CINXE.COM

Two-body problem - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Two-body problem - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"34d6c52a-135e-483c-ab4f-458a3879e93f","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Two-body_problem","wgTitle":"Two-body problem","wgCurRevisionId":1260697870,"wgRevisionId":1260697870,"wgArticleId":277468,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Duplicate articles","Orbits","Dynamical systems"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Two-body_problem","wgRelevantArticleId":277468,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false, "wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q232976","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles" :"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface", "ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.15"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/0/0e/Orbit5.gif"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/0/0e/Orbit5.gif"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="400"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="320"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Two-body problem - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Two-body_problem"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Two-body_problem&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Two-body_problem"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Two-body_problem rootpage-Two-body_problem skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Two-body+problem" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Two-body+problem" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Two-body+problem" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Two-body+problem" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Results_for_prominent_cases" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Results_for_prominent_cases"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Results for prominent cases</span> </div> </a> <button aria-controls="toc-Results_for_prominent_cases-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Results for prominent cases subsection</span> </button> <ul id="toc-Results_for_prominent_cases-sublist" class="vector-toc-list"> <li id="toc-Gravitation_and_other_inverse-square_examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gravitation_and_other_inverse-square_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Gravitation and other inverse-square examples</span> </div> </a> <ul id="toc-Gravitation_and_other_inverse-square_examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inapplicability_to_atoms_and_subatomic_particles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inapplicability_to_atoms_and_subatomic_particles"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Inapplicability to atoms and subatomic particles</span> </div> </a> <ul id="toc-Inapplicability_to_atoms_and_subatomic_particles-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Reduction_to_two_independent,_one-body_problems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Reduction_to_two_independent,_one-body_problems"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Reduction to two independent, one-body problems</span> </div> </a> <button aria-controls="toc-Reduction_to_two_independent,_one-body_problems-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Reduction to two independent, one-body problems subsection</span> </button> <ul id="toc-Reduction_to_two_independent,_one-body_problems-sublist" class="vector-toc-list"> <li id="toc-Center_of_mass_motion_(1st_one-body_problem)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Center_of_mass_motion_(1st_one-body_problem)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Center of mass motion (1st one-body problem)</span> </div> </a> <ul id="toc-Center_of_mass_motion_(1st_one-body_problem)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Displacement_vector_motion_(2nd_one-body_problem)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Displacement_vector_motion_(2nd_one-body_problem)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Displacement vector motion (2nd one-body problem)</span> </div> </a> <ul id="toc-Displacement_vector_motion_(2nd_one-body_problem)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Two-body_motion_is_planar" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Two-body_motion_is_planar"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Two-body motion is planar</span> </div> </a> <ul id="toc-Two-body_motion_is_planar-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Energy_of_the_two-body_system" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Energy_of_the_two-body_system"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Energy of the two-body system</span> </div> </a> <ul id="toc-Energy_of_the_two-body_system-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Central_forces" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Central_forces"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Central forces</span> </div> </a> <ul id="toc-Central_forces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Two-body problem</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 37 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-37" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">37 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B3%D8%A3%D9%84%D8%A9_%D8%AC%D8%B3%D9%85%D9%8A%D9%86" title="مسألة جسمين – Arabic" lang="ar" hreflang="ar" data-title="مسألة جسمين" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Problema_de_los_dos_cuerpos" title="Problema de los dos cuerpos – Asturian" lang="ast" hreflang="ast" data-title="Problema de los dos cuerpos" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D0%B4%D0%B2%D1%83%D1%85_%D1%86%D0%B5%D0%BB" title="Задача двух цел – Belarusian" lang="be" hreflang="be" data-title="Задача двух цел" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D1%81_%D0%B4%D0%B2%D0%B5_%D1%82%D0%B5%D0%BB%D0%B0" title="Задача с две тела – Bulgarian" lang="bg" hreflang="bg" data-title="Задача с две тела" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Problema_dels_dos_cossos" title="Problema dels dos cossos – Catalan" lang="ca" hreflang="ca" data-title="Problema dels dos cossos" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%98%D0%BA%C4%95_%C4%95%D1%81%D0%BA%D0%B5%D1%80_%D1%82%C4%95%D0%BB%D0%BB%D0%B5%D0%B2%D1%87%C4%95%D0%BA%C4%95" title="Икĕ ĕскер тĕллевчĕкĕ – Chuvash" lang="cv" hreflang="cv" data-title="Икĕ ĕскер тĕллевчĕкĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Zweik%C3%B6rperproblem" title="Zweikörperproblem – German" lang="de" hreflang="de" data-title="Zweikörperproblem" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Kahe_keha_probleem" title="Kahe keha probleem – Estonian" lang="et" hreflang="et" data-title="Kahe keha probleem" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Problema_de_los_dos_cuerpos" title="Problema de los dos cuerpos – Spanish" lang="es" hreflang="es" data-title="Problema de los dos cuerpos" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Bi_gorputzen_arazo" title="Bi gorputzen arazo – Basque" lang="eu" hreflang="eu" data-title="Bi gorputzen arazo" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%B3%D8%A6%D9%84%D9%87_%D8%AF%D9%88_%D8%AC%D8%B3%D9%85" title="مسئله دو جسم – Persian" lang="fa" hreflang="fa" data-title="مسئله دو جسم" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Probl%C3%A8me_%C3%A0_deux_corps" title="Problème à deux corps – French" lang="fr" hreflang="fr" data-title="Problème à deux corps" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%A6%E0%AB%8D%E0%AA%B5%E0%AA%BF-%E0%AA%AA%E0%AA%A6%E0%AA%BE%E0%AA%B0%E0%AB%8D%E0%AA%A5_%E0%AA%B8%E0%AA%AE%E0%AA%B8%E0%AB%8D%E0%AA%AF%E0%AA%BE" title="દ્વિ-પદાર્થ સમસ્યા – Gujarati" lang="gu" hreflang="gu" data-title="દ્વિ-પદાર્થ સમસ્યા" data-language-autonym="ગુજરાતી" data-language-local-name="Gujarati" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9D%B4%EC%B2%B4_%EB%AC%B8%EC%A0%9C" title="이체 문제 – Korean" lang="ko" hreflang="ko" data-title="이체 문제" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A6%E0%A5%8B-%E0%A4%B5%E0%A4%B8%E0%A5%8D%E0%A4%A4%E0%A5%81_%E0%A4%B8%E0%A4%AE%E0%A4%B8%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="दो-वस्तु समस्या – Hindi" lang="hi" hreflang="hi" data-title="दो-वस्तु समस्या" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Problem_dvaju_tijela" title="Problem dvaju tijela – Croatian" lang="hr" hreflang="hr" data-title="Problem dvaju tijela" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Problema_dei_due_corpi" title="Problema