CINXE.COM
Search results for: semiconductor laser
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: semiconductor laser</title> <meta name="description" content="Search results for: semiconductor laser"> <meta name="keywords" content="semiconductor laser"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="semiconductor laser" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="semiconductor laser"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1241</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: semiconductor laser</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1241</span> Synchronization of Semiconductor Laser Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20L%C3%B3pez-Guti%C3%A9rrez">R. M. López-Gutiérrez</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Cardoza-Avenda%C3%B1o"> L. Cardoza-Avendaño</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Cervantes-de%20%C3%81vila"> H. Cervantes-de Ávila</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Michel-Macarty"> J. A. Michel-Macarty</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Cruz-Hern%C3%A1ndez"> C. Cruz-Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Arellano-Delgado"> A. Arellano-Delgado</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Carmona-Rodr%C3%ADguez"> R. Carmona-Rodríguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, synchronization of multiple chaotic semiconductor lasers is achieved by appealing to complex system theory. In particular, we consider dynamical networks composed by semiconductor laser, as interconnected nodes, where the interaction in the networks are defined by coupling the first state of each node. An interesting case is synchronized with master-slave configuration in star topology. Nodes of these networks are modeled for the laser and simulated by Matlab. These results are applicable to private communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaotic%20laser" title="chaotic laser">chaotic laser</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=star%20topology" title=" star topology"> star topology</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a> </p> <a href="https://publications.waset.org/abstracts/34528/synchronization-of-semiconductor-laser-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1240</span> Influence of Strong Optical Feedback on Frequency Chirp and Lineshape Broadening in High-Speed Semiconductor Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Ahmed">Moustafa Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumio%20Koyama"> Fumio Koyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Directly-modulated semiconductor lasers, including edge-emitting and vertical-cavity surface-emitting lasers, have received considerable interest recently for use in data transmitters in cost-effective high-speed data centers, metro, and access networks. Optical feedback has been proved as an efficient technique to boost the modulation bandwidth and enhance the speed of the semiconductor laser. However, both the laser linewidth and frequency chirping in directly-modulated lasers are sensitive to both intensity modulation and optical feedback. These effects along width fiber dispersion affect the transmission bit rate and distance in single-mode fiber links. In this work, we continue our recent research on directly-modulated semiconductor lasers with modulation bandwidth in the millimeter-wave band by introducing simultaneous modeling and simulations on both the frequency chirping and lineshape broadening. The lasers are operating under strong optical feedback. The model takes into account the multiple reflections of laser reflections of laser radiation in the external cavity. The analyses are given in terms of the chirp-to-modulated power ratio, and the results are shown for the possible dynamic states of continuous wave, period-1 oscillation, and chaos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chirp" title="chirp">chirp</a>, <a href="https://publications.waset.org/abstracts/search?q=linewidth" title=" linewidth"> linewidth</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20feedback" title=" optical feedback"> optical feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser" title=" semiconductor laser"> semiconductor laser</a> </p> <a href="https://publications.waset.org/abstracts/79640/influence-of-strong-optical-feedback-on-frequency-chirp-and-lineshape-broadening-in-high-speed-semiconductor-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1239</span> Study of a Fabry-Perot Resonator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Hadjaj">F. Hadjaj</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belghachi"> A. Belghachi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Halmaoui"> A. Halmaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belhadj"> M. Belhadj</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mazouz"> H. Mazouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A laser is essentially an optical oscillator consisting of a resonant cavity, an amplifying medium and a pumping source. In semiconductor diode lasers, the cavity is created by the boundary between the cleaved face of the semiconductor crystal and air and also has reflective properties as a result of the differing refractive indices of the two media. For a GaAs-air interface a reflectance of 0.3 is typical and therefore the length of the semiconductor junction forms the resonant cavity. To prevent light, being emitted in unwanted directions from the junction and Sides perpendicular to the required direction are roughened. The objective of this work is to simulate the optical resonator Fabry-Perot and explore its main characteristics, such as FSR, Finesse, Linewidth, Transmission and so on that describe the performance of resonator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabry-Perot%20Resonator" title="Fabry-Perot Resonator">Fabry-Perot Resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20diod" title=" laser diod"> laser diod</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectance" title=" reflectance"> reflectance</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor "> semiconductor </a> </p> <a href="https://publications.waset.org/abstracts/4422/study-of-a-fabry-perot-resonator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1238</span> Semiconductor Variable Wavelength Generator of