CINXE.COM

Search results for: optical band gap

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: optical band gap</title> <meta name="description" content="Search results for: optical band gap"> <meta name="keywords" content="optical band gap"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="optical band gap" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="optical band gap"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2540</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: optical band gap</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2450</span> Cupric Oxide Thin Films for Optoelectronic Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar">Sanjay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Pathak"> Dinesh Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20Saralch"> Sudhir Saralch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper oxide is a semiconductor that has been studied for several reasons such as the natural abundance of starting material copper (Cu); the easiness of production by Cu oxidation; their non-toxic nature and the reasonably good electrical and optical properties. Copper oxide is well-known as cuprite oxide. The cuprite is p-type semiconductors having band gap energy of 1.21 to 1.51 eV. As a p-type semiconductor, conduction arises from the presence of holes in the valence band (VB) due to doping/annealing. CuO is attractive as a selective solar absorber since it has high solar absorbency and a low thermal emittance. CuO is very promising candidate for solar cell applications as it is a suitable material for photovoltaic energy conversion. It has been demonstrated that the dip technique can be used to deposit CuO films in a simple manner using metallic chlorides (CuCl₂.2H₂O) as a starting material. Copper oxide films are prepared using a methanolic solution of cupric chloride (CuCl₂.2H₂O) at three baking temperatures. We made three samples, after heating which converts to black colour. XRD data confirm that the films are of CuO phases at a particular temperature. The optical band gap of the CuO films calculated from optical absorption measurements is 1.90 eV which is quite comparable to the reported value. Dip technique is a very simple and low-cost method, which requires no sophisticated specialized setup. Coating of the substrate with a large surface area can be easily obtained by this technique compared to that in physical evaporation techniques and spray pyrolysis. Another advantage of the dip technique is that it is very easy to coat both sides of the substrate instead of only one and to deposit otherwise inaccessible surfaces. This method is well suited for applying coating on the inner and outer surfaces of tubes of various diameters and shapes. The main advantage of the dip coating method lies in the fact that it is possible to deposit a variety of layers having good homogeneity and mechanical and chemical stability with a very simple setup. In this paper, the CuO thin films preparation by dip coating method and their characterization will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorber%20material" title="absorber material">absorber material</a>, <a href="https://publications.waset.org/abstracts/search?q=cupric%20oxide" title=" cupric oxide"> cupric oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=dip%20coating" title=" dip coating"> dip coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/82434/cupric-oxide-thin-films-for-optoelectronic-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2449</span> In2S3 Buffer Layer Properties for Thin Film Solar Cells Based on CIGS Absorber </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouloufa">A. Bouloufa</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Djessas"> K. Djessas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we reported the effect of substrate temperature on the structural, electrical and optical properties of In2S3 thin films deposited on soda-lime glass substrates by physical vapor deposition technique at various substrate temperatures. The In2Se3 material used for deposition was synthesized from its constituent elements. It was found that all samples exhibit one phase which corresponds to β-In2S3 phase. Values of band gap energy of the films obtained at different substrate temperatures vary in the range of 2.38-2.80 eV and decrease with increasing substrate temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffer%20layer" title="buffer layer">buffer layer</a>, <a href="https://publications.waset.org/abstracts/search?q=In2S3" title=" In2S3"> In2S3</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=PVD" title=" PVD"> PVD</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20properties" title=" structural properties "> structural properties </a> </p> <a href="https://publications.waset.org/abstracts/14276/in2s3-buffer-layer-properties-for-thin-film-solar-cells-based-on-cigs-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2448</span> Polarization Insensitive Absorber with Increased Bandwidth Using Multilayer Metamaterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srilaxmi%20Gangula">Srilaxmi Gangula</a>, <a href="https://publications.waset.org/abstracts/search?q=MahaLakshmi%20Vinukonda"> MahaLakshmi Vinukonda</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Rao"> Neeraj Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wide band polarization insensitive metamaterial absorber with bandwidth enhancement in X and C band is proposed. The structure proposed here consists of a periodic unit cell of resonator arrangements in double layer. The proposed structure shows near unity absorption at frequencies of 6.21 GHz and 10.372 GHz spreading over a bandwidth of 1 GHz and 6.21 GHz respectively in X and C bands. The proposed metamaterial absorber is designed so as to increase the bandwidth. The proposed structure is also independent for TE and TM polarization. Because of its simple implementation, near unity absorption and wide bandwidth this dual band polarization insensitive metamaterial absorber can be used for EMI/EMC applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorber" title="absorber">absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=C-band" title=" C-band"> C-band</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer" title=" multilayer"> multilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=X-band" title=" X-band "> X-band </a> </p> <a href="https://publications.waset.org/abstracts/124968/polarization-insensitive-absorber-with-increased-bandwidth-using-multilayer-metamaterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2447</span> Role of Chloride Ions on The Properties of Electrodeposited ZnO Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Mentar">L. Mentar</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Baka"> O. Baka</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Khelladi"> M. R. Khelladi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Azizi"> A. Azizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc oxide (ZnO), as a transparent semiconductor with a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, is one of the most promising materials for a wide range of modern applications. With the development of film growth technologies and intense recent interest in nanotechnology, several varieties of ZnO nanostructured materials have been synthesized almost exclusively by thermal evaporation methods, particularly chemical vapor deposition (CVD), which generally require a high growth temperature above 550 °C. In contrast, wet chemistry techniques such as hydrothermal synthesis and electro-deposition are promising alternatives to synthesize ZnO nanostructures, especially at a significantly lower temperature (below 200°C). In this study, the electro-deposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate from chloride bath. We present the influence of KCl concentrations on the electro-deposition process, morphological, structural and optical properties of ZnO nanostructures. The potentials of electro-deposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. Field emission scanning electron microscopy (FESEM) images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Cl-. Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. X-ray diffraction (XRD) study confirms the Wurtzite phase of the ZnO nanostructures with a preferred oriented along (002) plane normal to the substrate surface. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cl-" title="Cl-">Cl-</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-deposition" title=" electro-deposition"> electro-deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=FESEM" title=" FESEM"> FESEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Mott-Schottky" title=" Mott-Schottky"> Mott-Schottky</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/33048/role-of-chloride-ions-on-the-properties-of-electrodeposited-zno-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2446</span> Influence of Strong Optical Feedback on Frequency Chirp and Lineshape Broadening in High-Speed Semiconductor Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Ahmed">Moustafa Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumio%20Koyama"> Fumio Koyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Directly-modulated semiconductor lasers, including edge-emitting and vertical-cavity surface-emitting lasers, have received considerable interest recently for use in data transmitters in cost-effective high-speed data centers, metro, and access networks. Optical feedback has been proved as an efficient technique to boost the modulation bandwidth and enhance the speed of the semiconductor laser. However, both the laser linewidth and frequency chirping in directly-modulated lasers are sensitive to both intensity modulation and optical feedback. These effects along width fiber dispersion affect the transmission bit rate and distance in single-mode fiber links. In this work, we continue our recent research on directly-modulated semiconductor lasers with modulation bandwidth in the millimeter-wave band by introducing simultaneous modeling and simulations on both the frequency chirping and lineshape broadening. The lasers are operating under strong optical feedback. The model takes into account the multiple reflections of laser reflections of laser radiation in the external cavity. The analyses are given in terms of the chirp-to-modulated power ratio, and the results are shown for the possible dynamic states of continuous wave, period-1 oscillation, and chaos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chirp" title="chirp">chirp</a>, <a href="https://publications.waset.org/abstracts/search?q=linewidth" title=" linewidth"> linewidth</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20feedback" title=" optical feedback"> optical feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser" title=" semiconductor laser"> semiconductor laser</a> </p> <a href="https://publications.waset.org/abstracts/79640/influence-of-strong-optical-feedback-on-frequency-chirp-and-lineshape-broadening-in-high-speed-semiconductor-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2445</span> Characterization of Chemically Deposited CdS Thin Films Annealed in Different Atmospheres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Pantoja%20Enr%C3%ADquez">J. Pantoja Enríquez</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Hern%C3%A1ndez"> G. P. Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20I.%20Duharte"> G. I. Duharte</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Mathew"> X. Mathew</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Moreira"> J. Moreira</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20J.%20Sebastian"> P. J. Sebastian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cadmium sulfide films were deposited onto glass substrates by chemical bath deposition (CBD) from a bath containing cadmium acetate, ammonium acetate, thiourea, and ammonium hydroxide. The CdS thin films were annealed in air, argon, hydrogen and nitrogen for 1 h at various temperatures (300, 350, 400, 450 and 500 °C). The changes in optical and electrical properties of annealed treated CdS thin films were analyzed. The results showed that, the band-gap and resistivity depend on the post-deposition annealing atmosphere and temperatures. Thus, it was found that these properties of the films, were found to be affected by various processes with opposite effects, some beneficial and others unfavorable. The energy gap and resistivity for different annealing atmospheres was seen to oscillate by thermal annealing. Recrystallization, oxidation, surface passivation, sublimation and materials evaporation were found the main factors of the heat-treatment process responsible for this oscillating behavior. Annealing over 400 °C was seen to degrade the optical and electrical properties of the film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cds" title="cds">cds</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=optical" title=" optical"> optical</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a> </p> <a href="https://publications.waset.org/abstracts/31251/characterization-of-chemically-deposited-cds-thin-films-annealed-in-different-atmospheres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2444</span> Effect of Band Application of Organic Manures on Growth and Yield of Pigeonpea (Cajanus cajan (L.) Millsp.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Kalaghatagi">S. B. Kalaghatagi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Guggari"> A. K. Guggari</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20S.%20Manikashetti"> Pallavi S. Manikashetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment to study the effect of band application of organic manures on growth and yield of pigeon pea was conducted during 2016-17 at Kharif Seed Farm, College of Agriculture, Vijayapura. The experiment was carried out in randomized block design with thirteen treatments viz., T1 to T6 were band application of vermicompost at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 t ha⁻¹, respectively. The treatments T7 to T12 include band application of sieved FYM at 1, 2, 3, 4, 5 and 6 t ha⁻¹, respectively and were compared with already recommended practice of broadcasting of FYM at 6 t ha⁻¹ (T13); and recommended dose of fertilizer (25:50:0 NPK kg ha⁻¹) was applied commonly to all the treatments. The results revealed that band application of vermicompost (VC) at 3 t ha⁻¹ recorded significantly higher number of pods plant⁻¹ (116), grain weight plant⁻¹ (37.35 g), grain yield (1,647 kg ha⁻¹), stalk yield (2,920 kg ha⁻¹) and harvest index (0.36) and was on par with the band application of VC at 2.0 and 2.5 t ha⁻¹ and sieved FYM at 4.0 and 5.0 t ha⁻¹ as compared to broadcasting of FYM at 6 t ha-1 (99.33, 24.07 g, 1,061 kg ha⁻¹, 2,920 kg ha⁻¹ and 0.36, respectively). Significantly higher net return (Rupees 59,410 ha⁻¹) and benefit cost ratio of 2.92 recorded with band application of VC at 3 t ha⁻¹ over broadcasting of FYM at 6 tonnes per ha (Rupees 25,401 ha⁻¹ and 1.78, respectively). It indicates from the above results that, growing of pigeon pea with band application of VC at 2, 2.5 and 3 t ha⁻¹ and sieved FYM at 4 and 5 t ha⁻¹ leads to saving of 1 tonne of VC and 2 tonnes of FYM per ha. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20manures" title="organic manures">organic manures</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfed%20pigeonpea" title=" rainfed pigeonpea"> rainfed pigeonpea</a>, <a href="https://publications.waset.org/abstracts/search?q=sieved%20FYM" title=" sieved FYM"> sieved FYM</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/82804/effect-of-band-application-of-organic-manures-on-growth-and-yield-of-pigeonpea-cajanus-cajan-l-millsp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2443</span> Depiction of a Circulated Double Psi-Shaped Microstrip Antenna for Ku-Band Satellite Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naimur%20Rahman">M. Naimur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tariqul%20Islam"> Mohammad Tariqul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandeep%20Singh%20Jit%20Singh"> Mandeep Singh Jit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbahiah%20Misran"> Norbahiah Misran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the architecture and exploration of a compact, circulated double Psi-shaped microstrip patch antenna for Ku-band satellite applications. The antenna is composed of the double Psi-shaped patch in opposite focus which is circulated with a ring. The antenna size is 24 mm × 18 mm and the prototype is imprinted on Rogers RT/duroid 5880 materials with the depth of 1.57 mm. The substrate has a relative permittivity of 2.2 and the dielectric constant of 0.0009. The excitation is supplied through a 50Ω microstrip line. The performance of the presented antenna has been simulated and verified with the High-Frequency Structural Simulator (HFSS). The results depict that the antenna covers the frequency spectrum 14.6 - 17.4 GHz (Ku-band) with 10 dB return loss. The antenna has a 4.40 dBi maximum gain with stable radiation patterns throughout the operating band which makes the proposed antenna compatible for the satellite application in Ku-band. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ku-band%20antenna" title="Ku-band antenna">Ku-band antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20antenna" title=" microstrip antenna"> microstrip antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=psi-shaped%20antenna" title=" psi-shaped antenna"> psi-shaped antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20applications" title=" satellite applications"> satellite applications</a> </p> <a href="https://publications.waset.org/abstracts/91475/depiction-of-a-circulated-double-psi-shaped-microstrip-antenna-for-ku-band-satellite-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2442</span> Structural, Optical and Electrical Properties of Gd Doped ZnO Thin Films Prepared by a Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20AL-Shomar">S. M. AL-Shomar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20B.%20Ibrahim"> N. B. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahrim%20Hj.%20Ahmad"> Sahrim Hj. Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZnO thin films with various Gd doping concentration (0, 0.01, 0.03 and 0.05 mol/L) have been synthesized by sol–gel method on quartz substrates at annealing temperature of 600 ºC. X-ray analysis reveals that ZnO(Gd) films have hexagonal wurtzite structure. No peaks that correspond to Gd metal clusters or gadolinium acetylacetonate are detected in the patterns. The position of the main peak (101) shifts to higher angles after doping. The surface morphologies studied using a field emission scanning electron microscope (FESEM) showed that the grain size and the films thickness reduced gradually with the increment of Gd concentration. The roughness of ZnO film investigated by an atomic force microscopy (AFM) showed that the films are smooth and high dense grain. The roughness of doped films decreased from 6.05 to 4.84 rms with the increment of dopant concentration.The optical measurements using a UV-Vis-NIR spectroscopy showed that the Gd doped ZnO thin films have high transmittance (above 80%) in the visible range and the optical band gap increase with doping concentration from 3.13 to 3.39 eV. The doped films show low electrical resistivity 2.6 × 10-3Ω.cm.at high doping concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gd%20doped%20ZnO" title="Gd doped ZnO">Gd doped ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=electric" title=" electric"> electric</a>, <a href="https://publications.waset.org/abstracts/search?q=optics" title=" optics"> optics</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/43667/structural-optical-and-electrical-properties-of-gd-doped-zno-thin-films-prepared-by-a-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2441</span> Simulation Modelling of the Transmission of Concentrated Solar Radiation through Optical Fibres to Thermal Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahou">M. Rahou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Andrews"> A. J. Andrews</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Rosengarten"> G. Rosengarten</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main challenges in high-temperature solar thermal applications transfer concentrated solar radiation to the load with minimum energy loss and maximum overall efficiency. The use of a solar concentrator in conjunction with bundled optical fibres has potential advantages in terms of transmission energy efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. In this paper, a theoretical and computer simulation method is described to estimate the net solar radiation transmission from a solar concentrator into and through optical fibres to a thermal application at the end of the fibres over distances of up to 100 m. A key input to the simulation is the angular distribution of radiation intensity at each point across the aperture plane of the optical fibre. This distribution depends on the optical properties of the solar concentrator, in this case, a parabolic mirror with a small secondary mirror with a common focal point and a point-focus Fresnel lens to give a collimated beam that pass into the optical fibre bundle. Since solar radiation comprises a broad band of wavelengths with very limited spatial coherence over the full range of spectrum only ray tracing models absorption within the fibre and reflections at the interface between core and cladding is employed, assuming no interference between rays. The intensity of the radiation across the exit plane of the fibre is found by integrating across all directions and wavelengths. Results of applying the simulation model to a parabolic concentrator and point-focus Fresnel lens with typical optical fibre bundle will be reported, to show how the energy transmission varies with the length of fibre. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrated%20radiation" title="concentrated radiation">concentrated radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20bundle" title=" fibre bundle"> fibre bundle</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20dish" title=" parabolic dish"> parabolic dish</a>, <a href="https://publications.waset.org/abstracts/search?q=fresnel%20lens" title=" fresnel lens"> fresnel lens</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a> </p> <a href="https://publications.waset.org/abstracts/19298/simulation-modelling-of-the-transmission-of-concentrated-solar-radiation-through-optical-fibres-to-thermal-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2440</span> Theoretical Investigations on Optical Properties of GaFeMnN Quaternary Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Bentounes">H. A. Bentounes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbad"> A. Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Benstaali"> W. Benstaali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using first principles calculations based on the density functional theory and local spin density approximation, we investigate optical properties of GaFeMnN quaternary compound. Results show that optical properties confirm that GaFeMnN can be a good candidate in the design of thin film solar cells in the visible and ultraviolet parts of the spectrum, and a good sensor in the infrared <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN" title="GaN">GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20absorption" title=" optical absorption"> optical absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-metallic" title=" semi-metallic"> semi-metallic</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20function" title=" dielectric function"> dielectric function</a> </p> <a href="https://publications.waset.org/abstracts/10495/theoretical-investigations-on-optical-properties-of-gafemnn-quaternary-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2439</span> Electrochemical Growth and Properties of Cu2O Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Azizi">A. Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Laidoudi"> S. Laidoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Schmerber"> G. Schmerber</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dinia"> A. Dinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cuprous oxide (Cu2O) is a well-known oxide semiconductor with a band gap of 2.1 eV and a natural p-type conductivity, which is an attractive material for device applications because of its abundant availability, non toxicity, and low production cost. It has a higher absorption coefficient in the visible region and the minority carrier diffusion length is also suitable for use as a solar cell absorber layer and it has been explored in junction with n type ZnO for photovoltaic applications. Cu2O nanostructures have been made by a variety of techniques; the electrodeposition method has emerged as one of the most promising processing routes as it is particularly provides advantages such as a low-cost, low temperature and a high level of purity in the products. In this work, Cu2O nanostructures prepared by electrodeposition from aqueous cupric sulfate solution with citric acid at 65°C onto a fluorine doped tin oxide (FTO) coated glass substrates were investigated. The effects of deposition potential on the electrochemical, surface morphology, structural and optical properties of Cu2O thin films were investigated. During cyclic voltammetry experiences, the potential interval where the electrodeposition of Cu2O is carried out was established. The Mott–Schottky (M-S) plot demonstrates that all the films are p-type semiconductors, the flat-band potential and the acceptor density for the Cu2O thin films are determined. AFM images reveal that the applied potential has a very significant influence on the surface morphology and size of the crystallites of thin Cu2O. The XRD measurements indicated that all the obtained films display a Cu2O cubic structure with a strong preferential orientation of the (111) direction. The optical transmission spectra in the UV-Visible domains revealed the highest transmission (75 %), and their calculated gap values increased from 1.93 to 2.24 eV, with increasing potentials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu2O" title="Cu2O">Cu2O</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Mott%E2%80%93Schottky%20plot" title=" Mott–Schottky plot"> Mott–Schottky plot</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/15896/electrochemical-growth-and-properties-of-cu2o-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2438</span> Proximity-Inset Fed Triple Band Antenna for Global Position System with High Gain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=The%20Nan%20Chang">The Nan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping-Tang%20Yu"> Ping-Tang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Ming%20Lin"> Jyun-Ming Lin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A triple band circularly polarized antenna covering 1.17, 1.22, and 1.57 GHz is presented. To extend to the triple-band operation, we need to add one more ring while maintaining the mechanism to independently control each ring. The inset-part in the feeding scheme is used to excite the band at 1.22 GHz, while the proximate-part of the feeding scheme is used to excite not only the band at 1.57 GHz but also the band at 1.17 GHz. This is achieved by up-vertically coupled with one ring to radiate at 1.57 GHz and down-vertically coupled another ring to radiate at 1.17 GHz. It is also noted that the inset-part in our feeding scheme is by horizontal coupling. Furthermore, to increase the gain at all three bands, three air-layers are added to make the total height of the antenna be 7.8 mm. The total thickness of the three air-layers is 3 mm. The gains of the three bands are all greater than 5 dBiC after adding the air-layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20polarization" title="circular polarization">circular polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20position%20system" title=" global position system"> global position system</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20gain" title=" high gain"> high gain</a>, <a href="https://publications.waset.org/abstracts/search?q=triband%20antenna" title=" triband antenna"> triband antenna</a> </p> <a href="https://publications.waset.org/abstracts/91482/proximity-inset-fed-triple-band-antenna-for-global-position-system-with-high-gain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2437</span> Growth and Characterization of Cuprous Oxide (Cu2O) Nanorods by Reactive Ion Beam Sputter Deposition (Ibsd) Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assamen%20Ayalew%20Ejigu">Assamen Ayalew Ejigu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Chiun%20%20Chao"> Liang-Chiun Chao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent semiconductor and nanotechnology, quality material synthesis, proper characterizations, and productions are the big challenges. As cuprous oxide (Cu2O) is a promising semiconductor material for photovoltaic (PV) and other optoelectronic applications, this study