable continuum model","url":"https://www.academia.edu/Documents/in/Polarizable_continuum_model"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":849001,"name":"Water Soluble Fertilizers","url":"https://www.academia.edu/Documents/in/Water_Soluble_Fertilizers"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62425757"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/62425757/A_combined_theoretical_and_experimental_investigation_about_the_influence_of_the_dopant_in_the_anodic_electropolymerization_of_%CE%B1_tetrathiophene"><img alt="Research paper thumbnail of A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of α-tetrathiophene" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of α-tetrathiophene</div><div class="wp-workCard_item"><span>Chemical Physics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT This work presents an experimental and theoretical investigation about the influence of ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. The results derived from anodic polymerization of α-tetrathiophene using SCN−, Cl−, Br−, as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by α-tetrathiophene and X = SCN, Cl, Br, NO3, ClO3 and ClO4. The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of α-tetrathiophene.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62425757"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62425757"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62425757; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62425757]").text(description); $(".js-view-count[data-work-id=62425757]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62425757; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62425757']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=62425757]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62425757,"title":"A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of α-tetrathiophene","translated_title":"","metadata":{"abstract":"ABSTRACT This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. The results derived from anodic polymerization of α-tetrathiophene using SCN−, Cl−, Br−, as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by α-tetrathiophene and X = SCN, Cl, Br, NO3, ClO3 and ClO4. The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of α-tetrathiophene.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Chemical Physics"},"translated_abstract":"ABSTRACT This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. The results derived from anodic polymerization of α-tetrathiophene using SCN−, Cl−, Br−, as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by α-tetrathiophene and X = SCN, Cl, Br, NO3, ClO3 and ClO4. The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of α-tetrathiophene.","internal_url":"https://www.academia.edu/62425757/A_combined_theoretical_and_experimental_investigation_about_the_influence_of_the_dopant_in_the_anodic_electropolymerization_of_%CE%B1_tetrathiophene","translated_internal_url":"","created_at":"2021-11-25T23:37:09.717-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_combined_theoretical_and_experimental_investigation_about_the_influence_of_the_dopant_in_the_anodic_electropolymerization_of_α_tetrathiophene","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. The results derived from anodic polymerization of α-tetrathiophene using SCN−, Cl−, Br−, as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by α-tetrathiophene and X = SCN, Cl, Br, NO3, ClO3 and ClO4. The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of α-tetrathiophene.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":529,"name":"Quantum Chemistry","url":"https://www.academia.edu/Documents/in/Quantum_Chemistry"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":85458,"name":"Conducting Polymer","url":"https://www.academia.edu/Documents/in/Conducting_Polymer"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":800918,"name":"Charge transfer","url":"https://www.academia.edu/Documents/in/Charge_transfer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62425054"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/62425054/Electronic_characterization_of_all_thiophene_conducting_dendrimers_Molecules_and_assemblies"><img alt="Research paper thumbnail of Electronic characterization of all-thiophene conducting dendrimers: Molecules and assemblies" class="work-thumbnail" src="https://attachments.academia-assets.com/75195097/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/62425054/Electronic_characterization_of_all_thiophene_conducting_dendrimers_Molecules_and_assemblies">Electronic characterization of all-thiophene conducting dendrimers: Molecules and assemblies</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The molecular and electronic structure of all-thiophene dendrimers in both the neutral and oxidiz...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The molecular and electronic structure of all-thiophene dendrimers in both the neutral and oxidized states have been investigated performing quantum mechanical calculations on systems of up to 30 rings. Results evidenced that the repulsive steric interactions between the neighboring thiophene rings induce significant distortions from the planarity independently of the electronic state. On the other hand, the ionization potential per thiophene ring and the lowest p-p * transition energy decreases with the inverse of the longest a-conjugated chain of the dendrimer, i.e. when the generation increases. The lowest p-p * transition energy predicted for an infinite generation dendrimer is 2.08 eV indicating that these materials are potential candidates to be used in optoelectronics. Additionally, Quantum mechanics/molecular mechanics calculations have been performed considering both the sandwich and T-shaped supramolecular arrangements. Results showed not only the stability of these aggregates but also the significant influence of the intermolecular electronic delocalization in the electronic properties of these materials.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0685897eec80238cc1359c14608ed890" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:75195097,&quot;asset_id&quot;:62425054,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/75195097/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62425054"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62425054"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62425054; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62425054]").text(description); $(".js-view-count[data-work-id=62425054]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62425054; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62425054']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0685897eec80238cc1359c14608ed890" } } $('.js-work-strip[data-work-id=62425054]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62425054,"title":"Electronic characterization of all-thiophene conducting dendrimers: Molecules and assemblies","translated_title":"","metadata":{"ai_title_tag":"Characterization of Thiophene Dendrimers for Optoelectronics","grobid_abstract":"The molecular and electronic structure of all-thiophene dendrimers in both the neutral and oxidized states have been investigated performing quantum mechanical calculations on systems of up to 30 rings. Results evidenced that the repulsive steric interactions between the neighboring thiophene rings induce significant distortions from the planarity independently of the electronic state. On the other hand, the ionization potential per thiophene ring and the lowest p-p * transition energy decreases with the inverse of the longest a-conjugated chain of the dendrimer, i.e. when the generation increases. The lowest p-p * transition energy predicted for an infinite generation dendrimer is 2.08 eV indicating that these materials are potential candidates to be used in optoelectronics. Additionally, Quantum mechanics/molecular mechanics calculations have been performed considering both the sandwich and T-shaped supramolecular arrangements. Results showed not only the stability of these aggregates but also the significant influence of the intermolecular electronic delocalization in the electronic properties of these materials.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":75195097},"translated_abstract":null,"internal_url":"https://www.academia.edu/62425054/Electronic_characterization_of_all_thiophene_conducting_dendrimers_Molecules_and_assemblies","translated_internal_url":"","created_at":"2021-11-25T23:30:54.536-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":75195097,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75195097/thumbnails/1.jpg","file_name":"j.polymer.2009.11.00720211125-20457-gzojap.pdf","download_url":"https://www.academia.edu/attachments/75195097/download_file","bulk_download_file_name":"Electronic_characterization_of_all_thiop.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75195097/j.polymer.2009.11.00720211125-20457-gzojap-libre.pdf?1637914437=\u0026response-content-disposition=attachment%3B+filename%3DElectronic_characterization_of_all_thiop.pdf\u0026Expires=1743103313\u0026Signature=dJOhSmasMoNvnowdvo3GZ7m5rBLCkALjBTg18vkrlQggO4HN8DrZ6Zos7E1rfNWnQ7w3Xaw9HL1OQ00cIUorwCTJGNp1~dXHqwmhguF93oH~XD6iOEDBCXQ8nEwxMLBHIljWrinX7fE1Wjr63Q3pY6h5-oYRpMy7kYm4GvNzisv7tP8C6VjG7H5a0tDeZRkb2jDPC9H32RFLXGZvohdoxh8Z752tmcT-kaqdcQFZ50FTR8TtsRQ1kewUkkIZNoMj~zMBoQqgb8PP6xJTVC89zaVoaaC7SWVLBns8C2XmTJYb~l-ELViumKWbTmENjtNGZB2GmQ0gRR1Yj~W5vKil7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Electronic_characterization_of_all_thiophene_conducting_dendrimers_Molecules_and_assemblies","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"The molecular and electronic structure of all-thiophene dendrimers in both the neutral and oxidized states have been investigated performing quantum mechanical calculations on systems of up to 30 rings. Results evidenced that the repulsive steric interactions between the neighboring thiophene rings induce significant distortions from the planarity independently of the electronic state. On the other hand, the ionization potential per thiophene ring and the lowest p-p * transition energy decreases with the inverse of the longest a-conjugated chain of the dendrimer, i.e. when the generation increases. The lowest p-p * transition energy predicted for an infinite generation dendrimer is 2.08 eV indicating that these materials are potential candidates to be used in optoelectronics. Additionally, Quantum mechanics/molecular mechanics calculations have been performed considering both the sandwich and T-shaped supramolecular arrangements. Results showed not only the stability of these aggregates but also the significant influence of the intermolecular electronic delocalization in the electronic properties of these materials.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":75195097,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75195097/thumbnails/1.jpg","file_name":"j.polymer.2009.11.00720211125-20457-gzojap.pdf","download_url":"https://www.academia.edu/attachments/75195097/download_file","bulk_download_file_name":"Electronic_characterization_of_all_thiop.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75195097/j.polymer.2009.11.00720211125-20457-gzojap-libre.pdf?1637914437=\u0026response-content-disposition=attachment%3B+filename%3DElectronic_characterization_of_all_thiop.pdf\u0026Expires=1743103313\u0026Signature=dJOhSmasMoNvnowdvo3GZ7m5rBLCkALjBTg18vkrlQggO4HN8DrZ6Zos7E1rfNWnQ7w3Xaw9HL1OQ00cIUorwCTJGNp1~dXHqwmhguF93oH~XD6iOEDBCXQ8nEwxMLBHIljWrinX7fE1Wjr63Q3pY6h5-oYRpMy7kYm4GvNzisv7tP8C6VjG7H5a0tDeZRkb2jDPC9H32RFLXGZvohdoxh8Z752tmcT-kaqdcQFZ50FTR8TtsRQ1kewUkkIZNoMj~zMBoQqgb8PP6xJTVC89zaVoaaC7SWVLBns8C2XmTJYb~l-ELViumKWbTmENjtNGZB2GmQ0gRR1Yj~W5vKil7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"},{"id":15599,"name":"Conducting Polymers","url":"https://www.academia.edu/Documents/in/Conducting_Polymers"},{"id":26694,"name":"Dendrimers","url":"https://www.academia.edu/Documents/in/Dendrimers"},{"id":35637,"name":"Molecular Mechanics","url":"https://www.academia.edu/Documents/in/Molecular_Mechanics"},{"id":58527,"name":"Polymer","url":"https://www.academia.edu/Documents/in/Polymer"},{"id":116193,"name":"Solid State electronic devices","url":"https://www.academia.edu/Documents/in/Solid_State_electronic_devices"},{"id":189984,"name":"Electronic properties","url":"https://www.academia.edu/Documents/in/Electronic_properties"},{"id":219635,"name":"Electronic Structure","url":"https://www.academia.edu/Documents/in/Electronic_Structure"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":428433,"name":"Ionization Potential","url":"https://www.academia.edu/Documents/in/Ionization_Potential"},{"id":1032236,"name":"Dendrimer","url":"https://www.academia.edu/Documents/in/Dendrimer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56457664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56457664/Protonation_of_the_Side_Group_in_%CE%B2_and_%CE%B3_Aminated_Proline_Analogues_Effects_on_the_Conformational_Preferences"><img alt="Research paper thumbnail of Protonation of the Side Group in β- and γ-Aminated Proline Analogues: Effects on the Conformational Preferences" class="work-thumbnail" src="https://attachments.academia-assets.com/71835434/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56457664/Protonation_of_the_Side_Group_in_%CE%B2_and_%CE%B3_Aminated_Proline_Analogues_Effects_on_the_Conformational_Preferences">Protonation of the Side Group in β- and γ-Aminated Proline Analogues: Effects on the Conformational Preferences</a></div><div class="wp-workCard_item"><span>Journal of Organic Chemistry</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work shows the influence of the side-chain protonation on the conformational properties, rel...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work shows the influence of the side-chain protonation on the conformational properties, relative stabilities, and peptide bond isomerization of four aminoproline isomers. Thus, this research has been useful to define the rules that allow control the conformation of aminoproline with the pH. Comparison of the results obtained using density functional theory calculations for the N-acetyl-N′-methylamide derivatives of the protonated isomers, which differ in the-or γ-position of the substituent and its cis or trans relative disposition, with those reported for the corresponding neutral analogues (J. Phys. Chem. B 2008, 112, 14045) has allowed us to reach the following conclusions: (i) protonation of the amino group produces a reduction of the backbone conformational flexibility and a destabilization of the cis configuration of the amide bond involving the pyrrolidine nitrogen; (ii) the planarity of the peptide bond is broken in some cases to form strong side chain • • • backbone interactions, which induce a very significant pyramidilization at the amide nitrogen atom; (iii) as was also detected for the neutral analogues, the formation of side chain • • • backbone intraresidue interactions favor the cis disposition of the substituent; and (iv) protonation of the amino side group increases the energy gaps that separate the different investigated isomers resulting in an enhancement of the destabilization of the dipeptides with the substituent attached in a trans position.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="deaf745b360b6e3b3a4e32d12301706f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:71835434,&quot;asset_id&quot;:56457664,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/71835434/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56457664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56457664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56457664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56457664]").text(description); $(".js-view-count[data-work-id=56457664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56457664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56457664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "deaf745b360b6e3b3a4e32d12301706f" } } $('.js-work-strip[data-work-id=56457664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56457664,"title":"Protonation of the Side Group in β- and γ-Aminated Proline Analogues: Effects on the Conformational Preferences","translated_title":"","metadata":{"grobid_abstract":"This work shows the influence of the side-chain protonation on the conformational properties, relative stabilities, and peptide bond isomerization of four aminoproline isomers. Thus, this research has been useful to define the rules that allow control the conformation of aminoproline with the pH. Comparison of the results obtained using density functional theory calculations for the N-acetyl-N′-methylamide derivatives of the protonated isomers, which differ in the-or γ-position of the substituent and its cis or trans relative disposition, with those reported for the corresponding neutral analogues (J. Phys. Chem. B 2008, 112, 14045) has allowed us to reach the following conclusions: (i) protonation of the amino group produces a reduction of the backbone conformational flexibility and a destabilization of the cis configuration of the amide bond involving the pyrrolidine nitrogen; (ii) the planarity of the peptide bond is broken in some cases to form strong side chain • • • backbone interactions, which induce a very significant pyramidilization at the amide nitrogen atom; (iii) as was also detected for the neutral analogues, the formation of side chain • • • backbone intraresidue interactions favor the cis disposition of the substituent; and (iv) protonation of the amino side group increases the energy gaps that separate the different investigated isomers resulting in an enhancement of the destabilization of the dipeptides with the substituent attached in a trans position.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Journal of Organic Chemistry","grobid_abstract_attachment_id":71835434},"translated_abstract":null,"internal_url":"https://www.academia.edu/56457664/Protonation_of_the_Side_Group_in_%CE%B2_and_%CE%B3_Aminated_Proline_Analogues_Effects_on_the_Conformational_Preferences","translated_internal_url":"","created_at":"2021-10-07T23:17:58.456-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":71835434,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71835434/thumbnails/1.jpg","file_name":"jo900169s20211007-16142-14jqnwm.pdf","download_url":"https://www.academia.edu/attachments/71835434/download_file","bulk_download_file_name":"Protonation_of_the_Side_Group_in__and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71835434/jo900169s20211007-16142-14jqnwm-libre.pdf?1633674345=\u0026response-content-disposition=attachment%3B+filename%3DProtonation_of_the_Side_Group_in__and.pdf\u0026Expires=1743103313\u0026Signature=SNH7BQEiEOLo1Wob2QxXBOFJFDcEPxIjoiPytYHJGYEoLeUFu-u7vSJpwNbDdH4UALVen~I4wQKgSrfTyj-ekg9ZffMP10Knx8J0NmkzC-l91LMf8n5eruPQ0FAjiIiEROgmY0fJUNV0AK0Hl2wGrTqzZl0eC0cr7N5udYzX7HCKrOzFVylRgJKNHKUEO95G3y12O7lfFH4n2s0-ZJk0VIDh2njc5JxrJTByDYWaZ9AQi8j844TYUWDZYhq0m3ehA9br9yRR3SXaAM--cN3xa6eZXBTe58k6X8WffPL3ALToOMQ3ZWlaBtrt2pubdbgFWyLuzfZmM3LjJ5~1ti6ayA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Protonation_of_the_Side_Group_in_β_and_γ_Aminated_Proline_Analogues_Effects_on_the_Conformational_Preferences","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"This work shows the influence of the side-chain protonation on the conformational properties, relative stabilities, and peptide bond isomerization of four aminoproline isomers. Thus, this research has been useful to define the rules that allow control the conformation of aminoproline with the pH. Comparison of the results obtained using density functional theory calculations for the N-acetyl-N′-methylamide derivatives of the protonated isomers, which differ in the-or γ-position of the substituent and its cis or trans relative disposition, with those reported for the corresponding neutral analogues (J. Phys. Chem. B 2008, 112, 14045) has allowed us to reach the following conclusions: (i) protonation of the amino group produces a reduction of the backbone conformational flexibility and a destabilization of the cis configuration of the amide bond involving the pyrrolidine nitrogen; (ii) the planarity of the peptide bond is broken in some cases to form strong side chain • • • backbone interactions, which induce a very significant pyramidilization at the amide nitrogen atom; (iii) as was also detected for the neutral analogues, the formation of side chain • • • backbone intraresidue interactions favor the cis disposition of the substituent; and (iv) protonation of the amino side group increases the energy gaps that separate the different investigated isomers resulting in an enhancement of the destabilization of the dipeptides with the substituent attached in a trans position.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":71835434,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71835434/thumbnails/1.jpg","file_name":"jo900169s20211007-16142-14jqnwm.pdf","download_url":"https://www.academia.edu/attachments/71835434/download_file","bulk_download_file_name":"Protonation_of_the_Side_Group_in__and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71835434/jo900169s20211007-16142-14jqnwm-libre.pdf?1633674345=\u0026response-content-disposition=attachment%3B+filename%3DProtonation_of_the_Side_Group_in__and.pdf\u0026Expires=1743103313\u0026Signature=SNH7BQEiEOLo1Wob2QxXBOFJFDcEPxIjoiPytYHJGYEoLeUFu-u7vSJpwNbDdH4UALVen~I4wQKgSrfTyj-ekg9ZffMP10Knx8J0NmkzC-l91LMf8n5eruPQ0FAjiIiEROgmY0fJUNV0AK0Hl2wGrTqzZl0eC0cr7N5udYzX7HCKrOzFVylRgJKNHKUEO95G3y12O7lfFH4n2s0-ZJk0VIDh2njc5JxrJTByDYWaZ9AQi8j844TYUWDZYhq0m3ehA9br9yRR3SXaAM--cN3xa6eZXBTe58k6X8WffPL3ALToOMQ3ZWlaBtrt2pubdbgFWyLuzfZmM3LjJ5~1ti6ayA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":25600,"name":"Stability","url":"https://www.academia.edu/Documents/in/Stability"},{"id":172024,"name":"Analog","url":"https://www.academia.edu/Documents/in/Analog"},{"id":302691,"name":"Configuration","url":"https://www.academia.edu/Documents/in/Configuration"},{"id":556541,"name":"Isomerization","url":"https://www.academia.edu/Documents/in/Isomerization"},{"id":1489379,"name":"Amine","url":"https://www.academia.edu/Documents/in/Amine"},{"id":3306846,"name":"protonation","url":"https://www.academia.edu/Documents/in/protonation"}],"urls":[{"id":12545326,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=21410919"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56457662"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56457662/Design_of_hybrid_conjugates_based_on_chemical_similarity"><img alt="Research paper thumbnail of Design of hybrid conjugates based on chemical similarity" class="work-thumbnail" src="https://attachments.academia-assets.com/71835355/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56457662/Design_of_hybrid_conjugates_based_on_chemical_similarity">Design of hybrid conjugates based on chemical similarity</a></div><div class="wp-workCard_item"><span>RSC Advances</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aa879a306ebe1214a1bff6a23c4d4a1c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:71835355,&quot;asset_id&quot;:56457662,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/71835355/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56457662"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56457662"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56457662; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56457662]").text(description); $(".js-view-count[data-work-id=56457662]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56457662; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56457662']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aa879a306ebe1214a1bff6a23c4d4a1c" } } $('.js-work-strip[data-work-id=56457662]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56457662,"title":"Design of hybrid conjugates based on chemical similarity","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry (RSC)","ai_abstract":"The research discusses the design of hybrid conjugates utilizing chemical similarity principles. It presents findings related to the electronic properties of these conjugates, specifically comparing various conjugate forms and their behavior in different environments such as gas and acetonitrile solution. Results suggest correlations between structural characteristics and electronic properties, aiding in further development of conductive materials.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"RSC Advances"},"translated_abstract":null,"internal_url":"https://www.academia.edu/56457662/Design_of_hybrid_conjugates_based_on_chemical_similarity","translated_internal_url":"","created_at":"2021-10-07T23:17:58.346-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":71835355,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71835355/thumbnails/1.jpg","file_name":"2d585b0ebf85f04e6f107ffd1b2e162ea37b.pdf","download_url":"https://www.academia.edu/attachments/71835355/download_file","bulk_download_file_name":"Design_of_hybrid_conjugates_based_on_che.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71835355/2d585b0ebf85f04e6f107ffd1b2e162ea37b-libre.pdf?1633674358=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_hybrid_conjugates_based_on_che.pdf\u0026Expires=1743103313\u0026Signature=cfW7bsG6elk2ZN1eWBYV6YhUsxB4IGHVn6xFzBEIFY1PPZJYrgJjBQqW0Dm2fNMdq6GZdO1VvdaJn2lO1TRS-JXz4p8Njmrgi17EUUpHKToBXPPQdmX9KAbJ30mLr2RSme4HSiz-jT9Ca0OYMZW2QtOPDYLlAQMhUUTlyB9CmXycn4LyR1Ugw6D5oWpNrlB2fAcOUjKA8tS~EHATlurzNUBWM1oiN~t3oRh6xnlihzQnRA~8heE~lHCvZdJqkYXWjxsEgofo2nVHDM2~t9f9tVGaYDyn5L-2oGRHpt4XOD3Zdlp4ZSOTh0nm1jZcrEOehk68WboAoTkKW8JLYMsV0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Design_of_hybrid_conjugates_based_on_chemical_similarity","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":null,"owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":71835355,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71835355/thumbnails/1.jpg","file_name":"2d585b0ebf85f04e6f107ffd1b2e162ea37b.pdf","download_url":"https://www.academia.edu/attachments/71835355/download_file","bulk_download_file_name":"Design_of_hybrid_conjugates_based_on_che.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71835355/2d585b0ebf85f04e6f107ffd1b2e162ea37b-libre.pdf?1633674358=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_hybrid_conjugates_based_on_che.pdf\u0026Expires=1743103313\u0026Signature=cfW7bsG6elk2ZN1eWBYV6YhUsxB4IGHVn6xFzBEIFY1PPZJYrgJjBQqW0Dm2fNMdq6GZdO1VvdaJn2lO1TRS-JXz4p8Njmrgi17EUUpHKToBXPPQdmX9KAbJ30mLr2RSme4HSiz-jT9Ca0OYMZW2QtOPDYLlAQMhUUTlyB9CmXycn4LyR1Ugw6D5oWpNrlB2fAcOUjKA8tS~EHATlurzNUBWM1oiN~t3oRh6xnlihzQnRA~8heE~lHCvZdJqkYXWjxsEgofo2nVHDM2~t9f9tVGaYDyn5L-2oGRHpt4XOD3Zdlp4ZSOTh0nm1jZcrEOehk68WboAoTkKW8JLYMsV0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":191586,"name":"RSC","url":"https://www.academia.edu/Documents/in/RSC"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56457660"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56457660/Copolymers_ofN_methylpyrrole_and_3_4_ethylenedioxythiophene_structural_physical_and_electronic_properties"><img alt="Research paper thumbnail of Copolymers ofN-methylpyrrole and 3,4-ethylenedioxythiophene: structural, physical and electronic properties" class="work-thumbnail" src="https://attachments.academia-assets.com/71835441/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56457660/Copolymers_ofN_methylpyrrole_and_3_4_ethylenedioxythiophene_structural_physical_and_electronic_properties">Copolymers ofN-methylpyrrole and 3,4-ethylenedioxythiophene: structural, physical and electronic properties</a></div><div class="wp-workCard_item"><span>Polymer International</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The structural, electric and electronic properties of copolymers derived from mixtures of Nmethyl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The structural, electric and electronic properties of copolymers derived from mixtures of Nmethylpyrrole and 3,4-ethylenedioxythiophene (EDOT) with various concentration ratios have been investigated and, additionally, compared with those of the corresponding homopolymers. The electropolymerization kinetics of all the generated copolymers and the homopolymers was examined in terms of current productivity using chronoamperometry. The chemical structure of the linkages between adjacent monomers and the microstructure of the chains were investigated using Fourier transform infrared spectroscopy and quantum mechanical calculations, respectively. The results indicate that the linkages between monomeric units formed during the anodic copolymerization are of the α-α type, while the microstructure of the copolymers depends on the EDOT content. Theoretical calculations were also used to examine the electronic properties of the systems under study, while the conductivity and the electrical stability were studied using the sheet-resistance method. Interestingly, the electric properties are consistent with the random and block microstructures predicted for the copolymers with low and high EDOT content, respectively.