Near-Infrared-to-Terahertz Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita">Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power characteristics are obtained for laser beams of near-infrared and terahertz wavelengths when produced by difference-frequency generation with a quasi-phase-matched (QPM) waveguide made of gallium phosphide (GaP). A refractive-index change of the QPM GaP waveguide is included in computations with Sellmeier’s formula for varying input wavelengths, where optical loss is also included. Although the output power decreases with decreasing photon energy as the beam wavelength changes from near-infrared to terahertz wavelengths, the beam generation with such greatly different wavelengths, which is not achievable with an ordinary laser diode without the replacement of semiconductor material with a different bandgap one, can be made with the same semiconductor (GaP) by changing the QPM period, where a way of changing the period is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=difference-frequency%20generation" title="difference-frequency generation">difference-frequency generation</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium%20phosphide" title=" gallium phosphide"> gallium phosphide</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-phase-matching" title=" quasi-phase-matching"> quasi-phase-matching</a>, <a href="https://publications.waset.org/abstracts/search?q=waveguide" title=" waveguide"> waveguide</a> </p> <a href="https://publications.waset.org/abstracts/145853/semiconductor-variable-wavelength-generator-of-near-infrared-to-terahertz-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1237</span> Characterization of InP Semiconductor Quantum Dot Laser Diode after Am-Be Neutron Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmalek%20Marwan%20Rajkhan">Abdulmalek Marwan Rajkhan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Al%20Ghamdi"> M. S. Al Ghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Damoum"> Mohammed Damoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20Banoqitah"> Essam Banoqitah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is about the Am-Be neutron source irradiation of the InP Quantum Dot Laser diode. A QD LD was irradiated for 24 hours and 48 hours. The laser underwent IV characterization experiments before and after the first and second irradiations. A computer simulation using GAMOS helped in analyzing the given results from IV curves. The results showed an improvement in the QD LD series resistance, current density, and overall ideality factor at all measured temperatures. This is explained by the activation of the QD LD Indium composition to Strontium, ionization of the compound QD LD materials, and the energy deposited to the QD LD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot%20laser%20diode%20irradiation" title="quantum dot laser diode irradiation">quantum dot laser diode irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20radiation%20on%20QD%20LD" title=" effect of radiation on QD LD"> effect of radiation on QD LD</a>, <a href="https://publications.waset.org/abstracts/search?q=Am-Be%20irradiation%20effect%20on%20SC%20QD%20LD" title=" Am-Be irradiation effect on SC QD LD"> Am-Be irradiation effect on SC QD LD</a> </p> <a href="https://publications.waset.org/abstracts/178642/characterization-of-inp-semiconductor-quantum-dot-laser-diode-after-am-be-neutron-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1236</span> Application of Strong Optical Feedback to Enhance the Modulation Bandwidth of Semiconductor Lasers to the Millimeter-Wave Band</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Ahmed">Moustafa Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Bakry"> Ahmed Bakry</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumio%20Koyama"> Fumio Koyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report on the use of strong external optical feedback to enhance the modulation response of semiconductor lasers over a frequency passband around modulation frequencies higher than 60 GHz. We show that this modulation enhancement is a type of photon-photon resonance (PPR) of oscillating modes in the external cavity formed between the laser and the external reflector. The study is based on a time-delay rate equation model that takes into account both the strong feedback and multiple reflections in the external cavity. We examine the harmonic and intermodulation distortions associated with single and two-tone modulations in the mm-wave band of the resonant modulation. We show that compared with solitary lasers modulated around the carrier-photon resonance frequency, the present mm-wave modulated signal has lower distortions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser" title="semiconductor laser">semiconductor laser</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20feedback" title=" optical feedback"> optical feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation" title=" modulation"> modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20distortion" title=" harmonic distortion"> harmonic distortion</a> </p> <a href="https://publications.waset.org/abstracts/10588/application-of-strong-optical-feedback-to-enhance-the-modulation-bandwidth-of-semiconductor-lasers-to-the-millimeter-wave-band" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">747</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1235</span> All-Silicon Raman Laser with Quasi-Phase-Matched Structures and Resonators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita">Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The principle of all-silicon Raman lasers for an output wavelength of 1.3 μm is presented, which employs quasi-phase-matched structures and resonators to enhance the output power. 