was aimed at to grow and characterize high quality Cu2O nanorods for the improvement of the efficiencies of thin film solar cells and other potential applications. In this study, well-structured cuprous oxide (Cu2O) nanorods were successfully fabricated using IBSD method in which the Cu2O samples were grown on silicon substrates with a substrate temperature of 400°C in an IBSD chamber of pressure of 4.5 x 10-5 torr using copper as a target material. Argon, and oxygen gases were used as a sputter and reactive gases, respectively. The characterization of the Cu2O nanorods (NRs) were done in comparison with Cu2O thin film (TF) deposited with the same method but with different Ar:O2 flow rates. With Ar:O2 ratio of 9:1 single phase pure polycrystalline Cu2O NRs with diameter of ~500 nm and length of ~4.5 µm were grow. Increasing the oxygen flow rates, pure single phase polycrystalline Cu2O thin film (TF) was found at Ar:O2 ratio of 6:1. The field emission electron microscope (FE-SEM) measurements showed that both samples have smooth morphologies. X-ray diffraction and Rama scattering measurements reveals the presence of single phase Cu2O in both samples. The differences in Raman scattering and photoluminescence (PL) bands of the two samples were also investigated and the results showed us there are differences in intensities, in number of bands and in band positions. Raman characterization shows that the Cu2O NRs sample has pronounced Raman band intensities, higher numbers of Raman bands than the Cu2O TF which has only one second overtone Raman signal at 2 (217 cm-1). The temperature dependent photoluminescence (PL) spectra measurements, showed that the defect luminescent band centered at 720 nm (1.72 eV) is the dominant one for the Cu2O NRs and the 640 nm (1.937 eV) band was the only PL band observed from the Cu2O TF. The difference in optical and structural properties of the samples comes from the oxygen flow rate change in the process window of the samples deposition. This gave us a roadmap for further investigation of the electrical and other optical properties for the tunable fabrication of the Cu2O nano/micro structured sample for the improvement of the efficiencies of thin film solar cells in addition to other potential applications. Finally, the novel morphologies, excellent structural and optical properties seen exhibits the grown Cu2O NRs sample has enough quality to be used in further research of the nano/micro structured semiconductor materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20levels" title="defect levels">defect levels</a>, <a href="https://publications.waset.org/abstracts/search?q=nanorods" title=" nanorods"> nanorods</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20modes" title=" Raman modes"> Raman modes</a> </p> <a href="https://publications.waset.org/abstracts/58523/growth-and-characterization-of-cuprous-oxide-cu2o-nanorods-by-reactive-ion-beam-sputter-deposition-ibsd-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2436</span> Optimization of a Hand-Fan Shaped Microstrip Patch Antenna by Means of Orthogonal Design Method of Design of Experiments for L-Band and S-Band Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaswinder%20Kaur">Jaswinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitika"> Nitika</a>, <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kaur"> Navneet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Khanna"> Rajesh Khanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hand-fan shaped microstrip patch antenna (MPA) for L-band and S-band applications is designed, and its characteristics have been reconnoitered. The proposed microstrip patch antenna with double U-slot defected ground structure (DGS) is fabricated on an FR4 substrate which is a very readily available and inexpensive material. The suggested antenna is optimized using Orthogonal Design Method (ODM) of Design of Experiments (DOE) to cover the frequency range from 0.91-2.82 GHz for L-band and S-band applications. The L-band covers the frequency range of 1-2 GHz, which is allocated to telemetry, aeronautical, and military systems for passive satellite sensors, weather radars, radio astronomy, and mobile communication. The S-band covers the frequency range of 2-3 GHz, which is used by weather radars, surface ship radars and communication satellites and is also reserved for various wireless applications such as Worldwide Interoperability for Microwave Access (Wi-MAX), super high frequency radio frequency identification (SHF RFID), industrial, scientific and medical bands (ISM), Bluetooth, wireless broadband (Wi-Bro) and wireless local area network (WLAN). The proposed method of optimization is very time efficient and accurate as compared to the conventional evolutionary algorithms due to its statistical strategy. Moreover, the antenna is tested, followed by the comparison of simulated and measured results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title="design of experiments">design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20fan%20shaped%20MPA" title=" hand fan shaped MPA"> hand fan shaped MPA</a>, <a href="https://publications.waset.org/abstracts/search?q=L-Band" title=" L-Band"> L-Band</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20design%20method" title=" orthogonal design method"> orthogonal design method</a>, <a href="https://publications.waset.org/abstracts/search?q=S-Band" title=" S-Band"> S-Band</a> </p> <a href="https://publications.waset.org/abstracts/109582/optimization-of-a-hand-fan-shaped-microstrip-patch-antenna-by-means-of-orthogonal-design-method-of-design-of-experiments-for-l-band-and-s-band-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2435</span> Studies on Physico-Chemical Properties of Indium Sulfide Films Deposited under Different Deposition Conditions by Chemical Bath Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Bansode">S. B. Bansode</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20G.%20Wagh"> V. G. Wagh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Kapadnis"> R. S. Kapadnis</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Kale"> S. S. Kale</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pathan%20Habib"> M. Pathan Habib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indium sulfide films have been deposited using chemical bath deposition onto glass and indium tin oxide coated glass substrates. The influences of different deposition parameters viz. substrate and pH have been studied. The films were characterized by different techniques with respect to their crystal structure, surface morphology and compositional property by means of X-ray diffraction, scanning electron microscopy, Energy dispersive spectroscopy and optical absorption. X-ray diffraction studies revealed that amorphous nature of the films. The scanning electron microscopy of as deposited indium sulfide film on ITO coated glass substrate shows random orientation of grains where as those on glass substrates show dumbbell shape. Optical absorption study revealed that band gap varies from 2.29 to 2.79 eV for the deposited film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20bath%20deposition" title="chemical bath deposition">chemical bath deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20property" title=" structural property"> structural property</a>, <a