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="68d5ffbe30091b63a00e8c21b07e040f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:71835441,&quot;asset_id&quot;:56457660,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/71835441/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56457660"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56457660"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56457660; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56457660]").text(description); $(".js-view-count[data-work-id=56457660]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56457660; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56457660']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "68d5ffbe30091b63a00e8c21b07e040f" } } $('.js-work-strip[data-work-id=56457660]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56457660,"title":"Copolymers ofN-methylpyrrole and 3,4-ethylenedioxythiophene: structural, physical and electronic properties","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","grobid_abstract":"The structural, electric and electronic properties of copolymers derived from mixtures of Nmethylpyrrole and 3,4-ethylenedioxythiophene (EDOT) with various concentration ratios have been investigated and, additionally, compared with those of the corresponding homopolymers. The electropolymerization kinetics of all the generated copolymers and the homopolymers was examined in terms of current productivity using chronoamperometry. The chemical structure of the linkages between adjacent monomers and the microstructure of the chains were investigated using Fourier transform infrared spectroscopy and quantum mechanical calculations, respectively. The results indicate that the linkages between monomeric units formed during the anodic copolymerization are of the α-α type, while the microstructure of the copolymers depends on the EDOT content. Theoretical calculations were also used to examine the electronic properties of the systems under study, while the conductivity and the electrical stability were studied using the sheet-resistance method. Interestingly, the electric properties are consistent with the random and block microstructures predicted for the copolymers with low and high EDOT content, respectively.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Polymer International","grobid_abstract_attachment_id":71835441},"translated_abstract":null,"internal_url":"https://www.academia.edu/56457660/Copolymers_ofN_methylpyrrole_and_3_4_ethylenedioxythiophene_structural_physical_and_electronic_properties","translated_internal_url":"","created_at":"2021-10-07T23:17:58.241-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":71835441,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71835441/thumbnails/1.jpg","file_name":"pi.221320211007-4600-q8qnlr.pdf","download_url":"https://www.academia.edu/attachments/71835441/download_file","bulk_download_file_name":"Copolymers_ofN_methylpyrrole_and_3_4_eth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71835441/pi.221320211007-4600-q8qnlr-libre.pdf?1633674344=\u0026response-content-disposition=attachment%3B+filename%3DCopolymers_ofN_methylpyrrole_and_3_4_eth.pdf\u0026Expires=1743103313\u0026Signature=OIkIzCxDwDSVj2hZ1s9Q20qBWsMXXcvzVniqikPiFo1FxnpS7Xj2NiyoQGN0YyMojkIaf8Cx7Nm4MyYHrHj1jXs6fj2OVZ1KCiC17u6WRoo2g~ptBbBmtl4EIlOYG4Pa8Gid3BmTt-r~c-LGwzijkZ8rBB0PeBxY7MeSPd2x-9IcY4n9NVk-4N4HVdXigqFyFMRydi04rPQMzQVCUtwRT6-6eWbxxuxlKokryb1doiMKPm0AlPNPRr6j2zc42yzaYjG-fcH3a9~Og6DLqLSmjh6l74HOafSW2Vq5ZLfZNi1kR9s74tInZ8poqSGNVpAIIOsnJhQP1pvXnbDFgwoYpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Copolymers_ofN_methylpyrrole_and_3_4_ethylenedioxythiophene_structural_physical_and_electronic_properties","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"The structural, electric and electronic properties of copolymers derived from mixtures of Nmethylpyrrole and 3,4-ethylenedioxythiophene (EDOT) with various concentration ratios have been investigated and, additionally, compared with those of the corresponding homopolymers. The electropolymerization kinetics of all the generated copolymers and the homopolymers was examined in terms of current productivity using chronoamperometry. The chemical structure of the linkages between adjacent monomers and the microstructure of the chains were investigated using Fourier transform infrared spectroscopy and quantum mechanical calculations, respectively. The results indicate that the linkages between monomeric units formed during the anodic copolymerization are of the α-α type, while the microstructure of the copolymers depends on the EDOT content. Theoretical calculations were also used to examine the electronic properties of the systems under study, while the conductivity and the electrical stability were studied using the sheet-resistance method. Interestingly, the electric properties are consistent with the random and block microstructures predicted for the copolymers with low and high EDOT content, respectively.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":71835441,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71835441/thumbnails/1.jpg","file_name":"pi.221320211007-4600-q8qnlr.pdf","download_url":"https://www.academia.edu/attachments/71835441/download_file","bulk_download_file_name":"Copolymers_ofN_methylpyrrole_and_3_4_eth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71835441/pi.221320211007-4600-q8qnlr-libre.pdf?1633674344=\u0026response-content-disposition=attachment%3B+filename%3DCopolymers_ofN_methylpyrrole_and_3_4_eth.pdf\u0026Expires=1743103313\u0026Signature=OIkIzCxDwDSVj2hZ1s9Q20qBWsMXXcvzVniqikPiFo1FxnpS7Xj2NiyoQGN0YyMojkIaf8Cx7Nm4MyYHrHj1jXs6fj2OVZ1KCiC17u6WRoo2g~ptBbBmtl4EIlOYG4Pa8Gid3BmTt-r~c-LGwzijkZ8rBB0PeBxY7MeSPd2x-9IcY4n9NVk-4N4HVdXigqFyFMRydi04rPQMzQVCUtwRT6-6eWbxxuxlKokryb1doiMKPm0AlPNPRr6j2zc42yzaYjG-fcH3a9~Og6DLqLSmjh6l74HOafSW2Vq5ZLfZNi1kR9s74tInZ8poqSGNVpAIIOsnJhQP1pvXnbDFgwoYpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":2161,"name":"Microstructure","url":"https://www.academia.edu/Documents/in/Microstructure"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":15599,"name":"Conducting Polymers","url":"https://www.academia.edu/Documents/in/Conducting_Polymers"},{"id":58527,"name":"Polymer","url":"https://www.academia.edu/Documents/in/Polymer"},{"id":85458,"name":"Conducting Polymer","url":"https://www.academia.edu/Documents/in/Conducting_Polymer"},{"id":189984,"name":"Electronic properties","url":"https://www.academia.edu/Documents/in/Electronic_properties"},{"id":219635,"name":"Electronic Structure","url":"https://www.academia.edu/Documents/in/Electronic_Structure"},{"id":390049,"name":"Electrical Conductivity","url":"https://www.academia.edu/Documents/in/Electrical_Conductivity"},{"id":1291661,"name":"Copolymer","url":"https://www.academia.edu/Documents/in/Copolymer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56457376"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/56457376/Peptide_Materials_From_nanostructures_to_applications"><img alt="Research paper thumbnail of Peptide Materials: From nanostructures to applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Peptide Materials: From nanostructures to applications</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56457376"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56457376"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56457376; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56457376]").text(description); $(".js-view-count[data-work-id=56457376]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56457376; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56457376']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=56457376]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56457376,"title":"Peptide Materials: From nanostructures to applications","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/56457376/Peptide_Materials_From_nanostructures_to_applications","translated_internal_url":"","created_at":"2021-10-07T23:15:54.694-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Peptide_Materials_From_nanostructures_to_applications","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="51943874"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/51943874/Consequences_of_chemical_bonding_on_the_adiabaticity_of_gas_surface_reactions"><img alt="Research paper thumbnail of Consequences of chemical bonding on the adiabaticity of gas-surface reactions" class="work-thumbnail" src="https://attachments.academia-assets.com/69438261/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/51943874/Consequences_of_chemical_bonding_on_the_adiabaticity_of_gas_surface_reactions">Consequences of chemical bonding on the adiabaticity of gas-surface reactions</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The analysis of ab initio cluster model wavefunctions shows that the bonding of CO on Pt(l11) is ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The analysis of ab initio cluster model wavefunctions shows that the bonding of CO on Pt(l11) is of covalent nature being well described by the Blyholder mechanism. However, the NO/Cu(lll) interaction is found to be dominantly ionic. This ionic nature of the bond has important consequences as an avoided crossing between two electronic states of ionic and neutral character. The existence of this avoided crossing interaction indicates that the process is non-adiabatic. While this is a well known phenomenon in molecular physics, to the authors&#39; best knowledge, this is the first time it is shown to happen in a gassurface reaction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9e2f1ee23f2cd70cc62a50bc5bfa9358" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:69438261,&quot;asset_id&quot;:51943874,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/69438261/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="51943874"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="51943874"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51943874; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51943874]").text(description); $(".js-view-count[data-work-id=51943874]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51943874; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='51943874']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9e2f1ee23f2cd70cc62a50bc5bfa9358" } } $('.js-work-strip[data-work-id=51943874]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":51943874,"title":"Consequences of chemical bonding on the adiabaticity of gas-surface reactions","translated_title":"","metadata":{"grobid_abstract":"The analysis of ab initio cluster model wavefunctions shows that the bonding of CO on Pt(l11) is of covalent nature being well described by the Blyholder mechanism. However, the NO/Cu(lll) interaction is found to be dominantly ionic. This ionic nature of the bond has important consequences as an avoided crossing between two electronic states of ionic and neutral character. The existence of this avoided crossing interaction indicates that the process is non-adiabatic. While this is a well known phenomenon in molecular physics, to the authors' best knowledge, this is the first time it is shown to happen in a gassurface reaction.","grobid_abstract_attachment_id":69438261},"translated_abstract":null,"internal_url":"https://www.academia.edu/51943874/Consequences_of_chemical_bonding_on_the_adiabaticity_of_gas_surface_reactions","translated_internal_url":"","created_at":"2021-09-12T01:26:16.744-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":69438261,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/69438261/thumbnails/1.jpg","file_name":"s0166-1280_2896_2904751-320210912-686-51jszi.pdf","download_url":"https://www.academia.edu/attachments/69438261/download_file","bulk_download_file_name":"Consequences_of_chemical_bonding_on_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/69438261/s0166-1280_2896_2904751-320210912-686-51jszi-libre.pdf?1631435524=\u0026response-content-disposition=attachment%3B+filename%3DConsequences_of_chemical_bonding_on_the.pdf\u0026Expires=1743103313\u0026Signature=YJ5v809tApCMn01ic-PoMbCfEvC8FZ1dAu2DhlcH10wTPMMGG0ydcpUdPzXJe4RTLpBjMnYbZ8XTr9zlrY5F4ZegNDIJ4bR8jKea2MyiaFLb1TnHuZqFrdqH8xIYrUc5XseRDuVlZutA8t6jPYbBq~LAoTRiO87e-ZmjLAcz~18yU0aiOdylsJVOgb0oA8HUkTHH5iZxqRey6kmqIQ0DifqDcXwRZ75C6u6pt6Eypwqg5vQQ-uKyjUwSiROjS0REUkK3X11WlbSNsJhPcmxMEZStdRyr~1Y1VM7b0YCc4mYzuVyWd3anN-ApLHMw2AAqVqqtPorWf2fbjv8kWQwtew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Consequences_of_chemical_bonding_on_the_adiabaticity_of_gas_surface_reactions","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"The analysis of ab initio cluster model wavefunctions shows that the bonding of CO on Pt(l11) is of covalent nature being well described by the Blyholder mechanism. However, the NO/Cu(lll) interaction is found to be dominantly ionic. This ionic nature of the bond has important consequences as an avoided crossing between two electronic states of ionic and neutral character. The existence of this avoided crossing interaction indicates that the process is non-adiabatic. While this is a well known phenomenon in molecular physics, to the authors' best knowledge, this is the first time it is shown to happen in a gassurface reaction.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":69438261,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/69438261/thumbnails/1.jpg","file_name":"s0166-1280_2896_2904751-320210912-686-51jszi.pdf","download_url":"https://www.academia.edu/attachments/69438261/download_file","bulk_download_file_name":"Consequences_of_chemical_bonding_on_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/69438261/s0166-1280_2896_2904751-320210912-686-51jszi-libre.pdf?1631435524=\u0026response-content-disposition=attachment%3B+filename%3DConsequences_of_chemical_bonding_on_the.pdf\u0026Expires=1743103313\u0026Signature=YJ5v809tApCMn01ic-PoMbCfEvC8FZ1dAu2DhlcH10wTPMMGG0ydcpUdPzXJe4RTLpBjMnYbZ8XTr9zlrY5F4ZegNDIJ4bR8jKea2MyiaFLb1TnHuZqFrdqH8xIYrUc5XseRDuVlZutA8t6jPYbBq~LAoTRiO87e-ZmjLAcz~18yU0aiOdylsJVOgb0oA8HUkTHH5iZxqRey6kmqIQ0DifqDcXwRZ75C6u6pt6Eypwqg5vQQ-uKyjUwSiROjS0REUkK3X11WlbSNsJhPcmxMEZStdRyr~1Y1VM7b0YCc4mYzuVyWd3anN-ApLHMw2AAqVqqtPorWf2fbjv8kWQwtew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":116193,"name":"Solid State electronic devices","url":"https://www.academia.edu/Documents/in/Solid_State_electronic_devices"},{"id":3605635,"name":"Cluster model","url":"https://www.academia.edu/Documents/in/Cluster_model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28406454"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28406454/La_modelizaci%C3%B3n_molecular_como_herramienta_para_el_dise%C3%B1o_de_nuevos_pol%C3%ADmeros_conductores"><img alt="Research paper thumbnail of La modelización molecular como herramienta para el diseño de nuevos polímeros conductores" class="work-thumbnail" src="https://attachments.academia-assets.com/48747175/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28406454/La_modelizaci%C3%B3n_molecular_como_herramienta_para_el_dise%C3%B1o_de_nuevos_pol%C3%ADmeros_conductores">La modelización molecular como herramienta para el diseño de nuevos polímeros conductores</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JoseIribarren">Jose Iribarren</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://lleida.academia.edu/JordiCasanovas">Jordi Casanovas</a></span></div><div class="wp-workCard_item"><span>Polímeros</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Resumen: Se presenta la capacidad de las técnicas de modelización molecular basadas en métodos de...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Resumen: Se presenta la capacidad de las técnicas de modelización molecular basadas en métodos de la química cuántica para predecir la estructura molecular y electrónica de polímeros conductores. Concretamente, se discute la aplicabilidad de estas herramientas computacionales al estudio de diferentes aspectos del politiofeno y sus derivados: geometría molecular y planaridad, cambios estructurales producidos por el dopado, propiedades electrónicas y desarrollo de nuevos materiales conductores.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="34832eab5d245b7d8db68382d9389182" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48747175,&quot;asset_id&quot;:28406454,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48747175/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28406454"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28406454"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28406454; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28406454]").text(description); $(".js-view-count[data-work-id=28406454]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28406454; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28406454']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "34832eab5d245b7d8db68382d9389182" } } $('.js-work-strip[data-work-id=28406454]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28406454,"title":"La modelización molecular como herramienta para el diseño de nuevos polímeros conductores","translated_title":"","metadata":{"grobid_abstract":"Resumen: Se presenta la capacidad de las técnicas de modelización molecular basadas en métodos de la química cuántica para predecir la estructura molecular y electrónica de polímeros conductores. Concretamente, se discute la aplicabilidad de estas herramientas computacionales al estudio de diferentes aspectos del politiofeno y sus derivados: geometría molecular y planaridad, cambios estructurales producidos por el dopado, propiedades electrónicas y desarrollo de nuevos materiales conductores.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Polímeros","grobid_abstract_attachment_id":48747175},"translated_abstract":null,"internal_url":"https://www.academia.edu/28406454/La_modelizaci%C3%B3n_molecular_como_herramienta_para_el_dise%C3%B1o_de_nuevos_pol%C3%ADmeros_conductores","translated_internal_url":"","created_at":"2016-09-11T04:52:42.122-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53252628,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24212861,"work_id":28406454,"tagging_user_id":53252628,"tagged_user_id":null,"co_author_invite_id":5389966,"email":"c***r@uniandes.edu.co","display_order":0,"name":"Carlos Alemán","title":"La modelización molecular como herramienta para el diseño de nuevos polímeros conductores"},{"id":24212873,"work_id":28406454,"tagging_user_id":53252628,"tagged_user_id":33589671,"co_author_invite_id":5389967,"email":"j***s@quimica.udl.es","affiliation":"Universitat de Lleida","display_order":4194304,"name":"Jordi Casanovas","title":"La modelización molecular como herramienta para el diseño de nuevos polímeros conductores"}],"downloadable_attachments":[{"id":48747175,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747175/thumbnails/1.jpg","file_name":"a06v15n4.pdf","download_url":"https://www.academia.edu/attachments/48747175/download_file","bulk_download_file_name":"La_modelizacion_molecular_como_herramien.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747175/a06v15n4-libre.pdf?1473596971=\u0026response-content-disposition=attachment%3B+filename%3DLa_modelizacion_molecular_como_herramien.pdf\u0026Expires=1743103313\u0026Signature=Adjw1n3AtdWsqZVHPRwaKmK7BjzcX7wTAo~mTmZnegraN6TsfWFj1nlESxxMSway~2OyfWMiChBGkSE2Q-VrV2EngkM9s9srchyuCIChObF-BYHyh96Szydt3pFdhiiKPJZMfurwfS8PVkNp3V21gn~5Ai7XdIQNP8ugI9DoJcq3GX3wU5GqkzZfvYfZg9IbbolIHYUTLT1JflrJv563bNNDSRq1-GA9NZvgLcXtEfhzTkGvsbeH8XMCvDCDPFU5QfiXmVVDwIInAEh8Ll1SeX9nN-c25SKckQsdMg0IKIMxbEvFP832ioZqneh31k044Qi8-WL1Tpv-tUCEINj96Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"La_modelización_molecular_como_herramienta_para_el_diseño_de_nuevos_polímeros_conductores","translated_slug":"","page_count":6,"language":"es","content_type":"Work","summary":"Resumen: Se presenta la capacidad de las técnicas de modelización molecular basadas en métodos de la química cuántica para predecir la estructura molecular y electrónica de polímeros conductores. Concretamente, se discute la aplicabilidad de estas herramientas computacionales al estudio de diferentes aspectos del politiofeno y sus derivados: geometría molecular y planaridad, cambios estructurales producidos por el dopado, propiedades electrónicas y desarrollo de nuevos materiales conductores.","owner":{"id":53252628,"first_name":"Jose","middle_initials":null,"last_name":"Iribarren","page_name":"JoseIribarren","domain_name":"independent","created_at":"2016-09-11T04:52:21.573-07:00","display_name":"Jose Iribarren","url":"https://independent.academia.edu/JoseIribarren"},"attachments":[{"id":48747175,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747175/thumbnails/1.jpg","file_name":"a06v15n4.pdf","download_url":"https://www.academia.edu/attachments/48747175/download_file","bulk_download_file_name":"La_modelizacion_molecular_como_herramien.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747175/a06v15n4-libre.pdf?1473596971=\u0026response-content-disposition=attachment%3B+filename%3DLa_modelizacion_molecular_como_herramien.pdf\u0026Expires=1743103313\u0026Signature=Adjw1n3AtdWsqZVHPRwaKmK7BjzcX7wTAo~mTmZnegraN6TsfWFj1nlESxxMSway~2OyfWMiChBGkSE2Q-VrV2EngkM9s9srchyuCIChObF-BYHyh96Szydt3pFdhiiKPJZMfurwfS8PVkNp3V21gn~5Ai7XdIQNP8ugI9DoJcq3GX3wU5GqkzZfvYfZg9IbbolIHYUTLT1JflrJv563bNNDSRq1-GA9NZvgLcXtEfhzTkGvsbeH8XMCvDCDPFU5QfiXmVVDwIInAEh8Ll1SeX9nN-c25SKckQsdMg0IKIMxbEvFP832ioZqneh31k044Qi8-WL1Tpv-tUCEINj96Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":529,"name":"Quantum Chemistry","url":"https://www.academia.edu/Documents/in/Quantum_Chemistry"},{"id":32927,"name":"Molecular modeling","url":"https://www.academia.edu/Documents/in/Molecular_modeling"},{"id":85458,"name":"Conducting Polymer","url":"https://www.academia.edu/Documents/in/Conducting_Polymer"},{"id":189984,"name":"Electronic properties","url":"https://www.academia.edu/Documents/in/Electronic_properties"},{"id":213801,"name":"Structural Change","url":"https://www.academia.edu/Documents/in/Structural_Change"},{"id":219635,"name":"Electronic Structure","url":"https://www.academia.edu/Documents/in/Electronic_Structure"},{"id":411663,"name":"Polímeros","url":"https://www.academia.edu/Documents/in/Pol%C3%ADmeros"},{"id":856612,"name":"Polimeros","url":"https://www.academia.edu/Documents/in/Polimeros"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28406444"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28406444/On_the_use_of_conducting_polymers_to_improve_the_resistance_against_corrosion_of_paints_based_on_polyurethane_resins"><img alt="Research paper thumbnail of On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins" class="work-thumbnail" src="https://attachments.academia-assets.com/48747180/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28406444/On_the_use_of_conducting_polymers_to_improve_the_resistance_against_corrosion_of_paints_based_on_polyurethane_resins">On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JoseIribarren">Jose Iribarren</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://lleida.academia.edu/JordiCasanovas">Jordi Casanovas</a></span></div><div class="wp-workCard_item"><span>Materials and Corrosion</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work analyzes the physical properties of several paints and the resistance against corrosion...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work analyzes the physical properties of several paints and the resistance against corrosion that they impart after being modified by adding a conducting polymer. Five different formulations were selected: four polyurethane resins (two varnish and two aqueous based) and one multicomponent system containing polyester, melamine and cellulose acetobutyrate. The physical properties of the coatings were examined by FTIR, thermal analyses and viscosity measurements. Corrosion resistance of carbon steel coated with these paints was studied by means of accelerated laboratory tests.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c5c8cc8afee1c6576e97fec8a63430e7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48747180,&quot;asset_id&quot;:28406444,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48747180/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28406444"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28406444"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28406444; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28406444]").text(description); $(".js-view-count[data-work-id=28406444]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28406444; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28406444']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c5c8cc8afee1c6576e97fec8a63430e7" } } $('.js-work-strip[data-work-id=28406444]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28406444,"title":"On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins","translated_title":"","metadata":{"ai_title_tag":"Enhancing Corrosion Resistance in Polyurethane Paints with Conducting Polymers","grobid_abstract":"This work analyzes the physical properties of several paints and the resistance against corrosion that they impart after being modified by adding a conducting polymer. Five different formulations were selected: four polyurethane resins (two varnish and two aqueous based) and one multicomponent system containing polyester, melamine and cellulose acetobutyrate. The physical properties of the coatings were examined by FTIR, thermal analyses and viscosity measurements. Corrosion resistance of carbon steel coated with these paints was studied by means of accelerated laboratory tests.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Materials and Corrosion","grobid_abstract_attachment_id":48747180},"translated_abstract":null,"internal_url":"https://www.academia.edu/28406444/On_the_use_of_conducting_polymers_to_improve_the_resistance_against_corrosion_of_paints_based_on_polyurethane_resins","translated_internal_url":"","created_at":"2016-09-11T04:52:41.098-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53252628,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24212869,"work_id":28406444,"tagging_user_id":53252628,"tagged_user_id":null,"co_author_invite_id":5389966,"email":"c***r@uniandes.edu.co","display_order":0,"name":"Carlos Alemán","title":"On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins"},{"id":24212874,"work_id":28406444,"tagging_user_id":53252628,"tagged_user_id":33589671,"co_author_invite_id":5389967,"email":"j***s@quimica.udl.es","affiliation":"Universitat de Lleida","display_order":4194304,"name":"Jordi Casanovas","title":"On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins"}],"downloadable_attachments":[{"id":48747180,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747180/thumbnails/1.jpg","file_name":"maco.20050395220160911-4966-8his2.pdf","download_url":"https://www.academia.edu/attachments/48747180/download_file","bulk_download_file_name":"On_the_use_of_conducting_polymers_to_imp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747180/maco.20050395220160911-4966-8his2-libre.pdf?1473596970=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_use_of_conducting_polymers_to_imp.pdf\u0026Expires=1743103314\u0026Signature=fbgbEl-OX6ps5u3HVt47ZGZ0jw48~Gsh4byQfS9MWphuovoM7j6uLotsTJPoqThUuLNRwFOjfuXPdRMN-swUr0o3xgpYsmH-xPajZBjR1waBZK2TSut6PvSYBGMZZMyibgyCDoLTo6T6HucUjMUOSwjqL6GRhgr6JaP-U1hbSDnJSTMehz5N5X9Bq5YIeO8YY-BdA2SMzfNRBqebI0yCaddv~Ph-ZpiAooK-gdUCVBeOQGfrMFmQPoXwEvf7GoABJnOwMCjNAso4ld2R9vUTDmRApMK4HlyUJVazn5HoLBhB9vMSzEZq1r0cTN4GAkD~TR~il~4tNVS97viN4HMUlw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_use_of_conducting_polymers_to_improve_the_resistance_against_corrosion_of_paints_based_on_polyurethane_resins","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"This work analyzes the physical properties of several paints and the resistance against corrosion that they impart after being modified by adding a conducting polymer. Five different formulations were selected: four polyurethane resins (two varnish and two aqueous based) and one multicomponent system containing polyester, melamine and cellulose acetobutyrate. The physical properties of the coatings were examined by FTIR, thermal analyses and viscosity measurements. Corrosion resistance of carbon steel coated with these paints was studied by means of accelerated laboratory tests.","owner":{"id":53252628,"first_name":"Jose","middle_initials":null,"last_name":"Iribarren","page_name":"JoseIribarren","domain_name":"independent","created_at":"2016-09-11T04:52:21.573-07:00","display_name":"Jose Iribarren","url":"https://independent.academia.edu/JoseIribarren"},"attachments":[{"id":48747180,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747180/thumbnails/1.jpg","file_name":"maco.20050395220160911-4966-8his2.pdf","download_url":"https://www.academia.edu/attachments/48747180/download_file","bulk_download_file_name":"On_the_use_of_conducting_polymers_to_imp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747180/maco.20050395220160911-4966-8his2-libre.pdf?1473596970=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_use_of_conducting_polymers_to_imp.pdf\u0026Expires=1743103314\u0026Signature=fbgbEl-OX6ps5u3HVt47ZGZ0jw48~Gsh4byQfS9MWphuovoM7j6uLotsTJPoqThUuLNRwFOjfuXPdRMN-swUr0o3xgpYsmH-xPajZBjR1waBZK2TSut6PvSYBGMZZMyibgyCDoLTo6T6HucUjMUOSwjqL6GRhgr6JaP-U1hbSDnJSTMehz5N5X9Bq5YIeO8YY-BdA2SMzfNRBqebI0yCaddv~Ph-ZpiAooK-gdUCVBeOQGfrMFmQPoXwEvf7GoABJnOwMCjNAso4ld2R9vUTDmRApMK4HlyUJVazn5HoLBhB9vMSzEZq1r0cTN4GAkD~TR~il~4tNVS97viN4HMUlw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":85458,"name":"Conducting Polymer","url":"https://www.academia.edu/Documents/in/Conducting_Polymer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28406452"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28406452/Structural_and_electronic_properties_of_3_4_ethylenedioxythiophene_3_4_ethylenedisulfanylfurane_and_thiophene_oligomers_A_theoretical_investigation"><img alt="Research paper thumbnail of Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation" class="work-thumbnail" src="https://attachments.academia-assets.com/48747185/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28406452/Structural_and_electronic_properties_of_3_4_ethylenedioxythiophene_3_4_ethylenedisulfanylfurane_and_thiophene_oligomers_A_theoretical_investigation">Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JoseIribarren">Jose Iribarren</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://lleida.academia.edu/JordiCasanovas">Jordi Casanovas</a></span></div><div class="wp-workCard_item"><span>Synthetic Metals</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report the results of a series of ab initio and DFT quantum mechanical calculations on the str...