1.3-μm laser beams for GE-PONs in FTTH systems generated from a silicon device are very important because such a silicon device can be monolithically integrated with the silicon planar lightwave circuits (Si PLCs) used in the GE-PONs. This reduces the device fabrication processes and time and also optical losses at the junctions between optical waveguides of the Si PLCs and Si laser devices when compared with 1.3-μm III-V semiconductor lasers set on the Si PLCs employed at present. We show that the quasi-phase-matched Si Raman laser with resonators can produce about 174 times larger laser power at 1.3 μm (at maximum) than that without resonators for a Si waveguide of Raman gain 20 cm/GW and optical loss 1.2 dB/cm, pumped at power 10 mW, where the length of the waveguide is 3 mm and its cross-section is (1.5 μm)2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=All-Silicon%20Raman%20Laser" title="All-Silicon Raman Laser">All-Silicon Raman Laser</a>, <a href="https://publications.waset.org/abstracts/search?q=FTTH" title=" FTTH"> FTTH</a>, <a href="https://publications.waset.org/abstracts/search?q=GE-PON" title=" GE-PON"> GE-PON</a>, <a href="https://publications.waset.org/abstracts/search?q=Quasi-Phase-Matched%20Structure" title=" Quasi-Phase-Matched Structure"> Quasi-Phase-Matched Structure</a>, <a href="https://publications.waset.org/abstracts/search?q=resonator" title=" resonator"> resonator</a> </p> <a href="https://publications.waset.org/abstracts/63334/all-silicon-raman-laser-with-quasi-phase-matched-structures-and-resonators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1234</span> Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pham%20Ngoc%20Thang">Pham Ngoc Thang</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Thai%20Hung"> Le Thai Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Quang%20Bau"> Nguyen Quang Bau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number <em>m</em> characterizing the effect of confined acoustic phonons. When <em>m</em> goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the <em>GaAs:Si/GaAs:Be </em>DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubnikov%E2%80%93de%20Haas%20magnetoresistance%20oscillations" title="Shubnikov–de Haas magnetoresistance oscillations">Shubnikov–de Haas magnetoresistance oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20kinetic%20equation" title=" quantum kinetic equation"> quantum kinetic equation</a>, <a href="https://publications.waset.org/abstracts/search?q=confined%20acoustic%20phonons" title=" confined acoustic phonons"> confined acoustic phonons</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20radiation" title=" laser radiation"> laser radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=doped%20semiconductor%20superlattices" title=" doped semiconductor superlattices"> doped semiconductor superlattices</a> </p> <a href="https://publications.waset.org/abstracts/74969/influence-of-confined-acoustic-phonons-on-the-shubnikov-de-haas-magnetoresistance-oscillations-in-a-doped-semiconductor-superlattice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1233</span> 3D Writing on Photosensitive Glass-Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Busuioc">C. Busuioc</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Jinga"> S. Jinga</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Pavel"> E. Pavel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical lithography is a key technique in the development of sub-5 nm patterns for the semiconductor industry. We have already reported that the best results obtained with respect to direct laser writing process on active media, such as glass-ceramics, are achieved only when the energy of the laser radiation is absorbed in discrete quantities. Further, we need to clarify the role of active centers concentration in silver nanocrystals natural generation, as well as in fluorescent rare-earth nanostructures formation. As a consequence, samples with different compositions were prepared. SEM, AFM, TEM and STEM investigations were employed in order to demonstrate that few nm width lines can be written on fluorescent photosensitive glass-ceramics, these being efficient absorbers. Moreover, we believe that the experimental data will lead to the best choice in terms of active centers amount, laser power and glass-ceramic matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass-ceramics" title="glass-ceramics">glass-ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20laser%20writing" title=" 3D laser writing"> 3D laser writing</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20disks" title=" optical disks"> optical disks</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20storage" title=" data storage"> data storage</a> </p> <a href="https://publications.waset.org/abstracts/44556/3d-writing-on-photosensitive-glass-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1232</span> Development of Noninvasive Method to Analyze Dynamic Changes of Matrix Stiffness and Elasticity Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Petersen">Elena Petersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Inna%20Kornienko"> Inna Kornienko</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Guryeva"> Svetlana Guryeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Dobdin"> Sergey Dobdin</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatoly%20Skripal"> Anatoly Skripal</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Usanov"> Andrey Usanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Usanov"> Dmitry Usanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important unsolved problems in modern medicine is the increase of chronic diseases that lead to organ dysfunction or even complete loss of function. Current methods of treatment do not result in decreased mortality and disability statistics. Currently, the best treatment for many patients is still transplantation of organs and/or tissues. Therefore, finding a way of correct artificial matrix biofabrication in case of limited number of natural organs for transplantation is a critical task. One important problem that needs to be solved is development of a nondestructive and noninvasive method to analyze dynamic changes of mechanical characteristics of a matrix with minimal side effects on the growing cells. This research was focused on investigating the properties of matrix as a marker of graft condition. In this study, the collagen gel with human primary dermal fibroblasts in suspension (60, 120, 240*103 cells/mL) and collagen gel with cell spheroids were used as model objects. The stiffness and elasticity characteristics were evaluated by a semiconductor laser autodyne. The time and cell concentration dependency of the stiffness and elasticity were investigated. It was shown that these properties changed in a non-linear manner with respect to cell concentration. The maximum matrix stiffness was observed in the collagen gel with the cell concentration of 120*103 cells/mL. This study proved the opportunity to use the mechanical properties of matrix as a marker of graft condition, which can be measured by noninvasive semiconductor laser