dei due corpi – Italian" lang="it" hreflang="it" data-title="Problema dei due corpi" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%91%D7%A2%D7%99%D7%99%D7%AA_%D7%A9%D7%A0%D7%99_%D7%94%D7%92%D7%95%D7%A4%D7%99%D7%9D" title="בעיית שני הגופים – Hebrew" lang="he" hreflang="he" data-title="בעיית שני הגופים" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%A6%E0%B5%8D%E0%B4%B5%E0%B4%BF%E0%B4%B5%E0%B4%B8%E0%B5%8D%E0%B4%A4%E0%B5%81%E0%B4%AA%E0%B5%8D%E0%B4%B0%E0%B4%B6%E0%B5%8D%E0%B4%A8%E0%B4%82" title="ദ്വിവസ്തുപ്രശ്നം – Malayalam" lang="ml" hreflang="ml" data-title="ദ്വിവസ്തുപ്രശ്നം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Tweelichamenprobleem" title="Tweelichamenprobleem – Dutch" lang="nl" hreflang="nl" data-title="Tweelichamenprobleem" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E4%BA%8C%E4%BD%93%E5%95%8F%E9%A1%8C" title="二体問題 – Japanese" lang="ja" hreflang="ja" data-title="二体問題" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Tolegemeproblem" title="Tolegemeproblem – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Tolegemeproblem" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Tolekamsproblemet" title="Tolekamsproblemet – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Tolekamsproblemet" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Ikki_jism_masalasi" title="Ikki jism masalasi – Uzbek" lang="uz" hreflang="uz" data-title="Ikki jism masalasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Problema_de_dois_corpos" title="Problema de dois corpos – Portuguese" lang="pt" hreflang="pt" data-title="Problema de dois corpos" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D0%B4%D0%B2%D1%83%D1%85_%D1%82%D0%B5%D0%BB" title="Задача двух тел – Russian" lang="ru" hreflang="ru" data-title="Задача двух тел" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Two-body_problem" title="Two-body problem – Simple English" lang="en-simple" hreflang="en-simple" data-title="Two-body problem" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Probl%C3%A9m_dvoch_telies" title="Problém dvoch telies – Slovak" lang="sk" hreflang="sk" data-title="Problém dvoch telies" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Problem_dveh_teles" title="Problem dveh teles – Slovenian" lang="sl" hreflang="sl" data-title="Problem dveh teles" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Problem_dva_tela" title="Problem dva tela – Serbian" lang="sr" hreflang="sr" data-title="Problem dva tela" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Problem_dvaju_tijela" title="Problem dvaju tijela – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Problem dvaju tijela" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Tv%C3%A5kropparsproblemet" title="Tvåkropparsproblemet – Swedish" lang="sv" hreflang="sv" data-title="Tvåkropparsproblemet" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/%C4%B0ki_cisim_problemi" title="İki cisim problemi – Turkish" lang="tr" hreflang="tr" data-title="İki cisim problemi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D0%B4%D0%B2%D0%BE%D1%85_%D1%82%D1%96%D0%BB" title="Задача двох тіл – Ukrainian" lang="uk" hreflang="uk" data-title="Задача двох тіл" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E4%BA%8C%E4%BD%93%E9%97%AE%E9%A2%98" title="二体问题 – Wu" lang="wuu" hreflang="wuu" data-title="二体问题" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E4%BA%8C%E9%AB%94%E5%95%8F%E9%A1%8C" title="二體問題 – Cantonese" lang="yue" hreflang="yue" data-title="二體問題" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E4%BA%8C%E9%AB%94%E5%95%8F%E9%A1%8C" title="二體問題 – Chinese" lang="zh" hreflang="zh" data-title="二體問題" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q232976#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Two-body_problem" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Two-body_problem" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Two-body_problem"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Two-body_problem&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Two-body_problem&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Two-body_problem"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Two-body_problem&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Two-body_problem&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Two-body_problem" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Two-body_problem" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Two-body_problem&amp;oldid=1260697870" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Two-body_problem&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Two-body_problem&amp;id=1260697870&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTwo-body_problem"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTwo-body_problem"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Two-body_problem&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Two-body_problem&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Two-body_problem" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q232976" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Motion problem in classical mechanics</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about the two-body problem in classical mechanics. For the relativistic version, see <a href="/wiki/Two-body_problem_in_general_relativity" title="Two-body problem in general relativity">Two-body problem in general relativity</a>. For the career management problem of working couples, see <a href="/wiki/Two-body_problem_(career)" title="Two-body problem (career)">Two-body problem (career)</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1273380762/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:308px;max-width:308px"><div class="trow"><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Orbit5.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Orbit5.gif/200px-Orbit5.gif" decoding="async" width="200" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Orbit5.gif/300px-Orbit5.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/0/0e/Orbit5.gif 2x" data-file-width="400" data-file-height="200" /></a></span></div></div><div class="tsingle" style="width:102px;max-width:102px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Orbit2.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Orbit2.gif/100px-Orbit2.gif" decoding="async" width="100" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Orbit2.gif/150px-Orbit2.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/f/f2/Orbit2.gif 2x" data-file-width="200" data-file-height="200" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption"><b>Left:</b> Two bodies of similar <a href="/wiki/Mass" title="Mass">mass</a> orbiting a common <a href="/wiki/Barycenter" class="mw-redirect" title="Barycenter">barycenter</a> external to both bodies, with <a href="/wiki/Elliptic_orbit" title="Elliptic orbit">elliptic orbits</a>. This model is typical of <a href="/wiki/Binary_stars" class="mw-redirect" title="Binary stars">binary stars</a>.<br /><b>Right:</b> Two bodies with a "slight" difference in mass orbiting a common barycenter. Their sizes and this type of orbit are similar to the <a href="/wiki/Pluto#Satellites" title="Pluto">Pluto–Charon system</a> (in which the barycenter is external to both bodies), as well as the <a href="/wiki/Earth" title="Earth">Earth</a>–<a href="/wiki/Moon" title="Moon">Moon</a> system (in which the barycenter is internal to the larger body).