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report the results of a series of ab initio and DFT quantum mechanical calculations on the structure and on the electronic spectral of 2,3-ethylenedioxythiophene-, thiophene-and 2,3-ethylenedithiafurane-containing oligomers. Calculations were performed on oligomers formed by n repeating units, where n ranges from 1 to 8. The bond-length alternation patterns in the -system, the importance of long-range interactions in the stabilization of oligomer chains, the energies of the HOMO and LUMO orbitals and the values of the lowest transition energy have been examined allowing a systematic comparison among the three families of conducting polymers.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ee69a378b2238b6a6ec44e47532720d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48747185,&quot;asset_id&quot;:28406452,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48747185/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28406452"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28406452"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28406452; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28406452]").text(description); $(".js-view-count[data-work-id=28406452]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28406452; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28406452']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ee69a378b2238b6a6ec44e47532720d" } } $('.js-work-strip[data-work-id=28406452]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28406452,"title":"Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation","translated_title":"","metadata":{"grobid_abstract":"We report the results of a series of ab initio and DFT quantum mechanical calculations on the structure and on the electronic spectral of 2,3-ethylenedioxythiophene-, thiophene-and 2,3-ethylenedithiafurane-containing oligomers. Calculations were performed on oligomers formed by n repeating units, where n ranges from 1 to 8. The bond-length alternation patterns in the -system, the importance of long-range interactions in the stabilization of oligomer chains, the energies of the HOMO and LUMO orbitals and the values of the lowest transition energy have been examined allowing a systematic comparison among the three families of conducting polymers.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Synthetic Metals","grobid_abstract_attachment_id":48747185},"translated_abstract":null,"internal_url":"https://www.academia.edu/28406452/Structural_and_electronic_properties_of_3_4_ethylenedioxythiophene_3_4_ethylenedisulfanylfurane_and_thiophene_oligomers_A_theoretical_investigation","translated_internal_url":"","created_at":"2016-09-11T04:52:41.896-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53252628,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24212870,"work_id":28406452,"tagging_user_id":53252628,"tagged_user_id":null,"co_author_invite_id":5389966,"email":"c***r@uniandes.edu.co","display_order":0,"name":"Carlos Alemán","title":"Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation"},{"id":24212875,"work_id":28406452,"tagging_user_id":53252628,"tagged_user_id":33589671,"co_author_invite_id":5389967,"email":"j***s@quimica.udl.es","affiliation":"Universitat de Lleida","display_order":4194304,"name":"Jordi Casanovas","title":"Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation"},{"id":24212881,"work_id":28406452,"tagging_user_id":53252628,"tagged_user_id":null,"co_author_invite_id":5389970,"email":"m***0@gmail.com","display_order":6291456,"name":"M. Laso","title":"Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation"}],"downloadable_attachments":[{"id":48747185,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747185/thumbnails/1.jpg","file_name":"j.synthmet.2004.12.01220160911-29757-1xhq105.pdf","download_url":"https://www.academia.edu/attachments/48747185/download_file","bulk_download_file_name":"Structural_and_electronic_properties_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747185/j.synthmet.2004.12.01220160911-29757-1xhq105-libre.pdf?1473596971=\u0026response-content-disposition=attachment%3B+filename%3DStructural_and_electronic_properties_of.pdf\u0026Expires=1743103314\u0026Signature=fhgokcdhm~l0tRF6lDjv7Fe0YS4eGljVhd8b1WNJCG1ExA~wrdglS1mBnxmTMQeKnJJ7aF3e2V3nfDSW3YlXSSHdBDMg-w4eNtfUyJDvY3v~d6ZKqzD7zIjhrpmJySyS0lxngC1HYHigcns14kEbhhOZertpSyio9pPG6i-svA6wKZCTUrhgldaRNxMtTebEN~VizrD6Y45jAXP6xi89mgHwcauskEgj02jyjeDdYEY-FNxA5RHjY4ShMoWwB5rGl0CVRXvUEVQ8cb7rSSz9VV8jr8aUBlWDznC8WXtIEnsdN99n5Dbz~ZAUBy4tarG6hqAzpaGb6s58V002pz9h0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Structural_and_electronic_properties_of_3_4_ethylenedioxythiophene_3_4_ethylenedisulfanylfurane_and_thiophene_oligomers_A_theoretical_investigation","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We report the results of a series of ab initio and DFT quantum mechanical calculations on the structure and on the electronic spectral of 2,3-ethylenedioxythiophene-, thiophene-and 2,3-ethylenedithiafurane-containing oligomers. Calculations were performed on oligomers formed by n repeating units, where n ranges from 1 to 8. The bond-length alternation patterns in the -system, the importance of long-range interactions in the stabilization of oligomer chains, the energies of the HOMO and LUMO orbitals and the values of the lowest transition energy have been examined allowing a systematic comparison among the three families of conducting polymers.","owner":{"id":53252628,"first_name":"Jose","middle_initials":null,"last_name":"Iribarren","page_name":"JoseIribarren","domain_name":"independent","created_at":"2016-09-11T04:52:21.573-07:00","display_name":"Jose Iribarren","url":"https://independent.academia.edu/JoseIribarren"},"attachments":[{"id":48747185,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747185/thumbnails/1.jpg","file_name":"j.synthmet.2004.12.01220160911-29757-1xhq105.pdf","download_url":"https://www.academia.edu/attachments/48747185/download_file","bulk_download_file_name":"Structural_and_electronic_properties_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747185/j.synthmet.2004.12.01220160911-29757-1xhq105-libre.pdf?1473596971=\u0026response-content-disposition=attachment%3B+filename%3DStructural_and_electronic_properties_of.pdf\u0026Expires=1743103314\u0026Signature=fhgokcdhm~l0tRF6lDjv7Fe0YS4eGljVhd8b1WNJCG1ExA~wrdglS1mBnxmTMQeKnJJ7aF3e2V3nfDSW3YlXSSHdBDMg-w4eNtfUyJDvY3v~d6ZKqzD7zIjhrpmJySyS0lxngC1HYHigcns14kEbhhOZertpSyio9pPG6i-svA6wKZCTUrhgldaRNxMtTebEN~VizrD6Y45jAXP6xi89mgHwcauskEgj02jyjeDdYEY-FNxA5RHjY4ShMoWwB5rGl0CVRXvUEVQ8cb7rSSz9VV8jr8aUBlWDznC8WXtIEnsdN99n5Dbz~ZAUBy4tarG6hqAzpaGb6s58V002pz9h0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":85458,"name":"Conducting Polymer","url":"https://www.academia.edu/Documents/in/Conducting_Polymer"},{"id":149347,"name":"Band Gap","url":"https://www.academia.edu/Documents/in/Band_Gap"},{"id":189984,"name":"Electronic properties","url":"https://www.academia.edu/Documents/in/Electronic_properties"},{"id":2190081,"name":"Long-range Interaction","url":"https://www.academia.edu/Documents/in/Long-range_Interaction"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28406434"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/28406434/Influence_of_the_solvation_model_and_the_solvent_on_the_gauche_trans_equilibrium_of_1_1_2_trichloroethane"><img alt="Research paper thumbnail of Influence of the solvation model and the solvent on the gauche-trans equilibrium of 1,1,2-trichloroethane" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Influence of the solvation model and the solvent on the gauche-trans equilibrium of 1,1,2-trichloroethane</div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JoseIribarren">Jose Iribarren</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://lleida.academia.edu/JordiCasanovas">Jordi Casanovas</a></span></div><div class="wp-workCard_item"><span>Chemical Physics</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Simulation of solvent effects on both structure and properties of molecules poses a formidable ch...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Simulation of solvent effects on both structure and properties of molecules poses a formidable challenge to theoretical researches. Much progress was made in this area during the last years, which led to the development of wide variety of computational methods [1 and 2]. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28406434"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28406434"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28406434; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28406434]").text(description); $(".js-view-count[data-work-id=28406434]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28406434; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28406434']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=28406434]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28406434,"title":"Influence of the solvation model and the solvent on the gauche-trans equilibrium of 1,1,2-trichloroethane","translated_title":"","metadata":{"abstract":"Simulation of solvent effects on both structure and properties of molecules poses a formidable challenge to theoretical researches. Much progress was made in this area during the last years, which led to the development of wide variety of computational methods [1 and 2]. ...","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Chemical Physics"},"translated_abstract":"Simulation of solvent effects on both structure and properties of molecules poses a formidable challenge to theoretical researches. Much progress was made in this area during the last years, which led to the development of wide variety of computational methods [1 and 2]. ...","internal_url":"https://www.academia.edu/28406434/Influence_of_the_solvation_model_and_the_solvent_on_the_gauche_trans_equilibrium_of_1_1_2_trichloroethane","translated_internal_url":"","created_at":"2016-09-11T04:52:39.788-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53252628,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24212871,"work_id":28406434,"tagging_user_id":53252628,"tagged_user_id":null,"co_author_invite_id":5389966,"email":"c***r@uniandes.edu.co","display_order":0,"name":"Carlos Alemán","title":"Influence of the solvation model and the solvent on the gauche-trans equilibrium of 1,1,2-trichloroethane"},{"id":24212876,"work_id":28406434,"tagging_user_id":53252628,"tagged_user_id":33589671,"co_author_invite_id":5389967,"email":"j***s@quimica.udl.es","affiliation":"Universitat de Lleida","display_order":4194304,"name":"Jordi Casanovas","title":"Influence of the solvation model and the solvent on the gauche-trans equilibrium of 1,1,2-trichloroethane"}],"downloadable_attachments":[],"slug":"Influence_of_the_solvation_model_and_the_solvent_on_the_gauche_trans_equilibrium_of_1_1_2_trichloroethane","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Simulation of solvent effects on both structure and properties of molecules poses a formidable challenge to theoretical researches. Much progress was made in this area during the last years, which led to the development of wide variety of computational methods [1 and 2]. ...","owner":{"id":53252628,"first_name":"Jose","middle_initials":null,"last_name":"Iribarren","page_name":"JoseIribarren","domain_name":"independent","created_at":"2016-09-11T04:52:21.573-07:00","display_name":"Jose Iribarren","url":"https://independent.academia.edu/JoseIribarren"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":247485,"name":"Solvent Effect","url":"https://www.academia.edu/Documents/in/Solvent_Effect"},{"id":248184,"name":"Polarizable continuum model","url":"https://www.academia.edu/Documents/in/Polarizable_continuum_model"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":390063,"name":"Carbon Tetrachloride","url":"https://www.academia.edu/Documents/in/Carbon_Tetrachloride"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"},{"id":1242504,"name":"Molecular Dynamic Simulation","url":"https://www.academia.edu/Documents/in/Molecular_Dynamic_Simulation"},{"id":1449632,"name":"Computational Method","url":"https://www.academia.edu/Documents/in/Computational_Method"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28406456"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28406456/Molecular_modeling_tools_to_design_new_conducting_polymers"><img alt="Research paper thumbnail of Molecular modeling tools to design new conducting polymers" class="work-thumbnail" src="https://attachments.academia-assets.com/48747187/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28406456/Molecular_modeling_tools_to_design_new_conducting_polymers">Molecular modeling tools to design new conducting polymers</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JoseIribarren">Jose Iribarren</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://lleida.academia.edu/JordiCasanovas">Jordi Casanovas</a></span></div><div class="wp-workCard_item"><span>Polímeros</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The ability of molecular modeling techniques based on quantum chemical methods to predict the mol...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c68f8853c2dd6ab94a65aaf2343e21e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48747187,&quot;asset_id&quot;:28406456,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48747187/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28406456"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28406456"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28406456; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28406456]").text(description); $(".js-view-count[data-work-id=28406456]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28406456; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28406456']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c68f8853c2dd6ab94a65aaf2343e21e0" } } $('.js-work-strip[data-work-id=28406456]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28406456,"title":"Molecular modeling tools to design new conducting polymers","translated_title":"","metadata":{"abstract":"The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.","publication_name":"Polímeros"},"translated_abstract":"The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.","internal_url":"https://www.academia.edu/28406456/Molecular_modeling_tools_to_design_new_conducting_polymers","translated_internal_url":"","created_at":"2016-09-11T04:52:42.351-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53252628,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24212872,"work_id":28406456,"tagging_user_id":53252628,"tagged_user_id":null,"co_author_invite_id":5389966,"email":"c***r@uniandes.edu.co","display_order":0,"name":"Carlos Alemán","title":"Molecular modeling tools to design new conducting polymers"},{"id":24212877,"work_id":28406456,"tagging_user_id":53252628,"tagged_user_id":33589671,"co_author_invite_id":5389967,"email":"j***s@quimica.udl.es","affiliation":"Universitat de Lleida","display_order":4194304,"name":"Jordi Casanovas","title":"Molecular modeling tools to design new conducting polymers"}],"downloadable_attachments":[{"id":48747187,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747187/thumbnails/1.jpg","file_name":"Molecular_modeling_tools_to_design_new_c20160911-29206-hz9co8.pdf","download_url":"https://www.academia.edu/attachments/48747187/download_file","bulk_download_file_name":"Molecular_modeling_tools_to_design_new_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747187/Molecular_modeling_tools_to_design_new_c20160911-29206-hz9co8-libre.pdf?1473596971=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_modeling_tools_to_design_new_c.pdf\u0026Expires=1743103314\u0026Signature=TzAHfyANEaeICu~UXSsvwtG9z3x~~KnUW450x-DpcVWMxa8F~epSblKtLnmiJHnFeI70dRqjrsT3CXp4YMOKH~omVcP22GLgsSfSIFO0hj5myXtAApmsmU1RWpKpThzavJVoq74y74hXSmmLQ9bfMQODr-bwLsZO0UIxzBMF8VkH5MSdoZ2jn5SG8zYkBduchF9XHnfWLoQf8GMzwa1NzLzm2katBfPpr3~znXa9zxvxuAxrw1PfT48OAOsFG6yYb28tpDQQYUB1Qf7VhMfB5M-INffZDdNgVBNJL1yQKDvXTxlqlG5iDoK2nhdAWA8n-bYaxY97IL15rcshKEoXzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Molecular_modeling_tools_to_design_new_conducting_polymers","translated_slug":"","page_count":6,"language":"es","content_type":"Work","summary":"The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.","owner":{"id":53252628,"first_name":"Jose","middle_initials":null,"last_name":"Iribarren","page_name":"JoseIribarren","domain_name":"independent","created_at":"2016-09-11T04:52:21.573-07:00","display_name":"Jose Iribarren","url":"https://independent.academia.edu/JoseIribarren"},"attachments":[{"id":48747187,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747187/thumbnails/1.jpg","file_name":"Molecular_modeling_tools_to_design_new_c20160911-29206-hz9co8.pdf","download_url":"https://www.academia.edu/attachments/48747187/download_file","bulk_download_file_name":"Molecular_modeling_tools_to_design_new_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747187/Molecular_modeling_tools_to_design_new_c20160911-29206-hz9co8-libre.pdf?1473596971=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_modeling_tools_to_design_new_c.pdf\u0026Expires=1743103314\u0026Signature=TzAHfyANEaeICu~UXSsvwtG9z3x~~KnUW450x-DpcVWMxa8F~epSblKtLnmiJHnFeI70dRqjrsT3CXp4YMOKH~omVcP22GLgsSfSIFO0hj5myXtAApmsmU1RWpKpThzavJVoq74y74hXSmmLQ9bfMQODr-bwLsZO0UIxzBMF8VkH5MSdoZ2jn5SG8zYkBduchF9XHnfWLoQf8GMzwa1NzLzm2katBfPpr3~znXa9zxvxuAxrw1PfT48OAOsFG6yYb28tpDQQYUB1Qf7VhMfB5M-INffZDdNgVBNJL1yQKDvXTxlqlG5iDoK2nhdAWA8n-bYaxY97IL15rcshKEoXzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":411663,"name":"Polímeros","url":"https://www.academia.edu/Documents/in/Pol%C3%ADmeros"},{"id":856612,"name":"Polimeros","url":"https://www.academia.edu/Documents/in/Polimeros"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14578149"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/14578149/Molecular_modeling_tools_to_design_new_conducting_polymers"><img alt="Research paper thumbnail of Molecular modeling tools to design new conducting polymers" class="work-thumbnail" src="https://attachments.academia-assets.com/41197729/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/14578149/Molecular_modeling_tools_to_design_new_conducting_polymers">Molecular modeling tools to design new conducting polymers</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" rel="nofollow" href="https://zoom-in-design.academia.edu/FranciscoLiesa">Francisco Liesa</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://lleida.academia.edu/JordiCasanovas">Jordi Casanovas</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/Jos%C3%A9Iribarren">José Iribarren</a></span></div><div class="wp-workCard_item"><span>Polímeros</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The ability of molecular modeling techniques based on quantum chemical methods to predict the mol...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1b0ea0f14eb3c75640b58f5f82626b3f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41197729,&quot;asset_id&quot;:14578149,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41197729/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14578149"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14578149"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14578149; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14578149]").text(description); $(".js-view-count[data-work-id=14578149]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14578149; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14578149']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1b0ea0f14eb3c75640b58f5f82626b3f" } } $('.js-work-strip[data-work-id=14578149]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14578149,"title":"Molecular modeling tools to design new conducting polymers","translated_title":"","metadata":{"abstract":"The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.","publication_name":"Polímeros"},"translated_abstract":"The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.","internal_url":"https://www.academia.edu/14578149/Molecular_modeling_tools_to_design_new_conducting_polymers","translated_internal_url":"","created_at":"2015-08-02T08:42:07.329-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33536843,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":4153600,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":7723894,"co_author_invite_id":null,"email":"c***3@gmail.com","display_order":0,"name":"Carlos Alemán","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153610,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":42421112,"co_author_invite_id":228954,"email":"c***n@upc.es","display_order":4194304,"name":"Carlos Alemán","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153619,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":38891252,"co_author_invite_id":968339,"email":"e***n@upc.edu","display_order":6291456,"name":"Elaine Armelin","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153629,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":null,"co_author_invite_id":968332,"email":"c***n@upc.edu","display_order":7340032,"name":"Carlos Aleman","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153634,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":null,"co_author_invite_id":968333,"email":"j***s@quimica.udl.cat","display_order":7864320,"name":"Jordi Casanovas","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153639,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":33589671,"co_author_invite_id":968334,"email":"j***s@quimica.udl.es","affiliation":"Universitat de Lleida","display_order":8126464,"name":"Jordi Casanovas","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153648,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":33608677,"co_author_invite_id":979226,"email":"j***n@upc.edu","display_order":8257536,"name":"José Iribarren","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153658,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":null,"co_author_invite_id":979227,"email":"a***n@upc.es","display_order":8323072,"name":"Carlos Alemán","title":"Molecular modeling tools to design new conducting polymers"}],"downloadable_attachments":[{"id":41197729,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41197729/thumbnails/1.jpg","file_name":"5416eba30cf2fa878ad435c4.pdf20160115-19908-gnzs85.pdf","download_url":"https://www.academia.edu/attachments/41197729/download_file","bulk_download_file_name":"Molecular_modeling_tools_to_design_new_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41197729/5416eba30cf2fa878ad435c4.pdf20160115-19908-gnzs85-libre.pdf?1452863296=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_modeling_tools_to_design_new_c.pdf\u0026Expires=1743103314\u0026Signature=GMBfZTa0MXNlJgcxy74c3G-n4Ddnirq0XE6fQwZZ3X6WweYaDC6N1bLBPjA-8EzXI7SFDF0HVin-lbtJEVDe5l87ZfrQJdcvmmQV9DXP-cwnEZf1hZ~cIUNtsK3AhpD3mAuG1th-QMZ8hRd8t4FfhgcZKZVzSuuQetcx7a8fDKhRGSA~VG~ugWbByzLTRth3xXkqRDUWpnVXdWBvGfNYS7ak2AS32qIZlY9g0ByxcL1wO9YYFUbemADsklLmKHYT7CJ4JYaOxOIRI40SS-3CER4Qat7FuJ~R-NYUPhg0Qq0EnQJ7M6sFNL9Sw~0vsAeqGNzaSBYGw4H-nigjNNhUDA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Molecular_modeling_tools_to_design_new_conducting_polymers","translated_slug":"","page_count":6,"language":"es","content_type":"Work","summary":"The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.","owner":{"id":33536843,"first_name":"Francisco","middle_initials":null,"last_name":"Liesa","page_name":"FranciscoLiesa","domain_name":"zoom-in-design","created_at":"2015-08-02T08:41:47.706-07:00","display_name":"Francisco Liesa","url":"https://zoom-in-design.academia.edu/FranciscoLiesa"},"attachments":[{"id":41197729,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41197729/thumbnails/1.jpg","file_name":"5416eba30cf2fa878ad435c4.pdf20160115-19908-gnzs85.pdf","download_url":"https://www.academia.edu/attachments/41197729/download_file","bulk_download_file_name":"Molecular_modeling_tools_to_design_new_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41197729/5416eba30cf2fa878ad435c4.pdf20160115-19908-gnzs85-libre.pdf?1452863296=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_modeling_tools_to_design_new_c.pdf\u0026Expires=1743103314\u0026Signature=GMBfZTa0MXNlJgcxy74c3G-n4Ddnirq0XE6fQwZZ3X6WweYaDC6N1bLBPjA-8EzXI7SFDF0HVin-lbtJEVDe5l87ZfrQJdcvmmQV9DXP-cwnEZf1hZ~cIUNtsK3AhpD3mAuG1th-QMZ8hRd8t4FfhgcZKZVzSuuQetcx7a8fDKhRGSA~VG~ugWbByzLTRth3xXkqRDUWpnVXdWBvGfNYS7ak2AS32qIZlY9g0ByxcL1wO9YYFUbemADsklLmKHYT7CJ4JYaOxOIRI40SS-3CER4Qat7FuJ~R-NYUPhg0Qq0EnQJ7M6sFNL9Sw~0vsAeqGNzaSBYGw4H-nigjNNhUDA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":411663,"name":"Polímeros","url":"https://www.academia.edu/Documents/in/Pol%C3%ADmeros"}],"urls":[{"id":5054551,"url":"http://www.researchgate.net/profile/Carlos_Aleman/publication/262627450_Molecular_modeling_tools_to_design_new_conducting_polymers/links/5416eba30cf2fa878ad435c4.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14636913"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/14636913/29Si_solid_state_NMR_of_hydroxyl_groups_in_silica_from_first_principle_calculations"><img alt="Research paper thumbnail of 29Si solid state NMR of hydroxyl groups in silica from first principle calculations" class="work-thumbnail" src="https://attachments.academia-assets.com/44013650/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/14636913/29Si_solid_state_NMR_of_hydroxyl_groups_in_silica_from_first_principle_calculations">29Si solid state NMR of hydroxyl groups in silica from first principle calculations</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report the results of first principles Hartree-Fock (HF) and density functional theory (DFT) c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report the results of first principles Hartree-Fock (HF) and density functional theory (DFT) calculations on the 1 H, 29 Si and 17 O NMR chemical shifts of hydroxyl groups in silica. The structure of the isolated or Si OH of the geminal Si(OH) 2 groups has been fully optimized from cluster models derived from crystalline a-quartz and the nuclear magnetic shielding properties have been determined according to the GIAO method. Quantitative agreement with the available experimental data has been obtained at the DFT level.