autodyne technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graft" title="graft">graft</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=noninvasive%20method" title=" noninvasive method"> noninvasive method</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20medicine" title=" regenerative medicine"> regenerative medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser%20autodyne" title=" semiconductor laser autodyne"> semiconductor laser autodyne</a> </p> <a href="https://publications.waset.org/abstracts/65673/development-of-noninvasive-method-to-analyze-dynamic-changes-of-matrix-stiffness-and-elasticity-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1231</span> Semiconductor Device of Tapered Waveguide for Broadband Optical Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keita%20Iwai">Keita Iwai</a>, <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita"> Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To expand the optical spectrum for use in broadband optical communications, we study the properties of a semiconductor waveguide device with a tapered structure including its third-order optical nonlinearity. Spectral-broadened output by the tapered structure has the potential to create a compact, built-in device for optical communications. Here we deal with a compound semiconductor waveguide, the material of which is the same as that of laser diodes used in the communication systems, i.e., InₓGa₁₋ₓAsᵧP₁₋ᵧ, which has large optical nonlinearity. We confirm that our structure widens the output spectrum sufficiently by controlling its taper form factor while utilizing the large nonlinear refraction of InₓGa₁₋ₓAsᵧP₁₋ᵧ. We also examine the taper effect for nonlinear optical loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%E2%82%93Ga%E2%82%81%E2%82%8B%E2%82%93As%E1%B5%A7P%E2%82%81%E2%82%8B%E1%B5%A7" title="InₓGa₁₋ₓAsᵧP₁₋ᵧ">InₓGa₁₋ₓAsᵧP₁₋ᵧ</a>, <a href="https://publications.waset.org/abstracts/search?q=waveguide" title=" waveguide"> waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20refraction" title=" nonlinear refraction"> nonlinear refraction</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20spreading" title=" spectral spreading"> spectral spreading</a>, <a href="https://publications.waset.org/abstracts/search?q=taper%20device" title=" taper device"> taper device</a> </p> <a href="https://publications.waset.org/abstracts/143322/semiconductor-device-of-tapered-waveguide-for-broadband-optical-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1230</span> Wobbled Laser Beam Welding for Macro-to Micro-Fabrication Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Vakili-Farahani">Farzad Vakili-Farahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Joern%20Lungershausen"> Joern Lungershausen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kilian%20Wasmer"> Kilian Wasmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wobbled laser beam welding, fast oscillations of a tiny laser beam within a designed path (weld geometry) during the laser pulse illumination, opens new possibilities to improve the marco-to micro-manufacturing process. The present work introduces the wobbled laser beam welding as a robust welding strategy for improving macro-to micro-fabrication process, e.g., the laser processing for gap-bridging and packaging industry. The typical requisites and relevant equipment for the development of a wobbled laser processing unit are addressed, including a suitable laser source, light delivery system, optics, proper beam deflection system and the design geometry. In addition, experiments have been carried out on titanium plate to compare the results of wobbled laser welding with conventional pulsed laser welding. As compared to the pulsed laser welding, the wobbled laser welding offers a much greater fusion area (i.e. additional molten material) while minimizing the HAZ and provides a better confinement of the material microstructural changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wobbled%20laser%20beam%20welding" title="wobbled laser beam welding">wobbled laser beam welding</a>, <a href="https://publications.waset.org/abstracts/search?q=wobbling%20function" title=" wobbling function"> wobbling function</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20oscillation" title=" beam oscillation"> beam oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20welding" title=" micro welding"> micro welding</a> </p> <a href="https://publications.waset.org/abstracts/56603/wobbled-laser-beam-welding-for-macro-to-micro-fabrication-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1229</span> Barrier Lowering in Contacts between Graphene and Semiconductor Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Dong">Zhipeng Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Guo"> Jing Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene-semiconductor contacts have been extensively studied recently, both as a stand-alone diode device for potential applications in photodetectors and solar cells, and as a building block to vertical transistors. Graphene is a two-dimensional nanomaterial with vanishing density-of-states at the Dirac point, which differs from conventional metal. In this work, image-charge-induced barrier lowering (BL) in graphene-semiconductor contacts is studied and compared to that in metal Schottky contacts. The results show that despite of being a semimetal with vanishing density-of-states at the Dirac point, the image-charge-induced BL is significant. The BL value can be over 50% of that of metal contacts even in an intrinsic graphene contacted to an organic semiconductor, and it increases as the graphene doping increases. The dependences of the BL on the electric field and semiconductor dielectric constant are examined, and an empirical expression for estimating the image-charge-induced BL in graphene-semiconductor contacts is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials" title=" semiconductor materials"> semiconductor materials</a>, <a href="https://publications.waset.org/abstracts/search?q=schottky%20barrier" title=" schottky barrier"> schottky barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20charge" title=" image charge"> image charge</a>, <a href="https://publications.waset.org/abstracts/search?q=contacts" title=" contacts "> contacts </a> </p> <a href="https://publications.waset.org/abstracts/69844/barrier-lowering-in-contacts-between-graphene-and-semiconductor-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1228</span> Laser Beam Bending via Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yildirim">Remzi Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih.%20V.%20%C3%87elebi"> Fatih. V. Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haldun%20G%C3%B6kta%C5%9F"> H. Haldun Göktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Behzat%20%C5%9Eahin"> A. Behzat Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a> </p> <a href="https://publications.waset.org/abstracts/22254/laser-beam-bending-via-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1227</span> Laser Light Bending via Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yildirim">Remzi Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20V.%20%C3%87elebi"> Fatih V. Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haldun%20G%C3%B6kta%C5%9F"> H. Haldun Göktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Behzat%20%C5%9Eahin"> A. Behzat Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a> </p> <a href="https://publications.waset.org/abstracts/22251/laser-light-bending-via-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">702</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1226</span> Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Bakry">Ahmed Bakry</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Ahmed"> Moustafa Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We model and simulate the combined effect of fiber dispersion and frequency chirp of a directly modulated high-speed laser diode on the figures of merit of a non-amplified 40-Gbps optical fiber link. We consider both the return to zero (RZ) and non-return to zero (NRZ) patterns of the pseudorandom modulation bits. The performance of the fiber communication system is assessed by the fiber-length limitation due to the fiber dispersion. We study the influence of replacing standard single-mode fibers by non-zero dispersion-shifted fibers on the maximum fiber length and evaluate the associated power penalty. We introduce new dispersion tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps optical fiber links. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bit%20error%20rate" title="bit error rate">bit error rate</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20chirp" title=" frequency chirp"> frequency chirp</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20communications" title=" fiber communications"> fiber communications</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser" title=" semiconductor laser"> semiconductor laser</a> </p> <a href="https://publications.waset.org/abstracts/10587/influence-of-chirp-of-high-speed-laser-diodes-and-fiber-dispersion-on-performance-of-non-amplified-40-gbps-optical-fiber-links" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">641</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1225</span> Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhasisa%20Nath">Subhasisa Nath</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Waugh"> David Waugh</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Ormondroyd"> Graham Ormondroyd</a>, <a href="https://publications.waset.org/abstracts/search?q=Morwenna%20Spear"> Morwenna Spear</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Pitman"> Andy Pitman</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Mason"> Paul Mason</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20Laser" title="CO2 Laser">CO2 Laser</a>, <a href="https://publications.waset.org/abstracts/search?q=Nd%3A%20YAG%20laser" title=" Nd: YAG laser"> Nd: YAG laser</a>, <a href="https://publications.waset.org/abstracts/search?q=incision" title=" incision"> incision</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a>, <a href="https://publications.waset.org/abstracts/search?q=hole%20characteristics" title=" hole characteristics"> hole characteristics</a> </p> <a href="https://publications.waset.org/abstracts/138450/hole-characteristics-of-percussion-and-single-pulse-laser-incised-radiata-pine-and-the-effects-of-wood-anatomy-on-laser-incision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1224</span> Enhancing of Laser Imaging by Using Ultrasound Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayder%20Raad%20Hafuze">Hayder Raad Hafuze</a>, <a href="https://publications.waset.org/abstracts/search?q=Munqith%20Saleem%20Dawood"> Munqith Saleem Dawood</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Abdul%20Jabbar"> Jamal Abdul Jabbar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of using both ultrasounds with laser in medical imaging of the biological tissue has been studied in this paper. Different wave lengths of incident laser light (405 nm, 532 nm, 650 nm, 808 nm and 1064 nm) were used with different ultrasound frequencies (1MHz and 3.3MHz). The results showed that, the change of acoustic intensity enhance the laser penetration of the tissue for different thickness. The existence of the ideal Raman-Nath diffraction pattern were investigated in terms of phase delay and incident angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tissue" title="tissue">tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=effect" title=" effect"> effect</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging "> imaging </a> </p> <a href="https://publications.waset.org/abstracts/45517/enhancing-of-laser-imaging-by-using-ultrasound-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1223</span> Radiation Hardness Materials Article Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Abou%20El-Azm">S. Abou El-Azm</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Kruchonak"> U. Kruchonak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gostkin"> M. Gostkin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guskov"> A. Guskov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zhemchugov"> A. Zhemchugov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semiconductor detectors are widely used in nuclear physics and high-energy physics experiments. The application of semiconductor detectors could be limited by their ultimate radiation resistance. The increase of radiation defects concentration leads to significant degradation of the working parameters of semiconductor detectors. The investigation of radiation defects properties in order to enhance the radiation hardness of semiconductor detectors is an important task for the successful implementation