href="https://publications.waset.org/abstracts/search?q=Indium%20sulfide" title=" Indium sulfide"> Indium sulfide</a> </p> <a href="https://publications.waset.org/abstracts/22295/studies-on-physico-chemical-properties-of-indium-sulfide-films-deposited-under-different-deposition-conditions-by-chemical-bath-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2434</span> Study υ_4 Fundamental Band of 12 CD4 Molecule</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaarour%20Abdelkrim">Kaarour Abdelkrim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouardi%20Okkacha"> Ouardi Okkacha</a>, <a href="https://publications.waset.org/abstracts/search?q=Meskine%20Mohamed"> Meskine Mohamed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the υ_4 fundamental band of 12CD4 molecule has been studied by infrared spectroscopy with high resolution. Using XTDS and SPEVIEW software and the tensor formalism developed by ICB (laboratoire interdisciplinaire de Bourgogne) to several lines have been assigned and fitted with a standard deviation acceptable. This analysis allowed us to calculate several parameters of the molecule 12 CD4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XTDS" title="XTDS">XTDS</a>, <a href="https://publications.waset.org/abstracts/search?q=SPEVIEW" title=" SPEVIEW"> SPEVIEW</a>, <a href="https://publications.waset.org/abstracts/search?q=tetrahedral%20tensorial%20formalism" title=" tetrahedral tensorial formalism"> tetrahedral tensorial formalism</a>, <a href="https://publications.waset.org/abstracts/search?q=rovibrational%20band" title=" rovibrational band "> rovibrational band </a> </p> <a href="https://publications.waset.org/abstracts/19575/study-i-4-fundamental-band-of-12-cd4-molecule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2433</span> Electronic, Magnetic and Optic Properties in Halide Perovskites CsPbX3 (X= F, Cl, I)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouadjemi">B. Bouadjemi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata"> S. Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Lantri"> T. Lantri</a>, <a href="https://publications.waset.org/abstracts/search?q=Souidi%20Amel"> Souidi Amel</a>, <a href="https://publications.waset.org/abstracts/search?q=W.Bensaali"> W.Bensaali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zitouni"> A. Zitouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Aziz"> Z. Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We performed first-principle calculations, the full-potential linearized augmented plane wave (FP-LAPW) method is used to calculate structural, optoelectronic and magnetic properties of cubic halide perovskites CsPbX3 (X= F,I). We employed for this study the GGA approach and for exchange is modeled using the modified Becke-Johnson (mBJ) potential to predicting the accurate band gap of these materials. The optical properties (namely: the real and imaginary parts of dielectric functions, optical conductivities and absorption coefficient absorption make this halide perovskites promising materials for solar cells applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halide%20perovskites" title="halide perovskites">halide perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=mBJ" title=" mBJ"> mBJ</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=FP-LAPW" title=" FP-LAPW"> FP-LAPW</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties" title=" optoelectronic properties"> optoelectronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption%20coefficient" title=" absorption coefficient"> absorption coefficient</a> </p> <a href="https://publications.waset.org/abstracts/46567/electronic-magnetic-and-optic-properties-in-halide-perovskites-cspbx3-x-f-cl-i" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2432</span> Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parvathy%20Anitha">Parvathy Anitha</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilesh%20J.%20Vasa"> Nilesh J. Vasa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Ramachandra%20Rao"> M. S. Ramachandra Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20ablation" title="laser ablation">laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=microcavity" title=" microcavity"> microcavity</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20microsphere" title=" ZnO microsphere"> ZnO microsphere</a> </p> <a href="https://publications.waset.org/abstracts/52451/optical-characterization-of-transition-metal-ion-doped-zno-microspheres-synthesized-via-laser-ablation-in-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2431</span> An Efficient Separation for Convolutive Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Al-Din%20I.%20Badran">Salah Al-Din I. Badran</a>, <a href="https://publications.waset.org/abstracts/search?q=Samad%20Ahmadi"> Samad Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dylan%20Menzies"> Dylan Menzies</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Shahin"> Ismail Shahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a new efficient blind source separation method; in this method we use a non-uniform filter bank and a new structure with different sub-bands. This method provides a reduced permutation and increased convergence speed comparing to the full-band algorithm. Recently, some structures have been suggested to deal with two problems: reducing permutation and increasing the speed of convergence of the adaptive algorithm for correlated input signals. The permutation problem is avoided with the use of adaptive filters of orders less than the full-band adaptive filter, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full-band, and can promote better rates of convergence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blind%20source%20separation" title="Blind source separation">Blind source separation</a>, <a href="https://publications.waset.org/abstracts/search?q=estimates" title=" estimates"> estimates</a>, <a href="https://publications.waset.org/abstracts/search?q=full-band" title=" full-band"> full-band</a>, <a href="https://publications.waset.org/abstracts/search?q=mixtures" title=" mixtures"> mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-band" title=" sub-band"> sub-band</a> </p> <a href="https://publications.waset.org/abstracts/8254/an-efficient-separation-for-convolutive-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2430</span> Effect of Boric Acid Content on the Structural and Optical Properties of In2O3 Films Prepared by Spray Pyrolysis Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20%C3%96ztas">Mustafa Öztas</a>, <a href="https://publications.waset.org/abstracts/search?q=Metin%20Bedir"> Metin Bedir</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20%C3%96zdemir"> Yahya Özdemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron doped of In2O3 films were prepared by spray pyrolysis technique at 350 °C substrate temperature, which is a low cost and large area technique to be well-suited for the manufacture of solar cells, using boric acid (H3BO3) as dopant source, and their properties were investigated as a function of doping concentration. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal structure and have preferred orientation in (220) direction. The changes observed in the energy band gap and structural properties of the films related to the boric acid concentration are discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spray%20pyrolysis" title="spray pyrolysis">spray pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=In2O3" title=" In2O3"> In2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=boric%20acid" title=" boric acid"> boric acid</a> </p> <a href="https://publications.waset.org/abstracts/28202/effect-of-boric-acid-content-on-the-structural-and-optical-properties-of-in2o3-films-prepared-by-spray-pyrolysis-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2429</span> Effect of Annealing on Electrodeposited ZnTe Thin Films in Non-Aqueous Medium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shyam%20Ranjan%20Kumar">Shyam Ranjan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashikant%20Rajpal"> Shashikant Rajpal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material. This semiconducting material has several applications in sensors, photo-electrochemical devices and photovoltaic solar cell. In this study, Zinc telluride (ZnTe) thin films were deposited on nickel substrate by electrodeposition technique using potentiostat/galvanostat at -0.85 V using AR grade of Zinc Chloride (ZnCl2), Tellurium Tetrachloride (TeCl4) in non-aqueous bath. The developed films were physically stable and showed good adhesion. The as deposited ZnTe films were annealed at 400ºC in air. The solid state properties and optical properties of the as deposited and annealed films were carried out by XRD, EDS, SEM, AFM, UV–Visible spectrophotometer, and photoluminescence spectrophotometer. The diffraction peak observed at 2θ = 49.58° with (111) plane indicate the crystalline nature of ZnTe film. Annealing improves the crystalline nature of the film. Compositional analysis reveals the presence of Zn and Te with tellurium rich ZnTe film. SEM photograph at 10000X shows that grains of film are spherical in nature and densely distributed over the surface. The average roughness of the film is measured by atomic force microscopy and it is nearly equal to 60 nm. The direct wide band gap of 2.12 eV is observed by UV-Vis spectroscopy. Luminescence peak of the ZnTe films are also observed in as deposited and annealed case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annealing" title="annealing">annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnTe" title=" ZnTe"> ZnTe</a> </p> <a href="https://publications.waset.org/abstracts/72525/effect-of-annealing-on-electrodeposited-znte-thin-films-in-non-aqueous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2428</span> Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nidhi%20Sharotri">Nidhi Sharotri</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhiraj%20Sud"> Dhiraj Sud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quinalphos" title="quinalphos">quinalphos</a>, <a href="https://publications.waset.org/abstracts/search?q=doped-TiO2" title=" doped-TiO2"> doped-TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization" title=" mineralization"> mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=EPR" title=" EPR"> EPR</a> </p> <a href="https://publications.waset.org/abstracts/31553/synthesized-doped-tio2-photocatalysts-for-mineralization-of-quinalphos-from-aqueous-streams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2427</span> Photoluminescence and Spectroscopic Studies of Tm3+ Ions Doped Lead Tungsten Tellurite Glasses for Visible Red and Near-Ir Laser Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Venkateswarlu">M. Venkateswarlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Allam"> Srinivasa Rao Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Mahamuda"> S. K. Mahamuda</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Swapna"> K. Swapna</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vijaya%20Prakash"> G. Vijaya Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Tm3+ ions were prepared by using melt quenching technique and characterized through optical absorption, photoluminescence and decay spectral studies to know the feasibility of using these glasses as luminescent devices in visible Red and NIR regions. By using optical absorption spectral data, the energy band gaps for all the glasses were evaluated and were found to be in the range of 2.34-2.59 eV; which is very useful for the construction of optical devices. Judd-Ofelt (J-O)theory has been applied to the optical absorption spectral profiles to calculate the J-O intensity parameters Ωλ (λ=2, 4 and 6) and consecutively used to evaluate various radiative properties such as radiative transition probability (AR), radiative lifetimes (τ_R) and branching ratios (β_R) for the prominent luminescent levels. The luminescence spectra for all the LTT glass samples have shown two intense peaks in bright red and Near Infrared regions at 650 nm (1G4→3F4) and 800 nm (3H4→3H6) respectively for which effective bandwidths (〖Δλ〗_P), experimental branching ratios (β_exp) and stimulated emission cross-sections (σ_se) are evaluated. The decay profiles for all the glasses were also recorded to measure the quantum efficiency of the prepared LTT glasses by coupling the radiative and experimental lifetimes. From the measured emission cross-sections, quantum efficiency and CIE chromaticity coordinates, it was found that 0.5 mol% of Tm3+ ions doped LTT glass is most suitable for generating bright visible red and NIR lasers to operate at 650 and 800 nm respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=JO%20parameters" title=" JO parameters"> JO parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20materials" title=" optical materials"> optical materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thullium" title=" thullium"> thullium</a> </p> <a href="https://publications.waset.org/abstracts/47260/photoluminescence-and-spectroscopic-studies-of-tm3-ions-doped-lead-tungsten-tellurite-glasses-for-visible-red-and-near-ir-laser-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2426</span> Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposites Free Standing Film </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pandiyarajan%20Thangaraj">Pandiyarajan Thangaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Mangalaraja%20Ramalinga%20Viswanathan"> Mangalaraja Ramalinga Viswanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Karthikeyan%20Balasubramanian"> Karthikeyan Balasubramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9ctor%20D.%20Mansilla"> Héctor D. Mansilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ruiz"> José Ruiz</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Contreras"> David Contreras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a systematic study of structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films are performed. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method, confirms that the prepared pure ZnO and Pr-doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in the sheet-like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr-doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO" title="Pr doped ZnO">Pr doped ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposites" title=" polymer nanocomposites"> polymer nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20standing%20film" title=" free standing film "> free standing film </a> </p> <a href="https://publications.waset.org/abstracts/13307/structural-and-optical-properties-of-pr3-doped-zno-and-pvazn98pr2o-nanocomposites-free-standing-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2425</span> Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Arun%20Prakash">S. Arun Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Malathi"> V. Malathi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mani%20Rajan"> M. S. Mani Rajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analytical bright two soliton solution of the 3-coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20soliton" title="optical soliton">optical soliton</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20interaction" title=" soliton interaction"> soliton interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20switching" title=" soliton switching"> soliton switching</a>, <a href="https://publications.waset.org/abstracts/search?q=WDM" title=" WDM"> WDM</a> </p> <a href="https://publications.waset.org/abstracts/37276/soliton-interaction-in-multi-core-optical-fiber-application-to-wdm-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2424</span> A Case Study on Tension Drop of Cable-band Bolts in Suspension Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sihyun%20Park">Sihyun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunwoo%20Kim"> Hyunwoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wooyoung%20Jung"> Wooyoung Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongwoo%20You"> Dongwoo You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regular maintenance works are very important on the axial forces of the cable-band bolts in suspension bridges. The band bolts show stress reduction for several reasons, including cable wire creep, the bolt relaxation, load fluctuation and cable rearrangements, etc., with time. In this study, with respect to the stress reduction that occurs over time, we carried out the theoretical review of the main cause based on the field measurements. As a result, the main cause of reduction in the cable-band bolt axial force was confirmed by the plastic deformation of the zinc plating layer used in the main cable wire, and thus, the theoretical process was established for the practical use in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cable-band%20Bolts" title="cable-band Bolts">cable-band Bolts</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20test" title=" field test"> field test</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20reduction" title=" stress reduction"> stress reduction</a> </p> <a href="https://publications.waset.org/abstracts/36196/a-case-study-on-tension-drop-of-cable-band-bolts-in-suspension-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2423</span> The Effect of Aluminum Oxide Nanoparticles on the Optical Properties of (PVP-PEG) Blend</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Hakim">Hussein Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Al-Ramadhan"> Zainab Al-Ramadhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hashim"> Ahmed Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer nano composites of polyvinylpyrrolidone and poly-ethylene glycol with different concentrations of aluminum oxide (Al2O3) nano particles have been prepared by solution cast method. The optical characterizations have been done by analyzing the absorption (A) spectra in the 300–800 nm spectral region. It was found that the optical energy gap decreases with the increasing of Al2O3 nano particles content. The optical constants (refractive index, extinction coefficient, real and imaginary parts of the dielectric constant) are changing with increasing aluminum oxide nano particle concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinylpyrrolidone" title=" polyvinylpyrrolidone"> polyvinylpyrrolidone</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20constants" title=" optical constants"> optical constants</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=blend" title=" blend"> blend</a> </p> <a href="https://publications.waset.org/abstracts/32971/the-effect-of-aluminum-oxide-nanoparticles-on-the-optical-properties-of-pvp-peg-blend" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2422</span> Semiconductor Device of Tapered Waveguide for Broadband Optical Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keita%20Iwai">Keita Iwai</a>, <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita"> Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To expand the optical spectrum for use in broadband optical communications, we study the properties of a semiconductor waveguide device with a tapered structure including its third-order optical nonlinearity. Spectral-broadened output by the tapered structure has the potential to create a compact, built-in device for optical communications. Here we deal with a compound semiconductor waveguide, the material of which is the same as that of laser diodes used in the communication systems, i.e., InₓGa₁₋ₓAsᵧP₁₋ᵧ, which has large optical nonlinearity. We confirm that our structure widens the output spectrum sufficiently by controlling its taper form factor while utilizing the large nonlinear refraction of InₓGa₁₋ₓAsᵧP₁₋ᵧ. We also examine the taper effect for nonlinear optical loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%E2%82%93Ga%E2%82%81%E2%82%8B%E2%82%93As%E1%B5%A7P%E2%82%81%E2%82%8B%E1%B5%A7" title="InₓGa₁₋ₓAsᵧP₁₋ᵧ">InₓGa₁₋ₓAsᵧP₁₋ᵧ</a>, <a href="https://publications.waset.org/abstracts/search?q=waveguide" title=" waveguide"> waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20refraction" title=" nonlinear refraction"> nonlinear refraction</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20spreading" title=" spectral spreading"> spectral spreading</a>, <a href="https://publications.waset.org/abstracts/search?q=taper%20device" title=" taper device"> taper device</a> </p> <a href="https://publications.waset.org/abstracts/143322/semiconductor-device-of-tapered-waveguide-for-broadband-optical-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2421</span> Design of Compact Dual-Band Planar Antenna for WLAN Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kumar%20Pandey">Anil Kumar Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 &times;12 mm<sup>2</sup>. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18&times;12&times;1.6 mm<sup>3</sup> is designed on an FR4 substrate with a dielectric constant of 4.4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CPW%20antenna" title="CPW antenna">CPW antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-band" title=" dual-band"> dual-band</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20simulation" title=" electromagnetic simulation"> electromagnetic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20local%20area%20network%20%28WLAN%29" title=" wireless local area network (WLAN)"> wireless local area network (WLAN)</a> </p> <a href="https://publications.waset.org/abstracts/85699/design-of-compact-dual-band-planar-antenna-for-wlan-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=3" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=3">3</a></li> <li class="page-item active"><span class="page-link">4</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=84">84</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap&amp;page=5" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10