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2b0b10f92aee94a3223175425c47ea76" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44013650,&quot;asset_id&quot;:14636913,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44013650/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14636913"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14636913"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14636913; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14636913]").text(description); $(".js-view-count[data-work-id=14636913]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14636913; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14636913']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2b0b10f92aee94a3223175425c47ea76" } } $('.js-work-strip[data-work-id=14636913]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14636913,"title":"29Si solid state NMR of hydroxyl groups in silica from first principle calculations","translated_title":"","metadata":{"grobid_abstract":"We report the results of first principles Hartree-Fock (HF) and density functional theory (DFT) calculations on the 1 H, 29 Si and 17 O NMR chemical shifts of hydroxyl groups in silica. The structure of the isolated or Si OH of the geminal Si(OH) 2 groups has been fully optimized from cluster models derived from crystalline a-quartz and the nuclear magnetic shielding properties have been determined according to the GIAO method. Quantitative agreement with the available experimental data has been obtained at the DFT level.","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"grobid_abstract_attachment_id":44013650},"translated_abstract":null,"internal_url":"https://www.academia.edu/14636913/29Si_solid_state_NMR_of_hydroxyl_groups_in_silica_from_first_principle_calculations","translated_internal_url":"","created_at":"2015-08-03T23:30:55.340-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44013650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44013650/thumbnails/1.jpg","file_name":"s0921-5107_2899_2900337-2.pdf20160322-1151-1v7nkyb","download_url":"https://www.academia.edu/attachments/44013650/download_file","bulk_download_file_name":"29Si_solid_state_NMR_of_hydroxyl_groups.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44013650/s0921-5107_2899_2900337-2-libre.pdf20160322-1151-1v7nkyb?1458704748=\u0026response-content-disposition=attachment%3B+filename%3D29Si_solid_state_NMR_of_hydroxyl_groups.pdf\u0026Expires=1743103314\u0026Signature=BABDp~1yUaETHtVtpFtQ7lcvShyNxavKvPuwTwEn47-u8efE4W883C7Mznc0ApAHcxpbF3lFoDpympcMg4U3-0lBKcT1n3uowBOOeICbsOVTFHXrKDZBTByTh2IywHIqCiMYFmzU6tc7pLjW0oXJ2fp2nkC5LkE6SIRvvyrkHrz9XfgaXnZB4FElCa1NvZhpyS03KadYC-5AvE7rjQxdwj7sLbBs9u3RoyGtqIbBBSwZa~SAkZAwYQH17Ah8RH3hJ9mRARdYIx5JZGBt2u8ONDSFhlIwrSQUEHxBYirwzCaUq2m6XALWXv7JDAX58ikIBSZLyU43B~gScYyh3UeoFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"29Si_solid_state_NMR_of_hydroxyl_groups_in_silica_from_first_principle_calculations","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We report the results of first principles Hartree-Fock (HF) and density functional theory (DFT) calculations on the 1 H, 29 Si and 17 O NMR chemical shifts of hydroxyl groups in silica. The structure of the isolated or Si OH of the geminal Si(OH) 2 groups has been fully optimized from cluster models derived from crystalline a-quartz and the nuclear magnetic shielding properties have been determined according to the GIAO method. Quantitative agreement with the available experimental data has been obtained at the DFT level.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":44013650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44013650/thumbnails/1.jpg","file_name":"s0921-5107_2899_2900337-2.pdf20160322-1151-1v7nkyb","download_url":"https://www.academia.edu/attachments/44013650/download_file","bulk_download_file_name":"29Si_solid_state_NMR_of_hydroxyl_groups.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44013650/s0921-5107_2899_2900337-2-libre.pdf20160322-1151-1v7nkyb?1458704748=\u0026response-content-disposition=attachment%3B+filename%3D29Si_solid_state_NMR_of_hydroxyl_groups.pdf\u0026Expires=1743103314\u0026Signature=BABDp~1yUaETHtVtpFtQ7lcvShyNxavKvPuwTwEn47-u8efE4W883C7Mznc0ApAHcxpbF3lFoDpympcMg4U3-0lBKcT1n3uowBOOeICbsOVTFHXrKDZBTByTh2IywHIqCiMYFmzU6tc7pLjW0oXJ2fp2nkC5LkE6SIRvvyrkHrz9XfgaXnZB4FElCa1NvZhpyS03KadYC-5AvE7rjQxdwj7sLbBs9u3RoyGtqIbBBSwZa~SAkZAwYQH17Ah8RH3hJ9mRARdYIx5JZGBt2u8ONDSFhlIwrSQUEHxBYirwzCaUq2m6XALWXv7JDAX58ikIBSZLyU43B~gScYyh3UeoFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":17395,"name":"Density-functional theory","url":"https://www.academia.edu/Documents/in/Density-functional_theory"},{"id":25987,"name":"Solid State NMR","url":"https://www.academia.edu/Documents/in/Solid_State_NMR"},{"id":77601,"name":"DFT calculation","url":"https://www.academia.edu/Documents/in/DFT_calculation"},{"id":98440,"name":"Silica","url":"https://www.academia.edu/Documents/in/Silica"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":398719,"name":"Hartree fock method","url":"https://www.academia.edu/Documents/in/Hartree_fock_method"},{"id":613718,"name":"Chemical Shift","url":"https://www.academia.edu/Documents/in/Chemical_Shift"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14636912"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/14636912/Water_absorbed_by_polyaniline_emeraldine_tends_to_organize_forming_nanodrops"><img alt="Research paper thumbnail of Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops</div><div class="wp-workCard_item"><span>The journal of physical chemistry. B</span><span>, Jan 21, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Interactions, in terms of both binding energies and microscopic organization, of water molecules ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Interactions, in terms of both binding energies and microscopic organization, of water molecules absorbed by hydrophilic polyaniline emeraldine base have been investigated using quantum mechanical calculations, molecular dynamics simulation, FTIR spectroscopy, and (1)H NMR. From an enthalpic point of view, water molecules interact more favorably with imine nitrogen atoms than with amine ones, even though the latter are entropically favored with respect to the former because of their two binding sites. Quantum mechanical results show that interaction energies of water molecules reversibly absorbed but organized individually around a binding site range from 3.0 to 6.3 kcal/mol, which is in good agreement with activation energies of 3-5 kcal/mol previously determined by thermodynamic measurements. The irreversible absorption of water to produce C-OH groups in rings of diimine units has been examined considering a three steps process in which water molecules act as both acidic and nucle...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14636912"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14636912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14636912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14636912]").text(description); $(".js-view-count[data-work-id=14636912]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14636912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14636912']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=14636912]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14636912,"title":"Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops","translated_title":"","metadata":{"abstract":"Interactions, in terms of both binding energies and microscopic organization, of water molecules absorbed by hydrophilic polyaniline emeraldine base have been investigated using quantum mechanical calculations, molecular dynamics simulation, FTIR spectroscopy, and (1)H NMR. From an enthalpic point of view, water molecules interact more favorably with imine nitrogen atoms than with amine ones, even though the latter are entropically favored with respect to the former because of their two binding sites. Quantum mechanical results show that interaction energies of water molecules reversibly absorbed but organized individually around a binding site range from 3.0 to 6.3 kcal/mol, which is in good agreement with activation energies of 3-5 kcal/mol previously determined by thermodynamic measurements. The irreversible absorption of water to produce C-OH groups in rings of diimine units has been examined considering a three steps process in which water molecules act as both acidic and nucle...","publication_date":{"day":21,"month":1,"year":2012,"errors":{}},"publication_name":"The journal of physical chemistry. B"},"translated_abstract":"Interactions, in terms of both binding energies and microscopic organization, of water molecules absorbed by hydrophilic polyaniline emeraldine base have been investigated using quantum mechanical calculations, molecular dynamics simulation, FTIR spectroscopy, and (1)H NMR. From an enthalpic point of view, water molecules interact more favorably with imine nitrogen atoms than with amine ones, even though the latter are entropically favored with respect to the former because of their two binding sites. Quantum mechanical results show that interaction energies of water molecules reversibly absorbed but organized individually around a binding site range from 3.0 to 6.3 kcal/mol, which is in good agreement with activation energies of 3-5 kcal/mol previously determined by thermodynamic measurements. The irreversible absorption of water to produce C-OH groups in rings of diimine units has been examined considering a three steps process in which water molecules act as both acidic and nucle...","internal_url":"https://www.academia.edu/14636912/Water_absorbed_by_polyaniline_emeraldine_tends_to_organize_forming_nanodrops","translated_internal_url":"","created_at":"2015-08-03T23:30:55.248-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":4228173,"work_id":14636912,"tagging_user_id":33589671,"tagged_user_id":null,"co_author_invite_id":968332,"email":"c***n@upc.edu","display_order":0,"name":"Carlos Aleman","title":"Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops"},{"id":4228211,"work_id":14636912,"tagging_user_id":33589671,"tagged_user_id":7723894,"co_author_invite_id":null,"email":"c***3@gmail.com","display_order":4194304,"name":"Carlos Alemán","title":"Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops"},{"id":4228249,"work_id":14636912,"tagging_user_id":33589671,"tagged_user_id":42421112,"co_author_invite_id":228954,"email":"c***n@upc.es","display_order":6291456,"name":"Carlos Alemán","title":"Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops"},{"id":4228330,"work_id":14636912,"tagging_user_id":33589671,"tagged_user_id":null,"co_author_invite_id":979227,"email":"a***n@upc.es","display_order":7340032,"name":"Carlos Alemán","title":"Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops"}],"downloadable_attachments":[],"slug":"Water_absorbed_by_polyaniline_emeraldine_tends_to_organize_forming_nanodrops","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Interactions, in terms of both binding energies and microscopic organization, of water molecules absorbed by hydrophilic polyaniline emeraldine base have been investigated using quantum mechanical calculations, molecular dynamics simulation, FTIR spectroscopy, and (1)H NMR. From an enthalpic point of view, water molecules interact more favorably with imine nitrogen atoms than with amine ones, even though the latter are entropically favored with respect to the former because of their two binding sites. Quantum mechanical results show that interaction energies of water molecules reversibly absorbed but organized individually around a binding site range from 3.0 to 6.3 kcal/mol, which is in good agreement with activation energies of 3-5 kcal/mol previously determined by thermodynamic measurements. The irreversible absorption of water to produce C-OH groups in rings of diimine units has been examined considering a three steps process in which water molecules act as both acidic and nucle...","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14636911"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/14636911/An_ab_initio_cluster_model_study_of_the_magnetic_coupling_in_KNiF3"><img alt="Research paper thumbnail of An ab initio cluster model study of the magnetic coupling in KNiF3" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">An ab initio cluster model study of the magnetic coupling in KNiF3</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cluster models of increasing complexity have been used to model magnetic interactions in KNiF3. T...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cluster models of increasing complexity have been used to model magnetic interactions in KNiF3. These clusters contain two or four magnetic centers plus the bridge F− anions and different representations of the remaining of the crystal. The magnetic coupling constant has been obtained by computing abinitio wave functions for different spin states. These wave functions explicitly include internal and external</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14636911"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14636911"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14636911; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14636911]").text(description); $(".js-view-count[data-work-id=14636911]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14636911; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14636911']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=14636911]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14636911,"title":"An ab initio cluster model study of the magnetic coupling in KNiF3","translated_title":"","metadata":{"abstract":"Cluster models of increasing complexity have been used to model magnetic interactions in KNiF3. These clusters contain two or four magnetic centers plus the bridge F− anions and different representations of the remaining of the crystal. The magnetic coupling constant has been obtained by computing abinitio wave functions for different spin states. These wave functions explicitly include internal and external"},"translated_abstract":"Cluster models of increasing complexity have been used to model magnetic interactions in KNiF3. These clusters contain two or four magnetic centers plus the bridge F− anions and different representations of the remaining of the crystal. The magnetic coupling constant has been obtained by computing abinitio wave functions for different spin states. These wave functions explicitly include internal and external","internal_url":"https://www.academia.edu/14636911/An_ab_initio_cluster_model_study_of_the_magnetic_coupling_in_KNiF3","translated_internal_url":"","created_at":"2015-08-03T23:30:55.146-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_ab_initio_cluster_model_study_of_the_magnetic_coupling_in_KNiF3","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Cluster models of increasing complexity have been used to model magnetic interactions in KNiF3. These clusters contain two or four magnetic centers plus the bridge F− anions and different representations of the remaining of the crystal. The magnetic coupling constant has been obtained by computing abinitio wave functions for different spin states. These wave functions explicitly include internal and external","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":151091,"name":"Nitrogen","url":"https://www.academia.edu/Documents/in/Nitrogen"},{"id":160656,"name":"Potassium","url":"https://www.academia.edu/Documents/in/Potassium"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1137568,"name":"Magnetic Resonance Coupling","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Coupling"},{"id":1636662,"name":"Coupling Constant","url":"https://www.academia.edu/Documents/in/Coupling_Constant"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3328662" id="papers"><div class="js-work-strip profile--work_container" data-work-id="62425769"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/62425769/Self_assembled_fibrillar_networks_of_a_multifaceted_chiral_squaramide_Supramolecular_multistimuli_responsive_alcogels"><img alt="Research paper thumbnail of Self-assembled fibrillar networks of a multifaceted chiral squaramide: Supramolecular multistimuli-responsive alcogels" class="work-thumbnail" src="https://attachments.academia-assets.com/75195501/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/62425769/Self_assembled_fibrillar_networks_of_a_multifaceted_chiral_squaramide_Supramolecular_multistimuli_responsive_alcogels">Self-assembled fibrillar networks of a multifaceted chiral squaramide: Supramolecular multistimuli-responsive alcogels</a></div><div class="wp-workCard_item"><span>Soft Matter</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Chiral N,N 0-disubstituted squaramide 1 has been found to undergo self-assembly in a variety of a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Chiral N,N 0-disubstituted squaramide 1 has been found to undergo self-assembly in a variety of alcoholic solvents at low concentrations leading to the formation of novel nanostructured supramolecular alcogels. The gels responded to thermal, mechanical, optical and chemical stimuli. Solubility studies, gelation ability tests and computer modeling of a series of structurally related squaramides proved the existence of a unique combination of non-covalent molecular interactions and favorable hydrophobic/hydrophilic balance in 1 that drive the anisotropic growth of alcogel networks. The results have also revealed a remarkable effect of ultrasound on both the gelation kinetics and the properties of the alcogels.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a2369330b3aca847d4f99d438da2a988" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:75195501,&quot;asset_id&quot;:62425769,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/75195501/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62425769"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62425769"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62425769; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62425769]").text(description); $(".js-view-count[data-work-id=62425769]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62425769; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62425769']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a2369330b3aca847d4f99d438da2a988" } } $('.js-work-strip[data-work-id=62425769]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62425769,"title":"Self-assembled fibrillar networks of a multifaceted chiral squaramide: Supramolecular multistimuli-responsive alcogels","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry (RSC)","ai_title_tag":"Multifaceted Chiral Squaramide Alcogels with Responsive Properties","grobid_abstract":"Chiral N,N 0-disubstituted squaramide 1 has been found to undergo self-assembly in a variety of alcoholic solvents at low concentrations leading to the formation of novel nanostructured supramolecular alcogels. The gels responded to thermal, mechanical, optical and chemical stimuli. Solubility studies, gelation ability tests and computer modeling of a series of structurally related squaramides proved the existence of a unique combination of non-covalent molecular interactions and favorable hydrophobic/hydrophilic balance in 1 that drive the anisotropic growth of alcogel networks. The results have also revealed a remarkable effect of ultrasound on both the gelation kinetics and the properties of the alcogels.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Soft Matter","grobid_abstract_attachment_id":75195501},"translated_abstract":null,"internal_url":"https://www.academia.edu/62425769/Self_assembled_fibrillar_networks_of_a_multifaceted_chiral_squaramide_Supramolecular_multistimuli_responsive_alcogels","translated_internal_url":"","created_at":"2021-11-25T23:37:11.463-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":75195501,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75195501/thumbnails/1.jpg","file_name":"308e716d7126e984bbb3e9d6768e5e724cb9.pdf","download_url":"https://www.academia.edu/attachments/75195501/download_file","bulk_download_file_name":"Self_assembled_fibrillar_networks_of_a_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75195501/308e716d7126e984bbb3e9d6768e5e724cb9-libre.pdf?1637914412=\u0026response-content-disposition=attachment%3B+filename%3DSelf_assembled_fibrillar_networks_of_a_m.pdf\u0026Expires=1743103313\u0026Signature=EmSZ6fzt4Jkofoivn~ijdr-GPG2rEplb1CtmVANaCU2Z3OHQ~KyObLuybu-a5INfsQGFvyNVTtF4dLQoI~dR4QLVFlVpgMlhGrY9SOXHFXs0JqzZiGM2IMrnVaQqkXy2E~7NtY5jxonTuqf0BCuFzi3WzAvs0iH-FACheGj3h37aA7~uf5~N~USZAC3C-QqQdiPRenImD79Wa~WTbSWIF2QaA5EZ5r6oPoRPBjGggEDBe8plsR3jE5NpINAcKy5VvDZyy9uu9gXziKSDv0zXih7QUpPz17ASdni3dwrWQNUHJRCZFGd0YjAn4pV7qfhmDNPaeQSI-ZJAozM4zqiA5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Self_assembled_fibrillar_networks_of_a_multifaceted_chiral_squaramide_Supramolecular_multistimuli_responsive_alcogels","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Chiral N,N 0-disubstituted squaramide 1 has been found to undergo self-assembly in a variety of alcoholic solvents at low concentrations leading to the formation of novel nanostructured supramolecular alcogels. The gels responded to thermal, mechanical, optical and chemical stimuli. Solubility studies, gelation ability tests and computer modeling of a series of structurally related squaramides proved the existence of a unique combination of non-covalent molecular interactions and favorable hydrophobic/hydrophilic balance in 1 that drive the anisotropic growth of alcogel networks. The results have also revealed a remarkable effect of ultrasound on both the gelation kinetics and the properties of the alcogels.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":75195501,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75195501/thumbnails/1.jpg","file_name":"308e716d7126e984bbb3e9d6768e5e724cb9.pdf","download_url":"https://www.academia.edu/attachments/75195501/download_file","bulk_download_file_name":"Self_assembled_fibrillar_networks_of_a_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75195501/308e716d7126e984bbb3e9d6768e5e724cb9-libre.pdf?1637914412=\u0026response-content-disposition=attachment%3B+filename%3DSelf_assembled_fibrillar_networks_of_a_m.pdf\u0026Expires=1743103313\u0026Signature=EmSZ6fzt4Jkofoivn~ijdr-GPG2rEplb1CtmVANaCU2Z3OHQ~KyObLuybu-a5INfsQGFvyNVTtF4dLQoI~dR4QLVFlVpgMlhGrY9SOXHFXs0JqzZiGM2IMrnVaQqkXy2E~7NtY5jxonTuqf0BCuFzi3WzAvs0iH-FACheGj3h37aA7~uf5~N~USZAC3C-QqQdiPRenImD79Wa~WTbSWIF2QaA5EZ5r6oPoRPBjGggEDBe8plsR3jE5NpINAcKy5VvDZyy9uu9gXziKSDv0zXih7QUpPz17ASdni3dwrWQNUHJRCZFGd0YjAn4pV7qfhmDNPaeQSI-ZJAozM4zqiA5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":5481,"name":"Soft Matter","url":"https://www.academia.edu/Documents/in/Soft_Matter"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":128132,"name":"Nanostructures","url":"https://www.academia.edu/Documents/in/Nanostructures"},{"id":205584,"name":"Solubility","url":"https://www.academia.edu/Documents/in/Solubility"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":284907,"name":"Gels","url":"https://www.academia.edu/Documents/in/Gels"},{"id":878506,"name":"Quinine","url":"https://www.academia.edu/Documents/in/Quinine"},{"id":1745595,"name":"Solvents","url":"https://www.academia.edu/Documents/in/Solvents"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62425767"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/62425767/Dinaphtho_2_3_5_6_1_4_dithiino_2_3_b_2_3_e_pyridine_its_16_butyl_derivative_and_dinaphtho_2_3_5_6_1_4_dioxo_2_3_b_2_3_e_pyridine_novel_heterocycles_as_electron_donor_compounds"><img alt="Research paper thumbnail of Dinaphtho[2???,3???:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine, its 16-butyl derivative and dinaphtho[2???,3???:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine: novel heterocycles as electron donor compounds" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Dinaphtho[2???,3???:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine, its 16-butyl derivative and dinaphtho[2???,3???:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine: novel heterocycles as electron donor compounds</div><div class="wp-workCard_item"><span>New Journal of Chemistry</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Dinaphtho[2′,3′:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine (4a), its 16-butyl derivative (4b...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Dinaphtho[2′,3′:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine (4a), its 16-butyl derivative (4b), and dinaphtho[2′,3′:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine (5) have been prepared and fully characterized. The electrochemical properties of 4a, 4b and 5 have been studied by cyclic voltammetry in CH2Cl2∶trifluoroacetic acid (1∶1); in agreement with their donor character, they exhibit a first reversible oxidation wave to their radical cations with very similar potential peak values and a second irreversible wave to their dications, the lowest potential peak value of this second oxidation corresponding to 5. Their radical cations, generated by oxidation of the parent compounds, are relatively stable and have been analyzed in liquid solution by electron paramagnetic resonance (EPR). Spin density distributions in the SOMO have been calculated by the semiempirical MNDO method. Electronic spectra of 4a and 4b in trifluoroacetic acid show peaks at 417 and 401 nm, respectively, and in the presence of thallium(III) trifluoroacetate two characteristic peaks at λmax 411 and 868 nm for 4a˙+, and at 411 and 872 nm for 4b˙+. X-Ray analysis of 4b shows a molecular structure with a stable chair-shaped conformation with interplanar angles between naphthalenes and the pyridine ring of 139.0(1) and 146.4(1)°.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62425767"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62425767"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62425767; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62425767]").text(description); $(".js-view-count[data-work-id=62425767]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62425767; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62425767']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=62425767]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62425767,"title":"Dinaphtho[2???,3???:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine, its 16-butyl derivative and dinaphtho[2???,3???:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine: novel heterocycles as electron donor compounds","translated_title":"","metadata":{"abstract":"ABSTRACT Dinaphtho[2′,3′:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine (4a), its 16-butyl derivative (4b), and dinaphtho[2′,3′:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine (5) have been prepared and fully characterized. The electrochemical properties of 4a, 4b and 5 have been studied by cyclic voltammetry in CH2Cl2∶trifluoroacetic acid (1∶1); in agreement with their donor character, they exhibit a first reversible oxidation wave to their radical cations with very similar potential peak values and a second irreversible wave to their dications, the lowest potential peak value of this second oxidation corresponding to 5. Their radical cations, generated by oxidation of the parent compounds, are relatively stable and have been analyzed in liquid solution by electron paramagnetic resonance (EPR). Spin density distributions in the SOMO have been calculated by the semiempirical MNDO method. Electronic spectra of 4a and 4b in trifluoroacetic acid show peaks at 417 and 401 nm, respectively, and in the presence of thallium(III) trifluoroacetate two characteristic peaks at λmax 411 and 868 nm for 4a˙+, and at 411 and 872 nm for 4b˙+. X-Ray analysis of 4b shows a molecular structure with a stable chair-shaped conformation with interplanar angles between naphthalenes and the pyridine ring of 139.0(1) and 146.4(1)°.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"New Journal of Chemistry"},"translated_abstract":"ABSTRACT Dinaphtho[2′,3′:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine (4a), its 16-butyl derivative (4b), and dinaphtho[2′,3′:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine (5) have been prepared and fully characterized. The electrochemical properties of 4a, 4b and 5 have been studied by cyclic voltammetry in CH2Cl2∶trifluoroacetic acid (1∶1); in agreement with their donor character, they exhibit a first reversible oxidation wave to their radical cations with very similar potential peak values and a second irreversible wave to their dications, the lowest potential peak value of this second oxidation corresponding to 5. Their radical cations, generated by oxidation of the parent compounds, are relatively stable and have been analyzed in liquid solution by electron paramagnetic resonance (EPR). Spin density distributions in the SOMO have been calculated by the semiempirical MNDO method. Electronic spectra of 4a and 4b in trifluoroacetic acid show peaks at 417 and 401 nm, respectively, and in the presence of thallium(III) trifluoroacetate two characteristic peaks at λmax 411 and 868 nm for 4a˙+, and at 411 and 872 nm for 4b˙+. X-Ray analysis of 4b shows a molecular structure with a stable chair-shaped conformation with interplanar angles between naphthalenes and the pyridine ring of 139.0(1) and 146.4(1)°.","internal_url":"https://www.academia.edu/62425767/Dinaphtho_2_3_5_6_1_4_dithiino_2_3_b_2_3_e_pyridine_its_16_butyl_derivative_and_dinaphtho_2_3_5_6_1_4_dioxo_2_3_b_2_3_e_pyridine_novel_heterocycles_as_electron_donor_compounds","translated_internal_url":"","created_at":"2021-11-25T23:37:11.212-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Dinaphtho_2_3_5_6_1_4_dithiino_2_3_b_2_3_e_pyridine_its_16_butyl_derivative_and_dinaphtho_2_3_5_6_1_4_dioxo_2_3_b_2_3_e_pyridine_novel_heterocycles_as_electron_donor_compounds","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT Dinaphtho[2′,3′:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine (4a), its 16-butyl derivative (4b), and dinaphtho[2′,3′:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine (5) have been prepared and fully characterized. The electrochemical properties of 4a, 4b and 5 have been studied by cyclic voltammetry in CH2Cl2∶trifluoroacetic acid (1∶1); in agreement with their donor character, they exhibit a first reversible oxidation wave to their radical cations with very similar potential peak values and a second irreversible wave to their dications, the lowest potential peak value of this second oxidation corresponding to 5. Their radical cations, generated by oxidation of the parent compounds, are relatively stable and have been analyzed in liquid solution by electron paramagnetic resonance (EPR). Spin density distributions in the SOMO have been calculated by the semiempirical MNDO method. Electronic spectra of 4a and 4b in trifluoroacetic acid show peaks at 417 and 401 nm, respectively, and in the presence of thallium(III) trifluoroacetate two characteristic peaks at λmax 411 and 868 nm for 4a˙+, and at 411 and 872 nm for 4b˙+. X-Ray analysis of 4b shows a molecular structure with a stable chair-shaped conformation with interplanar angles between naphthalenes and the pyridine ring of 139.0(1) and 146.4(1)°.