of a number of nuclear physics experiments; we presented some information about radiation hardness materials like diamond, sapphire and CdTe. Also, the results of measurements I-V characteristics, charge collection efficiency and its dependence on the bias voltage for different doses of high resistivity (GaAs: Cr) and Si at LINAC-200 accelerator and reactor IBR-2 are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20detectors" title="semiconductor detectors">semiconductor detectors</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20hardness" title=" radiation hardness"> radiation hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=Si" title=" Si"> Si</a>, <a href="https://publications.waset.org/abstracts/search?q=CCE" title=" CCE"> CCE</a>, <a href="https://publications.waset.org/abstracts/search?q=I-V" title=" I-V"> I-V</a>, <a href="https://publications.waset.org/abstracts/search?q=C-V" title=" C-V"> C-V</a> </p> <a href="https://publications.waset.org/abstracts/146949/radiation-hardness-materials-article-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1222</span> Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hassani">M. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hassani"> Y. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ajudanioskooei"> N. Ajudanioskooei</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Benvid"> N. N. Benvid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20angle" title=" bending angle"> bending angle</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20forming" title=" laser forming"> laser forming</a> </p> <a href="https://publications.waset.org/abstracts/34045/comparative-study-of-bending-angle-in-laser-forming-process-using-artificial-neural-network-and-fuzzy-logic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1221</span> Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita">Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection of environmental gases, 12CO_2, 13CO_2, and CH_4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO_2 of a 3-% CO_2 gas at 2 um with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO_2 peaks. In addition, the detection of 12CO_2 peaks of a 385-ppm (0.0385-%) CO_2 gas in the air is made at 2 um with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH_4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH_4 in a small area are attempted. For a 100-% CH_4 gas trapped in a 1 mm^3 glass container, the absorption peaks of CH_4 are obtained at 1.65 um with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20gases" title="environmental gases">environmental gases</a>, <a href="https://publications.waset.org/abstracts/search?q=Near-Infrared%20Laser%20Detection" title=" Near-Infrared Laser Detection"> Near-Infrared Laser Detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Wavelength-Modulation%20Spectroscopy" title=" Wavelength-Modulation Spectroscopy"> Wavelength-Modulation Spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20pressure" title=" gas pressure"> gas pressure</a> </p> <a href="https://publications.waset.org/abstracts/15017/short-path-near-infrared-laser-detection-of-environmental-gases-by-wavelength-modulation-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1220</span> Optimum Er: YAG Laser Parameters for Orthodontic Composite Debonding: An in vitro Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zamzam">Mohammad Zamzam</a>, <a href="https://publications.waset.org/abstracts/search?q=Wesam%20Bachir"> Wesam Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Imad%20Asaad"> Imad Asaad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several studies have produced estimates of Er:YAG laser parameters and specifications but there is still insufficient data for reliable selection of laser parameters. As a consequence, there is a heightened need for ideal specifications of Er:YAG laser to reduce the amount of enamel ablation. The objective of this paper is to investigate the influence of Er:YAG laser parameters, energy level and pulse duration, on orthodontic composite removal after bracket debonding. The sample consisted of 45 cuboids of orthodontic composite made by plastic moulds. The samples were divided into three groups, each was irradiated with Er:YAG laser set at different energy levels and three values for pulse durations (50 µs, 100 µs, and 300 µs). Geometrical parameters (depth and area) of cavities formed by laser irradiation were determined. ANCOVA test showed statistically significant difference (p < 0.0.5) between the groups indicating a potential effect of laser pulse duration on the geometrical parameters after controlling laser energy level. A post-hoc Bonferroni test ranked the 50µ Er:YAG laser pulse as the most influential factor for all geometrical parameters in removing remnant composite from enamel surface. Also, 300 mJ laser pulses caused the largest removal of the composite. The results of the present study demonstrated the efficacy of 50 µs and 300 mJ Er:YAG laser pulse for removal of remnant orthodontic composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enamel" title="enamel">enamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Er%3AYAG" title=" Er:YAG"> Er:YAG</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20parameters" title=" geometrical parameters"> geometrical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20composite" title=" orthodontic composite"> orthodontic composite</a>, <a href="https://publications.waset.org/abstracts/search?q=remnant%20composite" title=" remnant composite"> remnant composite</a> </p> <a href="https://publications.waset.org/abstracts/6666/optimum-er-yag-laser-parameters-for-orthodontic-composite-debonding-an-in-vitro-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1219</span> To Study the Effect of Optic Fibre Laser Cladding of Cast Iron with Silicon Carbide on Wear Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshitij%20Sawke">Kshitij Sawke</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradnyavant%20Kamble"> Pradnyavant Kamble</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrikant%20Patil"> Shrikant Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigates the effect on wear rate of laser clad of cast iron with silicon carbide. Metal components fail their desired use because they wear, which causes them to lose their functionality. The laser has been used as a heating source to create a melt pool over the surface of cast