</div></div></div></div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle">Astrodynamics</th></tr><tr><td class="sidebar-image" style="padding-bottom:0.85em;"><span typeof="mw:File"><a href="/wiki/File:Orbit_mechanics_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Orbit_mechanics_icon.svg/60px-Orbit_mechanics_icon.svg.png" decoding="async" width="60" height="60" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Orbit_mechanics_icon.svg/90px-Orbit_mechanics_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Orbit_mechanics_icon.svg/120px-Orbit_mechanics_icon.svg.png 2x" data-file-width="48" data-file-height="48" /></a></span></td></tr><tr><th class="sidebar-heading" style="padding-bottom:0.55em;"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Orbital_mechanics" title="Orbital mechanics"><span style="font-size:110%;">Orbital mechanics</span></a></div></th></tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Orbital_elements" title="Orbital elements">Orbital elements</a></div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Apsis" title="Apsis">Apsis</a></li> <li><a href="/wiki/Argument_of_periapsis" title="Argument of periapsis">Argument of periapsis</a></li> <li><a href="/wiki/Orbital_eccentricity" title="Orbital eccentricity">Eccentricity</a></li> <li><a href="/wiki/Orbital_inclination" title="Orbital inclination">Inclination</a></li> <li><a href="/wiki/Mean_anomaly" title="Mean anomaly">Mean anomaly</a></li> <li><a href="/wiki/Orbital_node" title="Orbital node">Orbital nodes</a></li> <li><a href="/wiki/Semi-major_and_semi-minor_axes" title="Semi-major and semi-minor axes">Semi-major axis</a></li> <li><a href="/wiki/True_anomaly" title="True anomaly">True anomaly</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Types of <a class="mw-selflink selflink">two-body orbits</a> by <br />eccentricity</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Circular_orbit" title="Circular orbit">Circular orbit</a></li> <li><a href="/wiki/Elliptic_orbit" title="Elliptic orbit">Elliptic orbit</a></li></ul> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Transfer_orbit" title="Transfer orbit">Transfer orbit</a> <div class="hlist" style="font-size:90%"><ul><li>(<a href="/wiki/Hohmann_transfer_orbit" title="Hohmann transfer orbit">Hohmann transfer orbit</a></li><li><a href="/wiki/Bi-elliptic_transfer" title="Bi-elliptic transfer">Bi-elliptic transfer orbit</a>)</li></ul></div></div> <ul><li><a href="/wiki/Parabolic_trajectory" title="Parabolic trajectory">Parabolic orbit</a></li> <li><a href="/wiki/Hyperbolic_trajectory" title="Hyperbolic trajectory">Hyperbolic orbit</a></li> <li><a href="/wiki/Radial_trajectory" title="Radial trajectory">Radial orbit</a></li> <li><a href="/wiki/Orbital_decay" title="Orbital decay">Decaying orbit</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Equations</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Dynamical_friction" title="Dynamical friction">Dynamical friction</a></li> <li><a href="/wiki/Escape_velocity" title="Escape velocity">Escape velocity</a></li> <li><a href="/wiki/Kepler%27s_equation" title="Kepler&#39;s equation">Kepler's equation</a></li> <li><a href="/wiki/Kepler%27s_laws_of_planetary_motion" title="Kepler&#39;s laws of planetary motion">Kepler's laws of planetary motion</a></li> <li><a href="/wiki/Orbital_period" title="Orbital period">Orbital period</a></li> <li><a href="/wiki/Orbital_speed" title="Orbital speed">Orbital velocity</a></li> <li><a href="/wiki/Surface_gravity" title="Surface gravity">Surface gravity</a></li> <li><a href="/wiki/Specific_orbital_energy" title="Specific orbital energy">Specific orbital energy</a></li> <li><a href="/wiki/Vis-viva_equation" title="Vis-viva equation">Vis-viva equation</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0.55em;"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Celestial_mechanics" title="Celestial mechanics"><span style="font-size:110%;">Celestial mechanics</span></a></div></th></tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Gravitational influences</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Barycenter" class="mw-redirect" title="Barycenter">Barycenter</a></li> <li><a href="/wiki/Hill_sphere" title="Hill sphere">Hill sphere</a></li> <li><a href="/wiki/Perturbation_(astronomy)" title="Perturbation (astronomy)">Perturbations</a></li> <li><a href="/wiki/Sphere_of_influence_(astrodynamics)" title="Sphere of influence (astrodynamics)">Sphere of influence</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/N-body_problem" title="N-body problem">N-body orbits</a></div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Lagrange_point" title="Lagrange point">Lagrangian points</a> <div class="hlist" style="font-size:90%"><ul><li>(<a href="/wiki/Halo_orbit" title="Halo orbit">Halo orbits</a>)</li></ul></div></div> <ul><li><a href="/wiki/Lissajous_orbit" title="Lissajous orbit">Lissajous orbits</a></li> <li><a href="/wiki/Lyapunov_stability" title="Lyapunov stability">Lyapunov orbits</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0.55em;"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Aerospace_engineering" title="Aerospace engineering"><span style="font-size:110%;">Engineering and efficiency</span></a></div></th></tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Preflight engineering</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Mass_ratio" title="Mass ratio">Mass ratio</a></li> <li><a href="/wiki/Payload_fraction" title="Payload fraction">Payload fraction</a></li> <li><a href="/wiki/Propellant_mass_fraction" title="Propellant mass fraction">Propellant mass fraction</a></li> <li><a href="/wiki/Tsiolkovsky_rocket_equation" title="Tsiolkovsky rocket equation">Tsiolkovsky rocket equation</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Efficiency measures</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Gravity_assist" title="Gravity assist">Gravity assist</a></li> <li><a href="/wiki/Oberth_effect" title="Oberth effect">Oberth effect</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Propulsive maneuvers</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Orbital_maneuver" title="Orbital maneuver">Orbital maneuver</a></li> <li><a href="/wiki/Orbit_insertion" title="Orbit insertion">Orbit insertion</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Astrodynamics" title="Template:Astrodynamics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Astrodynamics" title="Template talk:Astrodynamics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Astrodynamics" title="Special:EditPage/Template:Astrodynamics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a>, the <b>two-body problem</b> is to calculate and predict the motion of two massive bodies that are orbiting each other in space. The problem assumes that the two bodies are <a href="/wiki/Point_particle" title="Point particle">point particles</a> that interact only with one another; the only force affecting each object arises from the other one, and all other objects are ignored. </p><p>The most prominent example of the classical two-body problem is the gravitational case (see also <a href="/wiki/Kepler_problem" title="Kepler problem">Kepler problem</a>), arising in astronomy for predicting the orbits (or escapes from orbit) of objects such as <a href="/wiki/Satellite" title="Satellite">satellites</a>, <a href="/wiki/Planet" title="Planet">planets</a>, and <a href="/wiki/Stars" class="mw-redirect" title="Stars">stars</a>. A two-point-particle model of such a system nearly always describes its behavior well enough to provide useful insights and predictions. </p><p>A simpler "one body" model, the "<a href="/wiki/Classical_central-force_problem" title="Classical central-force problem">central-force problem</a>", treats one object as the immobile source of a force acting on the other. One then seeks to predict the motion of the single remaining mobile object. Such an approximation can give useful results when one object is much more massive than the other (as with a light planet orbiting a heavy star, where the star can be treated as essentially stationary). </p><p>However, the one-body approximation is usually unnecessary except as a stepping stone. For many forces, including gravitational ones, the general version of the two-body problem can be <a href="#Reduction_to_two_independent,_one-body_problems">reduced to a pair of one-body problems</a>, allowing it to be solved completely, and giving a solution simple enough to be used effectively. </p><p>By contrast, the <a href="/wiki/Three-body_problem" title="Three-body problem">three-body problem</a> (and, more generally, the <a href="/wiki/N-body_problem" title="N-body problem"><i>n</i>-body problem</a> for <i>n</i>&#160;≥&#160;3) cannot be solved in terms of first integrals, except in special cases. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Results_for_prominent_cases">Results for prominent cases</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=1" title="Edit section: Results for prominent cases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Gravitation_and_other_inverse-square_examples">Gravitation and other inverse-square examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=2" title="Edit section: Gravitation and other inverse-square examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The two-body problem is interesting in astronomy because pairs of astronomical objects are often moving rapidly in arbitrary directions (so their motions become interesting), widely separated from one another (so they will not collide) and even more widely separated from other objects (so outside influences will be small enough to be ignored safely). </p><p>Under the force of <a href="/wiki/Gravity" title="Gravity">gravity</a>, each member of a pair of such objects will orbit their mutual center of mass in an elliptical pattern, unless they are moving fast enough to escape one another entirely, in which case their paths will diverge along other planar <a href="/wiki/Conic_section" title="Conic section">conic sections</a>. If one object is very much heavier than the other, it will move far less than the other with reference to the shared center of mass. The mutual center of mass may even be inside the larger object. </p><p>For the derivation of the solutions to the problem, see <a href="/wiki/Classical_central-force_problem" title="Classical central-force problem">Classical central-force problem</a> or <a href="/wiki/Kepler_problem" title="Kepler problem">Kepler problem</a>. </p><p>In principle, the same solutions apply to macroscopic problems involving objects interacting not only through gravity, but through any other attractive <a href="/wiki/Scalar_potential" title="Scalar potential">scalar force field</a> obeying an <a href="/wiki/Inverse-square_law" title="Inverse-square law">inverse-square law</a>, with <a href="/wiki/Coulomb%27s_law" title="Coulomb&#39;s law">electrostatic attraction</a> being the obvious physical example. In practice, such problems rarely arise. Except perhaps in experimental apparatus or other specialized equipment, we rarely encounter electrostatically interacting objects which are moving fast enough, and in such a direction, as to avoid colliding, and/or which are isolated enough from their surroundings. </p><p>The dynamical system of a two-body system under the influence of torque turns out to be a <a href="/wiki/Sturm%E2%80%93Liouville_theory" title="Sturm–Liouville theory">Sturm-Liouville equation</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Inapplicability_to_atoms_and_subatomic_particles">Inapplicability to atoms and subatomic particles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=3" title="Edit section: Inapplicability to atoms and subatomic particles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although the two-body model treats the objects as point particles, classical mechanics only apply to systems of macroscopic scale. Most behavior of subatomic particles <i>cannot</i> be predicted under the classical assumptions underlying this article or using the mathematics here. </p><p><a href="/wiki/Electron" title="Electron">Electrons</a> in an atom are sometimes described as "orbiting" its <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nucleus</a>, following an <a href="/wiki/Bohr_model" title="Bohr model">early conjecture</a> of <a href="/wiki/Niels_Bohr" title="Niels Bohr">Niels Bohr</a> (this is the source of the term "<a href="/wiki/Atomic_orbital" title="Atomic orbital">orbital</a>"). However, electrons don't actually orbit nuclei in any meaningful sense, and <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> are necessary for any useful understanding of the electron's real behavior. Solving the classical two-body problem for an electron orbiting an atomic nucleus is misleading and does not produce many useful insights. </p> <div class="mw-heading mw-heading2"><h2 id="Reduction_to_two_independent,_one-body_problems"><span id="Reduction_to_two_independent.2C_one-body_problems"></span>Reduction to two independent, one-body problems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=4" title="Edit section: Reduction to two independent, one-body problems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Classical_central-force_problem#Relation_to_the_classical_two-body_problem" title="Classical central-force problem">Classical central-force problem §&#160;Relation to the classical two-body problem</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Kepler_problem" title="Kepler problem">Kepler problem</a></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Duplication plainlinks metadata ambox ambox-style" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b><a href="/wiki/Wikipedia:CFORK" class="mw-redirect" title="Wikipedia:CFORK">duplicates</a> the scope of other articles</b>, specifically <a href="/wiki/Classical_central-force_problem#Relation_to_the_classical_two-body_problem" title="Classical central-force problem">Classical central-force problem#Relation to the classical two-body problem</a>.<span class="hide-when-compact"> Please <a href="/wiki/Talk:Two-body_problem" title="Talk:Two-body problem">discuss this issue</a> and help introduce a <a href="/wiki/Wikipedia:Summary_style" title="Wikipedia:Summary style">summary style</a> to the section&#32;by replacing the section with a link and a summary or by <a href="/wiki/Wikipedia:SPLIT" class="mw-redirect" title="Wikipedia:SPLIT">splitting the content</a> into a new article.</span> <span class="date-container"><i>(<span class="date">June 2019</span>)</i></span></div></td></tr></tbody></table> <p>The complete two-body problem can be solved by re-formulating it as two one-body problems: a trivial one and one that involves solving for the motion of one particle in an external <a href="/wiki/Potential" title="Potential">potential</a>. Since many one-body problems can be solved exactly, the corresponding two-body problem can also be solved. </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Two-body_Jacobi_coordinates.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Two-body_Jacobi_coordinates.JPG/300px-Two-body_Jacobi_coordinates.JPG" decoding="async" width="300" height="158" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Two-body_Jacobi_coordinates.JPG/450px-Two-body_Jacobi_coordinates.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Two-body_Jacobi_coordinates.JPG/600px-Two-body_Jacobi_coordinates.JPG 2x" data-file-width="626" data-file-height="329" /></a><figcaption><a href="/wiki/Jacobi_coordinates" title="Jacobi coordinates">Jacobi coordinates</a> for two-body problem; Jacobi coordinates are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {R}}={\frac {m_{1}}{M}}{\boldsymbol {x}}_{1}+{\frac {m_{2}}{M}}{\boldsymbol {x}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">R</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>M</mi> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>M</mi> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {R}}={\frac {m_{1}}{M}}{\boldsymbol {x}}_{1}+{\frac {m_{2}}{M}}{\boldsymbol {x}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f458238333cea8b5d08c607d14c5f2f0c726bd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.02ex; height:4.676ex;" alt="{\displaystyle {\boldsymbol {R}}={\frac {m_{1}}{M}}{\boldsymbol {x}}_{1}+{\frac {m_{2}}{M}}{\boldsymbol {x}}_{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {r}}={\boldsymbol {x}}_{1}-{\boldsymbol {x}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {r}}={\boldsymbol {x}}_{1}-{\boldsymbol {x}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8002f6d1eb3e910b5b7f9877354ca7ebd32b3f14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.341ex; height:2.343ex;" alt="{\displaystyle {\boldsymbol {r}}={\boldsymbol {x}}_{1}-{\boldsymbol {x}}_{2}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=m_{1}+m_{2}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=m_{1}+m_{2}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e92015f32980186ce21efe584e6785e5fb5e6fd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.151ex; height:2.509ex;" alt="{\displaystyle M=m_{1}+m_{2}\ }"></span>.<sup id="cite_ref-Betounes_2-0" class="reference"><a href="#cite_note-Betounes-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>Let <span class="texhtml"><b>x</b><sub>1</sub></span> and <span class="texhtml"><b>x</b><sub>2</sub></span> be the vector positions of the two bodies, and <i>m</i><sub>1</sub> and <i>m</i><sub>2</sub> be their masses. The goal is to determine the trajectories <span class="texhtml"><b>x</b><sub>1</sub>(<i>t</i>)</span> and <span class="texhtml"><b>x</b><sub>2</sub>(<i>t</i>)</span> for all times <i>t</i>, given the initial positions <span class="texhtml"><b>x</b><sub>1</sub>(<i>t</i> = 0)</span> and <span class="texhtml"><b>x</b><sub>2</sub>(<i>t</i> = 0)</span> and the initial velocities <span class="texhtml"><b>v</b><sub>1</sub>(<i>t</i> = 0)</span> and <span class="texhtml"><b>v</b><sub>2</sub>(<i>t</i> = 0)</span>. </p><p>When applied to the two masses, <a href="/wiki/Newton%27s_laws_of_motion#Newton&#39;s_second_law" title="Newton&#39;s laws of motion">Newton's second law</a> states that </p> <style data-mw-deduplicate="TemplateStyles:r1266403038">.mw-parser-output table.numblk{border-collapse:collapse;border:none;margin-top:0;margin-right:0;margin-bottom:0}.mw-parser-output table.numblk>tbody>tr>td{vertical-align:middle;padding:0}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2){width:99%}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table{border-collapse:collapse;margin:0;border:none;width:100%}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:first-child,.