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[],"research_interests":[{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62425763"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/62425763/1_Amino_2_Phenylcyclopentane_1_carboxylic_Acid_A_Conformationally_Restricted_Phenylalanine_Analogue"><img alt="Research paper thumbnail of 1-Amino-2-Phenylcyclopentane-1-carboxylic Acid:  A Conformationally Restricted Phenylalanine Analogue" class="work-thumbnail" src="https://attachments.academia-assets.com/75195503/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/62425763/1_Amino_2_Phenylcyclopentane_1_carboxylic_Acid_A_Conformationally_Restricted_Phenylalanine_Analogue">1-Amino-2-Phenylcyclopentane-1-carboxylic Acid:  A Conformationally Restricted Phenylalanine Analogue</a></div><div class="wp-workCard_item"><span>The Journal of Organic Chemistry</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1cde881e47d24f9c6e750a08433b747b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:75195503,&quot;asset_id&quot;:62425763,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/75195503/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62425763"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62425763"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62425763; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62425763]").text(description); $(".js-view-count[data-work-id=62425763]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62425763; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62425763']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1cde881e47d24f9c6e750a08433b747b" } } $('.js-work-strip[data-work-id=62425763]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62425763,"title":"1-Amino-2-Phenylcyclopentane-1-carboxylic Acid:  A Conformationally Restricted Phenylalanine Analogue","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","ai_abstract":"This study explores the conformational characteristics and energetic profiles of 1-Amino-2-Phenylcyclopentane-1-carboxylic acid, a conformationally restricted analogue of phenylalanine. Detailed atomic coordinates and calculations of energies and free energies associated with minimum energy conformations for two derivatives, Ac-c-Lc5Phe-NHMe and Ac-t-Lc5Phe-NHMe, are presented.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"The Journal of Organic Chemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/62425763/1_Amino_2_Phenylcyclopentane_1_carboxylic_Acid_A_Conformationally_Restricted_Phenylalanine_Analogue","translated_internal_url":"","created_at":"2021-11-25T23:37:10.645-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":75195503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75195503/thumbnails/1.jpg","file_name":"4661422.pdf","download_url":"https://www.academia.edu/attachments/75195503/download_file","bulk_download_file_name":"1_Amino_2_Phenylcyclopentane_1_carboxyli.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75195503/4661422-libre.pdf?1637914407=\u0026response-content-disposition=attachment%3B+filename%3D1_Amino_2_Phenylcyclopentane_1_carboxyli.pdf\u0026Expires=1743103313\u0026Signature=Qklm5XXd~sVh7ZAP-ovxORJJkmZ8HJsmyUr11pw0NJjGqvLAqHMb0wLJAfMwfi0eubSc~sMznw0H4hz~4RBUYAIHZB5afZ23wWdfbgfNSknt~Fo1k3ZJ3uTPCSOJn0P9m73j0gblurDxplmef4Jt1JY-5enpjvwrBhlx6FrS0YQfilEbmwN7~hpyUPj3u3JmCbMuWeVR1Z-57pApfFeZoJjb7ERm0uZvQN2NON~FKL3v8BVKzDMXj9DJkj--CalNVO~FQiXbiZAFt5vMwOTf0DzO~4B0nlojEF1ztFawB3K8oVJlzey1VHQeOmiLf52IXOiByfeZFmoVg9HiKGL8jQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"1_Amino_2_Phenylcyclopentane_1_carboxylic_Acid_A_Conformationally_Restricted_Phenylalanine_Analogue","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":null,"owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":75195503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75195503/thumbnails/1.jpg","file_name":"4661422.pdf","download_url":"https://www.academia.edu/attachments/75195503/download_file","bulk_download_file_name":"1_Amino_2_Phenylcyclopentane_1_carboxyli.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75195503/4661422-libre.pdf?1637914407=\u0026response-content-disposition=attachment%3B+filename%3D1_Amino_2_Phenylcyclopentane_1_carboxyli.pdf\u0026Expires=1743103313\u0026Signature=Qklm5XXd~sVh7ZAP-ovxORJJkmZ8HJsmyUr11pw0NJjGqvLAqHMb0wLJAfMwfi0eubSc~sMznw0H4hz~4RBUYAIHZB5afZ23wWdfbgfNSknt~Fo1k3ZJ3uTPCSOJn0P9m73j0gblurDxplmef4Jt1JY-5enpjvwrBhlx6FrS0YQfilEbmwN7~hpyUPj3u3JmCbMuWeVR1Z-57pApfFeZoJjb7ERm0uZvQN2NON~FKL3v8BVKzDMXj9DJkj--CalNVO~FQiXbiZAFt5vMwOTf0DzO~4B0nlojEF1ztFawB3K8oVJlzey1VHQeOmiLf52IXOiByfeZFmoVg9HiKGL8jQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":172024,"name":"Analog","url":"https://www.academia.edu/Documents/in/Analog"},{"id":247485,"name":"Solvent Effect","url":"https://www.academia.edu/Documents/in/Solvent_Effect"},{"id":296798,"name":"Hydrogen Bonding","url":"https://www.academia.edu/Documents/in/Hydrogen_Bonding"},{"id":382339,"name":"Phenylalanine","url":"https://www.academia.edu/Documents/in/Phenylalanine"},{"id":596681,"name":"Carboxylic Acids","url":"https://www.academia.edu/Documents/in/Carboxylic_Acids"},{"id":649537,"name":"Molecular Conformation","url":"https://www.academia.edu/Documents/in/Molecular_Conformation"},{"id":1489379,"name":"Amine","url":"https://www.academia.edu/Documents/in/Amine"},{"id":3889175,"name":"stereoisomerism","url":"https://www.academia.edu/Documents/in/stereoisomerism"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62425758"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/62425758/Solvation_of_2_2_bithiophene_Influence_of_the_first_solvation_shell_in_the_properties_of_%CF%80_conjugated_systems"><img alt="Research paper thumbnail of Solvation of 2,2′-bithiophene: Influence of the first solvation shell in the properties of π-conjugated systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Solvation of 2,2′-bithiophene: Influence of the first solvation shell in the properties of π-conjugated systems</div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The internal rotation of 2,2′-bithiophene has been investigated in aqueous and acetonitr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The internal rotation of 2,2′-bithiophene has been investigated in aqueous and acetonitrile solutions using three different solvation models: the discrete, the continuum self-consistent reaction-field and the combined discrete/self-consistent reaction-field, the polarizable continuum model being chosen for continuum calculations. Results indicate that the polarizable continuum model provides a satisfactory description of the solvent effects in acetonitrile solution. However, combined discrete/self-consistent reaction-field calculations are more appropriated in aqueous solution, where both the first-solvation shell effects and the polarization induced by the bulk solvent affect the rotational profile of 2,2′-bithiophene. These results indicate that combined calculations are needed to model water soluble thiophene-derivatives.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62425758"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62425758"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62425758; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62425758]").text(description); $(".js-view-count[data-work-id=62425758]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62425758; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62425758']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=62425758]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62425758,"title":"Solvation of 2,2′-bithiophene: Influence of the first solvation shell in the properties of π-conjugated systems","translated_title":"","metadata":{"abstract":"ABSTRACT The internal rotation of 2,2′-bithiophene has been investigated in aqueous and acetonitrile solutions using three different solvation models: the discrete, the continuum self-consistent reaction-field and the combined discrete/self-consistent reaction-field, the polarizable continuum model being chosen for continuum calculations. Results indicate that the polarizable continuum model provides a satisfactory description of the solvent effects in acetonitrile solution. However, combined discrete/self-consistent reaction-field calculations are more appropriated in aqueous solution, where both the first-solvation shell effects and the polarization induced by the bulk solvent affect the rotational profile of 2,2′-bithiophene. These results indicate that combined calculations are needed to model water soluble thiophene-derivatives.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Chemical Physics Letters"},"translated_abstract":"ABSTRACT The internal rotation of 2,2′-bithiophene has been investigated in aqueous and acetonitrile solutions using three different solvation models: the discrete, the continuum self-consistent reaction-field and the combined discrete/self-consistent reaction-field, the polarizable continuum model being chosen for continuum calculations. Results indicate that the polarizable continuum model provides a satisfactory description of the solvent effects in acetonitrile solution. However, combined discrete/self-consistent reaction-field calculations are more appropriated in aqueous solution, where both the first-solvation shell effects and the polarization induced by the bulk solvent affect the rotational profile of 2,2′-bithiophene. These results indicate that combined calculations are needed to model water soluble thiophene-derivatives.","internal_url":"https://www.academia.edu/62425758/Solvation_of_2_2_bithiophene_Influence_of_the_first_solvation_shell_in_the_properties_of_%CF%80_conjugated_systems","translated_internal_url":"","created_at":"2021-11-25T23:37:10.070-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Solvation_of_2_2_bithiophene_Influence_of_the_first_solvation_shell_in_the_properties_of_π_conjugated_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT The internal rotation of 2,2′-bithiophene has been investigated in aqueous and acetonitrile solutions using three different solvation models: the discrete, the continuum self-consistent reaction-field and the combined discrete/self-consistent reaction-field, the polarizable continuum model being chosen for continuum calculations. Results indicate that the polarizable continuum model provides a satisfactory description of the solvent effects in acetonitrile solution. However, combined discrete/self-consistent reaction-field calculations are more appropriated in aqueous solution, where both the first-solvation shell effects and the polarization induced by the bulk solvent affect the rotational profile of 2,2′-bithiophene. These results indicate that combined calculations are needed to model water soluble thiophene-derivatives.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[],"research_interests":[{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":247485,"name":"Solvent Effect","url":"https://www.academia.edu/Documents/in/Solvent_Effect"},{"id":248184,"name":"Polarizable continuum model","url":"https://www.academia.edu/Documents/in/Polarizable_continuum_model"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":849001,"name":"Water Soluble Fertilizers","url":"https://www.academia.edu/Documents/in/Water_Soluble_Fertilizers"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62425757"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/62425757/A_combined_theoretical_and_experimental_investigation_about_the_influence_of_the_dopant_in_the_anodic_electropolymerization_of_%CE%B1_tetrathiophene"><img alt="Research paper thumbnail of A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of α-tetrathiophene" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of α-tetrathiophene</div><div class="wp-workCard_item"><span>Chemical Physics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT This work presents an experimental and theoretical investigation about the influence of ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. The results derived from anodic polymerization of α-tetrathiophene using SCN−, Cl−, Br−, as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by α-tetrathiophene and X = SCN, Cl, Br, NO3, ClO3 and ClO4. The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of α-tetrathiophene.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62425757"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62425757"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62425757; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62425757]").text(description); $(".js-view-count[data-work-id=62425757]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62425757; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62425757']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=62425757]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62425757,"title":"A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of α-tetrathiophene","translated_title":"","metadata":{"abstract":"ABSTRACT This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. The results derived from anodic polymerization of α-tetrathiophene using SCN−, Cl−, Br−, as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by α-tetrathiophene and X = SCN, Cl, Br, NO3, ClO3 and ClO4. The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of α-tetrathiophene.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Chemical Physics"},"translated_abstract":"ABSTRACT This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. The results derived from anodic polymerization of α-tetrathiophene using SCN−, Cl−, Br−, as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by α-tetrathiophene and X = SCN, Cl, Br, NO3, ClO3 and ClO4. The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of α-tetrathiophene.","internal_url":"https://www.academia.edu/62425757/A_combined_theoretical_and_experimental_investigation_about_the_influence_of_the_dopant_in_the_anodic_electropolymerization_of_%CE%B1_tetrathiophene","translated_internal_url":"","created_at":"2021-11-25T23:37:09.717-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_combined_theoretical_and_experimental_investigation_about_the_influence_of_the_dopant_in_the_anodic_electropolymerization_of_α_tetrathiophene","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. The results derived from anodic polymerization of α-tetrathiophene using SCN−, Cl−, Br−, as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by α-tetrathiophene and X = SCN, Cl, Br, NO3, ClO3 and ClO4. The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of α-tetrathiophene.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":529,"name":"Quantum Chemistry","url":"https://www.academia.edu/Documents/in/Quantum_Chemistry"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":85458,"name":"Conducting Polymer","url":"https://www.academia.edu/Documents/in/Conducting_Polymer"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":800918,"name":"Charge transfer","url":"https://www.academia.edu/Documents/in/Charge_transfer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62425054"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/62425054/Electronic_characterization_of_all_thiophene_conducting_dendrimers_Molecules_and_assemblies"><img alt="Research paper thumbnail of Electronic characterization of all-thiophene conducting dendrimers: Molecules and assemblies" class="work-thumbnail" src="https://attachments.academia-assets.com/75195097/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/62425054/Electronic_characterization_of_all_thiophene_conducting_dendrimers_Molecules_and_assemblies">Electronic characterization of all-thiophene conducting dendrimers: Molecules and assemblies</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The molecular and electronic structure of all-thiophene dendrimers in both the neutral and oxidiz...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The molecular and electronic structure of all-thiophene dendrimers in both the neutral and oxidized states have been investigated performing quantum mechanical calculations on systems of up to 30 rings. Results evidenced that the repulsive steric interactions between the neighboring thiophene rings induce significant distortions from the planarity independently of the electronic state. On the other hand, the ionization potential per thiophene ring and the lowest p-p * transition energy decreases with the inverse of the longest a-conjugated chain of the dendrimer, i.e. when the generation increases. The lowest p-p * transition energy predicted for an infinite generation dendrimer is 2.08 eV indicating that these materials are potential candidates to be used in optoelectronics. Additionally, Quantum mechanics/molecular mechanics calculations have been performed considering both the sandwich and T-shaped supramolecular arrangements. Results showed not only the stability of these aggregates but also the significant influence of the intermolecular electronic delocalization in the electronic properties of these materials.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0685897eec80238cc1359c14608ed890" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:75195097,&quot;asset_id&quot;:62425054,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/75195097/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62425054"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62425054"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62425054; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62425054]").text(description); $(".js-view-count[data-work-id=62425054]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62425054; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62425054']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0685897eec80238cc1359c14608ed890" } } $('.js-work-strip[data-work-id=62425054]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62425054,"title":"Electronic characterization of all-thiophene conducting dendrimers: Molecules and assemblies","translated_title":"","metadata":{"ai_title_tag":"Characterization of Thiophene Dendrimers for Optoelectronics","grobid_abstract":"The molecular and electronic structure of all-thiophene dendrimers in both the neutral and oxidized states have been investigated performing quantum mechanical calculations on systems of up to 30 rings. Results evidenced that the repulsive steric interactions between the neighboring thiophene rings induce significant distortions from the planarity independently of the electronic state. On the other hand, the ionization potential per thiophene ring and the lowest p-p * transition energy decreases with the inverse of the longest a-conjugated chain of the dendrimer, i.e. when the generation increases. The lowest p-p * transition energy predicted for an infinite generation dendrimer is 2.08 eV indicating that these materials are potential candidates to be used in optoelectronics. Additionally, Quantum mechanics/molecular mechanics calculations have been performed considering both the sandwich and T-shaped supramolecular arrangements. Results showed not only the stability of these aggregates but also the significant influence of the intermolecular electronic delocalization in the electronic properties of these materials.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":75195097},"translated_abstract":null,"internal_url":"https://www.academia.edu/62425054/Electronic_characterization_of_all_thiophene_conducting_dendrimers_Molecules_and_assemblies","translated_internal_url":"","created_at":"2021-11-25T23:30:54.536-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":75195097,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75195097/thumbnails/1.jpg","file_name":"j.polymer.2009.11.00720211125-20457-gzojap.pdf","download_url":"https://www.academia.edu/attachments/75195097/download_file","bulk_download_file_name":"Electronic_characterization_of_all_thiop.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75195097/j.polymer.2009.11.00720211125-20457-gzojap-libre.pdf?1637914437=\u0026response-content-disposition=attachment%3B+filename%3DElectronic_characterization_of_all_thiop.pdf\u0026Expires=1743103313\u0026Signature=dJOhSmasMoNvnowdvo3GZ7m5rBLCkALjBTg18vkrlQggO4HN8DrZ6Zos7E1rfNWnQ7w3Xaw9HL1OQ00cIUorwCTJGNp1~dXHqwmhguF93oH~XD6iOEDBCXQ8nEwxMLBHIljWrinX7fE1Wjr63Q3pY6h5-oYRpMy7kYm4GvNzisv7tP8C6VjG7H5a0tDeZRkb2jDPC9H32RFLXGZvohdoxh8Z752tmcT-kaqdcQFZ50FTR8TtsRQ1kewUkkIZNoMj~zMBoQqgb8PP6xJTVC89zaVoaaC7SWVLBns8C2XmTJYb~l-ELViumKWbTmENjtNGZB2GmQ0gRR1Yj~W5vKil7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Electronic_characterization_of_all_thiophene_conducting_dendrimers_Molecules_and_assemblies","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"The molecular and electronic structure of all-thiophene dendrimers in both the neutral and oxidized states have been investigated performing quantum mechanical calculations on systems of up to 30 rings. Results evidenced that the repulsive steric interactions between the neighboring thiophene rings induce significant distortions from the planarity independently of the electronic state. On the other hand, the ionization potential per thiophene ring and the lowest p-p * transition energy decreases with the inverse of the longest a-conjugated chain of the dendrimer, i.e. when the generation increases. The lowest p-p * transition energy predicted for an infinite generation dendrimer is 2.08 eV indicating that these materials are potential candidates to be used in optoelectronics. Additionally, Quantum mechanics/molecular mechanics calculations have been performed considering both the sandwich and T-shaped supramolecular arrangements. Results showed not only the stability of these aggregates but also the significant influence of the intermolecular electronic delocalization in the electronic properties of these materials.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":75195097,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75195097/thumbnails/1.jpg","file_name":"j.polymer.2009.11.00720211125-20457-gzojap.pdf","download_url":"https://www.academia.edu/attachments/75195097/download_file","bulk_download_file_name":"Electronic_characterization_of_all_thiop.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75195097/j.polymer.2009.11.00720211125-20457-gzojap-libre.pdf?1637914437=\u0026response-content-disposition=attachment%3B+filename%3DElectronic_characterization_of_all_thiop.pdf\u0026Expires=1743103313\u0026Signature=dJOhSmasMoNvnowdvo3GZ7m5rBLCkALjBTg18vkrlQggO4HN8DrZ6Zos7E1rfNWnQ7w3Xaw9HL1OQ00cIUorwCTJGNp1~dXHqwmhguF93oH~XD6iOEDBCXQ8nEwxMLBHIljWrinX7fE1Wjr63Q3pY6h5-oYRpMy7kYm4GvNzisv7tP8C6VjG7H5a0tDeZRkb2jDPC9H32RFLXGZvohdoxh8Z752tmcT-kaqdcQFZ50FTR8TtsRQ1kewUkkIZNoMj~zMBoQqgb8PP6xJTVC89zaVoaaC7SWVLBns8C2XmTJYb~l-ELViumKWbTmENjtNGZB2GmQ0gRR1Yj~W5vKil7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"},{"id":15599,"name":"Conducting Polymers","url":"https://www.academia.edu/Documents/in/Conducting_Polymers"},{"id":26694,"name":"Dendrimers","url":"https://www.academia.edu/Documents/in/Dendrimers"},{"id":35637,"name":"Molecular Mechanics","url":"https://www.academia.edu/Documents/in/Molecular_Mechanics"},{"id":58527,"name":"Polymer","url":"https://www.academia.edu/Documents/in/Polymer"},{"id":116193,"name":"Solid State electronic devices","url":"https://www.academia.edu/Documents/in/Solid_State_electronic_devices"},{"id":189984,"name":"Electronic properties","url":"https://www.academia.edu/Documents/in/Electronic_properties"},{"id":219635,"name":"Electronic Structure","url":"https://www.academia.edu/Documents/in/Electronic_Structure"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":428433,"name":"Ionization Potential","url":"https://www.academia.edu/Documents/in/Ionization_Potential"},{"id":1032236,"name":"Dendrimer","url":"https://www.academia.edu/Documents/in/Dendrimer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56457664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56457664/Protonation_of_the_Side_Group_in_%CE%B2_and_%CE%B3_Aminated_Proline_Analogues_Effects_on_the_Conformational_Preferences"><img alt="Research paper thumbnail of Protonation of the Side Group in β- and γ-Aminated Proline Analogues: Effects on the Conformational Preferences" class="work-thumbnail" src="https://attachments.academia-assets.com/71835434/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56457664/Protonation_of_the_Side_Group_in_%CE%B2_and_%CE%B3_Aminated_Proline_Analogues_Effects_on_the_Conformational_Preferences">Protonation of the Side Group in β- and γ-Aminated Proline Analogues: Effects on the Conformational Preferences</a></div><div class="wp-workCard_item"><span>Journal of Organic Chemistry</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work shows the influence of the side-chain protonation on the conformational properties, rel...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work shows the influence of the side-chain protonation on the conformational properties, relative stabilities, and peptide bond isomerization of four aminoproline isomers. Thus, this research has been useful to define the rules that allow control the conformation of aminoproline with the pH. Comparison of the results obtained using density functional theory calculations for the N-acetyl-N′-methylamide derivatives of the protonated isomers, which differ in the-or γ-position of the substituent and its cis or trans relative disposition, with those reported for the corresponding neutral analogues (J. Phys. Chem. B 2008, 112, 14045) has allowed us to reach the following conclusions: (i) protonation of the amino group produces a reduction of the backbone conformational flexibility and a destabilization of the cis configuration of the amide bond involving the pyrrolidine nitrogen; (ii) the planarity of the peptide bond is broken in some cases to form strong side chain • • • backbone interactions, which induce a very significant pyramidilization at the amide nitrogen atom; (iii) as was also detected for the neutral analogues, the formation of side chain • • • backbone intraresidue interactions favor the cis disposition of the substituent; and (iv) protonation of the amino side group increases the energy gaps that separate the different investigated isomers resulting in an enhancement of the destabilization of the dipeptides with the substituent attached in a trans position.