iron, and then a layer of hard silicon carbide is deposited. Various combinations of power and feed rate of laser have experimented. A suitable range of laser processing parameters was identified. Wear resistance and wear rate properties were evaluated and the result showed that the wear resistance of the laser treated samples was exceptional to that of the untreated samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20clad" title="laser clad">laser clad</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20parameters" title=" processing parameters"> processing parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a> </p> <a href="https://publications.waset.org/abstracts/76458/to-study-the-effect-of-optic-fibre-laser-cladding-of-cast-iron-with-silicon-carbide-on-wear-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1218</span> Electrotechnology for Silicon Refining: Plasma Generator and Arc Furnace Installations and Theoretical Base</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashot%20Navasardian">Ashot Navasardian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Vardanian"> Mariam Vardanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladik%20Vardanian"> Vladik Vardanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The photovoltaic and the semiconductor industries are in growth and it is necessary to supply a large amount of silicon to maintain this growth. Since silicon is still the best material for the manufacturing of solar cells and semiconductor components so the pure silicon like solar grade and semiconductor grade materials are demanded. There are two main routes for silicon production: metallurgical and chemical. In this article, we reviewed the electrotecnological installations and systems for semiconductor manufacturing. The main task is to design the installation which can produce SOG Silicon from river sand by one work unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20grade%20silicon" title="metallurgical grade silicon">metallurgical grade silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20grade%20silicon" title=" solar grade silicon"> solar grade silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=impurity" title=" impurity"> impurity</a>, <a href="https://publications.waset.org/abstracts/search?q=refining" title=" refining"> refining</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a> </p> <a href="https://publications.waset.org/abstracts/21380/electrotechnology-for-silicon-refining-plasma-generator-and-arc-furnace-installations-and-theoretical-base" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1217</span> Effect of Laser Input Energy on the Laser Joining of Polyethylene Terephthalate to Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20J.%20Chen">Y. J. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Yue"> T. M. Yue</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20N.%20Guo"> Z. N. Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the effects of laser energy on the characteristics of bubbles generated in the weld zone and the formation of new chemical bonds at the Polyethylene Terephthalate (PET)/Ti joint interface in laser joining of PET to Ti. The samples were produced by using different laser energies ranging from 1.5 J – 6 J in steps of 1.5 J, while all other joining parameters remained unchanged. The types of chemical bonding at the joint interface were analysed by the x-ray photoelectron spectroscopy (XPS) depth-profiling method. The results show that the characteristics of the bubbles and the thickness of the chemically bonded interface, which contains the laser generated bonds of Ti–C and Ti–O, increase markedly with increasing laser energy input. The tensile failure load of the joint depends on the combined effect of the amount and distribution of the bubbles formed and the chemical bonding intensity of the joint interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20direct%20joining" title="laser direct joining">laser direct joining</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti%2FPET%20interface" title=" Ti/PET interface"> Ti/PET interface</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20energy" title=" laser energy"> laser energy</a>, <a href="https://publications.waset.org/abstracts/search?q=XPS%20depth%20profiling" title=" XPS depth profiling"> XPS depth profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20bond" title=" chemical bond"> chemical bond</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20failure%20load" title=" tensile failure load"> tensile failure load</a> </p> <a href="https://publications.waset.org/abstracts/52818/effect-of-laser-input-energy-on-the-laser-joining-of-polyethylene-terephthalate-to-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1216</span> Laser Irradiated GeSn Photodetector for Improved Infrared Photodetection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patrik%20Scajev">Patrik Scajev</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavels%20Onufrijevs"> Pavels Onufrijevs</a>, <a href="https://publications.waset.org/abstracts/search?q=Algirdas%20Mekys"> Algirdas Mekys</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadas%20Malinauskas"> Tadas Malinauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominykas%20Augulis"> Dominykas Augulis</a>, <a href="https://publications.waset.org/abstracts/search?q=Liudvikas%20Subacius"> Liudvikas Subacius</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Chih%20Lee"> Kuo-Chih Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jevgenijs%20Kaupuzs"> Jevgenijs Kaupuzs</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturs%20Medvids"> Arturs Medvids</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung%20Hsiang%20Cheng"> Hung Hsiang Cheng </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we focused on the optoelectronic properties of the photodiodes prepared by using 200 nm thick Ge₀.₉₅Sn₀.₀₅ epitaxial layers on Ge/n-Si substrate with aluminum contacts. Photodiodes were formed on non-irradiated and Nd: YAG laser irradiated Ge₀.₉₅Sn₀.