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:last-child{padding:0 0.4ex}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:nth-child(2){width:100%;padding:0}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{padding:0}.mw-parser-output table.numblk>tbody>tr>td:last-child{font-weight:bold}.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child{font-weight:unset}.mw-parser-output table.numblk>tbody>tr>td:last-child::before{content:"("}.mw-parser-output table.numblk>tbody>tr>td:last-child::after{content:")"}.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child::before,.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child::after{content:none}.mw-parser-output table.numblk>tbody>tr>td{border:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td{border:thin solid}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td{border:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td{border:thin solid}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{border-left:none;border-right:none;border-bottom:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{border-left:thin solid;border-right:thin solid;border-bottom:thin solid}.mw-parser-output table.numblk:target{color:var(--color-base,#202122);background-color:#cfe8fd}@media screen{html.skin-theme-clientpref-night .mw-parser-output table.numblk:target{color:var(--color-base,#eaecf0);background-color:#301702}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output table.numblk:target{color:var(--color-base,#eaecf0);background-color:#301702}}</style><table role="presentation" class="numblk" style="margin-left: 0em;"><tbody><tr><td class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{12}(\mathbf {x} _{1},\mathbf {x} _{2})=m_{1}{\ddot {\mathbf {x} }}_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{12}(\mathbf {x} _{1},\mathbf {x} _{2})=m_{1}{\ddot {\mathbf {x} }}_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/213f029d3e7dbd3334a16cb8b0afbb168ab19a8a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.991ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{12}(\mathbf {x} _{1},\mathbf {x} _{2})=m_{1}{\ddot {\mathbf {x} }}_{1}}"></span></td> <td></td> <td class="nowrap">Equation <span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1266403038"><table role="presentation" class="numblk" style="margin-left: 0em;"><tbody><tr><td class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{21}(\mathbf {x} _{1},\mathbf {x} _{2})=m_{2}{\ddot {\mathbf {x} }}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{21}(\mathbf {x} _{1},\mathbf {x} _{2})=m_{2}{\ddot {\mathbf {x} }}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a70a71e61bcc195e575365be1baa2a5db303c00b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.991ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{21}(\mathbf {x} _{1},\mathbf {x} _{2})=m_{2}{\ddot {\mathbf {x} }}_{2}}"></span></td> <td></td> <td class="nowrap">Equation <span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span></td></tr></tbody></table> <p>where <b>F</b><sub>12</sub> is the force on mass 1 due to its interactions with mass 2, and <b>F</b><sub>21</sub> is the force on mass 2 due to its interactions with mass 1. The two dots on top of the <b>x</b> position vectors denote their second derivative with respect to time, or their acceleration vectors. </p><p>Adding and subtracting these two equations decouples them into two one-body problems, which can be solved independently. <i>Adding</i> equations (1) and (<b><a href="#math_2">2</a></b>) results in an equation describing the <a href="/wiki/Center_of_mass" title="Center of mass">center of mass</a> (<a href="/wiki/Barycenter" class="mw-redirect" title="Barycenter">barycenter</a>) motion. By contrast, <i>subtracting</i> equation (2) from equation (1) results in an equation that describes how the vector <span class="texhtml"><b>r</b> = <b>x</b><sub>1</sub> − <b>x</b><sub>2</sub></span> between the masses changes with time. The solutions of these independent one-body problems can be combined to obtain the solutions for the trajectories <span class="texhtml"><b>x</b><sub>1</sub>(<i>t</i>)</span> and <span class="texhtml"><b>x</b><sub>2</sub>(<i>t</i>)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Center_of_mass_motion_(1st_one-body_problem)"><span id="Center_of_mass_motion_.281st_one-body_problem.29"></span>Center of mass motion (1st one-body problem)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=5" title="Edit section: Center of mass motion (1st one-body problem)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"></span> be the position of the <a href="/wiki/Center_of_mass" title="Center of mass">center of mass</a> (<a href="/wiki/Barycenter" class="mw-redirect" title="Barycenter">barycenter</a>) of the system. Addition of the force equations (1) and (2) yields <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{1}{\ddot {\mathbf {x} }}_{1}+m_{2}{\ddot {\mathbf {x} }}_{2}=(m_{1}+m_{2}){\ddot {\mathbf {R} }}=\mathbf {F} _{12}+\mathbf {F} _{21}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{1}{\ddot {\mathbf {x} }}_{1}+m_{2}{\ddot {\mathbf {x} }}_{2}=(m_{1}+m_{2}){\ddot {\mathbf {R} }}=\mathbf {F} _{12}+\mathbf {F} _{21}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06f8f7ed1594b5f028fa6fd9cb8ed415a9fd0813" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.218ex; height:3.176ex;" alt="{\displaystyle m_{1}{\ddot {\mathbf {x} }}_{1}+m_{2}{\ddot {\mathbf {x} }}_{2}=(m_{1}+m_{2}){\ddot {\mathbf {R} }}=\mathbf {F} _{12}+\mathbf {F} _{21}=0}"></span> where we have used <a href="/wiki/Newton%27s_laws_of_motion" title="Newton&#39;s laws of motion">Newton's third law</a> <span class="texhtml"><b>F</b><sub>12</sub> = −<b>F</b><sub>21</sub></span> and where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ddot {\mathbf {R} }}\equiv {\frac {m_{1}{\ddot {\mathbf {x} }}_{1}+m_{2}{\ddot {\mathbf {x} }}_{2}}{m_{1}+m_{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ddot {\mathbf {R} }}\equiv {\frac {m_{1}{\ddot {\mathbf {x} }}_{1}+m_{2}{\ddot {\mathbf {x} }}_{2}}{m_{1}+m_{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d429d1bc7e8bd8eb2f7b977415929a8e1566c88" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:20.545ex; height:5.509ex;" alt="{\displaystyle {\ddot {\mathbf {R} }}\equiv {\frac {m_{1}{\ddot {\mathbf {x} }}_{1}+m_{2}{\ddot {\mathbf {x} }}_{2}}{m_{1}+m_{2}}}.}"></span> </p><p>The resulting equation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ddot {\mathbf {R} }}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ddot {\mathbf {R} }}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12ae81e987e55b368123938548a588e81922d02c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.264ex; height:2.676ex;" alt="{\displaystyle {\ddot {\mathbf {R} }}=0}"></span> shows that the velocity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} ={\frac {dR}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>R</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} ={\frac {dR}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/170d37ee8f4d0f3ea8e1eef60591731c14613648" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.325ex; height:5.509ex;" alt="{\displaystyle \mathbf {v} ={\frac {dR}{dt}}}"></span> of the center of mass is constant, from which follows that the total momentum <span class="texhtml"><i>m</i><sub>1</sub> <b>v</b><sub>1</sub> + <i>m</i><sub>2</sub> <b>v</b><sub>2</sub></span> is also constant (<a href="/wiki/Conservation_of_momentum" class="mw-redirect" title="Conservation of momentum">conservation of momentum</a>). Hence, the position <span class="texhtml"><b>R</b>(<i>t</i>)</span> of the center of mass can be determined at all times from the initial positions and velocities. </p> <div class="mw-heading mw-heading3"><h3 id="Displacement_vector_motion_(2nd_one-body_problem)"><span id="Displacement_vector_motion_.282nd_one-body_problem.29"></span>Displacement vector motion (2nd one-body problem)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=6" title="Edit section: Displacement vector motion (2nd one-body problem)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dividing both force equations by the respective masses, subtracting the second equation from the first, and rearranging gives the equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ddot {\mathbf {r} }}={\ddot {\mathbf {x} }}_{1}-{\ddot {\mathbf {x} }}_{2}=\left({\frac {\mathbf {F} _{12}}{m_{1}}}-{\frac {\mathbf {F} _{21}}{m_{2}}}\right)=\left({\frac {1}{m_{1}}}+{\frac {1}{m_{2}}}\right)\mathbf {F} _{12}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ddot {\mathbf {r} }}={\ddot {\mathbf {x} }}_{1}-{\ddot {\mathbf {x} }}_{2}=\left({\frac {\mathbf {F} _{12}}{m_{1}}}-{\frac {\mathbf {F} _{21}}{m_{2}}}\right)=\left({\frac {1}{m_{1}}}+{\frac {1}{m_{2}}}\right)\mathbf {F} _{12}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98087b9b3489c260e30bf6426d293dde430e6281" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:51.35ex; height:6.176ex;" alt="{\displaystyle {\ddot {\mathbf {r} }}={\ddot {\mathbf {x} }}_{1}-{\ddot {\mathbf {x} }}_{2}=\left({\frac {\mathbf {F} _{12}}{m_{1}}}-{\frac {\mathbf {F} _{21}}{m_{2}}}\right)=\left({\frac {1}{m_{1}}}+{\frac {1}{m_{2}}}\right)\mathbf {F} _{12}}"></span> where we have again used <a href="/wiki/Newton%27s_third_law" class="mw-redirect" title="Newton&#39;s third law">Newton's third law</a> <span class="texhtml"><b>F</b><sub>12</sub> = −<b>F</b><sub>21</sub></span> and where <span class="texhtml"><b>r</b></span> is the <a href="/wiki/Displacement_(vector)" class="mw-redirect" title="Displacement (vector)">displacement vector</a> from mass 2 to mass 1, as defined above. </p><p>The force between the two objects, which originates in the two objects, should only be a function of their separation <span class="texhtml"><b>r</b></span> and not of their absolute positions <span class="texhtml"><b>x</b><sub>1</sub></span> and <span class="texhtml"><b>x</b><sub>2</sub></span>; otherwise, there would not be <a href="/wiki/Translational_symmetry" title="Translational symmetry">translational symmetry</a>, and the laws of physics would have to change from place to place. The subtracted equation can therefore be written: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu {\ddot {\mathbf {r} }}=\mathbf {F} _{12}(\mathbf {x} _{1},\mathbf {x} _{2})=\mathbf {F} (\mathbf {r} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu {\ddot {\mathbf {r} }}=\mathbf {F} _{12}(\mathbf {x} _{1},\mathbf {x} _{2})=\mathbf {F} (\mathbf {r} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/518e9b198537b4e002953ea8ea5bc07326ee805e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.688ex; height:2.843ex;" alt="{\displaystyle \mu {\ddot {\mathbf {r} }}=\mathbf {F} _{12}(\mathbf {x} _{1},\mathbf {x} _{2})=\mathbf {F} (\mathbf {r} )}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> is the <b><a href="/wiki/Reduced_mass" title="Reduced mass">reduced mass</a></b> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu ={\frac {1}{{\frac {1}{m_{1}}}+{\frac {1}{m_{2}}}}}={\frac {m_{1}m_{2}}{m_{1}+m_{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu ={\frac {1}{{\frac {1}{m_{1}}}+{\frac {1}{m_{2}}}}}={\frac {m_{1}m_{2}}{m_{1}+m_{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2b8e2408e6d60542063eeea5e7bce84fa3ccfc8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:28.009ex; height:6.843ex;" alt="{\displaystyle \mu ={\frac {1}{{\frac {1}{m_{1}}}+{\frac {1}{m_{2}}}}}={\frac {m_{1}m_{2}}{m_{1}+m_{2}}}.}"></span> </p><p>Solving the equation for <span class="texhtml"><b>r</b>(<i>t</i>)</span> is the key to the two-body problem. The solution depends on the specific force between the bodies, which is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} (\mathbf {r} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} (\mathbf {r} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b5f64c13605eb065971b62adf62deb92c2c9354" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.594ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} (\mathbf {r} )}"></span>. For the case where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} (\mathbf {r} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} (\mathbf {r} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b5f64c13605eb065971b62adf62deb92c2c9354" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.594ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} (\mathbf {r} )}"></span> follows an <a href="/wiki/Inverse-square_law" title="Inverse-square law">inverse-square law</a>, see the <a href="/wiki/Kepler_problem" title="Kepler problem">Kepler problem</a>. </p><p>Once <span class="texhtml"><b>R</b>(<i>t</i>)</span> and <span class="texhtml"><b>r</b>(<i>t</i>)</span> have been determined, the original trajectories may be obtained <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{1}(t)=\mathbf {R} (t)+{\frac {m_{2}}{m_{1}+m_{2}}}\mathbf {r} (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{1}(t)=\mathbf {R} (t)+{\frac {m_{2}}{m_{1}+m_{2}}}\mathbf {r} (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90a9452cd498df86e51e608901118899f88b2e49" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:29.322ex; height:5.009ex;" alt="{\displaystyle \mathbf {x} _{1}(t)=\mathbf {R} (t)+{\frac {m_{2}}{m_{1}+m_{2}}}\mathbf {r} (t)}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{2}(t)=\mathbf {R} (t)-{\frac {m_{1}}{m_{1}+m_{2}}}\mathbf {r} (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{2}(t)=\mathbf {R} (t)-{\frac {m_{1}}{m_{1}+m_{2}}}\mathbf {r} (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de5c7c6e171ddd3a6b30d65a776842ffd75db3b3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:29.322ex; height:5.009ex;" alt="{\displaystyle \mathbf {x} _{2}(t)=\mathbf {R} (t)-{\frac {m_{1}}{m_{1}+m_{2}}}\mathbf {r} (t)}"></span> as may be verified by substituting the definitions of <b>R</b> and <b>r</b> into the right-hand sides of these two equations. </p> <div class="mw-heading mw-heading2"><h2 id="Two-body_motion_is_planar">Two-body motion is planar</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=7" title="Edit section: Two-body motion is planar"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The motion of two bodies with respect to each other always lies in a plane (in the <a href="/wiki/Center_of_mass_frame" class="mw-redirect" title="Center of mass frame">center of mass frame</a>). </p><p>Proof: Defining the <a href="/wiki/Linear_momentum" class="mw-redirect" title="Linear momentum">linear momentum</a> <span class="texhtml"><b>p</b></span> and the <a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a> <span class="texhtml"><b>L</b></span> of the system, with respect to the center of mass, by the equations <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {L} =\mathbf {r} \times \mathbf {p} =\mathbf {r} \times \mu {\frac {d\mathbf {r} }{dt}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {L} =\mathbf {r} \times \mathbf {p} =\mathbf {r} \times \mu {\frac {d\mathbf {r} }{dt}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0ab5711de81d6e829ba63a6dab369a77b4717d6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:22.378ex; height:5.509ex;" alt="{\displaystyle \mathbf {L} =\mathbf {r} \times \mathbf {p} =\mathbf {r} \times \mu {\frac {d\mathbf {r} }{dt}},}"></span> </p><p>where <span class="texhtml mvar" style="font-style:italic;">μ</span> is the <a href="/wiki/Reduced_mass" title="Reduced mass">reduced mass</a> and <span class="texhtml"><b>r</b></span> is the relative position <span class="texhtml"><b>r</b><sub>2</sub> − <b>r</b><sub>1</sub></span> (with these written taking the center of mass as the origin, and thus both parallel to <span class="texhtml"><b>r</b></span>) the rate of change of the angular momentum <span class="texhtml"><b>L</b></span> equals the net <a href="/wiki/Torque" title="Torque">torque</a> <span class="texhtml"><b>N</b></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {N} ={\frac {d\mathbf {L} }{dt}}={\dot {\mathbf {r} }}\times \mu {\dot {\mathbf {r} }}+\mathbf {r} \times \mu {\ddot {\mathbf {r} }}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {N} ={\frac {d\mathbf {L} }{dt}}={\dot {\mathbf {r} }}\times \mu {\dot {\mathbf {r} }}+\mathbf {r} \times \mu {\ddot {\mathbf {r} }}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/004e40bfe2e2834be98686187ae1db3a13ccf584" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:29.09ex; height:5.509ex;" alt="{\displaystyle \mathbf {N} ={\frac {d\mathbf {L} }{dt}}={\dot {\mathbf {r} }}\times \mu {\dot {\mathbf {r} }}+\mathbf {r} \times \mu {\ddot {\mathbf {r} }}\ ,}"></span> and using the property of the <a href="/wiki/Vector_cross_product" class="mw-redirect" title="Vector cross product">vector cross product</a> that <span class="texhtml"><b>v</b> × <b>w</b> = <b>0</b></span> for any vectors <span class="texhtml"><b>v</b></span> and <span class="texhtml"><b>w</b></span> pointing in the same direction, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {N} \ =\ {\frac {d\mathbf {L} }{dt}}=\mathbf {r} \times \mathbf {F} \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {N} \ =\ {\frac {d\mathbf {L} }{dt}}=\mathbf {r} \times \mathbf {F} \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4ec9f0a663f3d49248adc876f463411fb20c16b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.963ex; height:5.509ex;" alt="{\displaystyle \mathbf {N} \ =\ {\frac {d\mathbf {L} }{dt}}=\mathbf {r} \times \mathbf {F} \ ,}"></span> with <span class="texhtml"><b>F</b> = <i>μ</i>&#8201;<i>d</i><span style="padding-left:0.12em;"><sup>2</sup></span><b>r</b>/<i>dt</i><span style="padding-left:0.12em;"><sup>2</sup></span></span>. </p><p>Introducing the assumption (true of most physical forces, as they obey <a href="/wiki/Newton%27s_laws_of_motion" title="Newton&#39;s laws of motion">Newton's strong third law of motion</a>) that the force between two particles acts along the line between their positions, it follows that <span class="texhtml"><b>r</b> × <b>F</b> = <b>0</b></span> and the <a href="/wiki/Conservation_of_angular_momentum" class="mw-redirect" title="Conservation of angular momentum">angular momentum vector <span class="texhtml"><b>L</b></span> is constant</a> (conserved). Therefore, the displacement vector <span class="texhtml"><b>r</b></span> and its velocity <span class="texhtml"><b>v</b></span> are always in the plane <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a> to the constant vector <span class="texhtml"><b>L</b></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Energy_of_the_two-body_system">Energy of the two-body system</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=8" title="Edit section: Energy of the two-body system"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the force <span class="texhtml"><b>F</b>(<b>r</b>)</span> is <a href="/wiki/Conservative_force" title="Conservative force">conservative</a> then the system has a <a href="/wiki/Potential_energy" title="Potential energy">potential energy</a> <span class="texhtml"><i>U</i>(<b>r</b>)</span>, so the total <a href="/wiki/Mechanical_energy" title="Mechanical energy">energy</a> can be written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\text{tot}}={\frac {1}{2}}m_{1}{\dot {\mathbf {x} }}_{1}^{2}+{\frac {1}{2}}m_{2}{\dot {\mathbf {x} }}_{2}^{2}+U(\mathbf {r} )={\frac {1}{2}}(m_{1}+m_{2}){\dot {\mathbf {R} }}^{2}+{1 \over 2}\mu {\dot {\mathbf {r} }}^{2}+U(\mathbf {r} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>tot</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>&#x03BC;<!-- μ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\text{tot}}={\frac {1}{2}}m_{1}{\dot {\mathbf {x} }}_{1}^{2}+{\frac {1}{2}}m_{2}{\dot {\mathbf {x} }}_{2}^{2}+U(\mathbf {r} )={\frac {1}{2}}(m_{1}+m_{2}){\dot {\mathbf {R} }}^{2}+{1 \over 2}\mu {\dot {\mathbf {r} }}^{2}+U(\mathbf {r} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dbdb2f6ec3f0ba1767036f4381d9e40757a24cb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:67.624ex; height:5.176ex;" alt="{\displaystyle E_{\text{tot}}={\frac {1}{2}}m_{1}{\dot {\mathbf {x} }}_{1}^{2}+{\frac {1}{2}}m_{2}{\dot {\mathbf {x} }}_{2}^{2}+U(\mathbf {r} )={\frac {1}{2}}(m_{1}+m_{2}){\dot {\mathbf {R} }}^{2}+{1 \over 2}\mu {\dot {\mathbf {r} }}^{2}+U(\mathbf {r} )}"></span> </p><p>In the center of mass frame the <a href="/wiki/Kinetic_energy#Frame_of_reference" title="Kinetic energy">kinetic energy</a> is the lowest and the total energy becomes <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E={\frac {1}{2}}\mu {\dot {\mathbf {r} }}^{2}+U(\mathbf {r} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>&#x03BC;<!-- μ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E={\frac {1}{2}}\mu {\dot {\mathbf {r} }}^{2}+U(\mathbf {r} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74129bd21a58150e1f1ec9c2519e7a61dc9b5471" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.025ex; height:5.176ex;" alt="{\displaystyle E={\frac {1}{2}}\mu {\dot {\mathbf {r} }}^{2}+U(\mathbf {r} )}"></span> The coordinates <span class="texhtml"><b>x</b><sub>1</sub></span> and <span class="texhtml"><b>x</b><sub>2</sub></span> can be expressed as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{1}={\frac {\mu }{m_{1}}}\mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BC;<!-- μ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{1}={\frac {\mu }{m_{1}}}\mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/580b91bf7e2ce2ceceea575406d0703b33c27100" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:10.597ex; height:5.176ex;" alt="{\displaystyle \mathbf {x} _{1}={\frac {\mu }{m_{1}}}\mathbf {r} }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{2}=-{\frac {\mu }{m_{2}}}\mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BC;<!-- μ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{2}=-{\frac {\mu }{m_{2}}}\mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d2a3f09a709798854653a27dd0b9a3c887e3b43" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.405ex; height:5.176ex;" alt="{\displaystyle \mathbf {x} _{2}=-{\frac {\mu }{m_{2}}}\mathbf {r} }"></span> and in a similar way the energy <i>E</i> is related to the energies <span class="texhtml"><i>E</i><sub>1</sub></span> and <span class="texhtml"><i>E</i><sub>2</sub></span> that separately contain the kinetic energy of each body: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}E_{1}&amp;={\frac {\mu }{m_{1}}}E={\frac {1}{2}}m_{1}{\dot {\mathbf {x} }}_{1}^{2}+{\frac {\mu }{m_{1}}}U(\mathbf {r} )\\[4pt]E_{2}&amp;={\frac {\mu }{m_{2}}}E={\frac {1}{2}}m_{2}{\dot {\mathbf {x} }}_{2}^{2}+{\frac {\mu }{m_{2}}}U(\mathbf {r} )\\[4pt]E_{\text{tot}}&amp;=E_{1}+E_{2}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BC;<!-- μ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BC;<!-- μ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BC;<!-- μ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BC;<!-- μ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>tot</mtext> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}E_{1}&amp;={\frac {\mu }{m_{1}}}E={\frac {1}{2}}m_{1}{\dot {\mathbf {x} }}_{1}^{2}+{\frac {\mu }{m_{1}}}U(\mathbf {r} )\\[4pt]E_{2}&amp;={\frac {\mu }{m_{2}}}E={\frac {1}{2}}m_{2}{\dot {\mathbf {x} }}_{2}^{2}+{\frac {\mu }{m_{2}}}U(\mathbf {r} )\\[4pt]E_{\text{tot}}&amp;=E_{1}+E_{2}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5705c7dd63eda3ec0ad29ec1307c46d685d6ffe6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:35.727ex; height:16.176ex;" alt="{\displaystyle {\begin{aligned}E_{1}&amp;={\frac {\mu }{m_{1}}}E={\frac {1}{2}}m_{1}{\dot {\mathbf {x} }}_{1}^{2}+{\frac {\mu }{m_{1}}}U(\mathbf {r} )\\[4pt]E_{2}&amp;={\frac {\mu }{m_{2}}}E={\frac {1}{2}}m_{2}{\dot {\mathbf {x} }}_{2}^{2}+{\frac {\mu }{m_{2}}}U(\mathbf {r} )\\[4pt]E_{\text{tot}}&amp;=E_{1}+E_{2}\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Central_forces">Central forces</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=9" title="Edit section: Central forces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Classical_central-force_problem" title="Classical central-force problem">Classical central-force problem</a></div> <p>For many physical problems, the force <span class="texhtml"><b>F</b>(<b>r</b>)</span> is a <a href="/wiki/Central_force" title="Central force">central force</a>, i.e., it is of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} (\mathbf {r} )=F(r){\hat {\mathbf {r} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} (\mathbf {r} )=F(r){\hat {\mathbf {r} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b610003dfe1b76545e25a600981be1c8e6470fe5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.454ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} (\mathbf {r} )=F(r){\hat {\mathbf {r} }}}"></span> where <span class="texhtml"><i>r</i> = &#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><b>r</b></span>&#124;</span> and <span class="texhtml"><b>r̂</b> = <b>r</b>/<i>r</i></span> is the corresponding <a href="/wiki/Unit_vector" title="Unit vector">unit vector</a>. We now have: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu {\ddot {\mathbf {r} }}={F}(r){\hat {\mathbf {r} }}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu {\ddot {\mathbf {r} }}={F}(r){\hat {\mathbf {r} }}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b0f55cf2143b654380cea8e2eef11195c5e4c3f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.651ex; height:2.843ex;" alt="{\displaystyle \mu {\ddot {\mathbf {r} }}={F}(r){\hat {\mathbf {r} }}\ ,}"></span> where <span class="texhtml"><i>F</i>(<i>r</i>)</span> is negative in the case of an attractive force. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=10" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Energy_drift" title="Energy drift">Energy drift</a></li> <li><a href="/wiki/Equation_of_the_center" title="Equation of the center">Equation of the center</a></li> <li><a href="/wiki/Euler%27s_three-body_problem" title="Euler&#39;s three-body problem">Euler's three-body problem</a></li> <li><a href="/wiki/Kepler_orbit" title="Kepler orbit">Kepler orbit</a></li> <li><a href="/wiki/Kepler_problem" title="Kepler problem">Kepler problem</a></li> <li><a href="/wiki/N-body_problem" title="N-body problem"><i>n</i>-body problem</a></li> <li><a href="/wiki/Three-body_problem" title="Three-body problem">Three-body problem</a></li> <li><a href="/wiki/Virial_theorem" title="Virial theorem">Virial theorem</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLuo2020" class="citation journal cs1">Luo, Siwei (22 June 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2399-6528%2Fab9c30">"The Sturm-Liouville problem of two-body system"</a>. <i>Journal of Physics Communications</i>. <b>4</b> (6): 061001. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020JPhCo...4f1001L">2020JPhCo...4f1001L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2399-6528%2Fab9c30">10.1088/2399-6528/ab9c30</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Physics+Communications&amp;rft.atitle=The+Sturm-Liouville+problem+of+two-body+system&amp;rft.volume=4&amp;rft.issue=6&amp;rft.pages=061001&amp;rft.date=2020-06-22&amp;rft_id=info%3Adoi%2F10.1088%2F2399-6528%2Fab9c30&amp;rft_id=info%3Abibcode%2F2020JPhCo...4f1001L&amp;rft.aulast=Luo&amp;rft.aufirst=Siwei&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1088%252F2399-6528%252Fab9c30&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATwo-body+problem" class="Z3988"></span></span> </li> <li id="cite_note-Betounes-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Betounes_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Betounes2001" class="citation book cs1">David Betounes (2001). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/differentialequa0000beto"><i>Differential Equations</i></a></span>. Springer. p.&#160;58; Figure 2.15. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-95140-7" title="Special:BookSources/0-387-95140-7"><bdi>0-387-95140-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Differential+Equations&amp;rft.pages=58%3B+Figure+2.15&amp;rft.pub=Springer&amp;rft.date=2001&amp;rft.isbn=0-387-95140-7&amp;rft.au=David+Betounes&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdifferentialequa0000beto&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATwo-body+problem" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=12" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLandau_LDLifshitz_EM1976" class="citation book cs1"><a href="/wiki/Lev_Landau" title="Lev Landau">Landau LD</a>; <a href="/wiki/Evgeny_Lifshitz" title="Evgeny Lifshitz">Lifshitz EM</a> (1976). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/mechanics00land"><i>Mechanics</i></a></span> (3rd.&#160;ed.). New York: <a href="/wiki/Pergamon_Press" title="Pergamon Press">Pergamon Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-08-029141-4" title="Special:BookSources/0-08-029141-4"><bdi>0-08-029141-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mechanics&amp;rft.place=New+York&amp;rft.edition=3rd.&amp;rft.pub=Pergamon+Press&amp;rft.date=1976&amp;rft.isbn=0-08-029141-4&amp;rft.au=Landau+LD&amp;rft.au=Lifshitz+EM&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmechanics00land&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATwo-body+problem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldstein_H1980" class="citation book cs1"><a href="/wiki/Herbert_Goldstein" title="Herbert Goldstein">Goldstein H</a> (1980). <i><a href="/wiki/Classical_Mechanics_(Goldstein)" title="Classical Mechanics (Goldstein)">Classical Mechanics</a></i> (2nd.&#160;ed.). New York: <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-201-02918-9" title="Special:BookSources/0-201-02918-9"><bdi>0-201-02918-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Classical+Mechanics&amp;rft.place=New+York&amp;rft.edition=2nd.&amp;rft.pub=Addison-Wesley&amp;rft.date=1980&amp;rft.isbn=0-201-02918-9&amp;rft.au=Goldstein+H&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATwo-body+problem" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Two-body_problem&amp;action=edit&amp;section=13" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://scienceworld.wolfram.com/physics/Two-BodyProblem.html">Two-body problem</a> at <a href="/wiki/ScienceWorld" class="mw-redirect" title="ScienceWorld">Eric Weisstein's World of Physics</a></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox1204" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q232976#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4191237-8">Germany</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Two-body problem"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85139054">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Problème à deux corps"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb122621959">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Problème à deux corps"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb122621959">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.nli.org.il/en/authorities/987007558418005171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐7878cd4448‐9mvn6 Cached time: 20250211195831 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.486 seconds Real time usage: 0.712 seconds Preprocessor visited node count: 3914/1000000 Post‐expand include size: 51945/2097152 bytes Template argument size: 9281/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 48046/5000000 bytes Lua time usage: 0.287/10.000 seconds Lua memory usage: 6011397/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 538.730 1 -total 17.94% 96.627 1 Template:Reflist 17.58% 94.732 1 Template:Astrodynamics 17.17% 92.522 1 Template:Sidebar_with_collapsible_lists 14.83% 79.878 1 Template:Short_description 14.15% 76.250 1 Template:Cite_journal 12.12% 65.269 1 Template:Authority_control 8.75% 47.122 1 Template:Duplication 7.95% 42.844 48 Template:Math 7.93% 42.718 1 Template:Ambox --> <!-- Saved in parser cache with key enwiki:pcache:277468:|#|:idhash:canonical and timestamp 20250211195831 and revision id 1260697870. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Two-body_problem&amp;oldid=1260697870">https://en.wikipedia.org/w/index.php?title=Two-body_problem&amp;oldid=1260697870</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Orbits" title="Category:Orbits">Orbits</a></li><li><a href="/wiki/Category:Dynamical_systems" title="Category:Dynamical systems">Dynamical systems</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Duplicate_articles" title="Category:Duplicate articles">Duplicate articles</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 2 December 2024, at 03:40<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Two-body_problem&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Two-body problem</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>37 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5f467697bf-dg2hp","wgBackendResponseTime":133,"wgPageParseReport":{"limitreport":{"cputime":"0.486","walltime":"0.712","ppvisitednodes":{"value":3914,"limit":1000000},"postexpandincludesize":{"value":51945,"limit":2097152},"templateargumentsize":{"value":9281,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":48046,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 538.730 1 -total"," 17.94% 96.627 1 Template:Reflist"," 17.58% 94.732 1 Template:Astrodynamics"," 17.17% 92.522 1 Template:Sidebar_with_collapsible_lists"," 14.83% 79.878 1 Template:Short_description"," 14.15% 76.250 1 Template:Cite_journal"," 12.12% 65.269 1 Template:Authority_control"," 8.75% 47.122 1 Template:Duplication"," 7.95% 42.844 48 Template:Math"," 7.93% 42.718 1 Template:Ambox"]},"scribunto":{"limitreport-timeusage":{"value":"0.287","limit":"10.000"},"limitreport-memusage":{"value":6011397,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-7878cd4448-9mvn6","timestamp":"20250211195831","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Two-body problem","url":"https:\/\/en.wikipedia.org\/wiki\/Two-body_problem","sameAs":"http:\/\/www.wikidata.org\/entity\/Q232976","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q232976","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-07-26T01:29:28Z","dateModified":"2024-12-02T03:40:45Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/0e\/Orbit5.gif","headline":"to determine the motion of two point particles that interact only with each other"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10