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="deaf745b360b6e3b3a4e32d12301706f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:71835434,&quot;asset_id&quot;:56457664,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/71835434/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56457664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56457664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56457664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56457664]").text(description); $(".js-view-count[data-work-id=56457664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56457664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56457664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "deaf745b360b6e3b3a4e32d12301706f" } } $('.js-work-strip[data-work-id=56457664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56457664,"title":"Protonation of the Side Group in β- and γ-Aminated Proline Analogues: Effects on the Conformational Preferences","translated_title":"","metadata":{"grobid_abstract":"This work shows the influence of the side-chain protonation on the conformational properties, relative stabilities, and peptide bond isomerization of four aminoproline isomers. Thus, this research has been useful to define the rules that allow control the conformation of aminoproline with the pH. Comparison of the results obtained using density functional theory calculations for the N-acetyl-N′-methylamide derivatives of the protonated isomers, which differ in the-or γ-position of the substituent and its cis or trans relative disposition, with those reported for the corresponding neutral analogues (J. Phys. Chem. B 2008, 112, 14045) has allowed us to reach the following conclusions: (i) protonation of the amino group produces a reduction of the backbone conformational flexibility and a destabilization of the cis configuration of the amide bond involving the pyrrolidine nitrogen; (ii) the planarity of the peptide bond is broken in some cases to form strong side chain • • • backbone interactions, which induce a very significant pyramidilization at the amide nitrogen atom; (iii) as was also detected for the neutral analogues, the formation of side chain • • • backbone intraresidue interactions favor the cis disposition of the substituent; and (iv) protonation of the amino side group increases the energy gaps that separate the different investigated isomers resulting in an enhancement of the destabilization of the dipeptides with the substituent attached in a trans position.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Journal of Organic Chemistry","grobid_abstract_attachment_id":71835434},"translated_abstract":null,"internal_url":"https://www.academia.edu/56457664/Protonation_of_the_Side_Group_in_%CE%B2_and_%CE%B3_Aminated_Proline_Analogues_Effects_on_the_Conformational_Preferences","translated_internal_url":"","created_at":"2021-10-07T23:17:58.456-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":71835434,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71835434/thumbnails/1.jpg","file_name":"jo900169s20211007-16142-14jqnwm.pdf","download_url":"https://www.academia.edu/attachments/71835434/download_file","bulk_download_file_name":"Protonation_of_the_Side_Group_in__and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71835434/jo900169s20211007-16142-14jqnwm-libre.pdf?1633674345=\u0026response-content-disposition=attachment%3B+filename%3DProtonation_of_the_Side_Group_in__and.pdf\u0026Expires=1743103313\u0026Signature=SNH7BQEiEOLo1Wob2QxXBOFJFDcEPxIjoiPytYHJGYEoLeUFu-u7vSJpwNbDdH4UALVen~I4wQKgSrfTyj-ekg9ZffMP10Knx8J0NmkzC-l91LMf8n5eruPQ0FAjiIiEROgmY0fJUNV0AK0Hl2wGrTqzZl0eC0cr7N5udYzX7HCKrOzFVylRgJKNHKUEO95G3y12O7lfFH4n2s0-ZJk0VIDh2njc5JxrJTByDYWaZ9AQi8j844TYUWDZYhq0m3ehA9br9yRR3SXaAM--cN3xa6eZXBTe58k6X8WffPL3ALToOMQ3ZWlaBtrt2pubdbgFWyLuzfZmM3LjJ5~1ti6ayA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Protonation_of_the_Side_Group_in_β_and_γ_Aminated_Proline_Analogues_Effects_on_the_Conformational_Preferences","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"This work shows the influence of the side-chain protonation on the conformational properties, relative stabilities, and peptide bond isomerization of four aminoproline isomers. Thus, this research has been useful to define the rules that allow control the conformation of aminoproline with the pH. Comparison of the results obtained using density functional theory calculations for the N-acetyl-N′-methylamide derivatives of the protonated isomers, which differ in the-or γ-position of the substituent and its cis or trans relative disposition, with those reported for the corresponding neutral analogues (J. Phys. Chem. B 2008, 112, 14045) has allowed us to reach the following conclusions: (i) protonation of the amino group produces a reduction of the backbone conformational flexibility and a destabilization of the cis configuration of the amide bond involving the pyrrolidine nitrogen; (ii) the planarity of the peptide bond is broken in some cases to form strong side chain • • • backbone interactions, which induce a very significant pyramidilization at the amide nitrogen atom; (iii) as was also detected for the neutral analogues, the formation of side chain • • • backbone intraresidue interactions favor the cis disposition of the substituent; and (iv) protonation of the amino side group increases the energy gaps that separate the different investigated isomers resulting in an enhancement of the destabilization of the dipeptides with the substituent attached in a trans position.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":71835434,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71835434/thumbnails/1.jpg","file_name":"jo900169s20211007-16142-14jqnwm.pdf","download_url":"https://www.academia.edu/attachments/71835434/download_file","bulk_download_file_name":"Protonation_of_the_Side_Group_in__and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71835434/jo900169s20211007-16142-14jqnwm-libre.pdf?1633674345=\u0026response-content-disposition=attachment%3B+filename%3DProtonation_of_the_Side_Group_in__and.pdf\u0026Expires=1743103313\u0026Signature=SNH7BQEiEOLo1Wob2QxXBOFJFDcEPxIjoiPytYHJGYEoLeUFu-u7vSJpwNbDdH4UALVen~I4wQKgSrfTyj-ekg9ZffMP10Knx8J0NmkzC-l91LMf8n5eruPQ0FAjiIiEROgmY0fJUNV0AK0Hl2wGrTqzZl0eC0cr7N5udYzX7HCKrOzFVylRgJKNHKUEO95G3y12O7lfFH4n2s0-ZJk0VIDh2njc5JxrJTByDYWaZ9AQi8j844TYUWDZYhq0m3ehA9br9yRR3SXaAM--cN3xa6eZXBTe58k6X8WffPL3ALToOMQ3ZWlaBtrt2pubdbgFWyLuzfZmM3LjJ5~1ti6ayA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":25600,"name":"Stability","url":"https://www.academia.edu/Documents/in/Stability"},{"id":172024,"name":"Analog","url":"https://www.academia.edu/Documents/in/Analog"},{"id":302691,"name":"Configuration","url":"https://www.academia.edu/Documents/in/Configuration"},{"id":556541,"name":"Isomerization","url":"https://www.academia.edu/Documents/in/Isomerization"},{"id":1489379,"name":"Amine","url":"https://www.academia.edu/Documents/in/Amine"},{"id":3306846,"name":"protonation","url":"https://www.academia.edu/Documents/in/protonation"}],"urls":[{"id":12545326,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=21410919"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56457662"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56457662/Design_of_hybrid_conjugates_based_on_chemical_similarity"><img alt="Research paper thumbnail of Design of hybrid conjugates based on chemical similarity" class="work-thumbnail" src="https://attachments.academia-assets.com/71835355/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56457662/Design_of_hybrid_conjugates_based_on_chemical_similarity">Design of hybrid conjugates based on chemical similarity</a></div><div class="wp-workCard_item"><span>RSC Advances</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aa879a306ebe1214a1bff6a23c4d4a1c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:71835355,&quot;asset_id&quot;:56457662,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/71835355/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56457662"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56457662"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56457662; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56457662]").text(description); $(".js-view-count[data-work-id=56457662]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56457662; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56457662']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aa879a306ebe1214a1bff6a23c4d4a1c" } } $('.js-work-strip[data-work-id=56457662]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56457662,"title":"Design of hybrid conjugates based on chemical similarity","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry (RSC)","ai_abstract":"The research discusses the design of hybrid conjugates utilizing chemical similarity principles. It presents findings related to the electronic properties of these conjugates, specifically comparing various conjugate forms and their behavior in different environments such as gas and acetonitrile solution. Results suggest correlations between structural characteristics and electronic properties, aiding in further development of conductive materials.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"RSC Advances"},"translated_abstract":null,"internal_url":"https://www.academia.edu/56457662/Design_of_hybrid_conjugates_based_on_chemical_similarity","translated_internal_url":"","created_at":"2021-10-07T23:17:58.346-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":71835355,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71835355/thumbnails/1.jpg","file_name":"2d585b0ebf85f04e6f107ffd1b2e162ea37b.pdf","download_url":"https://www.academia.edu/attachments/71835355/download_file","bulk_download_file_name":"Design_of_hybrid_conjugates_based_on_che.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71835355/2d585b0ebf85f04e6f107ffd1b2e162ea37b-libre.pdf?1633674358=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_hybrid_conjugates_based_on_che.pdf\u0026Expires=1743103313\u0026Signature=cfW7bsG6elk2ZN1eWBYV6YhUsxB4IGHVn6xFzBEIFY1PPZJYrgJjBQqW0Dm2fNMdq6GZdO1VvdaJn2lO1TRS-JXz4p8Njmrgi17EUUpHKToBXPPQdmX9KAbJ30mLr2RSme4HSiz-jT9Ca0OYMZW2QtOPDYLlAQMhUUTlyB9CmXycn4LyR1Ugw6D5oWpNrlB2fAcOUjKA8tS~EHATlurzNUBWM1oiN~t3oRh6xnlihzQnRA~8heE~lHCvZdJqkYXWjxsEgofo2nVHDM2~t9f9tVGaYDyn5L-2oGRHpt4XOD3Zdlp4ZSOTh0nm1jZcrEOehk68WboAoTkKW8JLYMsV0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Design_of_hybrid_conjugates_based_on_chemical_similarity","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":null,"owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":71835355,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71835355/thumbnails/1.jpg","file_name":"2d585b0ebf85f04e6f107ffd1b2e162ea37b.pdf","download_url":"https://www.academia.edu/attachments/71835355/download_file","bulk_download_file_name":"Design_of_hybrid_conjugates_based_on_che.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71835355/2d585b0ebf85f04e6f107ffd1b2e162ea37b-libre.pdf?1633674358=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_hybrid_conjugates_based_on_che.pdf\u0026Expires=1743103313\u0026Signature=cfW7bsG6elk2ZN1eWBYV6YhUsxB4IGHVn6xFzBEIFY1PPZJYrgJjBQqW0Dm2fNMdq6GZdO1VvdaJn2lO1TRS-JXz4p8Njmrgi17EUUpHKToBXPPQdmX9KAbJ30mLr2RSme4HSiz-jT9Ca0OYMZW2QtOPDYLlAQMhUUTlyB9CmXycn4LyR1Ugw6D5oWpNrlB2fAcOUjKA8tS~EHATlurzNUBWM1oiN~t3oRh6xnlihzQnRA~8heE~lHCvZdJqkYXWjxsEgofo2nVHDM2~t9f9tVGaYDyn5L-2oGRHpt4XOD3Zdlp4ZSOTh0nm1jZcrEOehk68WboAoTkKW8JLYMsV0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":191586,"name":"RSC","url":"https://www.academia.edu/Documents/in/RSC"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56457660"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56457660/Copolymers_ofN_methylpyrrole_and_3_4_ethylenedioxythiophene_structural_physical_and_electronic_properties"><img alt="Research paper thumbnail of Copolymers ofN-methylpyrrole and 3,4-ethylenedioxythiophene: structural, physical and electronic properties" class="work-thumbnail" src="https://attachments.academia-assets.com/71835441/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56457660/Copolymers_ofN_methylpyrrole_and_3_4_ethylenedioxythiophene_structural_physical_and_electronic_properties">Copolymers ofN-methylpyrrole and 3,4-ethylenedioxythiophene: structural, physical and electronic properties</a></div><div class="wp-workCard_item"><span>Polymer International</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The structural, electric and electronic properties of copolymers derived from mixtures of Nmethyl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The structural, electric and electronic properties of copolymers derived from mixtures of Nmethylpyrrole and 3,4-ethylenedioxythiophene (EDOT) with various concentration ratios have been investigated and, additionally, compared with those of the corresponding homopolymers. The electropolymerization kinetics of all the generated copolymers and the homopolymers was examined in terms of current productivity using chronoamperometry. The chemical structure of the linkages between adjacent monomers and the microstructure of the chains were investigated using Fourier transform infrared spectroscopy and quantum mechanical calculations, respectively. The results indicate that the linkages between monomeric units formed during the anodic copolymerization are of the α-α type, while the microstructure of the copolymers depends on the EDOT content. Theoretical calculations were also used to examine the electronic properties of the systems under study, while the conductivity and the electrical stability were studied using the sheet-resistance method. Interestingly, the electric properties are consistent with the random and block microstructures predicted for the copolymers with low and high EDOT content, respectively.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="68d5ffbe30091b63a00e8c21b07e040f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:71835441,&quot;asset_id&quot;:56457660,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/71835441/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56457660"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56457660"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56457660; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56457660]").text(description); $(".js-view-count[data-work-id=56457660]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56457660; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56457660']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "68d5ffbe30091b63a00e8c21b07e040f" } } $('.js-work-strip[data-work-id=56457660]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56457660,"title":"Copolymers ofN-methylpyrrole and 3,4-ethylenedioxythiophene: structural, physical and electronic properties","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","grobid_abstract":"The structural, electric and electronic properties of copolymers derived from mixtures of Nmethylpyrrole and 3,4-ethylenedioxythiophene (EDOT) with various concentration ratios have been investigated and, additionally, compared with those of the corresponding homopolymers. The electropolymerization kinetics of all the generated copolymers and the homopolymers was examined in terms of current productivity using chronoamperometry. The chemical structure of the linkages between adjacent monomers and the microstructure of the chains were investigated using Fourier transform infrared spectroscopy and quantum mechanical calculations, respectively. The results indicate that the linkages between monomeric units formed during the anodic copolymerization are of the α-α type, while the microstructure of the copolymers depends on the EDOT content. Theoretical calculations were also used to examine the electronic properties of the systems under study, while the conductivity and the electrical stability were studied using the sheet-resistance method. Interestingly, the electric properties are consistent with the random and block microstructures predicted for the copolymers with low and high EDOT content, respectively.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Polymer International","grobid_abstract_attachment_id":71835441},"translated_abstract":null,"internal_url":"https://www.academia.edu/56457660/Copolymers_ofN_methylpyrrole_and_3_4_ethylenedioxythiophene_structural_physical_and_electronic_properties","translated_internal_url":"","created_at":"2021-10-07T23:17:58.241-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":71835441,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71835441/thumbnails/1.jpg","file_name":"pi.221320211007-4600-q8qnlr.pdf","download_url":"https://www.academia.edu/attachments/71835441/download_file","bulk_download_file_name":"Copolymers_ofN_methylpyrrole_and_3_4_eth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71835441/pi.221320211007-4600-q8qnlr-libre.pdf?1633674344=\u0026response-content-disposition=attachment%3B+filename%3DCopolymers_ofN_methylpyrrole_and_3_4_eth.pdf\u0026Expires=1743103313\u0026Signature=OIkIzCxDwDSVj2hZ1s9Q20qBWsMXXcvzVniqikPiFo1FxnpS7Xj2NiyoQGN0YyMojkIaf8Cx7Nm4MyYHrHj1jXs6fj2OVZ1KCiC17u6WRoo2g~ptBbBmtl4EIlOYG4Pa8Gid3BmTt-r~c-LGwzijkZ8rBB0PeBxY7MeSPd2x-9IcY4n9NVk-4N4HVdXigqFyFMRydi04rPQMzQVCUtwRT6-6eWbxxuxlKokryb1doiMKPm0AlPNPRr6j2zc42yzaYjG-fcH3a9~Og6DLqLSmjh6l74HOafSW2Vq5ZLfZNi1kR9s74tInZ8poqSGNVpAIIOsnJhQP1pvXnbDFgwoYpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Copolymers_ofN_methylpyrrole_and_3_4_ethylenedioxythiophene_structural_physical_and_electronic_properties","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"The structural, electric and electronic properties of copolymers derived from mixtures of Nmethylpyrrole and 3,4-ethylenedioxythiophene (EDOT) with various concentration ratios have been investigated and, additionally, compared with those of the corresponding homopolymers. The electropolymerization kinetics of all the generated copolymers and the homopolymers was examined in terms of current productivity using chronoamperometry. The chemical structure of the linkages between adjacent monomers and the microstructure of the chains were investigated using Fourier transform infrared spectroscopy and quantum mechanical calculations, respectively. The results indicate that the linkages between monomeric units formed during the anodic copolymerization are of the α-α type, while the microstructure of the copolymers depends on the EDOT content. Theoretical calculations were also used to examine the electronic properties of the systems under study, while the conductivity and the electrical stability were studied using the sheet-resistance method. Interestingly, the electric properties are consistent with the random and block microstructures predicted for the copolymers with low and high EDOT content, respectively.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":71835441,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71835441/thumbnails/1.jpg","file_name":"pi.221320211007-4600-q8qnlr.pdf","download_url":"https://www.academia.edu/attachments/71835441/download_file","bulk_download_file_name":"Copolymers_ofN_methylpyrrole_and_3_4_eth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71835441/pi.221320211007-4600-q8qnlr-libre.pdf?1633674344=\u0026response-content-disposition=attachment%3B+filename%3DCopolymers_ofN_methylpyrrole_and_3_4_eth.pdf\u0026Expires=1743103313\u0026Signature=OIkIzCxDwDSVj2hZ1s9Q20qBWsMXXcvzVniqikPiFo1FxnpS7Xj2NiyoQGN0YyMojkIaf8Cx7Nm4MyYHrHj1jXs6fj2OVZ1KCiC17u6WRoo2g~ptBbBmtl4EIlOYG4Pa8Gid3BmTt-r~c-LGwzijkZ8rBB0PeBxY7MeSPd2x-9IcY4n9NVk-4N4HVdXigqFyFMRydi04rPQMzQVCUtwRT6-6eWbxxuxlKokryb1doiMKPm0AlPNPRr6j2zc42yzaYjG-fcH3a9~Og6DLqLSmjh6l74HOafSW2Vq5ZLfZNi1kR9s74tInZ8poqSGNVpAIIOsnJhQP1pvXnbDFgwoYpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":2161,"name":"Microstructure","url":"https://www.academia.edu/Documents/in/Microstructure"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":15599,"name":"Conducting Polymers","url":"https://www.academia.edu/Documents/in/Conducting_Polymers"},{"id":58527,"name":"Polymer","url":"https://www.academia.edu/Documents/in/Polymer"},{"id":85458,"name":"Conducting Polymer","url":"https://www.academia.edu/Documents/in/Conducting_Polymer"},{"id":189984,"name":"Electronic properties","url":"https://www.academia.edu/Documents/in/Electronic_properties"},{"id":219635,"name":"Electronic Structure","url":"https://www.academia.edu/Documents/in/Electronic_Structure"},{"id":390049,"name":"Electrical Conductivity","url":"https://www.academia.edu/Documents/in/Electrical_Conductivity"},{"id":1291661,"name":"Copolymer","url":"https://www.academia.edu/Documents/in/Copolymer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56457376"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/56457376/Peptide_Materials_From_nanostructures_to_applications"><img alt="Research paper thumbnail of Peptide Materials: From nanostructures to applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Peptide Materials: From nanostructures to applications</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56457376"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56457376"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56457376; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56457376]").text(description); $(".js-view-count[data-work-id=56457376]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56457376; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56457376']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=56457376]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56457376,"title":"Peptide Materials: From nanostructures to applications","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/56457376/Peptide_Materials_From_nanostructures_to_applications","translated_internal_url":"","created_at":"2021-10-07T23:15:54.694-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Peptide_Materials_From_nanostructures_to_applications","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="51943874"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/51943874/Consequences_of_chemical_bonding_on_the_adiabaticity_of_gas_surface_reactions"><img alt="Research paper thumbnail of Consequences of chemical bonding on the adiabaticity of gas-surface reactions" class="work-thumbnail" src="https://attachments.academia-assets.com/69438261/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/51943874/Consequences_of_chemical_bonding_on_the_adiabaticity_of_gas_surface_reactions">Consequences of chemical bonding on the adiabaticity of gas-surface reactions</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The analysis of ab initio cluster model wavefunctions shows that the bonding of CO on Pt(l11) is ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The analysis of ab initio cluster model wavefunctions shows that the bonding of CO on Pt(l11) is of covalent nature being well described by the Blyholder mechanism. However, the NO/Cu(lll) interaction is found to be dominantly ionic. This ionic nature of the bond has important consequences as an avoided crossing between two electronic states of ionic and neutral character. The existence of this avoided crossing interaction indicates that the process is non-adiabatic. While this is a well known phenomenon in molecular physics, to the authors&#39; best knowledge, this is the first time it is shown to happen in a gassurface reaction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9e2f1ee23f2cd70cc62a50bc5bfa9358" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:69438261,&quot;asset_id&quot;:51943874,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/69438261/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="51943874"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="51943874"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51943874; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51943874]").text(description); $(".js-view-count[data-work-id=51943874]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51943874; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='51943874']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9e2f1ee23f2cd70cc62a50bc5bfa9358" } } $('.js-work-strip[data-work-id=51943874]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":51943874,"title":"Consequences of chemical bonding on the adiabaticity of gas-surface reactions","translated_title":"","metadata":{"grobid_abstract":"The analysis of ab initio cluster model wavefunctions shows that the bonding of CO on Pt(l11) is of covalent nature being well described by the Blyholder mechanism. However, the NO/Cu(lll) interaction is found to be dominantly ionic. This ionic nature of the bond has important consequences as an avoided crossing between two electronic states of ionic and neutral character. The existence of this avoided crossing interaction indicates that the process is non-adiabatic. While this is a well known phenomenon in molecular physics, to the authors' best knowledge, this is the first time it is shown to happen in a gassurface reaction.","grobid_abstract_attachment_id":69438261},"translated_abstract":null,"internal_url":"https://www.academia.edu/51943874/Consequences_of_chemical_bonding_on_the_adiabaticity_of_gas_surface_reactions","translated_internal_url":"","created_at":"2021-09-12T01:26:16.744-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":69438261,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/69438261/thumbnails/1.jpg","file_name":"s0166-1280_2896_2904751-320210912-686-51jszi.pdf","download_url":"https://www.academia.edu/attachments/69438261/download_file","bulk_download_file_name":"Consequences_of_chemical_bonding_on_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/69438261/s0166-1280_2896_2904751-320210912-686-51jszi-libre.pdf?1631435524=\u0026response-content-disposition=attachment%3B+filename%3DConsequences_of_chemical_bonding_on_the.pdf\u0026Expires=1743103313\u0026Signature=YJ5v809tApCMn01ic-PoMbCfEvC8FZ1dAu2DhlcH10wTPMMGG0ydcpUdPzXJe4RTLpBjMnYbZ8XTr9zlrY5F4ZegNDIJ4bR8jKea2MyiaFLb1TnHuZqFrdqH8xIYrUc5XseRDuVlZutA8t6jPYbBq~LAoTRiO87e-ZmjLAcz~18yU0aiOdylsJVOgb0oA8HUkTHH5iZxqRey6kmqIQ0DifqDcXwRZ75C6u6pt6Eypwqg5vQQ-uKyjUwSiROjS0REUkK3X11WlbSNsJhPcmxMEZStdRyr~1Y1VM7b0YCc4mYzuVyWd3anN-ApLHMw2AAqVqqtPorWf2fbjv8kWQwtew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Consequences_of_chemical_bonding_on_the_adiabaticity_of_gas_surface_reactions","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"The analysis of ab initio cluster model wavefunctions shows that the bonding of CO on Pt(l11) is of covalent nature being well described by the Blyholder mechanism. However, the NO/Cu(lll) interaction is found to be dominantly ionic. This ionic nature of the bond has important consequences as an avoided crossing between two electronic states of ionic and neutral character. The existence of this avoided crossing interaction indicates that the process is non-adiabatic. While this is a well known phenomenon in molecular physics, to the authors' best knowledge, this is the first time it is shown to happen in a gassurface reaction.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":69438261,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/69438261/thumbnails/1.jpg","file_name":"s0166-1280_2896_2904751-320210912-686-51jszi.pdf","download_url":"https://www.academia.edu/attachments/69438261/download_file","bulk_download_file_name":"Consequences_of_chemical_bonding_on_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/69438261/s0166-1280_2896_2904751-320210912-686-51jszi-libre.pdf?1631435524=\u0026response-content-disposition=attachment%3B+filename%3DConsequences_of_chemical_bonding_on_the.pdf\u0026Expires=1743103313\u0026Signature=YJ5v809tApCMn01ic-PoMbCfEvC8FZ1dAu2DhlcH10wTPMMGG0ydcpUdPzXJe4RTLpBjMnYbZ8XTr9zlrY5F4ZegNDIJ4bR8jKea2MyiaFLb1TnHuZqFrdqH8xIYrUc5XseRDuVlZutA8t6jPYbBq~LAoTRiO87e-ZmjLAcz~18yU0aiOdylsJVOgb0oA8HUkTHH5iZxqRey6kmqIQ0DifqDcXwRZ75C6u6pt6Eypwqg5vQQ-uKyjUwSiROjS0REUkK3X11WlbSNsJhPcmxMEZStdRyr~1Y1VM7b0YCc4mYzuVyWd3anN-ApLHMw2AAqVqqtPorWf2fbjv8kWQwtew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":116193,"name":"Solid State electronic devices","url":"https://www.academia.edu/Documents/in/Solid_State_electronic_devices"},{"id":3605635,"name":"Cluster model","url":"https://www.academia.edu/Documents/in/Cluster_model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28406454"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28406454/La_modelizaci%C3%B3n_molecular_como_herramienta_para_el_dise%C3%B1o_de_nuevos_pol%C3%ADmeros_conductores"><img alt="Research paper thumbnail of La modelización molecular como herramienta para el diseño de nuevos polímeros conductores" class="work-thumbnail" src="https://attachments.academia-assets.com/48747175/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28406454/La_modelizaci%C3%B3n_molecular_como_herramienta_para_el_dise%C3%B1o_de_nuevos_pol%C3%ADmeros_conductores">La modelización molecular como herramienta para el diseño de nuevos polímeros conductores</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JoseIribarren">Jose Iribarren</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://lleida.academia.edu/JordiCasanovas">Jordi Casanovas</a></span></div><div class="wp-workCard_item"><span>Polímeros</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Resumen: Se presenta la capacidad de las técnicas de modelización molecular basadas en métodos de...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Resumen: Se presenta la capacidad de las técnicas de modelización molecular basadas en métodos de la química cuántica para predecir la estructura molecular y electrónica de polímeros conductores. Concretamente, se discute la aplicabilidad de estas herramientas computacionales al estudio de diferentes aspectos del politiofeno y sus derivados: geometría molecular y planaridad, cambios estructurales producidos por el dopado, propiedades electrónicas y desarrollo de nuevos materiales conductores.