₀₅ layers. The samples were irradiated by pulsed Nd: YAG laser with 136.7-462.6 MW/cm² intensity. The photodiodes were characterized by using short laser pulses with the wavelength in the 2.0-2.6 μm range. The laser-irradiated diode was found more sensitive in the long-wavelength range due to laser-induced Sn atoms redistribution providing formation of graded bandgap structure. Sub-millisecond photocurrent relaxation in the diodes revealed their suitability for image sensors. Our findings open the perspective for improving the photo-sensitivity of GeSn alloys in the mid-infrared by pulsed laser processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GeSn" title="GeSn">GeSn</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20processing" title=" laser processing"> laser processing</a>, <a href="https://publications.waset.org/abstracts/search?q=photodetector" title=" photodetector"> photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared" title=" infrared"> infrared</a> </p> <a href="https://publications.waset.org/abstracts/131848/laser-irradiated-gesn-photodetector-for-improved-infrared-photodetection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1215</span> Self-Action Effects of a Non-Gaussian Laser Beam Through Plasma </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar">Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Gupta"> Naveen Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The propagation of the Non-Gaussian laser beam results in strong self-focusing as compare to the Gaussian laser beam, which helps to achieve a prerequisite of the plasma-based electron, Terahertz generation, and higher harmonic generations. The theoretical investigation on the evolution of non-Gaussian laser beam through the collisional plasma with ramped density has been presented. The non-uniform irradiance over the cross-section of the laser beam results in redistribution of the carriers that modifies the optical response of the plasma in such a way that the plasma behaves like a converging lens to the laser beam. The formulation is based on finding a semi-analytical solution of the nonlinear Schrodinger wave equation (NLSE) with the help of variational theory. It has been observed that the decentred parameter ‘q’ of laser and wavenumber of ripples of medium contribute to providing the required conditions for the improvement of self-focusing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%20beam" title="non-Gaussian beam">non-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=collisional%20plasma" title=" collisional plasma"> collisional plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20theory" title=" variational theory"> variational theory</a>, <a href="https://publications.waset.org/abstracts/search?q=self-focusing" title=" self-focusing"> self-focusing</a> </p> <a href="https://publications.waset.org/abstracts/124754/self-action-effects-of-a-non-gaussian-laser-beam-through-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1214</span> Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zekun%20Lin">Zekun Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xun%20Li"> Xun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=III-V%2Fsilicon%20integration" title="III-V/silicon integration">III-V/silicon integration</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20photonics" title=" silicon photonics"> silicon photonics</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20mode%20laser" title=" single mode laser"> single mode laser</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20coupling" title=" vertical coupling"> vertical coupling</a> </p> <a href="https://publications.waset.org/abstracts/135489/vertically-coupled-iii-vsilicon-single-mode-laser-with-a-hybrid-grating-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1213</span> Examination of Contaminations in Fabricated Cadmium Selenide Quantum Dots Using Laser Induced Plasma Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20Tawfik">Walid Tawfik</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Askam%20Farooq"> W. Askam Farooq</a>, <a href="https://publications.waset.org/abstracts/search?q=Sultan%20F.%20Alqhtani"> Sultan F. Alqhtani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum dots (QDots) are nanometer-sized crystals, less than 10 nm, comprise a semiconductor or metallic materials and contain from 100 - 100,000 atoms in each crystal. QDots play an important role in many applications; light emitting devices (LEDs), solar cells, drug delivery, and optical computers. In the current research, a fundamental wavelength of Nd:YAG laser was applied to analyse the impurities in homemade cadmium selenide (CdSe) QDots through laser-induced plasma (LIPS) technique. The CdSe QDots were fabricated by using hot-solution decomposition method where a mixture of Cd precursor and trioctylphosphine oxide (TOPO) is prepared at concentrations of TOPO under controlled temperatures 200-350ºC. By applying laser energy of 15 mJ, at frequency 10 Hz, and delay time 500 ns, LIPS spectra of CdSe QDots samples were observed. The qualitative LIPS analysis for CdSe QDs revealed that the sample contains Cd, Te, Se, H, P, Ar, O, Ni, C, Al and He impurities. These observed results gave precise details of the impurities present in the QDs sample. These impurities are important for future work at which controlling the impurity contents in the QDs samples may improve the physical, optical and electrical properties of the QDs used for solar cell application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium%20selenide" title="cadmium selenide">cadmium selenide</a>, <a href="https://publications.waset.org/abstracts/search?q=TOPO" title=" TOPO"> TOPO</a>, <a href="https://publications.waset.org/abstracts/search?q=LIPS%20spectroscopy" title=" LIPS spectroscopy"> LIPS spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/107194/examination-of-contaminations-in-fabricated-cadmium-selenide-quantum-dots-using-laser-induced-plasma-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1212</span> Simulation of Laser Structuring by Three Dimensional Heat Transfer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bassim%20Shaheen%20Bachy">Bassim Shaheen Bachy</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Franke"> Jörg Franke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20structuring" title="laser structuring">laser structuring</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20modeling" title=" thermal modeling"> thermal modeling</a> </p> <a href="https://publications.waset.org/abstracts/12614/simulation-of-laser-structuring-by-three-dimensional-heat-transfer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser&page=41">41</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser&page=42">42</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>