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="34832eab5d245b7d8db68382d9389182" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48747175,&quot;asset_id&quot;:28406454,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48747175/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28406454"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28406454"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28406454; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28406454]").text(description); $(".js-view-count[data-work-id=28406454]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28406454; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28406454']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "34832eab5d245b7d8db68382d9389182" } } $('.js-work-strip[data-work-id=28406454]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28406454,"title":"La modelización molecular como herramienta para el diseño de nuevos polímeros conductores","translated_title":"","metadata":{"grobid_abstract":"Resumen: Se presenta la capacidad de las técnicas de modelización molecular basadas en métodos de la química cuántica para predecir la estructura molecular y electrónica de polímeros conductores. Concretamente, se discute la aplicabilidad de estas herramientas computacionales al estudio de diferentes aspectos del politiofeno y sus derivados: geometría molecular y planaridad, cambios estructurales producidos por el dopado, propiedades electrónicas y desarrollo de nuevos materiales conductores.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Polímeros","grobid_abstract_attachment_id":48747175},"translated_abstract":null,"internal_url":"https://www.academia.edu/28406454/La_modelizaci%C3%B3n_molecular_como_herramienta_para_el_dise%C3%B1o_de_nuevos_pol%C3%ADmeros_conductores","translated_internal_url":"","created_at":"2016-09-11T04:52:42.122-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53252628,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24212861,"work_id":28406454,"tagging_user_id":53252628,"tagged_user_id":null,"co_author_invite_id":5389966,"email":"c***r@uniandes.edu.co","display_order":0,"name":"Carlos Alemán","title":"La modelización molecular como herramienta para el diseño de nuevos polímeros conductores"},{"id":24212873,"work_id":28406454,"tagging_user_id":53252628,"tagged_user_id":33589671,"co_author_invite_id":5389967,"email":"j***s@quimica.udl.es","affiliation":"Universitat de Lleida","display_order":4194304,"name":"Jordi Casanovas","title":"La modelización molecular como herramienta para el diseño de nuevos polímeros conductores"}],"downloadable_attachments":[{"id":48747175,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747175/thumbnails/1.jpg","file_name":"a06v15n4.pdf","download_url":"https://www.academia.edu/attachments/48747175/download_file","bulk_download_file_name":"La_modelizacion_molecular_como_herramien.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747175/a06v15n4-libre.pdf?1473596971=\u0026response-content-disposition=attachment%3B+filename%3DLa_modelizacion_molecular_como_herramien.pdf\u0026Expires=1743103313\u0026Signature=Adjw1n3AtdWsqZVHPRwaKmK7BjzcX7wTAo~mTmZnegraN6TsfWFj1nlESxxMSway~2OyfWMiChBGkSE2Q-VrV2EngkM9s9srchyuCIChObF-BYHyh96Szydt3pFdhiiKPJZMfurwfS8PVkNp3V21gn~5Ai7XdIQNP8ugI9DoJcq3GX3wU5GqkzZfvYfZg9IbbolIHYUTLT1JflrJv563bNNDSRq1-GA9NZvgLcXtEfhzTkGvsbeH8XMCvDCDPFU5QfiXmVVDwIInAEh8Ll1SeX9nN-c25SKckQsdMg0IKIMxbEvFP832ioZqneh31k044Qi8-WL1Tpv-tUCEINj96Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"La_modelización_molecular_como_herramienta_para_el_diseño_de_nuevos_polímeros_conductores","translated_slug":"","page_count":6,"language":"es","content_type":"Work","summary":"Resumen: Se presenta la capacidad de las técnicas de modelización molecular basadas en métodos de la química cuántica para predecir la estructura molecular y electrónica de polímeros conductores. Concretamente, se discute la aplicabilidad de estas herramientas computacionales al estudio de diferentes aspectos del politiofeno y sus derivados: geometría molecular y planaridad, cambios estructurales producidos por el dopado, propiedades electrónicas y desarrollo de nuevos materiales conductores.","owner":{"id":53252628,"first_name":"Jose","middle_initials":null,"last_name":"Iribarren","page_name":"JoseIribarren","domain_name":"independent","created_at":"2016-09-11T04:52:21.573-07:00","display_name":"Jose Iribarren","url":"https://independent.academia.edu/JoseIribarren"},"attachments":[{"id":48747175,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747175/thumbnails/1.jpg","file_name":"a06v15n4.pdf","download_url":"https://www.academia.edu/attachments/48747175/download_file","bulk_download_file_name":"La_modelizacion_molecular_como_herramien.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747175/a06v15n4-libre.pdf?1473596971=\u0026response-content-disposition=attachment%3B+filename%3DLa_modelizacion_molecular_como_herramien.pdf\u0026Expires=1743103313\u0026Signature=Adjw1n3AtdWsqZVHPRwaKmK7BjzcX7wTAo~mTmZnegraN6TsfWFj1nlESxxMSway~2OyfWMiChBGkSE2Q-VrV2EngkM9s9srchyuCIChObF-BYHyh96Szydt3pFdhiiKPJZMfurwfS8PVkNp3V21gn~5Ai7XdIQNP8ugI9DoJcq3GX3wU5GqkzZfvYfZg9IbbolIHYUTLT1JflrJv563bNNDSRq1-GA9NZvgLcXtEfhzTkGvsbeH8XMCvDCDPFU5QfiXmVVDwIInAEh8Ll1SeX9nN-c25SKckQsdMg0IKIMxbEvFP832ioZqneh31k044Qi8-WL1Tpv-tUCEINj96Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":529,"name":"Quantum Chemistry","url":"https://www.academia.edu/Documents/in/Quantum_Chemistry"},{"id":32927,"name":"Molecular modeling","url":"https://www.academia.edu/Documents/in/Molecular_modeling"},{"id":85458,"name":"Conducting Polymer","url":"https://www.academia.edu/Documents/in/Conducting_Polymer"},{"id":189984,"name":"Electronic properties","url":"https://www.academia.edu/Documents/in/Electronic_properties"},{"id":213801,"name":"Structural Change","url":"https://www.academia.edu/Documents/in/Structural_Change"},{"id":219635,"name":"Electronic Structure","url":"https://www.academia.edu/Documents/in/Electronic_Structure"},{"id":411663,"name":"Polímeros","url":"https://www.academia.edu/Documents/in/Pol%C3%ADmeros"},{"id":856612,"name":"Polimeros","url":"https://www.academia.edu/Documents/in/Polimeros"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28406444"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28406444/On_the_use_of_conducting_polymers_to_improve_the_resistance_against_corrosion_of_paints_based_on_polyurethane_resins"><img alt="Research paper thumbnail of On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins" class="work-thumbnail" src="https://attachments.academia-assets.com/48747180/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28406444/On_the_use_of_conducting_polymers_to_improve_the_resistance_against_corrosion_of_paints_based_on_polyurethane_resins">On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JoseIribarren">Jose Iribarren</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://lleida.academia.edu/JordiCasanovas">Jordi Casanovas</a></span></div><div class="wp-workCard_item"><span>Materials and Corrosion</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work analyzes the physical properties of several paints and the resistance against corrosion...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work analyzes the physical properties of several paints and the resistance against corrosion that they impart after being modified by adding a conducting polymer. Five different formulations were selected: four polyurethane resins (two varnish and two aqueous based) and one multicomponent system containing polyester, melamine and cellulose acetobutyrate. The physical properties of the coatings were examined by FTIR, thermal analyses and viscosity measurements. Corrosion resistance of carbon steel coated with these paints was studied by means of accelerated laboratory tests.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c5c8cc8afee1c6576e97fec8a63430e7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48747180,&quot;asset_id&quot;:28406444,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48747180/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28406444"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28406444"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28406444; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28406444]").text(description); $(".js-view-count[data-work-id=28406444]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28406444; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28406444']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c5c8cc8afee1c6576e97fec8a63430e7" } } $('.js-work-strip[data-work-id=28406444]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28406444,"title":"On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins","translated_title":"","metadata":{"ai_title_tag":"Enhancing Corrosion Resistance in Polyurethane Paints with Conducting Polymers","grobid_abstract":"This work analyzes the physical properties of several paints and the resistance against corrosion that they impart after being modified by adding a conducting polymer. Five different formulations were selected: four polyurethane resins (two varnish and two aqueous based) and one multicomponent system containing polyester, melamine and cellulose acetobutyrate. The physical properties of the coatings were examined by FTIR, thermal analyses and viscosity measurements. Corrosion resistance of carbon steel coated with these paints was studied by means of accelerated laboratory tests.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Materials and Corrosion","grobid_abstract_attachment_id":48747180},"translated_abstract":null,"internal_url":"https://www.academia.edu/28406444/On_the_use_of_conducting_polymers_to_improve_the_resistance_against_corrosion_of_paints_based_on_polyurethane_resins","translated_internal_url":"","created_at":"2016-09-11T04:52:41.098-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53252628,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24212869,"work_id":28406444,"tagging_user_id":53252628,"tagged_user_id":null,"co_author_invite_id":5389966,"email":"c***r@uniandes.edu.co","display_order":0,"name":"Carlos Alemán","title":"On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins"},{"id":24212874,"work_id":28406444,"tagging_user_id":53252628,"tagged_user_id":33589671,"co_author_invite_id":5389967,"email":"j***s@quimica.udl.es","affiliation":"Universitat de Lleida","display_order":4194304,"name":"Jordi Casanovas","title":"On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins"}],"downloadable_attachments":[{"id":48747180,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747180/thumbnails/1.jpg","file_name":"maco.20050395220160911-4966-8his2.pdf","download_url":"https://www.academia.edu/attachments/48747180/download_file","bulk_download_file_name":"On_the_use_of_conducting_polymers_to_imp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747180/maco.20050395220160911-4966-8his2-libre.pdf?1473596970=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_use_of_conducting_polymers_to_imp.pdf\u0026Expires=1743103314\u0026Signature=fbgbEl-OX6ps5u3HVt47ZGZ0jw48~Gsh4byQfS9MWphuovoM7j6uLotsTJPoqThUuLNRwFOjfuXPdRMN-swUr0o3xgpYsmH-xPajZBjR1waBZK2TSut6PvSYBGMZZMyibgyCDoLTo6T6HucUjMUOSwjqL6GRhgr6JaP-U1hbSDnJSTMehz5N5X9Bq5YIeO8YY-BdA2SMzfNRBqebI0yCaddv~Ph-ZpiAooK-gdUCVBeOQGfrMFmQPoXwEvf7GoABJnOwMCjNAso4ld2R9vUTDmRApMK4HlyUJVazn5HoLBhB9vMSzEZq1r0cTN4GAkD~TR~il~4tNVS97viN4HMUlw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_use_of_conducting_polymers_to_improve_the_resistance_against_corrosion_of_paints_based_on_polyurethane_resins","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"This work analyzes the physical properties of several paints and the resistance against corrosion that they impart after being modified by adding a conducting polymer. Five different formulations were selected: four polyurethane resins (two varnish and two aqueous based) and one multicomponent system containing polyester, melamine and cellulose acetobutyrate. The physical properties of the coatings were examined by FTIR, thermal analyses and viscosity measurements. Corrosion resistance of carbon steel coated with these paints was studied by means of accelerated laboratory tests.","owner":{"id":53252628,"first_name":"Jose","middle_initials":null,"last_name":"Iribarren","page_name":"JoseIribarren","domain_name":"independent","created_at":"2016-09-11T04:52:21.573-07:00","display_name":"Jose Iribarren","url":"https://independent.academia.edu/JoseIribarren"},"attachments":[{"id":48747180,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747180/thumbnails/1.jpg","file_name":"maco.20050395220160911-4966-8his2.pdf","download_url":"https://www.academia.edu/attachments/48747180/download_file","bulk_download_file_name":"On_the_use_of_conducting_polymers_to_imp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747180/maco.20050395220160911-4966-8his2-libre.pdf?1473596970=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_use_of_conducting_polymers_to_imp.pdf\u0026Expires=1743103314\u0026Signature=fbgbEl-OX6ps5u3HVt47ZGZ0jw48~Gsh4byQfS9MWphuovoM7j6uLotsTJPoqThUuLNRwFOjfuXPdRMN-swUr0o3xgpYsmH-xPajZBjR1waBZK2TSut6PvSYBGMZZMyibgyCDoLTo6T6HucUjMUOSwjqL6GRhgr6JaP-U1hbSDnJSTMehz5N5X9Bq5YIeO8YY-BdA2SMzfNRBqebI0yCaddv~Ph-ZpiAooK-gdUCVBeOQGfrMFmQPoXwEvf7GoABJnOwMCjNAso4ld2R9vUTDmRApMK4HlyUJVazn5HoLBhB9vMSzEZq1r0cTN4GAkD~TR~il~4tNVS97viN4HMUlw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":85458,"name":"Conducting Polymer","url":"https://www.academia.edu/Documents/in/Conducting_Polymer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28406452"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28406452/Structural_and_electronic_properties_of_3_4_ethylenedioxythiophene_3_4_ethylenedisulfanylfurane_and_thiophene_oligomers_A_theoretical_investigation"><img alt="Research paper thumbnail of Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation" class="work-thumbnail" src="https://attachments.academia-assets.com/48747185/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28406452/Structural_and_electronic_properties_of_3_4_ethylenedioxythiophene_3_4_ethylenedisulfanylfurane_and_thiophene_oligomers_A_theoretical_investigation">Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JoseIribarren">Jose Iribarren</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://lleida.academia.edu/JordiCasanovas">Jordi Casanovas</a></span></div><div class="wp-workCard_item"><span>Synthetic Metals</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report the results of a series of ab initio and DFT quantum mechanical calculations on the str...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report the results of a series of ab initio and DFT quantum mechanical calculations on the structure and on the electronic spectral of 2,3-ethylenedioxythiophene-, thiophene-and 2,3-ethylenedithiafurane-containing oligomers. Calculations were performed on oligomers formed by n repeating units, where n ranges from 1 to 8. The bond-length alternation patterns in the -system, the importance of long-range interactions in the stabilization of oligomer chains, the energies of the HOMO and LUMO orbitals and the values of the lowest transition energy have been examined allowing a systematic comparison among the three families of conducting polymers.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ee69a378b2238b6a6ec44e47532720d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48747185,&quot;asset_id&quot;:28406452,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48747185/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28406452"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28406452"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28406452; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28406452]").text(description); $(".js-view-count[data-work-id=28406452]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28406452; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28406452']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ee69a378b2238b6a6ec44e47532720d" } } $('.js-work-strip[data-work-id=28406452]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28406452,"title":"Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation","translated_title":"","metadata":{"grobid_abstract":"We report the results of a series of ab initio and DFT quantum mechanical calculations on the structure and on the electronic spectral of 2,3-ethylenedioxythiophene-, thiophene-and 2,3-ethylenedithiafurane-containing oligomers. Calculations were performed on oligomers formed by n repeating units, where n ranges from 1 to 8. The bond-length alternation patterns in the -system, the importance of long-range interactions in the stabilization of oligomer chains, the energies of the HOMO and LUMO orbitals and the values of the lowest transition energy have been examined allowing a systematic comparison among the three families of conducting polymers.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Synthetic Metals","grobid_abstract_attachment_id":48747185},"translated_abstract":null,"internal_url":"https://www.academia.edu/28406452/Structural_and_electronic_properties_of_3_4_ethylenedioxythiophene_3_4_ethylenedisulfanylfurane_and_thiophene_oligomers_A_theoretical_investigation","translated_internal_url":"","created_at":"2016-09-11T04:52:41.896-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53252628,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24212870,"work_id":28406452,"tagging_user_id":53252628,"tagged_user_id":null,"co_author_invite_id":5389966,"email":"c***r@uniandes.edu.co","display_order":0,"name":"Carlos Alemán","title":"Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation"},{"id":24212875,"work_id":28406452,"tagging_user_id":53252628,"tagged_user_id":33589671,"co_author_invite_id":5389967,"email":"j***s@quimica.udl.es","affiliation":"Universitat de Lleida","display_order":4194304,"name":"Jordi Casanovas","title":"Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation"},{"id":24212881,"work_id":28406452,"tagging_user_id":53252628,"tagged_user_id":null,"co_author_invite_id":5389970,"email":"m***0@gmail.com","display_order":6291456,"name":"M. Laso","title":"Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation"}],"downloadable_attachments":[{"id":48747185,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747185/thumbnails/1.jpg","file_name":"j.synthmet.2004.12.01220160911-29757-1xhq105.pdf","download_url":"https://www.academia.edu/attachments/48747185/download_file","bulk_download_file_name":"Structural_and_electronic_properties_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747185/j.synthmet.2004.12.01220160911-29757-1xhq105-libre.pdf?1473596971=\u0026response-content-disposition=attachment%3B+filename%3DStructural_and_electronic_properties_of.pdf\u0026Expires=1743103314\u0026Signature=fhgokcdhm~l0tRF6lDjv7Fe0YS4eGljVhd8b1WNJCG1ExA~wrdglS1mBnxmTMQeKnJJ7aF3e2V3nfDSW3YlXSSHdBDMg-w4eNtfUyJDvY3v~d6ZKqzD7zIjhrpmJySyS0lxngC1HYHigcns14kEbhhOZertpSyio9pPG6i-svA6wKZCTUrhgldaRNxMtTebEN~VizrD6Y45jAXP6xi89mgHwcauskEgj02jyjeDdYEY-FNxA5RHjY4ShMoWwB5rGl0CVRXvUEVQ8cb7rSSz9VV8jr8aUBlWDznC8WXtIEnsdN99n5Dbz~ZAUBy4tarG6hqAzpaGb6s58V002pz9h0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Structural_and_electronic_properties_of_3_4_ethylenedioxythiophene_3_4_ethylenedisulfanylfurane_and_thiophene_oligomers_A_theoretical_investigation","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We report the results of a series of ab initio and DFT quantum mechanical calculations on the structure and on the electronic spectral of 2,3-ethylenedioxythiophene-, thiophene-and 2,3-ethylenedithiafurane-containing oligomers. Calculations were performed on oligomers formed by n repeating units, where n ranges from 1 to 8. The bond-length alternation patterns in the -system, the importance of long-range interactions in the stabilization of oligomer chains, the energies of the HOMO and LUMO orbitals and the values of the lowest transition energy have been examined allowing a systematic comparison among the three families of conducting polymers.","owner":{"id":53252628,"first_name":"Jose","middle_initials":null,"last_name":"Iribarren","page_name":"JoseIribarren","domain_name":"independent","created_at":"2016-09-11T04:52:21.573-07:00","display_name":"Jose Iribarren","url":"https://independent.academia.edu/JoseIribarren"},"attachments":[{"id":48747185,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747185/thumbnails/1.jpg","file_name":"j.synthmet.2004.12.01220160911-29757-1xhq105.pdf","download_url":"https://www.academia.edu/attachments/48747185/download_file","bulk_download_file_name":"Structural_and_electronic_properties_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747185/j.synthmet.2004.12.01220160911-29757-1xhq105-libre.pdf?1473596971=\u0026response-content-disposition=attachment%3B+filename%3DStructural_and_electronic_properties_of.pdf\u0026Expires=1743103314\u0026Signature=fhgokcdhm~l0tRF6lDjv7Fe0YS4eGljVhd8b1WNJCG1ExA~wrdglS1mBnxmTMQeKnJJ7aF3e2V3nfDSW3YlXSSHdBDMg-w4eNtfUyJDvY3v~d6ZKqzD7zIjhrpmJySyS0lxngC1HYHigcns14kEbhhOZertpSyio9pPG6i-svA6wKZCTUrhgldaRNxMtTebEN~VizrD6Y45jAXP6xi89mgHwcauskEgj02jyjeDdYEY-FNxA5RHjY4ShMoWwB5rGl0CVRXvUEVQ8cb7rSSz9VV8jr8aUBlWDznC8WXtIEnsdN99n5Dbz~ZAUBy4tarG6hqAzpaGb6s58V002pz9h0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":85458,"name":"Conducting Polymer","url":"https://www.academia.edu/Documents/in/Conducting_Polymer"},{"id":149347,"name":"Band Gap","url":"https://www.academia.edu/Documents/in/Band_Gap"},{"id":189984,"name":"Electronic properties","url":"https://www.academia.edu/Documents/in/Electronic_properties"},{"id":2190081,"name":"Long-range Interaction","url":"https://www.academia.edu/Documents/in/Long-range_Interaction"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28406434"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/28406434/Influence_of_the_solvation_model_and_the_solvent_on_the_gauche_trans_equilibrium_of_1_1_2_trichloroethane"><img alt="Research paper thumbnail of Influence of the solvation model and the solvent on the gauche-trans equilibrium of 1,1,2-trichloroethane" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Influence of the solvation model and the solvent on the gauche-trans equilibrium of 1,1,2-trichloroethane</div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JoseIribarren">Jose Iribarren</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://lleida.academia.edu/JordiCasanovas">Jordi Casanovas</a></span></div><div class="wp-workCard_item"><span>Chemical Physics</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Simulation of solvent effects on both structure and properties of molecules poses a formidable ch...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Simulation of solvent effects on both structure and properties of molecules poses a formidable challenge to theoretical researches. Much progress was made in this area during the last years, which led to the development of wide variety of computational methods [1 and 2]. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28406434"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28406434"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28406434; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28406434]").text(description); $(".js-view-count[data-work-id=28406434]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28406434; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28406434']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=28406434]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28406434,"title":"Influence of the solvation model and the solvent on the gauche-trans equilibrium of 1,1,2-trichloroethane","translated_title":"","metadata":{"abstract":"Simulation of solvent effects on both structure and properties of molecules poses a formidable challenge to theoretical researches. Much progress was made in this area during the last years, which led to the development of wide variety of computational methods [1 and 2]. ...","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Chemical Physics"},"translated_abstract":"Simulation of solvent effects on both structure and properties of molecules poses a formidable challenge to theoretical researches. Much progress was made in this area during the last years, which led to the development of wide variety of computational methods [1 and 2]. ...","internal_url":"https://www.academia.edu/28406434/Influence_of_the_solvation_model_and_the_solvent_on_the_gauche_trans_equilibrium_of_1_1_2_trichloroethane","translated_internal_url":"","created_at":"2016-09-11T04:52:39.788-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53252628,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24212871,"work_id":28406434,"tagging_user_id":53252628,"tagged_user_id":null,"co_author_invite_id":5389966,"email":"c***r@uniandes.edu.co","display_order":0,"name":"Carlos Alemán","title":"Influence of the solvation model and the solvent on the gauche-trans equilibrium of 1,1,2-trichloroethane"},{"id":24212876,"work_id":28406434,"tagging_user_id":53252628,"tagged_user_id":33589671,"co_author_invite_id":5389967,"email":"j***s@quimica.udl.es","affiliation":"Universitat de Lleida","display_order":4194304,"name":"Jordi Casanovas","title":"Influence of the solvation model and the solvent on the gauche-trans equilibrium of 1,1,2-trichloroethane"}],"downloadable_attachments":[],"slug":"Influence_of_the_solvation_model_and_the_solvent_on_the_gauche_trans_equilibrium_of_1_1_2_trichloroethane","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Simulation of solvent effects on both structure and properties of molecules poses a formidable challenge to theoretical researches. Much progress was made in this area during the last years, which led to the development of wide variety of computational methods [1 and 2]. ...","owner":{"id":53252628,"first_name":"Jose","middle_initials":null,"last_name":"Iribarren","page_name":"JoseIribarren","domain_name":"independent","created_at":"2016-09-11T04:52:21.573-07:00","display_name":"Jose Iribarren","url":"https://independent.academia.edu/JoseIribarren"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":247485,"name":"Solvent Effect","url":"https://www.academia.edu/Documents/in/Solvent_Effect"},{"id":248184,"name":"Polarizable continuum model","url":"https://www.academia.edu/Documents/in/Polarizable_continuum_model"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":390063,"name":"Carbon Tetrachloride","url":"https://www.academia.edu/Documents/in/Carbon_Tetrachloride"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"},{"id":1242504,"name":"Molecular Dynamic Simulation","url":"https://www.academia.edu/Documents/in/Molecular_Dynamic_Simulation"},{"id":1449632,"name":"Computational Method","url":"https://www.academia.edu/Documents/in/Computational_Method"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28406456"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28406456/Molecular_modeling_tools_to_design_new_conducting_polymers"><img alt="Research paper thumbnail of Molecular modeling tools to design new conducting polymers" class="work-thumbnail" src="https://attachments.academia-assets.com/48747187/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28406456/Molecular_modeling_tools_to_design_new_conducting_polymers">Molecular modeling tools to design new conducting polymers</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JoseIribarren">Jose Iribarren</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://lleida.academia.edu/JordiCasanovas">Jordi Casanovas</a></span></div><div class="wp-workCard_item"><span>Polímeros</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The ability of molecular modeling techniques based on quantum chemical methods to predict the mol...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c68f8853c2dd6ab94a65aaf2343e21e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48747187,&quot;asset_id&quot;:28406456,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48747187/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28406456"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28406456"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28406456; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28406456]").text(description); $(".js-view-count[data-work-id=28406456]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28406456; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28406456']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c68f8853c2dd6ab94a65aaf2343e21e0" } } $('.js-work-strip[data-work-id=28406456]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28406456,"title":"Molecular modeling tools to design new conducting polymers","translated_title":"","metadata":{"abstract":"The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.","publication_name":"Polímeros"},"translated_abstract":"The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.","internal_url":"https://www.academia.edu/28406456/Molecular_modeling_tools_to_design_new_conducting_polymers","translated_internal_url":"","created_at":"2016-09-11T04:52:42.351-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53252628,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24212872,"work_id":28406456,"tagging_user_id":53252628,"tagged_user_id":null,"co_author_invite_id":5389966,"email":"c***r@uniandes.edu.co","display_order":0,"name":"Carlos Alemán","title":"Molecular modeling tools to design new conducting polymers"},{"id":24212877,"work_id":28406456,"tagging_user_id":53252628,"tagged_user_id":33589671,"co_author_invite_id":5389967,"email":"j***s@quimica.udl.es","affiliation":"Universitat de Lleida","display_order":4194304,"name":"Jordi Casanovas","title":"Molecular modeling tools to design new conducting polymers"}],"downloadable_attachments":[{"id":48747187,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747187/thumbnails/1.jpg","file_name":"Molecular_modeling_tools_to_design_new_c20160911-29206-hz9co8.pdf","download_url":"https://www.academia.edu/attachments/48747187/download_file","bulk_download_file_name":"Molecular_modeling_tools_to_design_new_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747187/Molecular_modeling_tools_to_design_new_c20160911-29206-hz9co8-libre.pdf?1473596971=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_modeling_tools_to_design_new_c.pdf\u0026Expires=1743103314\u0026Signature=TzAHfyANEaeICu~UXSsvwtG9z3x~~KnUW450x-DpcVWMxa8F~epSblKtLnmiJHnFeI70dRqjrsT3CXp4YMOKH~omVcP22GLgsSfSIFO0hj5myXtAApmsmU1RWpKpThzavJVoq74y74hXSmmLQ9bfMQODr-bwLsZO0UIxzBMF8VkH5MSdoZ2jn5SG8zYkBduchF9XHnfWLoQf8GMzwa1NzLzm2katBfPpr3~znXa9zxvxuAxrw1PfT48OAOsFG6yYb28tpDQQYUB1Qf7VhMfB5M-INffZDdNgVBNJL1yQKDvXTxlqlG5iDoK2nhdAWA8n-bYaxY97IL15rcshKEoXzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Molecular_modeling_tools_to_design_new_conducting_polymers","translated_slug":"","page_count":6,"language":"es","content_type":"Work","summary":"The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.","owner":{"id":53252628,"first_name":"Jose","middle_initials":null,"last_name":"Iribarren","page_name":"JoseIribarren","domain_name":"independent","created_at":"2016-09-11T04:52:21.573-07:00","display_name":"Jose Iribarren","url":"https://independent.academia.edu/JoseIribarren"},"attachments":[{"id":48747187,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48747187/thumbnails/1.jpg","file_name":"Molecular_modeling_tools_to_design_new_c20160911-29206-hz9co8.pdf","download_url":"https://www.academia.edu/attachments/48747187/download_file","bulk_download_file_name":"Molecular_modeling_tools_to_design_new_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48747187/Molecular_modeling_tools_to_design_new_c20160911-29206-hz9co8-libre.pdf?1473596971=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_modeling_tools_to_design_new_c.pdf\u0026Expires=1743103314\u0026Signature=TzAHfyANEaeICu~UXSsvwtG9z3x~~KnUW450x-DpcVWMxa8F~epSblKtLnmiJHnFeI70dRqjrsT3CXp4YMOKH~omVcP22GLgsSfSIFO0hj5myXtAApmsmU1RWpKpThzavJVoq74y74hXSmmLQ9bfMQODr-bwLsZO0UIxzBMF8VkH5MSdoZ2jn5SG8zYkBduchF9XHnfWLoQf8GMzwa1NzLzm2katBfPpr3~znXa9zxvxuAxrw1PfT48OAOsFG6yYb28tpDQQYUB1Qf7VhMfB5M-INffZDdNgVBNJL1yQKDvXTxlqlG5iDoK2nhdAWA8n-bYaxY97IL15rcshKEoXzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":411663,"name":"Polímeros","url":"https://www.academia.edu/Documents/in/Pol%C3%ADmeros"},{"id":856612,"name":"Polimeros","url":"https://www.academia.edu/Documents/in/Polimeros"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14578149"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/14578149/Molecular_modeling_tools_to_design_new_conducting_polymers"><img alt="Research paper thumbnail of Molecular modeling tools to design new conducting polymers" class="work-thumbnail" src="https://attachments.academia-assets.com/41197729/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/14578149/Molecular_modeling_tools_to_design_new_conducting_polymers">Molecular modeling tools to design new conducting polymers</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" rel="nofollow" href="https://zoom-in-design.academia.edu/FranciscoLiesa">Francisco Liesa</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://lleida.academia.edu/JordiCasanovas">Jordi Casanovas</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/Jos%C3%A9Iribarren">José Iribarren</a></span></div><div class="wp-workCard_item"><span>Polímeros</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The ability of molecular modeling techniques based on quantum chemical methods to predict the mol...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1b0ea0f14eb3c75640b58f5f82626b3f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41197729,&quot;asset_id&quot;:14578149,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41197729/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14578149"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14578149"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14578149; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14578149]").text(description); $(".js-view-count[data-work-id=14578149]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14578149; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14578149']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1b0ea0f14eb3c75640b58f5f82626b3f" } } $('.js-work-strip[data-work-id=14578149]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14578149,"title":"Molecular modeling tools to design new conducting polymers","translated_title":"","metadata":{"abstract":"The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.","publication_name":"Polímeros"},"translated_abstract":"The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.","internal_url":"https://www.academia.edu/14578149/Molecular_modeling_tools_to_design_new_conducting_polymers","translated_internal_url":"","created_at":"2015-08-02T08:42:07.329-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33536843,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":4153600,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":7723894,"co_author_invite_id":null,"email":"c***3@gmail.com","display_order":0,"name":"Carlos Alemán","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153610,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":42421112,"co_author_invite_id":228954,"email":"c***n@upc.es","display_order":4194304,"name":"Carlos Alemán","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153619,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":38891252,"co_author_invite_id":968339,"email":"e***n@upc.edu","display_order":6291456,"name":"Elaine Armelin","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153629,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":null,"co_author_invite_id":968332,"email":"c***n@upc.edu","display_order":7340032,"name":"Carlos Aleman","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153634,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":null,"co_author_invite_id":968333,"email":"j***s@quimica.udl.cat","display_order":7864320,"name":"Jordi Casanovas","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153639,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":33589671,"co_author_invite_id":968334,"email":"j***s@quimica.udl.es","affiliation":"Universitat de Lleida","display_order":8126464,"name":"Jordi Casanovas","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153648,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":33608677,"co_author_invite_id":979226,"email":"j***n@upc.edu","display_order":8257536,"name":"José Iribarren","title":"Molecular modeling tools to design new conducting polymers"},{"id":4153658,"work_id":14578149,"tagging_user_id":33536843,"tagged_user_id":null,"co_author_invite_id":979227,"email":"a***n@upc.es","display_order":8323072,"name":"Carlos Alemán","title":"Molecular modeling tools to design new conducting polymers"}],"downloadable_attachments":[{"id":41197729,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41197729/thumbnails/1.jpg","file_name":"5416eba30cf2fa878ad435c4.pdf20160115-19908-gnzs85.pdf","download_url":"https://www.academia.edu/attachments/41197729/download_file","bulk_download_file_name":"Molecular_modeling_tools_to_design_new_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41197729/5416eba30cf2fa878ad435c4.pdf20160115-19908-gnzs85-libre.pdf?1452863296=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_modeling_tools_to_design_new_c.pdf\u0026Expires=1743103314\u0026Signature=GMBfZTa0MXNlJgcxy74c3G-n4Ddnirq0XE6fQwZZ3X6WweYaDC6N1bLBPjA-8EzXI7SFDF0HVin-lbtJEVDe5l87ZfrQJdcvmmQV9DXP-cwnEZf1hZ~cIUNtsK3AhpD3mAuG1th-QMZ8hRd8t4FfhgcZKZVzSuuQetcx7a8fDKhRGSA~VG~ugWbByzLTRth3xXkqRDUWpnVXdWBvGfNYS7ak2AS32qIZlY9g0ByxcL1wO9YYFUbemADsklLmKHYT7CJ4JYaOxOIRI40SS-3CER4Qat7FuJ~R-NYUPhg0Qq0EnQJ7M6sFNL9Sw~0vsAeqGNzaSBYGw4H-nigjNNhUDA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Molecular_modeling_tools_to_design_new_conducting_polymers","translated_slug":"","page_count":6,"language":"es","content_type":"Work","summary":"The ability of molecular modeling techniques based on quantum chemical methods to predict the molecular and electronic structure of organic conducting polymers is examined. More specifically, we report on the applicability of these computational tools to study different aspects of polythiophene and its derivatives: molecular geometry and planarity, the structural changes induced by the doping process, the electronic properties and the design of new conducting materials.","owner":{"id":33536843,"first_name":"Francisco","middle_initials":null,"last_name":"Liesa","page_name":"FranciscoLiesa","domain_name":"zoom-in-design","created_at":"2015-08-02T08:41:47.706-07:00","display_name":"Francisco Liesa","url":"https://zoom-in-design.academia.edu/FranciscoLiesa"},"attachments":[{"id":41197729,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41197729/thumbnails/1.jpg","file_name":"5416eba30cf2fa878ad435c4.pdf20160115-19908-gnzs85.pdf","download_url":"https://www.academia.edu/attachments/41197729/download_file","bulk_download_file_name":"Molecular_modeling_tools_to_design_new_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41197729/5416eba30cf2fa878ad435c4.pdf20160115-19908-gnzs85-libre.pdf?1452863296=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_modeling_tools_to_design_new_c.pdf\u0026Expires=1743103314\u0026Signature=GMBfZTa0MXNlJgcxy74c3G-n4Ddnirq0XE6fQwZZ3X6WweYaDC6N1bLBPjA-8EzXI7SFDF0HVin-lbtJEVDe5l87ZfrQJdcvmmQV9DXP-cwnEZf1hZ~cIUNtsK3AhpD3mAuG1th-QMZ8hRd8t4FfhgcZKZVzSuuQetcx7a8fDKhRGSA~VG~ugWbByzLTRth3xXkqRDUWpnVXdWBvGfNYS7ak2AS32qIZlY9g0ByxcL1wO9YYFUbemADsklLmKHYT7CJ4JYaOxOIRI40SS-3CER4Qat7FuJ~R-NYUPhg0Qq0EnQJ7M6sFNL9Sw~0vsAeqGNzaSBYGw4H-nigjNNhUDA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":411663,"name":"Polímeros","url":"https://www.academia.edu/Documents/in/Pol%C3%ADmeros"}],"urls":[{"id":5054551,"url":"http://www.researchgate.net/profile/Carlos_Aleman/publication/262627450_Molecular_modeling_tools_to_design_new_conducting_polymers/links/5416eba30cf2fa878ad435c4.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14636913"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/14636913/29Si_solid_state_NMR_of_hydroxyl_groups_in_silica_from_first_principle_calculations"><img alt="Research paper thumbnail of 29Si solid state NMR of hydroxyl groups in silica from first principle calculations" class="work-thumbnail" src="https://attachments.academia-assets.com/44013650/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/14636913/29Si_solid_state_NMR_of_hydroxyl_groups_in_silica_from_first_principle_calculations">29Si solid state NMR of hydroxyl groups in silica from first principle calculations</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report the results of first principles Hartree-Fock (HF) and density functional theory (DFT) c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report the results of first principles Hartree-Fock (HF) and density functional theory (DFT) calculations on the 1 H, 29 Si and 17 O NMR chemical shifts of hydroxyl groups in silica. The structure of the isolated or Si OH of the geminal Si(OH) 2 groups has been fully optimized from cluster models derived from crystalline a-quartz and the nuclear magnetic shielding properties have been determined according to the GIAO method. Quantitative agreement with the available experimental data has been obtained at the DFT level.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2b0b10f92aee94a3223175425c47ea76" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44013650,&quot;asset_id&quot;:14636913,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44013650/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14636913"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14636913"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14636913; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14636913]").text(description); $(".js-view-count[data-work-id=14636913]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14636913; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14636913']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2b0b10f92aee94a3223175425c47ea76" } } $('.js-work-strip[data-work-id=14636913]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14636913,"title":"29Si solid state NMR of hydroxyl groups in silica from first principle calculations","translated_title":"","metadata":{"grobid_abstract":"We report the results of first principles Hartree-Fock (HF) and density functional theory (DFT) calculations on the 1 H, 29 Si and 17 O NMR chemical shifts of hydroxyl groups in silica. The structure of the isolated or Si OH of the geminal Si(OH) 2 groups has been fully optimized from cluster models derived from crystalline a-quartz and the nuclear magnetic shielding properties have been determined according to the GIAO method. Quantitative agreement with the available experimental data has been obtained at the DFT level.","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"grobid_abstract_attachment_id":44013650},"translated_abstract":null,"internal_url":"https://www.academia.edu/14636913/29Si_solid_state_NMR_of_hydroxyl_groups_in_silica_from_first_principle_calculations","translated_internal_url":"","created_at":"2015-08-03T23:30:55.340-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44013650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44013650/thumbnails/1.jpg","file_name":"s0921-5107_2899_2900337-2.pdf20160322-1151-1v7nkyb","download_url":"https://www.academia.edu/attachments/44013650/download_file","bulk_download_file_name":"29Si_solid_state_NMR_of_hydroxyl_groups.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44013650/s0921-5107_2899_2900337-2-libre.pdf20160322-1151-1v7nkyb?1458704748=\u0026response-content-disposition=attachment%3B+filename%3D29Si_solid_state_NMR_of_hydroxyl_groups.pdf\u0026Expires=1743103314\u0026Signature=BABDp~1yUaETHtVtpFtQ7lcvShyNxavKvPuwTwEn47-u8efE4W883C7Mznc0ApAHcxpbF3lFoDpympcMg4U3-0lBKcT1n3uowBOOeICbsOVTFHXrKDZBTByTh2IywHIqCiMYFmzU6tc7pLjW0oXJ2fp2nkC5LkE6SIRvvyrkHrz9XfgaXnZB4FElCa1NvZhpyS03KadYC-5AvE7rjQxdwj7sLbBs9u3RoyGtqIbBBSwZa~SAkZAwYQH17Ah8RH3hJ9mRARdYIx5JZGBt2u8ONDSFhlIwrSQUEHxBYirwzCaUq2m6XALWXv7JDAX58ikIBSZLyU43B~gScYyh3UeoFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"29Si_solid_state_NMR_of_hydroxyl_groups_in_silica_from_first_principle_calculations","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We report the results of first principles Hartree-Fock (HF) and density functional theory (DFT) calculations on the 1 H, 29 Si and 17 O NMR chemical shifts of hydroxyl groups in silica. The structure of the isolated or Si OH of the geminal Si(OH) 2 groups has been fully optimized from cluster models derived from crystalline a-quartz and the nuclear magnetic shielding properties have been determined according to the GIAO method. Quantitative agreement with the available experimental data has been obtained at the DFT level.","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[{"id":44013650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44013650/thumbnails/1.jpg","file_name":"s0921-5107_2899_2900337-2.pdf20160322-1151-1v7nkyb","download_url":"https://www.academia.edu/attachments/44013650/download_file","bulk_download_file_name":"29Si_solid_state_NMR_of_hydroxyl_groups.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44013650/s0921-5107_2899_2900337-2-libre.pdf20160322-1151-1v7nkyb?1458704748=\u0026response-content-disposition=attachment%3B+filename%3D29Si_solid_state_NMR_of_hydroxyl_groups.pdf\u0026Expires=1743103314\u0026Signature=BABDp~1yUaETHtVtpFtQ7lcvShyNxavKvPuwTwEn47-u8efE4W883C7Mznc0ApAHcxpbF3lFoDpympcMg4U3-0lBKcT1n3uowBOOeICbsOVTFHXrKDZBTByTh2IywHIqCiMYFmzU6tc7pLjW0oXJ2fp2nkC5LkE6SIRvvyrkHrz9XfgaXnZB4FElCa1NvZhpyS03KadYC-5AvE7rjQxdwj7sLbBs9u3RoyGtqIbBBSwZa~SAkZAwYQH17Ah8RH3hJ9mRARdYIx5JZGBt2u8ONDSFhlIwrSQUEHxBYirwzCaUq2m6XALWXv7JDAX58ikIBSZLyU43B~gScYyh3UeoFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":17395,"name":"Density-functional theory","url":"https://www.academia.edu/Documents/in/Density-functional_theory"},{"id":25987,"name":"Solid State NMR","url":"https://www.academia.edu/Documents/in/Solid_State_NMR"},{"id":77601,"name":"DFT calculation","url":"https://www.academia.edu/Documents/in/DFT_calculation"},{"id":98440,"name":"Silica","url":"https://www.academia.edu/Documents/in/Silica"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":398719,"name":"Hartree fock method","url":"https://www.academia.edu/Documents/in/Hartree_fock_method"},{"id":613718,"name":"Chemical Shift","url":"https://www.academia.edu/Documents/in/Chemical_Shift"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14636912"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/14636912/Water_absorbed_by_polyaniline_emeraldine_tends_to_organize_forming_nanodrops"><img alt="Research paper thumbnail of Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops</div><div class="wp-workCard_item"><span>The journal of physical chemistry. B</span><span>, Jan 21, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Interactions, in terms of both binding energies and microscopic organization, of water molecules ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Interactions, in terms of both binding energies and microscopic organization, of water molecules absorbed by hydrophilic polyaniline emeraldine base have been investigated using quantum mechanical calculations, molecular dynamics simulation, FTIR spectroscopy, and (1)H NMR. From an enthalpic point of view, water molecules interact more favorably with imine nitrogen atoms than with amine ones, even though the latter are entropically favored with respect to the former because of their two binding sites. Quantum mechanical results show that interaction energies of water molecules reversibly absorbed but organized individually around a binding site range from 3.0 to 6.3 kcal/mol, which is in good agreement with activation energies of 3-5 kcal/mol previously determined by thermodynamic measurements. The irreversible absorption of water to produce C-OH groups in rings of diimine units has been examined considering a three steps process in which water molecules act as both acidic and nucle...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14636912"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14636912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14636912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14636912]").text(description); $(".js-view-count[data-work-id=14636912]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14636912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14636912']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=14636912]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14636912,"title":"Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops","translated_title":"","metadata":{"abstract":"Interactions, in terms of both binding energies and microscopic organization, of water molecules absorbed by hydrophilic polyaniline emeraldine base have been investigated using quantum mechanical calculations, molecular dynamics simulation, FTIR spectroscopy, and (1)H NMR. From an enthalpic point of view, water molecules interact more favorably with imine nitrogen atoms than with amine ones, even though the latter are entropically favored with respect to the former because of their two binding sites. Quantum mechanical results show that interaction energies of water molecules reversibly absorbed but organized individually around a binding site range from 3.0 to 6.3 kcal/mol, which is in good agreement with activation energies of 3-5 kcal/mol previously determined by thermodynamic measurements. The irreversible absorption of water to produce C-OH groups in rings of diimine units has been examined considering a three steps process in which water molecules act as both acidic and nucle...","publication_date":{"day":21,"month":1,"year":2012,"errors":{}},"publication_name":"The journal of physical chemistry. B"},"translated_abstract":"Interactions, in terms of both binding energies and microscopic organization, of water molecules absorbed by hydrophilic polyaniline emeraldine base have been investigated using quantum mechanical calculations, molecular dynamics simulation, FTIR spectroscopy, and (1)H NMR. From an enthalpic point of view, water molecules interact more favorably with imine nitrogen atoms than with amine ones, even though the latter are entropically favored with respect to the former because of their two binding sites. Quantum mechanical results show that interaction energies of water molecules reversibly absorbed but organized individually around a binding site range from 3.0 to 6.3 kcal/mol, which is in good agreement with activation energies of 3-5 kcal/mol previously determined by thermodynamic measurements. The irreversible absorption of water to produce C-OH groups in rings of diimine units has been examined considering a three steps process in which water molecules act as both acidic and nucle...","internal_url":"https://www.academia.edu/14636912/Water_absorbed_by_polyaniline_emeraldine_tends_to_organize_forming_nanodrops","translated_internal_url":"","created_at":"2015-08-03T23:30:55.248-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":4228173,"work_id":14636912,"tagging_user_id":33589671,"tagged_user_id":null,"co_author_invite_id":968332,"email":"c***n@upc.edu","display_order":0,"name":"Carlos Aleman","title":"Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops"},{"id":4228211,"work_id":14636912,"tagging_user_id":33589671,"tagged_user_id":7723894,"co_author_invite_id":null,"email":"c***3@gmail.com","display_order":4194304,"name":"Carlos Alemán","title":"Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops"},{"id":4228249,"work_id":14636912,"tagging_user_id":33589671,"tagged_user_id":42421112,"co_author_invite_id":228954,"email":"c***n@upc.es","display_order":6291456,"name":"Carlos Alemán","title":"Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops"},{"id":4228330,"work_id":14636912,"tagging_user_id":33589671,"tagged_user_id":null,"co_author_invite_id":979227,"email":"a***n@upc.es","display_order":7340032,"name":"Carlos Alemán","title":"Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops"}],"downloadable_attachments":[],"slug":"Water_absorbed_by_polyaniline_emeraldine_tends_to_organize_forming_nanodrops","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Interactions, in terms of both binding energies and microscopic organization, of water molecules absorbed by hydrophilic polyaniline emeraldine base have been investigated using quantum mechanical calculations, molecular dynamics simulation, FTIR spectroscopy, and (1)H NMR. From an enthalpic point of view, water molecules interact more favorably with imine nitrogen atoms than with amine ones, even though the latter are entropically favored with respect to the former because of their two binding sites. Quantum mechanical results show that interaction energies of water molecules reversibly absorbed but organized individually around a binding site range from 3.0 to 6.3 kcal/mol, which is in good agreement with activation energies of 3-5 kcal/mol previously determined by thermodynamic measurements. The irreversible absorption of water to produce C-OH groups in rings of diimine units has been examined considering a three steps process in which water molecules act as both acidic and nucle...","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14636911"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/14636911/An_ab_initio_cluster_model_study_of_the_magnetic_coupling_in_KNiF3"><img alt="Research paper thumbnail of An ab initio cluster model study of the magnetic coupling in KNiF3" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">An ab initio cluster model study of the magnetic coupling in KNiF3</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cluster models of increasing complexity have been used to model magnetic interactions in KNiF3. T...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cluster models of increasing complexity have been used to model magnetic interactions in KNiF3. These clusters contain two or four magnetic centers plus the bridge F− anions and different representations of the remaining of the crystal. The magnetic coupling constant has been obtained by computing abinitio wave functions for different spin states. These wave functions explicitly include internal and external</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14636911"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14636911"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14636911; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14636911]").text(description); $(".js-view-count[data-work-id=14636911]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14636911; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14636911']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=14636911]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14636911,"title":"An ab initio cluster model study of the magnetic coupling in KNiF3","translated_title":"","metadata":{"abstract":"Cluster models of increasing complexity have been used to model magnetic interactions in KNiF3. These clusters contain two or four magnetic centers plus the bridge F− anions and different representations of the remaining of the crystal. The magnetic coupling constant has been obtained by computing abinitio wave functions for different spin states. These wave functions explicitly include internal and external"},"translated_abstract":"Cluster models of increasing complexity have been used to model magnetic interactions in KNiF3. These clusters contain two or four magnetic centers plus the bridge F− anions and different representations of the remaining of the crystal. The magnetic coupling constant has been obtained by computing abinitio wave functions for different spin states. These wave functions explicitly include internal and external","internal_url":"https://www.academia.edu/14636911/An_ab_initio_cluster_model_study_of_the_magnetic_coupling_in_KNiF3","translated_internal_url":"","created_at":"2015-08-03T23:30:55.146-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33589671,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_ab_initio_cluster_model_study_of_the_magnetic_coupling_in_KNiF3","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Cluster models of increasing complexity have been used to model magnetic interactions in KNiF3. These clusters contain two or four magnetic centers plus the bridge F− anions and different representations of the remaining of the crystal. The magnetic coupling constant has been obtained by computing abinitio wave functions for different spin states. These wave functions explicitly include internal and external","owner":{"id":33589671,"first_name":"Jordi","middle_initials":null,"last_name":"Casanovas","page_name":"JordiCasanovas","domain_name":"lleida","created_at":"2015-08-03T23:28:28.037-07:00","display_name":"Jordi Casanovas","url":"https://lleida.academia.edu/JordiCasanovas"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":151091,"name":"Nitrogen","url":"https://www.academia.edu/Documents/in/Nitrogen"},{"id":160656,"name":"Potassium","url":"https://www.academia.edu/Documents/in/Potassium"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1137568,"name":"Magnetic Resonance Coupling","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Coupling"},{"id":1636662,"name":"Coupling Constant","url":"https://www.academia.edu/Documents/in/Coupling_Constant"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "8fe215c1e2d4d833e0f91f8d12aea0f4ccde59c08557bfcca2839e051767da09", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="IpP8twivBknztAnSWPJtvyoa3adJnOLKo9hhkjcB0g_646kLkeu7FWWGkBjixT6HdFc1gHaaNdE503b6CcdJcA" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://lleida.academia.edu/JordiCasanovas" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="PT3q0-sIh8BQUsef33XufebVz39qQfoL6dMt9i2jCKjlTb9vckw6nMZgXlVlQr1FuJgnWFVHLRBz2DqeE2WT1w" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10